[go: up one dir, main page]

WO2018159777A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2018159777A1
WO2018159777A1 PCT/JP2018/007881 JP2018007881W WO2018159777A1 WO 2018159777 A1 WO2018159777 A1 WO 2018159777A1 JP 2018007881 W JP2018007881 W JP 2018007881W WO 2018159777 A1 WO2018159777 A1 WO 2018159777A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal case
assembled battery
case type
cell
cells
Prior art date
Application number
PCT/JP2018/007881
Other languages
English (en)
French (fr)
Inventor
中村 仁
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2019503122A priority Critical patent/JPWO2018159777A1/ja
Priority to TW107106886A priority patent/TW201838239A/zh
Publication of WO2018159777A1 publication Critical patent/WO2018159777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery having a plurality of lithium ion cells.
  • Patent Document 1 proposes a lithium ion assembled battery having a plurality of lithium ion cells connected in series.
  • the lithium ion cell described in Patent Document 1 includes a positive electrode having a positive electrode active material containing lithium iron phosphate and a negative electrode having a graphite-based negative electrode active material.
  • the inventor of the present application examined mounting a lithium ion assembled battery as described in Patent Document 1 on a straddle-type vehicle such as a motorcycle instead of a lead storage battery. As a result, it was found that the lithium ion cell deteriorates depending on the usage environment of the saddle riding type vehicle.
  • the present invention is to provide an assembled battery that can suppress deterioration of a lithium ion cell even in an environment where the assembled battery mounted in a saddle-ride type vehicle is used.
  • the inventor of the present application has compared the use environment of the lead storage battery mounted on the saddle riding type vehicle and the use environment of the lead storage battery mounted on the automobile (four-wheeled vehicle).
  • the lead storage battery is discharged with a large current to drive the starter motor when the engine is started.
  • the lead-acid battery discharges with a large current to drive the motor during driving.
  • An automobile using an engine as a drive source includes an engine room for accommodating the engine.
  • the motor vehicle which uses a motor as a drive source is provided with the motor room for accommodating a motor.
  • a lead storage battery mounted on an automobile is accommodated in an engine room or a motor room.
  • the saddle riding type vehicle does not include an engine room or a motor room.
  • the lead storage battery mounted on the saddle-ride type vehicle is arranged in a state exposed to the outside or only covered with a vehicle body cover. Therefore, the temperature of the lead storage battery mounted on the saddle riding type vehicle is greatly lowered under a low temperature environment such as nighttime in winter. Therefore, a lead storage battery mounted on a saddle-ride type vehicle tends to discharge a large current at a lower temperature than a lead storage battery mounted on an automobile.
  • a lead-acid battery of a saddle-ride type vehicle using an engine as a drive source has a smaller weight and volume than a lead-acid battery mounted on an automobile using the engine as a drive source. That is, a lead storage battery mounted on a saddle-ride type vehicle using an engine as a drive source has a smaller capacity than a lead storage battery mounted on an automobile using the engine as a drive source. Moreover, the lead acid battery mounted in the saddle-ride type vehicle using the motor as the drive source has a smaller weight and volume than the lead acid battery mounted in the automobile using the motor as the drive source.
  • a lead storage battery mounted on a saddle-ride type vehicle using a motor as a drive source has a smaller capacity than a lead storage battery mounted on an automobile using a motor as a drive source.
  • the lead storage battery mounted on the saddle-ride type vehicle since the lead storage battery mounted on the saddle-ride type vehicle has a smaller capacity than the lead storage battery mounted on the automobile, the lead storage battery mounted on the saddle riding type vehicle is charged more than the lead storage battery mounted on the automobile. Tend to be more frequent. Therefore, the lead storage battery mounted on the saddle riding type vehicle tends to be charged more frequently than the lead storage battery mounted on the automobile at a lower temperature than the lead storage battery mounted on the automobile.
  • the inventor of the present application has a tendency that a lead storage battery mounted on a saddle-ride type vehicle discharges a large current at a lower temperature than a lead storage battery mounted on an automobile, and It has been found that there is a tendency to be charged more frequently than a lead storage battery mounted in an automobile at a lower temperature than the lead storage battery mounted.
  • the inventor of the present application studied to mount a lithium ion assembled battery as described in Patent Document 1 on a saddle riding type vehicle instead of a lead storage battery.
  • the inventor of the present application studied charging and discharging a lithium ion cell having a positive electrode active material containing lithium iron phosphate and a graphite-based negative electrode active material described in Patent Document 1 in a low temperature state. As a result, the following was found. It was found that the lithium ion cell can discharge a large current required for the saddle riding type vehicle even in a low temperature environment. Further, it was found that when the lithium ion cell is slowly charged over time, the lithium ion cell hardly deteriorates even if the discharge is repeated in a low temperature environment. However, it was found that when the lithium ion cell is repeatedly charged in a low temperature environment, the lithium ion cell is likely to deteriorate.
  • a negative electrode having a graphite-based negative electrode active material has a crystal structure in which layers of carbon graphite (graphite) are stacked.
  • graphite carbon graphite
  • the lithium ions move from the positive electrode to the negative electrode and enter between the layers of graphite laminated on the negative electrode.
  • lithium ions exit from between the graphite layers in the negative electrode and move to the positive electrode.
  • the distance between the graphite layers is slightly smaller than the diameter of the lithium atoms. Therefore, when lithium ions enter between the graphite layers in the negative electrode during charging of the lithium ion cell, the space between the graphite layers is expanded.
  • the inventor of the present application examined using a negative electrode active material having a plurality of laminated carbon layers instead of a negative electrode active material having a plurality of laminated graphite layers as a negative electrode of a lithium ion cell.
  • the carbon here is non-graphite (non-graphite).
  • the use of a negative electrode active material having an average interlayer distance of a plurality of carbon layers equal to or greater than the diameter of lithium ions was examined. As a result, the following was found. Since the average inter-layer distance of multiple carbon layers is equal to or greater than the diameter of lithium ions, even when lithium ions enter between adjacent carbon layers in the negative electrode when charging a lithium ion cell, Can hardly be spread.
  • the distance between adjacent carbon layers does not change much. That is, even when lithium ions enter and exit between the carbon layers during charging and discharging of the lithium ion cell, the average interlayer distance between the plurality of carbon layers hardly changes. Therefore, the lamination state of the plurality of carbon layers hardly changes. Thereby, it turned out that the crystal structure of a negative electrode does not change so much. Therefore, it turned out that deterioration of a negative electrode can be suppressed. Therefore, it was found that deterioration of the lithium ion cell having this negative electrode can be suppressed.
  • the negative electrode has the above configuration, deterioration of the lithium ion cell can be suppressed even when the frequency of charging and discharging of the lithium ion cell is increased. Furthermore, it has been found that when the negative electrode has the above-described configuration, the lithium ion cell having the negative electrode can suppress deterioration even when charged or discharged at a low temperature. Therefore, it was found that even when this lithium ion cell is mounted on a saddle-ride type vehicle and the frequency of charging and discharging of the lithium ion cell increases at a low temperature, deterioration of the lithium ion cell can be suppressed.
  • the assembled battery of the present invention is an assembled battery having a plurality of lithium ion cells electrically connected to each other, and each of the plurality of lithium ion cells includes one positive electrode, one negative electrode, A metal case-type cell having an electrolyte solution or a solid electrolyte, the one positive electrode, the one negative electrode, and a metal case containing the electrolyte solution or the solid electrolyte, and the plurality of metal case-type cells.
  • Each is connected in series to any of the plurality of metal case-type cells
  • the positive electrode has a positive electrode active material having an olivine structure
  • the negative electrode includes a plurality of carbon layers stacked.
  • a negative electrode active material in which an average interlayer distance of the plurality of carbon layers is equal to or greater than a diameter of lithium atoms, and the assembled battery fixes the metal case type cells to each other.
  • each of the plurality of metal case type cells is connected in series to one of the plurality of metal case type cells.
  • the larger the number of metal case cells connected in series with each other the higher the output voltage of the assembled battery.
  • the assembled battery can be used in a usage environment that requires a high output voltage.
  • the metal case type cell is a lithium ion cell.
  • Lithium ion cells have lower weight energy density and volumetric energy density than lead acid batteries. Therefore, when an assembled battery having a plurality of lithium ion cells is mounted on a saddle riding type vehicle instead of a lead storage battery, the saddle riding type vehicle can be reduced in weight and size while maintaining the capacity of the battery. Alternatively, the capacity of the battery can be increased without increasing the size and weight of the saddle riding type vehicle. By increasing the capacity of the assembled battery excessively, the burden on each of the plurality of metal case type cells included in the assembled battery is reduced, so that deterioration of the metal case type cell can be suppressed.
  • Each of the plurality of metal case-type cells has one positive electrode, one negative electrode, and an electrolytic solution or a solid electrolyte.
  • the negative electrode of the metal case type cell includes a negative electrode active material including a carbon layer instead of a graphite layer, and includes a negative electrode active material in which an average interlayer distance of a plurality of carbon layers is equal to or greater than a diameter of lithium atoms. Since the average interlaminar distance of the plurality of carbon layers is equal to or greater than the diameter of lithium ions, even when lithium ions enter between adjacent carbon layers in the negative electrode, There is almost no gap between them.
  • the distance between adjacent carbon layers does not change much. That is, even when lithium ions enter and exit between the carbon layers during charging and discharging of the metal case type cell, the average interlayer distance between the plurality of carbon layers hardly changes. Therefore, the lamination state of the carbon layer hardly changes. Thereby, the crystal structure of a negative electrode does not change so much. Therefore, deterioration of the negative electrode can be suppressed. Therefore, deterioration of the metal case type cell having the negative electrode can be suppressed. Therefore, deterioration of the metal case type cell having the negative electrode can be suppressed.
  • the metal case type cell having the negative electrode can suppress deterioration even at a low temperature. Therefore, even if this metal case type cell is mounted on a saddle riding type vehicle and the frequency of charging and charging of the metal case type cell is increased in a low temperature state, deterioration of the metal case type cell (lithium ion cell) can be suppressed.
  • the metal case type cell contains a positive electrode active material having an olivine structure
  • the metal case type cell (lithium ion cell) is unlikely to deteriorate even when charging and discharging are repeated. Therefore, even if charging and discharging of the metal case cell are repeated in a low temperature environment, the metal case cell (lithium ion cell) is not easily deteriorated. Therefore, even if an assembled battery having a plurality of metal case cells is mounted on a saddle-ride type vehicle and charging and discharging of the assembled battery are repeated relatively frequently, the metal case cell (lithium ion cell) is deteriorated. Can be suppressed.
  • the metal case type cell lithium ion cell
  • the olivine structure of the positive electrode active material is a hexagonal close-packed charge structure and a stable crystal structure. Therefore, the metal case type cell (lithium ion cell) having the above-described configuration can be used even in a high temperature environment.
  • the positive electrode active material has an olivine structure, and further includes a plurality of carbon layers in which the negative electrode active material is laminated, and the average interlayer distance of the plurality of carbon layers is equal to or greater than the diameter of the lithium atom. Therefore, deterioration can be suppressed even in a low temperature state. Therefore, even if this metal case type cell is mounted on a saddle riding type vehicle and the frequency of charging and discharging of the metal case type cell is increased at a low temperature, deterioration of the metal case type cell (lithium ion cell) can be suppressed. I understood.
  • each of the plurality of metal case type cells is a metal case type cell having one positive electrode, one negative electrode, and a metal case containing an electrolytic solution or a solid electrolyte.
  • the metal case has high heat dissipation. Therefore, when the plurality of metal case cells are charged and discharged, each of the plurality of metal case cells dissipates heat even if the plurality of metal case cells generate heat. Thereby, the temperature rise of the assembled battery which has a some metal case type
  • the metal case type cell (lithium ion cell) can be suppressed. That is, even in an environment where a battery pack mounted on a saddle riding type vehicle is used, deterioration of the metal case type cell (lithium ion cell) due to heat generation during charging or discharging can be suppressed.
  • the plurality of metal case type cells are fixed to each other by the metal case type cell fixing portion. Therefore, the position of a plurality of metal case cells can be maintained with a layout that takes into consideration the heat dissipation of the metal case cells. For example, it can be maintained in a state where an appropriate gap is left between the metal case type cells. Thereby, even when a plurality of metal case type cells generate heat during charging and discharging of the plurality of metal case type cells, an increase in temperature of the assembled battery can be suppressed. Therefore, even when an assembled battery having a plurality of metal case-type cells is mounted on a saddle riding type vehicle and the assembled battery is discharged with a large current, the temperature rise of the assembled battery can be further suppressed. .
  • the deterioration of the metal case type cell (lithium ion cell) can be further suppressed. That is, even in an environment where a battery pack mounted on a saddle riding type vehicle is used, deterioration of the metal case type cell (lithium ion cell) due to heat generation during charging or discharging can be further suppressed.
  • the metal case since the electrolytic solution is accommodated in the metal case, the metal case does not expand even if the electrolytic solution volatilizes. Therefore, a highly volatile electrolyte can be used as the electrolyte. Highly volatile electrolytes are difficult to solidify or freeze at low temperatures. Therefore, when an electrolytic solution that is difficult to solidify or freeze at a low temperature is used, an assembled battery having a plurality of metal case-type cells can be used in a low-temperature environment. Therefore, even if an assembled battery having a plurality of metal case type cells is mounted on a saddle-ride type vehicle, charging of the assembled battery or discharging of a large current is performed at a lower temperature than the battery mounted on the automobile.
  • the deterioration of the metal case type cell can be suppressed. That is, even in an environment where a battery pack mounted on a saddle riding type vehicle is used, deterioration of the metal case type cell (lithium ion cell) due to charging or discharging in a low temperature environment can be suppressed.
  • the assembled battery of the present invention can suppress deterioration of the metal case type cell (lithium ion cell) even in an environment where the assembled battery mounted on the saddle riding type vehicle is used.
  • the assembled battery of the present invention preferably has the following configuration in addition to the configuration of the above (1).
  • the one positive electrode, the one negative electrode, and the electrolytic solution are accommodated in the metal case type cell, and the electrolytic solution is at ⁇ 20 ° C. It is an electrolyte that does not freeze.
  • an assembled battery having a plurality of metal case-type cells can be used in a low temperature environment of about ⁇ 20 ° C. Therefore, even if an assembled battery having a plurality of metal case cells is mounted on a saddle-ride type vehicle and charged or discharged with a large current at a low temperature of about ⁇ 20 ° C., the metal case cell ( Deterioration of the lithium ion cell) can be suppressed. Therefore, even if it is the use environment of the assembled battery mounted in the saddle-ride type vehicle, deterioration of a metal case type cell (lithium ion cell) can be suppressed more.
  • the assembled battery of the present invention preferably has the following configuration in addition to the above configuration (1) or (2).
  • An assembled battery has a housing part which accommodates both the said metal case type cell and the said metal case type cell fixing
  • the housing part of the assembled battery accommodates a plurality of metal case type cells and metal case type cell fixing parts. Therefore, a plurality of metal case type cells can be protected from water and moisture. Therefore, deterioration of the metal case type cell (lithium ion cell) can be suppressed. Therefore, even when the assembled battery is mounted on a saddle-ride type vehicle that does not have an engine room or a motor room, deterioration of the metal case type cell (lithium ion cell) can be suppressed. That is, it is possible to further suppress the deterioration of the metal case type cell (lithium ion cell) even in the usage environment of the assembled battery mounted on the saddle riding type vehicle.
  • the assembled battery of the present invention preferably has the following configuration in addition to the configuration of the above (3).
  • An assembled battery is provided in the housing part in a state accessible from the outside of the housing part, and is electrically connected to at least one positive electrode of at least one metal case type cell of the plurality of metal case type cells.
  • an external negative electrode terminal electrically connected to the negative electrode.
  • the assembled battery has one external positive terminal and one external negative terminal.
  • the external positive electrode terminal and the external negative electrode terminal are provided in the housing part in a state that can be accessed from the outside of the housing part. Therefore, the external positive terminal and the external negative terminal can be connected to a device that supplies power to the assembled battery or a device that supplies power to the assembled battery.
  • the assembled battery of the present invention preferably has the following configuration in addition to the configuration of (4) above.
  • the housing part is a box having a plurality of surfaces respectively arranged along a plurality of planes intersecting each other, and the one external positive terminal and the one external negative terminal are both of the plurality of surfaces. Are provided on one surface.
  • the assembled battery of the present invention preferably has the following configuration in addition to any of the above configurations (1) to (5).
  • the plurality of metal case type cells are connected in series in one row.
  • the metal case type cell fixing portion fixes the plurality of metal case type cells in a state of being connected in series in a row.
  • the plurality of metal case type cells included in the assembled battery are connected in series in one row. Therefore, the output voltage of the assembled battery is higher than when a plurality of metal case type cells of the same number are connected in series and in parallel. Therefore, the number of metal case-type cells included in the assembled battery can be reduced while securing the output voltage necessary for the assembled battery. Therefore, the assembled battery can be made small and light.
  • This assembled battery can be used in an environment where the output current and capacity required for the assembled battery are relatively small and the output voltage required for the assembled battery is relatively large.
  • the assembled battery of the present invention preferably has the following configuration in addition to any of the above configurations (1) to (5).
  • the plurality of metal case type cells constitute a plurality of series cell groups including at least two metal case type cells connected in series with each other.
  • the plurality of series cell groups are connected in parallel to each other.
  • the metal case type cell fixing portion fixes a plurality of series cell groups connected in parallel.
  • the assembled battery has a plurality of series cell groups.
  • Each of the plurality of series cell groups includes at least two metal case-type cells connected in series with each other.
  • the plurality of series cell groups are connected in parallel to each other. That is, the plurality of metal case type cells included in the assembled battery include metal case type cells connected in parallel to each other. Therefore, the output current of the assembled battery becomes larger than when a plurality of metal case-type cells included in the assembled battery are connected in series in one row. As the output current of the assembled battery increases, the capacity of the assembled battery also increases.
  • the output current and capacity of the assembled battery increase. Since the capacity of the assembled battery is large, the frequency of charging the assembled battery can be reduced. As a result, deterioration of the metal case type cell (lithium ion cell) can be suppressed.
  • This assembled battery can be used in an environment where the output voltage, output current, and capacity required for the assembled battery are relatively large.
  • the assembled battery of the present invention preferably has the following configuration in addition to any of the above configurations (1) to (5).
  • the plurality of metal case type cells constitute a plurality of parallel cell groups including at least two metal case type cells connected in parallel to each other.
  • the plurality of parallel cell groups are connected in series with each other.
  • the metal case type cell fixing portion fixes a plurality of parallel cell groups connected in series.
  • the assembled battery has a plurality of parallel cell groups.
  • the plurality of parallel cell groups are connected in series with each other.
  • the output voltage of the assembled battery can be increased.
  • Each of the plurality of parallel cell groups includes at least two metal case-type cells connected in parallel to each other. That is, the plurality of metal case type cells included in the assembled battery include metal case type cells connected in parallel to each other. Therefore, the output current of the assembled battery becomes larger than when a plurality of metal case-type cells included in the assembled battery are connected in series in one row. As the output current of the assembled battery increases, the capacity of the assembled battery also increases. As the number of metal case cells connected in parallel with each other increases, the output current and capacity of the assembled battery increase.
  • This assembled battery can be used in an environment where the output voltage, output current, and capacity required for the assembled battery are relatively large.
  • the assembled battery of the present invention preferably has the following configuration in addition to any of the above configurations (1) to (8).
  • the assembled battery can be charged with a DC charger for 12V to 15V.
  • the output voltage of a lead storage battery mounted on a vehicle is about 12V to 15V. Therefore, the assembled battery can be charged with a DC charger for 12V to 15V, so that the assembled battery can be used in place of a lead storage battery mounted on a vehicle using an engine as a drive source.
  • the assembled battery of the present invention preferably has the following configuration in addition to any of the above configurations (1) to (9).
  • the assembled battery can be mounted on a straddle-type vehicle including at least one front wheel, at least one rear wheel, and a drive source at least partially disposed behind the at least one front wheel in the vehicle front-rear direction. is there.
  • each of the plurality of metal case type cells is connected in series to one of the plurality of metal case type cells
  • each of the plurality of metal case type cells is the same metal case type cell. It is not intended to be connected in series.
  • Each of the plurality of metal case type cells may or may not be connected in series to the same metal case type cell.
  • a plurality of metal case type cells include first to third metal case type cells. It is assumed that the first metal case type cell is connected in series to the second metal case type cell, and the third metal case type cell is connected in series to the fourth metal case type cell.
  • the first metal case type cell may or may not be connected in series with the third metal case type cell and the fourth metal case type cell.
  • "each of the plurality of metal case type cells is connected in series to any of the plurality of metal case type cells” means that the metal case in which each of the plurality of metal case type cells is connected in series. It is not intended that the number of type cells be one.
  • the number of metal case type cells to which each of the plurality of metal case type cells is connected in series may be one, or may be two or more.
  • an “electrolytic solution” is a solution in which an electrolyte is dissolved in a solvent and exists in a liquid form in the cell.
  • the electrolyte that dissolves in the solvent does not include a solid electrolyte.
  • a “solid electrolyte” is an electrolyte that exists in a gel or solid form in a cell.
  • carbon is a substance obtained in a process of generating a substance having a high carbon content by releasing an element other than carbon from a raw material containing carbon. This process is called so-called carbonization.
  • carbonization By subjecting the material obtained by carbonization to heat treatment at a high temperature, a laminated structure of carbon layers develops to obtain graphite.
  • Graphite has a laminated structure in which layers having two-dimensionally bonded carbon six-membered rings are laminated, and the interlayer distance in the laminated structure is 3.35 angstroms or less.
  • Carbon in the present invention is a substance before reaching graphite. In the present invention, “carbon” does not include graphite.
  • the “interlayer distance” is a distance between adjacent layers.
  • the “average interlayer distance” is an average value of distances between adjacent layers.
  • the “electrolyte solution that does not freeze at ⁇ 20 ° C.” is an electrolyte solution that does not freeze at ⁇ 20 ° C. under atmospheric pressure. Atmospheric pressure varies with altitude.
  • the “electrolyte solution that does not freeze at ⁇ 20 ° C.” may be frozen at an altitude of ⁇ 20 ° C. at an altitude unless it is frozen at ⁇ 20 ° C. at atmospheric pressure.
  • the “state in which the external positive terminal can be accessed from the outside of the housing portion” is a state in which the external positive terminal can be electrically connected to a device to which power is supplied from the assembled battery.
  • the “state in which the external negative electrode terminal is accessible from the outside of the housing portion” is a state in which the external negative electrode terminal can be electrically connected to a device that supplies power to the assembled battery.
  • one external positive electrode terminal electrically connected to at least one positive electrode included in each of at least one metal case type cell means any metal included in the assembled battery in one external positive terminal. It refers to a state where it is connected to the at least one positive electrode without using a case cell.
  • the definition of “one external negative electrode terminal electrically connected to at least one negative electrode respectively included in at least one metal case type cell” in the present invention is also the same.
  • a plurality of surfaces arranged along a plurality of planes intersecting each other refers to a state in which the plurality of surfaces are parallel or substantially parallel to the plurality of planes, respectively.
  • Each of the plurality of surfaces may have a gently curved surface or unevenness as long as it is along any plane.
  • the “parallel cell group composed of at least two metal case-type cells connected in parallel to each other” includes only at least two metal case-type cells connected in parallel to each other. That is, the metal case type cells constituting the parallel cell group are not connected in series.
  • the metal case type cell which comprises a parallel cell group may be connected in series with the metal case type cell which is not contained in this parallel cell group.
  • the “series cell group composed of at least two metal case type cells connected in series with each other” includes only at least two metal case type cells connected in series with each other. That is, the metal case type cells constituting the series cell group are not connected in parallel.
  • the metal case type cell which comprises a serial cell group may be connected in parallel with the metal case type cell which is not contained in this serial cell group.
  • “Saddle-riding vehicle” refers to any vehicle that rides in a state where the rider straddles the saddle.
  • the saddle riding type vehicle in the present invention includes a motorcycle, a motorbike, a moped, a tricycle, and a four-wheel buggy (ATV: All Terrain Vehicle).
  • Motorcycles included in saddle riding type vehicles include scooters, motorbikes, mopeds, and the like.
  • the “vehicle longitudinal direction” of the saddle riding type vehicle is the longitudinal direction as viewed from the driver when the driver gets on the vehicle standing upright on a horizontal road surface.
  • At least one (one) of a plurality of options includes all combinations conceivable from the plurality of options. At least one (one) of the plurality of options may be any one of the plurality of options or all of the plurality of options.
  • at least one of A, B and C may be A alone, B alone, C alone, A and B, A and C It may be B, C, A, B, and C.
  • the assembled battery of the present invention does not specify the number in the scope of claims, and may have a plurality of elements that are displayed in a singular form when translated into English.
  • the assembled battery of the present invention does not specify the number in the scope of claims, and may have only one element that is displayed as a single element when translated into English.
  • a numerical range may be expressed by using “to” or “from” such as “1 to 10” and “1 to 10”.
  • “1 to 10” and “1 to 10” both mean 1 or more and 10 or less.
  • the terms mounted, connected, coupled, and supported are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling and support, but also indirect attachment, connection, coupling and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferable” has at least the above-described effect obtained by the configuration (1). Further, in this specification, the term “may” is non-exclusive. “May” means “may be, but is not limited to”. In the present specification, the configuration described as “may” exhibits at least the above-described effect obtained by the configuration of (1) above.
  • the assembled battery of the present invention can suppress the deterioration of the lithium ion cell even in the usage environment of the assembled battery mounted on the saddle riding type vehicle.
  • the assembled battery 16 has a plurality of metal case-type cells 161 connected to each other.
  • Each of the plurality of metal case type cells 161 is connected in series to one of the plurality of metal case type cells 161.
  • Each of the plurality of metal case type cells 161 may be connected in series to any one of the plurality of metal case type cells 161.
  • Each of the plurality of metal case type cells 161 may be connected in series to two or more metal case type cells 161 among the plurality of metal case type cells 161.
  • Each of the plurality of metal case type cells 161 includes a positive electrode, a negative electrode, an electrolytic solution or a solid electrolyte, a positive electrode, a negative electrode, and a metal case that houses the electrolytic solution.
  • the positive electrode has a positive electrode active material having an olivine structure.
  • the negative electrode includes a negative electrode active material that includes a plurality of carbon layers 16121a, 16121b, and 16121c, and in which an average interlayer distance between the plurality of carbon layers is equal to or greater than a diameter of lithium atoms.
  • FIG. 1 illustrates a case where lithium atoms are present between two adjacent carbon layers 16121a and 16121b.
  • FIG. 1 illustrates a case where the distance L between two adjacent carbon layers 16121a and 16121b is larger than the diameter D of lithium atoms.
  • the assembled battery 16 includes a metal case type cell fixing unit that fixes the plurality of metal case type cells 161 to each other such that each of the plurality of metal case type cells 161 is fixed to the metal case type cells 161 connected in series.
  • each of the plurality of metal case type cells 161 is connected in series to one of the plurality of metal case type cells 161.
  • the output voltage of the assembled battery 16 increases.
  • the assembled battery 16 can be used in a usage environment that requires a high output voltage.
  • the metal case type cell 161 is a lithium ion cell. Lithium ion cells have lower weight energy density and volumetric energy density than lead acid batteries. Therefore, when the assembled battery 16 having a plurality of lithium ion cells 161 is mounted on the saddle riding type vehicle instead of the lead storage battery, the saddle riding type vehicle can be reduced in weight and size while maintaining the capacity of the battery. Alternatively, the capacity of the battery can be increased without increasing the size and weight of the saddle riding type vehicle. By increasing the capacity of the assembled battery excessively, the burden on each of the plurality of metal case type cells included in the assembled battery is reduced, so that deterioration of the metal case type cell can be suppressed.
  • Each of the plurality of metal case type cells (lithium ion cells) 161 has one positive electrode, one negative electrode, and an electrolytic solution or a solid electrolyte.
  • the negative electrode of the metal case type cell is a negative electrode active material including a plurality of carbon layers 16121a, 16121b, and 16121c, not a graphite layer, and the average interlayer distance of the plurality of carbon layers is equal to or greater than the diameter of the lithium atom. Includes negative electrode active material. Since the average interlaminar distance of the plurality of carbon layers is equal to or greater than the diameter of lithium ions, even when lithium ions enter between adjacent carbon layers in the negative electrode, There is almost no gap between them.
  • the distance between adjacent carbon layers does not change much. That is, when the metal case cell 161 is charged and discharged, even if lithium ions enter and exit between the carbon layers, the average interlayer distance between the plurality of carbon layers hardly changes. Therefore, the lamination state of the carbon layer hardly changes. Thereby, the crystal structure of a negative electrode does not change so much. Therefore, deterioration of the negative electrode can be suppressed. Therefore, deterioration of the metal case type cell 161 having this negative electrode can be suppressed. Therefore, deterioration of the metal case cell 161 having this negative electrode can be suppressed.
  • the negative electrode since the negative electrode has the above-described configuration, deterioration of the metal case cell 161 can be suppressed even when the frequency of charging and discharging of the metal case cell 161 is increased. Furthermore, since the negative electrode has the above-described configuration, the metal case cell 161 having the negative electrode can suppress deterioration even at a low temperature. Therefore, even when the metal case cell 161 is mounted on a saddle-ride type vehicle and the metal case cell 161 is charged and frequently in a low temperature state, the metal case cell (lithium ion cell) 161 is deteriorated. Can be suppressed.
  • the positive electrode of the metal case type cell 161 includes a positive electrode active material having an olivine structure
  • the metal case type cell (lithium ion cell) is unlikely to deteriorate even when charging and discharging are repeated. Therefore, even if charging and discharging of the metal case cell are repeated in a low temperature environment, the metal case cell (lithium ion cell) 161 is unlikely to deteriorate. Therefore, even if an assembled battery 16 having a plurality of metal case cells 161 is mounted on a saddle-ride type vehicle and charging and discharging of the assembled battery 16 are repeated relatively frequently, a metal case cell (lithium ion cell) ) 161 degradation can be suppressed.
  • the metal case type cell (lithium ion cell) 161 can be suppressed even in an environment where the assembled battery 16 mounted on the saddle riding type vehicle is used. Furthermore, the olivine structure of the positive electrode active material is a hexagonal close-packed charge structure and a stable crystal structure. Therefore, the metal case type cell (lithium ion cell) having the above-described configuration can be used even in a high temperature environment.
  • the positive electrode active material has an olivine structure, and further includes a plurality of carbon layers 16121a, 16121b, and 16121c in which the negative electrode active material is laminated, and the average interlayer distance of the plurality of carbon layers is equal to or greater than the diameter of the lithium atom. is there. Therefore, deterioration can be suppressed even in a low temperature state. Therefore, even if this metal case cell 161 is mounted on a saddle-ride type vehicle and the frequency of charging and discharging of the metal case cell 161 is increased in a low temperature state, the metal case cell (lithium ion cell) 161 is deteriorated. It was found that can be suppressed.
  • the fluctuation range of the SOC of the metal case type cell (lithium ion cell) 161 increases. It is necessary to increase the capacity of the assembled battery in order to improve the durability of the assembled battery or lengthen the discharge time of the assembled battery while using the assembled battery in a usage situation where the SOC fluctuation range is large. It becomes.
  • One method for increasing the capacity of the assembled battery is to increase the number of metal case cells (lithium ion cells) included in the assembled battery.
  • the metal case type cell (lithium ion cell) 161 since the metal case type cell (lithium ion cell) 161 includes the positive electrode and the negative electrode having the above-described configuration, the metal case type cell (lithium ion cell) 161 has a large fluctuation range of SOC. Deterioration of the case type cell (lithium ion cell) 161 can be suppressed. Therefore, even if the assembled battery 16 is used in a usage situation where the fluctuation range of the SOC is large while suppressing the increase in the number of metal case type cells (lithium ion cells) 161 included in the assembled battery 16, the durability of the assembled battery 16 is improved. The discharge time of the assembled battery 16 can be increased. Such an assembled battery 16 can suppress weight and volume. Therefore, handling of the assembled battery 16 becomes easier. Therefore, the assembled battery 16 is easy to be mounted on a saddle riding type vehicle. Moreover, the versatility of the assembled battery 16 is improved.
  • the metal case type cell (lithium ion cell) 161 is not easily deteriorated even if the frequency of charging and discharging increases. Therefore, an increase in the number of metal case type cells (lithium ion cells) 161 included in the assembled battery 16 can be suppressed. Thereby, the weight and volume of the assembled battery 16 can be suppressed. Therefore, handling of the assembled battery 16 becomes easier. Therefore, the assembled battery 16 is easy to be mounted on a saddle riding type vehicle. Moreover, the versatility of the assembled battery 16 is improved.
  • Each of the plurality of metal case type cells 161 is a metal case type cell having one positive electrode, one negative electrode, and a metal case that accommodates an electrolytic solution or a solid electrolyte.
  • the metal case has high heat dissipation. Therefore, when the plurality of metal case cells 161 are charged and discharged, even if the plurality of metal case cells 161 generate heat, each of the plurality of metal case cells 161 dissipates heat. Thereby, the temperature rise of the assembled battery 16 which has the some metal case type cell 161 can be suppressed.
  • the assembled battery 16 having a plurality of metal case type cells is mounted on a saddle riding type vehicle and the assembled battery 16 is discharged with a large current, the temperature rise of the assembled battery 16 is suppressed. Can do.
  • deterioration of the metal case type cell (lithium ion cell) 161 can be suppressed. That is, deterioration of the metal case type cell (lithium ion cell) 161 due to heat generation during charging or discharging can be suppressed even in the usage environment of the assembled battery 16 mounted on the saddle riding type vehicle.
  • the plurality of metal case type cells 161 are fixed to each other by the metal case type cell fixing portion 163. Therefore, the position of the plurality of metal case cells 161 can be maintained with a layout that takes into consideration the heat dissipation of the metal case cells 161. For example, it can be maintained in a state where an appropriate gap is left between the metal case type cells 161. Thereby, when the plurality of metal case cells 161 are charged and discharged, even if the plurality of metal case cells 161 generate heat, the temperature rise of the assembled battery 16 can be suppressed.
  • the temperature rise of the assembled battery 16 is further suppressed. can do.
  • deterioration of the metal case type cell (lithium ion cell) 161 can be further suppressed. That is, even in an environment where the assembled battery 16 mounted on the saddle riding type vehicle is used, deterioration of the metal case type cell (lithium ion cell) 161 due to heat generation during charging or discharging can be further suppressed.
  • the metal case since the electrolytic solution is accommodated in the metal case, the metal case does not expand even if the electrolytic solution volatilizes. Therefore, a highly volatile electrolyte can be used as the electrolyte. Highly volatile electrolytes are difficult to solidify or freeze at low temperatures. Therefore, when an electrolytic solution that is difficult to solidify or freeze at a low temperature is used, the assembled battery 16 having a plurality of metal case type cells 161 can be used in a low temperature environment. Therefore, even if the assembled battery 16 having a plurality of metal case-type cells 161 is mounted on a saddle-ride type vehicle, charging of the assembled battery 16 or discharging of a large current is performed at a lower temperature than the battery mounted on the automobile.
  • the deterioration of the metal case type cell 161 can be suppressed. That is, even in an environment where the assembled battery 16 mounted on the saddle riding type vehicle is used, deterioration of the metal case type cell (lithium ion cell) 161 due to charging or discharging in a low temperature environment can be suppressed.
  • the assembled battery 16 is mounted on the saddle riding type vehicle 1.
  • the assembled battery 16 is detachable from the saddle riding type vehicle 1.
  • the assembled battery 16 may be mounted on the saddle riding type vehicle 1 on which a lead storage battery can be mounted instead of the lead storage battery.
  • the saddle riding type vehicle 1 is, for example, a motorcycle.
  • the saddle riding type vehicle 1 includes at least one front wheel 2 and at least one rear wheel 3.
  • the saddle riding type vehicle 1 includes a seat on which a rider is seated. At least a part of the seat is disposed behind all the front wheels 2 in the vehicle longitudinal direction.
  • the saddle riding type vehicle 1 includes an engine 10 as a vehicle drive source and a starter motor 11. At least a part of the engine may be arranged behind all the front wheels 2 in the vehicle longitudinal direction.
  • the starter motor rotates the crankshaft of the engine when the engine is started.
  • the straddle-type vehicle 1 using an engine as a drive source may have a generator with a motor function (ISG: Integrated Starter Generator) instead of having a starter motor.
  • ISG Integrated Starter Generator
  • the starter motor and the ISG do not correspond to the drive source in the present invention.
  • the assembled battery 16 supplies power to electrical components (power consumption devices) of the saddle riding type vehicle 1.
  • the electrical component includes a starter motor.
  • the electrical component may include, for example, a control device, a meter, a horn, a light, various sensors, a seat heater, and the like.
  • the assembled battery 16 includes a plurality of metal case type cells 161, a housing part 162, a metal case type cell fixing part 163, one external positive terminal 166, and one external negative terminal 167.
  • the number of metal case type cells 161 included in the assembled battery 16 is not particularly limited.
  • Each of the plurality of metal case type cells 161 is a lithium ion cell.
  • the plurality of metal case type cells 161 are electrically connected to each other.
  • the number of the metal case type cells 16 included in the assembled battery 16 is not particularly limited.
  • Each of the plurality of metal case type cells 161 is connected in series to one of the plurality of metal case type cells 161.
  • the number of metal case type cells 161 connected in series with each other is not particularly limited. In FIG. 2, at least four metal case type cells 16 are connected in series.
  • the plurality of metal case type cells 161 may include a plurality of metal case type cells 161 connected in parallel.
  • the number of metal case type cells 161 connected in parallel with each other is not particularly limited.
  • the metal case type cell fixing portion 163 fixes the plurality of metal case type cells 161 to each other. Thereby, the plurality of metal case type cells 161 are integrated. For example, the adjacent metal case type cells 161 may be fixed by the metal case type cell fixing portion 163. For example, the metal case type cells 161 that are not adjacent to each other may be fixed.
  • the aspect in which the metal case type cell fixing portion 163 fixes the plurality of metal case type cells 161 to each other is not limited to this aspect.
  • a space may be formed between adjacent metal case type cells 161, and no space is formed. Also good.
  • the external positive terminal 166 and the external negative terminal 167 are provided in the housing part 162 in a state where they can be accessed from the outside of the housing part 162.
  • the external positive electrode terminal 166 is electrically connected to at least one positive electrode included in at least one metal case type cell 161 among the plurality of metal case type cells 161.
  • the external negative electrode terminal 167 is electrically connected to at least one negative electrode included in at least one metal case cell 161 of the plurality of metal case cells 161.
  • the external positive terminal 166 and the external negative terminal 167 may be connected as follows.
  • the external positive terminal 166 and the external negative terminal 167 are connected to electrical components (such as the starter motor 11) of the saddle riding type vehicle 1.
  • the external positive terminal 166 and the external negative terminal 167 may also be connected to the power circuit of the saddle riding type vehicle 1. In this case, the electrical component and the power supply circuit are connected in parallel.
  • the power supply circuit of the saddle riding type vehicle 1 may be a power supply circuit for 12V to 15V, for example.
  • the power supply circuit may include, for example, an AC generator and a regulated rectifier.
  • the external positive terminal 166 and the external negative terminal 167 are connected to a DC charger that supplies power to the assembled battery 16.
  • the DC charger is a DC charger for 12V to 15V, for example.
  • the assembled battery 16 may be charged while being mounted on the saddle riding type vehicle 1 or may be charged while being removed from the saddle riding type vehicle 1.
  • the assembled battery 16 may include a battery management device (BMS: Battery Management System) that manages a plurality of metal case type cells 161.
  • BMS Battery Management System
  • the battery management device monitors the charging and discharging of the plurality of metal case cells 161 and monitors the charging and discharging of the plurality of metal case cells 161.
  • FIG. 3 shows an example of a connection mode of the plurality of metal case type cells 161.
  • the plurality of metal case type cells 161 constitutes a plurality of parallel cell groups 171 including a plurality of metal case type cells 161 connected in parallel to each other.
  • the plurality of parallel cell groups 171 are connected to each other in series.
  • FIG. 4 is a perspective view showing an internal structure of an example of the metal case type cell 161.
  • the metal case type cell 161 has one positive electrode 1611, one negative electrode 1612, and a metal case 1613.
  • the metal case 1613 is referred to as a metal case 1613.
  • the positive electrode 1611 and the negative electrode 1612 are accommodated in a metal case 1613.
  • the metal case 1613 has a sealing property.
  • the material of the metal case 1613 is not particularly limited as long as it is a metal.
  • As the metal case 1613 for example, a steel plate with nickel plating may be used.
  • the metal case 1613 has a cylindrical shape.
  • the positive electrode 1611 and the negative electrode 1612 are accommodated in the metal case 1613 in a state of being wound around a predetermined axis.
  • the predetermined axis is the central axis of the metal case 1613.
  • a separator 1614 is disposed between the positive electrode 1611 and the negative electrode 1612. The separator 1614 is wound around a predetermined axis together with the positive electrode 1611 and the negative electrode 1612.
  • the positive electrode 1611, the negative electrode 1612, and the separator 1614 are immersed in an electrolytic solution 1615 (see FIG. 5).
  • the metal case 1613 accommodates the positive electrode 1611, the negative electrode 1612, the electrolytic solution 1615, and the separator 1614.
  • FIG. 5 is a model diagram of the metal case type cell 161.
  • the positive electrode 1611 includes a positive electrode active material 16111 and a current collector 16112.
  • the positive electrode active material 16111 has an olivine structure.
  • the positive electrode active material is, for example, lithium iron phosphate or lithium manganese phosphate.
  • the negative electrode 1612 includes a negative electrode active material 16121 and a current collector 16122.
  • the negative electrode active material 16121 includes a plurality of carbon layers 16121a and 16121b.
  • the negative electrode active material 16121 may contain a substance other than carbon.
  • the negative electrode active material may contain a silicon oxide, for example.
  • a plurality of carbon layers 16121a and 16121b may contain substances other than carbon.
  • the negative electrode active material 16121 may include at least one of hard carbon and soft carbon, for example.
  • the average distance between two adjacent carbon layers eg, the layer 16121a and the layer 16121b
  • the diameter of the lithium atom is indicated as D.
  • a distance between two adjacent carbon layers 16121a and 16121b is indicated as L.
  • the distance between the two adjacent carbon layers 16121a and 16121b may be referred to as an interlayer distance between the two adjacent carbon layers 16121a and 16121b.
  • FIG. 5 illustrates a case where the distance L between two adjacent carbon layers 16121a and 16121b is larger than the diameter D of the lithium atoms.
  • a carbon source is used for manufacturing the negative electrode active material 16121.
  • the carbon source is not particularly limited, but considering the yield, a compound containing a large amount of carbon is preferable.
  • Examples of the compound containing a large amount of carbon include petroleum-derived substances such as petroleum pitch and coke, and plant-derived substances such as coconut shells.
  • Carbon is classified into non-graphitizable carbon (hard carbon) and graphitizable carbon (soft carbon) depending on the starting material.
  • non-graphitizable carbon may be used, graphitizable carbon may be used, and both non-graphitizable carbon and graphitizable carbon may be used.
  • carbon is graphitized by baking the carbon at a high temperature.
  • Graphite has a structure in which thin layers of carbon (carbon) are stacked.
  • a thin layer in which six-membered rings of carbon are two-dimensionally bonded is sometimes referred to as graphene.
  • the temperature at which carbon graphitizes is about 2500 ° C. or higher and 3000 ° C. or lower.
  • the higher the baking temperature and the longer the baking time the smaller the distance between adjacent carbons (interlayer distance) in the laminated carbon layer, and the size of the carbon layer, in other words, the crystal The size of the child increases. As a result, so-called crystallinity increases.
  • Graphite refers to a structure in which layers having two-dimensionally bonded carbon six-membered rings are crystallized to have an interlayer distance of 3.35 angstroms or less.
  • the average interlayer distance is less than the diameter of lithium atoms. Therefore, in the negative electrode active material having a plurality of carbon layers, when the average interlayer distance between the plurality of carbon layers is equal to or greater than the diameter of the lithium atom, the negative electrode active material is different from graphite.
  • the separator 1614 is a porous film.
  • the separator 1614 is made of, for example, polyethylene.
  • the electrolytic solution 1615 may be, for example, an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the organic solvent is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate.
  • the lithium salt include lithium hexafluorophosphate, lithium borofluoride, and lithium perchlorate.
  • the electrolytic solution may be gelled by adding a polymer to the organic electrolytic solution. Examples of the polymer include polyethylene oxide, polypropylene oxide, and polyvinylidene fluoride.
  • the electrolytic solution 1615 may be an electrolytic solution that is difficult to solidify or freeze at a low temperature.
  • the electrolytic solution 1615 may be an electrolytic solution that does not freeze at ⁇ 20 ° C.
  • the solvent of the electrolytic solution that does not freeze at ⁇ 20 ° C. include ethyl acetate, methyl acetate, and acetonitrile.
  • FIG. 6 is an exploded perspective view of an example of the assembled battery 16.
  • FIG. 6 shows an example in which the assembled battery 16 includes 16 metal case type cells 161.
  • the structure of the assembled battery 16 will be described using the vertical direction of the drawing sheet of FIG.
  • the assembled battery 16 mounted on the saddle riding type vehicle 1 may be installed so that the vertical direction of the paper surface of FIG. 6 is the vertical direction (vertical direction).
  • the direction of the assembled battery 16 mounted on the saddle riding type vehicle 1 is not limited to this.
  • the housing part 162 includes a main body 1621 and a lid 1622.
  • the main body 1621 and the lid 1622 are separable.
  • the lid 1622 covers the opening formed in the main body 1621.
  • the lid 1622 is provided with one external positive terminal 166 and one external negative terminal 167.
  • the housing part 162 is a box. In the example shown in FIG. 6, the housing part 162 is a substantially rectangular parallelepiped box.
  • the housing part 162 has an upper surface 162a, a lower surface 162b, and four side surfaces 162c, 162d, 162e, 162f. Since the housing part 162 has a substantially rectangular parallelepiped shape, the housing part 162 has three surfaces respectively arranged along three planes intersecting each other. For example, the upper surface 162a, the side surface 162c, and the side surface 162f are arranged along three planes that intersect each other.
  • Both the external positive terminal 166 and the external negative terminal 167 are provided on the upper surface 162a. That is, both the external positive terminal 166 and the external negative terminal 167 are provided on one of the six surfaces of the housing portion 162. In other words, both the external positive electrode terminal 166 and the external negative electrode terminal 167 are provided on one surface among three surfaces respectively arranged along three planes intersecting each other.
  • the external positive terminal 166 and the external negative terminal 167 may be provided on a surface other than the upper surface 162a.
  • the external positive terminal 166 and the external negative terminal 167 may be provided on any one of the lower surface 162b and the four side surfaces 162c, 162d, 162e, and 162f.
  • the external positive electrode terminal 166 and the external negative electrode terminal 167 are provided on one surface of the housing portion 162, the operation of connecting the external positive electrode terminal 166 and the external negative electrode terminal 167 to the power circuit of the saddle riding type vehicle 1 or the like Easy to connect to a DC charger.
  • the housing part 162 accommodates 16 metal case type cells 161, a metal case type cell fixing part 163, a connection part 164, and a balance circuit 165.
  • the housing part 162 may accommodate the battery management device described above.
  • the battery management device may be attached to the lid 1622. Note that the battery management device may not be accommodated in the housing portion 162. Only a part of the battery management device may be accommodated in the housing portion 162.
  • the battery management device may be disposed outside the housing portion 162.
  • the metal case type cell fixing part 163 has two metal case type cell fixing plates 1631 and 1632.
  • the metal case type cell fixing plate 1631 is a plate-like member in which 16 holes 1631a are formed.
  • the metal case type cell fixing plate 1632 is a plate-like member in which 16 holes 1632a are formed.
  • the two metal case cell fixing plates 1631 and 1632 are arranged on both sides of the 16 metal case cells 161.
  • One end portions of the 16 metal case type cells 161 are inserted into the 16 holes 1631a of the metal case type cell fixing plate 1631, respectively.
  • the other end portions of the 16 metal case type cells 161 are inserted into the 16 holes 1632a of the metal case type cell fixing plate 1632, respectively.
  • fixed part 163 fixes the 16 metal case type cells 161 to each other.
  • a space is formed between the adjacent metal case type cells 161.
  • the metal case type cell fixing part 163 is not electrically connected to the plurality of lithium ion cells 161.
  • the 16 metal case type cells 161 are arranged in four rows. That is, each column is composed of four metal case type cells 161. Each of the four metal case type cells 161 constituting the first row has a positive electrode terminal at the lower end thereof. Each of the four metal case type cells 161 constituting the first row has a negative electrode terminal at the upper end thereof. Each of the four metal case type cells 161 constituting the second row has a positive electrode terminal at the upper end thereof. Each of the four metal case type cells 161 constituting the second row has a negative electrode terminal at the lower end thereof. Each of the four metal case type cells 161 constituting the third row has a positive electrode terminal at the lower end thereof. Each of the four metal case-type cells 161 constituting the third row has a negative electrode terminal at the upper end. Each of the four metal case type cells 161 constituting the fourth row has a positive electrode terminal at the upper end thereof. Each of the four metal case type cells 161 constituting the fourth row has a negative electrode terminal at the lower end thereof.
  • the connection unit 164 includes five connection plates 1641, 1642, 1643, 1644, 1645.
  • the connection plates 1641, 1642, 1643, 1644, 1645 are formed of a conductive material.
  • the connection plate 1641 is connected to the negative terminals of the four metal case-type cells 161 constituting the first row.
  • the connection plate 1642 is connected to the positive terminals of the four metal case-type cells 161 constituting the first row. Furthermore, the connection plate 1642 is connected to the negative terminals of the four metal case type cells 161 constituting the second row.
  • the connection plate 1643 is connected to the positive terminals of the four metal case type cells 161 constituting the second row. Further, the connection plate 1643 connects the negative terminals of the four metal case-type cells 161 constituting the third row.
  • connection plate 1644 is connected to the positive terminals of the four metal case type cells 161 constituting the third row. Further, the connection plate 1644 is connected to the negative terminals of the four metal case-type cells 161 constituting the fourth row.
  • connection plate 1645 is connected to the positive terminals of the four metal case type cells 161 constituting the fourth row.
  • the four metal case type cells 161 in the first row are connected to each other in parallel by a connection plate 1641 and a connection plate 1642.
  • the four metal case type cells 161 in the first row constitute a parallel cell group 1711 connected in parallel to each other.
  • the four metal case type cells 161 in the second row are connected to each other in parallel by a connection plate 1642 and a connection plate 1643.
  • the four metal case type cells 161 in the second row constitute a parallel cell group 1712 connected in parallel to each other.
  • the four metal case cells 161 in the third row are connected to each other in parallel by a connection plate 1643 and a connection plate 1644.
  • the four metal case type cells 161 in the third row constitute a parallel cell group 1713 connected in parallel to each other.
  • the four metal case type cells 161 in the fourth row are connected to each other in parallel by a connection plate 1644 and a connection plate 1645. Thereby, the four metal case type cells 161 in the fourth row constitute a parallel cell group 1714 connected in parallel to each other.
  • the four metal case cells 161 in the first row and the four metal case cells 161 in the second row are connected in series by a connection plate 1642.
  • the parallel cell group 1711 and the parallel cell group 1712 are connected in series by the connection plate 1642.
  • the four metal case cells 161 in the second row and the four metal case cells 161 in the third row are connected in series by a connection plate 1643.
  • the parallel cell group 1712 and the parallel cell group 1713 are connected in series by the connection plate 1643.
  • the four metal case cells 161 in the third row and the four metal case cells 161 in the fourth row are connected in series by a connection plate 1644.
  • the parallel cell group 1713 and the parallel cell group 1714 are connected in series by the connection plate 1644. Accordingly, the four parallel cell groups 1711, 1712, 1713, and 1714 are connected in series with each other.
  • the metal case type cell fixing portion 163 fixes four parallel cell groups 1711, 1712, 1713, and 1714 connected in series.
  • connection plate 1641 is connected to the external negative terminal 167 through a cable (not shown). As a result, the negative terminals of the four metal case cells 161 in the first row are electrically connected to the external negative terminal 167.
  • Connection plate 1645 is connected to external positive electrode terminal 166 via a cable (not shown). As a result, the positive terminals of the four metal case type cells 161 in the fourth row are electrically connected to the external positive terminal 166.
  • the balance circuit 165 suppresses variations in the progress of charging of the 16 metal case type cells 161. Generally, when a plurality of cells connected in series are charged, the voltages of the plurality of cells may vary. Thereby, variation may occur in the progress of charging of a plurality of cells. For example, the balance circuit 165 reduces the voltage variation of the metal case type cell 161 by releasing the current of the metal case type cell 161 to the resistance for each metal case type cell 161. The assembled battery 16 may not have the balance circuit 165.
  • the metal case 1613 When the electrolytic solution 1615 is accommodated in the metal case 1613, the metal case 1613 does not expand even if the electrolytic solution 1615 volatilizes. Therefore, a highly volatile electrolyte solution can be used as the electrolyte solution 1615. Highly volatile electrolytes are difficult to solidify or freeze at low temperatures. Therefore, when an electrolytic solution that is difficult to solidify or freeze at a low temperature is used, the assembled battery 16 having a plurality of metal case type cells 161 can be used in a low temperature environment.
  • the assembled battery 16 having a plurality of metal case-type cells 161 is mounted on a saddle-ride type vehicle, charging of the assembled battery or discharging of a large current is performed at a temperature lower than that of the battery mounted on the automobile.
  • the deterioration of the metal case type cell can be suppressed. That is, even in an environment where a battery pack mounted on a saddle riding type vehicle is used, deterioration of the metal case type cell (lithium ion cell) due to charging or discharging in a low temperature environment can be suppressed.
  • the assembled battery 16 having a plurality of metal case type cells 161 can be used in a low temperature environment of about ⁇ 20 ° C. Therefore, even if the assembled battery 16 having a plurality of metal case type cells 161 is mounted on the saddle riding type vehicle 1 and charged or discharged with a large current at a low temperature of about ⁇ 20 ° C., the metal case Deterioration of the type cell 161 can be suppressed. Therefore, even if it is the use environment of the assembled battery 16 mounted in the saddle riding type vehicle 1, the deterioration of the metal case type cell 161 can be further suppressed.
  • Both the plurality of metal case type cells 161 and the metal case type cell fixing part 163 are accommodated in the housing part 162. Thereby, the plurality of metal case type cells 161 can be protected from water and moisture. Therefore, deterioration of the metal case type cell 161 can be suppressed. Therefore, even when the assembled battery 16 is mounted on the saddle riding type vehicle 1 having no engine room or motor room, the deterioration of the metal case type cell 161 can be suppressed. That is, even in an environment where the assembled battery mounted on the saddle riding type vehicle 1 is used, deterioration of the metal case type cell 161 can be further suppressed.
  • the assembled battery 16 is easy to be mounted on the saddle riding type vehicle 1. Moreover, the versatility of the assembled battery 16 is improved.
  • the plurality of parallel cell groups 171 are connected in series with each other. By increasing the number of parallel cell groups 171, the output voltage of the assembled battery 16 can be increased.
  • Each of the plurality of parallel cell groups 171 includes at least two metal case type cells 161 connected in parallel to each other. That is, the plurality of metal case type cells included in the assembled battery 16 include metal case type cells 161 connected in parallel to each other. Therefore, the output current of the assembled battery 16 becomes larger than when a plurality of metal case type cells 161 included in the assembled battery 16 are connected in series in one row. As the output current of the assembled battery 16 increases, the capacity of the assembled battery 16 also increases. As the number of metal case cells 161 connected in parallel with each other increases, the output current and capacity of the assembled battery 16 increase.
  • the assembled battery 16 can be used in an environment where the output voltage, output current, and capacity required for the assembled battery 16 are relatively large.
  • a plurality of metal case type cells 161 are fixed to each other by the metal case type cell fixing portion 163. Thereby, it is easy to move a plurality of metal case type cells 161 together. Therefore, handling of the assembled battery 16 becomes easy. In addition, a space is formed between adjacent metal case type cells 161. As a result, heat generated during charging and discharging of the plurality of metal case cells 161 can be moved to this space. In addition, since the metal case 1613 of the metal case type cell 161 is made of metal, the metal case type cell 161 has high heat dissipation. Accordingly, the temperature rise of the plurality of metal case cells 161 can be suppressed when the plurality of metal case cells 161 are charged and discharged.
  • connection mode of the plurality of metal case type cells 161 is a parallel configuration including at least two metal case type cells 161 connected in parallel to each other.
  • a plurality of cell groups 171 are connected in series.
  • the connection mode of the plurality of metal case type cells of the present invention is not limited to this mode.
  • each of the plurality of metal case type cells may be connected in series to one of the plurality of metal case type cells.
  • the number of parallel cell groups is not particularly limited.
  • the connection mode of the plurality of metal case type cells of the present invention may be a mode in which a plurality of metal case type cells are connected in series in one row.
  • the output voltage of the assembled battery becomes higher than when the same number of metal case type cells are connected in series and in parallel. Therefore, the number of metal case-type cells included in the assembled battery can be reduced while securing the output voltage necessary for the assembled battery. Therefore, the assembled battery can be made small and light.
  • This assembled battery can be used in an environment where the output current and capacity required for the assembled battery are relatively small and the output voltage required for the assembled battery is relatively large.
  • the connection mode of the plurality of metal case type cells of the present invention may be a mode in which a plurality of series cell groups composed of at least two metal case type cells connected in series with each other are connected in parallel.
  • An example is shown in FIG. Reference numeral 172 in FIG. 7 indicates a series cell group.
  • the number of series cell groups is not particularly limited. By increasing the number of metal case type cells constituting the series cell group, the output voltage of the assembled battery can be increased.
  • the plurality of series cell groups are connected in parallel to each other. That is, the plurality of metal case type cells included in the assembled battery include metal case type cells connected in parallel to each other.
  • the output current of the assembled battery becomes larger than when a plurality of metal case-type cells included in the assembled battery are connected in series in one row.
  • the capacity of the assembled battery also increases.
  • the output current and capacity of the assembled battery increase. Since the capacity of the assembled battery is large, the frequency of charging the assembled battery can be reduced. As a result, deterioration of the metal case type cell (lithium ion cell) can be suppressed.
  • This assembled battery can be used in an environment where the output voltage, output current, and capacity required for the assembled battery are relatively large.
  • the connection mode of the plurality of metal case-type cells of the present invention is a series connection of a plurality of series-parallel groups obtained by connecting a plurality of series cell groups composed of at least two metal case-type cells connected in series.
  • the aspect connected to may be sufficient.
  • the connection mode of a plurality of metal case type cells according to the present invention is a plurality of parallel series groups obtained by connecting a plurality of parallel cell groups composed of at least two metal case type cells connected in parallel to each other in series.
  • the aspect connected to may be sufficient.
  • the connection mode of the plurality of metal case type cells of the present invention is that a plurality of parallel parallel groups obtained by connecting in parallel a plurality of parallel cell groups composed of at least two metal case type cells connected in parallel to each other are connected in series.
  • the plurality of metal case type cells may include metal case type cells that are connected only in series to other metal case type cells included in the assembled battery.
  • the plurality of metal case type cells may include metal case type cells that are connected only in parallel to other metal case type cells included in the assembled battery.
  • the number of metal case cells connected in series is not limited.
  • the number of metal case type cells connected in parallel to each other is not limited.
  • the number of metal case cells connected in series may be the same or different.
  • the number of metal case type cells constituting the first series cell group is equal to the number of metal case type cells constituting the second series cell group. It may be the same as the number or different.
  • the number of metal case cells connected in parallel may be the same or different.
  • the number of metal case type cells constituting the first parallel cell group is equal to the number of metal case type cells constituting the second parallel cell group. It may be the same as the number or different.
  • the metal case type cell fixing unit 163 of the specific example of the above embodiment has two metal case type cell fixing plates 1631 and 1632.
  • the configuration of the metal case type cell fixing portion is not limited to this mode.
  • the metal case type cell fixing part may be constituted by one plate-like member.
  • the metal case type cell fixing portion may be configured by only one of the metal case type cell fixing plates 1631 and 1632.
  • the metal case type cell fixing portion may be composed of two or more plate-like members.
  • the metal case type cell fixing portion may not be a plate-like member.
  • one end portions of the plurality of metal case type cells 161 are inserted into the 16 holes 1631a of the metal case type cell fixing plate 1631, respectively.
  • the other end portions of the plurality of metal case type cells 161 are respectively inserted into the 16 holes 1632a of the metal case type cell fixing plate 1632.
  • the plurality of metal case type cells 161 are fixed to each other.
  • fixed part is not limited to this aspect.
  • the plurality of metal case type cells may be fixed to each other by fitting the plurality of metal case type cells respectively into the plurality of grooves (concave portions) formed in the metal case type cell fixing portion.
  • the metal case type cells 161 are fixed to each other in a state where a space is formed between the adjacent metal case type cells 161.
  • the aspect in which the plurality of metal case type cells are fixed to each other by the metal case type cell fixing portion is not limited to this aspect.
  • the plurality of metal case type cells may be fixed to each other in a state in which no space is formed between at least two of the plurality of metal case type cells.
  • the metal case type cell fixing portion 163 is not electrically connected to the plurality of metal case type cells.
  • the metal case type cell fixing part may also serve as a connection part for electrically connecting a plurality of metal case type cells to each other.
  • the number of parts can be reduced.
  • the assembled battery can be reduced in weight and size.
  • the metal case type cell fixing part is provided separately from the connection part, a plurality of metal case type cells are fixed to each other by the metal case type cell fixing part, and then the connection part is electrically connected to the metal case type cell. Can connect. Therefore, it is easy to connect the metal case type cell and the connection portion.
  • a plurality of metal case type cells 161 and metal case type cell fixing parts 163 are accommodated in the housing part 162.
  • the mode of the assembled battery is not limited to this mode.
  • the plurality of metal case type cells and the metal case type cell fixing portion may not be accommodated in the housing portion.
  • some of the metal case type cells may be accommodated in the housing portion, and the remaining metal case type cells may not be accommodated in the housing portion.
  • a part of the metal case type cell fixing part may be accommodated in the housing part, and the other part of the metal case type cell fixing part may not be accommodated in the housing part.
  • the plurality of metal case type cells and the metal case type cell fixing portion may be accommodated in the plurality of housing portions.
  • some of the metal case type cells may be accommodated in the first housing part, and the remaining metal case type cells may be accommodated in the second housing part.
  • the housing portion 162 of the specific example of the above embodiment includes a main body 1621 and a lid 1622.
  • the main body 1621 and the lid 1622 are separable.
  • the aspect of the housing part in the present invention is not limited to this aspect.
  • the main body and the lid of the housing part may not be separable.
  • the housing part may be composed of three or more parts.
  • the housing portion 162 of the assembled battery 16 is a substantially rectangular parallelepiped box.
  • the housing portion of the assembled battery may be a polyhedral box other than a rectangular parallelepiped.
  • the housing part has a plurality of surfaces respectively arranged along a plurality of planes intersecting each other.
  • the box is a polyhedron other than a rectangular parallelepiped, the number of the faces is at least four.
  • the shape of the metal case 1613 is a cylindrical shape.
  • the shape of the metal case is not limited to a cylindrical shape.
  • the metal case may have a box shape (cuboid shape).
  • the positive electrode and the negative electrode may be accommodated in a box-shaped metal case in a state where the positive electrode and the negative electrode are wound around a predetermined axis.
  • the metal case may be a flat board.
  • the positive electrode and the negative electrode may be accommodated in a flat board-like metal case in a flat state.
  • a positive and negative electrodes of a metal case type cell may be laminated on a flat board-shaped metal case.
  • a flat board-shaped metal case may be accommodated in a state where the positive electrode and the negative electrode of the metal case cell are wound around a predetermined axis.
  • each of the plurality of metal case cells 161 includes a positive electrode 1611, a negative electrode 1612, and an electrolytic solution 1615.
  • the metal case type cell may be a metal case type cell having a positive electrode, a negative electrode, and a solid electrolyte. In this case, the solid electrolyte is in contact with both the positive electrode and the negative electrode.
  • the metal case type cell of the present invention may be a metal case type cell in which a positive electrode, a negative electrode, and a solid electrolyte are accommodated in a metal case.
  • the plurality of lithium ion cells 161 may include a metal case type cell having a positive electrode, a negative electrode and an electrolyte, and a metal case type cell having a positive electrode, a negative electrode and a solid electrolyte.
  • the plurality of metal case type cells 161 have the same configuration.
  • the plurality of lithium ion cells may include at least two lithium ion cells having different configurations. That is, the plurality of lithium ion cells may include two or more types of lithium ion cells.
  • the positive electrode active materials included in the plurality of metal case type cells 161 are the same type.
  • the positive electrode active materials included in at least two of the plurality of metal case type cells may be different from each other. That is, two or more kinds of positive electrode active materials included in the plurality of metal case type cells may be used.
  • the electrolyte solutions included in the plurality of metal case type cells 161 are of the same type.
  • the electrolyte solutions included in at least two of the plurality of metal case type cells may be different from each other. That is, two or more types of electrolytes may be included in the plurality of metal case type cells.
  • the plurality of metal case type cells include the positive electrode, the negative electrode, and the solid electrolyte
  • the solid electrolytes included in the plurality of metal case type cells may be of the same type.
  • the solid electrolyte which at least 2 metal case type cell of several metal case type cells has may mutually differ.
  • the plurality of lithium ion cells 161 may include one or more metal case-type cells having a positive electrode, a negative electrode, and an electrolyte, and one or more metal case-type cells having a positive electrode, a negative electrode, and a solid electrolyte.
  • the electrolyte solutions included in at least two metal case-type cells among the plurality of metal case-type cells having the positive electrode, the negative electrode, and the electrolyte solution may be the same type or different from each other.
  • the solid electrolyte which at least 2 metal case type cell has among the some metal case type cells which have a positive electrode, a negative electrode, and a solid electrolyte may be mutually the same kind, and may mutually differ.
  • the temperature adjustment apparatus may be accommodated in the housing part.
  • the temperature adjusting device adjusts the temperature of a space formed between adjacent lithium ion cells.
  • the temperature adjusting device may be an air cooling fan, for example.
  • the temperature adjusting device may be, for example, cold water or hot water.
  • the temperature adjusting device may be a heater, for example.
  • the assembly battery 16 of a specific example of the above embodiment is mounted on a saddle riding type vehicle 1 having an engine.
  • the assembled battery of the present invention may be mounted on a straddle-type vehicle using a motor as a drive source, or may be mounted on a straddle-type vehicle using a motor and an engine as drive sources.
  • the assembled battery of the present invention may be mounted on a power consuming device other than the saddle riding type vehicle.
  • the electric power stored in the assembled battery is used to drive the power consuming device.
  • the type of power consuming device on which the assembled battery is mounted is not particularly limited.
  • the power consuming device may be a vehicle or may not be a vehicle.
  • the vehicle may use an engine as a driving source, may use a motor as a driving source, or may use an engine and a motor as driving sources.
  • the assembled battery of the present invention When the assembled battery of the present invention is mounted on a vehicle including a motor as a drive source, the assembled battery supplies power to the motor (drive source).
  • the vehicle may travel on land, may travel on water, travel in water, or travel in the air. Vehicles that travel on land are, for example, four-wheel vehicles, two-wheel vehicles, three-wheelers, snowmobiles, and the like. A vehicle traveling on land may have more than four wheels.
  • the four-wheeled vehicle is, for example, a passenger car, an ATV (All Terrain Vehicle), a ROV (Recreational Off-highway Vehicle), a golf cart, a forklift, or the like.
  • the two-wheeled vehicle may have two wheels lined up in the front-rear direction, or may have two wheels lined up in the left-right direction. Examples of the former include motorcycles (motorcycles), scooters, mopeds, bicycles, and the like.
  • the tricycle may have two front wheels or two rear wheels.
  • Vehicles that travel on the water are, for example, ships, water bikes, and the like.
  • the vehicle that travels underwater is, for example, a submersible craft. Vehicles that travel in the air are, for example, airplanes, helicopters, drones, and the like.
  • the assembled battery of the present invention may be detachable from the power consuming device, or may not be detachable.
  • the assembled battery may be charged while being removed from the power consuming device, or may be charged while being mounted on the power consuming device.
  • the battery assembly of the present invention may be chargeable with a charger other than a DC charger for 12V to 15V.
  • a charger other than a DC charger for 12V to 15V.
  • the assembled battery can be used in place of a lead storage battery mounted on a vehicle using a motor as a drive source.
  • the lithium ion cell according to the present invention is a so-called 18650 cell, which is a cylindrical lithium ion cell having a diameter of 18 mm and a length of 65.0 mm.
  • the lithium ion cell according to the example of the present invention was charged by a constant current constant voltage method.
  • the charging current in constant current charging was 1A.
  • the charging voltage in constant voltage charging was 4.2V.
  • the charge termination current was 0.05A.
  • the lithium ion cell according to the example of the present invention was discharged at a constant current.
  • Each discharge capacity when the discharge current in constant current discharge was set to 1A, 3A, 5A, and 10A was investigated.
  • the final discharge voltage was 2.5V.
  • the discharge current is also called output current.
  • FIG. 8 shows the discharge characteristics of the lithium ion cell when the discharge current is 1A, 3A, 5A, and 10A.
  • the vertical axis in FIG. 8 indicates the voltage of the lithium ion cell, and the horizontal axis in FIG. 8 indicates the discharge capacity of the lithium ion cell. From FIG. 8, the discharge capacity exceeds 1 Ah when the discharge current is 1A, 3A, 5A, and 10A. From this, it was found that the lithium ion cell according to the example of the present invention can be used even at a high discharge rate.
  • the lithium ion cell was charged by a constant current constant voltage method.
  • the charging current in constant current charging was 1A.
  • the charging voltage in constant voltage charging was 3.65V.
  • the charge termination current was 0.05A.
  • the charging current in constant current charging was 1A.
  • the charging voltage in constant voltage charging was 3.65V.
  • the charge termination current was 0.05A.
  • FIG. 9 shows a load current pattern of one cycle in the charge / discharge cycle.
  • the vertical axis in FIG. 9 is the load current, and the horizontal axis in FIG. 9 is the time.
  • the load current pattern shown in FIG. 9 was generated based on the running conditions defined in ECE40 (ISO 6460).
  • the traveling condition defined in ECE40 (ISO 6460) may be referred to as an ECE40 traveling pattern.
  • the ECE40 running pattern is a running pattern in the ECE40 urban cycle mode that is a European practical fuel consumption measurement method.
  • the battery capacity of the lithium ion cell was measured every 2500 cycles. Specifically, the following method was used. First, the battery was charged by a constant current constant voltage method in a temperature environment of 25 ° C. The charging current in constant current charging was 1A. The charging voltage in constant voltage charging was 3.65V. The charge termination current was 0.05A. After completion of charging, constant current discharge was performed in a temperature environment of 25 ° C., and the discharge capacity of the lithium ion cell was measured. The discharge current in constant current discharge was 1A. The final discharge voltage was 2.5V.
  • the discharge capacity at the time of discharge in the predetermined cycle By dividing the discharge capacity of the lithium ion cell at every 2500 cycles by the discharge capacity at the time of discharge in the first cycle, the discharge capacity at the time of discharge in the predetermined cycle relative to the discharge capacity at the time of discharge in the first cycle was obtained.
  • the discharge capacity at the time of discharge in the predetermined cycle to the discharge capacity at the time of discharge in the first cycle is referred to as an initial capacity ratio.
  • This initial capacity ratio may be referred to as a capacity maintenance ratio.
  • FIG. 10 shows the relationship between the initial capacity ratio and the number of cycles.
  • the vertical axis in FIG. 10 is the initial capacity ratio
  • the horizontal axis in FIG. 10 is the number of cycles.
  • FIG. 10 shows the following. In a low temperature environment of ⁇ 10 ° C. and a temperature environment assuming the four seasons of ASEAN, the initial capacity ratio at the 20000th cycle was 95%. Moreover, the initial capacity ratio in the low temperature environment of ⁇ 10 ° C. and the initial capacity ratio in the temperature environment assuming the four seasons of ASEAN show similar trends.
  • the lithium ion cell according to the example of the present invention has the same durability as the temperature environment assuming the four seasons of ASEAN even when charging and discharging are repeated in a low temperature environment of ⁇ 10 ° C. Further, the initial capacity ratio at the 20000th cycle was 80% even in a high temperature environment of 60 ° C. From this, it can be said that the lithium ion cell according to the example of the present invention has high durability even in a high temperature environment. From the above, the lithium ion cell according to the example of the present invention has high durability in both a low temperature environment and a high temperature environment.
  • the lithium ion cell according to the example of the present invention is hardly deteriorated even in a low temperature environment or a high temperature environment. Therefore, the lithium ion cell which concerns on the example of this invention has a high freedom degree of use environment.
  • the discharge capacity of the lithium ion cell was measured by the following method.
  • the battery was charged by a constant current constant voltage method in an environment of 25 ° C.
  • the charging current in constant current charging was 1A.
  • the charging voltage in constant voltage charging was 3.65V.
  • the charge termination current was 0.05A.
  • constant current discharge was performed in an environment of 25 ° C., and the discharge capacity of the lithium ion cell was measured.
  • the discharge current was 1A.
  • the final discharge voltage was 2.5V.
  • the discharge capacity at the first cycle discharge and the discharge capacity at the end of the predetermined cycle were measured. By dividing the discharge capacity at the end of the predetermined cycle by the discharge capacity at the end of the first cycle, the discharge capacity at the end of the predetermined cycle relative to the discharge capacity at the end of the first cycle is obtained. Asked.
  • the discharge capacity at the time of discharge after completion of a predetermined cycle with respect to the discharge capacity at the time of discharge in the first cycle is referred to as an initial capacity ratio.
  • FIG. 11 shows the relationship between the initial capacity ratio and the number of cycles.
  • the vertical axis in FIG. 11 is the initial capacity ratio
  • the horizontal axis in FIG. 11 is the number of cycles. From FIG. 11, in each cycle, the initial capacity ratio of the lithium ion cell according to the example of the present invention was larger than the initial capacity ratio of the lithium ion cell of the comparative example.
  • the initial capacity ratio of the lithium ion cell according to the example of the present invention was about 99% in 100 cycles.
  • the initial capacity ratio of the lithium ion cell according to the comparative example was lower than about 96% in 100 cycles. It was found that the deterioration of the lithium ion cell according to the example of the present invention was suppressed as compared with the lithium ion cell of the comparative example.
  • the lithium ion cell according to the example of the present invention is suppressed from being deteriorated even when it is repeatedly charged and discharged in a low temperature environment and a high temperature environment. Moreover, the lithium ion cell which concerns on the example of this invention has suppressed degradation, even if it repeats charge and discharge over a long period of time. Therefore, the assembled battery having a plurality of lithium ion cells according to the present invention can suppress deterioration of the lithium ion cell even in an environment where the assembled battery mounted on the saddle riding type vehicle is used.
  • the assembled battery of Japanese Patent Application No. 2017-038284 which is the basic application of the present application, is included in the assembled battery of the present specification.
  • the lithium ion battery 161 in the basic application corresponds to the metal case type cell 161 or the lithium ion cell 161 of the present specification.
  • the can 1613 in the basic application corresponds to the metal case 1613 or the metal case 1613 of the present specification.
  • the case portion 162 in the basic application corresponds to the housing portion 162 in the present specification.
  • the can battery fixing part 163 in the basic application corresponds to the metal case type cell fixing part 163 of the present specification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

組電池(16)は、互いに電気的に接続された複数のリチウムイオンセル(161)を有する。リチウムイオンセル(161)は、正極と負極と電解質を収容する金属製のケースを有する金属ケース型セルである。複数の金属ケース型セル(161)の各々は、複数の金属ケース型セル(161)のいずれかに直列に接続されている。正極は、オリビン構造の正極活物質を有する。負極は、積層された複数のカーボンの層を含む負極活物質であって、複数のカーボンの層の平均層間距離がリチウム原子の直径以上である負極活物質を有する。組電池(16)は、複数の金属ケース型セル(161)を互いに固定する金属ケース型セル固定部(163)を有する。

Description

組電池
 本発明は、複数のリチウムイオンセルを有する組電池に関する。
 車両や電子機器には、二次電池が搭載されている。従来、二次電池として、鉛蓄電池が使用されている。近年、二次電池として、鉛蓄電池の代わりに、リチウムイオンセル電池が使用されている。
 例えば、特許文献1には、直列に接続された複数個のリチウムイオンセルを有するリチウムイオン組電池が提案されている。特許文献1に記載のリチウムイオンセルは、リン酸鉄リチウムを含む正極活物質を有する正極と、グラファイト系の負極活物質を有する負極とを有する。
特許第5549684号公報
 本願の発明者は、鉛蓄電池の代わりに、特許文献1に記載されているようなリチウムイオン組電池を、自動二輪車等の鞍乗型車両に搭載することを検討した。その結果、鞍乗型車両の使用環境によっては、リチウムイオンセルが劣化することが判明した。
 本発明は、たとえ鞍乗型車両に搭載された組電池の使用環境であっても、リチウムイオンセルの劣化を抑制できる組電池を提供することである。
 本願の発明者は、鞍乗型車両に搭載された鉛蓄電池の使用環境と、自動車(四輪車)に搭載された鉛蓄電池の使用環境について、比較検討した。
 エンジンを駆動源とする鞍乗型車両及びエンジンを駆動源とする自動車において、鉛蓄電池は、エンジンの始動時に、スターターモータの駆動のために大電流で放電する。モータを駆動源とする鞍乗型車両及びモータを駆動源とする自動車において、鉛蓄電池は、走行時、モータの駆動のために大電流で放電する。エンジンを駆動源とする自動車は、エンジンを収容するためのエンジンルームを備える。また、モータを駆動源とする自動車は、モータを収容するためのモータルームを備える。自動車に搭載される鉛蓄電池は、エンジンルーム又はモータルームに収容される。そのため、冬の夜間等の低温環境下であっても、自動車に搭載される鉛蓄電池の温度は、極端な低温にはなりにくい。これに対して、鞍乗型車両は、エンジンルームやモータルームを備えていない。鞍乗型車両に搭載される鉛蓄電池は、外部に露出した状態又は車体カバーで覆われただけの状態で配置される。そのため、冬の夜間等の低温環境下では、鞍乗型車両に搭載される鉛蓄電池の温度は大きく低下する。したがって、鞍乗型車両に搭載される鉛蓄電池は、自動車に搭載される鉛蓄電池よりも低温の状態で、大電流の放電を行う傾向がある。
 また、鞍乗型車両は、自動車よりも、車両の軽量化と小型化が求められる。エンジンを駆動源とする鞍乗型車両の鉛蓄電池は、エンジンを駆動源とする自動車に搭載される鉛蓄電池と比べて、重量と体積が小さいものが用いられる。つまり、エンジンを駆動源とする鞍乗型車両に搭載される鉛蓄電池は、エンジンを駆動源とする自動車に搭載される鉛蓄電池よりも、容量が小さい。また、モータを駆動源とする鞍乗型車両に搭載される鉛蓄電池は、モータを駆動源とする自動車に搭載される鉛蓄電池と比べて、重量と体積が小さいものが用いられる。つまり、モータを駆動源とする鞍乗型車両に搭載される鉛蓄電池は、モータを駆動源とする自動車に搭載される鉛蓄電池よりも、容量が小さい。このように、鞍乗型車両に搭載される鉛蓄電池は自動車に搭載される鉛蓄電池よりも容量が小さいため、鞍乗型車両に搭載される鉛蓄電池は自動車に搭載される鉛蓄電池よりも充電される頻度が高い傾向がある。
 したがって、鞍乗型車両に搭載される鉛蓄電池は、自動車に搭載される鉛蓄電池よりも低温の状態で、自動車に搭載される鉛蓄電池よりも頻繁に充電される傾向がある。
 本願の発明者は、このように、鞍乗型車両に搭載される鉛蓄電池は、自動車に搭載される鉛蓄電池よりも低温の状態で、大電流の放電を行う傾向があり、かつ、自動車に搭載される鉛蓄電池よりも低温の状態で、自動車に搭載される鉛蓄電池よりも頻繁に充電される傾向があることを見出した。本願の発明者は、鞍乗型車両に、鉛蓄電池の代わりに、特許文献1に記載されているようなリチウムイオン組電池を搭載することを検討した。しかし、鞍乗型車両に搭載される鉛蓄電池の使用環境が、上述したような環境であるため、特許文献1に記載されているようなリチウムイオン組電池を鞍乗型車両に搭載すると、リチウムイオンセルが劣化しやすいことに気付いた。
 本願の発明者は、特許文献1に記載された、リン酸鉄リチウムを含む正極活物質と、グラファイト系の負極活物質を有するリチウムイオンセルを、低温状態で充電及び放電することについて検討した。その結果、以下のことがわかった。
 リチウムイオンセルは、低温環境下でも、鞍乗型車両に必要な大電流の放電が可能であることがわかった。また、リチウムイオンセルを、時間をかけてゆっくり充電した場合、低温環境下で放電を繰り返しても、リチウムイオンセルが劣化しにくいことがわかった。
 しかし、低温環境下でリチウムイオンセルの充電を繰り返した場合、リチウムイオンセルが劣化しやすいことがわかった。
 グラファイト系の負極活物質を有する負極は、炭素グラファイト(黒鉛)の層が積層された結晶構造を有する。
 リチウムイオンセルの充電時、リチウムイオンは正極から負極へ移動し、負極において積層されたグラファイトの層の間に入る。一方、リチウムイオンセルの放電時、リチウムイオンは、負極におけるグラファイトの層の間から出て、正極へ移動する。
 負極において、グラファイトの層の間の距離は、リチウム原子の直径よりやや小さい。そのため、リチウムイオンセルの充電時にリチウムイオンが負極におけるグラファイトの層の間に入ると、グラファイトの層の間が押し広げられる。一方、リチウムイオンセルの放電時にリチウムイオンがグラファイトの層の間から出ていくと、グラファイトの層の間が狭まる。リチウムイオンセルの充電及び放電を繰り返した場合、リチウムイオンがグラファイトの層の間の出入りを繰り返すことで、グラファイトの層の隙間の拡大と縮小が繰り返される。その結果、グラフアイトの層の積層状態が変化する。これにより、負極の結晶構造が大きく変化することがわかった。これが負極劣化の一要因であることがわかった。
 本願の発明者は、リチウムイオンセルの負極に、積層された複数のグラファイトの層を有する負極活物質でなく、積層された複数のカーボンの層を有する負極活物質を用いることを検討した。ここでのカーボンは、非黒鉛(非グラファイト)である。より具体的には、負極活物質として、複数のカーボンの層の平均層間距離がリチウムイオンの直径以上である負極活物質を用いることを検討した。その結果、以下のことがわかった。
 複数のカーボンの層の平均層間距離がリチウムイオンの直径以上であるため、リチウムイオンセルの充電時、リチウムイオンが負極における隣り合うカーボンの層の間に入っても、隣り合うカーボンの層の間が殆ど押し広げられない。また、リチウムイオンセルの放電時にリチウムイオンが隣り合うカーボンの層の間から出ても、隣り合うカーボンの層の間の距離があまり変化しない。つまり、リチウムイオンセルの充電時及び放電時に、リチウムイオンがカーボンの層の間を出入りしても、複数のカーボンの層の平均層間距離が殆ど変化しない。そのため、複数のカーボンの層の積層状態が殆ど変化しない。これにより、負極の結晶構造があまり変化しないことがわかった。そのため、負極の劣化を抑制できることがわかった。したがって、この負極を有するリチウムイオンセルの劣化を抑制できることがわかった。また、負極が上記構成を有することにより、リチウムイオンセルの充電及び放電の頻度が高くなっても、リチウムイオンセルの劣化を抑制できることがわかった。さらに、負極が上記構成を有することにより、この負極を有するリチウムイオンセルは、低温の状態で充電又は放電を行っても、劣化を抑制できることがわかった。したがって、このリチウムイオンセルを鞍乗型車両に搭載し、低温の状態でリチウムイオンセルの充電及び放電の頻度が高くなっても、リチウムイオンセルの劣化を抑制できることがわかった。
 以上の知見により、本願の発明者は、本発明を完成させた。以下、本発明について説明する。
(1)本発明の組電池は、互いに電気的に接続された複数のリチウムイオンセルを有する組電池であって、前記複数のリチウムイオンセルの各々は、1つの正極と、1つの負極と、電解液又は固体電解質と、前記1つの正極、前記1つの負極、及び、前記電解液又は固体電解質を収容する金属製のケースとを有する金属ケース型セルであり、前記複数の金属ケース型セルの各々は、前記複数の金属ケース型セルのいずれかに直列に接続され、前記正極は、オリビン構造の正極活物質を有し、前記負極は、積層された複数のカーボンの層を含む負極活物質であって、前記複数のカーボンの層の平均層間距離がリチウム原子の直径以上である負極活物質を有し、前記組電池は、前記複数の金属ケース型セルを互いに固定する金属ケース型セル固定部を有する。
 この構成によると、複数の金属ケース型セルの各々は、複数の金属ケース型セルのいずれかに直列に接続される。互いに直列に接続される金属ケース型セルの数が多いほど、組電池の出力電圧は高くなる。互いに直列に接続される金属ケース型セルの数を多くすることで、高い出力電圧が必要な使用環境に、組電池を使用できる。
 金属ケース型セルはリチウムイオンセルである。リチウムイオンセルは、鉛蓄電池に比べて、重量エネルギー密度及び体積エネルギー密度が小さい。そのため、鉛蓄電池の代わりに、複数のリチウムイオンセルを有する組電池を、鞍乗型車両に搭載した場合、バッテリの容量を維持しつつ、鞍乗型車両を軽量化及び小型化できる。もしくは、鞍乗型車両を大型化及び重量化することなく、バッテリの容量を増大できる。組電池の容量を余分に大きくすることで、組電池が有する複数の金属ケース型セルの各々の負担が軽減するため、金属ケース型セルの劣化を抑制できる。
 複数の金属ケース型セル(リチウムイオンセル)の各々は、1つの正極と、1つの負極と、電解液又は固体電解質を有する。金属ケース型セルの負極は、グラファイトの層でなく、カーボンの層を含む負極活物質であって、複数のカーボンの層の平均層間距離がリチウム原子の直径以上である負極活物質を含む。
 複数のカーボンの層の平均層間距離がリチウムイオンの直径以上であるため、金属ケース型セルの充電時、リチウムイオンが負極における隣り合うカーボンの層の間に入っても、隣り合うカーボンの層の間が殆ど押し広げられない。また、金属ケース型セルの放電時にリチウムイオンが隣り合うカーボンの層の間から出ていっても、隣り合うカーボンの層の間の距離があまり変化しない。つまり、金属ケース型セルの充電時及び放電時に、リチウムイオンがカーボンの層の間を出入りしても、複数のカーボンの層の平均層間距離が殆ど変化しない。そのため、カーボンの層の積層状態が殆ど変化しない。これにより、負極の結晶構造があまり変化しない。したがって、負極の劣化を抑制できる。そのため、この負極を有する金属ケース型セルは劣化を抑制できる。したがって、この負極を有する金属ケース型セルの劣化を抑制できる。また、負極が上記構成を有することにより、金属ケース型セルの充電及び放電の頻度が高くなっても、金属ケース型セルの劣化を抑制できる。さらに、負極が上記構成を有することにより、この負極を有する金属ケース型セルは、低温の状態でも劣化を抑制できる。したがって、この金属ケース型セルを鞍乗型車両に搭載し、低温の状態で金属ケース型セルの充電及びの頻度が高くなっても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。
 また、金属ケース型セルの正極がオリビン構造を有する正極活物質を含むため、充電と放電を繰り返しても、金属ケース型セル(リチウムイオンセル)が劣化しにくい。したがって、低温環境で、金属ケース型セルの充電と放電を繰り返しても、金属ケース型セル(リチウムイオンセル)が劣化しにくい。そのため、たとえ、複数の金属ケース型セルを有する組電池が鞍乗型車両に搭載されて、組電池の充電と放電を比較的頻繁に繰り返しても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池の使用環境であっても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。
 さらに、正極活物質が有するオリビン構造は、六方最密充電構造であって、安定した結晶構造である。そのため、上記構成の金属ケース型セル(リチウムイオンセル)は、高温環境下でも、使用可能である。
 また、正極活物質がオリビン構造を有する上、さらに、負極活物質が積層された複数のカーボンの層を含み、複数のカーボンの層の平均層間距離がリチウム原子の直径以上である。そのため、低温の状態でも劣化を抑制できる。したがって、この金属ケース型セルを鞍乗型車両に搭載し、低温の状態で金属ケース型セルの充電及び放電の頻度が高くなっても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できることがわかった。
 また、複数の金属ケース型セルの各々は、1つの正極と、1つの負極と、電解液又は固体電解質を収容する金属製のケースを有する金属ケース型セルである。金属製のケースは放熱性が高い。そのため、複数の金属ケース型セルの充電時及び放電時、複数の金属ケース型セルが発熱しても、複数の金属ケース型セルの各々が放熱する。これにより、複数の金属ケース型セルを有する組電池の温度上昇を抑制することができる。そのため、たとえ、複数の金属ケース型セルを有する組電池が鞍乗型車両に搭載されて、組電池が大電流で放電した場合であっても、組電池の温度上昇を抑制することができる。その結果、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池の使用環境であっても、充電時または放電時の発熱による金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。
 さらに、金属ケース型セル固定部により、複数の金属ケース型セルは互いに固定される。そのため、金属ケース型セルの放熱性を考慮したレイアウトで、複数の金属ケース型セルの位置を維持できる。例えば、金属ケース型セル同士の間に適切な隙間を空けた状態で維持できる。それにより、複数の金属ケース型セルの充電時及び放電時、複数の金属ケース型セルが発熱しても、組電池の温度上昇を抑制することができる。そのため、たとえ、複数の金属ケース型セルを有する組電池が鞍乗型車両に搭載されて、組電池が大電流で放電した場合であっても、組電池の温度上昇をより抑制することができる。その結果、金属ケース型セル(リチウムイオンセル)の劣化をより抑制できる。つまり、鞍乗型車両に搭載された組電池の使用環境であっても、充電時又は放電時の発熱による金属ケース型セル(リチウムイオンセル)の劣化をより抑制できる。
 また、金属製のケースに電解液が収容されることにより、たとえ電解液が揮発しても、金属製のケースは膨張しない。したがって、電解液として、揮発性の高い電解液を使用することができる。揮発性の高い電解液は、低温において凝固又は凍結しにくい。そのため、低温において凝固又は凍結しにくい電解液を用いた場合、複数の金属ケース型セルを有する組電池を低温環境で使用することができる。そのため、たとえ、複数の金属ケース型セルを有する組電池が鞍乗型車両に搭載されて、自動車に搭載されたバッテリよりも低温の状態で、組電池の充電や大電流の放電が行われても、金属ケース型セルの劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池の使用環境であっても、低温環境下での充電又は放電による金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。
 以上のように、本発明の組電池は、鞍乗型車両に搭載された組電池の使用環境であっても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。
 (2)本発明の1つの観点によると、本発明の組電池は、上記(1)の構成に加えて以下の構成を有することが好ましい。
 前記複数の金属ケース型セルの少なくとも1つの金属ケース型セルにおいて、前記1つの正極と、前記1つの負極と前記電解液が前記金属ケース型セルに収容され、前記電解液が、-20℃で凍結しない電解液である。
 電解液として、-20℃で凍結しない電解液を用いることにより、複数の金属ケース型セルを有する組電池を-20℃程度の低温の環境で使用することができる。そのため、たとえ、複数の金属ケース型セルを有する組電池が鞍乗型車両に搭載されて、-20℃程度の低温状態で、充電や大電流の放電が行われても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。よって、鞍乗型車両に搭載された組電池の使用環境であっても、金属ケース型セル(リチウムイオンセル)の劣化をより抑制できる。
 (3)本発明の1つの観点によると、本発明の組電池は、上記(1)又は(2)の構成に加えて以下の構成を有することが好ましい。組電池が、前記複数の金属ケース型セル及び前記金属ケース型セル固定部の両方を収容するハウジング部を有する。
 この構成によると、組電池が有するハウジング部は、複数の金属ケース型セル及び金属ケース型セル固定部を収容する。そのため、複数の金属ケース型セルを、水や湿気などから保護できる。よって、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。したがって、エンジンルームやモータルームを有さない鞍乗型車両に組電池を搭載した場合であっても、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池の使用環境であっても、金属ケース型セル(リチウムイオンセル)の劣化をより抑制できる。
 (4)本発明の1つの観点によると、本発明の組電池は、上記(3)の構成に加えて以下の構成を有することが好ましい。組電池は、前記ハウジング部の外部からアクセス可能な状態で前記ハウジング部に設けられ、前記複数の金属ケース型セルのうちの少なくとも1つの金属ケース型セルが有する少なくとも1つの前記正極に電気的に接続される1つの外部正極端子と、前記ハウジング部の外部からアクセス可能な状態で前記ハウジング部に設けられ、前記複数の金属ケース型セルのうちの少なくとも1つの金属ケース型セルが有する少なくとも1つの前記負極に電気的に接続される1つの外部負極端子とを有する。
 組電池は、1つの外部正極端子と1つの外部負極端子を有する。外部正極端子及び外部負極端子は、ハウジング部の外部からアクセス可能な状態でハウジング部に設けられる。そのため、外部正極端子と外部負極端子を、組電池が電力を供給する装置や、組電池に電力を供給する装置に接続可能である。
 (5)本発明の1つの観点によると、本発明の組電池は、上記(4)の構成に加えて以下の構成を有することが好ましい。前記ハウジング部は、互いに交差する複数の平面に沿ってそれぞれ配置された複数の面を有する箱体であり、前記1つの外部正極端子及び前記1つの外部負極端子は共に、前記複数の面の何れか1つの面に設けられている。
 この構成によると、外部正極端子と外部負極端子が、ハウジング部の1つの面に設けられているため、外部正極端子と外部負極端子を、外部の装置と接続する作業が行いやすい。
 (6)本発明の1つの観点によると、本発明の組電池は、上記(1)~(5)のいずれかの構成に加えて以下の構成を有することが好ましい。前記複数の金属ケース型セルが、1列に直列に接続されている。前記金属ケース型セル固定部は、前記複数の金属ケース型セルを1列に直列に接続した状態で固定する。
 この構成によると、組電池が有する複数の金属ケース型セルは、1列に直列に接続される。そのため、同じ数の複数の金属ケース型セルが直列及び並列に接続されている場合に比べて、組電池の出力電圧が高くなる。そのため、組電池に必要な出力電圧を確保しつつ、組電池が有する金属ケース型セルの数を低減できる。よって、組電池を小型かつ軽量にできる。この組電池は、組電池に必要な出力電流と容量が比較的小さく、組電池に必要な出力電圧が比較的大きい使用環境に使用できる。
 (7)本発明の1つの観点によると、本発明の組電池は、上記(1)~(5)のいずれかの構成に加えて以下の構成を有することが好ましい。前記複数の金属ケース型セルは、互いに直列に接続された少なくとも2つの金属ケース型セルからなる直列セル群を、複数個構成する。前記複数の直列セル群は、互いに並列に接続されている。前記金属ケース型セル固定部は、複数の直列セル群を並列に接続した状態で固定する。
 この構成によると、組電池は、複数の直列セル群を有する。複数の直列セル群の各々は、互いに直列に接続された少なくとも2つの金属ケース型セルからなる。直列セル群を構成する金属ケース型セルの数を増やすことで、組電池の出力電圧を高くできる。複数の直列セル群は、互いに並列に接続される。つまり、組電池が有する複数の金属ケース型セルは、互いに並列に接続された金属ケース型セルを含む。そのため、組電池が有する複数の金属ケース型セルが1列に直列に接続される場合に比べて、組電池の出力電流が大きくなる。組電池の出力電流が大きくなると、組電池の容量も大きくなる。互いに並列に接続される金属ケース型セルの数が多いほど、組電池の出力電流と容量は大きくなる。組電池の容量が大きいことによって、組電池の充電の頻度を低減できる。その結果、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。この組電池は、組電池に必要な出力電圧と出力電流と容量が比較的大きい使用環境に使用できる。
 (8)本発明の1つの観点によると、本発明の組電池は、上記(1)~(5)のいずれかの構成に加えて以下の構成を有することが好ましい。前記複数の金属ケース型セルは、互いに並列に接続された少なくとも2つの金属ケース型セルからなる並列セル群を、複数個構成する。前記複数の並列セル群は、互いに直列に接続されている。前記金属ケース型セル固定部は、複数の並列セル群を直列に接続した状態で固定する。
 この構成によると、組電池は、複数の並列セル群を有する。複数の並列セル群は、互いに直列に接続される。並列セル群の数を増やすことで、組電池の出力電圧を高くできる。複数の並列セル群の各々は、互いに並列に接続された少なくとも2つの金属ケース型セルからなる。つまり、組電池が有する複数の金属ケース型セルは、互いに並列に接続された金属ケース型セルを含む。そのため、組電池が有する複数の金属ケース型セルが1列に直列に接続される場合に比べて、組電池の出力電流が大きくなる。組電池の出力電流が大きくなると、組電池の容量も大きくなる。互いに並列に接続される金属ケース型セルの数が多いほど、組電池の出力電流と容量は大きくなる。組電池の容量が大きいことによって、組電池の充電の頻度を低減できる。その結果、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。この組電池は、組電池に必要な出力電圧と出力電流と容量が比較的大きい使用環境に使用できる。
 (9)本発明の1つの観点によると、本発明の組電池は、上記(1)~(8)のいずれかの構成に加えて以下の構成を有することが好ましい。組電池が、12V~15V用の直流充電器で充電可能である。
 一般的に、エンジンを駆動源とする車両(自動車及び鞍乗型車両を含む)に搭載される鉛蓄電池の出力電圧は、12V~15V程度である。そのため、組電池が、12V~15V用の直流充電器で充電可能であることにより、組電池を、エンジンを駆動源とする車両に搭載される鉛蓄電池の代わりに使用できる。
 (10)本発明の1つの観点によると、本発明の組電池は、上記(1)~(9)のいずれかの構成に加えて以下の構成を有することが好ましい。組電池が、少なくとも1つの前輪と、少なくとも1つの後輪と、少なくとも一部が車両前後方向において前記少なくとも1つの前輪よりも後方に配置される駆動源とを備える鞍乗型車両に搭載可能である。
 <用語の定義>
 本発明において、「複数の金属ケース型セルの各々は、複数の金属ケース型セルのいずれかに直列に接続される」とは、複数の金属ケース型セルの各々が、同じ金属ケース型セルに直列に接続されることを意図するものではない。複数の金属ケース型セルの各々は、同じ金属ケース型セルに直列に接続されてもよく、されなくてもよい。例えば、複数の金属ケース型セルが、第1~第3の金属ケース型セルを含む場合を想定する。第1の金属ケース型セルが、第2の金属ケース型セルに直列に接続され、第3の金属ケース型セルが、第4の金属ケース型セルに直列に接続されるとする。この場合に、第1の金属ケース型セルは、第3の金属ケース型セル及び第4の金属ケース型セルと直列に接続されてもよく、されなくてもよい。
 本発明において、「複数の金属ケース型セルの各々は、複数の金属ケース型セルのいずれかに直列に接続される」とは、複数の金属ケース型セルの各々が直列に接続される金属ケース型セルの数が1つであることを意図するものではない。複数の金属ケース型セルの各々が直列に接続される金属ケース型セルの数は、1つであってもよく、2つ以上であってもよい。
 本発明において、「電解液」とは、溶媒に電解質が溶解したものであって、セル内において液体で存在する。溶媒に溶解する電解質に、固体電解質は含まれない。「固体電解質」は、セル内において、ゲル形態又は固体形態で存在する電解質である。
 本発明において、「カーボン」とは、炭素を含む原料から炭素以外の元素を放出することにより、炭素含有率の高い物質を生成するプロセスにおいて得られる物質である。このプロセスは、いわゆる炭素化と称される。炭素化によって得られた物質を高温で熱処理することによって、カーボンの層の積層構造が発達して黒鉛が得られる。黒鉛は、炭素六員環が2次元的に結合した層が積層された積層構造を有し、且つ、その積層構造において層間距離が3.35オングストローム以下であるものをいう。本発明における「カーボン」は、黒鉛に至る前の物質である。本発明において、「カーボン」は、黒鉛を含まない。
 本発明において、「層間距離」とは、隣り合う層と層との間の距離である。本発明において、「平均層間距離」とは、隣り合う層と層との間の距離の平均値である。
 本発明において、「-20℃で凍結しない電解液」とは、-20℃の大気圧下で凍結しない電解液である。大気圧は、標高によって変化する。「-20℃で凍結しない電解液」は、いずれかの標高において、-20℃の大気圧下で凍結しなければ、ある標高において-20℃の大気圧下で凍結してもよい。
 本発明において、「外部正極端子がハウジング部の外部からアクセス可能な状態」とは、組電池から電力が供給される装置に、外部正極端子を電気的に接続できる状態である。「外部負極端子がハウジング部の外部からアクセス可能な状態」とは、組電池に電力を供給する装置に、外部負極端子を電気的に接続できる状態である。
 本発明において、「少なくとも1つの金属ケース型セルがそれぞれ有する少なくとも1つの正極に電気的に接続される1つの外部正極端子」とは、1つの外部正極端子が、組電池が有するいずれかの金属ケース型セルを介さずに、前記少なくとも1つの正極に接続されている状態をいう。本発明における「少なくとも1つの金属ケース型セルがそれぞれ有する少なくとも1つの負極に電気的に接続される1つの外部負極端子」の定義も同様である。
 本発明において、「互いに交差する複数の平面に沿ってそれぞれ配置された複数の面」とは、複数の面が、複数の平面とそれぞれ平行又は略平行な状態をいう。複数の面の各々は、全体として、いずれかの平面に沿っていれば、緩やかな曲面や凹凸を有していてもよい。
 本発明において、「複数の金属ケース型セルが、1列に直列に接続される」とは、複数の金属ケース型セルが、1列に直列に電気的に接続されていれば、複数の金属ケース型セルは、一列に並んでいてもよいし、一列に並んでいなくてもよい。
 本発明において、「互いに並列に接続された少なくとも2つの金属ケース型セルからなる並列セル群」は、互いに並列に接続された少なくとも2つの金属ケース型セルだけで構成される。つまり、並列セル群を構成する金属ケース型セル同士が、直列に接続されることはない。並列セル群を構成する金属ケース型セルは、この並列セル群に含まれない金属ケース型セルと直列に接続されていてもよい。
 本発明において、「互いに直列に接続された少なくとも2つの金属ケース型セルからなる直列セル群」は、互いに直列に接続された少なくとも2つの金属ケース型セルだけで構成される。つまり、直列セル群を構成する金属ケース型セル同士が、並列に接続されることはない。直列セル群を構成する金属ケース型セルは、この直列セル群に含まれない金属ケース型セルと並列に接続されていてもよい。
 「鞍乗型車両」とは、ライダーが鞍にまたがるような状態で乗車する車両全般を指す。本発明における鞍乗型車両は、自動二輪車、原動機付き自転車、モペット、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))を含む。鞍乗型車両に含まれる自動二輪車は、スクータ、原動機付き自転車、モペット等を含む。
 本発明において、鞍乗型車両の「車両前後方向」とは、水平な路面に直立させた状態の車両に運転者が乗車した場合に、運転者から見た前後方向である。
 本発明/明細書において、複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。
 本発明の組電池は、請求の範囲において数を特定しておらず、英語に翻訳された場合に単数で表示される要素を、複数有していてもよい。本発明の組電池は、請求の範囲において数を特定しておらず、英語に翻訳された場合に単数で表示される要素を、1つだけ有していてもよい。
 本明細書において、例えば「1~10」および「1から10」のように、数値範囲を「~」または「から」を用いて表す場合がある。本明細書において、「1~10」および「1から10」は、いずれも、1以上10以下を意味する。
 本発明において、含む(including)、有する(comprising)、備える(having)及びこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合及び支持も含む。さらに、接続された(connected)及び結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成及び配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する変形例を適宜組み合わせて実施することができる。
 本発明の組電池は、たとえ鞍乗型車両に搭載された組電池の使用環境であっても、リチウムイオンセルの劣化を抑制できる。
本発明の実施形態の組電池の概略構成を示す模式図である。 本発明の実施形態の具体例の組電池の概略構成を示す模式図である。 本発明の実施形態の具体例の組電池が有する複数のリチウムイオンセルの回路図である。 リチウムイオンセルの内部構造を示す斜視図である。 リチウムイオンセルのモデル図である。 組電池の分解斜視図である。 本発明の実施形態の変更例の組電池が有する複数のリチウムイオンセルの回路図である。 25℃の環境下におけるリチウムイオンセルの放電特性を示すグラフである。 1回のサイクル劣化試験におけるリチウムイオンセルの電流を示すグラフである。 所定の温度環境下でリチウムイオンセルを保存したときのリチウムイオンセルの初期容量比を示すグラフである。 45℃の環境下において、充電及び放電を繰り返したときのリチウムイオンセルの初期容量比を示すグラフであって、本発明例に係るリチウムイオンセルの初期容量比と、比較例に係るリチウムイオンセルの初期容量比とを併せて示すグラフである。
 <本発明の実施形態>
 以下、本発明の実施形態の組電池16について、図1を参照しつつ説明する。組電池16は、互いに接続された複数の金属ケース型セル161を有する。複数の金属ケース型セル161の各々は、複数の金属ケース型セル161のいずれかに直列に接続されている。複数の金属ケース型セル161の各々は、複数の金属ケース型セル161のいずれか1つの金属ケース型セル161に直列に接続されていてもよい。複数の金属ケース型セル161の各々は、複数の金属ケース型セル161のうち2つ以上の金属ケース型セル161に直列に接続されていてもよい。
 複数の金属ケース型セル161の各々は、1つの正極と、1つの負極と、電解液又は固体電解質と、1つの正極、1つの負極及び電解液を収容する金属製のケースとを有する金属ケース型セルである。正極は、オリビン構造の正極活物質を有する。負極は、複数のカーボンの層16121a、16121b、16121cを含む負極活物質であって複数のカーボンの層の平均層間距離がリチウム原子の直径以上である負極活物質を有する。図1に、隣り合う2層のカーボンの層16121a、16121bの間にリチウム原子が存在する場合を例示している。また、隣り合う2層のカーボンの層16121b、16121cの間にリチウム原子が存在する場合を例示している。図1では、リチウム原子の直径をDと示している。また、隣り合う2つのカーボンの層16121a、16121bの間の距離をLと示している。隣り合う2つのカーボンの層16121a、16121bの間の距離を、隣り合う2つのカーボンの層16121a、16121bの層間距離と称することもある。図1では、隣り合う2つのカーボンの層16121a、16121bの間の距離Lが、リチウム原子の直径Dより大きい場合を例示している。
 組電池16は、複数の金属ケース型セル161の各々が、直列に接続された金属ケース型セル161と固定されるように、複数の金属ケース型セル161を互いに固定する金属ケース型セル固定部を有する。
 この構成によると、複数の金属ケース型セル161の各々は、複数の金属ケース型セル161のいずれかに直列に接続される。互いに直列に接続される金属ケース型セル161の数が多いほど、組電池16の出力電圧は高くなる。互いに直列に接続される金属ケース型セル161の数を多くすることで、高い出力電圧が必要な使用環境に、組電池16を使用できる。
 金属ケース型セル161はリチウムイオンセルである。リチウムイオンセルは、鉛蓄電池に比べて、重量エネルギー密度及び体積エネルギー密度が小さい。そのため、鉛蓄電池の代わりに、複数のリチウムイオンセル161を有する組電池16を、鞍乗型車両に搭載した場合、バッテリの容量を維持しつつ、鞍乗型車両を軽量化及び小型化できる。もしくは、鞍乗型車両を大型化及び重量化することなく、バッテリの容量を増大できる。組電池の容量を余分に大きくすることで、組電池が有する複数の金属ケース型セルの各々の負担が軽減するため、金属ケース型セルの劣化を抑制できる。
 複数の金属ケース型セル(リチウムイオンセル)161の各々は、1つの正極と、1つの負極と、電解液又は固体電解質を有する。金属ケース型セルの負極は、グラファイトの層でなく、複数のカーボンの層16121a、16121b、16121cを含む負極活物質であって、複数のカーボンの層の平均層間距離がリチウム原子の直径以上である負極活物質を含む。
 複数のカーボンの層の平均層間距離がリチウムイオンの直径以上であるため、金属ケース型セルの充電時、リチウムイオンが負極における隣り合うカーボンの層の間に入っても、隣り合うカーボンの層の間が殆ど押し広げられない。また、金属ケース型セル161の放電時にリチウムイオンが隣り合うカーボンの層の間から出ていっても、隣り合うカーボンの層の間の距離があまり変化しない。つまり、金属ケース型セル161の充電時及び放電時に、リチウムイオンがカーボンの層の間を出入りしても複数のカーボンの層の平均層間距離が殆ど変化しない。そのため、カーボンの層の積層状態が殆ど変化しない。これにより、負極の結晶構造があまり変化しない。したがって、負極の劣化を抑制できる。そのため、この負極を有する金属ケース型セル161は劣化を抑制できる。したがって、この負極を有する金属ケース型セル161の劣化を抑制できる。また、負極が上記構成を有することにより、金属ケース型セル161の充電及び放電の頻度が高くなっても、金属ケース型セル161の劣化を抑制できる。さらに、負極が上記構成を有することにより、この負極を有する金属ケース型セル161は、低温の状態でも劣化を抑制できる。したがって、この金属ケース型セル161を鞍乗型車両に搭載し、低温の状態で金属ケース型セル161の充電及びの頻度が高くなっても、金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。
 また、金属ケース型セル161の正極がオリビン構造を有する正極活物質を含むため、充電と放電を繰り返しても、金属ケース型セル(リチウムイオンセル)が劣化しにくい。したがって、低温環境で、金属ケース型セルの充電と放電を繰り返しても、金属ケース型セル(リチウムイオンセル)161が劣化しにくい。そのため、たとえ、複数の金属ケース型セル161を有する組電池16が鞍乗型車両に搭載されて、組電池16の充電と放電を比較的頻繁に繰り返しても、金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池16の使用環境であっても、金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。
 さらに、正極活物質が有するオリビン構造は、六方最密充電構造であって、安定した結晶構造である。そのため、上記構成の金属ケース型セル(リチウムイオンセル)は、高温環境下でも、使用可能である。
 また、正極活物質がオリビン構造を有する上、さらに、負極活物質が積層された複数のカーボンの層16121a、16121b、16121cを含み、複数のカーボンの層の平均層間距離がリチウム原子の直径以上である。そのため、低温の状態でも劣化を抑制できる。したがって、この金属ケース型セル161を鞍乗型車両に搭載し、低温の状態で金属ケース型セル161の充電及び放電の頻度が高くなっても、金属ケース型セル(リチウムイオンセル)161の劣化を抑制できることがわかった。
 また、金属ケース型セル(リチウムイオンセル)161の出力電流が大きくなると、金属ケース型セル(リチウムイオンセル)161のSOCの変動幅が大きくなる。
 SOCの変動幅が大きい使用状況で組電池を使用しつつ、組電池の耐久性を向上させたり、組電池の放電時間を長くしたりするためには、組電池の容量を大きくすることが必要となる。組電池の容量を大きくする方法の1つとして、組電池が有する金属ケース型セル(リチウムイオンセル)の数を増加させることが考えられる。
 しかし、金属ケース型セル(リチウムイオンセル)161が上述した構成の正極と負極を有することにより、金属ケース型セル(リチウムイオンセル)161のSOCの変動幅が大きい使用状況であっても、金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。そのため、組電池16が有する金属ケース型セル(リチウムイオンセル)161の数の増加を抑えつつ、SOCの変動幅が大きい使用状況で組電池16を使用しても、組電池16の耐久性を向上させたり、組電池16の放電時間を長くしたりすることができる。このような組電池16は、重量及び体積を抑えることができる。したがって、組電池16の取り扱いがより容易になる。そのため、組電池16は、鞍乗型車両に搭載しやすい。また、組電池16の汎用性が向上する。
 さらに、上述したように、金属ケース型セル(リチウムイオンセル)161は、充電及び放電の頻度が高くなっても劣化しにくい。そのため、組電池16に含まれる金属ケース型セル(リチウムイオンセル)161の数の増加を抑えられる。これにより、組電池16の重量及び体積を抑えられる。したがって、組電池16の取り扱いがより容易になる。そのため、組電池16は、鞍乗型車両に搭載しやすい。また、組電池16の汎用性が向上する。
 また、複数の金属ケース型セル161の各々は、1つの正極と、1つの負極と、電解液又は固体電解質を収容する金属製のケースを有する金属ケース型セルである。金属製のケースは放熱性が高い。そのため、複数の金属ケース型セル161の充電時及び放電時、複数の金属ケース型セル161が発熱しても、複数の金属ケース型セル161の各々が放熱する。これにより、複数の金属ケース型セル161を有する組電池16の温度上昇を抑制することができる。そのため、たとえ、複数の金属ケース型セルを有する組電池16が鞍乗型車両に搭載されて、組電池16が大電流で放電した場合であっても、組電池16の温度上昇を抑制することができる。その結果、金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池16の使用環境であっても、充電時または放電時の発熱による金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。
 さらに、金属ケース型セル固定部163により、複数の金属ケース型セル161は互いに固定される。そのため、金属ケース型セル161の放熱性を考慮したレイアウトで、複数の金属ケース型セル161の位置を維持できる。例えば、金属ケース型セル161同士の間に適切な隙間を空けた状態で維持できる。それにより、複数の金属ケース型セル161の充電時及び放電時、複数の金属ケース型セル161が発熱しても、組電池16の温度上昇を抑制することができる。そのため、たとえ、複数の金属ケース型セル161を有する組電池16が鞍乗型車両に搭載されて、組電池16が大電流で放電した場合であっても、組電池16の温度上昇をより抑制することができる。その結果、金属ケース型セル(リチウムイオンセル)161の劣化をより抑制できる。つまり、鞍乗型車両に搭載された組電池16の使用環境であっても、充電時又は放電時の発熱による金属ケース型セル(リチウムイオンセル)161の劣化をより抑制できる。
 また、金属製のケースに電解液が収容されることにより、たとえ電解液が揮発しても、金属製のケースは膨張しない。したがって、電解液として、揮発性の高い電解液を使用することができる。揮発性の高い電解液は、低温において凝固又は凍結しにくい。そのため、低温において凝固又は凍結しにくい電解液を用いた場合、複数の金属ケース型セル161を有する組電池16を低温環境で使用することができる。そのため、たとえ、複数の金属ケース型セル161を有する組電池16が鞍乗型車両に搭載されて、自動車に搭載されたバッテリよりも低温の状態で、組電池16の充電や大電流の放電が行われても、金属ケース型セル161の劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池16の使用環境であっても、低温環境下での充電又は放電による金属ケース型セル(リチウムイオンセル)161の劣化を抑制できる。
 <本発明の実施形態の具体例>
 次に、本発明の実施形態の具体例の組電池16について、図2~図6を参照しつつ説明する。基本的に、本発明の実施形態の具体例は、上述した本発明の実施形態の特徴を全て有している。上述した実施形態と同一又は相当する要素には同一符号を付して、その要素についての説明は繰り返さない。
 図2に示すように、組電池16は、鞍乗型車両1に搭載される。組電池16は、鞍乗型車両1に着脱可能である。組電池16は、鉛蓄電池を搭載可能な鞍乗型車両1に、鉛蓄電池の代わりに搭載されてもよい。鞍乗型車両1は、例えば、自動二輪車である。鞍乗型車両1は、少なくとも1つの前輪2と、少なくとも1つの後輪3を備える。また、鞍乗型車両1は、ライダーが着座するシートを備える。シートの少なくとも一部は、車両前後方向において、全ての前輪2より後方に配置される。また、鞍乗型車両1は、車両の駆動源としてのエンジン10と、スターターモータ11とを備える。エンジンの少なくとも一部は、車両前後方向において全ての前輪2よりも後方に配置されてもよい。スターターモータは、エンジンの始動時に、エンジンのクランク軸を回転させる。なお、エンジンを駆動源とする鞍乗型車両1は、スターターモータを有する代わりに、モータ機能付き発電機(ISG:Integrated Starter Generator)を有していてもよい。スターターモータおよびISGは、本発明における駆動源には該当しない。
 組電池16は、鞍乗型車両1の電装品(電力消費装置)に電力を供給する。電装品は、スターターモータを含む。電装品は、例えば、制御装置、メーター、ホーン、ライト、各種センサ、シートヒーターなどを含んでもよい。
 組電池16は、複数の金属ケース型セル161と、ハウジング部162と、金属ケース型セル固定部163と、1つの外部正極端子166と、1つの外部負極端子167とを備える。組電池16が備える金属ケース型セル161の数は、特に限定されない。
 複数の金属ケース型セル161の各々は、リチウムイオンセルである。複数の金属ケース型セル161は、互いに電気的に接続されている。組電池16が有する金属ケース型セル16の数は、特に限定されない。複数の金属ケース型セル161の各々は、複数の金属ケース型セル161のいずれかに直列に接続されている。互いに直列に接続される金属ケース型セル161の数は、特に限定されない。図2では、少なくとも4つの金属ケース型セル16が、直列に接続されている。複数の金属ケース型セル161は、並列に接続された複数の金属ケース型セル161を含んでいてもよい。互いに並列に接続される金属ケース型セル161の数は、特に限定されない。
 金属ケース型セル固定部163は、複数の金属ケース型セル161を互いに固定する。それにより、複数の金属ケース型セル161が一体化されている。例えば、隣り合う金属ケース型セル161同士が、金属ケース型セル固定部163によって固定されていてもよい。また、例えば、隣り合わない金属ケース型セル161同士が固定されていてもよい。金属ケース型セル固定部163が複数の金属ケース型セル161を互いに固定する態様は、この態様に限定されない。
 複数の金属ケース型セル161が金属ケース型セル固定部163に固定された状態において、隣り合う金属ケース型セル161の間には、空間が形成されていてもよく、空間が形成されていなくてもよい。
 外部正極端子166と外部負極端子167は、それぞれ、ハウジング部162の外部からアクセス可能な状態でハウジング部162に設けられている。外部正極端子166は、複数の金属ケース型セル161のうちの少なくとも1つの金属ケース型セル161が有する少なくとも1つの正極に電気的に接続される。外部負極端子167は、複数の金属ケース型セル161のうちの少なくとも1つの金属ケース型セル161が有する少なくとも1つの負極に電気的に接続される。
 外部正極端子166及び外部負極端子167は、下記のように接続されてもよい。
 外部正極端子166と外部負極端子167は、鞍乗型車両1の電装品(スターターモータ11等)に接続される。また、外部正極端子166と外部負極端子167は、鞍乗型車両1の電源回路にも接続されてもよい。この場合、電装品と電源回路は並列に接続される。鞍乗型車両1の電源回路は、例えば、12V~15V用の電源回路でもよい。電源回路は、例えば、ACジェネレータと、レギュレートレクチファイアとを含んでいてもよい。
 組電池16を充電する際、外部正極端子166及び外部負極端子167は、組電池16に電力を供給する直流充電器に接続される。直流充電器は、例えば12V~15V用の直流充電器である。組電池16は、鞍乗型車両1に搭載された状態で充電されてもよく、鞍乗型車両1から取り外された状態で充電されてもよい。
 組電池16は、複数の金属ケース型セル161を管理する電池管理装置(BMS:Battery Management System)を備えていてもよい。電池管理装置は、複数の金属ケース型セル161の充電と放電を監視して、複数の金属ケース型セル161の充電と放電を監視する。
 図3は、複数の金属ケース型セル161の接続態様の一例を示している。複数の金属ケース型セル161は、互いに並列に接続された複数の金属ケース型セル161からなる並列セル群171を複数個構成する。複数の並列セル群171は、互いに直列に接続されている。
 複数の金属ケース型セル161は、互いに同じ構成である。図4は、金属ケース型セル161の一例の内部構造を示す斜視図である。図4に示すように、金属ケース型セル161は、1つの正極1611と、1つの負極1612と、金属製のケース1613とを有する。以下の説明において、金属製のケース1613を、金属ケース1613と称する。正極1611及び負極1612は、金属ケース1613に収容される。金属ケース1613は、密閉性を有する。金属ケース1613の材質は、金属であれば、特に限定されない。金属ケース1613として、例えば、ニッケル鍍金が施された鉄鋼板を用いてもよい。図4に示す例では、金属ケース1613は、円筒形状である。
 図4に示す例では、正極1611及び負極1612が、所定の軸線周りに巻き回された状態で、金属ケース1613に収容されている。図4に示す例において、所定の軸線は、金属ケース1613の中心軸線である。正極1611と負極1612との間には、セパレータ1614が配置されている。セパレータ1614は、正極1611及び負極1612とともに、所定の軸線周りに巻き回されている。金属ケース1613内において、正極1611、負極1612及びセパレータ1614は、電解液1615(図5参照)に浸漬されている。このように、金属ケース1613は、正極1611、負極1612、電解液1615及びセパレータ1614を収容している。
 図5を参照しながら、金属ケース型セル161の構造について、さらに説明する。図5は、金属ケース型セル161のモデル図である。
 正極1611は、正極活物質16111と、集電体16112とを含む。正極活物質16111は、オリビン構造を有する。正極活物質は、例えば、リン酸鉄リチウム、リン酸マンガンリチウムである。
 負極1612は、負極活物質16121と、集電体16122とを含む。負極活物質16121は、複数のカーボンの層16121a、16121bを有する。負極活物質16121は、カーボン以外の物質を含んでいてもよい。負極活物質は、例えば、ケイ素の酸化物を含んでいてもよい。複数のカーボンの層16121a、16121bに、カーボン以外の物質が含まれていてもよい。負極活物質16121は、例えば、ハードカーボン及びソフトカーボンの少なくとも一つを含んでいてもよい。負極活物質16121において、隣り合う2層のカーボンの層(例えば、層16121aと層16121b)の間の平均距離は、リチウム原子の直径以上である。図5では、リチウム原子の直径をDと示している。また、隣り合う2つのカーボンの層16121a、16121bの間の距離をLと示している。隣り合う2つのカーボンの層16121a、16121bの間の距離は、隣り合う2つのカーボンの層16121a、16121bの層間距離と称されることもある。図5では、隣り合う2層のカーボンの層16121a、16121bの層間距離Lが、リチウム原子の直径Dより大きい場合を例示している。
 負極活物質16121の製造には、炭素源が用いられる。炭素源は特に限定されないが、収率を考慮すると、炭素を多く含む化合物が好適である。炭素を多く含む化合物として、例えば、石油ピッチ、コークス等の石油由来の物質及び椰子殻等の植物由来の物質等が挙げられる。炭素は、出発原料により、難黒鉛化性炭素(ハードカーボン)と、易黒鉛化性炭素(ソフトカーボン)とに分類される。炭素源に、難黒鉛化性炭素を用いてもよく、易黒鉛化性炭素を用いてもよく、難黒鉛化性炭素及び易黒鉛化性炭素の両方を用いてもよい。不活性雰囲気下において、炭素を高温で焼くことにより、炭素は黒鉛化する。黒鉛は、炭素(カーボン)の薄い層が積層された構造を有する。炭素の六員環が2次元的に結合した薄い層は、グラフェンと呼ばれることがある。炭素が黒鉛化する温度は、2500℃以上3000℃以下程度である。焼くときの温度が高く、且つ、焼く時間が長いほど、積層された炭素の層において、隣り合う炭素の間の距離(層間距離)は小さくなり、且つ、炭素の層の大きさ、言い換えると結晶子の大きさは大きくなる。その結果、所謂結晶性が増す。黒鉛とは、炭素の六員環が2次元的に結合した層が積層された構造において層間距離が3.35オングストローム以下に結晶化されたものをいう。
 炭素の六員環が2次元的に結合した層が積層された構造において平均層間距離はリチウム原子の直径未満である。したがって、複数のカーボンの層を有する負極活物質において複数のカーボンの層の平均層間距離がリチウム原子の直径以上である場合、この負極活物質は、黒鉛とは異なるものである。
 セパレータ1614は、多孔質膜である。セパレータ1614は、例えば、ポリエチレンで形成されている。
 電解液1615は、例えば、有機溶媒にリチウム塩を溶解させた有機電解液であってもよい。有機溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。リチウム塩は、例えば、ヘキサフルオロリン酸リチウム、ホウフッ化リチウム、過塩素酸リチウムである。電解液は、上記の有機電解液に対して、ポリマーを加えることにより、ゲル化したものであってもよい。ポリマーは、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデンである。
 電解液1615は、低温において凝固又は凍結しにくい電解液でもよい。例えば、電解液1615は、-20℃で凍結しない電解液でもよい。-20℃で凍結しない電解液の溶媒として、例えば、酢酸エチル、酢酸メチル、アセトニトリルが挙げられる。
 図6を参照しながら、組電池16の一例のより具体的な構造について説明する。図6は、組電池16の一例の分解斜視図である。なお、組電池16の内部構造を判り易くするために、図6では、組電池16が金属ケース型セル161を16個備える例を示している。以下、図6の紙面の上下方向を使って、組電池16の構造を説明する。鞍乗型車両1に搭載された組電池16は、図6の紙面の上下方向が、上下方向(鉛直方向)となるように設置されてもよい。鞍乗型車両1に搭載された組電池16の向きはこれに限らない。
 ハウジング部162は、本体1621と、蓋1622とを含む。本体1621と蓋1622は、分離可能である。蓋1622は、本体1621に形成された開口を覆う。蓋1622に、1つの外部正極端子166と、1つの外部負極端子167が設けられている。
 ハウジング部162は、箱体である。図6に示す例では、ハウジング部162は、略直方体状の箱体である。ハウジング部162は、上面162aと、下面162bと、4つの側面162c、162d、162e、162fとを有する。ハウジング部162が略直方体状であることにより、ハウジング部162は、互いに交差する3つの平面に沿ってそれぞれ配置された3つの面を有する。例えば、上面162aと、側面162cと、側面162fは、互いに交差する3つの平面に沿って配置されている。
 外部正極端子166と外部負極端子167は共に、上面162aに設けられている。つまり、外部正極端子166と外部負極端子167は共に、ハウジング部162の6つの面のうちの1つの面に設けられている。言い換えると、外部正極端子166と外部負極端子167は共に、互いに交差する3つの平面に沿ってそれぞれ配置された3つの面のうちの1つの面に設けられている。外部正極端子166と外部負極端子167は、上面162a以外の面に設けられていてもよい。外部正極端子166と外部負極端子167は、下面162bと4つの側面162c、162d、162e、162fの何れか1つの面に設けられていてもよい。外部正極端子166と外部負極端子167が、ハウジング部162の1つの面に設けられているため、外部正極端子166と外部負極端子167を、鞍乗型車両1の電源回路等に接続する作業や、直流充電器に接続する作業が行いやすい。
 ハウジング部162は、16個の金属ケース型セル161と、金属ケース型セル固定部163と、接続部164と、バランス回路165とを収容する。ハウジング部162は、上述した電池管理装置を収容していてもよい。例えば、電池管理装置は、蓋1622に取り付けられていてもよい。なお、電池管理装置は、ハウジング部162に収容されていなくてもよい。電池管理装置は、一部だけがハウジング部162に収容されていてもよい。電池管理装置は、ハウジング部162の外部に配置されていてもよい。
 金属ケース型セル固定部163は、2枚の金属ケース型セル固定板1631、1632を有する。金属ケース型セル固定板1631は、16個の孔1631aが形成された板状部材である。金属ケース型セル固定板1632は、16個の孔1632aが形成された板状部材である。2つの金属ケース型セル固定板1631、1632は、16個の金属ケース型セル161の両側に配置される。金属ケース型セル固定板1631の16個の孔1631aに対して、16個の金属ケース型セル161の一端部がそれぞれ挿入される。金属ケース型セル固定板1632の16個の孔1632aに対して、16個の金属ケース型セル161の他端部がそれぞれ挿入される。これにより、金属ケース型セル固定部163は、16個の金属ケース型セル161を互いに固定する。16個の金属ケース型セル161が金属ケース型セル固定部163に固定された状態において、隣り合う金属ケース型セル161の間には、空間が形成されている。金属ケース型セル固定部163は、複数のリチウムイオンセル161に電気的に接続されていない。
 16個の金属ケース型セル161は、4列に並んだ状態で配置されている。つまり、各列は、4個の金属ケース型セル161からなる。1つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その下端部に正極端子を有する。1つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その上端部に負極端子を有する。2つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その上端部に正極端子を有する。2つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その下端部に負極端子を有する。3つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その下端部に正極端子を有する。3つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その上端部に負極端子を有する。4つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その上端部に正極端子を有する。4つ目の列を構成する4個の金属ケース型セル161は、それぞれ、その下端部に負極端子を有する。
 接続部164は、5枚の接続板1641、1642、1643、1644、1645を有する。接続板1641、1642、1643、1644、1645は、導電性を有する物質によって形成されている。接続板1641は、1つ目の列を構成する4個の金属ケース型セル161の負極端子に接続される。接続板1642は、1つ目の列を構成する4個の金属ケース型セル161の正極端子に接続される。さらに、接続板1642は、2つの目の列を構成する4つの金属ケース型セル161の負極端子に接続される。接続板1643は、2つ目の列を構成する4個の金属ケース型セル161の正極端子に接続される。さらに、接続板1643は、3つの目の列を構成する4つの金属ケース型セル161の負極端子を接続する。接続板1644は、3つ目の列を構成する4個の金属ケース型セル161の正極端子に接続される。さらに、接続板1644は、4つの目の列を構成する4つの金属ケース型セル161の負極端子に接続される。接続板1645は、4つ目の列を構成する4個の金属ケース型セル161の正極端子に接続される。
 1列目の4個の金属ケース型セル161は、接続板1641と接続板1642によって、互いに並列に接続されている。これにより、1列目の4個の金属ケース型セル161は、互いに並列に接続された並列セル群1711を構成している。2列目の4個の金属ケース型セル161は、接続板1642と接続板1643によって、互いに並列に接続されている。これにより、2列目の4個の金属ケース型セル161は、互いに並列に接続された並列セル群1712を構成している。3列目の4個の金属ケース型セル161は、接続板1643と接続板1644によって、互いに並列に接続されている。これにより、3列目の4個の金属ケース型セル161は、互いに並列に接続された並列セル群1713を構成している。4列目の4個の金属ケース型セル161は、接続板1644と接続板1645によって、互いに並列に接続されている。これにより、4列目の4個の金属ケース型セル161は、互いに並列に接続された並列セル群1714を構成している。
 また、1列目の4個の金属ケース型セル161と、2列目の4個の金属ケース型セル161は、接続板1642によって直列に接続されている。言い換えると、並列セル群1711と並列セル群1712は、接続板1642によって直列に接続されている。2列目の4個の金属ケース型セル161と、3列目の4個の金属ケース型セル161は、接続板1643によって直列に接続されている。言い換えると、並列セル群1712と並列セル群1713は、接続板1643によって直列に接続されている。3列目の4個の金属ケース型セル161と、4列目の4個の金属ケース型セル161は、接続板1644によって直列に接続されている。言い換えると、並列セル群1713と並列セル群1714は、接続板1644によって直列に接続されている。それにより、4つの並列セル群1711、1712、1713、1714は、互いに直列に接続されている。金属ケース型セル固定部163は、4つの並列セル群1711、1712、1713、1714を直列に接続した状態で固定している。
 接続板1641は、図示しないケーブルを介して、外部負極端子167に接続されている。これにより、1列目の4個の金属ケース型セル161の負極端子は、外部負極端子167に電気的に接続される。接続板1645は、図示しないケーブルを介して、外部正極端子166に接続されている。これにより、4列目の4個の金属ケース型セル161の正極端子は、外部正極端子166に電気的に接続される。
 バランス回路165は、16個の金属ケース型セル161の充電の進み度合がばらつくことを抑制する。一般的に、直列に接続された複数のセルを充電すると、複数のセルの電圧にばらつきが生じる場合がある。それにより、複数のセルの充電の進み度合にばらつきが生じる場合がある。バランス回路165は、例えば、金属ケース型セル161ごとにその金属ケース型セル161の電流を抵抗に逃がすことで、金属ケース型セル161の電圧のバラつきを低減する。なお、組電池16は、バランス回路165を有さなくてもよい。
 本発明の実施形態の具体例は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。
 金属ケース1613に電解液1615が収容されることにより、たとえ電解液1615が揮発しても、金属ケース1613が膨張しない。したがって、電解液1615として、揮発性の高い電解液を使用することができる。揮発性の高い電解液は、低温において凝固又は凍結しにくい。そのため、低温において凝固又は凍結しにくい電解液を用いた場合、複数の金属ケース型セル161を有する組電池16を低温環境で使用することができる。そのため、たとえ、複数の金属ケース型セル161を有する組電池16が鞍乗型車両に搭載されて、自動車に搭載されたバッテリよりも低温の状態で、組電池の充電や大電流の放電が行われても、金属ケース型セルの劣化を抑制できる。つまり、鞍乗型車両に搭載された組電池の使用環境であっても、低温環境下での充電又は放電による金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。
 電解液として、-20℃で凍結しない電解液を用いることにより、複数の金属ケース型セル161を有する組電池16を-20℃程度の低温の環境で使用することができる。そのため、たとえ、複数の金属ケース型セル161を有する組電池16が鞍乗型車両1に搭載されて、-20℃程度の低温状態で、充電や大電流の放電が行われても、金属ケース型セル161の劣化を抑制できる。よって、鞍乗型車両1に搭載された組電池16の使用環境であっても、金属ケース型セル161の劣化をより抑制できる。
 ハウジング部162に、複数の金属ケース型セル161と金属ケース型セル固定部163の両方が収容される。これにより、複数の金属ケース型セル161を、水や湿気などから保護できる。したがって、金属ケース型セル161の劣化を抑制できる。よって、エンジンルームやモータルームを有さない鞍乗型車両1に組電池16を搭載した場合であっても、金属ケース型セル161の劣化を抑制できる。つまり、鞍乗型車両1に搭載された組電池の使用環境であっても、金属ケース型セル161の劣化をより抑制できる。
 また、複数の金属ケース型セル161及び金属ケース型セル固定部163を一緒に移動させやすい。したがって、組電池16の取り扱いがより容易になる。そのため、組電池16は、鞍乗型車両1に搭載しやすい。また、組電池16の汎用性が向上する。
 複数の並列セル群171は、互いに直列に接続される。並列セル群171の数を増やすことで、組電池16の出力電圧を高くできる。複数の並列セル群171の各々は、互いに並列に接続された少なくとも2つの金属ケース型セル161からなる。つまり、組電池16が有する複数の金属ケース型セルは、互いに並列に接続された金属ケース型セル161を含む。そのため、組電池16が有する複数の金属ケース型セル161が1列に直列に接続される場合に比べて、組電池16の出力電流が大きくなる。組電池16の出力電流が大きくなると、組電池16の容量も大きくなる。互いに並列に接続される金属ケース型セル161の数が多いほど、組電池16の出力電流と容量は大きくなる。組電池16の容量が大きいことによって、組電池16の充電の頻度を低減できる。その結果、金属ケース型セル161の劣化を抑制できる。この組電池16は、組電池16に必要な出力電圧と出力電流と容量が比較的大きい使用環境に使用できる。
 金属ケース型セル固定部163により複数の金属ケース型セル161が互いに固定される。これにより、複数の金属ケース型セル161を一緒に移動させやすい。したがって、組電池16の取り扱いが容易になる。
 また、隣り合う金属ケース型セル161同士の間に空間が形成されている。これにより、複数の金属ケース型セル161の充電時及び放電時に発生した熱をこの空間に移動させることができる。それに加えて、金属ケース型セル161の金属ケース1613が金属製であるため、金属ケース型セル161は放熱性が高い。これらにより、複数の金属ケース型セル161の充電時及び放電時に、複数の金属ケース型セル161の温度上昇を抑制することができる。
 <本発明の実施形態の変更例>
 本発明は、上述した実施形態及びその実施形態の具体例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。上述した実施形態の具体例及び後述する変更例は、適宜組み合わせて実施可能である。
 ◆複数の金属ケース型セルの接続態様の変更例
 上記実施形態の具体例において、複数の金属ケース型セル161の接続態様は、互いに並列に接続された少なくとも2つの金属ケース型セル161からなる並列セル群171を複数個直列に接続した態様である。しかし、本発明の複数の金属ケース型セルの接続態様は、この態様に限定されない。本発明の複数の金属ケース型セルの接続態様は、複数の金属ケース型セルの各々が、複数の金属ケース型セルのいずれかに直列に接続されていればよい。本発明の複数の金属ケース型セルが複数の並列セル群を構成する場合、並列セル群の数は特に限定されない。
 本発明の複数の金属ケース型セルを接続態様は、複数の金属ケース型セルが1列に直列に接続された態様でもよい。複数の金属ケース型セルが1列に直列に接続されている場合、同じ数の複数の金属ケース型セルが直列及び並列に接続されている場合に比べて、組電池の出力電圧が高くなる。そのため、組電池に必要な出力電圧を確保しつつ、組電池が有する金属ケース型セルの数を低減できる。よって、組電池を小型かつ軽量にできる。この組電池は、組電池に必要な出力電流と容量が比較的小さく、組電池に必要な出力電圧が比較的大きい使用環境に使用できる。
 本発明の複数の金属ケース型セルの接続態様は、互いに直列に接続された少なくとも2つの金属ケース型セルからなる直列セル群を複数個並列に接続した態様でもよい。その一例を図7に示す。図7の符号172は、直列セル群を示す。本発明の複数の金属ケース型セルが、複数の直列セル群を構成する場合、直列セル群の数は特に限定されない。直列セル群を構成する金属ケース型セルの数を増やすことで、組電池の出力電圧を高くできる。複数の直列セル群は、互いに並列に接続される。つまり、組電池が有する複数の金属ケース型セルは、互いに並列に接続された金属ケース型セルを含む。そのため、組電池が有する複数の金属ケース型セルが1列に直列に接続される場合に比べて、組電池の出力電流が大きくなる。組電池の出力電流が大きくなると、組電池の容量も大きくなる。互いに並列に接続される金属ケース型セルの数が多いほど、組電池の出力電流と容量は大きくなる。組電池の容量が大きいことによって、組電池の充電の頻度を低減できる。その結果、金属ケース型セル(リチウムイオンセル)の劣化を抑制できる。この組電池は、組電池に必要な出力電圧と出力電流と容量が比較的大きい使用環境に使用できる。
 本発明の複数の金属ケース型セルの接続態様は、互いに直列に接続された少なくとも2つの金属ケース型セルからなる直列セル群を複数個並列に接続して得られる直列並列群を、複数個直列に接続した態様でもよい。
 本発明の複数の金属ケース型セルの接続態様は、互いに並列に接続された少なくとも2つの金属ケース型セルからなる並列セル群を複数個直列に接続して得られる並列直列群を、複数個並列に接続した態様でもよい。
 本発明の複数の金属ケース型セルの接続態様は、互いに並列に接続された少なくとも2つの金属ケース型セルからなる並列セル群を複数個並列に接続して得られる並列並列群を複数個直列に接続した態様でもよい。
 複数の金属ケース型セルは、組電池に含まれる他の金属ケース型セルに対して直列にのみ接続されている金属ケース型セルを含んでいてもよい。複数の金属ケース型セルは、組電池に含まれる他の金属ケース型セルに対して並列にのみ接続されている金属ケース型セルを含んでいてもよい。
 本発明の複数の金属ケース型セルの接続態様において、互いに直列に接続される金属ケース型セルの数は限定されない。本発明の複数の金属ケース型セルを直列に接続する態様において、互いに並列に接続される金属ケース型セルの数は限定されない。
 本発明の複数の金属ケース型セルの接続態様において、直列に接続される金属ケース型セルの数は、互いに同じであってもよく、異なっていてもよい。例えば、複数の金属ケース型セルが、2つの直列セル群を有する場合、第1の直列セル群を構成する金属ケース型セルの数は、第2の直列セル群を構成する金属ケース型セルの数と同じであってもよく、異なっていてもよい。
 本発明の複数の金属ケース型セルの接続態様において、並列に接続される金属ケース型セルの数は、互いに同じであってもよく、異なっていてもよい。例えば、複数の金属ケース型セルが、2つの並列セル群を有する場合、第1の並列セル群を構成する金属ケース型セルの数は、第2の並列セル群を構成する金属ケース型セルの数と同じであってもよく、異なっていてもよい。
 ◆金属ケース型固定部に関連する変更例
 上記実施形態の具体例の金属ケース型セル固定部163は、2枚の金属ケース型セル固定板1631、1632を有する。しかし、金属ケース型セル固定部の構成は、この態様に限定されない。例えば、金属ケース型セル固定部は、1つの板状部材で構成されてもよい。金属ケース型セル固定部は、金属ケース型セル固定板1631、1632の一方だけで構成されてもよい。また、金属ケース型セル固定部は、2つ以上の板状部材で構成されてもよい。金属ケース型セル固定部は、板状部材でなくてもよい。
 上記実施形態の具体例において、金属ケース型セル固定板1631の16個の孔1631aに、複数の金属ケース型セル161の一端部がそれぞれ挿入されている。金属ケース型セル固定板1632の16個の孔1632aに、複数の金属ケース型セル161の他端部がそれぞれ挿入されている。これにより、複数の金属ケース型セル161が互いに固定される。しかし、金属ケース型セル固定部により複数の金属ケース型セルを互いに固定する態様は、この態様に限定されない。また、例えば、金属ケース型セル固定部に形成された複数の溝(凹部)に、複数の金属ケース型セルをそれぞれが嵌め込まれることで、複数の金属ケース型セルが互いに固定されてもよい。
 上記実施形態の具体例において、隣り合う金属ケース型セル161同士の間に空間が形成された状態で、金属ケース型セル161が互いに固定されている。しかし、本発明において、金属ケース型セル固定部により複数の金属ケース型セルを互いに固定する態様は、この態様に限定されない。複数の金属ケース型セルのうちの少なくとも2つの金属ケース型セル同士の間に空間が形成されていない状態で、複数の金属ケース型セルが互いに固定されていてもよい。
 上記実施形態の具体例において、金属ケース型セル固定部163は、複数の金属ケース型セルに電気的に接続されていない。しかし、本発明において、金属ケース型セル固定部は、複数の金属ケース型セルを互いに電気的に接続する接続部を兼ねていてもよい。それにより、部品数を低減できる。その結果、組電池を軽量化及び小型化できる。一方、接続部とは別に金属ケース型セル固定部を設けた場合は、金属ケース型セル固定部によって複数の金属ケース型セルを互いに固定した後で、金属ケース型セルに接続部を電気的に接続できる。そのため、金属ケース型セルと接続部との接続作業が行いやすい。
 ◆ハウジング部に関連する変更例
 上記実施形態の具体例の組電池16において、複数の金属ケース型セル161及び金属ケース型セル固定部163がハウジング部162に収容されている。しかし、本発明において、組電池の態様は、この態様に限定されない。複数の金属ケース型セル及び金属ケース型セル固定部はハウジング部に収容されていなくてもよい。複数の金属ケース型セルのうち一部の金属ケース型セルがハウジング部に収容され、残りの金属ケース型セルはハウジング部に収容されなくてもよい。金属ケース型セル固定部の一部がハウジング部に収容され、金属ケース型セル固定部の他の部分はハウジング部に収容されなくてもよい。複数の金属ケース型セル及び金属ケース型セル固定部は、複数のハウジング部に収容されてもよい。例えば、複数の金属ケース型セルのうち一部の金属ケース型セルが第1のハウジング部に収容され、残りの金属ケース型セルは第2のハウジング部に収容されてもよい。
 上記実施形態の具体例のハウジング部162は、本体1621と、蓋1622とを含む。本体1621と蓋1622は、分離可能である。しかし、本発明におけるハウジング部の態様は、この態様に限定されない。ハウジング部の本体と蓋が分離不能であってもよい。ハウジング部は、3つ以上のパーツで構成されていてもよい。
 上記実施形態の具体例において、組電池16のハウジング部162は、略直方体状の箱体である。しかし、本発明において、組電池のハウジング部は、直方体状以外の多面体の箱体であってもよい。その場合も、ハウジング部は、互いに交差する複数の平面に沿ってそれぞれ配置された複数の面を有する。箱体が直方体状以外の多面体の場合、この面の数は少なくとも4つである。
 ◆複数の金属ケース型セルの構成の変更例
 本発明において、金属製のケース1613の形状は円筒形状である。しかし、金属製のケースの形状は、円筒形状に限定されない。例えば、金属製のケースは、箱状(直方体状)でもよい。例えば、箱状の金属製のケースに、正極及び負極が、所定の軸線周りに巻き回された状態で、箱状の金属製のケースに収容されていてもよい。また、金属製のケースは、フラットボード状であってもよい。例えば、フラットボード状の金属製のケースに、正極及び負極が平坦な状態で収容されていてもよい。例えば、フラットボード状の金属製のケースに、金属ケース型セルの正極と負極が積層されていてもよい。例えば、フラットボード状の金属製のケースに、金属ケース型セルの正極及び負極が所定の軸線周りに巻き回された状態で、収容されていてもよい。
 上記実施形態の具体例において、複数の金属ケース型セル161の各々は、正極1611と、負極1612と、電解液1615を有する。しかし、本発明において、金属ケース型セルは、正極と、負極と、固体電解質を有する金属ケース型セルでもよい。この場合、固体電解質は、正極および負極の両方と接触している。本発明の金属ケース型セルは、正極、負極及び固体電解質が金属製のケースに収容された金属ケース型セルでもよい。
 また、複数のリチウムイオンセル161が、正極と負極と電解液を有する金属製ケース型セルと、正極と負極と固体電解質を有する金属製ケース型セルを含んでもよい。
 上記実施形態の具体例において、複数の金属ケース型セル161は互いに同じ構成である。しかし、本発明において、複数のリチウムイオンセルは、互いに異なる構成の少なくとも2つのリチウムイオンセルを含んでいてもよい。つまり、複数のリチウムイオンセルは、2種類以上のリチウムイオンセルを含んでいてもよい。
 上記実施形態の具体例において、複数の金属ケース型セル161が有する正極活物質は、互いに同じ種類である。しかし、本発明において、複数の金属ケース型セルのうちの少なくとも2つの金属ケース型セルが有する正極活物質が、互いに異なっていてもよい。つまり、複数の金属ケース型セルが有する正極活物質が、2種類以上であってもよい。
 上記実施形態の具体例において、複数の金属ケース型セル161が有する負極活物質は、互いに同じ種類である。しかし、本発明において、複数の金属ケース型セルのうちの少なくとも2つの金属ケース型セルが有する負極活物質が、互いに異なっていてもよい。つまり、複数の金属ケース型セルが有する負極活物質が、2種類以上であってもよい。例えば、複数の金属ケース型セルのうちの少なくとも2つの金属ケース型セルの負極において、複数のカーボンの層の平均層間距離が、互いに異なってもよい。
 上記実施形態の具体例において、複数の金属ケース型セル161が有する電解液は、互いに同じ種類である。しかし、本発明において、複数の金属ケース型セルのうちの少なくとも2つの金属ケース型セルが有する電解液が、互いに異なっていてもよい。つまり、複数の金属ケース型セルが有する電解液が、2種類以上であってもよい。また、複数の金属ケース型セルが正極と、負極と、固体電解質を有する場合、複数の金属ケース型セルが有する固体電解質は、互いに同じ種類でもよい。また、複数の金属ケース型セルのうちの少なくとも2つの金属ケース型セルが有する固体電解質が、互いに異なっていてもよい。つまり、複数の金属ケース型セルが有する固体電解質が、2種類以上であってもよい。
 また、複数のリチウムイオンセル161が、正極と負極と電解液を有する1つ以上の金属製ケース型セルと、正極と負極と固体電解質を有する1つ以上の金属製ケース型セルを含んでもよい。この場合、正極と負極と電解液を有する複数の金属製ケース型セルのうち少なくとも2つの金属ケース型セルが有する電解液が、互いに同じ種類でもよく、互いに異なっていてもよい。また、正極と負極と固体電解質を有する複数の金属製ケース型セルのうち少なくとも2つの金属ケース型セルが有する固体電解質が、互いに同じ種類でもよく、互いに異なっていてもよい。
 ◆温度調整装置
 上記実施形態の具体例において、ハウジング部に、温度調整装置が収容されていてもよい。温度調整装置は、隣り合うリチウムイオンセル同士の間に形成された空間の温度を調整する。温度調整装置は、例えば空冷用のファンであってもよい。温度調整装置は、例えば冷水又は温水であってもよい。温度調整装置は、例えばヒータであってもよい。
 ◆組電池が搭載される装置の変更例
 上記実施形態の具体例の組電池16は、エンジンを有する鞍乗型車両1に搭載される。しかし、本発明の組電池は、モータを駆動源とする鞍乗型車両に搭載されてもよく、モータとエンジンを駆動源とする鞍乗型車両に搭載されてもよい。本発明の組電池は、鞍乗型車両以外の電力消費装置に搭載されてもよい。組電池に蓄積された電力は、電力消費装置の駆動に使用される。組電池が搭載される電力消費装置の種類は、特に限定されない。電力消費装置は、車両であってもよいし、車両でなくてもよい。車両は、エンジンを駆動源とするものであってもよく、モータを駆動源とするものであってもよく、エンジンとモータを駆動源とするものであってもよい。駆動源にモータを含む車両に、本発明の組電池を搭載する場合、組電池は、モータ(駆動源)に電力を供給する。車両は、陸上を走行するものであってもよく、水上を走行するものであってもよく、水中を走行するものであってもよく、空中を走行するものであってもよい。陸上を走行する車両は、例えば、四輪車(four-wheel vehicle)、二輪車(two-wheel vehicle)、三輪車(three-wheeler)、スノーモービル等である。陸上を走行する車両は、4つより多い車輪を有するものであってもよい。四輪車は、例えば、乗用車、ATV(All Terrain Vehicle:全地形型車両)、ROV(Recreational Off-highway Vehicle)、ゴルフカート、フォークリフト等である。二輪車は、前後方向に並んだ2つの車輪を有するものであってもよく、左右方向に並んだ2つの車輪を有するものであってもよい。前者の例としては、例えば、自動二輪車(モータサイクル)、スクータ、モペット、自転車等である。三輪車は、前輪が2つものであってもよく、後輪が2つものもであってもよい。水上を走行する車両は、例えば、船、水上バイク等である。水中を走行する車両は、例えば、潜水艇等である。空中を走行する車両は、例えば、飛行機、ヘリコプター、ドローン等である。
 本発明の組電池は、電力消費装置に対して着脱可能であってもよく、着脱不能であってもよい。組電池は、電力消費装置から取り外された状態で充電されてもよく、電力消費装置に搭載された状態のまま充電されてもよい。
 ◆組電池の充電に関連する変更例
 本発明の組電池は、12V~15V用の直流充電器以外の充電器で充電可能であってもよい。組電池が、12V~15Vよりも高電圧の直流充電器で充電可能である場合には、組電池を、モータを駆動源とする車両に搭載される鉛蓄電池の代わりに使用できる。
 以下、本発明の組電池が有する金属ケース型セルの一例(以下、本発明例に係るリチウムイオンセルと称することがある)の特性について、図8~図11を参照しつつ説明する。本発明例に係るリチウムイオンセルは、直径が18mm、長さが65.0mmの円筒型のリチウムイオンセル、いわゆる18650セルである。
 (1)異なる電流値における放電特性
 本発明例に係るリチウムイオンセルを、定電流定電圧方式で充電した。定電流充電における充電電流は、1Aとした。定電圧充電での充電電圧は、4.2Vとした。充電終止電流は、0.05Aとした。充電終了後、本発明例に係るリチウムイオンセルを定電流放電した。定電流放電における放電電流を1A、3A、5A及び10Aとしたときの各放電容量を調べた。放電終止電圧は、2.5Vとした。放電電流は、出力電流とも称される。
 図8には、放電電流が1A、3A、5A及び10Aであるときのリチウムイオンセルの各放電特性を示している。図8の縦軸は、リチウムイオンセルの電圧を示し、図8の横軸はリチウムイオンセルの放電容量を示している。図8から、放電電流が1A、3A、5A及び10Aのいずれであるときも、放電容量が1Ahを超えている。このことから、本発明例に係るリチウムイオンセルは、高い放電レートでも、利用できることがわかった。
 (2)異なる温度環境におけるサイクル特性
 下記の3つの温度環境下における、リチウムイオンセルのサイクル特性を調べた。60℃の温度環境下で、本発明例に係るリチウムイオンセルの充電及び放電を繰り返した。-10℃の温度環境下で、本発明例に係るリチウムイオンセルの充電及び放電を繰り返した。ASEANの四季を想定した温度環境下で、本発明例に係るリチウムイオンセルの充電及び放電を繰り返した。具体的には、1年の温度が40℃、25℃、10℃、25℃の順に変わると仮定した。充電と放電を1サイクルとカウントし、2500サイクル毎に環境温度を40℃、25℃、10℃、25℃の順に繰り返し変化させた。
 先ず、リチウムイオンセルを満充電状態とするために、定電流定電圧方式でリチウムイオンセルを充電した。定電流充電での充電電流は、1Aとした。定電圧充電での充電電圧は、3.65Vとした。充電終止電流は、0.05Aとした。その後、充電及び放電を繰り返した。2500サイクルが終了するごとに、リチウムイオンセルを満充電状態とした。リチウムイオンセルを満充電状態にするとき、リチウムイオンセルと定電流定電圧方式で充電した。定電流充電での充電電流は、1Aとした。定電圧充電での充電電圧は、3.65Vとした。充電終止電流は、0.05Aとした。
 図9に、充放電サイクルにおける、1サイクルの負荷電流のパターンを示している。図9の縦軸は負荷電流であり、図9の横軸は時間である。図9において負荷電流が負であるとき、リチウムイオンセルを放電している。図9において負荷電流が正であるとき、リチウムイオンセルを充電している。図9に示す負荷電流のパターンは、ECE40(ISO6460)に規定の走行条件に基づいて生成した。ECE40(ISO6460)に規定の走行条件は、ECE40走行パターンと称することもある。ECE40走行パターンとは、ヨーロッパ実用燃費測定法であるECE40アーバンサイクルモードでの走行パターンである。
 2500サイクルごとに、リチウムイオンセルの電池容量を測定した。具体的には、以下の方法で行った。先ず、25℃の温度環境下において、定電流定電圧方式で充電した。定電流充電での充電電流は、1Aとした。定電圧充電での充電電圧は、3.65Vとした。充電終止電流は、0.05Aとした。充電終了後、25℃の温度環境下で定電流放電をし、リチウムイオンセルの放電容量を測定した。定電流放電における放電電流は、1Aとした。放電終止電圧は、2.5Vとした。
 2500サイクルごとのリチウムイオンセルの放電容量を、1サイクル目の放電時の放電容量で除することにより、1サイクル目の放電時の放電容量に対する所定のサイクル目の放電時の放電容量を求めた。ここでは、1サイクル目の放電時の放電容量に対する所定のサイクル目の放電時の放電容量を、初期容量比と称する。この初期容量比は、容量維持率と称することもある。
 図10に、初期容量比とサイクル数の関係を示している。図10の縦軸は初期容量比であり、図10の横軸はサイクル数である。図10から、以下のことがわかった。-10℃の低温環境及びASEANの四季を想定した温度環境において、20000サイクル目の初期容量比が95%であった。また、-10℃の低温環境の初期容量比と、ASEANの四季を想定した温度環境の初期容量比は、似た傾向を示している。このことから、本発明例に係るリチウムイオンセルは、-10℃の低温環境下で充電及び放電を繰り返しても、ASEANの四季を想定した温度環境と同じ耐久性を有することがわかった。また、60℃の高温環境でも、20000サイクル目の初期容量比が80%であった。このことから、本発明例に係るリチウムイオンセルは、高温環境下でも耐久性が高いといえる。上記から、本発明例に係るリチウムイオンセルは、低温環境下でも高温環境下でも耐久性が高い。つまり、本発明例に係るリチウムイオンセルは、低温環境下でも高温環境下でも劣化しにくい。したがって、本発明例に係るリチウムイオンセルは、使用環境の自由度が高い。
 (3)本発明例と比較例のサイクル特性の比較
 比較例として、正極活物質がリン酸鉄リチウムであり、負極活物質が黒鉛であるリチウムイオンセルを用いた。
 45℃の環境下において、本発明例に係るリチウムイオンセルと比較例のリチウムイオンセルの充電及び放電を繰り返した。具体的には、定電流定電圧充電した後に、定電流放電を行うことを繰り返した。充電終了から放電開始までの待機時間は、30分とした。放電終了から充電開始までの待機時間は、30分とした。定電流充電での充電電流は、3Aとした。定電圧充電での充電電圧は、3.6Vとした。充電終止電流は、0.05Aとした。定電流放電の放電電流は、3Aとした。放電終止電圧は、2.5Vとした。
 所定のサイクルの充電及び放電が終了したら、以下の方法によりリチウムイオンセルの放電容量を測定した。
 先ず、25℃の環境下において、定電流定電圧方式で充電した。定電流充電での充電電流は、1Aとした。定電圧充電での充電電圧は、3.65Vとした。充電終止電流は、0.05Aとした。その後、25℃の環境下で定電流放電をして、リチウムイオンセルの放電容量を測定した。放電電流は、1Aとした。放電終止電圧は、2.5Vとした。
 1サイクル目の放電時の放電容量と、所定のサイクル終了後の放電時の放電容量を測定した。所定のサイクル終了後の放電時の放電容量を、1サイクル目の放電時の放電容量で除することにより、1サイクル目の放電時の放電容量に対する所定のサイクル終了後の放電時の放電容量を求めた。ここでは、1サイクル目の放電時の放電容量に対する所定のサイクル終了後の放電時の放電容量を、初期容量比と称する。
 図11に、初期容量比とサイクル数の関係を示している。図11の縦軸は初期容量比であり、図11の横軸はサイクル数である。図11から、各サイクルにおいて、本発明例に係るリチウムイオンセルの初期容量比は、比較例のリチウムイオンセルの初期容量比よりも大きかった。また、本発明例に係るリチウムイオンセルの初期容量比は、100サイクルにおいて、約99%であった。一方、比較例に係るリチウムイオンセルの初期容量比は、100サイクルにおいて、約96%より低かった。
 本発明例に係るリチウムイオンセルは、比較例のリチウムイオンセルよりも、劣化が抑制されていることがわかった。
 上記より、本発明例に係るリチウムイオンセルは、低温環境下及び高温環境下で充電及び放電を繰り返しても、劣化が抑制されている。また、本発明例に係るリチウムイオンセルは、長期間に亘って充電及び放電を繰り返しても、劣化が抑制されている。したがって、本発明例に係る複数のリチウムイオンセルを有する組電池は、たとえ鞍乗型車両に搭載された組電池の使用環境であっても、リチウムイオンセルの劣化を抑制できる。
 なお、本願の基礎出願である特願2017-038284の組電池は、本願明細書の組電池に含まれる。同基礎出願におけるリチウムイオン電池161は、本願明細書の金属ケース型セル161又はリチウムイオンセル161に相当する。同基礎出願における缶1613は、本願明細書の金属製のケース1613又は金属ケース1613に相当する。同基礎出願におけるケース部162は、本願明細書のハウジング部162に相当する。同基礎出願における缶電池固定部163は、本願明細書の金属ケース型セル固定部163に相当する。
1 鞍乗型車両
2 エンジン(駆動源)
3 スターターモータ
16 組電池
161 金属ケース型セル(リチウムイオンセル)
1611 正極
16111 正極活物質
1612 負極
16121 負極活物質
16121a カーボンの層
16121b カーボンの層
16121c カーボンの層
1613 金属製のケース(金属ケース)
1615 電解液
162 ハウジング部
162a 上面
162b 下面
162a 上面
162b 下面
162c 側面
162d 側面
162e 側面
162f 側面
163 金属ケース型セル固定部
1631 金属ケース型セル固定板
1632 金属ケース型セル固定板
164 接続部
1641 接続板
1642 接続板
1643 接続板
1644 接続板
1645 接続板
171 並列セル群
1711 並列セル群
1712 並列セル群
1713 並列セル群
1714 並列セル群
172 直列セル群

Claims (10)

  1.  互いに電気的に接続された複数のリチウムイオンセルを有する組電池であって、
     前記複数のリチウムイオンセルの各々は、
     1つの正極と、
     1つの負極と、
     電解液又は固体電解質と、
     前記1つの正極、前記1つの負極、及び、前記電解液又は固体電解質を収容する金属製の缶ケースとを有する金属ケース型セルであり、
     前記複数の金属ケース型セルの各々は、前記複数の金属ケース型セルのいずれかに直列に接続され、
     前記正極は、オリビン構造の正極活物質を有し、
     前記負極は、積層された複数のカーボンの層を含む負極活物質であって、前記複数のカーボンの層の平均層間距離がリチウム原子の直径以上である負極活物質を有し、
     前記組電池は、
     前記複数の金属ケース型セルを互いに固定する金属ケース型セル固定部を有する、組電池。
  2.  請求項1に記載の組電池であって、
     前記複数の金属ケース型セルの少なくとも1つの金属ケース型セルにおいて、
     前記1つの正極と、前記1つの負極と前記電解液が前記金属ケース型セルに収容され、
     前記電解液が、-20℃で凍結しない電解液である、組電池。
  3.  請求項1又は2に記載の組電池であって、
     前記複数の金属ケース型セル及び前記金属ケース型セル固定部の両方を収容するケース部ハウジング部を有する、組電池。
  4.  請求項3に記載の組電池であって、
     前記ハウジング部の外部からアクセス可能な状態で前記ハウジング部に設けられ、前記複数の金属ケース型セルのうちの少なくとも1つの金属ケース型セルが有する少なくとも1つの前記正極に電気的に接続される1つの外部正極端子と、
     前記ハウジング部の外部からアクセス可能な状態で前記ハウジング部に設けられ、前記複数の金属ケース型セルのうちの少なくとも1つの金属ケース型セルが有する少なくとも1つの前記負極に電気的に接続される1つの外部負極端子とを有する、組電池。
  5.  請求項4に記載の組電池であって、
     前記ハウジング部は、互いに交差する複数の平面に沿ってそれぞれ配置された複数の面を有する箱体であり、
     前記1つの外部正極端子及び前記1つの外部負極端子は共に、前記複数の面の何れか1つの面に設けられている、組電池。
  6.  請求項1~5の何れか1項に記載の組電池であって、
     前記複数の金属ケース型セルが、1列に直列に接続されており、
     前記金属ケース型セル固定部は、
     前記複数の金属ケース型セルを1列に直列に接続した状態で固定する、組電池。
  7.  請求項1~5の何れか1項に記載の組電池であって、
     前記複数の金属ケース型セルは、互いに直列に接続された少なくとも2つの金属ケース型セルからなる直列セル群を、複数個構成し、
     前記複数の直列セル群は、互いに並列に接続されており、
     前記金属ケース型セル固定部は、
     複数の直列セル群を並列に接続した状態で固定する、組電池。
  8.  請求項1~5の何れか1項に記載の組電池であって、
     前記複数の金属ケース型セルは、互いに並列に接続された少なくとも2つの金属ケース型セルからなる並列セル群を、複数個構成し、
     前記複数の並列セル群は、互いに直列に接続されており、
     前記金属ケース型セル固定部は、複数の並列セル群を直列に接続した状態で固定する、組電池。
  9.  請求項1~8の何れか1項に記載の組電池であって、
     12V~15V用の直流充電器で充電可能である、組電池。
  10.  請求項1~9の何れか1項に記載の組電池であって、
     少なくとも1つの前輪と、
     少なくとも1つの後輪と、
     少なくとも一部が車両前後方向において前記少なくとも1つの前輪よりも後方に配置される駆動源とを備える鞍乗型車両に搭載可能である、組電池。
PCT/JP2018/007881 2017-03-01 2018-03-01 組電池 WO2018159777A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019503122A JPWO2018159777A1 (ja) 2017-03-01 2018-03-01 組電池
TW107106886A TW201838239A (zh) 2017-03-01 2018-03-01 電池組

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038284 2017-03-01
JP2017-038284 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159777A1 true WO2018159777A1 (ja) 2018-09-07

Family

ID=63370474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007881 WO2018159777A1 (ja) 2017-03-01 2018-03-01 組電池

Country Status (3)

Country Link
JP (1) JPWO2018159777A1 (ja)
TW (1) TW201838239A (ja)
WO (1) WO2018159777A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433099B2 (ja) * 2020-03-19 2024-02-19 本田技研工業株式会社 ラミネート型固体電池
DE112021002462T5 (de) * 2020-04-22 2023-02-09 Yamaha Hatsudoki Kabushiki Kaisha Spreizsitzfahrzeug-Batteriesatz und Spreizsitzfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023684A (ja) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008140638A (ja) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd 双極型電池
JP2015534225A (ja) * 2012-11-23 2015-11-26 エルジー・ケム・リミテッド リチウム二次電池用電解液及びそれを含むリチウム二次電池
JP2016033898A (ja) * 2014-07-31 2016-03-10 株式会社東芝 非水電解質電池及び電池パック
JP2016076317A (ja) * 2014-10-03 2016-05-12 日立化成株式会社 リチウムイオン二次電池
WO2017051470A1 (ja) * 2015-09-25 2017-03-30 株式会社東芝 非水電解質電池用電極、非水電解質電池および電池パック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963186B2 (ja) * 2006-03-31 2012-06-27 パナソニック株式会社 非水電解質二次電池
JP2011096015A (ja) * 2009-10-29 2011-05-12 J&K Car Electronics Corp 電流値報知装置および発振制御回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023684A (ja) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008140638A (ja) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd 双極型電池
JP2015534225A (ja) * 2012-11-23 2015-11-26 エルジー・ケム・リミテッド リチウム二次電池用電解液及びそれを含むリチウム二次電池
JP2016033898A (ja) * 2014-07-31 2016-03-10 株式会社東芝 非水電解質電池及び電池パック
JP2016076317A (ja) * 2014-10-03 2016-05-12 日立化成株式会社 リチウムイオン二次電池
WO2017051470A1 (ja) * 2015-09-25 2017-03-30 株式会社東芝 非水電解質電池用電極、非水電解質電池および電池パック

Also Published As

Publication number Publication date
JPWO2018159777A1 (ja) 2019-11-07
TW201838239A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
US10981470B2 (en) Electric utility terrain vehicle
EP3455899B1 (en) Electric battery assembly
US20190157652A1 (en) Biasing features for a battery module
US8895173B2 (en) Battery module for an electric vehicle, and method of assembly thereof
JP6650472B2 (ja) エッジ冷却方式の部材を含む電池パック
JP4952170B2 (ja) 電池ユニット及び車両
EP2156530A1 (en) Vehicle hybrid energy system
WO2018159777A1 (ja) 組電池
WO2015092818A1 (en) Storage container for a vehicle
US20160064722A1 (en) Recessed terminal in module body
JP2019111906A (ja) 電動アシスト自転車
Di Giorgio et al. Design of a hydrogen-powered bicycle for sustainable mobility
US11342628B2 (en) Battery pack array frames with integrated fastener housings
JP6949886B2 (ja) 給電回路
TW201836237A (zh) 充電裝置
US10930917B2 (en) Electric vehicle battery cell having multiple stack structures
US20240194963A1 (en) Battery cell assemblies, thermal management systems, and control logic with cell-level internal cooling
EP2893578B1 (en) Cell terminal seal system and method
JP2022536974A (ja) エネルギー貯蔵装置およびエネルギー貯蔵装置を製造するための方法
SE2150526A1 (en) Battery Module, Battery Pack, and Vehicle
CN201402838Y (zh) 电池系统
US20250007137A1 (en) Masking features for battery cells
CN110626160A (zh) 用于车辆的非对称电池组
US20240372193A1 (en) Battery with rechargeable electrochemical energy storage elements
WO2012120525A1 (en) Hybrid fuel storage and propulsion system for automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760906

Country of ref document: EP

Kind code of ref document: A1