WO2018159810A1 - Fluorescent probe for detecting alkaline phosphatase, and use for same - Google Patents
Fluorescent probe for detecting alkaline phosphatase, and use for same Download PDFInfo
- Publication number
- WO2018159810A1 WO2018159810A1 PCT/JP2018/007993 JP2018007993W WO2018159810A1 WO 2018159810 A1 WO2018159810 A1 WO 2018159810A1 JP 2018007993 W JP2018007993 W JP 2018007993W WO 2018159810 A1 WO2018159810 A1 WO 2018159810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- independently
- carbon atoms
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CC1*=CC=C(C=C(C(O2)=O)S(O)(=O)=O)C2=C1 Chemical compound CC1*=CC=C(C=C(C(O2)=O)S(O)(=O)=O)C2=C1 0.000 description 4
- HUGXXCADDPAZTM-UHFFFAOYSA-N COc(cc(c(S(O)(=O)=O)c1)OC)c1C(c(c(O1)c2)ccc2OP(O)(O)=O)=C(C=C2)C1=CC2=O Chemical compound COc(cc(c(S(O)(=O)=O)c1)OC)c1C(c(c(O1)c2)ccc2OP(O)(O)=O)=C(C=C2)C1=CC2=O HUGXXCADDPAZTM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/26—Triarylmethane dyes in which at least one of the aromatic nuclei is heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/28—Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/02—Coumarine dyes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/42—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
Definitions
- the present invention relates to a fluorescent probe for detecting alkaline phosphatase and its use. Specifically, the present invention relates to a compound, a fluorescent probe for detecting alkaline phosphatase, a microdevice, and a method for detecting the enzymatic activity of alkaline phosphatase in a biological sample.
- This application claims priority on March 3, 2017 based on Japanese Patent Application No. 2017-041149 filed in Japan, the contents of which are incorporated herein by reference.
- the method for detecting the enzyme activity of a single enzyme using a microdevice is to clarify individual biochemical parameters of the enzyme, to detect the presence of a specific protein with high sensitivity using the enzyme as a reporter protein, etc. It is widely used for the purpose. In recent years, high-sensitivity observation of enzyme activity in biological samples showing abnormal values in connection with specific diseases is expected to be applied to diagnosis of pathological conditions.
- ALP alkaline phosphatase
- the present invention has been made in view of the above circumstances, and provides a fluorescent probe for ALP detection suitable for measurement requiring high quantitativeness and sensitivity.
- the present inventors leaked the fluorescent probe out of the microdevice by adding an anionic functional group to the compound used in the conventional fluorescent probe for ALP detection. It was found that a fluorescent probe for ALP detection suitable for measurement requiring high quantitativeness and sensitivity was obtained, and the present invention was completed.
- the fluorescent probe for detecting alkaline phosphatase according to the first aspect of the present invention includes a compound having an anionic functional group and a phosphate group.
- the anionic functional group may be a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the compound may be a compound represented by the following general formula (1), (2), (3) or (4).
- R 11 , R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Any one of R 11 , R 12 and R 13 is a group having an anionic functional group at the terminal.
- R 14 and R 15 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
- Y 11 represents a single bond, -O- (CH 2) n11 - , - O- (CH 2) n12 -Ar 11 -, - NH- (CH 2) n13 -, or, -NH- (CH 2) n14 - Ar 12 - is.
- n11, n12, n13 and n14 are each independently an integer of 1 to 10.
- Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
- R 21 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 21 may be the same as or different from each other.
- R 22 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 22 may be the same as or different from each other.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- X 21 is an oxygen atom or N + HR ′.
- R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 21 represents a single bond, -O- (CH 2) n21 - , - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 - Ar 22 - is.
- n21, n22, n23 and n24 are each independently an integer of 1 to 10.
- Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
- R 31 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group.
- a plurality of R 31 may be the same as or different from each other.
- R 32 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal.
- a plurality of R 32 may be the same as or different from each other.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- X 32 is an oxygen atom or N + HR ′′.
- R ′′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 31 represents a single bond, -O- (CH 2) n31 - , - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 - Ar 32 —.
- n31, n32, n33 and n34 are each independently an integer of 1 to 10.
- Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
- R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 41 may be the same as or different from each other.
- R 42 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 42 may be the same as or different from each other.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 41 represents a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 -Ar 41 -, - NH- (CH 2) n43 -, or, -NH- (CH 2) n44 - Ar 42 —.
- n41, n42, n43 and n44 are each independently an integer of 1 to 10.
- Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
- the compound is represented by the following general formulas (1-1), (1-2), (2-1), (2-2), (3-1), It may be a compound represented by (3-2), (4-1) or (4-2).
- R 111 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, where n111 and n112 are each independently an integer of 1 to 10 Ar 111 is a substituted or unsubstituted arylene group.
- R 121 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —.
- n121 and n122 are each independently an integer of 1 to 10.
- Ar 121 is a substituted or unsubstituted arylene group.
- R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 213 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or a carbon number of Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, wherein n 211 and n 212 are each independently 1 to .Ar 211 is an integer of 10 is a substituted or unsubstituted arylene group.
- R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 223 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —.
- n221 and n222 are each independently an integer of 1 to 10.
- Ar 221 is a substituted or unsubstituted arylene group.
- R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 313 is a group having an anionic functional group at its terminal. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms
- X 31 is a silicon atom, phosphorus atom, germanium atom or tin it is an atomic .
- Y 311 is a single bond, -O- (CH 2) n311 - , or, -O- (CH 2) n312 -Ar 311 - a is .n311 and N312 are each independently .Ar 311 is an
- R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 323 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —.
- n321 and n322 are each independently an integer of 1 to 10.
- Ar 321 is a substituted or unsubstituted arylene group.
- R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 413 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group,
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 44 , R 47 and R 48 are Each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom, or a tin atom
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —.
- the .n411 and n412 is the .Ar 411 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group.
- R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 423 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —.
- n421 and n422 are each independently an integer of 1 to 10.
- Ar 421 is a substituted or unsubstituted arylene group.
- the compound is represented by the following general formulas (1-1-1), (1-1-2), (1-1-3), (1-2-1). ), (1-2-2), (1-2-3), (2-1-1), (2-1-2), (2-1-3), (2-2-1), (2-2-2), (2-2-3), (3-1-1), (3-1-2), (3-1-3), (3-2-1), (3 -2-2), (3-2-2), (4-1-1), (4-1-2), (4-1-3), (4-2-1), (4-2 -2) or (4-2-3).
- Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —.
- N111 and n112 are each independently an integer of 1 to 10.
- Ar 111 is a substituted or unsubstituted arylene group
- Y 121 is —NH— (CH 2 ) n121 —, or —NH— ( CH 2 ) n122 —Ar 121 —, where n121 and n122 are each independently an integer of 1 to 10.
- Ar 121 is a substituted or unsubstituted arylene group.
- Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —.
- the .n211 and n212 is the .Ar 211 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group .
- Y 221 is a single bond, -NH- (CH 2) n221 - , or - NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently an integer of 1 to 10.
- Ar 221 is a substituted or unsubstituted arylene group.
- Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —.
- N311 and n312 are each independently an integer of 1 to 10.
- Ar 311 is a substituted or unsubstituted arylene group
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or — NH— (CH 2 ) n322 —Ar 321 —, wherein n321 and n322 are each independently an integer of 1 to 10.
- Ar 321 is a substituted or unsubstituted arylene group.
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —.
- N411 and n412 are each independently an integer of 1 to 10.
- Ar 411 is a substituted or unsubstituted arylene group
- Y 421 is —NH— (CH 2 ) n421 —, or —NH— ( CH 2 ) n422 —Ar 421 —, where n421 and n422 are each independently an integer of 1 to 10.
- Ar 421 is a substituted or unsubstituted arylene group.
- the alkaline phosphatase detection fluorescent probe according to the first aspect may be for a micro device.
- a microdevice according to a second aspect of the present invention includes the fluorescent probe for detecting alkaline phosphatase according to the first aspect.
- the microdevice according to the second aspect may include one kind of the fluorescent probe for detecting alkaline phosphatase in one well of the microdevice.
- the microdevice according to the second aspect may include two or more fluorescent probes for detecting alkaline phosphatase having different reaction points in one well of the microdevice and having different fluorescence wavelengths.
- the method for detecting the enzymatic activity of alkaline phosphatase according to the third aspect of the present invention is a method using the microdevice according to the second aspect.
- the compound according to the fourth aspect of the present invention is a compound represented by the following general formula (2).
- R 21 represents 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group.
- a plurality of R 21 may be the same as each other.
- good .R 22 be different a 1-2 monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group.
- the anionic functional group may be any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group
- R 23 , R 24 , R 25, and R 26 is independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- X 21 is an oxygen atom or N + HR ′
- R ′ is a hydrogen atom or carbon atom having 1 to 10 carbon atoms.
- Y 21 is a single bond, —O— ( CH 2) n21 -, - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 -Ar 22 - are as .n21, n22, n23 and n24 are each independently an integer of 1 to 10.
- Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
- the compound according to the fourth aspect may be a compound represented by the following general formula (2-1) or (2-2).
- R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 213 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or a carbon number of 1
- Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, wherein n 211 and n 212 are each independently 1 to .Ar 211 is an integer of 10 is a substituted or unsubstituted arylene group.
- R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 223 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —.
- n221 and n222 are each independently an integer of 1 to 10.
- Ar 221 is a substituted or unsubstituted arylene group.
- the compound according to the fourth aspect includes the following general formulas (2-1-1), (2-1-2), (2-1-3), (2-2-1), (2-2-2) Or a compound represented by (2-2-3).
- Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —.
- the .n211 and n212 is the .Ar 211 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group .
- Y 221 is a single bond, -NH- (CH 2) n221 - , or - NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently an integer of 1 to 10.
- Ar 221 is a substituted or unsubstituted arylene group.
- the compound according to the fifth aspect of the present invention is a compound represented by the following general formula (3).
- R 31 is 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group.
- a plurality of R 31 may be the same as each other.
- may .R 32 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group.
- R 32 there are a plurality of mutually identical
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group
- R 33 , R 34 , R 37 and R 38 is each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 31 is a silicon atom , Phosphorus atom, germanium atom or tin atom.
- X 32 is an oxygen atom or N + HR ′′.
- R ′′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 31 is a single bond, —O - (CH 2) n31 -, - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 -Ar 32 - are as .N31, n32, n33 and n34 are each independently an integer of 1 to 10.
- Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
- the compound according to the fifth aspect may be a compound represented by the following general formula (3-1) or (3-2).
- R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 313 is a group having an anionic functional group at its terminal. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms
- X 31 is a silicon atom, phosphorus atom, germanium atom or tin it is an atomic .
- Y 311 is a single bond, -O- (CH 2) n311 - , or, -O- (CH 2) n312 -Ar 311 - a is .n311 and N312 are each independently .Ar 311 is an
- R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 323 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —.
- n321 and n322 are each independently an integer of 1 to 10.
- Ar 321 is a substituted or unsubstituted arylene group.
- the X 31 may be a silicon atom.
- the compound according to the fifth aspect includes the following general formulas (3-1-1), (3-1-2), (3-1-3), (3-2-1), (3-2-2) Alternatively, it may be a compound represented by (3-2-3).
- Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —.
- N311 and n312 are each independently an integer of 1 to 10.
- Ar 311 is a substituted or unsubstituted arylene group
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or — NH— (CH 2 ) n322 —Ar 321 —, wherein n321 and n322 are each independently an integer of 1 to 10.
- Ar 321 is a substituted or unsubstituted arylene group.
- the compound according to the sixth aspect of the present invention is a compound represented by the following general formula (4).
- R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group.
- a plurality of R 41 may be the same as each other.
- R 42 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, and R 43 is a hydrogen atom or a carbon number of 1.
- R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently a carbon number. 1 to 10 alkyl groups or carbon 6-10 aryl group .
- X 41 silicon atom, a phosphorus atom, a germanium atom or a tin atom .
- Y 41 is a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 —Ar 41 —, —NH— (CH 2 ) n43 —, or —NH— (CH 2 ) n44 —Ar 42 —, wherein n41, n42, n43 and n44 are each independently an integer of 1 to 10.
- Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
- the compound according to the sixth aspect may be a compound represented by the following general formula (4-1) or (4-2).
- R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 413 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group,
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 44 , R 47 and R 48 are Each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom, or a tin atom
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —.
- the .n411 and n412 is the .Ar 411 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group.
- R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 423 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —.
- n421 and n422 are each independently an integer of 1 to 10.
- Ar 421 is a substituted or unsubstituted arylene group.
- X 41 may be a silicon atom.
- the compound according to the sixth aspect includes the following general formulas (4-1-1), (4-1-2), (4-1-3), (4-2-1), (4-2-2) Or a compound represented by (4-2-3).
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —.
- N411 and n412 are each independently an integer of 1 to 10.
- Ar 411 is a substituted or unsubstituted arylene group
- Y 421 is —NH— (CH 2 ) n421 —, or —NH— ( CH 2 ) n422 —Ar 421 —, where n421 and n422 are each independently an integer of 1 to 10.
- Ar 421 is a substituted or unsubstituted arylene group.
- the ALP detection fluorescent probe of the above aspect is suitable for measurement requiring high quantitativeness and sensitivity.
- FIG. 1 is a perspective view schematically showing a microdevice according to an embodiment of the present invention. It is sectional drawing which compared the microdevice which concerns on one Embodiment of this invention, and the microdevice provided with the conventional fluorescence probe. It is the graph (conceptual figure) which compared the result of having detected the enzyme activity of the alkaline phosphatase in the biological sample derived from the healthy subject and the patient who has a specific disease using the microdevice which concerns on one Embodiment of this invention.
- 2 is a graph showing optical characteristics (absorbance) of Compound (1-1-1a) -1 in Production Example 1.
- 6 is a graph showing optical characteristics (fluorescence intensity) of Compound (2-1-2a) -1 in Production Example 2.
- . 2 is a graph showing the fluorescence intensity 132 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using the compound (1-1-1a) or the compound (10) in Test Example 1.
- FIG. 2 is an image obtained by photographing a microdevice after 22 minutes and 132 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using Compound (2-1-2a) or Compound (20) in Test Example 1. .
- 3 is a graph showing the fluorescence intensity 132 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using the compound (2-1-2a) or the compound (20) in Test Example 1.
- 6 is a graph showing optical characteristics (absorbance) of compound (3-1-2a) -1 in Production Example 5.
- 6 is a graph showing optical characteristics (fluorescence intensity) of compound (3-1-2a) -1 in Production Example 5. It is a graph which shows the fluorescence intensity 5 minutes after the fluorescence measurement start by the alkaline phosphatase fluorescence assay using the compound (3-1-2a) in Test Example 2.
- 10 is a graph showing the fluorescence intensity 10 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using the compound (1-1-1b) in Test Example 3.
- 6 is a graph showing the fluorescence intensity 10 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using the compound (2-1-2b) in Test Example 3.
- 6 is a graph showing the fluorescence intensity 10 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using the compound (3-1-2b) in Test Example 3.
- 10 is a graph showing the fluorescence intensity 10 minutes after the start of fluorescence measurement in an alkaline phosphatase fluorescence assay using the compound (2-1-2c) in Test Example 4.
- the unit of concentration “M” means “mol / L”.
- R 11 , R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, and any one of R 11 , R 12 and R 13 is an anionic functional group at the terminal.
- R 14 and R 15 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- Y 11 is a single bond, —O— (CH 2 ) n11 — , -O- (CH 2) n12 -Ar 11 -, - NH- (CH 2) n13 -, or, -NH- (CH 2) n14 -Ar 12 - are as .n11, n12, n13 and n14 it The And each independently represents an integer of 1 to 10.
- Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
- Compound (1) is a coumarin derivative, and is a compound having a phosphate group that is hydrolyzed by alkaline phosphatase (ALP) under alkaline conditions.
- Compound (1) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
- the “derivative” means that one or more hydrogen atoms of the original compound are substituted with a group other than a hydrogen atom (substituent), or one or more carbons of the original compound. This means that an atom is substituted alone or together with a hydrogen atom bonded to this carbon atom, is substituted with another group (substituent).
- R 11 , R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Any one of R 11 , R 12 and R 13 is a group having an anionic functional group at the terminal.
- R 13 is preferably a group having an anionic functional group at the terminal.
- the “group having an anionic functional group at the end” in the present specification may consist of, for example, a group consisting only of an anionic functional group, or an anionic functional group bonded to the linker Y ′. It may be a group.
- the linker Y ′ include an alkylene group having 1 to 10 carbon atoms which may contain —O— or —NH—.
- the “group having an anionic functional group at the terminal” in the general formula (1) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
- halogen atom in R ⁇ 11> , R ⁇ 12 > and R ⁇ 13 > a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example.
- the said halogen atom in R ⁇ 11 >, R ⁇ 12 > and R ⁇ 13 > is a chlorine atom, a bromine atom, or an iodine atom.
- the alkyl group having 1 to 10 carbon atoms in R 11 , R 12 and R 13 may be linear or branched.
- Specific examples of the alkyl group having 1 to 10 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethyl Butyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,3-dimethylpentyl
- R 13 is preferably a group having an anionic functional group at the terminal.
- R 11 and R 12 are preferably the same because they are easily synthesized, and R 11 and R 12 are more preferably hydrogen atoms.
- halogen atom in R 14 and R 15 examples include the same ones as exemplified in the above-mentioned “ ⁇ R 11 , R 12 , and R 13 >”. Among them, it is preferable that the halogen atom in R 14 and R 15 is chlorine atom, bromine atom or iodine atom.
- Examples of the alkyl group having 1 to 10 carbon atoms for R 14 and R 15 include the same groups as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 14 and R 15 is preferably a linear group, and more preferably a methyl group or an ethyl group.
- R 14 and R 15 are preferably the same because they are easily synthesized, and R 11 and R 12 are more preferably hydrogen atoms.
- Y 11 is a single bond, —O— (CH 2 ) n11 —, —O— (CH 2 ) n12 —Ar 11 —, —NH— (CH 2 ) n13 —, or —NH — (CH 2 ) n14 —Ar 12 —.
- the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the coumarin ring in the general formula (1).
- n11, n12, n13 and n14 are each independently an integer of 1 to 10.
- Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
- n11, n12, n13 and n14 are the number of repetitions of the alkylene group for each Y 11.
- n11, n12, n13 and n14 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
- Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
- the unsubstituted arylene group in Ar 11 and Ar 12 is preferably one having 6 to 14 carbon atoms, and specific examples include a phenylene group and a naphthylene group. Among them, the unsubstituted arylene group in Ar 11 and Ar 12 is preferably a phenylene group.
- the substituent that the arylene group has include a halogen atom and an alkyl group having 1 to 10 carbon atoms. Examples of the halogen atom are the same as those exemplified above in “ ⁇ R 11 , R 12 , and R 13 >”.
- the halogen atom is preferably a chlorine atom, a bromine atom or an iodine atom.
- the alkyl group having 1 to 10 carbon atoms include the same groups as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”. Among these, the alkyl group having 1 to 10 carbon atoms is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- Y 11 is a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—.
- “Ph” represents a substituted or unsubstituted phenylene group.
- Preferred examples of the compound (1) include a compound represented by the following general formula (1-1) (hereinafter sometimes abbreviated as “compound (1-1)”), or a compound represented by the following general formula ( 1-2) (hereinafter sometimes abbreviated as “compound (1-2)”) and the like.
- compound (1-1) a compound represented by the following general formula (1-1)
- compound 1-2 a compound represented by the following general formula (1-2)
- these compounds are only examples of a preferable compound (1), and a preferable compound (1) is not limited to these.
- R 111 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, where n111 and n112 are each independently an integer of 1 to 10 Ar 111 is a substituted or unsubstituted arylene group.
- R 121 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —.
- n121 and n122 are each independently an integer of 1 to 10.
- Ar 121 is a substituted or unsubstituted arylene group.
- R 111 and R 121 are each independently an anionic functional group selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- Y111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —.
- Ar 121 is a substituted or unsubstituted arylene group.
- n111, n112, n121 and n122 are the number of repetitions of the alkylene group for Y 111 and Y 121, respectively.
- n111, n112, n121 and n122 are each preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity.
- Ar 111 and Ar 121 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “ ⁇ Y 11 >”.
- Preferred examples of the compound (1-1) include, for example, R 111 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O - (CH 2) n112 -Ar 111 - a is an integer of 1 ⁇ 8 n111 and n112 are each independently, Ar 111 can be cited, such as those substituted or unsubstituted phenylene group.
- R 111 is a carboxy group, a sulfonic acid group, or a phosphoric acid group
- Y 111 is a single bond, —O— (CH 2 ) n111 —, or — O— (CH 2 ) n112 —Ar 111 —, wherein n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
- Preferred examples of the compound (1-2) include, for example, R 121 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2) n122 -Ar 121 - a is an integer of 1 ⁇ 8 n121 and n122 are each independently, Ar 121 can be cited, such as those substituted or unsubstituted phenylene group.
- R 121 is a carboxy group, a sulfonic acid group, or a phosphoric acid group
- Y 121 is —NH— (CH 2 ) n121 — or —NH— ( CH 2 ) n122 —Ar 121 —, wherein n121 and n122 are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
- the compound (1-1) preferred as the compound (1-1) are, for example, compounds represented by the following general formula (1-1-1) (hereinafter referred to as “compound (1-1-1)”). May be abbreviated), a compound represented by the following general formula (1-1-2) (hereinafter may be abbreviated as “compound (1-1-2)”), or a compound represented by the following general formula (1 -1-3) (hereinafter sometimes abbreviated as “compound (1-1-3)”) and the like.
- preferred as the compound (1-2) preferred as the compound (1-2) are, for example, compounds represented by the following general formula (1-2-1) (hereinafter referred to as “compound (1-2-1)”).
- a compound represented by the following general formula (1-2-2) (hereinafter referred to as “compound (1-2-2)”, or represented by the following general formula (1-2-3)). And the like (hereinafter sometimes abbreviated as “compound (1-2-3)”).
- these compounds are only examples of a preferable compound (1), and a preferable compound (1) is not limited to these.
- Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, and n111 And n112 is each independently an integer of 1 to 8, and Ar 111 is a substituted or unsubstituted phenylene group.
- More preferable compounds (1-1-1) include, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
- Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, and n111 And n112 is each independently an integer of 1 to 8, and Ar 111 is a substituted or unsubstituted phenylene group.
- More preferable compound (1-1-2) is, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
- Preferred examples of the compound (1-1-3) include, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, and n111 And n112 is each independently an integer of 1 to 8, and Ar 111 is a substituted or unsubstituted phenylene group.
- More preferable compound (1-1-3) is, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 are Examples thereof are each independently an integer of 1 to 8, and Ar 121 is a substituted or unsubstituted phenylene group.
- More preferable compound (1-2-1) is, for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 Are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 are Examples thereof are each independently an integer of 1 to 8, and Ar 121 is a substituted or unsubstituted phenylene group.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 Are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
- Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 are Examples thereof are each independently an integer of 1 to 8, and Ar 121 is a substituted or unsubstituted phenylene group.
- More preferable compound (1-2-3) is, for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 Are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
- the compound (1-1-1) preferred as the compound (1-1-1) are, for example, compounds represented by the following formula (1-1-1a) (hereinafter referred to as “compound (1-1-1a)” Or a compound represented by the following formula (1-1-1b) (hereinafter sometimes abbreviated as “compound (1-1-1b)”), or a compound represented by the following formula (1- 1-1c) (hereinafter sometimes abbreviated as “compound (1-1-1c)”) and the like.
- preferred as the compound (1-1-2) are, for example, compounds represented by the following formula (1-1-2a) (hereinafter referred to as “compound (1-1-2a)”.
- compound (1-1-2b) a compound represented by the following formula (1-1-2b)
- compound (1-1-2c) a compound represented by the following formula (1-1-2c)
- compound (1-1-2c) a compound represented by the following formula (1-1-2c)
- compound (1-1-3a) compounds represented by the following formula (1-1-3a)
- compound (1-1-3b) a compound represented by the following formula (1-1-3b)
- compound (1-1-3c) a compound represented by the following formula (1-1-3c)
- the compound (1-2-1) preferred as the compound (1-2-1) are, for example, compounds represented by the following formula (1-2-1a) (hereinafter referred to as “compound (1-2-1a)”) Or a compound represented by the following formula (1-2-1b) (hereinafter sometimes abbreviated as “compound (1-2-1b)”), or a compound represented by the following formula (1- 2-1c) (hereinafter sometimes abbreviated as “compound (1-2-1c)”) and the like.
- preferred as the compound (1-2-2) are, for example, compounds represented by the following formula (1-2-2a) (hereinafter referred to as “compound (1-2-2a)”.
- compound (1-2-2b) a compound represented by the following formula (1-2-2b)
- compound (1-2-2c) a compound represented by the following formula (1-2-2c)
- compound (1-2-2c) a compound represented by the following formula (1-2-2c)
- the compounds (1) preferred as the compound (1-2-3) are, for example, compounds represented by the following formula (1-2-3a) (hereinafter referred to as “compound (1-2-3a)”.
- a compound represented by the following formula (1-2-3b) hereinafter sometimes abbreviated as “compound (1-2-3b)
- compound (1-2-3c) a compound represented by the following formula (1- 2-3c)
- these compounds are only examples of a preferable compound (1), and a preferable compound (1) is not limited to these.
- the compound (1) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (1) is changed into the compound (1) -1, thereby generating blue (fluorescence wavelength: about 350 nm to less than about 450 nm) fluorescence.
- the compound (1) of the present embodiment exists as a substantially non-dissociation type (neutral type) compound, but the dissociation type (anion type) is obtained by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (1) -1. Therefore, the compound (1) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength greatly changes before and after the enzyme reaction with ALP.
- Compound (1) can be produced, for example, by forming a coumarin skeleton by performing a known reaction according to the types of Y 11 , R 11 , R 12 , R 13 , R 14 and R 15 . More specifically, it is as follows.
- the compound (1-1) is, for example, a compound represented by the following general formula (1-1a) (hereinafter sometimes abbreviated as “compound (1-1a)”); A step of reacting 2,4-dihydroxybenzaldehyde to obtain a compound represented by the following general formula (1-1b) (hereinafter sometimes abbreviated as “compound (1-1b)”) (hereinafter referred to as “compound (1-1b)”) (Sometimes abbreviated as “compound (1-1b) production process”), compound (1-1b), and a compound represented by the following general formula (1-1c) (hereinafter referred to as “compound (1-1c)”) To obtain a compound represented by the following general formula (1-1d) (hereinafter sometimes abbreviated as “compound (1-1d)”) (hereinafter referred to as “compound (1-1d)”).
- Bzl is a benzyl group.
- R 112 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and
- It is an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group.
- Y 111 and R 111 are both the same as above.
- Compound (1-1a) is a known compound.
- R 111 is a group having an anionic functional group at the terminal.
- R 111 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
- Compound (1-1b) is a known compound when R 111 is a carboxy group. Further, when R 111 is a sulfonic acid group or a phosphoric acid group, it is a novel compound. In compound (1-1b), R 111 is the same as R 111 in compound (1-1a).
- reaction conditions In the production process of compound (1-1b), it is preferable to carry out the reaction using a deprotecting agent.
- the deprotecting agent include piperidine. It is preferable that the usage-amount of the said deprotecting agent is 0.01 times mole amount or more and 0.10 times mole amount or less of the usage-amount of a compound (1a), for example.
- the amount of 2,4-dihydroxybenzaldehyde used is preferably 0.5 to 2.0 times the molar amount of compound (1-1a).
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or more and 25 hours or less, and more preferably 10 hours or more and 20 hours or less.
- the compound (1-1b) may be removed by performing post-treatment as necessary by a known method. That is, as needed, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, concentration, etc. are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, column chromatography are performed.
- the compound (1-1b) may be taken out by, for example.
- the extracted compound (1-1b) can be used alone or in combination of two or more kinds of operations such as crystallization, reprecipitation, column chromatography, extraction, and stirring and washing of the crystals with a solvent, if necessary. May be purified once or more.
- compound (1-1b) In the production step of compound (1-1b), after completion of the reaction, compound (1-1b) may be used in the next step without taking out, but the yield of the target compound (1-1) is improved. Therefore, it is preferable to take out the compound (1-1b) by the above-mentioned method.
- Compound (1-1c) is a known compound.
- R 112 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 112 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (1-1d) is a novel compound.
- Y 111 is the same as that exemplified for “ ⁇ Y 111 and Y 121 >” in the above “ ⁇ Compound (1) >>”, and R 111 represents the compound (1-1a).
- R 111 represents the compound (1-1a).
- reaction conditions In the production step of compound (1-1d), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamine such as triethylamine and N, N-diisopropylethylamine (DIEA).
- DIEA N, N-diisopropylethylamine
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (1-1b).
- the condensing agent is not particularly limited, and examples thereof include N, N-dimethyl-4-aminopyridine (DMAP).
- DMAP N, N-dimethyl-4-aminopyridine
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 mol amount or less of the amount of compound (1-1b) used.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent is not particularly limited.
- the inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, and xenon.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (1-1c) used is preferably 1 to 2 times the amount of compound (1-1b).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, and more preferably 1 hour or longer and 5 hours or shorter.
- Compound (1-1d) can be taken out in the same manner as in the above-mentioned compound (1-1b) production step, and the taken out compound (1-1d) may be further purified in the same manner. Further, the obtained compound (1-1d) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the point that the yield of the target compound (1-1) is improved. Is preferred.
- the compound (1-1) is obtained from the compound (1-1d).
- the method for obtaining the compound (1-1) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 111 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
- compound (1-1) in the production process of compound (1-1), after completion of the reaction, compound (1-1) can be taken out by the same method as in the production process of compound (1-1b), and the taken out compound (1-1 ) May be further purified by the same method.
- Each compound such as the compound (1-1), the compound (1-1a), the compound (1-1b), the compound (1-1c), the compound (1-1d), and the like is, for example, nuclear magnetic resonance (NMR) spectroscopy
- NMR nuclear magnetic resonance
- the structure can be confirmed by a known method such as mass spectrometry (MS) or infrared spectroscopy (IR).
- the compound (1-2) is, for example, a compound represented by the following general formula (1-2a) (hereinafter sometimes abbreviated as “compound (1-2a)”), A step of reacting 2-hydroxy-4-amino-benzaldehyde to obtain a compound represented by the following general formula (1-2b) (hereinafter sometimes abbreviated as “compound (1-2b)”) (Hereinafter may be abbreviated as “compound (1-2b) production process”), compound (1-2b) and a compound represented by the following general formula (1-2c) (hereinafter referred to as “compound (1- 2c) ”) to obtain a compound represented by the following general formula (1-2d) (hereinafter sometimes abbreviated as“ compound (1-2d) ”).
- compound (1-2d) production process and compound Compound from (1-2d) (1-2) the step of obtaining (hereinafter, "Compound (1-2) Manufacturing process” may be abbreviated as) by a production method having a can be prepared.
- compound (1-2d) production process and compound Compound from (1-2d) (1-2) the step of obtaining (hereinafter, "Compound (1-2) Manufacturing process” may be abbreviated as) by a production method having a can be prepared.
- each step will be described in detail.
- Bzl is a benzyl group.
- R 122 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and (It is an alkylene group having 1 to 10 carbon atoms that may contain at least one of an oxygen atom and an arylene group.
- Y 121 and R 121 are the same as above.
- Compound (1-2a) is a known compound.
- R 121 is an anionic functional group selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- Compound (1-2b) is a known compound.
- R 121 is the same as R 121 in the compound (1-2a).
- reaction conditions In the production process of compound (1-2b), it is preferable to carry out the reaction using a deprotecting agent.
- the deprotecting agent include piperidine.
- the amount of the deprotecting agent used is preferably 0.01 to 0.10 times the amount of the compound (1-2a) used.
- the amount of 2-hydroxy-4-amino-benzaldehyde used is 0.5 to 2.0 times the amount of compound (1-2a) used. It is preferable.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
- the compound (1-2b) after completion of the reaction, the compound (1-2b) can be removed in the same manner as in the above-mentioned compound (1-1b) production process. You may refine by. In addition, the obtained compound (1-2b) may be used in the next step without being removed after the completion of the reaction. However, it should be removed from the viewpoint of improving the yield of the target compound (1-2). Is preferred.
- Compound (1-2c) is a known compound.
- R 122 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 112 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (1-2d) is a novel compound.
- Y 121 is the same as those exemplified for “ ⁇ Y 111 and Y 121 >” in the above “ ⁇ Compound (1) >>”, and R 121 represents the compound (1-2a).
- R 121 represents the compound (1-2a).
- reaction conditions In the production step of compound (1-2d), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (1-2b) used.
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of compound (1-2b) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (1-2b).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (1-2c) used is preferably 1 to 2 times the amount of compound (1-2b).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, and more preferably 1 hour or longer and 5 hours or shorter.
- Compound (1-2d) can be taken out in the same manner as in the above-mentioned compound (1-1b) production step, and the taken out compound (1-2d) may be further purified in the same manner. Further, the obtained compound (1-2d) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the point that the yield of the target compound (1-2) is improved. Is preferred.
- the compound (1-2) is obtained from the compound (1-2d).
- the method for obtaining the compound (1-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 121 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
- compound (1-2) in the production process of compound (1-2), after completion of the reaction, compound (1-2) can be taken out in the same manner as in the production process of compound (1-1b), and the taken out compound (1-2) ) May be further purified by the same method.
- Each compound such as the compound (1-2), the compound (1-2a), the compound (1-2b), the compound (1-2c), the compound (1-2d) and the like can be obtained by, for example, nuclear magnetic resonance (NMR) spectroscopy.
- NMR nuclear magnetic resonance
- the structure can be confirmed by a known method such as mass spectrometry (MS) or infrared spectroscopy (IR).
- R 21 represents 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group.
- a plurality of R 21 may be the same as each other.
- good .R 22 be different a 1-2 monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group.
- the anionic functional group may be any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group
- R 23 , R 24 , R 25, and R 26 is independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- X 21 is an oxygen atom or N + HR ′
- R ′ is a hydrogen atom or carbon atom having 1 to 10 carbon atoms.
- Y 21 is a single bond, —O— ( CH 2) n21 -, - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 -Ar 22 - are as .n21, n22, n23 and n24 are each independently an integer of 1 to 10.
- Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
- Compound (2) is a fluorescein derivative or a rhodamine derivative, and is a compound having a phosphate group that is hydrolyzed by ALP under alkaline conditions.
- Compound (2) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
- R 21 is 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group.
- the “electron donating group” in the present specification may be any substituent that can donate electrons to the benzene ring. Specific examples include, but are not limited to, a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an amino group, an alkylamino group having 1 to 10 carbon atoms, and the like.
- the number of R 21 is 1 or 2, and is preferably 2. When two R 21 are present, they may be the same as or different from each other. Among these, when there are two R 21 s , it is preferable that they are the same as each other because they are easily synthesized.
- the alkoxy group having 1 to 10 carbon atoms in R 21 may have a structure in which a linear or branched alkyl group having 1 to 10 carbon atoms is bonded to an oxygen atom.
- Specific examples of the alkoxy group having 1 to 10 carbon atoms include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, tert-pentoxy group, 1-methylbutoxy group, n-hexoxy group, 2-methylpentoxy group, 3-methylpentoxy group, 2,2-dimethylbutoxy group, 2 , 3-dimethylbutoxy group, n-heptoxy group, 2-methylhexoxy group, 3-methylhexoxy group, 2,2-dimethylpentoxy group, 2,3-dimethylpentoxy group, 2,4-dimethylp
- the alkylamino group having 1 to 10 carbon atoms in R 21 may have a structure in which a linear or branched alkyl group having 1 to 10 carbon atoms is bonded to an amino group.
- Specific examples of the alkylamino group having 1 to 10 carbon atoms include a methylamino group, an ethylamino group, an isopropylamino group, a dimethylamino group, a diethylamino group, and a diisopropylamino group.
- the alkylamino group having 1 to 10 carbon atoms in R 21 is preferably a straight chain, and more preferably a methylamino group or an ethylamino group.
- R 21 is preferably a straight-chain alkoxy group having 1 to 10 carbon atoms or a straight-chain alkylamino group having 1 to 10 carbon atoms because it is highly hydrophilic.
- a group, an ethylamino group, a methoxy group, or an ethoxy group is more preferable.
- R 21 is two.
- the two R 21 positions in the benzene ring are preferably arranged at positions that are ortho positions relative to each other.
- R 22 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal.
- the “group having an anionic functional group at the terminal” in the general formula (2) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
- the number of R 22 is 1 or 2, and is preferably 1. When there are two R 22 s , they may be the same or different. Among these, when there are two R 22 s , they are preferably the same as each other because they are easily synthesized.
- R 23 , R 24 , R 25 and R 26 examples of the halogen atom in R 23 , R 24 , R 25 and R 26 are the same as those exemplified in the above “ ⁇ R 11 , R 12 and R 13 >”. Among them, it is preferable that the halogen atom in R 23, R 24, R 25 and R 26 is a chlorine atom, a bromine atom, or iodine atom. Examples of the alkyl group having 1 to 10 carbon atoms in R 23 , R 24 , R 25 and R 26 are the same as those exemplified above in “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 23 , R 24 , R 25 and R 26 is preferably a linear group, and more preferably a methyl group or an ethyl group.
- R 23 and R 26 since the easy synthesis, preferably the same, and more preferably a hydrogen atom.
- R 24 and R 25 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
- X 21 is an oxygen atom or N + HR ′.
- Y 21 is preferably a single bond, —O— (CH 2 ) n21 —, or —O— (CH 2 ) n22 —Ar 21 —, and X 21 is N +.
- a HR ' Y 21 is a single bond, -NH- (CH 2) n23 - , or, -NH- (CH 2) n24 -Ar 22 - it is preferably.
- R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Examples of the alkyl group having 1 to 10 carbon atoms for R ′ include the same ones as exemplified in the above “ ⁇ R 11 , R 12 and R 13 >”.
- the alkyl group having 1 to 10 carbon atoms in R ′ is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- X 21 is an oxygen atom or N + H 2.
- Y 21 represents a single bond, —O— (CH 2 ) n21 —, —O— (CH 2 ) n22 —Ar 21 —, —NH— (CH 2 ) n23 —, or —NH — (CH 2 ) n24 —Ar 22 —.
- the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the xanthene ring in the general formula (2).
- n21, n22, n23 and n24 are each independently an integer of 1 to 10.
- Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
- n21, n22, n23 and n24 are the number of repetitions of the alkylene group for each Y 21.
- n21, n22, n23 and n24 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
- Y 21 represents a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—.
- “Ph” represents a substituted or unsubstituted phenylene group.
- Preferred examples of the compound (2) include, for example, a compound represented by the following general formula (2-1) (hereinafter sometimes abbreviated as “compound (2-1)”), or a compound represented by the following general formula ( 2-2) (hereinafter sometimes abbreviated as “compound (2-2)”) and the like.
- compound (2-1) a compound represented by the following general formula (2-1)
- compound (2-2) a compound represented by the following general formula (2-2)
- these compounds are only examples of a preferable compound (2), and a preferable compound (2) is not limited to these.
- R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 213 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or a carbon number of Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, wherein n 211 and n 212 are each independently 1 to .Ar 211 is an integer of 10 is a substituted or unsubstituted arylene group.
- R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 223 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —.
- n221 and n222 are each independently an integer of 1 to 10.
- Ar 221 is a substituted or unsubstituted arylene group.
- R 211 , R 222 , R 223 and R 224 examples of the alkyl group having 1 to 10 carbon atoms in R 211 , R 222 , R 223 and R 224 include the same as those exemplified above in “ ⁇ R 11 , R 12 and R 13 >”.
- the alkyl group having 1 to 10 carbon atoms in R 211 , R 222 , R 223 and R 224 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- R 211 and R 212 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
- R 221 and R 222 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
- R 213 and R223 are each independently a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- the “group having an anionic functional group at the terminal” in the general formulas (2-1) and (2-2) is preferably a group consisting only of an anionic functional group because it is easy to synthesize.
- R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Examples of the alkyl group having 1 to 10 carbon atoms for R 224 include the same groups as those exemplified above in “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 224 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- R 224 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group or an ethyl group.
- Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —.
- Ar 211 is a substituted or unsubstituted arylene group.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —.
- Ar 221 is a substituted or unsubstituted arylene group.
- n211, n212, n221 and n222 are the number of repetitions of the alkylene group for Y 211 and Y 221, respectively.
- n211, n212, n221, and n222 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity.
- Ar 211 and Ar 221 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “ ⁇ Y 11 >”.
- R 211 and R 212 are straight-chain alkyl groups having 1 to 10 carbon atoms
- R 213 is a group consisting of only an anionic functional group
- R 23 and R 26 are a hydrogen atom, a methyl group or an ethyl group
- R 24 and R 25 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group
- Y 211 is a single bond, —O— (CH 2 ) n211 —, Or —O— (CH 2 ) n212 —Ar 211 —, wherein n211 and n212 are each independently an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
- More preferable examples of the compound (2-1) include, for example, R 211 and R 212 are a methyl group or an ethyl group, R 213 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 23 and R 26 Is a hydrogen atom, R 24 and R 25 are a hydrogen atom or a halogen atom, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —. , and the integers of 1 ⁇ 6 N211 and n212 are each independently, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
- Preferred examples of the compound (2-2) include, for example, R 221 and R 222 are linear alkyl groups having 1 to 10 carbon atoms, R 223 is a group consisting of only an anionic functional group, 224 is a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, R 23 and R 26 are a hydrogen atom, a methyl group or an ethyl group, and R 24 and R 25 are a hydrogen atom, a halogen atom, methyl Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently 1 to 8 And Ar 221 is a substituted or unsubstituted phenylene group.
- More preferable compounds (2-2) include, for example, R 221 and R 222 are a methyl group or an ethyl group, R 223 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 224 is a hydrogen atom.
- R 23 and R 26 are hydrogen atoms
- R 24 and R 25 are hydrogen atoms or halogen atoms
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, Or —NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
- compound (2-1) preferred as the compound (2-1) are, for example, compounds represented by the following general formula (2-1-1) (hereinafter referred to as “compound (2-1-1)”). May be abbreviated), a compound represented by the following general formula (2-1-2) (hereinafter sometimes abbreviated as “compound (2-1-2)”), or a compound represented by the following general formula (2 -1-3) (hereinafter sometimes abbreviated as “compound (2-1-3)”) and the like.
- compound (2-2) preferred as the compound (2-2) are, for example, compounds represented by the following general formula (2-2-1) (hereinafter referred to as “compound (2-2-1)”).
- compound (2-2-2) a compound represented by the following general formula (2-2-2)
- compound (2-2-3) a compound represented by the following general formula (2-2-3)
- compound (2-2-3) a compound represented by the following general formula (2-2-3)
- compound (2-2-3) a compound represented by the following general formula (2-2-3)
- these compounds are only examples of a preferable compound (2), and a preferable compound (2) is not limited to these.
- Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, and n211 And n212 each independently represents an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
- More preferable compound (2-1-1) is, for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, n211 and n212 are each independently a 1-6 integer, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
- Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, and n211 And n212 each independently represents an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
- More preferable compound (2-1-2) is, for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, n211 and n212 are each independently a 1-6 integer, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
- Preferred examples of the compound (2-1-3) include, for example, Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, and n 211 And n212 each independently represents an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
- More preferable compound (2-1-3) is, for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, n211 and n212 are each independently a 1-6 integer, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, and n221 And n222 are each independently an integer of 1 to 8, and Ar 221 is a substituted or unsubstituted phenylene group.
- More preferable compound (2-2-1) is, for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, and n221 And n222 are each independently an integer of 1 to 8, and Ar 221 is a substituted or unsubstituted phenylene group.
- More preferable compound (2-2-2) is, for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
- Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, and n221 And n222 are each independently an integer of 1 to 8, and Ar 221 is a substituted or unsubstituted phenylene group.
- More preferable compound (2-2-3) is, for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
- compound (2-1-1) preferred as the compound (2-1-1) are, for example, compounds represented by the following formula (2-1-1a) (hereinafter referred to as “compound (2-1-1a)”) Or a compound represented by the following formula (2-1-1b) (hereinafter sometimes abbreviated as “compound (2-1-1b)”), or a compound represented by the following formula (2- 1-1c) (hereinafter sometimes abbreviated as “compound (2-1-1c)”) and the like.
- compound (2-1-1a) compounds represented by the following formula (2-1-1a)
- compound (2-1-1b) hereinafter sometimes abbreviated as “compound (2-1-1b)
- compound (2-1-1c) a compound represented by the following formula (2- 1-1c)
- compound (2-1-2a) compounds represented by the following formula (2-1-2a)
- compound (2-1-2b) a compound represented by the following formula (2-1-2b)
- compound (2-1-2c) a compound represented by the following formula (2-1-2c)
- compound (2-1-3) preferred as the compound (2-1-3) are, for example, compounds represented by the following formula (2-1-3a) (hereinafter referred to as “compound (2-1-3a)”) Or a compound represented by the following formula (2-1-3b) (hereinafter sometimes abbreviated as “compound (2-1-3b)”), or a compound represented by the following formula (2- 1-3c) (hereinafter sometimes abbreviated as “compound (2-1-3c)”) and the like.
- preferred as the compound (2-2-1) are, for example, compounds represented by the following formula (2-2-1a) (hereinafter referred to as “compound (2-2-1a)”.
- compound (2-2-1b) a compound represented by the following formula (2-2-1b)
- compound (2-2-1c) a compound represented by the following formula (2-2-1c)
- compound (2-2-1c) a compound represented by the following formula (2-2-1c)
- compound (2-2-2c) a compound represented by the following formula (2-2-2c)
- compound (2-2-2c) a compound represented by the following formula (2-2-2c)
- compound (2-2-3) preferred as the compound (2-2-3) are, for example, compounds represented by the following formula (2-2-3a) (hereinafter referred to as “compound (2-2-3a)”. Or a compound represented by the following formula (2-2-3b) (hereinafter sometimes abbreviated as “compound (2-2-3b)”), or a compound represented by the following formula (2- 2-3c) (hereinafter sometimes abbreviated as “compound (2-2-3c)”) and the like.
- these compounds are only examples of a preferable compound (2), and a preferable compound (2) is not limited to these.
- Compound (2) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (2) -1 is changed to compound (2) -1, thereby generating green (fluorescence wavelength: about 450 nm or more and less than about 550 nm) fluorescence.
- the compound (2) of this embodiment exists as a substantially non-dissociation type (neutral type) compound, the dissociation type (anion type) is obtained by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (2) -1. Therefore, the compound (2) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength greatly changes before and after the enzyme reaction with ALP.
- Compound (2) can be produced, for example, by reacting a compound having a benzene derivative and a phosphate group on the xanthene skeleton using a known reaction according to the types of Y 21 , R 21 and R 22 . More specifically, it is as follows.
- the compound (2-1) is, for example, a compound represented by the following general formula (2-1a) (hereinafter sometimes abbreviated as “compound (2-1a)”), A compound represented by the following general formula (2-1b) (hereinafter sometimes abbreviated as “compound (2-1b)”) is reacted with the compound to represent the following general formula (2-1c).
- a step of obtaining a compound (hereinafter sometimes abbreviated as “compound (2-1c)”) (hereinafter abbreviated as “a compound (2-1c) production step”), a compound (2-1c) and And a compound represented by the following general formula (2-1d) (hereinafter, may be abbreviated as “compound (2-1d)”) to give a compound represented by the following general formula (2-1e).
- compound (2-1e) hereinafter referred to as “compound (2-1e)”.
- a production step ”and a step of obtaining compound (2-1) from compound (2-1e) (hereinafter, sometimes abbreviated as“ compound (2-1) production step ”). It can manufacture with the manufacturing method which has. Hereinafter, each step will be described in detail.
- R 214 is a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a terminal group)
- an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group, Y 211 , R 23 , R 24 , R 25 , R 26 , R 211 , R 212 , and R 213 are all the same as above.
- Compound (2-1a) is a known compound.
- R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (2-1a), R 211 and R 212 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 213 is a group having an anionic functional group at the terminal.
- R 213 is preferably a group consisting of only an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group, because it is easy to synthesize. preferable.
- Compound (2-1b) is a known compound.
- R 23 , R 24 , R 25 , and R 26 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
- R 23 and R 26 are preferably the same and more preferably a hydrogen atom because they are easily synthesized.
- R 24 and R 25 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easy to synthesize.
- reaction conditions In the production step of compound (2-1c), it is preferred that a strong base is previously mixed with compound (2-1a) and then reacted with compound (2-1b).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (2-1a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (2-1b) used is preferably 0.1 to 0.3 times the amount of compound (2-1a) used. .
- compound (2-1c) it is preferable to react compound (2-1a), compound (2-1b), and a strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1M or more and 5M or less.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
- the compound (2-1c) after completion of the reaction, the compound (2-1c) can be taken out in the same manner as in the above-mentioned compound (1-1b) production process, and the taken out compound (2-1c) is further treated in the same way. You may refine by. Further, the obtained compound (2-1c) may be used in the next step without being removed after completion of the reaction, but it should be removed from the viewpoint of improving the yield of the target compound (2-1). Is preferred.
- Compound (2-1c) is a known compound.
- R 211, R 212 and R 213 are the same as R 211, R 212 and R 213 in the compound (2-1a), R 23, R 24, R 25 and R 26 The same as R 23 , R 24 , R 25 and R 26 in the compound (2-1b).
- Compound (2-1d) is a known compound.
- R 214 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 214 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (2-1e) is a novel compound.
- Y 211 is the same as those exemplified for “ ⁇ Y 211 and Y 221 >” in the above “ ⁇ Compound (2) >>”.
- R 211, R 212 and R 213 are the same as R 211, R 212 and R 213 in the compound (2-1a)
- R 23, R 24, R 25 and R 26 is the same as R 23 , R 24 , R 25 and R 26 in the compound (2-1b).
- reaction conditions In the production step of compound (2-1e), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (2-1c).
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of compound (2-1c) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in [Compound (1-1d) Production Process].
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (2-1c).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (2-1d) used is preferably 1 to 2 times the amount of compound (2-1c).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- the compound (2-1e) can be taken out by the same method as in the above-mentioned compound (1-1b) production step, and the taken out compound (2-1e) may be further purified by the same method. Further, the obtained compound (2-1e) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the point that the yield of the target compound (2-1) is improved. Is preferred.
- the compound (2-1) is obtained from the compound (2-1e).
- the method for obtaining the compound (2-1) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Note that when a protective group is bonded to R213 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
- the compound (2-1) after completion of the reaction, the compound (2-1) can be removed in the same manner as in the compound (1-1b) production process, and the removed compound (2-1 ) May be further purified by the same method.
- Each compound such as compound (2-1), compound (2-1a), compound (2-1b), compound (2-1c), compound (2-1d), compound (2-1e), etc. is, for example, a nucleus
- the structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- the compound (2-2) is, for example, a compound represented by the following general formula (2-2a) (hereinafter sometimes abbreviated as “compound (2-2a)”); A compound represented by the following general formula (2-2b) (hereinafter sometimes abbreviated as “compound (2-2b)”) is reacted with the compound to represent the following general formula (2-2c).
- a step of obtaining a compound (hereinafter sometimes abbreviated as “compound (2-2c)”) (hereinafter abbreviated as “a compound (2-2c) production step”), a compound (2-2c) and And a compound represented by the following general formula (2-2d) (hereinafter, may be abbreviated as “compound (2-2d)”) to give a compound represented by the following general formula (2-2e).
- compound (2-2e) hereinafter referred to as “compound (2-2e)”.
- a production step ”and a step of obtaining compound (2-2) from compound (2-2e) (hereinafter, abbreviated as“ compound (2-2) production step ”). It can manufacture with the manufacturing method which has. Hereinafter, each step will be described in detail.
- R 225 is a hydrogen atom, a hydroxyl group, a leaving group (for example, a halogen atom), or a leaving group at the end (for example, And an alkylene group having 1 to 10 carbon atoms, which may contain at least one of an oxygen atom and an arylene group, and includes Y 221 , R 23 , R 24 , R 25. , R 26 , R 221 , R 222 , R 223 and R 224 are all the same as above.)
- Compound (2-2a) is a known compound.
- R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 221 and R 222 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 223 is a group having an anionic functional group at the terminal.
- R 223 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. preferable.
- Compound (2-2b) is a known compound.
- R 23 , R 24 , R 25 , and R 26 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
- R 23 and R 26 are preferably the same and more preferably a hydrogen atom because they are easily synthesized.
- R 24 and R 25 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easy to synthesize.
- R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 224 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group, or an ethyl group. preferable.
- reaction conditions In the production step of compound (2-2c), it is preferable that a strong base is mixed with compound (2-2a) in advance and then reacted with compound (2-2b).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (2-2a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (2-2b) used is preferably 0.1 to 0.3 times the amount of compound (2-2a) used. .
- compound (2-2c) it is preferable to react compound (2-2a), compound (2-2b), and a strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
- the compound (2-2c) after completion of the reaction, the compound (2-2c) can be removed in the same manner as in the above-mentioned compound (1-1b) production process. You may refine by.
- the obtained compound (2-2c) may be used in the next step without being removed after the reaction is completed, but it should be removed from the viewpoint that the yield of the target compound (2-2) is improved. Is preferred.
- Compound (2-2c) is a known compound.
- R 221, R 222 and R 223 are the same as R 221, R 222 and R 223 in the compound (2-2a)
- R 23, R 24, R 25, R 26 and R 224 is the same as R 23, R 24, R 25 , R 26 and R 224 in the compound (2-2b).
- Compound (2-2d) is a known compound.
- R 225 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 225 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (2-1e) is a novel compound.
- R 221, R 222 and R 223 are the same as R 221, R 222 and R 223 in the compound (2-2a)
- R 23, R 24, R 25, R 26 and R 224 are the same as R 23, R 24, R 25 , R 26 and R 224 in the compound (2-2b).
- reaction conditions In the production step of compound (2-2e), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (2-2c).
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (2-2c) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (2-2c).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (2-2d) used is preferably 1 to 2 times the amount of compound (2-2c).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- Compound (2-2e) can be extracted in the same manner as in the above-mentioned “[Compound (1-1b) production step]”, and the extracted compound (2-2e) is further purified by the same method. May be. Further, the obtained compound (2-2e) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the viewpoint of improving the yield of the target compound (2-2). Is preferred.
- the compound (2-2) is obtained from the compound (2-2e).
- the method for obtaining the compound (2-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed.
- a protective group has couple
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
- compound (2-2) in the production step of compound (2-2), after completion of the reaction, compound (2-2) can be taken out in the same manner as in the case of “[Compound (1-1b) production step]”. (2-2) may be further purified by the same method.
- Each compound such as compound (2-2), compound (2-2a), compound (2-2b), compound (2-2c), compound (2-2d), compound (2-2e) is, for example, a nucleus
- the structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- R 31 is 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group.
- a plurality of R 31 may be the same as each other.
- may .R 32 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group.
- R 32 there are a plurality of mutually identical
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group
- R 33 , R 34 , R 37 and R 38 is each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 31 is a silicon atom , Phosphorus atom, germanium atom or tin atom.
- X 32 is an oxygen atom or N + HR ′′.
- R ′′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Y 31 is a single bond, —O - (CH 2) n31 -, - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 -Ar 32 - are as .N31, n32, n33 and n34 are each independently an integer of 1 to 10.
- Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
- Compound (3) is a fluorescein analog or rhodamine analog, and has a phosphate group that is hydrolyzed by ALP under alkaline conditions.
- Compound (3) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
- R 31 is 1-2 monovalent substituents present on the benzene ring and is an electron donating group.
- the electron donating group in R 31 is the same as those exemplified in the above “ ⁇ R 21 >”.
- the number of R 31 is 1 or 2, and is preferably 2.
- R 31 s When there are two R 31 s , they may be the same or different. Among these, when there are two R 31 s , it is preferable that they are the same as each other because they are easily synthesized.
- R 31 is highly hydrophilic, and is preferably a straight-chain alkoxy group having 1 to 10 carbon atoms or a straight-chain alkylamino group having 1 to 10 carbon atoms.
- a group, an ethylamino group, a methoxy group, or an ethoxy group is more preferable.
- R 31 is two.
- the two R 21 positions in the benzene ring are preferably arranged at positions that are ortho positions relative to each other.
- R 32 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal.
- the “group having an anionic functional group at the terminal” in the general formula (3) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
- the number of R 32 is one or two, and preferably one. When two R 32 are present, they may be the same as or different from each other. Among these, when there are two R 32 s , it is preferable that they are the same as each other because they are easily synthesized.
- R 33 , R 34 , R 37 and R 38 Examples of the halogen atom in R 33 , R 34 , R 37 and R 38 are the same as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”. Especially, it is preferable that the said halogen atom in R ⁇ 33 >, R ⁇ 34> , R ⁇ 37> and R ⁇ 38 > is a chlorine atom, a bromine atom, or an iodine atom.
- the alkyl group having 1 to 10 carbon atoms in R 33 , R 34 , R 37 and R 38 are the same as those exemplified in the above “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 33 , R 34 , R 37 and R 38 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- R33 and R38 are easy to synthesize
- R 34 and R 37 are preferably the same, more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
- R35 and R36 Examples of the alkyl group having 1 to 10 carbon atoms for R 35 and R 36 are the same as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 35 and R 36 is preferably a linear group, and more preferably a methyl group or an ethyl group. Examples of the aryl group having 6 to 10 carbon atoms in R 35 and R 36 include phenyl group, benzyl group, tolyl group, o-xylyl group, m-xylyl group, p-xylyl group and the like. Not. Among them, the aryl group having 6 to 10 carbon atoms in R 35 and R 36 is preferably a phenyl group or a benzyl group, and more preferably a phenyl group.
- R 35 and R 36 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
- X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Among them, in the general formula (3), X 31 is preferable a silicon atom.
- X 32 is an oxygen atom or N + HR ′′.
- Y 31 represents a single bond, -O- (CH 2) n31 - , or, -O- (CH 2) n32 -Ar 31 - is preferably, X 32 is N +
- HR ′′ Y 31 is preferably a single bond, NH— (CH 2 ) n33 —, or —NH— (CH 2 ) n34 —Ar 32 —.
- R ′′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Examples of the alkyl group having 1 to 10 carbon atoms for R ′′ include the same ones as exemplified in the above “ ⁇ R 11 , R 12 and R 13 >”.
- the alkyl group having 1 to 10 carbon atoms in R ′′ is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- X 32 is preferably is an oxygen atom or N + H 2.
- Y 31 represents a single bond, -O- (CH 2) n31 - , - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH — (CH 2 ) n34 —Ar 32 —.
- the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the hetero three-membered ring in the general formula (3).
- n31 - , - Ar 31 -, - (CH 2) n33 - or -Ar 32 - oxygen atoms (O), amino group (NH) or opposite bond is the general alkylene group It is bonded to the phosphate group in formula (3).
- n31, n32, n33 and n34 are each independently an integer of 1 to 10.
- Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
- n31, n32, n33 and n34 are the number of repetitions of the alkylene group for each Y 31.
- n31, n32, n33 and n34 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
- Y 31 is a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—.
- “Ph” represents a substituted or unsubstituted phenylene group.
- Preferred examples of the compound (3) include a compound represented by the following general formula (3-1) (hereinafter sometimes abbreviated as “compound (3-1)”), or a compound represented by the following general formula ( 3-2) (hereinafter sometimes abbreviated as “compound (3-2)”) and the like.
- compound (3-1) a compound represented by the following general formula (3-1)
- compound (3-2) a compound represented by the following general formula (3-2)
- these compounds are only examples of a preferable compound (3), and a preferable compound (3) is not limited to these.
- R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 313 is a group having an anionic functional group at its terminal. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms
- X 31 is a silicon atom, phosphorus atom, germanium atom or tin it is an atomic .
- Y 311 is a single bond, -O- (CH 2) n311 - , or, -O- (CH 2) n312 -Ar 311 - a is .n311 and N312 are each independently .Ar 311 is an
- R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 323 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —.
- n321 and n322 are each independently an integer of 1 to 10.
- Ar 321 is a substituted or unsubstituted arylene group.
- R 311 , R 322 , R 321 and R 322 examples of the alkyl group having 1 to 10 carbon atoms in R 311 , R 322 , R 321 and R 322 are the same as those exemplified above in “ ⁇ R 11 , R 12 and R 13 >”.
- the alkyl group having 1 to 10 carbon atoms in R 311 , R 322 , R 321 and R 322 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- R 311 and R 312 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
- R 321 and R 322 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
- R 313 and R323 > R 313 and R 323 are each independently a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- the “group having an anionic functional group at the terminal” in the general formulas (3-1) and (3-2) is preferably a group consisting only of an anionic functional group because it is easy to synthesize.
- R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- Examples of the alkyl group having 1 to 10 carbon atoms for R 324 include the same groups as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”.
- the alkyl group having 1 to 10 carbon atoms in R 324 is preferably a linear group, and more preferably a methyl group or an ethyl group.
- R 324 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group, or an ethyl group.
- Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —.
- Ar 311 is a substituted or unsubstituted arylene group.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —.
- Ar 321 is a substituted or unsubstituted arylene group.
- n311, n312, n321 and n322 are the number of repetitions of the alkylene group for Y 311 and Y 321, respectively.
- n311, n312, n321 and n322 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity.
- Ar 311 and Ar 321 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “ ⁇ Y 11 >”.
- Preferred examples of the compound (3-1) include, for example, R 311 and R 312 are linear alkyl groups having 1 to 10 carbon atoms, R 313 is a group consisting of only an anionic functional group, 33 and R 38 are a hydrogen atom, a methyl group or an ethyl group, R 34 and R 37 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and R 35 and R 36 are a methyl group, an ethyl group or a phenyl group.
- X 31 is a silicon atom
- Y 311 is a single bond
- n311 and n312 Are each independently an integer of 1 to 8
- Ar 311 is a substituted or unsubstituted phenylene group.
- More preferable examples of the compound (3-1) include, for example, R 311 and R 312 are a methyl group or an ethyl group, R 313 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 33 and R 38 Is a hydrogen atom, R 34 and R 37 are a hydrogen atom or a halogen atom, R 35 and R 36 are a methyl group or an ethyl group, X 31 is a silicon atom, Y 311 is a single bond, —O — (CH 2 ) n311 — or —O— (CH 2 ) n312 —Ar 311 —, wherein n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group And the like.
- R 321 and R 322 are linear alkyl groups having 1 to 10 carbon atoms
- R 323 is a group consisting of only an anionic functional group
- 324 is a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms
- R 33 and R 38 are a hydrogen atom, a methyl group or an ethyl group
- R 34 and R 37 are a hydrogen atom, a halogen atom, methyl A group or an ethyl group
- R 35 and R 36 are a methyl group, an ethyl group, a phenyl group or a benzyl group
- X 31 is a silicon atom
- Y 321 is a single bond
- n322 -Ar 321 - a is an integer of 1 ⁇ 8 N321 and n322 are each independently also Ar 321
- The. More preferable examples of the compound (3-2) include, for example, R 321 and R 322 are a methyl group or an ethyl group, R 323 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 324 is a hydrogen atom.
- R 33 and R 38 are hydrogen atoms
- R 34 and R 37 are hydrogen atoms or halogen atoms
- R 35 and R 36 are methyl groups or ethyl groups
- X 31 Is a silicon atom
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, wherein n321 and n322 are each independently 1 to 6 Examples thereof include an integer and Ar 321 is a substituted or unsubstituted phenylene group.
- compound (3-1) preferred as the compound (3-1) are, for example, compounds represented by the following general formula (3-1-1) (hereinafter referred to as “compound (3-1-1)”). May be abbreviated), a compound represented by the following general formula (3-1-2) (hereinafter sometimes abbreviated as “compound (3-1-2)”), or a compound represented by the following general formula (3 -1-3) (hereinafter sometimes abbreviated as “compound (3-1-3)”) and the like.
- preferred as the compound (3-2) are, for example, compounds represented by the following general formula (3-2-1) (hereinafter referred to as “compound (3-2-1)”).
- Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 And n312 are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
- More preferable compound (3-1-1) is, for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group.
- Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 And n312 are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
- More preferable compound (3-1-2) is, for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group.
- Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 And n312 are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
- More preferable compound (3-1-3) is, for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, and n321 And n322 each independently represents an integer of 1 to 8, and Ar 321 is a substituted or unsubstituted phenylene group.
- More preferable compound (3-2-1) is, for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, n321 and n322 are each independently an integer of 1 to 6, and Ar 321 is a substituted or unsubstituted phenylene group.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, and n321 And n322 each independently represents an integer of 1 to 8, and Ar 321 is a substituted or unsubstituted phenylene group.
- More preferable compound (3-2-2) is, for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, n321 and n322 are each independently an integer of 1 to 6, and Ar 321 is a substituted or unsubstituted phenylene group.
- Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, and n321 And n322 each independently represents an integer of 1 to 8, and Ar 321 is a substituted or unsubstituted phenylene group.
- More preferable compound (3-2-3) is, for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, n321 and n322 are each independently an integer of 1 to 6, and Ar 321 is a substituted or unsubstituted phenylene group.
- preferred as the compound (3-1-1) are, for example, compounds represented by the following formula (3-1-1a) (hereinafter referred to as “compound (3-1-1a)”. Or a compound represented by the following formula (3-1-1b) (hereinafter sometimes abbreviated as “compound (3-1-1b)”), or a compound represented by the following formula (3- 1-1c) (hereinafter sometimes abbreviated as “compound (3-1-1c)”) and the like.
- preferred as the compound (3-1-2) are, for example, compounds represented by the following formula (3-1-2a) (hereinafter referred to as “compound (3-1-2a)”.
- compound (3-1-2b) a compound represented by the following formula (3-1-2b)
- compound (3-1-2c) a compound represented by the following formula (3-1-2c)
- compound (3-1-2c) a compound represented by the following formula (3-1-2c)
- the compounds (3) preferred as the compound (3-1-3) are, for example, compounds represented by the following formula (3-1-3a) (hereinafter referred to as “compound (3-1-3a)”) Or a compound represented by the following formula (3-1-3b) (hereinafter sometimes abbreviated as “compound (3-1-3b)”), or a compound represented by the following formula (3- 1-3c) (hereinafter sometimes abbreviated as “compound (3-1-3c)”) and the like.
- compound (3-2-1a) compounds represented by the following formula (3-2-1a)
- compound (3-2-1b) compounds represented by the following formula (3-2-1b)
- compound (3-2-1c) compounds represented by the following formula (3-2-1c)
- compound (3-2-2a) compounds represented by the following formula (3-2-2a)
- compound (3-2-2b) a compound represented by the following formula (3-2-2b)
- compound (3-2-2c) a compound represented by the following formula (3-2-2c)
- compound (3-2-3) preferred as the compound (3-2-3) are, for example, compounds represented by the following formula (3-2-3a) (hereinafter referred to as “compound (3-2-3a)”) Or a compound represented by the following formula (3-2-3b) (hereinafter sometimes abbreviated as “compound (3-2-3b)”), or a compound represented by the following formula (3- 2-3c) (hereinafter sometimes abbreviated as “compound (3-2-3c)”) and the like.
- these compounds are only examples of a preferable compound (3), and a preferable compound (3) is not limited to these.
- the compound (3) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (3) is converted into the compound (3) -1, thereby generating red (fluorescence wavelength: about 550 nm or more and less than about 650 nm) fluorescence.
- the compound (3) of the present embodiment exists as a substantially non-dissociation type (neutral type) compound, but the dissociation type (anion type) is obtained by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (3) -1. Therefore, the compound (3) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength largely changes before and after the enzyme reaction with ALP.
- Compound (3) can be obtained by reacting a compound having a benzene derivative and a phosphate group in the xanthene skeleton using a known reaction according to the types of Y 31 , R 31 , R 32 and R 33 , for example. Can be manufactured. More specifically, it is as follows.
- the compound (3-1) is, for example, a compound represented by the following general formula (3-1a) (hereinafter sometimes abbreviated as “compound (3-1a)”); A compound represented by the following general formula (3-1b) (hereinafter sometimes abbreviated as “compound (3-1b)”) is reacted with the compound to represent the following general formula (3-1c).
- a step of obtaining a compound (hereinafter sometimes abbreviated as “compound (3-1c)”) (hereinafter abbreviated as “a compound (3-1c) production step”), a compound (3-1c) and And a compound represented by the following general formula (3-1d) (hereinafter, may be abbreviated as “compound (3-1d)”) to give a compound represented by the following general formula (3-1e).
- compound (3-1e) (hereinafter referred to as “compound (3-1e)”.
- a production step ”and a step of obtaining compound (3-1) from compound (3-1e) (hereinafter, abbreviated as“ compound (3-1) production step ”). It can manufacture with the manufacturing method which has. Hereinafter, each step will be described in detail.
- R 314 is a hydrogen atom, a hydroxyl group, a leaving group (for example, a halogen atom), or a leaving group (for example, a terminal group)
- an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group, X 31 , Y 311 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 , R 311 , R 312 and R 313 are all the same as above.
- Compound (3-1a) is a known compound.
- R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (3-1a), R 311 and R 312 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 313 is a group having an anionic functional group at the terminal.
- R 313 is preferably a group consisting of only an anionic functional group, more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
- Compound (3-1b) is a known compound.
- R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 34 and R 37 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
- R 35 and R 36 are each independently an aryl group an alkyl group or having 6 to 10 carbon atoms having 1 to 10 carbon atoms.
- R 35 and R 36 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group. Or it is more preferable that it is an ethyl group.
- X 31 is a silicon atom, a germanium atom or a tin atom. Among them, the compound (3-1b), X 31 is preferable a silicon atom.
- reaction conditions In the production step of compound (3-1c), it is preferred that a strong base is mixed with compound (3-1a) in advance and then reacted with compound (3-1b).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (3-1a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (3-1b) used is preferably 0.1 to 0.3 times the amount of compound (3-1a) used. .
- compound (3-1c) it is preferable to react compound (3-1a), compound (3-1b), and strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
- the compound (3-1c) in the compound (3-1c) production process, after completion of the reaction, the compound (3-1c) can be taken out in the same manner as in the above-mentioned compound (1-1b) production process, and the taken out compound (3-1c) is further treated in the same way. You may refine by. Further, the obtained compound (3-1c) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the viewpoint that the yield of the target compound (3-1) is improved. Is preferred.
- Compound (3-1c) is a known compound.
- R 311, R 312 and R 313 are each the same as R 311, R 312 and R 313 in the compound (3-1a)
- R 33, R 34, R 35, R 36, R 37, R 38 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38 and X 31 in the compound (3-1b).
- Compound (3-1d) is a known compound.
- R 314 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and at least one of an oxygen atom and an arylene group. And an alkylene group having 1 to 10 carbon atoms which may contain one of them.
- the compound (3-1d), R 314 is a hydrogen atom, a halogen atom, -O-CH 2 -X, or, preferably a -O-Ph-CH 2 -X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (3-1e) is a novel compound.
- R 311, R 312 and R 313 are each the same as R 311, R 312 and R 313 in the compound (3-1a)
- R 33, R 34, R 35, R 36, R 37, R 38 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38 and X 31 in the compound (3-1b).
- reaction conditions In the production step of compound (3-1e), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (3-1c).
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (3-1c) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (3-1c).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (3-1d) used is preferably 1 to 2 times the amount of compound (3-1c).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- Compound (3-1e) can be removed in the same manner as in the above-mentioned “[Compound (1-1b) production step]”, and the removed compound (3-1e) is further purified by the same method. Also good. Further, the obtained compound (3-1e) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the viewpoint that the yield of the target compound (3-1) is improved. Is preferred.
- compound (3-1) is obtained from compound (3-1e).
- the method for obtaining the compound (3-1) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Note that when a protective group is bonded to R 313 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
- the compound (3-1) in the compound (3-1) production process, after completion of the reaction, the compound (3-1) can be taken out in the same manner as in the compound (1-1b) production process, and the taken out compound (3-1 ) May be further purified by the same method.
- Each compound such as compound (3-1), compound (3-1a), compound (3-1b), compound (3-1c), compound (3-1d), compound (3-1e) is, for example, a nucleus
- the structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- the compound (3-2) is, for example, a compound represented by the following general formula (3-2a) (hereinafter sometimes abbreviated as “compound (3-2a)”); A compound represented by the following general formula (3-2b) (hereinafter sometimes abbreviated as “compound (3-2b)”) is reacted to be represented by the following general formula (3-2c).
- a step of obtaining a compound (hereinafter sometimes abbreviated as “compound (3-2c)”) (hereinafter abbreviated as a “compound (3-2c) production step”), a compound (3-2c) and And a compound represented by the following general formula (3-2d) (hereinafter, may be abbreviated as “compound (3-2d)”).
- compound (3-2e) (hereinafter referred to as “compound (3-2e)”).
- a production process ”) and a process for obtaining compound (3-2) from compound (3-2e) hereinafter sometimes abbreviated as“ compound (3-2) production process ”). It can manufacture with the manufacturing method which has. Hereinafter, each step will be described in detail.
- Bzl is a benzyl group and Ph is a phenyl group.
- R 325 is a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal.
- an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group, X 31 , Y 321 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 , R 321 , R 322 , R 323 and R 324 are all the same as above.
- Compound (3-2a) is a known compound.
- R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (3-2a), R 321 and R 322 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 323 is a group having an anionic functional group at the terminal.
- the compound (3-2a), R 323, since the easy synthesis is preferably a group consisting of only the anionic functional group, a carboxy group, and more preferably a sulfonic acid group or phosphoric acid group .
- Compound (3-2b) is a known compound.
- R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 33 and R 38 are preferably the same, and more preferably a hydrogen atom, because they are easily synthesized.
- R 34 and R 37 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
- R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- the compound (3-1b), R 35 and R 36 since the easy synthesis, preferably the same, a methyl group, an ethyl group, preferably a phenyl group or a benzyl group, a methyl group or More preferably, it is an ethyl group.
- R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 324 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group, or an ethyl group.
- X 31 is a silicon atom, a germanium atom or a tin atom. Among these, in the compound (3-2b), X 31 is preferably a silicon atom.
- reaction conditions In the production step of compound (3-2c), it is preferred that a strong base is mixed with compound (3-2a) in advance and then reacted with compound (3-2b).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (3-2a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (3-2b) used is preferably 0.1 to 0.3 times the amount of compound (3-2a) used. .
- compound (3-2c) it is preferable to react compound (3-2a), compound (3-2b), and a strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or more and 25 hours or less, and more preferably 10 hours or more and 20 hours or less.
- Compound (3-2c) is a known compound.
- R 321, R 322 and R 323 are the same as R 321, R 322 and R 323 in the compound (3-2a)
- R 33, R 34, R 35, R 36, R 37, R 38, R 324 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38, R 324 and X 31 in the compound (3-2b).
- R 325 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and at least one of an oxygen atom and an arylene group. And an alkylene group having 1 to 10 carbon atoms which may contain one of them.
- R 325 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (3-2e) is a novel compound.
- R 321, R 322 and R 323 are the same as R 321, R 322 and R 323 in the compound (3-1a)
- R 33, R 34, R 35, R 36, R 37, R 38, R 324 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38, R 324 and X 31 in the compound (3-1b).
- reaction conditions In the production step of compound (3-2e), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (3-2c).
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (3-2c) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (3-2c).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (3-2d) used is preferably 1 to 2 times the amount of compound (3-2c).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- Compound (3-2e) can be taken out by the same method as in the above-mentioned compound (1-1b) production step, and the taken out compound (3-2e) may be further purified by the same method. Further, the obtained compound (3-2e) may be used in the next step without being removed after completion of the reaction, but it should be removed from the viewpoint that the yield of the target compound (3-2) is improved. Is preferred.
- compound (3-2) is obtained from compound (3-2e).
- the method for obtaining the compound (3-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Incidentally, if even a protective group R 323 are attached, similarly protecting group is removed, a carboxyl group, a sulfonic acid group or phosphoric acid group is formed. Further, when a protecting group is bonded to R 324 , the protecting group is similarly removed.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
- compound (3-2) in the production step of compound (3-2), after completion of the reaction, compound (3-2) can be taken out by the same method as in the production step of compound (1-1b), and the taken out compound (3-2) ) May be further purified by the same method.
- each compound such as the compound (3-2), the compound (3-2a), the compound (3-2b), the compound (3-2c), the compound (3-2d), the compound (3-2e), The structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group.
- a plurality of R 41 may be the same as each other.
- R 42 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, and R 43 is a hydrogen atom or a carbon number of 1.
- R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently a carbon number. 1 to 10 alkyl groups or carbon 6-10 aryl group .
- X 41 silicon atom, a phosphorus atom, a germanium atom or a tin atom .
- Y 41 is a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 —Ar 41 —, —NH— (CH 2 ) n43 —, or —NH— (CH 2 ) n44 —Ar 42 —, wherein n41, n42, n43 and n44 are each independently an integer of 1 to 10.
- Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
- Compound (4) is a fluorescein analog or rhodamine analog, and has a phosphate group that is hydrolyzed by ALP under alkaline conditions.
- Compound (4) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
- R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group.
- the electron donating group in R 41 is the same as those exemplified in the above “ ⁇ R 21 >”.
- the number of R 41 is 1 or 2, and is preferably 2.
- R 41 s When there are two R 41 s , they may be the same or different. Among these, when there are two R 41 s , it is preferable that they are the same as each other because they are easily synthesized.
- R 41 is preferably a straight-chain alkoxy group having 1 to 10 carbon atoms or a straight-chain alkylamino group having 1 to 10 carbon atoms because it has high hydrophilicity.
- a group, an ethylamino group, a methoxy group or an ethoxy group is more preferable.
- R 41 is two.
- the two R 21 positions in the benzene ring are preferably arranged at positions that are ortho positions relative to each other.
- R 42 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal.
- the “group having an anionic functional group at the terminal” in the general formula (4) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
- the number of R 42 is 1 or 2, is preferably one. When there are two R 42 s , they may be the same as or different from each other. Above all, if R 42 is two, since the easy synthesis, it is preferably the same to each other.
- the xanthene skeleton in the 1st position, one R 41 is in the 4th position, and the other R 41 is in the 6th position.
- R 43 examples of the alkyl group having 1 to 10 carbon atoms for R 43 include the same groups as those exemplified above in “ ⁇ R 11 , R 12 and R 13 >”. Among these, in general formula (4), R 43 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom methyl group or an ethyl group.
- halogen atom in R 44 , R 47 and R 48 examples include the same halogen atoms as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”. Among them, it is preferable that the halogen atom in R 44, R 47 and R 48 is a chlorine atom, a bromine atom, or iodine atom.
- the alkyl group having 1 to 10 carbon atoms for R 44 , R 47 and R 48 are the same as those exemplified in the above “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 44 , R 47 and R 48 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
- R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group or an ethyl group. .
- R 44 and R 47 are preferably the same, more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
- R45 and R46 Examples of the alkyl group having 1 to 10 carbon atoms for R 45 and R 46 are the same as those exemplified above for “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 45 and R 46 is preferably a linear group, and more preferably a methyl group or an ethyl group. Examples of the aryl group having 6 to 10 carbon atoms in R 45 and R 46 include phenyl group, benzyl group, tolyl group, o-xylyl group, m-xylyl group, p-xylyl group and the like. Not. Among these, the aryl group having 6 to 10 carbon atoms in R 45 and R 46 is preferably a phenyl group or a benzyl group, and more preferably a phenyl group.
- R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Among these, in the general formula (4), X 41 is preferably a silicon atom.
- Y 41 is a single bond, —O— (CH 2 ) n41 —, —O— (CH 2 ) n42 —Ar 41 —, —NH— (CH 2 ) n343 —, or —NH — (CH 2 ) n44 —Ar 42 —.
- the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the hetero four-membered ring in the general formula (3).
- n41 - , - Ar 41 -, - (CH 2) n43 - or -Ar 42 - oxygen atoms (O), amino group (NH) or opposite bond is the general alkylene group It is bonded to the phosphate group in formula (4).
- n41, n42, n43 and n44 are each independently an integer of 1 to 10.
- Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
- n41, n42, n43 and n44 are the number of repetitions of the alkylene group for each Y 41.
- n41, n42, n43 and n44 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
- Y 41 is a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—.
- “Ph” represents a substituted or unsubstituted phenylene group.
- Preferred examples of the compound (4) include, for example, a compound represented by the following general formula (4-1) (hereinafter sometimes abbreviated as “compound (4-1)”), or a compound represented by the following general formula ( 4-2) (hereinafter sometimes abbreviated as “compound (4-2)”) and the like.
- these compounds are only examples of a preferable compound (4), and a preferable compound (4) is not limited to these.
- R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 413 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group,
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 44 , R 47 and R 48 are Each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom, or a tin atom
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —.
- the .n411 and n412 is the .Ar 411 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group.
- R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms.
- R 423 is a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —.
- n421 and n422 are each independently an integer of 1 to 10.
- Ar 421 is a substituted or unsubstituted arylene group.
- R411 , R422 , R421 and R422 Examples of the alkyl group having 1 to 10 carbon atoms in R 411 , R 422 , R 421 and R 422 are the same as those exemplified in the above “ ⁇ R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 411 , R 422 , R 421 and R 422 is preferably a linear group, and more preferably a methyl group or an ethyl group.
- R 411 and R 412 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
- R 421 and R 422 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
- R 413 and R423 are each independently a group having an anionic functional group at the terminal.
- the anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
- the “group having an anionic functional group at the terminal” in the general formulas (4-1) and (4-2) is preferably a group consisting only of an anionic functional group because it is easy to synthesize.
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —.
- Ar 411 is a substituted or unsubstituted arylene group.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —.
- Ar 421 is a substituted or unsubstituted arylene group.
- n411, n412, n421 and n422 are the number of repetitions of the alkylene group for Y 411 and Y 421, respectively.
- n411, n412, n421, and n422 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, further preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity.
- Ar 411 and Ar 421 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “ ⁇ Y 11 >”.
- Preferred examples of the compound (4-1) include, for example, R 411 and R 412 are linear alkyl groups having 1 to 10 carbon atoms, R 413 is a group composed of only an anionic functional group, 43 and R 48 are a hydrogen atom, a methyl group or an ethyl group, R 44 and R 47 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and R 45 and R 46 are a methyl group, an ethyl group or a phenyl group.
- X 41 is a silicon atom
- Y 411 is a single bond
- n411 and n412 Are each independently an integer of 1 to 8
- Ar 411 is a substituted or unsubstituted phenylene group.
- More preferable examples of the compound (4-1) include, for example, R 411 and R 412 are a methyl group or an ethyl group, R 413 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 43 and R 48 Is a hydrogen atom, R 44 and R 47 are a hydrogen atom or a halogen atom, R 45 and R 46 are a methyl group or an ethyl group, X 41 is a silicon atom, Y 411 is a single bond, —O — (CH 2 ) n411 — or —O— (CH 2 ) n412 —Ar 411 —, wherein n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group And the like.
- Preferred examples of the compound (4-2) include, for example, R 421 and R 422 are linear alkyl groups having 1 to 10 carbon atoms, R 423 is a group consisting of only an anionic functional group, 43 and R 48 are a hydrogen atom, a methyl group or an ethyl group, R 44 and R 47 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and R 45 and R 46 are a methyl group, an ethyl group or a phenyl group.
- X 41 is a silicon atom
- Y 421 is —NH— (CH 2 ) n421 —, or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are independent of each other.
- R 421 and R 422 are a methyl group or an ethyl group
- R 423 is a carboxy group, a sulfonic acid group, or a phosphoric acid group
- R 43 and R 48 Is a hydrogen atom
- R 44 and R 47 are a hydrogen atom or a halogen atom
- R 46 and R 47 are a methyl group or an ethyl group
- X 41 is a silicon atom
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, wherein n421 and n422 are each independently an integer of 1 to 6, and Ar 421 is a substituted or unsubstituted phenylene group, etc. Is mentioned.
- preferred as the compound (4-1) are, for example, compounds represented by the following general formula (4-1-1) (hereinafter referred to as “compound (4-1-1)”). May be abbreviated), a compound represented by the following general formula (4-1-2) (hereinafter sometimes abbreviated as “compound (4-1-2)”), or a compound represented by the following general formula (4 -1-3) (hereinafter sometimes abbreviated as “compound (4-1-3)”) and the like.
- preferred as the compound (4-2) are, for example, compounds represented by the following general formula (4-2-1) (hereinafter referred to as “compound (4-2-1)”).
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 And n412 each independently represents an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
- More preferable compound (4-1-1) is, for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group.
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 And n412 each independently represents an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
- More preferable compound (4-1-2) is, for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group.
- Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 And n412 each independently represents an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
- More preferable compound (4-1-3) is, for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are Examples thereof are each independently an integer of 1 to 8, and Ar 421 substituted or unsubstituted phenylene group.
- More preferable compound (4-2-1) is, for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 Are each independently an integer of 1 to 6, and Ar 421- substituted or unsubstituted phenylene group.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are Examples thereof are each independently an integer of 1 to 8, and Ar 421 substituted or unsubstituted phenylene group.
- More preferable compound (4-2-2) is, for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 Are each independently an integer of 1 to 6, and Ar 421- substituted or unsubstituted phenylene group.
- Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are Examples thereof are each independently an integer of 1 to 8, and Ar 421 substituted or unsubstituted phenylene group.
- More preferable compound (4-2-3) is, for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 Are each independently an integer of 1 to 6, and Ar 421- substituted or unsubstituted phenylene group.
- compound (4-1-1) preferred as the compound (4-1-1) are, for example, compounds represented by the following formula (4-1-1a) (hereinafter referred to as “compound (4-1-1a)”) Or a compound represented by the following formula (4-1-1b) (hereinafter sometimes abbreviated as “compound (4-1-1b)”), or a compound represented by the following formula (4- 1-1c) (hereinafter, may be abbreviated as “compound (4-1-1c)”) and the like.
- compound (4-1-2a) compounds represented by the following formula (4-1-2a)
- compound (4-1-2b) a compound represented by the following formula (4-1-2b)
- compound (4-1-2c) a compound represented by the following formula (4-1-2c)
- compound (4-1-2c) a compound represented by the following formula (4-1-2c”
- compound (4-1-3a) compounds represented by the following formula (4-1-3a)
- compound (4-1-3a) compounds represented by the following formula (4-1-3a)
- compound (4-1-3b) a compound represented by the following formula (4-1-3b)
- compound (4-1-3c) a compound represented by the following formula (4-1-3c)
- compound (4-2-1c) a compound represented by the following formula (4-2-1c)
- compound (4-2-1c) a compound represented by the following formula (4-2-1c)
- compound (4-2-2a) compounds represented by the following formula (4-2-2a)
- compound (4-2-2b) compounds represented by the following formula (4-2-2b)
- compound (4-2-2c) compounds represented by the following formula (4-2-2c)
- compound (4-2-3a) compounds represented by the following formula (4-2-3a)
- compound (4-2-3a) compounds represented by the following formula (4-2-3a)
- compound (4-2-3b) a compound represented by the following formula (4-2-3b)
- compound (4- 2-3c) a compound represented by the following formula (4-2-3c)
- compound (4-2-3c) a compound represented by the following formula (4-2-3c)
- these compounds are only examples of a preferable compound (4), and a preferable compound (4) is not limited to these.
- the compound (4) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (4) -1 is changed to the compound (4) -1, thereby generating near-infrared (fluorescence wavelength: about 650 nm or more) fluorescence.
- the compound (4) of this embodiment exists as a substantially non-dissociation type (neutral type) compound, the dissociation type (anion type) is caused by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (4) -1. Therefore, the compound (4) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength greatly changes before and after the enzyme reaction with ALP.
- Compound (4) can be produced, for example, by reacting a compound having a xanthene skeleton with a benzene derivative and a phosphate group using a known reaction according to the types of Y 41 , R 41 and R 42 . More specifically, it is as follows.
- the compound (4-1) is, for example, a compound represented by the following general formula (4-1a) when R 43 is a hydrogen atom (hereinafter referred to as “compound (4-1a) ”and a compound represented by the following general formula (4-1b1) (hereinafter sometimes abbreviated as“ compound (4-1b1) ”)
- compound (4-1c1 ′) a compound represented by the following general formula (4-1c1 ′)
- compound (4-1c1 ′) hereinafter sometimes abbreviated as “compound (4-1c1 ′)”.
- R 414 is a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a terminal)
- X 41 , Y 411 , R 44 , R 1, R 4 , R 4, R 4 , R 4, R 4 , R 4, R 4 , and R 4, 45 , R 46 , R 47 , R 48 , R 411 , R 412 and R 413 are all the same as above.
- Compound (4-1a) is a known compound.
- R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-1a), R 411 and R 412 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 413 is a group having an anionic functional group at the terminal.
- R 413 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group, because it is easy to synthesize. preferable.
- Compound (4-1b1) is a known compound.
- R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 44 and R 47 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
- R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. Among them, in the compound (4-1b1), R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group. Or it is more preferable that it is an ethyl group.
- X 41 is a silicon atom, a germanium atom or a tin atom. Among these, in the compound (4-1b1), X 41 is preferably a silicon atom.
- the compound (4-1c1 ′) is a known compound.
- R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a)
- R 44, R 45, R 46, R 47 , R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-1b1).
- reaction conditions In the production step of compound (4-1c1 ′), it is preferred that a strong base is mixed with compound (4-1a) in advance and then reacted with compound (4-1b1).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-1a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-1b1) used is 0.1 to 0.3 times the amount of compound (4-1a) used. preferable.
- compound (4-1c1 ′) it is preferable to react compound (4-1a), compound (4-1b), and strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or longer and 25 hours or shorter, and more preferably 10 hours or longer and 20 hours or shorter.
- the compound (4-1c1 ′) in the production process of compound (4-1c1 ′), after completion of the reaction, the compound (4-1c1 ′) can be taken out in the same manner as in the production process of compound (1-1b) described above. You may refine
- Compound (4-1c1) is a known compound.
- R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a)
- R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-1b1).
- reaction conditions The production process of compound (4-1c1) is preferably carried out using a catalyst such as tetrakis (triphenylphosphine) palladium and 1,3-dimethylbarbituric acid.
- a catalyst such as tetrakis (triphenylphosphine) palladium and 1,3-dimethylbarbituric acid.
- the inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, and xenon.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 20 ° C. or higher and 50 ° C. or lower, more preferably 25 ° C. or higher and 45 ° C. or lower.
- the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 8 hours or longer and 16 hours or shorter.
- the compound (4-1c1) in the compound (4-1c1) production process, after completion of the reaction, the compound (4-1c1) can be removed in the same manner as in the above-mentioned compound (1-1b) production process. You may refine by. Further, the obtained compound (4-1c1) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-1) -1 is improved, It is preferable to take out.
- Compound (4-1d1) is a known compound.
- R 414 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 414 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (4-1e1) is a novel compound.
- Y 411 is the same as those exemplified for “ ⁇ Y 411 and Y 421 >” in the above “ ⁇ Compound (4) >>”.
- R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a)
- R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-1b1).
- reaction conditions In the production step of compound (4-1e1), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (4-1c1) used.
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-1c1) used.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-1c1).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-1d1) used is preferably 1 to 2 times the amount of compound (4-1c1).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- Compound (4-1e1) can be taken out in the same manner as in the above-described compound (1-1b) production step, and the taken out compound (4-1e1) may be further purified in the same manner. Further, the obtained compound (4-1e1) may be used in the next step without removal after the completion of the reaction. However, since the yield of the target compound (4-1) -1 is improved, It is preferable to take out.
- compound (4-1) -1 Production Process
- compound (4-1) -1 is obtained from compound (4-1e1).
- the method for obtaining the compound (4-1) -1 is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Note that when a protective group is bonded to R 413 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
- compound (4-1) -1 In the production process of compound (4-1) -1, after completion of the reaction, compound (4-1) -1 can be taken out in the same manner as in the production process of compound (1-1b). (4-1) may be further purified by the same method.
- the compound (4-1) is, for example, a compound represented by the following general formula (4-1a) when R 43 is other than a hydrogen atom (hereinafter, “Sometimes abbreviated as“ compound (4-1a) ”), a compound represented by the following general formula (4-1b2) (hereinafter sometimes abbreviated as“ compound (4-1b2) ”), To obtain a compound represented by the following general formula (4-1c2) (hereinafter sometimes abbreviated as “compound (4-1c2)”) (hereinafter referred to as “compound (4-1c2) production”).
- Step ”) compound (4-1c2), compound represented by general formula (4-1d2) below (hereinafter sometimes abbreviated as“ compound (4-1d2) ”), ,
- compound (4-1e2) compound represented by general formula (4-1e2)
- production step compound (4-1e2)
- production step of compound (4-1) -2 compound (4-1) -2
- Bzl is a benzyl group and TBS is a tert-butyldimethylsilyl group.
- X 41 , Y 411 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 411 , R 412 , R 414 and R 414 are all the same as above.
- Compound (4-1a) is a known compound.
- R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-1a), R 411 and R 412 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 413 is a group having an anionic functional group at the terminal.
- R 413 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
- Compound (4-1b2) is a known compound.
- R 43 is an alkyl group having 1 to 10 carbon atoms linear. Among these, in the compound (4-1b2), R 43 is preferably a methyl group or an ethyl group.
- R 44 , R 47 , and R 48 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms. Among these, in the compound (4-1b2), R 44 and R 47 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
- R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
- X 41 is a silicon atom, a germanium atom or a tin atom. Among these, in the compound (4-1b2), X 41 is preferably a silicon atom.
- reaction conditions In the production step of compound (4-1c2), it is preferable that a strong base is mixed with compound (4-1a) in advance and then reacted with compound (4-1b2).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-1a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-1b2) used is preferably 0.1 to 0.3 times the amount of compound (4-1a) used. .
- compound (4-1c2) it is preferable to react compound (4-1a), compound (4-1b2), and a strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 10 hours or longer and 20 hours or shorter.
- the compound (4-1c2) after completion of the reaction, the compound (4-1c2) can be removed in the same manner as in the above-described compound (1-1b) production process. You may refine by. Further, the obtained compound (4-1c2) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-1) -2 is improved, It is preferable to take out.
- Compound (4-1c2) is a known compound.
- R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a)
- R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-1b2).
- the compound (4-1d2) is a known compound.
- R 414 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 414 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (4-1e2) is a novel compound.
- Y 411 is the same as that exemplified for “ ⁇ Y 411 and Y 421 >” in “ ⁇ Compound (4) >>” above.
- R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a)
- R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-1b2).
- reaction conditions In the production step of compound (4-1e2), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (4-1c2) used.
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-1c2) used.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-1c2).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-1d2) used is preferably 1 to 2 times the amount of compound (4-1c2).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- Compound (4-1e2) can be taken out by the same method as in the above-mentioned compound (1-1b) production step, and the taken out compound (4-1e2) may be further purified by the same method. Further, the obtained compound (4-1e2) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-1) -2 is improved, It is preferable to take out.
- compound (4-1) -2 is obtained from compound (4-1e2).
- the method for obtaining the compound (4-1) -2 is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed.
- a protective group has couple
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
- compound (4-1) -2 In the production process of compound (4-1) -2, after completion of the reaction, compound (4-1) -2 can be taken out in the same manner as in the production process of compound (1-1b). (4-1) -2 may be further purified by the same method.
- the structure can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR nuclear magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- the compound (4-2) is, for example, a compound represented by the following general formula (4-2a) when R 43 is a hydrogen atom (hereinafter referred to as “compound (4-2a) ”and a compound represented by the following general formula (4-2b1) (hereinafter, sometimes abbreviated as“ compound (4-2b1) ”)
- compound (4-2c1 ′) a compound represented by the following general formula (4-2c1 ′)
- compound (4-2c1 ′) hereinafter sometimes abbreviated as “compound (4-2c1 ′)”.
- R 424 is a hydrogen atom, a hydroxyl group, a leaving group (for example, a halogen atom), or a leaving group (for example, a terminal group)
- an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group, X 41 , Y 421 , R 44 , R 45 , R 46 , R 47 , R 48 , R 421 , R 422 and R 423 are all the same as above.
- Compound (4-2a) is a known compound.
- R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-2a), R 421 and R 422 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 423 is a group having an anionic functional group at the terminal.
- R 423 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. preferable.
- Compound (4-2b1) is a known compound.
- R 44 , R 47 , and R 48 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
- R 44 and R 47 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
- R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
- X 41 is a silicon atom, a germanium atom or a tin atom. Among these, in the compound (4-2b1), X 41 is preferably a silicon atom.
- the compound (4-2c1 ′) is a known compound.
- R 421, R 422 and R 423 are the same as R 421, R 422, and R 423 in the compound (4-2a)
- R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-2b1).
- reaction conditions In the production step of compound (4-2c1 ′), it is preferred that a strong base is previously mixed with compound (4-2a) and then reacted with compound (4-2b1).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-2a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-2b1) used is 0.1 to 0.3 times the amount of compound (4-2a) used. preferable.
- compound (4-2c1 ′) it is preferable to react compound (4-2a), compound (4-2b1), and a strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 10 hours or longer and 20 hours or shorter.
- the compound (4-2c1 ′) in the production process of the compound (4-2c1 ′), after completion of the reaction, the compound (4-2c1 ′) can be taken out in the same manner as in the production process of the compound (1-1b) described above. You may refine
- Compound (4-2c1) is a known compound.
- R 421, R 422 and R 413 are the same as R 421, R 422 and R 413 in the compound (4-2a)
- R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-2b1).
- the production process of the compound (4-2c1) is preferably carried out using a catalyst such as tetrakis (triphenylphosphine) palladium and 1,3-dimethylbarbituric acid.
- a catalyst such as tetrakis (triphenylphosphine) palladium and 1,3-dimethylbarbituric acid.
- the inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, and xenon.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 20 ° C. or higher and 50 ° C. or lower, more preferably 25 ° C. or higher and 45 ° C. or lower.
- the reaction time is preferably 5 hours or longer and 25 hours or shorter, and more preferably 8 hours or longer and 16 hours or shorter.
- the compound (4-2d1) is a known compound.
- R 424 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- R 424 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X.
- X represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (4-2e1) is a novel compound.
- Y 421 is the same as those exemplified for “ ⁇ Y 411 and Y 421 >” in the above “ ⁇ Compound (4) >>”.
- R 421, R 422 and R 423 are the same as R 421, R 422 and R 423 in the compound (4-2a)
- R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-2b1).
- reaction conditions In the production step of compound (4-2e1), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (4-2c1).
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-2c1) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-2c1).
- the reaction is preferably performed in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-2d1) used is preferably 1 to 2 times the amount of compound (4-2c1).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- Compound (4-2e1) can be taken out in the same manner as in the above-described compound (1-1b) production step, and the taken out compound (4-2e1) may be further purified in the same manner. Further, the obtained compound (4-2e1) may be used in the next step without removal after the completion of the reaction. However, since the yield of the target compound (4-2) -1 is improved, It is preferable to take out.
- compound (4-2) -1 Production Process
- compound (4-2) -1 is obtained from compound (4-2e1).
- the method for obtaining the compound (4-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 423 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
- compound (4-2) -1 In the production process of compound (4-2) -1, after completion of the reaction, compound (4-2) -1 can be taken out in the same manner as in the production process of compound (1-1b). (4-2) -1 may be further purified by the same method.
- each compound such as compound (4-2) -1, compound (4-2a), compound (4-2b1), compound (4-2c1), compound (4-2d1), compound (4-2e1) The structure can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR nuclear magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- the compound (4-2) is, for example, a compound represented by the following general formula (4-2a) (wherein R 43 is other than a hydrogen atom) “Sometimes abbreviated as“ compound (4-2a) ”), a compound represented by the following general formula (4-2b2) (hereinafter sometimes abbreviated as“ compound (4-2b2) ”), To obtain a compound represented by the following general formula (4-2c2) (hereinafter sometimes abbreviated as “compound (4-2c2)”) (hereinafter referred to as “compound (4-2c2) production).
- compound (4-2e2) compound represented by the following general formula (4-2e2)
- compound (4-2e2) production step compound represented by the following general formula (4-2e2)
- Bzl is a benzyl group and Ph is an unsubstituted phenyl group.
- X 41 , Y 421 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 421 , R 422 , R 423 and R 424 are the same as above.
- Compound (4-2a) is a known compound.
- R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-2a), R 421 and R 422 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
- R 423 is a group having an anionic functional group at the terminal.
- R 423 is preferably a group consisting of only an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
- the compound (4-2b2) is a known compound.
- R 43 is a linear alkyl group having 1 to 10 carbon atoms. Among these, in the compound (4-2b2), R 43 is preferably a methyl group or an ethyl group.
- R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-2b2), R 44 and R 47 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
- R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
- R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
- R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
- X 41 is a silicon atom, a germanium atom or a tin atom. Among these, in the compound (4-2b2), X 41 is preferably a silicon atom.
- reaction conditions In the production step of compound (4-2c2), it is preferable that a strong base is mixed with compound (4-2a) in advance and then reacted with compound (4-2b2).
- the strong base include sec-butyllithium.
- the amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-2a) used.
- the temperature when mixing with a strong base in advance is preferably ⁇ 90 ° C. or higher and ⁇ 60 ° C. or lower.
- the time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-2b2) used is preferably 0.1 to 0.3 times the amount of compound (4-2a) used. .
- compound (4-2c2) it is preferable to react compound (4-2a), compound (4-2b2), and a strong base under acidic conditions.
- the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
- the amount of acid used is preferably 1 M or more and 5 M or less, for example.
- the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
- the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 10 hours or longer and 20 hours or shorter.
- Compound (4-2c2) is a known compound.
- R 421, R 422 and R 423 are the same as R 421, R 422 and R 423 in the compound (4-2a)
- R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-2b2).
- the compound (4-2d2) is a known compound.
- R 424 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
- the compound (4-2d2), R 424 represents a hydrogen atom, a halogen atom, -O-CH 2 -X, or, preferably a -O-Ph-CH 2 -X.
- “X” represents a halogen atom
- Ph represents a substituted or unsubstituted phenylene group.
- Compound (4-2e2) is a novel compound.
- Y 421 is the same as that exemplified for “ ⁇ Y 411 and Y 421 >” in the above “ ⁇ Compound (4) >>”.
- R 421, R 422 and R 423 are the same as R 421, R 422 and R 423 in the compound (4-2a)
- R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-2b2).
- reaction conditions In the production step of compound (4-2e2), it is preferable to carry out the reaction using a base.
- the base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
- the bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
- the amount of the base used is preferably 1 to 3 times the amount of the compound (4-2c2).
- the condensing agent is not particularly limited, and examples thereof include DMAP.
- the said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-2c2) used.
- an aprotic solvent as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-2c2).
- the reaction in an inert gas atmosphere.
- the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
- the said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the amount of compound (4-2d2) used is preferably 1 to 2 times the amount of compound (4-2c2).
- the reaction temperature is preferably ⁇ 50 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 30 ° C. or higher and ⁇ 5 ° C. or lower.
- the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
- the compound (4-2e2) can be extracted by the same method as in the above-described compound (1-1b) production process, and the extracted compound (4-2e2) may be further purified by the same method. Further, the obtained compound (4-2e2) may be used in the next step without being taken out after the completion of the reaction. However, since the yield of the target compound (4-2) -2 is improved, It is preferable to take out.
- compound (4-2) -2 is obtained from compound (4-2e2).
- the method for obtaining the compound (4-2) -2 is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 423 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group. Further, when a protective group is bonded to R 43 , the protective group is similarly removed.
- the deprotection reaction can be performed, for example, under reducing conditions.
- Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
- an aprotic solvent is preferably used as a reaction solvent.
- the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
- the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
- the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
- the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
- compound (4-2) -2 In the production process of compound (4-2) -2, after completion of the reaction, compound (4-2) -2 can be taken out in the same manner as in the production process of compound (1-1b). (4-2) -2 may be further purified by the same method.
- Each compound such as compound (4-2) -2, compound (4-2a), compound (4-2b2), compound (4-2c), compound (4-2d2), compound (4-2e2) is, for example,
- the structure can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
- NMR nuclear magnetic resonance
- MS mass spectrometry
- IR infrared spectroscopy
- a fluorescent probe for detecting ALP includes a compound having an anionic functional group and a phosphate group.
- the enzymatic activity of ALP in a biological sample can be measured with high quantitativeness and sensitivity.
- the compound in this embodiment has an anionic functional group and a phosphate group.
- anionic functional group means a functional group that ionically dissociates with a negative charge in an aqueous medium
- cationic functional group means a positive charge in an aqueous medium. It means a functional group that has ionic dissociation.
- the anionic functional group include a hydroxyl group, a thiol group, a carboxy group, a dithiocarboxy group, a hydroxythioxomethyl group, a mercaptocarbonyl group, a sulfonic acid group, a phosphoric acid group, a cyano group, and salts thereof.
- a carboxy group, a sulfonic acid group, or a phosphoric acid group is preferable.
- the compound in this embodiment does not emit fluorescence as it is, but emits fluorescence for the first time when the phosphate group is eliminated by hydrolysis with ALP.
- examples of the compound in the present embodiment include the above-mentioned compound (1), the above-mentioned compound (2), the above-mentioned compound (3), the above-mentioned compound (4), and the like.
- Preferred examples of the compound (1) include the above compound (1-1) and the above compound (1-2).
- Preferred examples of the compound (2) include the above compound (2-1) and the above compound (2-2).
- Preferred examples of the compound (3) include the above compound (3-1) and the above compound (3-2).
- Preferred examples of the compound (4) include the above compound (4-1) and the above compound (4-2).
- preferable examples of the compound (1-1) include, for example, the above compound (1-1-1), the above compound (1-1-2), and the above compound (1-1). -3).
- preferable examples of the compound (1-2) include, for example, the above compound (1-2-1), the above compound (1-2-2), and the above compound (1-2). -3).
- preferable examples of the compound (2-1) include, for example, the above compound (2-1-1), the above compound (2-1-2), and the above compound (2-1). -3).
- preferable examples of the compound (2-2) include, for example, the above compound (2-2-1), the above compound (2-2-2), and the above compound (2-2). -3).
- preferred as the compound (3-1) are, for example, the above compound (3-1-1), the above compound (3-1-2), and the above compound (3-1). -3).
- preferred as the compound (3-2) are, for example, the above compound (3-2-1), the above compound (3-2-2), and the above compound (3-2). -3).
- preferred as the compound (4-1) are, for example, the above compound (4-1-1), the above compound (4-1-2), and the above compound (4-1). -3).
- preferable examples of the compound (4-2) include, for example, the above compound (4-2-1), the above compound (4-2-2), and the above compound (4-2). -3).
- These compounds are only examples of preferred compounds (1), (2), (3) and (4), and preferred compounds (1), (2), (3) and (4) are limited to these. Not.
- preferable examples of the compound (1-1-1) include, for example, the above compound (1-1-1a), the above compound (1-1-1b), or the above compound (1-1-1c) and the like.
- preferred as the compound (1-1-2) are, for example, the above compound (1-1-2a), the above compound (1-1-2b), or the above compound (1-1-2c) and the like.
- preferred as the compound (1-1-3) are, for example, the above compound (1-1-3a), the above compound (1-1-3b), or the above compound (1-1-3c) and the like.
- preferable examples of the compound (1-2-1) include, for example, the above compound (1-2-1a), the above compound (1-2-1b), or the above compound (1-2-1c) and the like.
- preferred as the compound (1-2-2) are, for example, the above compound (1-2-2a), the above compound (1-2-2b), or the above compound (1-2-2c) and the like.
- preferable examples of the compound (1-2-3) include, for example, the above compound (1-2-3a), the above compound (1-2-3b), or the above compound (1-2-3c) and the like.
- preferable examples of the compound (2-1-1) include, for example, the above compound (2-1-1a), the above compound (2-1-1b), or the above compound (2-1-1c) and the like.
- preferable examples of the compound (2-1-2) include, for example, the above compound (2-1-2a), the above compound (2-1-2b), or the above compound (2-1-2c) and the like.
- preferred as the compound (2-1-3) are, for example, the above compound (2-1-3a), the above compound (2-1-3b), or the above compound (2-1-3c) and the like.
- preferable examples of the compound (2-2-1) include, for example, the above compound (2-2-1a), the above compound (2-2-1b), or the above compound (2-2-1c).
- preferable examples of the compound (2-2-2) include, for example, the above compound (2-2-2a), the above compound (2-2-2b), or the above compound (2-2-2c).
- preferred as the compound (2-2-3) are, for example, the above compound (2-2-3a), the above compound (2-2-3b), or the above compound (2-2-3c) and the like.
- preferred as the compound (3-1-1) are, for example, the above compound (3-1-1a), the above compound (3-1-1b), or the above compound (3-1-1c).
- preferred as the compound (3-1-2) are, for example, the above compound (3-1-2a), the above compound (3-1-2b)), or the above compound (3-1-2). Examples thereof include compound (3-1-2c).
- preferred as the compound (3-1-3) are, for example, the above compound (3-1-3a), the above compound (3-1-3b)), or the above compound (3-1-3). Examples thereof include compound (3-1-3c).
- preferred as the compound (3-2-1) are, for example, the above compound (3-2-1a), the above compound (3-2-1b)), or the above compound (3-2-1).
- examples thereof include compound (3-2-1c).
- preferred as the compound (3-2-2) are, for example, the above compound (3-2-2a), the above compound (3-2-2b), or the above compound (3-2-2c) and the like.
- preferred as the compound (3-2-3) are, for example, the above compound (3-2-3a), the above compound (3-2-3b), or the above compound (3-2-3c) and the like.
- the compound (4-1-1) preferred as the compound (4-1-1) are, for example, the above compound (4-1-1a), the above compound (4-1-1b), or the above compound (4-1-1c) and the like.
- preferable examples of the compound (4-1-2) include, for example, the above compound (4-1-2a), the above compound (4-1-2b), or the above compound (4-1-2c) and the like.
- preferable examples of the compound (4-1-3) include, for example, the above compound (4-1-3a), the above compound (4-1-3b), or the above compound (4-1-3c).
- preferable examples of the compound (4-2-1) include, for example, the above compound (4-2-1a), the above compound (4-2-1b), or the above compound (4-2-1c) and the like.
- preferable examples of the compound (4-2-2) include, for example, the above compound (4-2-2a), the above compound (4-2-2b), or the above compound (4-2-2c) and the like.
- preferable examples of the compound (4-2-3) include, for example, the above compound (4-2-3a), the above compound (4-2-3b), or the above compound (4-2-3c) and the like.
- the fluorescent probe for ALP detection of the present embodiment it is preferable to add the fluorescent probe for ALP detection of the present embodiment to about 1 nM to 1 mM, particularly about 1 ⁇ M to 50 ⁇ M to a biological sample containing ALP.
- the biological sample is not particularly limited as long as it contains ALP, for example, a body fluid sample collected from a test animal, a cell extract collected from a test animal, a culture cell extract, etc. But are not limited to these.
- test animal is not particularly limited, and examples thereof include, but are not limited to, humans, monkeys, dogs, cats, rabbits, pigs, cows, mice, rats, and the like.
- a body fluid sample collected from the test animal for example, blood, serum, plasma, urine, puffy coat, saliva, semen, chest exudate, cerebrospinal fluid, tears, sputum, mucus
- body fluid sample collected from the test animal for example, blood, serum, plasma, urine, puffy coat, saliva, semen, chest exudate, cerebrospinal fluid, tears, sputum, mucus
- Examples include, but are not limited to, lymph, ascites, pleural effusion, amniotic fluid, bladder lavage fluid, and bronchoalveolar lavage fluid.
- examples of the types of cells or cultured cells collected from test animals include cells derived from tissues such as liver, kidney, osteoblast, placenta, and small intestine, but are not limited thereto.
- the fluorescent probe for detecting ALP of the present embodiment reacts, for example, a target substance (for example, an antigen or the like) fixed on a blot membrane with a specific binding substance (for example, an antibody against the antigen) for the target substance, Furthermore, it can be used in a blotting method such as a method of detecting with a secondary binding substance (for example, an ALP-labeled secondary antibody) specific to the specific binding substance labeled with ALP, a method of modifying or modifying the method.
- a target substance include biological substances such as proteins, nucleic acids, lipids, and saccharides.
- blotting methods include blotting methods widely used in the industry such as Western blotting, Southern blotting, Northern blotting, dot / slot blotting, and colony blotting. Furthermore, immunochromatography and the like are also included in the blotting method.
- the ALP detection fluorescent probe of the present embodiment can be used in a method for detecting the enzymatic activity of ALP in a biological sample by providing it in a well of a microdevice described later.
- a microdevice includes the above-described fluorescent probe for ALP detection.
- the enzymatic activity of ALP in a biological sample can be detected with high quantitativeness and sensitivity.
- the material of the microdevice is not particularly limited, and examples thereof include a glass material, silicon, a plastic including a dendritic polymer, or a copolymer.
- the glass material include soda lime glass, Pyrex (registered trademark) glass, Vycor (registered trademark) glass, and quartz glass.
- the resin polymer include poly (vinyl chloride), poly (vinyl alcohol), poly (methyl methacrylate), poly (vinyl acetate-co-maleic anhydride), poly (dimethylsiloxane) monomethacrylate, cyclic olefin polymer, Fluorocarbon polymer, polystyrene, polypropylene, polyethyleneimine and the like can be mentioned.
- Examples of the copolymer include poly (vinyl acetate-co-maleic anhydride), poly (styrene-co-maleic anhydride), poly (ethylene-co-acrylic acid), and derivatives thereof.
- Examples of the shape of the microdevice include a multi-well plate in which an arbitrary number of wells are arranged as shown in FIG. 1A. Examples of the number of wells include 1 to 1 million, for example, 10 to 500,000, for example, about 100,000 per plate.
- the pore diameter of the well of the microdevice of the present embodiment may be, for example, 10 nm or more and 10 ⁇ m or less, for example, 100 nm or more and 10 ⁇ m or less, for example, 1 ⁇ m or more and 10 ⁇ m or less.
- the depth of the well of the microdevice of the present embodiment may be, for example, 10 nm or more and 1 ⁇ m or less, for example, 100 nm or more and 800 ⁇ m or less, for example, 200 nm or more and 700 nm or less.
- the microdevice of this embodiment may include one type of the above-described fluorescent probe for ALP detection per well. Thereby, with respect to ALP1 molecule in a biological sample, the fluorescence intensity of one type of fluorescent probe for ALP detection can be detected, and the enzyme activities of ALP1 molecules can be compared.
- the microdevice of the present embodiment may include two or more kinds of the above-described fluorescent probes for ALP detection having different reaction points in one well and having different fluorescence wavelengths.
- “having different reaction points” means that the cleavage position by ALP is different, that is, a phosphate group hydrolyzed by ALP from the mother nucleus (for example, coumarin skeleton) of a fluorescent compound. It means that the length is different.
- two types of ALP detection fluorescent probes having different reaction points and different fluorescence wavelengths for example, the following compound (1-1-1a) and compound (2-2-1b) Is mentioned.
- ALP has subtypes such as ALP1, ALP2, ALP3, ALP4, ALP5, ALP6, and ALPI.
- ALP1 high molecular ALP.
- the bile duct obstruction increases the internal pressure of the bile duct, and the bile component appears in the blood in a state of flowing back into the sinusoids. When ALP1 appears, it is accompanied by an increase in ALP2.
- ALP2 Hepatic ALP. Consists of adult serum ALP. If the bile duct is damaged in some way, synthesis in the liver increases and blood levels increase.
- ALP3 Bone ALP. The main component of pediatric serum ALP. It increases with bone renewal.
- ALP4 placental ALP.
- ALP5 small intestinal ALP. This ALP enters the large circulatory system through the thoracic lymph from the small intestinal mucosa with the absorption of fat. However, in humans with blood types B and O, even if they are normal, they appear in the blood, and in liver cirrhosis, chronic renal failure, diabetes, etc., the degree is enhanced. This is thought to be due to a decrease in processing in the liver. There is familial hyperalpemia due to increased small bowel ALP. ALP6: immunoglobulin-bound ALP. It often appears at the extreme stage of ulcerative colitis. ALPI: isozyme detected by polyacrylamide gel electrophoresis. Liver cancer ALP (variant ALP) produced by hepatocellular carcinoma. It is a tumor marker for hepatocellular carcinoma.
- ALP subtypes can be classified from the fluorescence intensity pattern. Furthermore, a biological sample derived from a healthy subject and a subject having a disease using a microdevice having two or more kinds of the above-described fluorescent probes for detecting ALP having different reaction points in one well. Thus, it can be applied to the discovery of a subtype of ALP that is found in a disease-specific manner and a method for diagnosing the disease (see FIG. 2).
- the amount of the fluorescent probe for ALP detection contained in one well of the microdevice of the present embodiment may be, for example, 100 nM or more and 100 ⁇ M or less, for example, 1 ⁇ M or more and 100 ⁇ M or less, for example, 10 ⁇ M or more and 100 ⁇ M or less. I just need it.
- the microdevice of this embodiment As a method of using the microdevice of this embodiment, first, a solution containing a biological sample is added to the microdevice. Next, sealing oil is dropped to encapsulate ALP in the biological sample in the well of the microdevice. At this time, the phosphate group is eliminated due to hydrolysis by ALP and emits fluorescence.
- the conventional compound for example, compound (10)
- the compound eg, compound (1-1-1a)
- contained in the fluorescent probe has an anionic functional group (eg, carboxy group), and thus does not dissolve in the sealing oil. Does not leak out of the microdevice (see FIG. 1B). Thereby, ALP can be detected with high quantitativeness and sensitivity.
- the method for detecting the enzymatic activity of alkaline phosphatase in a biological sample is a method using the above-described microdevice.
- the enzymatic activity of ALP in a biological sample can be detected with high quantitativeness and sensitivity. Details of the detection method of this embodiment will be described below.
- a solution containing a biological sample is added to a microdevice including the above-described ALP detection fluorescent probe.
- the biological sample include those similar to those exemplified in the above-mentioned “ ⁇ ALP detection fluorescent probe >>”.
- the pH of the solution containing the biological sample may be a value close to that in the living body, and specifically, for example, may be 6.0 or more and 8.0 or less.
- the protein concentration of the biological sample may be, for example, from 1 pM to 100 pM, for example, from 10 pM to 100 pM.
- Examples of the method for measuring the protein concentration of a biological sample include a method using an antibody antigen reaction (for example, ELISA method), a colorimetric method using a reaction between a protein and a reagent (for example, a bicinchoninic acid (BCA) method, Bradford method, Raleigh method, Biuret method, etc.).
- the biological sample may be diluted with various aqueous solvents or the like so as to have the above concentration.
- Examples of the aqueous solvent include water, physiological saline, phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline, and the like. However, it is not limited to these.
- sealing oil is dropped to encapsulate the ALP in the biological sample in the well of the microdevice provided with the above-described fluorescent probe for ALP detection.
- Any known sealing oil may be used as long as it is generally used for enclosing a sample in a microdevice, and examples thereof include fluorinated oil (FC-40, etc.).
- Step 3 the fluorescence in the well of the microdevice is detected using a fluorescence scanner or the like. Enzyme activity can be evaluated from the detected fluorescence intensity.
- a microdevice having two or more kinds of the above-described fluorescent probes for detecting ALP having different reaction points in one well a living body derived from a healthy subject and a subject having a disease By comparing the enzyme activity of ALP in a sample, it can be applied to the discovery of ALP subtypes that are found in a disease-specific manner and a method for diagnosing the disease (see FIG. 2).
- the optical properties of the compound (1-1-1a) -1 after the phosphate group is eliminated by an enzymatic reaction with ALP are shown in Table 1 and FIG. Shown in “Neutral Form” was measured by dissolving compound (1-1-1a) -1 in a sodium phosphate solution (pH 3.0), and “Anion Form” was measured by adding compound (1- 1-1a) -1 was dissolved and measured.
- the optical properties of the compound (2-1-2a) -1 after the phosphate group is eliminated by an enzymatic reaction with ALP are shown in Table 2 and FIG. Shown in “Neutral Form” was measured by dissolving compound (2-1-2a) -1 in a sodium phosphate solution (pH 3.0), and “Anion Form” was measured by adding compound (2- 1-2a) -1 was dissolved and measured.
- FIGS. 5A and 6A show images obtained by photographing a microdevice to which each diluent is added 22 minutes and 132 minutes after the start of fluorescence measurement with a fluorescence microscope.
- FIG. 5B and FIG. 6B show the fluorescence intensity in the microdevice to which each diluted solution 132 minutes after the start of fluorescence measurement was added.
- FIGS. 7A and 7B the optical characteristics of the compound (3-1-2a) -1 after the phosphate group is eliminated by an enzymatic reaction with ALP are shown in FIGS. 7A and 7B.
- “Phenolform” was measured by dissolving compound (3-1-2a) -1 in 100 mM sodium phosphate solution (pH 3.4), and “Phenoxide Form” was 0.1N sodium hydroxide aqueous solution (pH 13).
- Compound (3-1-2a) -1 was dissolved in and measured.
- FIG. 8 shows the fluorescence intensity in the microdevice to which the diluted solution before addition of ALP (ALP ( ⁇ )) and 5 minutes after addition of ALP (ALP (+)) was added.
- the fluorescence measurement of the compound (3-1-2a) was performed under excitation at 590 nm.
- the fluorescence spectrum before and after the enzyme reaction with ALP using the compound (3-1-2a) was measured, and as a result, the fluorescence increased about 84 times.
- FIG. 9 shows the fluorescence intensity in the microdevice to which the diluted solution was added 10 minutes after the addition of ALP (ALP ( ⁇ )) and 10 minutes after the addition of ALP (ALP (+)). Shown in FIG. 10 (compound (2-1-2b)) and FIG. 11 (compound (3-1-2b)).
- the fluorescence measurement of the compound (1-1-1b) was conducted under excitation of 400 nm, the fluorescence measurement of the compound (2-1-2b) was conducted under excitation of 490 nm, and the fluorescence measurement of the compound (3-1-2b) was measured. Performed under 590 nm excitation.
- the obtained compound (2-1-2c) has a self-cleaving linker, and as shown in the following formula, an elimination reaction occurs in two steps by an enzymatic reaction with ALP, and a fluorophore is released. Is done.
- FIG. 12 shows the fluorescence intensity in the microdevice to which the diluted solution was added before the addition of ALP (ALP ( ⁇ )) and after 10 minutes from the addition of ALP (ALP (+)).
- the fluorescence measurement of the compound (2-1-2c) was performed under excitation at 490 nm.
- the fluorescent probe for ALP detection of the present embodiment does not leak out of the microdevice, and can measure the enzymatic activity of ALP with high accuracy.
- the enzymatic activity of ALP in a biological sample can be measured with high quantitativeness and sensitivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
Abstract
Description
本発明は、アルカリフォスファターゼ検出用蛍光プローブ及びその使用に関する。具体的には、本発明は、化合物、アルカリフォスファターゼ検出用蛍光プローブ、マイクロデバイス及び生体試料中のアルカリフォスファターゼの酵素活性の検出方法に関する。本願は、2017年3月3日に、日本に出願された特願2017-041149号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a fluorescent probe for detecting alkaline phosphatase and its use. Specifically, the present invention relates to a compound, a fluorescent probe for detecting alkaline phosphatase, a microdevice, and a method for detecting the enzymatic activity of alkaline phosphatase in a biological sample. This application claims priority on March 3, 2017 based on Japanese Patent Application No. 2017-041149 filed in Japan, the contents of which are incorporated herein by reference.
マイクロデバイスを用いた単一酵素の酵素活性の検出方法は、酵素の個々の生化学パラメータを明らかにすること、該酵素をレポータータンパク質として用いて特定のタンパク質の存在を高感度に検出すること等を目的として汎用されている。また、近年では、特定の疾患と関連して異常値を示す生体試料中の酵素活性を高感度に観察することで、病態の診断への応用が期待されている。 The method for detecting the enzyme activity of a single enzyme using a microdevice is to clarify individual biochemical parameters of the enzyme, to detect the presence of a specific protein with high sensitivity using the enzyme as a reporter protein, etc. It is widely used for the purpose. In recent years, high-sensitivity observation of enzyme activity in biological samples showing abnormal values in connection with specific diseases is expected to be applied to diagnosis of pathological conditions.
マイクロデバイスを用いた酵素活性の検出方法の代表的な研究例として、アルカリフォスファターゼ(Alkaline Phosphatase;ALP)に関する研究が挙げられる。ALPは、これまでマイクロデバイスを用いて特定のタンパク質を高感度に検出する際のレポータータンパク質として用いられてきた。また、生体内、特に血液中のALP活性の異常が多くの病気の診断マーカーとなることが知られている。このことから、生体試料中のALP活性を高感度に検出することで、新たな病態診断方法を確立することが期待されている。 As a typical research example of a method for detecting enzyme activity using a microdevice, there is a research on alkaline phosphatase (ALP). ALP has so far been used as a reporter protein for detecting a specific protein with high sensitivity using a microdevice. Further, it is known that abnormalities of ALP activity in vivo, particularly in blood, serve as diagnostic markers for many diseases. Therefore, it is expected to establish a new method for diagnosing a disease state by detecting ALP activity in a biological sample with high sensitivity.
本発明者らは、これまで、特許文献1に示すALPを検出するための蛍光プローブを開発してきた。
The present inventors have so far developed a fluorescent probe for detecting ALP shown in
特許文献1に記載の蛍光プローブ等、従来のALP検出用蛍光プローブは、高い脂溶性を有する。そのため、マルチウェルチャンバー型のマイクロデバイスを用いた酵素活性の検出方法において、デバイスを封入する際に、デバイスのウェル内の水溶液中からデバイス外のシーリング用途で用いられる有機溶媒中へ蛍光プローブの漏出が起こり、高い定量性及び感度が求められる計測に適さないことが課題であった。
Conventional fluorescent probes for detecting ALP, such as the fluorescent probe described in
本発明は、上記事情に鑑みてなされたものであって、高い定量性及び感度が求められる計測に適したALP検出用蛍光プローブを提供する。 The present invention has been made in view of the above circumstances, and provides a fluorescent probe for ALP detection suitable for measurement requiring high quantitativeness and sensitivity.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、従来のALP検出用蛍光プローブに用いられる化合物にアニオン性官能基を付与することで、マイクロデバイス外への蛍光プローブの漏出を防ぎ、高い定量性及び感度が求められる計測に適したALP検出用蛍光プローブが得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors leaked the fluorescent probe out of the microdevice by adding an anionic functional group to the compound used in the conventional fluorescent probe for ALP detection. It was found that a fluorescent probe for ALP detection suitable for measurement requiring high quantitativeness and sensitivity was obtained, and the present invention was completed.
すなわち、本発明は、以下の態様を含む。
本発明の第1態様に係るアルカリフォスファターゼ検出用蛍光プローブは、アニオン性官能基と、リン酸基とを有する化合物を含むものである。
上記第1態様に係るアルカリフォスファターゼ検出用蛍光プローブにおいて、前記アニオン性官能基はカルボキシ基、スルホン酸基又はリン酸基であってもよい。
上記第1態様に係るアルカリフォスファターゼ検出用蛍光プローブにおいて、前記化合物が下記一般式(1)、(2)、(3)又は(4)で表される化合物であってもよい。
That is, the present invention includes the following aspects.
The fluorescent probe for detecting alkaline phosphatase according to the first aspect of the present invention includes a compound having an anionic functional group and a phosphate group.
In the fluorescent probe for detecting alkaline phosphatase according to the first aspect, the anionic functional group may be a carboxy group, a sulfonic acid group, or a phosphoric acid group.
In the fluorescent probe for detecting alkaline phosphatase according to the first aspect, the compound may be a compound represented by the following general formula (1), (2), (3) or (4).
前記一般式(1)中、R11、R12及びR13はそれぞれ独立に水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は、末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。前記R11、前記R12及び前記R13のうちいずれか一つが末端にアニオン性官能基を有する基である。R14及びR15はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y11は単結合、-O-(CH2)n11-、-O-(CH2)n12-Ar11-、-NH-(CH2)n13-、又は、-NH-(CH2)n14-Ar12-である。n11、n12、n13及びn14はそれぞれ独立に1~10の整数である。Ar11及びAr12はそれぞれ独立に置換又は無置換のアリーレン基である。 In the general formula (1), R 11 , R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Any one of R 11 , R 12 and R 13 is a group having an anionic functional group at the terminal. R 14 and R 15 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms. Y 11 represents a single bond, -O- (CH 2) n11 - , - O- (CH 2) n12 -Ar 11 -, - NH- (CH 2) n13 -, or, -NH- (CH 2) n14 - Ar 12 - is. n11, n12, n13 and n14 are each independently an integer of 1 to 10. Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
前記一般式(2)中、R21はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR21は互いに同じであってもよく、異なっていてもよい。R22はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR22は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。X21は酸素原子又はN+HR’である。R’は水素原子又は炭素数1~10のアルキル基である。Y21は単結合、-O-(CH2)n21-、-O-(CH2)n22-Ar21-、-NH-(CH2)n23-、又は、-NH-(CH2)n24-Ar22-である。n21、n22、n23及びn24はそれぞれ独立に1~10の整数である。Ar21及びAr22はそれぞれ独立に置換又は無置換のアリーレン基である。 In the general formula (2), R 21 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 21 may be the same as or different from each other. R 22 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 22 may be the same as or different from each other. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. X 21 is an oxygen atom or N + HR ′. R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Y 21 represents a single bond, -O- (CH 2) n21 - , - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 - Ar 22 - is. n21, n22, n23 and n24 are each independently an integer of 1 to 10. Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
前記一般式(3)中、R31はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR31は互いに同じであってもよく、異なっていてもよい。R32はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR32は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。X32は酸素原子又はN+HR”である。R”は水素原子又は炭素数1~10のアルキル基である。Y31は単結合、-O-(CH2)n31-、-O-(CH2)n32-Ar31-、-NH-(CH2)n33-、又は、-NH-(CH2)n34-Ar32-である。n31、n32、n33及びn34はそれぞれ独立に1~10の整数である。Ar31及びAr32はそれぞれ独立に置換又は無置換のアリーレン基である。 In the general formula (3), R 31 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 31 may be the same as or different from each other. R 32 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 32 may be the same as or different from each other. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. X 32 is an oxygen atom or N + HR ″. R ″ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Y 31 represents a single bond, -O- (CH 2) n31 - , - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 - Ar 32 —. n31, n32, n33 and n34 are each independently an integer of 1 to 10. Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
前記一般式(4)中、R41はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR41は互いに同じであってもよく、異なっていてもよい。R42はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR42は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R45及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y41は単結合、-O-(CH2)n41-、-O-(CH2)n42-Ar41-、-NH-(CH2)n43-、又は、-NH-(CH2)n44-Ar42-である。n41、n42、n43及びn44はそれぞれ独立に1~10の整数である。Ar41及びAr42はそれぞれ独立に置換又は無置換のアリーレン基である。 In the general formula (4), R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 41 may be the same as or different from each other. R 42 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 42 may be the same as or different from each other. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 41 represents a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 -Ar 41 -, - NH- (CH 2) n43 -, or, -NH- (CH 2) n44 - Ar 42 —. n41, n42, n43 and n44 are each independently an integer of 1 to 10. Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
上記第1態様に係るアルカリフォスファターゼ検出用蛍光プローブにおいて、前記化合物が下記一般式(1-1)、(1-2)、(2-1)、(2-2)、(3-1)、(3-2)、(4-1)又は(4-2)で表される化合物であってもよい。 In the fluorescent probe for detecting alkaline phosphatase according to the first aspect, the compound is represented by the following general formulas (1-1), (1-2), (2-1), (2-2), (3-1), It may be a compound represented by (3-2), (4-1) or (4-2).
(一般式(1-1)中、R111は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基、及びリン酸基からなる群より選ばれるいずれか一つである。Y111は単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-である。n111及びn112はそれぞれ独立に1~10の整数である。Ar111は置換又は無置換のアリーレン基である。
一般式(1-2)中、R121は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。Y121は-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-である。n121及びn122はそれぞれ独立に1~10の整数である。Ar121は置換又は無置換のアリーレン基である。)
(In the general formula (1-1), R 111 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, where n111 and n112 are each independently an integer of 1 to 10 Ar 111 is a substituted or unsubstituted arylene group.
In the general formula (1-2), R 121 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —. n121 and n122 are each independently an integer of 1 to 10. Ar 121 is a substituted or unsubstituted arylene group. )
(一般式(2-1)中、R211及びR212はそれぞれ独立に炭素数1~10のアルキル基である。R213は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y211は単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-である。n211及びn212はそれぞれ独立に1~10の整数である。Ar211は置換又は無置換のアリーレン基である。
一般式(2-2)中、R221及びR222はそれぞれ独立に炭素数1~10のアルキル基である。R223は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R224は水素原子又は炭素数1~10のアルキル基である。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。)
(In General Formula (2-1), R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms. R 213 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or a carbon number of Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, wherein n 211 and n 212 are each independently 1 to .Ar 211 is an integer of 10 is a substituted or unsubstituted arylene group.
In general formula (2-2), R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms. R 223 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —. n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group. )
(一般式(3-1)中、R311及びR312はそれぞれ独立に炭素数1~10のアルキル基である。R313は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y311は単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-である。n311及びn312はそれぞれ独立に1~10の整数である。Ar311は置換又は無置換のアリーレン基である。
一般式(3-2)中、R321及びR322はそれぞれ独立に炭素数1~10のアルキル基である。R323は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R324は水素原子又は炭素数1~10のアルキル基である。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。)
(In the general formula (3-1), R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms. R 313 is a group having an anionic functional group at its terminal. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms X 31 is a silicon atom, phosphorus atom, germanium atom or tin it is an atomic .Y 311 is a single bond, -O- (CH 2) n311 - , or, -O- (CH 2) n312 -Ar 311 - a is .n311 and N312 are each independently .Ar 311 is an integer of 1-10 is a substituted or unsubstituted arylene group.
In general formula (3-2), R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. R 323 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —. n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group. )
(一般式(4-1)中、R411及びR412はそれぞれ独立に炭素数1~10のアルキル基である。R413は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y411は単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-である。n411及びn412はそれぞれ独立に1~10の整数である。Ar411は置換又は無置換のアリーレン基である。
一般式(4-2)中、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。R423は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。)
(In General Formula (4-1), R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. R 413 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 44 , R 47 and R 48 are Each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom, or a tin atom, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —. The .n411 and n412 is the .Ar 411 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group.
In general formula (4-2), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. R 423 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —. n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group. )
上記第1態様に係るアルカリフォスファターゼ検出用蛍光プローブにおいて、前記化合物が下記一般式(1-1-1)、(1-1-2)、(1-1-3)、(1-2-1)、(1-2-2)、(1-2-3)、(2-1-1)、(2-1-2)、(2-1-3)、(2-2-1)、(2-2-2)、(2-2-3)、(3-1-1)、(3-1-2)、(3-1-3)、(3-2-1)、(3-2-2)、(3-2-3)、(4-1-1)、(4-1-2)、(4-1-3)、(4-2-1)、(4-2-2)又は(4-2-3)で表される化合物であってもよい。 In the fluorescent probe for detecting alkaline phosphatase according to the first aspect, the compound is represented by the following general formulas (1-1-1), (1-1-2), (1-1-3), (1-2-1). ), (1-2-2), (1-2-3), (2-1-1), (2-1-2), (2-1-3), (2-2-1), (2-2-2), (2-2-3), (3-1-1), (3-1-2), (3-1-3), (3-2-1), (3 -2-2), (3-2-2), (4-1-1), (4-1-2), (4-1-3), (4-2-1), (4-2 -2) or (4-2-3).
(一般式(1-1-1)~(1-2-3)中、Y111は単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-である。n111及びn112はそれぞれ独立に1~10の整数である。Ar111は置換又は無置換のアリーレン基である。Y121は-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-である。n121及びn122はそれぞれ独立に1~10の整数である。Ar121は置換又は無置換のアリーレン基である。) (In the general formulas (1-1-1) to (1-2-3), Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —. N111 and n112 are each independently an integer of 1 to 10. Ar 111 is a substituted or unsubstituted arylene group, Y 121 is —NH— (CH 2 ) n121 —, or —NH— ( CH 2 ) n122 —Ar 121 —, where n121 and n122 are each independently an integer of 1 to 10. Ar 121 is a substituted or unsubstituted arylene group.
(一般式(2-1-1)~(2-2-3)中、Y211は単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-である。n211及びn212はそれぞれ独立に1~10の整数である。Ar211は置換又は無置換のアリーレン基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。) (In the general formulas (2-1-1) to (2-2-3), Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —. the .n211 and n212 is the .Ar 211 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group .Y 221 is a single bond, -NH- (CH 2) n221 - , or - NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group.
(一般式(3-1-1)~(3-2-1)中、Y311は単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-である。n311及びn312はそれぞれ独立に1~10の整数である。Ar311は置換又は無置換のアリーレン基である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。) (In the general formulas (3-1-1) to (3-2-1), Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —. N311 and n312 are each independently an integer of 1 to 10. Ar 311 is a substituted or unsubstituted arylene group, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or — NH— (CH 2 ) n322 —Ar 321 —, wherein n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group.
(一般式(4-1-1)~(4-2-3)中、Y411は単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-である。n411及びn412はそれぞれ独立に1~10の整数である。Ar411は置換又は無置換のアリーレン基である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。) (In the general formulas (4-1-1) to (4-2-3), Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —. N411 and n412 are each independently an integer of 1 to 10. Ar 411 is a substituted or unsubstituted arylene group, Y 421 is —NH— (CH 2 ) n421 —, or —NH— ( CH 2 ) n422 —Ar 421 —, where n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group.
上記第1態様に係るアルカリフォスファターゼ検出用蛍光プローブは、マイクロデバイス用であってもよい。 The alkaline phosphatase detection fluorescent probe according to the first aspect may be for a micro device.
本発明の第2態様に係るマイクロデバイスは、上記第1態様に係るアルカリフォスファターゼ検出用蛍光プローブを備える。
上記第2態様に係るマイクロデバイスは、前記マイクロデバイスの1つのウェルに1種類の前記アルカリフォスファターゼ検出用蛍光プローブを備えていてもよい。
上記第2態様に係るマイクロデバイスは、前記マイクロデバイスの1つのウェルに異なる反応点を有し、且つ、異なる蛍光波長の2種類以上の前記アルカリフォスファターゼ検出用蛍光プローブを備えていてもよい。
A microdevice according to a second aspect of the present invention includes the fluorescent probe for detecting alkaline phosphatase according to the first aspect.
The microdevice according to the second aspect may include one kind of the fluorescent probe for detecting alkaline phosphatase in one well of the microdevice.
The microdevice according to the second aspect may include two or more fluorescent probes for detecting alkaline phosphatase having different reaction points in one well of the microdevice and having different fluorescence wavelengths.
本発明の第3態様に係るアルカリフォスファターゼの酵素活性の検出方法は、上記第2態様に係るマイクロデバイスを用いる方法である。 The method for detecting the enzymatic activity of alkaline phosphatase according to the third aspect of the present invention is a method using the microdevice according to the second aspect.
本発明の第4態様に係る化合物は、下記一般式(2)で表される化合物である。 The compound according to the fourth aspect of the present invention is a compound represented by the following general formula (2).
(一般式(2)中、R21はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR21は互いに同じであってもよく、異なっていてもよい。R22はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR22は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。X21は酸素原子又はN+HR’である。R’は水素原子又は炭素数1~10のアルキル基である。Y21は単結合、-O-(CH2)n21-、-O-(CH2)n22-Ar21-、-NH-(CH2)n23-、又は、-NH-(CH2)n24-Ar22-である。n21、n22、n23及びn24はそれぞれ独立に1~10の整数である。Ar21及びAr22はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (2), R 21 represents 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group. A plurality of R 21 may be the same as each other. , good .R 22 be different a 1-2 monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group. R 22 there are a plurality of mutually identical The anionic functional group may be any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, R 23 , R 24 , R 25, and R 26 is independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, X 21 is an oxygen atom or N + HR ′, and R ′ is a hydrogen atom or carbon atom having 1 to 10 carbon atoms. Y 21 is a single bond, —O— ( CH 2) n21 -, - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 -Ar 22 - are as .n21, n22, n23 and n24 are each independently an integer of 1 to 10. Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.)
上記第4態様に係る化合物は、下記一般式(2-1)又は(2-2)で表される化合物であってもよい。 The compound according to the fourth aspect may be a compound represented by the following general formula (2-1) or (2-2).
(一般式(2-1)中、R211及びR212はそれぞれ独立に炭素数1~10のアルキル基である。R213は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y211は単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-である。n211及びn212はそれぞれ独立に1~10の整数である。Ar211は置換又は無置換のアリーレン基である。
一般式(2-2)中、R221及びR222はそれぞれ独立に炭素数1~10のアルキル基である。R223は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R224は水素原子又は炭素数1~10のアルキル基である。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。)
(In General Formula (2-1), R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms. R 213 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, wherein n 211 and n 212 are each independently 1 to .Ar 211 is an integer of 10 is a substituted or unsubstituted arylene group.
In general formula (2-2), R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms. R 223 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —. n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group. )
上記第4態様に係る化合物は、下記一般式(2-1-1)、(2-1-2)、(2-1-3)、(2-2-1)、(2-2-2)又は(2-2-3)で表される化合物であってもよい。 The compound according to the fourth aspect includes the following general formulas (2-1-1), (2-1-2), (2-1-3), (2-2-1), (2-2-2) Or a compound represented by (2-2-3).
(一般式(2-1-1)~(2-2-3)中、Y211は単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-である。n211及びn212はそれぞれ独立に1~10の整数である。Ar211は置換又は無置換のアリーレン基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。) (In the general formulas (2-1-1) to (2-2-3), Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —. the .n211 and n212 is the .Ar 211 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group .Y 221 is a single bond, -NH- (CH 2) n221 - , or - NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group.
本発明の第5態様に係る化合物は、下記一般式(3)で表される化合物である。 The compound according to the fifth aspect of the present invention is a compound represented by the following general formula (3).
(一般式(3)中、R31はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR31は互いに同じであってもよく、異なっていてもよい。R32はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR32は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。X32は酸素原子又はN+HR”である。R”は水素原子又は炭素数1~10のアルキル基である。Y31は単結合、-O-(CH2)n31-、-O-(CH2)n32-Ar31-、-NH-(CH2)n33-、又は、-NH-(CH2)n34-Ar32-である。n31、n32、n33及びn34はそれぞれ独立に1~10の整数である。Ar31及びAr32はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (3), R 31 is 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group. A plurality of R 31 may be the same as each other. may .R 32 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group. R 32 there are a plurality of mutually identical The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, R 33 , R 34 , R 37 and R 38 is each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, and R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom , Phosphorus atom, germanium atom or tin atom. X 32 is an oxygen atom or N + HR ″. R ″ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Y 31 is a single bond, —O - (CH 2) n31 -, - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 -Ar 32 - are as .N31, n32, n33 and n34 are each independently an integer of 1 to 10. Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.)
上記第5態様に係る化合物は、下記一般式(3-1)又は(3-2)で表される化合物であってもよい。 The compound according to the fifth aspect may be a compound represented by the following general formula (3-1) or (3-2).
(一般式(3-1)中、R311及びR312はそれぞれ独立に炭素数1~10のアルキル基である。R313は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y311は単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-である。n311及びn312はそれぞれ独立に1~10の整数である。Ar311は置換又は無置換のアリーレン基である。
一般式(3-2)中、R321及びR322はそれぞれ独立に炭素数1~10のアルキル基である。R323は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R324は水素原子又は炭素数1~10のアルキル基である。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。)
(In the general formula (3-1), R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms. R 313 is a group having an anionic functional group at its terminal. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms X 31 is a silicon atom, phosphorus atom, germanium atom or tin it is an atomic .Y 311 is a single bond, -O- (CH 2) n311 - , or, -O- (CH 2) n312 -Ar 311 - a is .n311 and N312 are each independently .Ar 311 is an integer of 1-10 is a substituted or unsubstituted arylene group.
In general formula (3-2), R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. R 323 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —. n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group. )
上記第5態様に係る化合物において、前記X31が珪素原子であってもよい。
上記第5態様に係る化合物は下記一般式(3-1-1)、(3-1-2)、(3-1-3)、(3-2-1)、(3-2-2)又は(3-2-3)で表される化合物であってもよい。
In the compound according to the fifth aspect, the X 31 may be a silicon atom.
The compound according to the fifth aspect includes the following general formulas (3-1-1), (3-1-2), (3-1-3), (3-2-1), (3-2-2) Alternatively, it may be a compound represented by (3-2-3).
(一般式(3-1-1)~(3-2-1)中、Y311は単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-である。n311及びn312はそれぞれ独立に1~10の整数である。Ar311は置換又は無置換のアリーレン基である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。) (In the general formulas (3-1-1) to (3-2-1), Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —. N311 and n312 are each independently an integer of 1 to 10. Ar 311 is a substituted or unsubstituted arylene group, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or — NH— (CH 2 ) n322 —Ar 321 —, wherein n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group.
本発明の第6態様に係る化合物は、下記一般式(4)で表される化合物である。 The compound according to the sixth aspect of the present invention is a compound represented by the following general formula (4).
(一般式(4)中、R41はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR41は互いに同じであってもよく、異なっていてもよい。R42はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR42は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R45及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y41は単結合、-O-(CH2)n41-、-O-(CH2)n42-Ar41-、-NH-(CH2)n43-、又は、-NH-(CH2)n44-Ar42-である。n41、n42、n43及びn44はそれぞれ独立に1~10の整数である。Ar41及びAr42はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (4), R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 41 may be the same as each other. may .R 42 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group. R 42 there are a plurality of mutually identical The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, and R 43 is a hydrogen atom or a carbon number of 1. R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently a carbon number. 1 to 10 alkyl groups or carbon 6-10 aryl group .X 41 silicon atom, a phosphorus atom, a germanium atom or a tin atom .Y 41 is a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 —Ar 41 —, —NH— (CH 2 ) n43 —, or —NH— (CH 2 ) n44 —Ar 42 —, wherein n41, n42, n43 and n44 are each independently an integer of 1 to 10. Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.)
上記第6態様に係る化合物は、下記一般式(4-1)又は(4-2)で表される化合物であってもよい。 The compound according to the sixth aspect may be a compound represented by the following general formula (4-1) or (4-2).
(一般式(4-1)中、R411及びR412はそれぞれ独立に炭素数1~10のアルキル基である。R413は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y411は単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-である。n411及びn412はそれぞれ独立に1~10の整数である。Ar411は置換又は無置換のアリーレン基である。
一般式(4-2)中、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。R423は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。)
(In General Formula (4-1), R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. R 413 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 44 , R 47 and R 48 are Each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom, or a tin atom, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —. The .n411 and n412 is the .Ar 411 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group.
In general formula (4-2), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. R 423 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —. n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group. )
上記第6態様に係る化合物において、前記X41が珪素原子であってもよい。
上記第6態様に係る化合物は、下記一般式(4-1-1)、(4-1-2)、(4-1-3)、(4-2-1)、(4-2-2)、又は(4-2-3)で表される化合物であってもよい。
In the compound according to the sixth aspect, X 41 may be a silicon atom.
The compound according to the sixth aspect includes the following general formulas (4-1-1), (4-1-2), (4-1-3), (4-2-1), (4-2-2) Or a compound represented by (4-2-3).
(一般式(4-1-1)~(4-2-3)中、Y411は単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-である。n411及びn412はそれぞれ独立に1~10の整数である。Ar411は置換又は無置換のアリーレン基である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。) (In the general formulas (4-1-1) to (4-2-3), Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —. N411 and n412 are each independently an integer of 1 to 10. Ar 411 is a substituted or unsubstituted arylene group, Y 421 is —NH— (CH 2 ) n421 —, or —NH— ( CH 2 ) n422 —Ar 421 —, where n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group.
上記態様のALP検出用蛍光プローブは、高い定量性及び感度が求められる計測に適している。 The ALP detection fluorescent probe of the above aspect is suitable for measurement requiring high quantitativeness and sensitivity.
以下、本発明について、詳細に説明する。
なお、本明細書において、濃度の単位「M」は「モル/L」を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, the unit of concentration “M” means “mol / L”.
≪化合物(1)≫
本発明の第1実施形態に係る化合物は、下記一般式(1)で表される(本明細書においては、「化合物(1)」と称する場合がある)。
<< Compound (1) >>
The compound according to the first embodiment of the present invention is represented by the following general formula (1) (in this specification, it may be referred to as “compound (1)”).
(一般式(1)中、R11、R12及びR13はそれぞれ独立に水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は、末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。前記R11、前記R12及び前記R13のうちいずれか一つが末端にアニオン性官能基を有する基である。R14及びR15はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y11は単結合、-O-(CH2)n11-、-O-(CH2)n12-Ar11-、-NH-(CH2)n13-、又は、-NH-(CH2)n14-Ar12-である。n11、n12、n13及びn14はそれぞれ独立に1~10の整数である。Ar11及びAr12はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (1), R 11 , R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, and any one of R 11 , R 12 and R 13 is an anionic functional group at the terminal. R 14 and R 15 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms Y 11 is a single bond, —O— (CH 2 ) n11 — , -O- (CH 2) n12 -Ar 11 -, - NH- (CH 2) n13 -, or, -NH- (CH 2) n14 -Ar 12 - are as .n11, n12, n13 and n14 it The And each independently represents an integer of 1 to 10. Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
化合物(1)はクマリン誘導体であり、アルカリ性条件下で、アルカリフォスファターゼ(Alkaline Phosphatase;ALP)により加水分解されるリン酸基を有する化合物である。
また、化合物(1)はALPによる加水分解でリン酸基が脱離することで蛍光を発する蛍光性化合物である。
Compound (1) is a coumarin derivative, and is a compound having a phosphate group that is hydrolyzed by alkaline phosphatase (ALP) under alkaline conditions.
Compound (1) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
なお、本明細書において「誘導体」とは、元の化合物の1個以上の水素原子が水素原子以外の基(置換基)で置換されてなるもの、又は、元の化合物の1個以上の炭素原子が単独で、若しくは、この炭素原子に結合している水素原子とともに、他の基(置換基)で置換されてなるもの、を意味する。 In the present specification, the “derivative” means that one or more hydrogen atoms of the original compound are substituted with a group other than a hydrogen atom (substituent), or one or more carbons of the original compound. This means that an atom is substituted alone or together with a hydrogen atom bonded to this carbon atom, is substituted with another group (substituent).
<R11、R12及びR13>
一般式(1)中、R11、R12及びR13はそれぞれ独立に水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は、末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。
前記R11、前記R12及び前記R13のうちいずれか一つが末端にアニオン性官能基を有する基である。中でも、化合物(1)(非解離型(ニュートラル型))、及び後述に示すリン酸基脱離後の化合物(1)-1(解離型(アニオン型))の最大吸収波長が大きく乖離することから、R13が末端にアニオン性官能基を有する基であることが好ましい。
<R 11 , R 12 and R 13 >
In the general formula (1), R 11 , R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
Any one of R 11 , R 12 and R 13 is a group having an anionic functional group at the terminal. In particular, the maximum absorption wavelength of compound (1) (non-dissociation type (neutral type)) and compound (1) -1 (dissociation type (anion type)) after elimination of a phosphate group, which will be described later, greatly deviate. Therefore, R 13 is preferably a group having an anionic functional group at the terminal.
なお、本明細書における「末端にアニオン性官能基を有する基」とは、例えば、アニオン性官能基のみからなる基からなってもよく、又は、リンカーY’にアニオン性官能基が結合している基であってもよい。前記リンカーY’としては、例えば、-O-、-NH-を含んでいてもよい炭素数1~10のアルキレン基等が挙げられる。
中でも、一般式(1)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
In addition, the “group having an anionic functional group at the end” in the present specification may consist of, for example, a group consisting only of an anionic functional group, or an anionic functional group bonded to the linker Y ′. It may be a group. Examples of the linker Y ′ include an alkylene group having 1 to 10 carbon atoms which may contain —O— or —NH—.
Among them, the “group having an anionic functional group at the terminal” in the general formula (1) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
R11、R12及びR13における前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でも、R11、R12及びR13における前記ハロゲン原子は塩素原子、臭素原子又はヨウ素原子であることが好ましい。 As said halogen atom in R <11> , R < 12 > and R < 13 >, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example. Especially, it is preferable that the said halogen atom in R < 11 >, R < 12 > and R < 13 > is a chlorine atom, a bromine atom, or an iodine atom.
R11、R12及びR13における前記炭素数1~10のアルキル基としては、直鎖状のものでも分岐鎖状のものでもよい。前記炭素数1~10のアルキル基として具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基等が挙げられる。中でも、R11、R12及びR13における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。 The alkyl group having 1 to 10 carbon atoms in R 11 , R 12 and R 13 may be linear or branched. Specific examples of the alkyl group having 1 to 10 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethyl Butyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,3-dimethylpentyl Group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, Sill group, and the like. Among them, the alkyl group having 1 to 10 carbon atoms in R 11 , R 12 and R 13 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(1)中、R13が末端にアニオン性官能基を有する基であることが好ましい。
また、中でも、一般式(1)中、R11及びR12は、合成しやすいことから、同じであることが好ましく、R11及びR12は水素原子であることがより好ましい。
Among them, in general formula (1), R 13 is preferably a group having an anionic functional group at the terminal.
Among them, in general formula (1), R 11 and R 12 are preferably the same because they are easily synthesized, and R 11 and R 12 are more preferably hydrogen atoms.
<R14及びR15>
R14及びR15における前記ハロゲン原子としては、上述の「<R11、R12、及びR13>」において例示されたものと同様のものが挙げられる。中でも、R14及びR15における前記ハロゲン原子は塩素原子、臭素原子又はヨウ素原子であることが好ましい。
<R 14 and R 15>
Examples of the halogen atom in R 14 and R 15 include the same ones as exemplified in the above-mentioned “<R 11 , R 12 , and R 13 >”. Among them, it is preferable that the halogen atom in R 14 and R 15 is chlorine atom, bromine atom or iodine atom.
R14及びR15における前記炭素数1~10のアルキル基としては、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R14及びR15における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。 Examples of the alkyl group having 1 to 10 carbon atoms for R 14 and R 15 include the same groups as those exemplified above for “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 14 and R 15 is preferably a linear group, and more preferably a methyl group or an ethyl group.
中でも、一般式(1)中、R14及びR15は、合成しやすいことから、同じであることが好ましく、R11及びR12は水素原子であることがより好ましい。 Among them, in general formula (1), R 14 and R 15 are preferably the same because they are easily synthesized, and R 11 and R 12 are more preferably hydrogen atoms.
<Y11>
一般式(1)中、Y11は単結合、-O-(CH2)n11-、-O-(CH2)n12-Ar11-、-NH-(CH2)n13-、又は、-NH-(CH2)n14-Ar12-である。Y11において、-O-又は-NH-のアルキレン基と反対の結合手が上記一般式(1)中のクマリン環を構成する炭素原子と結合している。また、-(CH2)n11-、-Ar11-、-(CH2)n13-又は-Ar12-の酸素原子(O)、アミノ基(NH)又はアルキレン基と反対の結合手が上記一般式(1)中のリン酸基と結合している。
n11、n12、n13及びn14はそれぞれ独立に1~10の整数である。
Ar11及びAr12はそれぞれ独立に置換又は無置換のアリーレン基である。
<Y 11 >
In the general formula (1), Y 11 is a single bond, —O— (CH 2 ) n11 —, —O— (CH 2 ) n12 —Ar 11 —, —NH— (CH 2 ) n13 —, or —NH — (CH 2 ) n14 —Ar 12 —. In Y 11 , the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the coumarin ring in the general formula (1). In addition, a bond opposite to the oxygen atom (O), amino group (NH), or alkylene group of — (CH 2 ) n11 —, —Ar 11 —, — (CH 2 ) n13 —, or —Ar 12 — It is bonded to the phosphate group in formula (1).
n11, n12, n13 and n14 are each independently an integer of 1 to 10.
Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
n11、n12、n13及びn14は、それぞれY11におけるアルキレン基の繰り返し数である。n11、n12、n13及びn14は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。 n11, n12, n13 and n14 are the number of repetitions of the alkylene group for each Y 11. n11, n12, n13 and n14 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Ar11及びAr12はそれぞれ独立に置換又は無置換のアリーレン基である。
Ar11及びAr12における前記無置換のアリーレン基としては、炭素数6~14のものが好ましく、具体的にはフェニレン基、ナフチレン基等が挙げられる。中でも、Ar11及びAr12における前記無置換のアリーレン基としては、フェニレン基が好ましい。
アリーレン基が有する置換基としては、例えば、ハロゲン原子、炭素数1~10のアルキル基等が挙げられる。
前記ハロゲン原子としては、上述の「<R11、R12、及びR13>」において例示されたものと同様のものが挙げられる。中でも、前記ハロゲン原子は塩素原子、臭素原子又はヨウ素原子であることが好ましい。
前記炭素数1~10のアルキル基としては、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
Ar 11 and Ar 12 are each independently a substituted or unsubstituted arylene group.
The unsubstituted arylene group in Ar 11 and Ar 12 is preferably one having 6 to 14 carbon atoms, and specific examples include a phenylene group and a naphthylene group. Among them, the unsubstituted arylene group in Ar 11 and Ar 12 is preferably a phenylene group.
Examples of the substituent that the arylene group has include a halogen atom and an alkyl group having 1 to 10 carbon atoms.
Examples of the halogen atom are the same as those exemplified above in “<R 11 , R 12 , and R 13 >”. Among these, the halogen atom is preferably a chlorine atom, a bromine atom or an iodine atom.
Examples of the alkyl group having 1 to 10 carbon atoms include the same groups as those exemplified above for “<R 11 , R 12 and R 13 >”. Among these, the alkyl group having 1 to 10 carbon atoms is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(1)中、Y11は単結合、-O-CH2-、-O-(CH2)2-、-O-CH2-Ph-、-NH-CH2-、-NH-(CH2)2-、又は、-NH-CH2-Ph-であることが好ましい。なお、ここで、「Ph」は置換又は無置換のフェニレン基を示す。 Among them, in the general formula (1), Y 11 is a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—. Here, “Ph” represents a substituted or unsubstituted phenylene group.
化合物(1)で好ましいものとしては、例えば、下記一般式(1-1)で表される化合物(以下、「化合物(1-1)」と略記することがある)、又は、下記一般式(1-2)で表される化合物(以下、「化合物(1-2)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(1)の一例に過ぎず、好ましい化合物(1)はこれらに限定されない。
Preferred examples of the compound (1) include a compound represented by the following general formula (1-1) (hereinafter sometimes abbreviated as “compound (1-1)”), or a compound represented by the following general formula ( 1-2) (hereinafter sometimes abbreviated as “compound (1-2)”) and the like.
In addition, these compounds are only examples of a preferable compound (1), and a preferable compound (1) is not limited to these.
(一般式(1-1)中、R111は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基、及びリン酸基からなる群より選ばれるいずれか一つである。Y111は単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-である。n111及びn112はそれぞれ独立に1~10の整数である。Ar111は置換又は無置換のアリーレン基である。
一般式(1-2)中、R121は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。Y121は-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-である。n121及びn122はそれぞれ独立に1~10の整数である。Ar121は置換又は無置換のアリーレン基である。)
(In the general formula (1-1), R 111 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, where n111 and n112 are each independently an integer of 1 to 10 Ar 111 is a substituted or unsubstituted arylene group.
In the general formula (1-2), R 121 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —. n121 and n122 are each independently an integer of 1 to 10. Ar 121 is a substituted or unsubstituted arylene group. )
<R111及びR121>
R111及びR121はそれぞれ独立してカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるアニオン性官能基である。
<R 111 and R 121 >
R 111 and R 121 are each independently an anionic functional group selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
<Y111及びY121>
Y111は単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-である。は置換又は無置換のアリーレン基である。
Y121は-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-である。Ar121は置換又は無置換のアリーレン基である。
n111、n112、n121及びn122はそれぞれY111及びY121におけるアルキレン基の繰り返し数である。n111、n112、n121及びn122は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。
Ar111及びAr121はそれぞれ独立に置換又は無置換のアリーレン基である。置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。
< Y111 and Y121 >
Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —. Is a substituted or unsubstituted arylene group.
Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —. Ar 121 is a substituted or unsubstituted arylene group.
n111, n112, n121 and n122 are the number of repetitions of the alkylene group for Y 111 and Y 121, respectively. n111, n112, n121 and n122 are each preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Ar 111 and Ar 121 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “<Y 11 >”.
化合物(1-1)で好ましいものとしては、例えば、R111がカルボキシ基、スルホン酸基又はリン酸基であり、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~8の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-1)でより好ましいものとしては、例えば、R111がカルボキシ基、スルホン酸基又はリン酸基であり、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~6の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (1-1) include, for example, R 111 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O - (CH 2) n112 -Ar 111 - a is an integer of 1 ~ 8 n111 and n112 are each independently, Ar 111 can be cited, such as those substituted or unsubstituted phenylene group.
More preferable examples of the compound (1-1) include, for example, R 111 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and Y 111 is a single bond, —O— (CH 2 ) n111 —, or — O— (CH 2 ) n112 —Ar 111 —, wherein n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
化合物(1-2)で好ましいものとしては、例えば、R121がカルボキシ基、スルホン酸基又はリン酸基であり、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~8の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-2)でより好ましいものとしては、例えば、R121がカルボキシ基、スルホン酸基又はリン酸基であり、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~6の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (1-2) include, for example, R 121 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2) n122 -Ar 121 - a is an integer of 1 ~ 8 n121 and n122 are each independently, Ar 121 can be cited, such as those substituted or unsubstituted phenylene group.
More preferable examples of the compound (1-2) include, for example, R 121 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and Y 121 is —NH— (CH 2 ) n121 — or —NH— ( CH 2 ) n122 —Ar 121 —, wherein n121 and n122 are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
化合物(1)のうち、化合物(1-1)で好ましいものとしては、例えば、下記一般式(1-1-1)で表される化合物(以下、「化合物(1-1-1)」と略記することがある)、下記一般式(1-1-2)で表される化合物(以下、「化合物(1-1-2)」と略記することがある)、又は、下記一般式(1-1-3)で表される化合物(以下、「化合物(1-1-3)」と略記することがある)等が挙げられる。
化合物(1)のうち、化合物(1-2)で好ましいものとしては、例えば、下記一般式(1-2-1)で表される化合物(以下、「化合物(1-2-1)」と略記することがある)、下記一般式(1-2-2)で表される化合物(以下、「化合物(1-2-2)」、又は、下記一般式(1-2-3)で表される化合物(以下、「化合物(1-2-3)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(1)の一例に過ぎず、好ましい化合物(1)はこれらに限定されない。
Among the compounds (1), preferred as the compound (1-1) are, for example, compounds represented by the following general formula (1-1-1) (hereinafter referred to as “compound (1-1-1)”). May be abbreviated), a compound represented by the following general formula (1-1-2) (hereinafter may be abbreviated as “compound (1-1-2)”), or a compound represented by the following general formula (1 -1-3) (hereinafter sometimes abbreviated as “compound (1-1-3)”) and the like.
Among the compounds (1), preferred as the compound (1-2) are, for example, compounds represented by the following general formula (1-2-1) (hereinafter referred to as “compound (1-2-1)”). A compound represented by the following general formula (1-2-2) (hereinafter referred to as “compound (1-2-2)”, or represented by the following general formula (1-2-3)). And the like (hereinafter sometimes abbreviated as “compound (1-2-3)”).
In addition, these compounds are only examples of a preferable compound (1), and a preferable compound (1) is not limited to these.
(一般式(1-1-1)~(1-2-3)中、Y111及びY121はいずれも上記と同じである。) (In general formulas (1-1-1) to (1-2-3), Y 111 and Y 121 are the same as described above.)
化合物(1-1-1)で好ましいものとしては、例えば、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~8の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-1-1)でより好ましいものとしては、例えば、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~6の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (1-1-1), for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, and n111 And n112 is each independently an integer of 1 to 8, and Ar 111 is a substituted or unsubstituted phenylene group.
More preferable compounds (1-1-1) include, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
化合物(1-1-2)で好ましいものとしては、例えば、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~8の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-1-2)でより好ましいものとしては、例えば、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~6の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (1-1-2), for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, and n111 And n112 is each independently an integer of 1 to 8, and Ar 111 is a substituted or unsubstituted phenylene group.
More preferable compound (1-1-2) is, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
化合物(1-1-3)で好ましいものとしては、例えば、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~8の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-1-3)でより好ましいものとしては、例えば、Y111が単結合、-O-(CH2)n111-、又は、-O-(CH2)n112-Ar111-であり、n111及びn112がそれぞれ独立に1~6の整数であり、Ar111が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (1-1-3) include, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, and n111 And n112 is each independently an integer of 1 to 8, and Ar 111 is a substituted or unsubstituted phenylene group.
More preferable compound (1-1-3) is, for example, Y 111 is a single bond, —O— (CH 2 ) n111 —, or —O— (CH 2 ) n112 —Ar 111 —, n111 and n112 are each independently an integer of 1 to 6, and Ar 111 is a substituted or unsubstituted phenylene group.
化合物(1-2-1)で好ましいものとしては、例えば、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~8の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-2-1)でより好ましいものとしては、例えば、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~6の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (1-2-1), for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 are Examples thereof are each independently an integer of 1 to 8, and Ar 121 is a substituted or unsubstituted phenylene group.
More preferable compound (1-2-1) is, for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 Are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
化合物(1-2-2)で好ましいものとしては、例えば、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~8の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-2-2)でより好ましいものとしては、例えば、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~6の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (1-2-2), for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 are Examples thereof are each independently an integer of 1 to 8, and Ar 121 is a substituted or unsubstituted phenylene group.
As a more preferable compound (1-2-2), for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 Are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
化合物(1-2-3)で好ましいものとしては、例えば、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~8の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(1-2-3)でより好ましいものとしては、例えば、Y121が-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-であり、n121及びn122がそれぞれ独立に1~6の整数であり、Ar121が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (1-2-3), for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 are Examples thereof are each independently an integer of 1 to 8, and Ar 121 is a substituted or unsubstituted phenylene group.
More preferable compound (1-2-3) is, for example, Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —, and n121 and n122 Are each independently an integer of 1 to 6, and Ar 121 is a substituted or unsubstituted phenylene group.
化合物(1)のうち、化合物(1-1-1)で好ましいものとしては、例えば、下記式(1-1-1a)で表される化合物(以下、「化合物(1-1-1a)」と略記することがある)、下記式(1-1-1b)で表される化合物(以下、「化合物(1-1-1b)」と略記することがある)、又は、下記式(1-1-1c)で表される化合物(以下、「化合物(1-1-1c)」と略記することがある)等が挙げられる。
化合物(1)のうち、化合物(1-1-2)で好ましいものとしては、例えば、下記式(1-1-2a)で表される化合物(以下、「化合物(1-1-2a)」と略記することがある)、下記式(1-1-2b)で表される化合物(以下、「化合物(1-1-2b)」と略記することがある)、又は、下記式(1-1-2c)で表される化合物(以下、「化合物(1-1-2c)」と略記することがある)等が挙げられる。
化合物(1)のうち、化合物(1-1-3)で好ましいものとしては、例えば、下記式(1-1-3a)で表される化合物(以下、「化合物(1-1-3a)」と略記することがある)、下記式(1-1-3b)で表される化合物(以下、「化合物(1-1-3b)」と略記することがある)、又は、下記式(1-1-3c)で表される化合物(以下、「化合物(1-1-3c)」と略記することがある)等が挙げられる。
化合物(1)のうち、化合物(1-2-1)で好ましいものとしては、例えば、下記式(1-2-1a)で表される化合物(以下、「化合物(1-2-1a)」と略記することがある)、下記式(1-2-1b)で表される化合物(以下、「化合物(1-2-1b)」と略記することがある)、又は、下記式(1-2-1c)で表される化合物(以下、「化合物(1-2-1c)」と略記することがある)等が挙げられる。
化合物(1)のうち、化合物(1-2-2)で好ましいものとしては、例えば、下記式(1-2-2a)で表される化合物(以下、「化合物(1-2-2a)」と略記することがある)、下記式(1-2-2b)で表される化合物(以下、「化合物(1-2-2b)」と略記することがある)、又は、下記式(1-2-2c)で表される化合物(以下、「化合物(1-2-2c)」と略記することがある)等が挙げられる。
化合物(1)のうち、化合物(1-2-3)で好ましいものとしては、例えば、下記式(1-2-3a)で表される化合物(以下、「化合物(1-2-3a)」と略記することがある)、下記式(1-2-3b)で表される化合物(以下、「化合物(1-2-3b)」と略記することがある)、又は、下記式(1-2-3c)で表される化合物(以下、「化合物(1-2-3c)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(1)の一例に過ぎず、好ましい化合物(1)はこれらに限定されない。
Among the compounds (1), preferred as the compound (1-1-1) are, for example, compounds represented by the following formula (1-1-1a) (hereinafter referred to as “compound (1-1-1a)” Or a compound represented by the following formula (1-1-1b) (hereinafter sometimes abbreviated as “compound (1-1-1b)”), or a compound represented by the following formula (1- 1-1c) (hereinafter sometimes abbreviated as “compound (1-1-1c)”) and the like.
Among the compounds (1), preferred as the compound (1-1-2) are, for example, compounds represented by the following formula (1-1-2a) (hereinafter referred to as “compound (1-1-2a)”. Or a compound represented by the following formula (1-1-2b) (hereinafter sometimes abbreviated as “compound (1-1-2b)”), or a compound represented by the following formula (1- 1-2c) (hereinafter, may be abbreviated as “compound (1-1-2c)”) and the like.
Among the compounds (1), preferred as the compound (1-1-3) are, for example, compounds represented by the following formula (1-1-3a) (hereinafter referred to as “compound (1-1-3a)” Or a compound represented by the following formula (1-1-3b) (hereinafter sometimes abbreviated as “compound (1-1-3b)”), or a compound represented by the following formula (1- 1-3c) (hereinafter sometimes abbreviated as “compound (1-1-3c)”) and the like.
Among the compounds (1), preferred as the compound (1-2-1) are, for example, compounds represented by the following formula (1-2-1a) (hereinafter referred to as “compound (1-2-1a)”) Or a compound represented by the following formula (1-2-1b) (hereinafter sometimes abbreviated as “compound (1-2-1b)”), or a compound represented by the following formula (1- 2-1c) (hereinafter sometimes abbreviated as “compound (1-2-1c)”) and the like.
Among the compounds (1), preferred as the compound (1-2-2) are, for example, compounds represented by the following formula (1-2-2a) (hereinafter referred to as “compound (1-2-2a)”. Or a compound represented by the following formula (1-2-2b) (hereinafter sometimes abbreviated as “compound (1-2-2b)”), or a compound represented by the following formula (1- 2-2c) (hereinafter sometimes abbreviated as “compound (1-2-2c)”) and the like.
Among the compounds (1), preferred as the compound (1-2-3) are, for example, compounds represented by the following formula (1-2-3a) (hereinafter referred to as “compound (1-2-3a)”. Or a compound represented by the following formula (1-2-3b) (hereinafter sometimes abbreviated as “compound (1-2-3b)”), or a compound represented by the following formula (1- 2-3c) (hereinafter sometimes abbreviated as “compound (1-2-3c)”) and the like.
In addition, these compounds are only examples of a preferable compound (1), and a preferable compound (1) is not limited to these.
化合物(1)は、ALPにより加水分解されリン酸基が脱離し、化合物(1)-1に変化することによって、青色(蛍光波長:350nm以上450nm未満程度)の蛍光を発生する。 The compound (1) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (1) is changed into the compound (1) -1, thereby generating blue (fluorescence wavelength: about 350 nm to less than about 450 nm) fluorescence.
本実施形態の化合物(1)は、実質的に非解離型(ニュートラル型)の化合物として存在しているが、リン酸基がALPとの酵素反応により脱離することによって、解離型(アニオン型)の化合物(1)-1となる。よって、本実施形態の化合物(1)は、ALPとの酵素反応前及び酵素反応後において最大吸収波長が大きく変化するため、ALPを高感度に測定するための蛍光プローブとして利用することができる。 The compound (1) of the present embodiment exists as a substantially non-dissociation type (neutral type) compound, but the dissociation type (anion type) is obtained by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (1) -1. Therefore, the compound (1) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength greatly changes before and after the enzyme reaction with ALP.
≪化合物(1)の製造方法≫
化合物(1)は、例えば、Y11、R11、R12、R13、R14及びR15の種類に応じて、公知の反応を行ってクマリン骨格を形成することで製造できる。より具体的には以下のとおりである。
<< Method for Producing Compound (1) >>
Compound (1) can be produced, for example, by forming a coumarin skeleton by performing a known reaction according to the types of Y 11 , R 11 , R 12 , R 13 , R 14 and R 15 . More specifically, it is as follows.
<化合物(1-1)の製造方法>
化合物(1)のうち、化合物(1-1)は、例えば、下記一般式(1-1a)で表される化合物(以下、「化合物(1-1a)」と略記することがある)と、2,4-ジヒドロキシベンズアルデヒドと、を反応させて、下記一般式(1-1b)で表される化合物(以下、「化合物(1-1b)」と略記することがある)を得る工程(以下、「化合物(1-1b)製造工程」と略記することがある)、化合物(1-1b)と、下記一般式(1-1c)で表される化合物(以下、「化合物(1-1c)」と略記することがある)と、を反応させて、下記一般式(1-1d)で表される化合物(以下、「化合物(1-1d)」と略記することがある)を得る工程(以下、「化合物(1-1d)製造工程」と略記することがある)、及び化合物(1-1d)から化合物(1-1)を得る工程(以下、「化合物(1-1)製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (1-1)>
Among the compounds (1), the compound (1-1) is, for example, a compound represented by the following general formula (1-1a) (hereinafter sometimes abbreviated as “compound (1-1a)”); A step of reacting 2,4-dihydroxybenzaldehyde to obtain a compound represented by the following general formula (1-1b) (hereinafter sometimes abbreviated as “compound (1-1b)”) (hereinafter referred to as “compound (1-1b)”) (Sometimes abbreviated as “compound (1-1b) production process”), compound (1-1b), and a compound represented by the following general formula (1-1c) (hereinafter referred to as “compound (1-1c)”) To obtain a compound represented by the following general formula (1-1d) (hereinafter sometimes abbreviated as “compound (1-1d)”) (hereinafter referred to as “compound (1-1d)”). , “Compound (1-1d) production process”), and compound (1- Compound from d) (1-1) the step of obtaining (hereinafter, "Compound (1-1) production step" by a production method having sometimes abbreviated as), can be produced.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基である。R112は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。Y111及びR111はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group. R 112 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and (It is an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group. Y 111 and R 111 are both the same as above.)
[化合物(1-1b)製造工程]
前記化合物(1-1b)製造工程においては、化合物(1-1a)と2,4-ジヒドロキシベンズアルデヒドとを反応させて、化合物(1-1b)を得る。
[Compound (1-1b) Production Process]
In the production step of the compound (1-1b), the compound (1-1a) and 2,4-dihydroxybenzaldehyde are reacted to obtain the compound (1-1b).
(化合物(1-1a))
化合物(1-1a)は公知化合物である。
化合物(1-1a)において、R111は末端にアニオン性官能基を有する基である。
中でも、化合物(1-1a)において、R111は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基又はリン酸基であることがより好ましい。
(Compound (1-1a))
Compound (1-1a) is a known compound.
In the compound (1-1a), R 111 is a group having an anionic functional group at the terminal.
Among them, in the compound (1-1a), R 111 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
(化合物(1-1b))
化合物(1-1b)はR111がカルボキシ基である場合、公知化合物である。また、R111がスルホン酸基又はリン酸基である場合、新規化合物である。
化合物(1-1b)において、R111は、化合物(1-1a)におけるR111と同じである。
(Compound (1-1b))
Compound (1-1b) is a known compound when R 111 is a carboxy group. Further, when R 111 is a sulfonic acid group or a phosphoric acid group, it is a novel compound.
In compound (1-1b), R 111 is the same as R 111 in compound (1-1a).
(反応条件)
化合物(1-1b)製造工程においては、脱保護剤を用いて反応を行うことが好ましい。
前記脱保護剤としては、例えば、ピペリジン等が挙げられる。
前記脱保護剤の使用量は、例えば、化合物(1a)の使用量の0.01倍モル量以上0.10倍モル量以下であることが好ましい。
(Reaction conditions)
In the production process of compound (1-1b), it is preferable to carry out the reaction using a deprotecting agent.
Examples of the deprotecting agent include piperidine.
It is preferable that the usage-amount of the said deprotecting agent is 0.01 times mole amount or more and 0.10 times mole amount or less of the usage-amount of a compound (1a), for example.
化合物(1-1b)製造工程において、2,4-ジヒドロキシベンズアルデヒドの使用量は、化合物(1-1a)の使用量の0.5倍モル量以上2.0倍モル量以下であることが好ましい。 In the production process of compound (1-1b), the amount of 2,4-dihydroxybenzaldehyde used is preferably 0.5 to 2.0 times the molar amount of compound (1-1a). .
化合物(1-1b)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(1-1b)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production process of compound (1-1b), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production step of compound (1-1b), the reaction time is preferably 5 hours or more and 25 hours or less, and more preferably 10 hours or more and 20 hours or less.
化合物(1-1b)製造工程において、反応終了後は、公知の手法によって、必要に応じて後処理を行い、化合物(1-1b)を取り出せばよい。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は2種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、化合物(1-1b)を取り出せばよい。また、取り出した化合物(1-1b)は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は2種以上組み合わせて1回以上行うことで、精製してもよい。
化合物(1-1b)製造工程においては、反応終了後、化合物(1-1b)を取り出さずに、次工程で用いてもよいが、目的物である化合物(1-1)の収率が向上する点から、化合物(1-1b)を上述の方法で取り出すことが好ましい。
In the production process of compound (1-1b), after completion of the reaction, the compound (1-1b) may be removed by performing post-treatment as necessary by a known method. That is, as needed, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, concentration, etc. are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, column chromatography are performed. The compound (1-1b) may be taken out by, for example. In addition, the extracted compound (1-1b) can be used alone or in combination of two or more kinds of operations such as crystallization, reprecipitation, column chromatography, extraction, and stirring and washing of the crystals with a solvent, if necessary. May be purified once or more.
In the production step of compound (1-1b), after completion of the reaction, compound (1-1b) may be used in the next step without taking out, but the yield of the target compound (1-1) is improved. Therefore, it is preferable to take out the compound (1-1b) by the above-mentioned method.
[化合物(1-1d)製造工程]
前記化合物(1-1d)製造工程においては、化合物(1-1b)と化合物(1-1c)とを反応させて、化合物(1-1d)を得る。
[Compound (1-1d) Production Process]
In the production step of compound (1-1d), compound (1-1b) and compound (1-1c) are reacted to obtain compound (1-1d).
(化合物(1-1c))
化合物(1-1c)は公知化合物である。
化合物(1-1c)において、R112は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
(Compound (1-1c))
Compound (1-1c) is a known compound.
In the compound (1-1c), R 112 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
中でも、化合物(1-1c)において、R112は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。 Among these, in the compound (1-1c), R 112 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(1-1d))
化合物(1-1d)は新規化合物である。
化合物(1-1d)において、Y111は、上記「≪化合物(1)≫」の「<Y111及びY121>」で例示されたものと同じであり、R111は、化合物(1-1a)におけるR111と同じである。
(Compound (1-1d))
Compound (1-1d) is a novel compound.
In the compound (1-1d), Y 111 is the same as that exemplified for “<Y 111 and Y 121 >” in the above “<< Compound (1) >>”, and R 111 represents the compound (1-1a). ) Is the same as R 111 in FIG.
(反応条件)
化合物(1-1d)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン(N,N-diisopropylethylamine;DIEA)等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(1-1b)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (1-1d), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamine such as triethylamine and N, N-diisopropylethylamine (DIEA).
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (1-1b).
化合物(1-1d)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、N,N-ジメチル-4-アミノピリジン(N,N-dimethyl-4-aminopyridine;DMAP)等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(1-1b)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (1-1d), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include N, N-dimethyl-4-aminopyridine (DMAP).
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 mol amount or less of the amount of compound (1-1b) used.
化合物(1-1d)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒は特に限定されないが、例えば、ペルフルオロヘキサン、α,α,α-トリフルオロトルエン、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、デカヒドロナフタレン、四塩化炭素、ジオキサン、フルオロトリクロロメタン、ベンゼン、トルエン、トリエチルアミン、二硫化炭素、ジイソプロピルエーテル、ジエチルエーテル、t-ブチルメチルエーテル、クロロホルム、酢酸エチル、1,2-ジメトキシエタン、2-メトキシエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、塩化メチレン、ピリジン、2-ブタノン、アセトン、ヘキサメチルホスホルアミド、N-メチルピロリジノン、ニトロメタン、ジメチルホルムアミド、アセトニトリル、スルホラン、ジメチルスルホキシド、ジイソプロピルエチルアミン、酢酸イソプロピル、ジクロロメタン、ジメチルアミン、N,N-ジメチルホルムアミド、炭酸プロピレン等が挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(1-1b)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the compound (1-1d) production process, an aprotic solvent is preferably used as a reaction solvent.
The aprotic solvent is not particularly limited. For example, perfluorohexane, α, α, α-trifluorotoluene, pentane, hexane, cyclohexane, methylcyclohexane, decahydronaphthalene, carbon tetrachloride, dioxane, fluorotrichloromethane, benzene , Toluene, triethylamine, carbon disulfide, diisopropyl ether, diethyl ether, t-butyl methyl ether, chloroform, ethyl acetate, 1,2-dimethoxyethane, 2-methoxyethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, methylene chloride Pyridine, 2-butanone, acetone, hexamethylphosphoramide, N-methylpyrrolidinone, nitromethane, dimethylformamide, acetonitrile, sulfolane, dimethyl sulfoxide, di Isopropyl ethyl amine, isopropyl acetate, dichloromethane, dimethylamine, N, N- dimethylformamide, propylene, and the like carbonates.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (1-1b).
化合物(1-1d)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスは特に限定されないが、例えば、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等が挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (1-1d), it is preferable to carry out the reaction in an inert gas atmosphere.
The inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, and xenon.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(1-1d)製造工程において、化合物(1-1c)の使用量は、化合物(1-1b)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the compound (1-1d) production process, the amount of compound (1-1c) used is preferably 1 to 2 times the amount of compound (1-1b).
化合物(1-1d)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(1-1d)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the step of producing compound (1-1d), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production step of compound (1-1d), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, and more preferably 1 hour or longer and 5 hours or shorter.
化合物(1-1d)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(1-1d)をさらに同様の方法で精製してもよい。また、得られた化合物(1-1d)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(1-1)の収率が向上する点から、取り出すことが好ましい。 Compound (1-1d) can be taken out in the same manner as in the above-mentioned compound (1-1b) production step, and the taken out compound (1-1d) may be further purified in the same manner. Further, the obtained compound (1-1d) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the point that the yield of the target compound (1-1) is improved. Is preferred.
[化合物(1-1)製造工程]
前記化合物(1-1)製造工程においては、化合物(1-1d)から化合物(1-1)を得る。
化合物(1-1)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R111に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基、又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (1-1) Production Process]
In the production process of the compound (1-1), the compound (1-1) is obtained from the compound (1-1d).
The method for obtaining the compound (1-1) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 111 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(1-1)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (1-1), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(1-1)製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(1-1)製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (1-1), the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (1-1), the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
化合物(1-1)製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(1-1)を取り出すことができ、取り出した化合物(1-1)をさらに同様の方法で精製してもよい。 In the production process of compound (1-1), after completion of the reaction, compound (1-1) can be taken out by the same method as in the production process of compound (1-1b), and the taken out compound (1-1 ) May be further purified by the same method.
化合物(1-1)、化合物(1-1a)、化合物(1-1b)、化合物(1-1c)、化合物(1-1d)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as the compound (1-1), the compound (1-1a), the compound (1-1b), the compound (1-1c), the compound (1-1d), and the like is, for example, nuclear magnetic resonance (NMR) spectroscopy The structure can be confirmed by a known method such as mass spectrometry (MS) or infrared spectroscopy (IR).
<化合物(1-2)の製造方法>
化合物(1)のうち、化合物(1-2)は、例えば、下記一般式(1-2a)で表される化合物(以下、「化合物(1-2a)」と略記することがある)と、2-ヒドロキシ-4-アミノ-ベンズアルデヒドと、を反応させて、下記一般式(1-2b)で表される化合物(以下、「化合物(1-2b)」と略記することがある)を得る工程(以下、「化合物(1-2b)製造工程」と略記することがある)、化合物(1-2b)と、下記一般式(1-2c)で表される化合物(以下、「化合物(1-2c)」と略記することがある)と、を反応させて、下記一般式(1-2d)で表される化合物(以下、「化合物(1-2d)」と略記することがある)を得る工程(以下、「化合物(1-2d)製造工程」と略記することがある)、及び化合物(1-2d)から化合物(1-2)を得る工程(以下、「化合物(1-2)製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (1-2)>
Among the compounds (1), the compound (1-2) is, for example, a compound represented by the following general formula (1-2a) (hereinafter sometimes abbreviated as “compound (1-2a)”), A step of reacting 2-hydroxy-4-amino-benzaldehyde to obtain a compound represented by the following general formula (1-2b) (hereinafter sometimes abbreviated as “compound (1-2b)”) (Hereinafter may be abbreviated as “compound (1-2b) production process”), compound (1-2b) and a compound represented by the following general formula (1-2c) (hereinafter referred to as “compound (1- 2c) ”) to obtain a compound represented by the following general formula (1-2d) (hereinafter sometimes abbreviated as“ compound (1-2d) ”). Process (hereinafter may be abbreviated as “compound (1-2d) production process”), and compound Compound from (1-2d) (1-2) the step of obtaining (hereinafter, "Compound (1-2) Manufacturing process" may be abbreviated as) by a production method having a can be prepared.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基である。R122は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。Y121及びR121はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group. R 122 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and (It is an alkylene group having 1 to 10 carbon atoms that may contain at least one of an oxygen atom and an arylene group. Y 121 and R 121 are the same as above.)
[化合物(1-2b)製造工程]
前記化合物(1-2b)製造工程においては、化合物(1-2a)と2,4-ジヒドロキシベンズアルデヒドとを反応させて、化合物(1-2b)を得る。
[Compound (1-2b) Production Process]
In the step of producing compound (1-2b), compound (1-2a) is reacted with 2,4-dihydroxybenzaldehyde to obtain compound (1-2b).
(化合物(1-2a))
化合物(1-2a)は公知化合物である。
化合物(1-2a)において、R121はカルボキシ基、スルホン酸基、及びリン酸基からなる群より選ばれるアニオン性官能基である。
(Compound (1-2a))
Compound (1-2a) is a known compound.
In the compound (1-2a), R 121 is an anionic functional group selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
化合物(1-2b)は公知化合物である。
化合物(1-2b)において、R121は、化合物(1-2a)におけるR121と同じである。
Compound (1-2b) is a known compound.
In the compound (1-2b), R 121 is the same as R 121 in the compound (1-2a).
(反応条件)
化合物(1-2b)製造工程においては、脱保護剤を用いて反応を行うことが好ましい。
前記脱保護剤としては、例えば、ピペリジン等が挙げられる。
前記脱保護剤の使用量は、化合物(1-2a)の使用量の0.01倍モル量以上0.10倍モル量以下であることが好ましい。
(Reaction conditions)
In the production process of compound (1-2b), it is preferable to carry out the reaction using a deprotecting agent.
Examples of the deprotecting agent include piperidine.
The amount of the deprotecting agent used is preferably 0.01 to 0.10 times the amount of the compound (1-2a) used.
化合物(1-2b)製造工程において、2-ヒドロキシ-4-アミノ-ベンズアルデヒドの使用量は、化合物(1-2a)の使用量の0.5倍モル量以上2.0倍モル量以下であることが好ましい。 In the production process of compound (1-2b), the amount of 2-hydroxy-4-amino-benzaldehyde used is 0.5 to 2.0 times the amount of compound (1-2a) used. It is preferable.
化合物(1-2b)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(1-2b)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production step of compound (1-2b), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production step of compound (1-2b), the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
化合物(1-2b)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(1-2b)をさらに同様の方法で精製してもよい。また、得られた化合物(1-2b)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(1-2)の収率が向上する点から、取り出すことが好ましい。 In the compound (1-2b) production process, after completion of the reaction, the compound (1-2b) can be removed in the same manner as in the above-mentioned compound (1-1b) production process. You may refine by. In addition, the obtained compound (1-2b) may be used in the next step without being removed after the completion of the reaction. However, it should be removed from the viewpoint of improving the yield of the target compound (1-2). Is preferred.
[化合物(1-2d)製造工程]
前記化合物(1-2d)製造工程においては、化合物(1-2b)と化合物(1-2c)とを反応させて、化合物(1-2d)を得る。
[Compound (1-2d) Production Process]
In the step of producing compound (1-2d), compound (1-2b) and compound (1-2c) are reacted to obtain compound (1-2d).
(化合物(1-2c))
化合物(1-2c)は公知化合物である。
化合物(1-2c)において、R122は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
(Compound (1-2c))
Compound (1-2c) is a known compound.
In the compound (1-2c), R 122 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
中でも、化合物(1-2c)において、R112は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。 Among these, in the compound (1-2c), R 112 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(1-2d))
化合物(1-2d)は新規化合物である。
化合物(1-2d)において、Y121は、上記「≪化合物(1)≫」の「<Y111及びY121>」で例示されたものと同じであり、R121は、化合物(1-2a)におけるR121と同じである。
(Compound (1-2d))
Compound (1-2d) is a novel compound.
In the compound (1-2d), Y 121 is the same as those exemplified for “<Y 111 and Y 121 >” in the above “<< Compound (1) >>”, and R 121 represents the compound (1-2a). ) Is the same as R 121 in FIG.
(反応条件)
化合物(1-2d)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(1-2b)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (1-2d), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (1-2b) used.
化合物(1-2d)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(1-2b)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (1-2d), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of compound (1-2b) used.
化合物(1-2d)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(1-2b)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (1-2d), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (1-2b).
化合物(1-2d)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (1-2d), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(1-2d)製造工程において、化合物(1-2c)の使用量は、化合物(1-2b)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production step of compound (1-2d), the amount of compound (1-2c) used is preferably 1 to 2 times the amount of compound (1-2b).
化合物(1-2d)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(1-2d)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production process of compound (1-2d), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production step of compound (1-2d), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, and more preferably 1 hour or longer and 5 hours or shorter.
化合物(1-2d)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(1-2d)をさらに同様の方法で精製してもよい。また、得られた化合物(1-2d)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(1-2)の収率が向上する点から、取り出すことが好ましい。 Compound (1-2d) can be taken out in the same manner as in the above-mentioned compound (1-1b) production step, and the taken out compound (1-2d) may be further purified in the same manner. Further, the obtained compound (1-2d) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the point that the yield of the target compound (1-2) is improved. Is preferred.
[化合物(1-2)製造工程]
前記化合物(1-2)製造工程においては、化合物(1-2d)から化合物(1-2)を得る。
化合物(1-2)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R121に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (1-2) Production Process]
In the production step of the compound (1-2), the compound (1-2) is obtained from the compound (1-2d).
The method for obtaining the compound (1-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 121 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(1-2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (1-2), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(1-2)製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(1-2)製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (1-2), the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (1-2), the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
化合物(1-2)製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(1-2)を取り出すことができ、取り出した化合物(1-2)をさらに同様の方法で精製してもよい。 In the production process of compound (1-2), after completion of the reaction, compound (1-2) can be taken out in the same manner as in the production process of compound (1-1b), and the taken out compound (1-2) ) May be further purified by the same method.
化合物(1-2)、化合物(1-2a)、化合物(1-2b)、化合物(1-2c)、化合物(1-2d)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as the compound (1-2), the compound (1-2a), the compound (1-2b), the compound (1-2c), the compound (1-2d) and the like can be obtained by, for example, nuclear magnetic resonance (NMR) spectroscopy. The structure can be confirmed by a known method such as mass spectrometry (MS) or infrared spectroscopy (IR).
≪化合物(2)≫
本発明の第2実施形態に係る化合物は、下記一般式(2)で表される(本明細書においては、「化合物(2)」と称する場合がある)。
≪Compound (2) ≫
The compound according to the second embodiment of the present invention is represented by the following general formula (2) (in this specification, sometimes referred to as “compound (2)”).
(一般式(2)中、R21はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR21は互いに同じであってもよく、異なっていてもよい。R22はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR22は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。X21は酸素原子又はN+HR’である。R’は水素原子又は炭素数1~10のアルキル基である。Y21は単結合、-O-(CH2)n21-、-O-(CH2)n22-Ar21-、-NH-(CH2)n23-、又は、-NH-(CH2)n24-Ar22-である。n21、n22、n23及びn24はそれぞれ独立に1~10の整数である。Ar21及びAr22はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (2), R 21 represents 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group. A plurality of R 21 may be the same as each other. , good .R 22 be different a 1-2 monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group. R 22 there are a plurality of mutually identical The anionic functional group may be any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, R 23 , R 24 , R 25, and R 26 is independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, X 21 is an oxygen atom or N + HR ′, and R ′ is a hydrogen atom or carbon atom having 1 to 10 carbon atoms. Y 21 is a single bond, —O— ( CH 2) n21 -, - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 -Ar 22 - are as .n21, n22, n23 and n24 are each independently an integer of 1 to 10. Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.)
化合物(2)はフルオレセイン誘導体又はローダミン誘導体であり、アルカリ性条件下で、ALPにより加水分解されるリン酸基を有する化合物である。
また、化合物(2)はALPによる加水分解でリン酸基が脱離することで蛍光を発する蛍光性化合物である。
Compound (2) is a fluorescein derivative or a rhodamine derivative, and is a compound having a phosphate group that is hydrolyzed by ALP under alkaline conditions.
Compound (2) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
<R21>
R21はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。
本明細書における「電子供与基」としては、ベンゼン環に電子を供与することができる置換基であればよい。具体的には、例えば、水酸基、炭素数1~10のアルコキシ基、アミノ基、炭素数1~10のアルキルアミノ基等が挙げられ、これらに限定されない。
R21の数は、1個又は2個であり、2個であることが好ましい。R21が2個ある場合、互いに同じであってもよく、異なっていてもよい。中でも、R21が2個ある場合、合成しやすいことから、互いに同じであることが好ましい。
<R 21 >
R 21 is 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group.
The “electron donating group” in the present specification may be any substituent that can donate electrons to the benzene ring. Specific examples include, but are not limited to, a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an amino group, an alkylamino group having 1 to 10 carbon atoms, and the like.
The number of R 21 is 1 or 2, and is preferably 2. When two R 21 are present, they may be the same as or different from each other. Among these, when there are two R 21 s , it is preferable that they are the same as each other because they are easily synthesized.
R21における前記炭素数1~10のアルコキシ基としては、直鎖状又は分岐鎖状の炭素数1~10のアルキル基が酸素原子に結合した構造であればよい。前記炭素数1~10のアルコキシ基として具体的には、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、tert-ペントキシ基、1-メチルブトキシ基、n-ヘキトキシ基、2-メチルペントキシ基、3-メチルペントキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、n-ヘプトキシ基、2-メチルヘキトキシ基、3-メチルヘキトキシ基、2,2-ジメチルペントキシ基、2,3-ジメチルペントキシ基、2,4-ジメチルペントキシ基、3,3-ジメチルペントキシ基、3-エチルペントキシ基、2,2,3-トリメチルブトキシ基、n-オクトキシ基、イソオクトキシ基、2-エチルヘキトキシ基、ノニノキシ基、デシロキシ基等が挙げられる。中でも、R21における前記炭素数1~10のアルコキシ基は、直鎖状のものが好ましく、メトキシ基又はエトキシ基がより好ましい。 The alkoxy group having 1 to 10 carbon atoms in R 21 may have a structure in which a linear or branched alkyl group having 1 to 10 carbon atoms is bonded to an oxygen atom. Specific examples of the alkoxy group having 1 to 10 carbon atoms include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, tert-pentoxy group, 1-methylbutoxy group, n-hexoxy group, 2-methylpentoxy group, 3-methylpentoxy group, 2,2-dimethylbutoxy group, 2 , 3-dimethylbutoxy group, n-heptoxy group, 2-methylhexoxy group, 3-methylhexoxy group, 2,2-dimethylpentoxy group, 2,3-dimethylpentoxy group, 2,4-dimethylpentoxy group, 3 , 3-dimethylpentoxy group, 3-ethylpentoxy group, 2,2,3-trimethylbutoxy group, n-octyl Alkoxy group, Isookutokishi group, 2-Echiruhekitokishi group, Noninokishi group, decyloxy group and the like. Among these, the alkoxy group having 1 to 10 carbon atoms in R 21 is preferably a straight chain, and more preferably a methoxy group or an ethoxy group.
R21における前記炭素数1~10のアルキルアミノ基としては、直鎖状又は分岐鎖状の炭素数1~10のアルキル基がアミノ基に結合した構造であればよい。前記炭素数1~10のアルキルアミノ基として具体的には、例えば、メチルアミノ基、エチルアミノ基、イソプロピルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等が挙げられる。中でも、R21における前記炭素数1~10のアルキルアミノ基は、直鎖状のものが好ましく、メチルアミノ基又はエチルアミノ基がより好ましい。 The alkylamino group having 1 to 10 carbon atoms in R 21 may have a structure in which a linear or branched alkyl group having 1 to 10 carbon atoms is bonded to an amino group. Specific examples of the alkylamino group having 1 to 10 carbon atoms include a methylamino group, an ethylamino group, an isopropylamino group, a dimethylamino group, a diethylamino group, and a diisopropylamino group. Among them, the alkylamino group having 1 to 10 carbon atoms in R 21 is preferably a straight chain, and more preferably a methylamino group or an ethylamino group.
中でも、一般式(2)中、R21は親水性が高いことから、直鎖状の炭素数1~10のアルコキシ基又は直鎖状の炭素数1~10のアルキルアミノ基が好ましく、メチルアミノ基、エチルアミノ基、メトキシ基、又はエトキシ基がより好ましい。 Among these, in general formula (2), R 21 is preferably a straight-chain alkoxy group having 1 to 10 carbon atoms or a straight-chain alkylamino group having 1 to 10 carbon atoms because it is highly hydrophilic. A group, an ethylamino group, a methoxy group, or an ethoxy group is more preferable.
また、一般式(2)中、R21は2個あることが好ましい。ベンゼン環における2個のR21の位置としては、互いにオルト位となる位置に配するものであることが好ましい。 Further, in the general formula (2), it is preferred that R 21 is two. The two R 21 positions in the benzene ring are preferably arranged at positions that are ortho positions relative to each other.
<R22>
R22はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。中でも、一般式(2)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
R22の数は、1個又は2個であり、1個であることが好ましい。R22が2個ある場合、互いに同じであってもよく、異なっていてもよい。中でも、R22が2個ある場合、合成しやすいことから、互いに同じであることが好ましい。
<R 22 >
R 22 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. Among them, the “group having an anionic functional group at the terminal” in the general formula (2) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
The number of R 22 is 1 or 2, and is preferably 1. When there are two R 22 s , they may be the same or different. Among these, when there are two R 22 s , they are preferably the same as each other because they are easily synthesized.
中でも、化合物(2)(非解離型(ニュートラル型))、及び、後述に示すリン酸基脱離後の化合物(2)-1(解離型(アニオン型))の最大吸収波長が大きく乖離することから、一般式(2)中、R21を2個、R22を1個有するベンゼン環において、キサンテン骨格を1位、1個のR21を4位、もう1個のR21を6位としたとき、R22は3位又は5位に有することが好ましく、3位に有することがより好ましい。 In particular, the maximum absorption wavelength of compound (2) (non-dissociation type (neutral type)) and compound (2) -1 (dissociation type (anion type)) after elimination of a phosphate group, which will be described later, greatly deviate. Therefore, in the general formula (2), in the benzene ring having two R 21 and one R 22 , the xanthene skeleton is in the 1st position, one R 21 is in the 4th position, and the other R 21 is in the 6th position. In this case, R 22 is preferably in the 3rd or 5th position, more preferably in the 3rd position.
<R23、R24、R25及びR26>
R23、R24、R25及びR26における前記ハロゲン原子は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R23、R24、R25及びR26における前記ハロゲン原子は塩素原子、臭素原子、又はヨウ素原子であることが好ましい。
R23、R24、R25及びR26における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R23、R24、R25及びR26における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
<R 23 , R 24 , R 25 and R 26 >
Examples of the halogen atom in R 23 , R 24 , R 25 and R 26 are the same as those exemplified in the above “<R 11 , R 12 and R 13 >”. Among them, it is preferable that the halogen atom in R 23, R 24, R 25 and R 26 is a chlorine atom, a bromine atom, or iodine atom.
Examples of the alkyl group having 1 to 10 carbon atoms in R 23 , R 24 , R 25 and R 26 are the same as those exemplified above in “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 23 , R 24 , R 25 and R 26 is preferably a linear group, and more preferably a methyl group or an ethyl group.
中でも、一般式(2)中、R23及びR26は、合成しやすいことから、同じであることが好ましく、水素原子であることがより好ましい。
また、中でも、一般式(2)中、R24及びR25は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
Among them, in the general formula (2), R 23 and R 26, since the easy synthesis, preferably the same, and more preferably a hydrogen atom.
Of these, in general formula (2), R 24 and R 25 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
<X21>
X21は酸素原子又はN+HR’である。
X21が酸素原子であるとき、Y21は単結合、-O-(CH2)n21-、又は、-O-(CH2)n22-Ar21-であることが好ましく、X21がN+HR’であるとき、Y21は単結合、-NH-(CH2)n23-、又は、-NH-(CH2)n24-Ar22-であることが好ましい。
<X 21 >
X 21 is an oxygen atom or N + HR ′.
When X 21 is an oxygen atom, Y 21 is preferably a single bond, —O— (CH 2 ) n21 —, or —O— (CH 2 ) n22 —Ar 21 —, and X 21 is N +. when a HR ', Y 21 is a single bond, -NH- (CH 2) n23 - , or, -NH- (CH 2) n24 -Ar 22 - it is preferably.
R’は水素原子又は炭素数1~10のアルキル基である。
R’における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R’における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Examples of the alkyl group having 1 to 10 carbon atoms for R ′ include the same ones as exemplified in the above “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R ′ is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(2)中、X21は酸素原子又はN+H2であることが好ましい。 Among them, in the general formula (2), it is preferred that X 21 is an oxygen atom or N + H 2.
<Y21>
一般式(2)中、Y21は単結合、-O-(CH2)n21-、-O-(CH2)n22-Ar21-、-NH-(CH2)n23-、又は、-NH-(CH2)n24-Ar22-である。Y21において、-O-又は-NH-のアルキレン基と反対の結合手が上記一般式(2)中のキサンテン環を構成する炭素原子と結合している。また、-(CH2)n21-、-Ar21-、-(CH2)n23-又は-Ar22-の酸素原子(O)、アミノ基(NH)又はアルキレン基と反対の結合手が上記一般式(2)中のリン酸基と結合している。
n21、n22、n23及びn24はそれぞれ独立に1~10の整数である。
Ar21及びAr22はそれぞれ独立に置換又は無置換のアリーレン基である。
<Y 21 >
In the general formula (2), Y 21 represents a single bond, —O— (CH 2 ) n21 —, —O— (CH 2 ) n22 —Ar 21 —, —NH— (CH 2 ) n23 —, or —NH — (CH 2 ) n24 —Ar 22 —. In Y 21 , the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the xanthene ring in the general formula (2). In addition, a bond opposite to the oxygen atom (O), amino group (NH), or alkylene group of — (CH 2 ) n21 —, —Ar 21 —, — (CH 2 ) n23 —, or —Ar 22 — It is bonded to the phosphate group in formula (2).
n21, n22, n23 and n24 are each independently an integer of 1 to 10.
Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
n21、n22、n23及びn24は、それぞれY21におけるアルキレン基の繰り返し数である。n21、n22、n23及びn24は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。 n21, n22, n23 and n24 are the number of repetitions of the alkylene group for each Y 21. n21, n22, n23 and n24 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Y21における置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。 As the substituted or unsubstituted arylene group for Y 21, the same groups as those exemplified above for “<Y 11 >” can be mentioned.
中でも、一般式(2)中、Y21は単結合、-O-CH2-、-O-(CH2)2-、-O-CH2-Ph-、-NH-CH2-、-NH-(CH2)2-、又は、-NH-CH2-Ph-であることが好ましい。なお、ここで、「Ph」は置換又は無置換のフェニレン基を示す。 Among them, in the general formula (2), Y 21 represents a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—. Here, “Ph” represents a substituted or unsubstituted phenylene group.
化合物(2)で好ましいものとしては、例えば、下記一般式(2-1)で表される化合物(以下、「化合物(2-1)」と略記することがある)、又は、下記一般式(2-2)で表される化合物(以下、「化合物(2-2)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(2)の一例に過ぎず、好ましい化合物(2)はこれらに限定されない。
Preferred examples of the compound (2) include, for example, a compound represented by the following general formula (2-1) (hereinafter sometimes abbreviated as “compound (2-1)”), or a compound represented by the following general formula ( 2-2) (hereinafter sometimes abbreviated as “compound (2-2)”) and the like.
In addition, these compounds are only examples of a preferable compound (2), and a preferable compound (2) is not limited to these.
(一般式(2-1)中、R211及びR212はそれぞれ独立に炭素数1~10のアルキル基である。R213は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y211は単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-である。n211及びn212はそれぞれ独立に1~10の整数である。Ar211は置換又は無置換のアリーレン基である。
一般式(2-2)中、R221及びR222はそれぞれ独立に炭素数1~10のアルキル基である。R223は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R224は水素原子又は炭素数1~10のアルキル基である。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。)
(In General Formula (2-1), R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms. R 213 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or a carbon number of Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, wherein n 211 and n 212 are each independently 1 to .Ar 211 is an integer of 10 is a substituted or unsubstituted arylene group.
In general formula (2-2), R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms. R 223 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —. n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group. )
<R211、R222、R223及びR224>
R211、R222、R223及びR224における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R211、R222、R223及びR224における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
<R 211 , R 222 , R 223 and R 224 >
Examples of the alkyl group having 1 to 10 carbon atoms in R 211 , R 222 , R 223 and R 224 include the same as those exemplified above in “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 211 , R 222 , R 223 and R 224 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(2-1)中、R211及びR212は、合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
また、一般式(2-2)中、R221及びR222は、合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
Among these, in general formula (2-1), R 211 and R 212 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
In general formula (2-2), R 221 and R 222 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
<R213及びR223>
R213及びR223はそれぞれ独立して末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。
中でも、一般式(2-1)及び(2-2)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
< R213 and R223 >
R 213 and R 223 are each independently a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
Among them, the “group having an anionic functional group at the terminal” in the general formulas (2-1) and (2-2) is preferably a group consisting only of an anionic functional group because it is easy to synthesize.
<R224>
R224は水素原子又は炭素数1~10のアルキル基である。
R224における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R224における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
一般式(2-2)において、R224は水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
< R224 >
R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Examples of the alkyl group having 1 to 10 carbon atoms for R 224 include the same groups as those exemplified above in “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 224 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
In the general formula (2-2), R 224 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group or an ethyl group.
<Y211及びY221>
Y211は単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-である。Ar211は置換又は無置換のアリーレン基である。
Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。Ar221は置換又は無置換のアリーレン基である。
n211、n212、n221及びn222はそれぞれY211及びY221におけるアルキレン基の繰り返し数である。n211、n212、n221及びn222は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。
Ar211及びAr221はそれぞれ独立に置換又は無置換のアリーレン基である。置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。
< Y211 and Y221 >
Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —. Ar 211 is a substituted or unsubstituted arylene group.
Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —. Ar 221 is a substituted or unsubstituted arylene group.
n211, n212, n221 and n222 are the number of repetitions of the alkylene group for Y 211 and Y 221, respectively. n211, n212, n221, and n222 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Ar 211 and Ar 221 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “<Y 11 >”.
化合物(2-1)で好ましいものとしては、例えば、R211及びR212が直鎖状の炭素数1~10のアルキル基であり、R213がアニオン性官能基のみからなる基であり、R23及びR26が水素原子、メチル基又はエチル基であり、R24及びR25が水素原子、ハロゲン原子、メチル基又はエチル基であり、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-あり、n211及びn212がそれぞれ独立に1~8の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-1)でより好ましいものとしては、例えば、R211及びR212がメチル基又はエチル基であり、R213がカルボキシ基、スルホン酸基又はリン酸基であり、R23及びR26が水素原子であり、R24及びR25が水素原子又はハロゲン原子であり、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~6の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (2-1) include, for example, R 211 and R 212 are straight-chain alkyl groups having 1 to 10 carbon atoms, R 213 is a group consisting of only an anionic functional group, and R 23 and R 26 are a hydrogen atom, a methyl group or an ethyl group, R 24 and R 25 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, Y 211 is a single bond, —O— (CH 2 ) n211 —, Or —O— (CH 2 ) n212 —Ar 211 —, wherein n211 and n212 are each independently an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group. .
More preferable examples of the compound (2-1) include, for example, R 211 and R 212 are a methyl group or an ethyl group, R 213 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 23 and R 26 Is a hydrogen atom, R 24 and R 25 are a hydrogen atom or a halogen atom, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —. , and the integers of 1 ~ 6 N211 and n212 are each independently, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
化合物(2-2)で好ましいものとしては、例えば、R221及びR222が直鎖状の炭素数1~10のアルキル基であり、R223がアニオン性官能基のみからなる基であり、R224が水素原子又は直鎖状の炭素数1~10のアルキル基であり、R23及びR26が水素原子、メチル基又はエチル基であり、R24及びR25が水素原子、ハロゲン原子、メチル基又はエチル基であり、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~8の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-2)でより好ましいものとしては、例えば、R221及びR222がメチル基又はエチル基であり、R223がカルボキシ基、スルホン酸基又はリン酸基であり、R224が水素原子、メチル基又はエチル基であり、R23及びR26が水素原子であり、R24及びR25が水素原子又はハロゲン原子であり、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~6の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (2-2) include, for example, R 221 and R 222 are linear alkyl groups having 1 to 10 carbon atoms, R 223 is a group consisting of only an anionic functional group, 224 is a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, R 23 and R 26 are a hydrogen atom, a methyl group or an ethyl group, and R 24 and R 25 are a hydrogen atom, a halogen atom, methyl Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently 1 to 8 And Ar 221 is a substituted or unsubstituted phenylene group.
More preferable compounds (2-2) include, for example, R 221 and R 222 are a methyl group or an ethyl group, R 223 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 224 is a hydrogen atom. , A methyl group or an ethyl group, R 23 and R 26 are hydrogen atoms, R 24 and R 25 are hydrogen atoms or halogen atoms, Y 221 is a single bond, —NH— (CH 2 ) n221 —, Or —NH— (CH 2 ) n222 —Ar 221 —, wherein n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
化合物(2)のうち、化合物(2-1)で好ましいものとしては、例えば、下記一般式(2-1-1)で表される化合物(以下、「化合物(2-1-1)」と略記することがある)、下記一般式(2-1-2)で表される化合物(以下、「化合物(2-1-2)」と略記することがある)、又は、下記一般式(2-1-3)で表される化合物(以下、「化合物(2-1-3)」と略記することがある)等が挙げられる。
化合物(2)のうち、化合物(2-2)で好ましいものとしては、例えば、下記一般式(2-2-1)で表される化合物(以下、「化合物(2-2-1)」と略記することがある)、下記一般式(2-2-2)で表される化合物(以下、「化合物(2-2-2)」、又は、下記一般式(2-2-3)で表される化合物(以下、「化合物(2-2-3)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(2)の一例に過ぎず、好ましい化合物(2)はこれらに限定されない。
Among the compounds (2), preferred as the compound (2-1) are, for example, compounds represented by the following general formula (2-1-1) (hereinafter referred to as “compound (2-1-1)”). May be abbreviated), a compound represented by the following general formula (2-1-2) (hereinafter sometimes abbreviated as “compound (2-1-2)”), or a compound represented by the following general formula (2 -1-3) (hereinafter sometimes abbreviated as “compound (2-1-3)”) and the like.
Of the compounds (2), preferred as the compound (2-2) are, for example, compounds represented by the following general formula (2-2-1) (hereinafter referred to as “compound (2-2-1)”). Or a compound represented by the following general formula (2-2-2) (hereinafter referred to as “compound (2-2-2)”, or represented by the following general formula (2-2-3)). And the like (hereinafter sometimes abbreviated as “compound (2-2-3)”).
In addition, these compounds are only examples of a preferable compound (2), and a preferable compound (2) is not limited to these.
(一般式(2-1-1)~(2-2-3)中、Y211及びY221は、いずれも上記と同じである。) (In General Formulas (2-1-1) to (2-2-3), Y 211 and Y 221 are the same as described above.)
化合物(2-1-1)で好ましいものとしては、例えば、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~8の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-1-1)でより好ましいものとしては、例えば、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~6の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (2-1-1), for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, and n211 And n212 each independently represents an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
More preferable compound (2-1-1) is, for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, n211 and n212 are each independently a 1-6 integer, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
化合物(2-1-2)で好ましいものとしては、例えば、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~8の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-1-2)でより好ましいものとしては、例えば、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~6の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (2-1-2), for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, and n211 And n212 each independently represents an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
More preferable compound (2-1-2) is, for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, n211 and n212 are each independently a 1-6 integer, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
化合物(2-1-3)で好ましいものとしては、例えば、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~8の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-1-3)でより好ましいものとしては、例えば、Y211が単結合、-O-(CH2)n211-、又は、-O-(CH2)n212-Ar211-であり、n211及びn212がそれぞれ独立に1~6の整数であり、Ar211が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (2-1-3) include, for example, Y 211 is a single bond, —O— (CH 2 ) n 211 —, or —O— (CH 2 ) n 212 —Ar 211 —, and n 211 And n212 each independently represents an integer of 1 to 8, and Ar 211 is a substituted or unsubstituted phenylene group.
More preferable compound (2-1-3) is, for example, Y 211 is a single bond, —O— (CH 2 ) n211 —, or —O— (CH 2 ) n212 —Ar 211 —, n211 and n212 are each independently a 1-6 integer, Ar 211 can be cited, such as those substituted or unsubstituted phenylene group.
化合物(2-2-1)で好ましいものとしては、例えば、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~8の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-2-1)でより好ましいものとしては、例えば、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~6の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (2-2-1), for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, and n221 And n222 are each independently an integer of 1 to 8, and Ar 221 is a substituted or unsubstituted phenylene group.
More preferable compound (2-2-1) is, for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
化合物(2-2-2)で好ましいものとしては、例えば、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~8の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-2-2)でより好ましいものとしては、例えば、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~6の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (2-2-2), for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, and n221 And n222 are each independently an integer of 1 to 8, and Ar 221 is a substituted or unsubstituted phenylene group.
More preferable compound (2-2-2) is, for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
化合物(2-2-3)で好ましいものとしては、例えば、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~8の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(2-2-3)でより好ましいものとしては、例えば、Y221が単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-であり、n221及びn222がそれぞれ独立に1~6の整数であり、Ar221が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (2-2-3), for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, and n221 And n222 are each independently an integer of 1 to 8, and Ar 221 is a substituted or unsubstituted phenylene group.
More preferable compound (2-2-3) is, for example, Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —, n221 and n222 are each independently an integer of 1 to 6, and Ar 221 is a substituted or unsubstituted phenylene group.
化合物(2)のうち、化合物(2-1-1)で好ましいものとしては、例えば、下記式(2-1-1a)で表される化合物(以下、「化合物(2-1-1a)」と略記することがある)、下記式(2-1-1b)で表される化合物(以下、「化合物(2-1-1b)」と略記することがある)、又は、下記式(2-1-1c)で表される化合物(以下、「化合物(2-1-1c)」と略記することがある)等が挙げられる。
化合物(2)のうち、化合物(2-1-2)で好ましいものとしては、例えば、下記式(2-1-2a)で表される化合物(以下、「化合物(2-1-2a)」と略記することがある)、下記式(2-1-2b)で表される化合物(以下、「化合物(2-1-2b)」と略記することがある)、又は、下記式(2-1-2c)で表される化合物(以下、「化合物(2-1-2c)」と略記することがある)等が挙げられる。
化合物(2)のうち、化合物(2-1-3)で好ましいものとしては、例えば、下記式(2-1-3a)で表される化合物(以下、「化合物(2-1-3a)」と略記することがある)、下記式(2-1-3b)で表される化合物(以下、「化合物(2-1-3b)」と略記することがある)、又は、下記式(2-1-3c)で表される化合物(以下、「化合物(2-1-3c)」と略記することがある)等が挙げられる。
化合物(2)のうち、化合物(2-2-1)で好ましいものとしては、例えば、下記式(2-2-1a)で表される化合物(以下、「化合物(2-2-1a)」と略記することがある)、下記式(2-2-1b)で表される化合物(以下、「化合物(2-2-1b)」と略記することがある)、又は、下記式(2-2-1c)で表される化合物(以下、「化合物(2-2-1c)」と略記することがある)等が挙げられる。
化合物(2)のうち、化合物(2-2-2)で好ましいものとしては、例えば、下記式(2-2-2a)で表される化合物(以下、「化合物(2-2-2a)」と略記することがある)、下記式(2-2-2b)で表される化合物(以下、「化合物(2-2-2b)」と略記することがある)、又は、下記式(2-2-2c)で表される化合物(以下、「化合物(2-2-2c)」と略記することがある)等が挙げられる。
化合物(2)のうち、化合物(2-2-3)で好ましいものとしては、例えば、下記式(2-2-3a)で表される化合物(以下、「化合物(2-2-3a)」と略記することがある)、下記式(2-2-3b)で表される化合物(以下、「化合物(2-2-3b)」と略記することがある)、又は、下記式(2-2-3c)で表される化合物(以下、「化合物(2-2-3c)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(2)の一例に過ぎず、好ましい化合物(2)はこれらに限定されない。
Among the compounds (2), preferred as the compound (2-1-1) are, for example, compounds represented by the following formula (2-1-1a) (hereinafter referred to as “compound (2-1-1a)”) Or a compound represented by the following formula (2-1-1b) (hereinafter sometimes abbreviated as “compound (2-1-1b)”), or a compound represented by the following formula (2- 1-1c) (hereinafter sometimes abbreviated as “compound (2-1-1c)”) and the like.
Among the compounds (2), preferred as the compound (2-1-2) are, for example, compounds represented by the following formula (2-1-2a) (hereinafter referred to as “compound (2-1-2a)”) Or a compound represented by the following formula (2-1-2b) (hereinafter sometimes abbreviated as “compound (2-1-2b)”), or a compound represented by the following formula (2- 1-2c) (hereinafter sometimes abbreviated as “compound (2-1-2c)”) and the like.
Among the compounds (2), preferred as the compound (2-1-3) are, for example, compounds represented by the following formula (2-1-3a) (hereinafter referred to as “compound (2-1-3a)”) Or a compound represented by the following formula (2-1-3b) (hereinafter sometimes abbreviated as “compound (2-1-3b)”), or a compound represented by the following formula (2- 1-3c) (hereinafter sometimes abbreviated as “compound (2-1-3c)”) and the like.
Among the compounds (2), preferred as the compound (2-2-1) are, for example, compounds represented by the following formula (2-2-1a) (hereinafter referred to as “compound (2-2-1a)”. Or a compound represented by the following formula (2-2-1b) (hereinafter sometimes abbreviated as “compound (2-2-1b)”), or a compound represented by the following formula (2- 2-1c) (hereinafter sometimes abbreviated as “compound (2-2-1c)”) and the like.
Among the compounds (2), preferred as the compound (2-2-2) are, for example, compounds represented by the following formula (2-2-2a) (hereinafter referred to as “compound (2-2-2a)”) Or a compound represented by the following formula (2-2-2b) (hereinafter sometimes abbreviated as “compound (2-2-2b)”), or a compound represented by the following formula (2- 2-2c) (hereinafter sometimes abbreviated as “compound (2-2-2c)”) and the like.
Among the compounds (2), preferred as the compound (2-2-3) are, for example, compounds represented by the following formula (2-2-3a) (hereinafter referred to as “compound (2-2-3a)”. Or a compound represented by the following formula (2-2-3b) (hereinafter sometimes abbreviated as “compound (2-2-3b)”), or a compound represented by the following formula (2- 2-3c) (hereinafter sometimes abbreviated as “compound (2-2-3c)”) and the like.
In addition, these compounds are only examples of a preferable compound (2), and a preferable compound (2) is not limited to these.
化合物(2)は、ALPにより加水分解されリン酸基が脱離し、化合物(2)-1に変化することによって、緑色(蛍光波長:450nm以上550nm未満程度)の蛍光を発生する。 Compound (2) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (2) -1 is changed to compound (2) -1, thereby generating green (fluorescence wavelength: about 450 nm or more and less than about 550 nm) fluorescence.
本実施形態の化合物(2)は、実質的に非解離型(ニュートラル型)の化合物として存在しているが、リン酸基がALPとの酵素反応により脱離することによって、解離型(アニオン型)の化合物(2)-1となる。よって、本実施形態の化合物(2)は、ALPとの酵素反応前及び酵素反応後において最大吸収波長が大きく変化するため、ALPを高感度に測定するための蛍光プローブとして利用することができる。 Although the compound (2) of this embodiment exists as a substantially non-dissociation type (neutral type) compound, the dissociation type (anion type) is obtained by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (2) -1. Therefore, the compound (2) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength greatly changes before and after the enzyme reaction with ALP.
≪化合物(2)の製造方法≫
化合物(2)は、例えば、Y21、R21及びR22の種類に応じて、公知の反応を用いて、キサンテン骨格にベンゼン誘導体及びリン酸基を有する化合物を反応させることで製造できる。より具体的には以下のとおりである。
<< Method for Producing Compound (2) >>
Compound (2) can be produced, for example, by reacting a compound having a benzene derivative and a phosphate group on the xanthene skeleton using a known reaction according to the types of Y 21 , R 21 and R 22 . More specifically, it is as follows.
<化合物(2-1)の製造方法>
化合物(2)のうち、化合物(2-1)は、例えば、下記一般式(2-1a)で表される化合物(以下、「化合物(2-1a)」と略記することがある)と、下記一般式(2-1b)で表される化合物(以下、「化合物(2-1b)」と略記することがある)と、を反応させて、下記一般式(2-1c)で表される化合物(以下、「化合物(2-1c)」と略記することがある)を得る工程(以下、「化合物(2-1c)製造工程」と略記することがある)、化合物(2-1c)と、下記一般式(2-1d)で表される化合物(以下、「化合物(2-1d)」と略記することがある)と、を反応させて、下記一般式(2-1e)で表される化合物(以下、「化合物(2-1e)」と略記することがある)を得る工程(以下、「化合物(2-1e)製造工程」と略記することがある)、及び化合物(2-1e)から化合物(2-1)を得る工程(以下、「化合物(2-1)製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (2-1)>
Among the compounds (2), the compound (2-1) is, for example, a compound represented by the following general formula (2-1a) (hereinafter sometimes abbreviated as “compound (2-1a)”), A compound represented by the following general formula (2-1b) (hereinafter sometimes abbreviated as “compound (2-1b)”) is reacted with the compound to represent the following general formula (2-1c). A step of obtaining a compound (hereinafter sometimes abbreviated as “compound (2-1c)”) (hereinafter abbreviated as “a compound (2-1c) production step”), a compound (2-1c) and And a compound represented by the following general formula (2-1d) (hereinafter, may be abbreviated as “compound (2-1d)”) to give a compound represented by the following general formula (2-1e). (Hereinafter referred to as “compound (2-1e)”) (hereinafter referred to as “compound (2-1e)”). ) A production step ”and a step of obtaining compound (2-1) from compound (2-1e) (hereinafter, sometimes abbreviated as“ compound (2-1) production step ”). It can manufacture with the manufacturing method which has.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、TBSはtert-ブチルジメチルシリル基である。R214は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。Y211、R23、R24、R25、R26、R211、R212、及びR213はいずれも上記と同じである。) (Wherein Bzl is a benzyl group and TBS is a tert-butyldimethylsilyl group. R 214 is a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a terminal group) And an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group, Y 211 , R 23 , R 24 , R 25 , R 26 , R 211 , R 212 , and R 213 are all the same as above.)
[化合物(2-1c)製造工程]
前記化合物(2-1c)製造工程においては、化合物(2-1a)と化合物(2-1b)とを反応させて、化合物(2-1c)を得る。
[Compound (2-1c) Production Process]
In the production step of the compound (2-1c), the compound (2-1a) and the compound (2-1b) are reacted to obtain the compound (2-1c).
(化合物(2-1a))
化合物(2-1a)は公知化合物である。
化合物(2-1a)において、R211及びR212はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(2-1a)において、R211及びR212は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(2-1a)において、R213は末端にアニオン性官能基を有する基である。
中でも、化合物(2-1a)において、R213は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基、又はリン酸基であることがより好ましい。
(Compound (2-1a))
Compound (2-1a) is a known compound.
In the compound (2-1a), R 211 and R 212 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (2-1a), R 211 and R 212 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (2-1a), R 213 is a group having an anionic functional group at the terminal.
Among them, in the compound (2-1a), R 213 is preferably a group consisting of only an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group, because it is easy to synthesize. preferable.
(化合物(2-1b))
化合物(2-1b)は公知化合物である。
化合物(2-1b)において、R23、R24、R25、及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は炭素数1~10のアルキル基である。
中でも、化合物(2-1b)において、R23及びR26は、合成しやすいことから、同じであることが好ましく、水素原子であることがより好ましい。また、R24及びR25は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
(Compound (2-1b))
Compound (2-1b) is a known compound.
In the compound (2-1b), R 23 , R 24 , R 25 , and R 26 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
Among them, in the compound (2-1b), R 23 and R 26 are preferably the same and more preferably a hydrogen atom because they are easily synthesized. R 24 and R 25 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easy to synthesize.
(反応条件)
化合物(2-1c)製造工程においては、強塩基を予め化合物(2-1a)と混合させた後に、化合物(2-1b)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(2-1a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (2-1c), it is preferred that a strong base is previously mixed with compound (2-1a) and then reacted with compound (2-1b).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (2-1a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(2-1c)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (2-1c), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(2-1c)製造工程において、化合物(2-1b)の使用量は、化合物(2-1a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production step of compound (2-1c), the amount of compound (2-1b) used is preferably 0.1 to 0.3 times the amount of compound (2-1a) used. .
化合物(2-1c)製造工程においては、化合物(2-1a)、化合物(2-1b)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、1M以上5M以下であることが好ましい。
In the production step of compound (2-1c), it is preferable to react compound (2-1a), compound (2-1b), and a strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1M or more and 5M or less.
化合物(2-1c)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(2-1c)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production step of compound (2-1c), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production step of compound (2-1c), the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
化合物(2-1c)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(2-1c)をさらに同様の方法で精製してもよい。また、得られた化合物(2-1c)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(2-1)の収率が向上する点から、取り出すことが好ましい。 In the compound (2-1c) production process, after completion of the reaction, the compound (2-1c) can be taken out in the same manner as in the above-mentioned compound (1-1b) production process, and the taken out compound (2-1c) is further treated in the same way. You may refine by. Further, the obtained compound (2-1c) may be used in the next step without being removed after completion of the reaction, but it should be removed from the viewpoint of improving the yield of the target compound (2-1). Is preferred.
[化合物(2-1e)製造工程]
前記化合物(2-1e)製造工程においては、化合物(2-1c)と化合物(2-1d)とを反応させて、化合物(2-1e)を得る。
[Compound (2-1e) Production Process]
In the step of producing compound (2-1e), compound (2-1c) and compound (2-1d) are reacted to obtain compound (2-1e).
(化合物(2-1c))
化合物(2-1c)は公知化合物である。
化合物(2-1c)において、R211、R212及びR213は、化合物(2-1a)におけるR211、R212及びR213と同じであり、R23、R24、R25及びR26は、化合物(2-1b)におけるR23、R24、R25及びR26と同じである。
(Compound (2-1c))
Compound (2-1c) is a known compound.
In the compound (2-1c), R 211, R 212 and R 213 are the same as R 211, R 212 and R 213 in the compound (2-1a), R 23, R 24, R 25 and R 26 The same as R 23 , R 24 , R 25 and R 26 in the compound (2-1b).
(化合物(2-1d))
化合物(2-1d)は公知化合物である。
化合物(2-1d)において、R214は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(2-1d)において、R214は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (2-1d))
Compound (2-1d) is a known compound.
In the compound (2-1d), R 214 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
Among these, in the compound (2-1d), R 214 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(2-1e))
化合物(2-1e)は新規化合物である。
化合物(2-1e)において、Y211は、上記「≪化合物(2)≫」の「<Y211及びY221>」で例示されたものと同じである。
また、化合物(2-1e)において、R211、R212及びR213は、化合物(2-1a)におけるR211、R212及びR213と同じであり、R23、R24、R25及びR26は、化合物(2-1b)におけるR23、R24、R25及びR26と同じである。
(Compound (2-1e))
Compound (2-1e) is a novel compound.
In the compound (2-1e), Y 211 is the same as those exemplified for “<Y 211 and Y 221 >” in the above “<< Compound (2) >>”.
Further, in the compound (2-1e), R 211, R 212 and R 213 are the same as R 211, R 212 and R 213 in the compound (2-1a), R 23, R 24, R 25 and R 26 is the same as R 23 , R 24 , R 25 and R 26 in the compound (2-1b).
(反応条件)
化合物(2-1e)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(2-1c)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (2-1e), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (2-1c).
化合物(2-1e)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(2-1c)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production process of compound (2-1e), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of compound (2-1c) used.
化合物(2-1e)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、[化合物(1-1d)製造工程]において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(2-1c)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (2-1e), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in [Compound (1-1d) Production Process].
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (2-1c).
化合物(2-1e)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (2-1e), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(2-1e)製造工程において、化合物(2-1d)の使用量は、化合物(2-1c)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the compound (2-1e) production process, the amount of compound (2-1d) used is preferably 1 to 2 times the amount of compound (2-1c).
化合物(2-1e)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(2-1e)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production process of compound (2-1e), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production process of compound (2-1e), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(2-1e)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(2-1e)をさらに同様の方法で精製してもよい。また、得られた化合物(2-1e)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(2-1)の収率が向上する点から、取り出すことが好ましい。 The compound (2-1e) can be taken out by the same method as in the above-mentioned compound (1-1b) production step, and the taken out compound (2-1e) may be further purified by the same method. Further, the obtained compound (2-1e) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the point that the yield of the target compound (2-1) is improved. Is preferred.
[化合物(2-1)製造工程]
前記化合物(2-1)製造工程においては、化合物(2-1e)から化合物(2-1)を得る。
化合物(2-1)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R213に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基、又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (2-1) Production Process]
In the production step of the compound (2-1), the compound (2-1) is obtained from the compound (2-1e).
The method for obtaining the compound (2-1) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Note that when a protective group is bonded to R213 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(2-1)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (2-1), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(2-1)製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(2-1)製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of the compound (2-1), the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (2-1), the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
化合物(2-1)製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(2-1)を取り出すことができ、取り出した化合物(2-1)をさらに同様の方法で精製してもよい。 In the compound (2-1) production process, after completion of the reaction, the compound (2-1) can be removed in the same manner as in the compound (1-1b) production process, and the removed compound (2-1 ) May be further purified by the same method.
化合物(2-1)、化合物(2-1a)、化合物(2-1b)、化合物(2-1c)、化合物(2-1d)、化合物(2-1e)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as compound (2-1), compound (2-1a), compound (2-1b), compound (2-1c), compound (2-1d), compound (2-1e), etc. is, for example, a nucleus The structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
<化合物(2-2)の製造方法>
化合物(2)のうち、化合物(2-2)は、例えば、下記一般式(2-2a)で表される化合物(以下、「化合物(2-2a)」と略記することがある)と、下記一般式(2-2b)で表される化合物(以下、「化合物(2-2b)」と略記することがある)と、を反応させて、下記一般式(2-2c)で表される化合物(以下、「化合物(2-2c)」と略記することがある)を得る工程(以下、「化合物(2-2c)製造工程」と略記することがある)、化合物(2-2c)と、下記一般式(2-2d)で表される化合物(以下、「化合物(2-2d)」と略記することがある)と、を反応させて、下記一般式(2-2e)で表される化合物(以下、「化合物(2-2e)」と略記することがある)を得る工程(以下、「化合物(2-2e)製造工程」と略記することがある)、及び化合物(2-2e)から化合物(2-2)を得る工程(以下、「化合物(2-2)製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (2-2)>
Among the compounds (2), the compound (2-2) is, for example, a compound represented by the following general formula (2-2a) (hereinafter sometimes abbreviated as “compound (2-2a)”); A compound represented by the following general formula (2-2b) (hereinafter sometimes abbreviated as “compound (2-2b)”) is reacted with the compound to represent the following general formula (2-2c). A step of obtaining a compound (hereinafter sometimes abbreviated as “compound (2-2c)”) (hereinafter abbreviated as “a compound (2-2c) production step”), a compound (2-2c) and And a compound represented by the following general formula (2-2d) (hereinafter, may be abbreviated as “compound (2-2d)”) to give a compound represented by the following general formula (2-2e). (Hereinafter referred to as “compound (2-2e)”) (hereinafter referred to as “compound (2-2e)”). ) A production step ”and a step of obtaining compound (2-2) from compound (2-2e) (hereinafter, abbreviated as“ compound (2-2) production step ”). It can manufacture with the manufacturing method which has.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、Phは無置換のフェニル基である。R225は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。Y221、R23、R24、R25、R26、R221、R222、R223及びR224はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group and Ph is an unsubstituted phenyl group. R 225 is a hydrogen atom, a hydroxyl group, a leaving group (for example, a halogen atom), or a leaving group at the end (for example, And an alkylene group having 1 to 10 carbon atoms, which may contain at least one of an oxygen atom and an arylene group, and includes Y 221 , R 23 , R 24 , R 25. , R 26 , R 221 , R 222 , R 223 and R 224 are all the same as above.)
[化合物(2-2c)製造工程]
前記化合物(2-2c)製造工程においては、化合物(2-2a)と化合物(2-2b)とを反応させて、化合物(2-2c)を得る。
[Compound (2-2c) Production Process]
In the production step of the compound (2-2c), the compound (2-2a) and the compound (2-2b) are reacted to obtain the compound (2-2c).
(化合物(2-2a))
化合物(2-2a)は公知化合物である。
化合物(2-2a)において、R221及びR222はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(2-2a)において、R221及びR222は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(2-2a)において、R223は末端にアニオン性官能基を有する基である。
中でも、化合物(2-2a)において、R223は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基、又はリン酸基であることがより好ましい。
(Compound (2-2a))
Compound (2-2a) is a known compound.
In the compound (2-2a), R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (2-2a), R 221 and R 222 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (2-2a), R 223 is a group having an anionic functional group at the terminal.
Among these, in the compound (2-2a), R 223 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. preferable.
(化合物(2-2b))
化合物(2-2b)は公知化合物である。
化合物(2-2b)において、R23、R24、R25、及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は炭素数1~10のアルキル基である。
中でも、化合物(2-2b)において、R23及びR26は、合成しやすいことから、同じであることが好ましく、水素原子であることがより好ましい。また、R24及びR25は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
(Compound (2-2b))
Compound (2-2b) is a known compound.
In the compound (2-2b), R 23 , R 24 , R 25 , and R 26 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
Among them, in the compound (2-2b), R 23 and R 26 are preferably the same and more preferably a hydrogen atom because they are easily synthesized. R 24 and R 25 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easy to synthesize.
また、化合物(2-2b)において、R224は水素原子、又は炭素数1~10のアルキル基である。
中でも、化合物(2-2b)において、R224は、水素原子、又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基、又はエチル基であることがより好ましい。
In the compound (2-2b), R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Among these, in the compound (2-2b), R 224 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group, or an ethyl group. preferable.
(反応条件)
化合物(2-2c)製造工程においては、強塩基を予め化合物(2-2a)と混合させた後に、化合物(2-2b)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(2-2a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (2-2c), it is preferable that a strong base is mixed with compound (2-2a) in advance and then reacted with compound (2-2b).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (2-2a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(2-2c)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (2-2c), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(2-2c)製造工程において、化合物(2-2b)の使用量は、化合物(2-2a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production process of compound (2-2c), the amount of compound (2-2b) used is preferably 0.1 to 0.3 times the amount of compound (2-2a) used. .
化合物(2-2c)製造工程においては、化合物(2-2a)、化合物(2-2b)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (2-2c), it is preferable to react compound (2-2a), compound (2-2b), and a strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(2-2c)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(2-2c)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production step of compound (2-2c), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production step of compound (2-2c), the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
化合物(2-2c)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(2-2c)をさらに同様の方法で精製してもよい。また、得られた化合物(2-2c)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(2-2)の収率が向上する点から、取り出すことが好ましい。 In the compound (2-2c) production process, after completion of the reaction, the compound (2-2c) can be removed in the same manner as in the above-mentioned compound (1-1b) production process. You may refine by. The obtained compound (2-2c) may be used in the next step without being removed after the reaction is completed, but it should be removed from the viewpoint that the yield of the target compound (2-2) is improved. Is preferred.
[化合物(2-2e)製造工程]
前記化合物(2-2e)製造工程においては、化合物(2-2c)と化合物(2-2d)とを反応させて、化合物(2-2e)を得る。
[Compound (2-2e) Production Process]
In the production step of the compound (2-2e), the compound (2-2c) and the compound (2-2d) are reacted to obtain the compound (2-2e).
(化合物(2-2c))
化合物(2-2c)は公知化合物である。
化合物(2-2c)において、R221、R222及びR223は、化合物(2-2a)におけるR221、R222及びR223と同じであり、R23、R24、R25、R26及びR224は、化合物(2-2b)におけるR23、R24、R25、R26及びR224と同じである。
(Compound (2-2c))
Compound (2-2c) is a known compound.
In the compound (2-2c), R 221, R 222 and R 223 are the same as R 221, R 222 and R 223 in the compound (2-2a), R 23, R 24, R 25, R 26 and R 224 is the same as R 23, R 24, R 25 , R 26 and R 224 in the compound (2-2b).
(化合物(2-2d))
化合物(2-2d)は公知化合物である。
化合物(2-2d)において、R225は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(2-2d)において、R225は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (2-2d))
Compound (2-2d) is a known compound.
In the compound (2-2d), R 225 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
Among these, in the compound (2-2d), R 225 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(2-2e))
化合物(2-1e)は新規化合物である。
化合物(2-1e)において、上記「≪化合物(2)≫」の「<Y211及びY221>」で例示されたものと同じである。
また、化合物(2-2e)において、R221、R222及びR223は、化合物(2-2a)におけるR221、R222及びR223と同じであり、R23、R24、R25、R26及びR224は、化合物(2-2b)におけるR23、R24、R25、R26及びR224と同じである。
(Compound (2-2e))
Compound (2-1e) is a novel compound.
In the compound (2-1e), the same as those exemplified for “<Y 211 and Y 221 >” in the above “<< Compound (2) >>”.
Further, in the compound (2-2e), R 221, R 222 and R 223 are the same as R 221, R 222 and R 223 in the compound (2-2a), R 23, R 24, R 25, R 26 and R 224 are the same as R 23, R 24, R 25 , R 26 and R 224 in the compound (2-2b).
(反応条件)
化合物(2-2e)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(2-2c)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (2-2e), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (2-2c).
化合物(2-2e)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(2-2c)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production process of compound (2-2e), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (2-2c) used.
化合物(2-2e)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(2-2c)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (2-2e), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (2-2c).
化合物(2-2e)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (2-2e), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(2-2e)製造工程において、化合物(2-2d)の使用量は、化合物(2-2c)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production process of compound (2-2e), the amount of compound (2-2d) used is preferably 1 to 2 times the amount of compound (2-2c).
化合物(2-2e)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上-5℃以下であることがより好ましい。
化合物(2-2e)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production process of compound (2-2e), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production process of compound (2-2e), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(2-2e)は、上述の「[化合物(1-1b)製造工程]」の場合と同様の方法で取り出すことができ、取り出した化合物(2-2e)をさらに同様の方法で精製してもよい。また、得られた化合物(2-2e)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(2-2)の収率が向上する点から、取り出すことが好ましい。 Compound (2-2e) can be extracted in the same manner as in the above-mentioned “[Compound (1-1b) production step]”, and the extracted compound (2-2e) is further purified by the same method. May be. Further, the obtained compound (2-2e) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the viewpoint of improving the yield of the target compound (2-2). Is preferred.
[化合物(2-2)製造工程]
前記化合物(2-2)製造工程においては、化合物(2-2e)から化合物(2-2)を得る。
化合物(2-2)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R223に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基又はリン酸基が形成される。また、R224に保護基が結合している場合にも、同様に保護基が除去される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (2-2) Production Process]
In the production step of the compound (2-2), the compound (2-2) is obtained from the compound (2-2e).
The method for obtaining the compound (2-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. In addition, also when a protective group has couple | bonded with R223 , a protective group is similarly removed and a carboxy group, a sulfonic acid group, or a phosphoric acid group is formed. Further, when a protective group is bonded to R 224 , the protective group is similarly removed.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(2-2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (2-2), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(2-2)製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(2-2)製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (2-2), the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (2-2), the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
化合物(2-2)製造工程において、反応終了後は、「[化合物(1-1b)製造工程]」の場合と同様の方法で、化合物(2-2)を取り出すことができ、取り出した化合物(2-2)をさらに同様の方法で精製してもよい。 In the production step of compound (2-2), after completion of the reaction, compound (2-2) can be taken out in the same manner as in the case of “[Compound (1-1b) production step]”. (2-2) may be further purified by the same method.
化合物(2-2)、化合物(2-2a)、化合物(2-2b)、化合物(2-2c)、化合物(2-2d)、化合物(2-2e)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as compound (2-2), compound (2-2a), compound (2-2b), compound (2-2c), compound (2-2d), compound (2-2e) is, for example, a nucleus The structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
≪化合物(3)≫
本発明の第3実施形態に係る化合物は、下記一般式(3)で表される(本明細書においては、「化合物(3)」と称する場合がある)。
<< Compound (3) >>
The compound according to the third embodiment of the present invention is represented by the following general formula (3) (sometimes referred to as “compound (3)” in the present specification).
(一般式(3)中、R31はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR31は互いに同じであってもよく、異なっていてもよい。R32はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR32は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。X32は酸素原子又はN+HR”である。R”は水素原子又は炭素数1~10のアルキル基である。Y31は単結合、-O-(CH2)n31-、-O-(CH2)n32-Ar31-、-NH-(CH2)n33-、又は、-NH-(CH2)n34-Ar32-である。n31、n32、n33及びn34はそれぞれ独立に1~10の整数である。Ar31及びAr32はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (3), R 31 is 1 to 2 monovalent substituents present on the benzene ring and is an electron donating group. A plurality of R 31 may be the same as each other. may .R 32 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group. R 32 there are a plurality of mutually identical The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, R 33 , R 34 , R 37 and R 38 is each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, and R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom , Phosphorus atom, germanium atom or tin atom. X 32 is an oxygen atom or N + HR ″. R ″ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Y 31 is a single bond, —O - (CH 2) n31 -, - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 -Ar 32 - are as .N31, n32, n33 and n34 are each independently an integer of 1 to 10. Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.)
化合物(3)はフルオレセイン類縁体又はローダミン類縁体であり、アルカリ性条件下で、ALPにより加水分解されるリン酸基を有する化合物である。
また、化合物(3)はALPによる加水分解でリン酸基が脱離することで蛍光を発する蛍光性化合物である。
Compound (3) is a fluorescein analog or rhodamine analog, and has a phosphate group that is hydrolyzed by ALP under alkaline conditions.
Compound (3) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
<R31>
R31はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。
R31における前記電子供与基は、上述の「<R21>」において例示されたものと同様のものである。
R31の数は、1個又は2個であり、2個であることが好ましい。R31が2個ある場合、互いに同じであってもよく、異なっていてもよい。中でも、R31が2個ある場合、合成しやすいことから、互いに同じであることが好ましい。
<R 31 >
R 31 is 1-2 monovalent substituents present on the benzene ring and is an electron donating group.
The electron donating group in R 31 is the same as those exemplified in the above “<R 21 >”.
The number of R 31 is 1 or 2, and is preferably 2. When there are two R 31 s , they may be the same or different. Among these, when there are two R 31 s , it is preferable that they are the same as each other because they are easily synthesized.
中でも、一般式(3)中、R31は親水性が高いことから、直鎖状の炭素数1~10のアルコキシ基又は直鎖状の炭素数1~10のアルキルアミノ基が好ましく、メチルアミノ基、エチルアミノ基、メトキシ基、又はエトキシ基がより好ましい。 Among these, in general formula (3), R 31 is highly hydrophilic, and is preferably a straight-chain alkoxy group having 1 to 10 carbon atoms or a straight-chain alkylamino group having 1 to 10 carbon atoms. A group, an ethylamino group, a methoxy group, or an ethoxy group is more preferable.
また、一般式(3)中、R31は2個あることが好ましい。ベンゼン環における2個のR21の位置としては、互いにオルト位となる位置に配するものであることが好ましい。 Further, in the general formula (3), it is preferred that R 31 is two. The two R 21 positions in the benzene ring are preferably arranged at positions that are ortho positions relative to each other.
<R32>
R32はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。中でも、一般式(3)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
R32の数は、1個又は2個であり、1個であることが好ましい。R32が2個ある場合、互いに同じであってもよく、異なっていてもよい。中でも、R32が2個ある場合、合成しやすいことから、互いに同じであることが好ましい。
<R 32 >
R 32 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. Among them, the “group having an anionic functional group at the terminal” in the general formula (3) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
The number of R 32 is one or two, and preferably one. When two R 32 are present, they may be the same as or different from each other. Among these, when there are two R 32 s , it is preferable that they are the same as each other because they are easily synthesized.
中でも、化合物(3)(非解離型(ニュートラル型))、及び、後述に示すリン酸基脱離後の化合物(3)-1(解離型(アニオン型))の最大吸収波長が大きく乖離することから、一般式(3)中、R31を2個、R32を1個有するベンゼン環において、キサンテン骨格を1位、1個のR31を4位、もう1個のR31を6位としたとき、R32を3位又は5位に有することが好ましく、3位に有することがより好ましい。 In particular, the maximum absorption wavelength of compound (3) (non-dissociation type (neutral type)) and compound (3) -1 (dissociation type (anion type)) after elimination of a phosphate group, which will be described later, greatly deviate. Therefore, in general formula (3), in the benzene ring having two R 31 and one R 32 , the xanthene skeleton is in the 1st position, one R 31 is in the 4th position, and the other R 31 is in the 6th position. In this case, R 32 is preferably located at the 3rd or 5th position, more preferably at the 3rd position.
<R33、R34、R37及びR38>
R33、R34、R37及びR38における前記ハロゲン原子は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R33、R34、R37及びR38における前記ハロゲン原子は塩素原子、臭素原子、又はヨウ素原子であることが好ましい。
R33、R34、R37及びR38における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R33、R34、R37及びR38における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
<R 33 , R 34 , R 37 and R 38 >
Examples of the halogen atom in R 33 , R 34 , R 37 and R 38 are the same as those exemplified above for “<R 11 , R 12 and R 13 >”. Especially, it is preferable that the said halogen atom in R < 33 >, R < 34> , R <37> and R <38 > is a chlorine atom, a bromine atom, or an iodine atom.
Examples of the alkyl group having 1 to 10 carbon atoms in R 33 , R 34 , R 37 and R 38 are the same as those exemplified in the above “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 33 , R 34 , R 37 and R 38 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(3)中、R33及びR38は、合成しやすいことから、同じであることが好ましく、水素原子であることがより好ましい。
また、中でも、一般式(3)中、R34及びR37は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
Especially, in general formula (3), since R33 and R38 are easy to synthesize | combine, it is preferable that it is the same, and it is more preferable that they are a hydrogen atom.
Of these, in general formula (3), R 34 and R 37 are preferably the same, more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
<R35及びR36>
R35及びR36における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R35及びR36における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
R35及びR36における前記炭素数6~10のアリール基は、例えば、フェニル基、ベンジル基、トリル基、o-キシリル基、m-キシリル基、p-キシリル基等が挙げられ、これらに限定されない。中でも、R35及びR36における前記炭素数6~10のアリール基は、フェニル基又はベンジル基であることが好ましく、フェニル基であることがより好ましい。
< R35 and R36 >
Examples of the alkyl group having 1 to 10 carbon atoms for R 35 and R 36 are the same as those exemplified above for “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 35 and R 36 is preferably a linear group, and more preferably a methyl group or an ethyl group.
Examples of the aryl group having 6 to 10 carbon atoms in R 35 and R 36 include phenyl group, benzyl group, tolyl group, o-xylyl group, m-xylyl group, p-xylyl group and the like. Not. Among them, the aryl group having 6 to 10 carbon atoms in R 35 and R 36 is preferably a phenyl group or a benzyl group, and more preferably a phenyl group.
中でも、一般式(3)中、R35及びR36は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基、又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。 Among these, in general formula (3), R 35 and R 36 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
<X31>
X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。
中でも、一般式(3)中、X31は珪素原子であること好ましい。
<X 31 >
X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
Among them, in the general formula (3), X 31 is preferable a silicon atom.
<X32>
X32は酸素原子又はN+HR’’である。
X32が酸素原子であるとき、Y31は単結合、-O-(CH2)n31-、又は、-O-(CH2)n32-Ar31-であることが好ましく、X32がN+HR’’であるとき、Y31は単結合、NH-(CH2)n33-、又は、-NH-(CH2)n34-Ar32-であることが好ましい。
< X32 >
X 32 is an oxygen atom or N + HR ″.
When X 32 is an oxygen atom, Y 31 represents a single bond, -O- (CH 2) n31 - , or, -O- (CH 2) n32 -Ar 31 - is preferably, X 32 is N + When HR ″, Y 31 is preferably a single bond, NH— (CH 2 ) n33 —, or —NH— (CH 2 ) n34 —Ar 32 —.
R’’は水素原子又は炭素数1~10のアルキル基である。
R’’における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R’’における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
R ″ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Examples of the alkyl group having 1 to 10 carbon atoms for R ″ include the same ones as exemplified in the above “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R ″ is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(3)中、X32は酸素原子又はN+H2であることが好ましい。 Among them, in the general formula (3), X 32 is preferably is an oxygen atom or N + H 2.
<Y31>
一般式(3)中、Y31は単結合、-O-(CH2)n31-、-O-(CH2)n32-Ar31-、-NH-(CH2)n33-、又は、-NH-(CH2)n34-Ar32-である。Y31において、-O-又は-NH-のアルキレン基と反対の結合手が上記一般式(3)中の複素三員環を構成する炭素原子と結合している。また、-(CH2)n31-、-Ar31-、-(CH2)n33-又は-Ar32-の酸素原子(O)、アミノ基(NH)又はアルキレン基と反対の結合手が上記一般式(3)中のリン酸基と結合している。
n31、n32、n33及びn34はそれぞれ独立に1~10の整数である。
Ar31及びAr32はそれぞれ独立に置換又は無置換のアリーレン基である。
<Y 31 >
In the general formula (3), Y 31 represents a single bond, -O- (CH 2) n31 - , - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH — (CH 2 ) n34 —Ar 32 —. In Y 31 , the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the hetero three-membered ring in the general formula (3). Also, - (CH 2) n31 - , - Ar 31 -, - (CH 2) n33 - or -Ar 32 - oxygen atoms (O), amino group (NH) or opposite bond is the general alkylene group It is bonded to the phosphate group in formula (3).
n31, n32, n33 and n34 are each independently an integer of 1 to 10.
Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
n31、n32、n33及びn34は、それぞれY31におけるアルキレン基の繰り返し数である。n31、n32、n33及びn34は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。 n31, n32, n33 and n34 are the number of repetitions of the alkylene group for each Y 31. n31, n32, n33 and n34 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Y31における置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。 As the substituted or unsubstituted arylene group for Y 31, the same groups as those exemplified above for “<Y 11 >” can be mentioned.
中でも、一般式(3)中、Y31は単結合、-O-CH2-、-O-(CH2)2-、-O-CH2-Ph-、-NH-CH2-、-NH-(CH2)2-、又は、-NH-CH2-Ph-であることが好ましい。なお、ここで、「Ph」は置換又は無置換のフェニレン基を示す。 Among them, in the general formula (3), Y 31 is a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—. Here, “Ph” represents a substituted or unsubstituted phenylene group.
化合物(3)で好ましいものとしては、例えば、下記一般式(3-1)で表される化合物(以下、「化合物(3-1)」と略記することがある)、又は、下記一般式(3-2)で表される化合物(以下、「化合物(3-2)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(3)の一例に過ぎず、好ましい化合物(3)はこれらに限定されない。
Preferred examples of the compound (3) include a compound represented by the following general formula (3-1) (hereinafter sometimes abbreviated as “compound (3-1)”), or a compound represented by the following general formula ( 3-2) (hereinafter sometimes abbreviated as “compound (3-2)”) and the like.
In addition, these compounds are only examples of a preferable compound (3), and a preferable compound (3) is not limited to these.
(一般式(3-1)中、R311及びR312はそれぞれ独立に炭素数1~10のアルキル基である。R313は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y311は単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-である。n311及びn312はそれぞれ独立に1~10の整数である。Ar311は置換又は無置換のアリーレン基である。
一般式(3-2)中、R321及びR322はそれぞれ独立に炭素数1~10のアルキル基である。R323は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R324は水素原子又は炭素数1~10のアルキル基である。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。)
(In the general formula (3-1), R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms. R 313 is a group having an anionic functional group at its terminal. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, and R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or a carbon number of 1 R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms X 31 is a silicon atom, phosphorus atom, germanium atom or tin it is an atomic .Y 311 is a single bond, -O- (CH 2) n311 - , or, -O- (CH 2) n312 -Ar 311 - a is .n311 and N312 are each independently .Ar 311 is an integer of 1-10 is a substituted or unsubstituted arylene group.
In general formula (3-2), R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. R 323 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —. n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group. )
<R311、R322、R321及びR322>
R311、R322、R321及びR322における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R311、R322、R321及びR322における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
<R 311 , R 322 , R 321 and R 322 >
Examples of the alkyl group having 1 to 10 carbon atoms in R 311 , R 322 , R 321 and R 322 are the same as those exemplified above in “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 311 , R 322 , R 321 and R 322 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
中でも、一般式(3-1)中、R311及びR312は、合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
また、一般式(3-2)中、R321及びR322は、合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
Among them, in general formula (3-1), R 311 and R 312 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
In general formula (3-2), R 321 and R 322 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
<R313及びR323>
R313及びR323はそれぞれ独立して末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基、及びリン酸基からなる群より選ばれるいずれか一つである。
中でも、一般式(3-1)及び(3-2)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
< R313 and R323 >
R 313 and R 323 are each independently a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
Among them, the “group having an anionic functional group at the terminal” in the general formulas (3-1) and (3-2) is preferably a group consisting only of an anionic functional group because it is easy to synthesize.
<R324>
R324は水素原子、又は炭素数1~10のアルキル基である。
R324における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R324における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
一般式(3-2)において、R324は水素原子、又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
< R324 >
R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Examples of the alkyl group having 1 to 10 carbon atoms for R 324 include the same groups as those exemplified above for “<R 11 , R 12 and R 13 >”. Among these, the alkyl group having 1 to 10 carbon atoms in R 324 is preferably a linear group, and more preferably a methyl group or an ethyl group.
In General Formula (3-2), R 324 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group, or an ethyl group.
<Y311及びY321>
Y311は単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-である。Ar311は置換又は無置換のアリーレン基である。
Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。Ar321は置換又は無置換のアリーレン基である。
n311、n312、n321及びn322はそれぞれY311及びY321におけるアルキレン基の繰り返し数である。n311、n312、n321及びn322は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。
Ar311及びAr321はそれぞれ独立に置換又は無置換のアリーレン基である。置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。
<Y 311 and Y 321 >
Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —. Ar 311 is a substituted or unsubstituted arylene group.
Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —. Ar 321 is a substituted or unsubstituted arylene group.
n311, n312, n321 and n322 are the number of repetitions of the alkylene group for Y 311 and Y 321, respectively. n311, n312, n321 and n322 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Ar 311 and Ar 321 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “<Y 11 >”.
化合物(3-1)で好ましいものとしては、例えば、R311及びR312が直鎖状の炭素数1~10のアルキル基であり、R313がアニオン性官能基のみからなる基であり、R33及びR38が水素原子、メチル基又はエチル基であり、R34及びR37が水素原子、ハロゲン原子、メチル基又はエチル基であり、R35及びR36がメチル基、エチル基、フェニル基又はベンジル基であり、X31が珪素原子であり、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~8の整数であり、Ar311が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(3-1)でより好ましいものとしては、例えば、R311及びR312がメチル基又はエチル基であり、R313がカルボキシ基、スルホン酸基又はリン酸基であり、R33及びR38が水素原子であり、R34及びR37が水素原子又はハロゲン原子であり、R35及びR36がメチル基又はエチル基であり、X31が珪素原子であり、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~6の整数であり、Ar311が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (3-1) include, for example, R 311 and R 312 are linear alkyl groups having 1 to 10 carbon atoms, R 313 is a group consisting of only an anionic functional group, 33 and R 38 are a hydrogen atom, a methyl group or an ethyl group, R 34 and R 37 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and R 35 and R 36 are a methyl group, an ethyl group or a phenyl group. Or a benzyl group, X 31 is a silicon atom, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 and n312 Are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
More preferable examples of the compound (3-1) include, for example, R 311 and R 312 are a methyl group or an ethyl group, R 313 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 33 and R 38 Is a hydrogen atom, R 34 and R 37 are a hydrogen atom or a halogen atom, R 35 and R 36 are a methyl group or an ethyl group, X 31 is a silicon atom, Y 311 is a single bond, —O — (CH 2 ) n311 — or —O— (CH 2 ) n312 —Ar 311 —, wherein n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group And the like.
化合物(3-2)で好ましいものとしては、例えば、R321及びR322が直鎖状の炭素数1~10のアルキル基であり、R323がアニオン性官能基のみからなる基であり、R324が水素原子又は直鎖状の炭素数1~10のアルキル基であり、R33及びR38が水素原子、メチル基又はエチル基であり、R34及びR37が水素原子、ハロゲン原子、メチル基又はエチル基であり、R35及びR36がメチル基、エチル基、フェニル基又はベンジル基であり、X31が珪素原子であり、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~8の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(3-2)でより好ましいものとしては、例えば、R321及びR322がメチル基又はエチル基であり、R323がカルボキシ基、スルホン酸基又はリン酸基であり、R324が水素原子、メチル基又はエチル基であり、R33及びR38が水素原子であり、R34及びR37が水素原子又はハロゲン原子であり、R35及びR36がメチル基又はエチル基であり、X31が珪素原子であり、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~6の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (3-2) include, for example, R 321 and R 322 are linear alkyl groups having 1 to 10 carbon atoms, R 323 is a group consisting of only an anionic functional group, 324 is a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, R 33 and R 38 are a hydrogen atom, a methyl group or an ethyl group, and R 34 and R 37 are a hydrogen atom, a halogen atom, methyl A group or an ethyl group, R 35 and R 36 are a methyl group, an ethyl group, a phenyl group or a benzyl group, X 31 is a silicon atom, Y 321 is a single bond, —NH— (CH 2 ) n321 — or, -NH- (CH 2) n322 -Ar 321 - a is an integer of 1 ~ 8 N321 and n322 are each independently also Ar 321 is a substituted or unsubstituted phenylene group Etc. The.
More preferable examples of the compound (3-2) include, for example, R 321 and R 322 are a methyl group or an ethyl group, R 323 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 324 is a hydrogen atom. , Methyl group or ethyl group, R 33 and R 38 are hydrogen atoms, R 34 and R 37 are hydrogen atoms or halogen atoms, R 35 and R 36 are methyl groups or ethyl groups, and X 31 Is a silicon atom, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, wherein n321 and n322 are each independently 1 to 6 Examples thereof include an integer and Ar 321 is a substituted or unsubstituted phenylene group.
化合物(3)のうち、化合物(3-1)で好ましいものとしては、例えば、下記一般式(3-1-1)で表される化合物(以下、「化合物(3-1-1)」と略記することがある)、下記一般式(3-1-2)で表される化合物(以下、「化合物(3-1-2)」と略記することがある)、又は、下記一般式(3-1-3)で表される化合物(以下、「化合物(3-1-3)」と略記することがある)等が挙げられる。
化合物(3)のうち、化合物(3-2)で好ましいものとしては、例えば、下記一般式(3-2-1)で表される化合物(以下、「化合物(3-2-1)」と略記することがある)、下記一般式(3-2-2)で表される化合物(以下、「化合物(3-2-2)」、又は、下記一般式(3-2-3)で表される化合物(以下、「化合物(3-2-3)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(3)の一例に過ぎず、好ましい化合物(3)はこれらに限定されない。
Of the compounds (3), preferred as the compound (3-1) are, for example, compounds represented by the following general formula (3-1-1) (hereinafter referred to as “compound (3-1-1)”). May be abbreviated), a compound represented by the following general formula (3-1-2) (hereinafter sometimes abbreviated as “compound (3-1-2)”), or a compound represented by the following general formula (3 -1-3) (hereinafter sometimes abbreviated as “compound (3-1-3)”) and the like.
Among the compounds (3), preferred as the compound (3-2) are, for example, compounds represented by the following general formula (3-2-1) (hereinafter referred to as “compound (3-2-1)”). May be abbreviated), a compound represented by the following general formula (3-2-2) (hereinafter referred to as “compound (3-2-2)”, or represented by the following general formula (3-2-3) (Hereinafter sometimes abbreviated as “compound (3-2-3)”) and the like.
In addition, these compounds are only examples of a preferable compound (3), and a preferable compound (3) is not limited to these.
(一般式中、Y311及びY321はいずれも上記と同じである。) (In the general formula, Y 311 and Y 321 are the same as above.)
化合物(3-1-1)で好ましいものとしては、例えば、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~8の整数であり、Ar311が置換又は無置換のフェニレン基である等が挙げられる。
化合物(3-1-1)でより好ましいものとしては、例えば、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~6の整数であり、Ar311が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (3-1-1), for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 And n312 are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
More preferable compound (3-1-1) is, for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group.
化合物(3-1-2)で好ましいものとしては、例えば、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~8の整数であり、Ar311が置換又は無置換のフェニレン基である等が挙げられる。
化合物(3-1-2)でより好ましいものとしては、例えば、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~6の整数であり、Ar311が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (3-1-2), for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 And n312 are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
More preferable compound (3-1-2) is, for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group.
化合物(3-1-3)で好ましいものとしては、例えば、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~8の整数であり、Ar311が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(3-1-3)でより好ましいものとしては、例えば、Y311が単結合、-O-(CH2)n311-、又は、-O-(CH2)n312-Ar311-であり、n311及びn312がそれぞれ独立に1~6の整数であり、Ar311が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (3-1-3), for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, and n311 And n312 are each independently an integer of 1 to 8, and Ar 311 is a substituted or unsubstituted phenylene group.
More preferable compound (3-1-3) is, for example, Y 311 is a single bond, —O— (CH 2 ) n311 —, or —O— (CH 2 ) n312 —Ar 311 —, n311 and n312 are each independently an integer of 1 to 6, and Ar 311 is a substituted or unsubstituted phenylene group.
化合物(3-2-1)で好ましいものとしては、例えば、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~8の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(3-2-1)でより好ましいものとしては、例えば、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~6の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (3-2-1), for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, and n321 And n322 each independently represents an integer of 1 to 8, and Ar 321 is a substituted or unsubstituted phenylene group.
More preferable compound (3-2-1) is, for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, n321 and n322 are each independently an integer of 1 to 6, and Ar 321 is a substituted or unsubstituted phenylene group.
化合物(3-2-2)で好ましいものとしては、例えば、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~8の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(3-2-2)でより好ましいものとしては、例えば、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~6の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (3-2-2), for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, and n321 And n322 each independently represents an integer of 1 to 8, and Ar 321 is a substituted or unsubstituted phenylene group.
More preferable compound (3-2-2) is, for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, n321 and n322 are each independently an integer of 1 to 6, and Ar 321 is a substituted or unsubstituted phenylene group.
化合物(3-2-3)で好ましいものとしては、例えば、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~8の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(3-2-3)でより好ましいものとしては、例えば、Y321が単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-であり、n321及びn322がそれぞれ独立に1~6の整数であり、Ar321が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (3-2-3), for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, and n321 And n322 each independently represents an integer of 1 to 8, and Ar 321 is a substituted or unsubstituted phenylene group.
More preferable compound (3-2-3) is, for example, Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —, n321 and n322 are each independently an integer of 1 to 6, and Ar 321 is a substituted or unsubstituted phenylene group.
化合物(3)のうち、化合物(3-1-1)で好ましいものとしては、例えば、下記式(3-1-1a)で表される化合物(以下、「化合物(3-1-1a)」と略記することがある)、下記式(3-1-1b)で表される化合物(以下、「化合物(3-1-1b)」と略記することがある)、又は、下記式(3-1-1c)で表される化合物(以下、「化合物(3-1-1c)」と略記することがある)等が挙げられる。
化合物(3)のうち、化合物(3-1-2)で好ましいものとしては、例えば、下記式(3-1-2a)で表される化合物(以下、「化合物(3-1-2a)」と略記することがある)、下記式(3-1-2b)で表される化合物(以下、「化合物(3-1-2b)」と略記することがある)、又は、下記式(3-1-2c)で表される化合物(以下、「化合物(3-1-2c)」と略記することがある)等が挙げられる。
化合物(3)のうち、化合物(3-1-3)で好ましいものとしては、例えば、下記式(3-1-3a)で表される化合物(以下、「化合物(3-1-3a)」と略記することがある)、下記式(3-1-3b)で表される化合物(以下、「化合物(3-1-3b)」と略記することがある)、又は、下記式(3-1-3c)で表される化合物(以下、「化合物(3-1-3c)」と略記することがある)等が挙げられる。
化合物(3)のうち、化合物(3-2-1)で好ましいものとしては、例えば、下記式(3-2-1a)で表される化合物(以下、「化合物(3-2-1a)」と略記することがある)、下記式(3-2-1b)で表される化合物(以下、「化合物(3-2-1b)」と略記することがある)、又は、下記式(3-2-1c)で表される化合物(以下、「化合物(3-2-1c)」と略記することがある)等が挙げられる。
化合物(3)のうち、化合物(3-2-2)で好ましいものとしては、例えば、下記式(3-2-2a)で表される化合物(以下、「化合物(3-2-2a)」と略記することがある)、下記式(3-2-2b)で表される化合物(以下、「化合物(3-2-2b)」と略記することがある)、又は、下記式(3-2-2c)で表される化合物(以下、「化合物(3-2-2c)」と略記することがある)等が挙げられる。
化合物(3)のうち、化合物(3-2-3)で好ましいものとしては、例えば、下記式(3-2-3a)で表される化合物(以下、「化合物(3-2-3a)」と略記することがある)、下記式(3-2-3b)で表される化合物(以下、「化合物(3-2-3b)」と略記することがある)、又は、下記式(3-2-3c)で表される化合物(以下、「化合物(3-2-3c)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(3)の一例に過ぎず、好ましい化合物(3)はこれらに限定されない。
Among the compounds (3), preferred as the compound (3-1-1) are, for example, compounds represented by the following formula (3-1-1a) (hereinafter referred to as “compound (3-1-1a)”. Or a compound represented by the following formula (3-1-1b) (hereinafter sometimes abbreviated as “compound (3-1-1b)”), or a compound represented by the following formula (3- 1-1c) (hereinafter sometimes abbreviated as “compound (3-1-1c)”) and the like.
Among the compounds (3), preferred as the compound (3-1-2) are, for example, compounds represented by the following formula (3-1-2a) (hereinafter referred to as “compound (3-1-2a)”. Or a compound represented by the following formula (3-1-2b) (hereinafter sometimes abbreviated as “compound (3-1-2b)”), or a compound represented by the following formula (3- 1-2c) (hereinafter sometimes abbreviated as “compound (3-1-2c)”) and the like.
Among the compounds (3), preferred as the compound (3-1-3) are, for example, compounds represented by the following formula (3-1-3a) (hereinafter referred to as “compound (3-1-3a)”) Or a compound represented by the following formula (3-1-3b) (hereinafter sometimes abbreviated as “compound (3-1-3b)”), or a compound represented by the following formula (3- 1-3c) (hereinafter sometimes abbreviated as “compound (3-1-3c)”) and the like.
Among the compounds (3), preferred as the compound (3-2-1) are, for example, compounds represented by the following formula (3-2-1a) (hereinafter referred to as “compound (3-2-1a)”. Or a compound represented by the following formula (3-2-1b) (hereinafter sometimes abbreviated as “compound (3-2-1b)”), or a compound represented by the following formula (3- 2-1c) (hereinafter sometimes abbreviated as “compound (3-2-1c)”) and the like.
Of the compounds (3), preferred as the compound (3-2-2) are, for example, compounds represented by the following formula (3-2-2a) (hereinafter referred to as “compound (3-2-2a)”) Or a compound represented by the following formula (3-2-2b) (hereinafter sometimes abbreviated as “compound (3-2-2b)”), or a compound represented by the following formula (3- 2-2c) (hereinafter sometimes abbreviated as “compound (3-2-2c)”) and the like.
Among the compounds (3), preferred as the compound (3-2-3) are, for example, compounds represented by the following formula (3-2-3a) (hereinafter referred to as “compound (3-2-3a)”) Or a compound represented by the following formula (3-2-3b) (hereinafter sometimes abbreviated as “compound (3-2-3b)”), or a compound represented by the following formula (3- 2-3c) (hereinafter sometimes abbreviated as “compound (3-2-3c)”) and the like.
In addition, these compounds are only examples of a preferable compound (3), and a preferable compound (3) is not limited to these.
化合物(3)は、ALPにより加水分解されリン酸基が脱離し、化合物(3)-1に変化することによって、赤色(蛍光波長:550nm以上650nm未満程度)の蛍光を発生する。 The compound (3) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (3) is converted into the compound (3) -1, thereby generating red (fluorescence wavelength: about 550 nm or more and less than about 650 nm) fluorescence.
本実施形態の化合物(3)は、実質的に非解離型(ニュートラル型)の化合物として存在しているが、リン酸基がALPとの酵素反応により脱離することによって、解離型(アニオン型)の化合物(3)-1となる。よって、本実施形態の化合物(3)は、ALPとの酵素反応前及び酵素反応後において最大吸収波長が大きく変化するため、ALPを高感度に測定するための蛍光プローブとして利用することができる。 The compound (3) of the present embodiment exists as a substantially non-dissociation type (neutral type) compound, but the dissociation type (anion type) is obtained by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (3) -1. Therefore, the compound (3) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength largely changes before and after the enzyme reaction with ALP.
≪化合物(3)の製造方法≫
化合物(3)は、例えば、Y31、R31、R32及びR33の種類に応じて、公知の反応を用いて、キサンテン系骨格にベンゼン誘導体及びリン酸基を有する化合物を反応させることで製造できる。より具体的には以下のとおりである。
<< Method for Producing Compound (3) >>
Compound (3) can be obtained by reacting a compound having a benzene derivative and a phosphate group in the xanthene skeleton using a known reaction according to the types of Y 31 , R 31 , R 32 and R 33 , for example. Can be manufactured. More specifically, it is as follows.
<化合物(3-1)の製造方法>
化合物(3)のうち、化合物(3-1)は、例えば、下記一般式(3-1a)で表される化合物(以下、「化合物(3-1a)」と略記することがある)と、下記一般式(3-1b)で表される化合物(以下、「化合物(3-1b)」と略記することがある)と、を反応させて、下記一般式(3-1c)で表される化合物(以下、「化合物(3-1c)」と略記することがある)を得る工程(以下、「化合物(3-1c)製造工程」と略記することがある)、化合物(3-1c)と、下記一般式(3-1d)で表される化合物(以下、「化合物(3-1d)」と略記することがある)と、を反応させて、下記一般式(3-1e)で表される化合物(以下、「化合物(3-1e)」と略記することがある)を得る工程(以下、「化合物(3-1e)製造工程」と略記することがある)、及び化合物(3-1e)から化合物(3-1)を得る工程(以下、「化合物(3-1)製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (3-1)>
Among the compounds (3), the compound (3-1) is, for example, a compound represented by the following general formula (3-1a) (hereinafter sometimes abbreviated as “compound (3-1a)”); A compound represented by the following general formula (3-1b) (hereinafter sometimes abbreviated as “compound (3-1b)”) is reacted with the compound to represent the following general formula (3-1c). A step of obtaining a compound (hereinafter sometimes abbreviated as “compound (3-1c)”) (hereinafter abbreviated as “a compound (3-1c) production step”), a compound (3-1c) and And a compound represented by the following general formula (3-1d) (hereinafter, may be abbreviated as “compound (3-1d)”) to give a compound represented by the following general formula (3-1e). (Hereinafter referred to as “compound (3-1e)”) (hereinafter referred to as “compound (3-1e)”. ) A production step ”and a step of obtaining compound (3-1) from compound (3-1e) (hereinafter, abbreviated as“ compound (3-1) production step ”). It can manufacture with the manufacturing method which has.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、TBSはtert-ブチルジメチルシリル基である。R314は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。X31、Y311、R33、R34、R35、R36、R37、R38、R311、R312及びR313はいずれも上記と同じである。) (Wherein Bzl is a benzyl group and TBS is a tert-butyldimethylsilyl group. R 314 is a hydrogen atom, a hydroxyl group, a leaving group (for example, a halogen atom), or a leaving group (for example, a terminal group) And an alkylene group having 1 to 10 carbon atoms, which may contain at least one of an oxygen atom and an arylene group, X 31 , Y 311 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 , R 311 , R 312 and R 313 are all the same as above.)
[化合物(3-1c)製造工程]
前記化合物(3-1c)製造工程においては、化合物(3-1a)と化合物(3-1b)とを反応させて、化合物(3-1c)を得る。
[Compound (3-1c) Production Process]
In the step of producing compound (3-1c), compound (3-1a) is reacted with compound (3-1b) to obtain compound (3-1c).
(化合物(3-1a))
化合物(3-1a)は公知化合物である。
化合物(3-1a)において、R311及びR312はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(3-1a)において、R311及びR312は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(3-1a)において、R313は末端にアニオン性官能基を有する基である。
中でも、化合物(3-1a)において、R313は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基又はリン酸基であることがより好ましい。
(Compound (3-1a))
Compound (3-1a) is a known compound.
In the compound (3-1a), R 311 and R 312 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (3-1a), R 311 and R 312 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (3-1a), R 313 is a group having an anionic functional group at the terminal.
Among them, in the compound (3-1a), R 313 is preferably a group consisting of only an anionic functional group, more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
(化合物(3-1b))
化合物(3-1b)は公知化合物である。
化合物(3-1b)において、R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子又は炭素数1~10のアルキル基である。
中でも、化合物(3-1b)において、R33及びR38は、合成しやすいことから、同じであることが好ましく、水素原子であることがより好ましい。また、R34及びR37は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
(Compound (3-1b))
Compound (3-1b) is a known compound.
In the compound (3-1b), R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
Among them, the compound (3-1b), R 33 and R 38, since the easy synthesis, preferably the same, and more preferably a hydrogen atom. R 34 and R 37 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
化合物(3-1b)において、R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。
中でも、化合物(3-1b)において、R35及びR36は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基、又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
In the compound (3-1b), R 35 and R 36 are each independently an aryl group an alkyl group or having 6 to 10 carbon atoms having 1 to 10 carbon atoms.
Among them, in the compound (3-1b), R 35 and R 36 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group. Or it is more preferable that it is an ethyl group.
化合物(3-1b)において、X31は珪素原子、ゲルマニウム原子又はスズ原子である。
中でも、化合物(3-1b)において、X31は珪素原子であること好ましい。
In the compound (3-1b), X 31 is a silicon atom, a germanium atom or a tin atom.
Among them, the compound (3-1b), X 31 is preferable a silicon atom.
(反応条件)
化合物(3-1c)製造工程においては、強塩基を予め化合物(3-1a)と混合させた後に、化合物(3-1b)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(3-1a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (3-1c), it is preferred that a strong base is mixed with compound (3-1a) in advance and then reacted with compound (3-1b).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (3-1a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(3-1c)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (3-1c), an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(3-1c)製造工程において、化合物(3-1b)の使用量は、化合物(3-1a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production step of compound (3-1c), the amount of compound (3-1b) used is preferably 0.1 to 0.3 times the amount of compound (3-1a) used. .
化合物(3-1c)製造工程においては、化合物(3-1a)、化合物(3-1b)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (3-1c), it is preferable to react compound (3-1a), compound (3-1b), and strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(3-1c)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(3-1c)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production step of compound (3-1c), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
In the step of producing compound (3-1c), the reaction time is preferably 5 hours or more and 25 hours or less, more preferably 10 hours or more and 20 hours or less.
化合物(3-1c)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(3-1c)をさらに同様の方法で精製してもよい。また、得られた化合物(3-1c)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(3-1)の収率が向上する点から、取り出すことが好ましい。 In the compound (3-1c) production process, after completion of the reaction, the compound (3-1c) can be taken out in the same manner as in the above-mentioned compound (1-1b) production process, and the taken out compound (3-1c) is further treated in the same way. You may refine by. Further, the obtained compound (3-1c) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the viewpoint that the yield of the target compound (3-1) is improved. Is preferred.
[化合物(3-1e)製造工程]
前記化合物(3-1e)製造工程においては、化合物(3-1c)と化合物(3-1d)とを反応させて、化合物(3-1e)を得る。
[Compound (3-1e) Production Process]
In the production step of the compound (3-1e), the compound (3-1c) and the compound (3-1d) are reacted to obtain the compound (3-1e).
(化合物(3-1c))
化合物(3-1c)は公知化合物である。
化合物(3-1c)において、R311、R312及びR313は、化合物(3-1a)におけるR311、R312及びR313と同じであり、R33、R34、R35、R36、R37、R38及びX31は、化合物(3-1b)におけるR33、R34、R35、R36、R37、R38及びX31と同じである。
(Compound (3-1c))
Compound (3-1c) is a known compound.
In the compound (3-1c), R 311, R 312 and R 313 are each the same as R 311, R 312 and R 313 in the compound (3-1a), R 33, R 34, R 35, R 36, R 37, R 38 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38 and X 31 in the compound (3-1b).
(化合物(3-1d))
化合物(3-1d)は公知化合物である。
R314は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(3-1d)において、R314は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (3-1d))
Compound (3-1d) is a known compound.
R 314 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and at least one of an oxygen atom and an arylene group. And an alkylene group having 1 to 10 carbon atoms which may contain one of them.
Among them, the compound (3-1d), R 314 is a hydrogen atom, a halogen atom, -O-CH 2 -X, or, preferably a -O-Ph-CH 2 -X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(3-1e))
化合物(3-1e)は新規化合物である。
化合物(3-1e)において、上記「≪化合物(3)≫」の「<Y311及びY321>」で例示されたものと同じである。
また、化合物(3-1e)において、R311、R312及びR313は、化合物(3-1a)におけるR311、R312及びR313と同じであり、R33、R34、R35、R36、R37、R38及びX31は、化合物(3-1b)におけるR33、R34、R35、R36、R37、R38及びX31と同じである。
(Compound (3-1e))
Compound (3-1e) is a novel compound.
In the compound (3-1e), the same as those exemplified for “<Y 311 and Y 321 >” in the above “<< Compound (3) >>”.
Further, in the compound (3-1e), R 311, R 312 and R 313 are each the same as R 311, R 312 and R 313 in the compound (3-1a), R 33, R 34, R 35, R 36, R 37, R 38 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38 and X 31 in the compound (3-1b).
(反応条件)
化合物(3-1e)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(3-1c)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (3-1e), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (3-1c).
化合物(3-1e)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(3-1c)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production process of compound (3-1e), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (3-1c) used.
化合物(3-1e)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(3-1c)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (3-1e), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (3-1c).
化合物(3-1e)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (3-1e), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(3-1e)製造工程において、化合物(3-1d)の使用量は、化合物(3-1c)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production step of compound (3-1e), the amount of compound (3-1d) used is preferably 1 to 2 times the amount of compound (3-1c).
化合物(3-1e)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(3-1e)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production step of compound (3-1e), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the step of producing compound (3-1e), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(3-1e)は上述の「[化合物(1-1b)製造工程]」の場合と同様の方法で取り出すことができ、取り出した化合物(3-1e)をさらに同様の方法で精製してもよい。また、得られた化合物(3-1e)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(3-1)の収率が向上する点から、取り出すことが好ましい。 Compound (3-1e) can be removed in the same manner as in the above-mentioned “[Compound (1-1b) production step]”, and the removed compound (3-1e) is further purified by the same method. Also good. Further, the obtained compound (3-1e) may be used in the next step without being removed after the completion of the reaction, but it should be removed from the viewpoint that the yield of the target compound (3-1) is improved. Is preferred.
[化合物(3-1)製造工程]
前記化合物(3-1)製造工程においては、化合物(3-1e)から化合物(3-1)を得る。
化合物(3-1)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R313に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基、又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (3-1) Production Process]
In the production step of compound (3-1), compound (3-1) is obtained from compound (3-1e).
The method for obtaining the compound (3-1) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Note that when a protective group is bonded to R 313 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(3-1)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (3-1), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(3-1)製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(3-1)製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (3-1), the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production step of compound (3-1), the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
化合物(3-1)製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(3-1)を取り出すことができ、取り出した化合物(3-1)をさらに同様の方法で精製してもよい。 In the compound (3-1) production process, after completion of the reaction, the compound (3-1) can be taken out in the same manner as in the compound (1-1b) production process, and the taken out compound (3-1 ) May be further purified by the same method.
化合物(3-1)、化合物(3-1a)、化合物(3-1b)、化合物(3-1c)、化合物(3-1d)、化合物(3-1e)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as compound (3-1), compound (3-1a), compound (3-1b), compound (3-1c), compound (3-1d), compound (3-1e) is, for example, a nucleus The structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
<化合物(3-2)の製造方法>
化合物(3)のうち、化合物(3-2)は、例えば、下記一般式(3-2a)で表される化合物(以下、「化合物(3-2a)」と略記することがある)と、下記一般式(3-2b)で表される化合物(以下、「化合物(3-2b)」と略記することがある)と、を反応させて、下記一般式(3-2c)で表される化合物(以下、「化合物(3-2c)」と略記することがある)を得る工程(以下、「化合物(3-2c)製造工程」と略記することがある)、化合物(3-2c)と、下記一般式(3-2d)で表される化合物(以下、「化合物(3-2d)」と略記することがある)と、を反応させて、下記一般式(3-2e)で表される化合物(以下、「化合物(3-2e)」と略記することがある)を得る工程(以下、「化合物(3-2e)製造工程」と略記することがある)、及び化合物(3-2e)から化合物(3-2)を得る工程(以下、「化合物(3-2)製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (3-2)>
Among the compounds (3), the compound (3-2) is, for example, a compound represented by the following general formula (3-2a) (hereinafter sometimes abbreviated as “compound (3-2a)”); A compound represented by the following general formula (3-2b) (hereinafter sometimes abbreviated as “compound (3-2b)”) is reacted to be represented by the following general formula (3-2c). A step of obtaining a compound (hereinafter sometimes abbreviated as “compound (3-2c)”) (hereinafter abbreviated as a “compound (3-2c) production step”), a compound (3-2c) and And a compound represented by the following general formula (3-2d) (hereinafter, may be abbreviated as “compound (3-2d)”). (Hereinafter referred to as “compound (3-2e)”) (hereinafter referred to as “compound (3-2e)”). ) A production process ”) and a process for obtaining compound (3-2) from compound (3-2e) (hereinafter sometimes abbreviated as“ compound (3-2) production process ”). It can manufacture with the manufacturing method which has.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、Phはフェニル基である。R325は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。X31、Y321、R33、R34、R35、R36、R37、R38、R321、R322、R323及びR324はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group and Ph is a phenyl group. R 325 is a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal. And an alkylene group having 1 to 10 carbon atoms which may contain at least one of an oxygen atom and an arylene group, X 31 , Y 321 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 , R 321 , R 322 , R 323 and R 324 are all the same as above.)
[化合物(3-2c)製造工程]
前記化合物(3-2c)製造工程においては、化合物(3-2a)と化合物(3-2b)とを反応させて、化合物(3-2c)を得る。
[Compound (3-2c) Production Process]
In the production step of compound (3-2c), compound (3-2a) and compound (3-2b) are reacted to obtain compound (3-2c).
(化合物(3-2a))
化合物(3-2a)は公知化合物である。
化合物(3-2a)において、R321及びR322はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(3-2a)において、R321及びR322は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(3-2a)において、R323は末端にアニオン性官能基を有する基である。
中でも、化合物(3-2a)において、R323は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基又はリン酸基であることがより好ましい。
(Compound (3-2a))
Compound (3-2a) is a known compound.
In the compound (3-2a), R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (3-2a), R 321 and R 322 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (3-2a), R 323 is a group having an anionic functional group at the terminal.
Among them, the compound (3-2a), R 323, since the easy synthesis, is preferably a group consisting of only the anionic functional group, a carboxy group, and more preferably a sulfonic acid group or phosphoric acid group .
(化合物(3-2b))
化合物(3-2b)は公知化合物である。
化合物(3-2b)において、R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。
中でも、化合物(3-2b)において、R33及びR38は、合成しやすいことから、同じであることが好ましく、水素原子であることがより好ましい。また、R34及びR37は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
(Compound (3-2b))
Compound (3-2b) is a known compound.
In the compound (3-2b), R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
Among these, in compound (3-2b), R 33 and R 38 are preferably the same, and more preferably a hydrogen atom, because they are easily synthesized. R 34 and R 37 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
化合物(3-2b)において、R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。
中でも、化合物(3-1b)において、R35及びR36は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
In the compound (3-2b), R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Among them, the compound (3-1b), R 35 and R 36, since the easy synthesis, preferably the same, a methyl group, an ethyl group, preferably a phenyl group or a benzyl group, a methyl group or More preferably, it is an ethyl group.
また、化合物(3-2b)において、R324は水素原子又は炭素数1~10のアルキル基である。
中でも、化合物(3-2b)において、R324は、水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
In the compound (3-2b), R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Among these, in the compound (3-2b), R 324 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group, or an ethyl group.
化合物(3-2b)において、X31は珪素原子、ゲルマニウム原子又はスズ原子である。
中でも、化合物(3-2b)において、X31は珪素原子であること好ましい。
In the compound (3-2b), X 31 is a silicon atom, a germanium atom or a tin atom.
Among these, in the compound (3-2b), X 31 is preferably a silicon atom.
(反応条件)
化合物(3-2c)製造工程においては、強塩基を予め化合物(3-2a)と混合させた後に、化合物(3-2b)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(3-2a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (3-2c), it is preferred that a strong base is mixed with compound (3-2a) in advance and then reacted with compound (3-2b).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (3-2a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(3-2c)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (3-2c), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(3-2c)製造工程において、化合物(3-2b)の使用量は、化合物(3-2a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production step of compound (3-2c), the amount of compound (3-2b) used is preferably 0.1 to 0.3 times the amount of compound (3-2a) used. .
化合物(3-2c)製造工程においては、化合物(3-2a)、化合物(3-2b)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (3-2c), it is preferable to react compound (3-2a), compound (3-2b), and a strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(3-2c)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(3-2c)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production step of compound (3-2c), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production step of compound (3-2c), the reaction time is preferably 5 hours or more and 25 hours or less, and more preferably 10 hours or more and 20 hours or less.
化合物(3-2c)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(3-2c)をさらに同様の方法で精製してもよい。また、得られた化合物(3-2c)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(3-2)の収率が向上する点から、取り出すことが好ましい。 In the production step of compound (3-2c), after completion of the reaction, it can be taken out by the same method as in the production step of compound (1-1b) described above. You may refine by. In addition, the obtained compound (3-2c) may be used in the next step without being taken out after completion of the reaction, but is taken out from the point that the yield of the target compound (3-2) is improved. Is preferred.
[化合物(3-2e)製造工程]
前記化合物(3-2e)製造工程においては、化合物(3-2c)と化合物(3-2d)とを反応させて、化合物(3-2e)を得る。
[Compound (3-2e) Production Process]
In the production step of compound (3-2e), compound (3-2c) and compound (3-2d) are reacted to obtain compound (3-2e).
(化合物(3-2c))
化合物(3-2c)は公知化合物である。
化合物(3-2c)において、R321、R322及びR323は、化合物(3-2a)におけるR321、R322及びR323と同じであり、R33、R34、R35、R36、R37、R38、R324及びX31は、化合物(3-2b)におけるR33、R34、R35、R36、R37、R38、R324及びX31と同じである。
(Compound (3-2c))
Compound (3-2c) is a known compound.
In the compound (3-2c), R 321, R 322 and R 323 are the same as R 321, R 322 and R 323 in the compound (3-2a), R 33, R 34, R 35, R 36, R 37, R 38, R 324 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38, R 324 and X 31 in the compound (3-2b).
(化合物(3-2d))
化合物(3-2d)は公知化合物である。
R325は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(3-2d)において、R325は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (3-2d))
Compound (3-2d) is a known compound.
R 325 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and at least one of an oxygen atom and an arylene group. And an alkylene group having 1 to 10 carbon atoms which may contain one of them.
Among these, in the compound (3-2d), R 325 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(3-2e))
化合物(3-2e)は新規化合物である。
化合物(3-2e)において、上記「≪化合物(3)≫」の「<Y311及びY321>」で例示されたものと同じである。
また、化合物(3-2e)において、R321、R322及びR323は、化合物(3-1a)におけるR321、R322及びR323と同じであり、R33、R34、R35、R36、R37、R38、R324及びX31は、化合物(3-1b)におけるR33、R34、R35、R36、R37、R38、R324及びX31と同じである。
(Compound (3-2e))
Compound (3-2e) is a novel compound.
In the compound (3-2e), the same as those exemplified for “<Y 311 and Y 321 >” in the above “<< Compound (3) >>”.
Further, in the compound (3-2e), R 321, R 322 and R 323 are the same as R 321, R 322 and R 323 in the compound (3-1a), R 33, R 34, R 35, R 36, R 37, R 38, R 324 and X 31 are the same as R 33, R 34, R 35 , R 36, R 37, R 38, R 324 and X 31 in the compound (3-1b).
(反応条件)
化合物(3-2e)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(3-2c)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (3-2e), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (3-2c).
化合物(3-2e)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(3-2c)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (3-2e), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (3-2c) used.
化合物(3-2e)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(3-2c)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (3-2e), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (3-2c).
化合物(3-2e)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (3-2e), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(3-2e)製造工程において、化合物(3-2d)の使用量は、化合物(3-2c)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production step of compound (3-2e), the amount of compound (3-2d) used is preferably 1 to 2 times the amount of compound (3-2c).
化合物(3-2e)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(3-2e)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production process of compound (3-2e), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production step of compound (3-2e), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(3-2e)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(3-2e)をさらに同様の方法で精製してもよい。また、得られた化合物(3-2e)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(3-2)の収率が向上する点から、取り出すことが好ましい。 Compound (3-2e) can be taken out by the same method as in the above-mentioned compound (1-1b) production step, and the taken out compound (3-2e) may be further purified by the same method. Further, the obtained compound (3-2e) may be used in the next step without being removed after completion of the reaction, but it should be removed from the viewpoint that the yield of the target compound (3-2) is improved. Is preferred.
[化合物(3-2)製造工程]
前記化合物(3-2)製造工程においては、化合物(3-2e)から化合物(3-2)を得る。
化合物(3-2)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R323に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基又はリン酸基が形成される。また、R324に保護基が結合している場合にも、同様に保護基が除去される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (3-2) Production Process]
In the production step of compound (3-2), compound (3-2) is obtained from compound (3-2e).
The method for obtaining the compound (3-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Incidentally, if even a protective group R 323 are attached, similarly protecting group is removed, a carboxyl group, a sulfonic acid group or phosphoric acid group is formed. Further, when a protecting group is bonded to R 324 , the protecting group is similarly removed.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(3-2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (3-2), an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(3-2)製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(3-2)製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production step of compound (3-2), the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production step of compound (3-2), the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
化合物(3-2)製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(3-2)を取り出すことができ、取り出した化合物(3-2)をさらに同様の方法で精製してもよい。 In the production step of compound (3-2), after completion of the reaction, compound (3-2) can be taken out by the same method as in the production step of compound (1-1b), and the taken out compound (3-2) ) May be further purified by the same method.
化合物(3-2)、化合物(3-2a)、化合物(3-2b)、化合物(3-2c)、化合物(3-2d)、化合物(3-2e)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as the compound (3-2), the compound (3-2a), the compound (3-2b), the compound (3-2c), the compound (3-2d), the compound (3-2e), The structure can be confirmed by a known method such as magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
≪化合物(4)≫
本発明の第4実施形態に係る化合物は、下記一般式(4)で表される(本明細書においては、「化合物(4)」と称する場合がある)。
<< Compound (4) >>
The compound according to the fourth embodiment of the present invention is represented by the following general formula (4) (in this specification, sometimes referred to as “compound (4)”).
(一般式(4)中、R41はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR41は互いに同じであってもよく、異なっていてもよい。R42はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR42は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R45及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y41は単結合、-O-(CH2)n41-、-O-(CH2)n42-Ar41-、-NH-(CH2)n43-、又は、-NH-(CH2)n44-Ar42-である。n41、n42、n43及びn44はそれぞれ独立に1~10の整数である。Ar41及びAr42はそれぞれ独立に置換又は無置換のアリーレン基である。) (In the general formula (4), R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 41 may be the same as each other. may .R 42 be different from a one to two monovalent substituents present on the benzene ring, the terminal is a group having an anionic functional group. R 42 there are a plurality of mutually identical The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group, and R 43 is a hydrogen atom or a carbon number of 1. R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently a carbon number. 1 to 10 alkyl groups or carbon 6-10 aryl group .X 41 silicon atom, a phosphorus atom, a germanium atom or a tin atom .Y 41 is a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 —Ar 41 —, —NH— (CH 2 ) n43 —, or —NH— (CH 2 ) n44 —Ar 42 —, wherein n41, n42, n43 and n44 are each independently an integer of 1 to 10. Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.)
化合物(4)はフルオレセイン類縁体又はローダミン類縁体であり、アルカリ性条件下で、ALPにより加水分解されるリン酸基を有する化合物である。
また、化合物(4)はALPによる加水分解でリン酸基が脱離することで蛍光を発する蛍光性化合物である。
Compound (4) is a fluorescein analog or rhodamine analog, and has a phosphate group that is hydrolyzed by ALP under alkaline conditions.
Compound (4) is a fluorescent compound that emits fluorescence when a phosphate group is eliminated by hydrolysis with ALP.
<R41>
R41はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。
R41における前記電子供与基は、上述の「<R21>」において例示されたものと同様のものである。
R41の数は、1個又は2個であり、2個であることが好ましい。R41が2個ある場合、互いに同じであってもよく、異なっていてもよい。中でも、R41が2個ある場合、合成しやすいことから、互いに同じであることが好ましい。
<R 41 >
R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group.
The electron donating group in R 41 is the same as those exemplified in the above “<R 21 >”.
The number of R 41 is 1 or 2, and is preferably 2. When there are two R 41 s , they may be the same or different. Among these, when there are two R 41 s , it is preferable that they are the same as each other because they are easily synthesized.
中でも、一般式(4)中、R41は親水性が高いことから、直鎖状の炭素数1~10のアルコキシ基又は直鎖状の炭素数1~10のアルキルアミノ基が好ましく、メチルアミノ基、エチルアミノ基、メトキシ基又はエトキシ基がより好ましい。 Among these, in general formula (4), R 41 is preferably a straight-chain alkoxy group having 1 to 10 carbon atoms or a straight-chain alkylamino group having 1 to 10 carbon atoms because it has high hydrophilicity. A group, an ethylamino group, a methoxy group or an ethoxy group is more preferable.
また、一般式(4)中、R41は2個あることが好ましい。ベンゼン環における2個のR21の位置としては、互いにオルト位となる位置に配するものであることが好ましい。 Further, in the general formula (4), it is preferred that R 41 is two. The two R 21 positions in the benzene ring are preferably arranged at positions that are ortho positions relative to each other.
<R42>
R42はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。中でも、一般式(4)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
R42の数は、1個又は2個であり、1個であることが好ましい。R42が2個ある場合、互いに同じであってもよく、異なっていてもよい。中でも、R42が2個ある場合、合成しやすいことから、互いに同じであることが好ましい。
< R42 >
R 42 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. Among them, the “group having an anionic functional group at the terminal” in the general formula (4) is preferably a group consisting of only an anionic functional group because it is easy to synthesize.
The number of R 42 is 1 or 2, is preferably one. When there are two R 42 s , they may be the same as or different from each other. Above all, if R 42 is two, since the easy synthesis, it is preferably the same to each other.
中でも、化合物(4)(非解離型(ニュートラル型))、及び後述に示すリン酸基脱離後の化合物(4)-1(解離型(アニオン型))の最大吸収波長が大きく乖離することから、一般式(4)中、R41を2個、R42を1個有するベンゼン環において、キサンテン骨格を1位、1個のR41を4位、もう1個のR41を6位としたとき、R42を3位又は5位に有することが好ましく、3位に有することがより好ましい。 In particular, the maximum absorption wavelength of compound (4) (non-dissociation type (neutral type)) and compound (4) -1 (dissociation type (anion type)) after elimination of a phosphate group, which will be described later, greatly deviate. From the general formula (4), in the benzene ring having two R 41 and one R 42 , the xanthene skeleton is in the 1st position, one R 41 is in the 4th position, and the other R 41 is in the 6th position. When it does, it is preferable to have R42 in 3rd-position or 5th-position, and it is more preferable to have in 3rd-position.
<R43>
R43における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、一般式(4)中、R43は水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子メチル基、又はエチル基であることがより好ましい。
<R 43 >
Examples of the alkyl group having 1 to 10 carbon atoms for R 43 include the same groups as those exemplified above in “<R 11 , R 12 and R 13 >”. Among these, in general formula (4), R 43 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom methyl group or an ethyl group.
<R44、R47及びR48>
R44、R47及びR48における前記ハロゲン原子は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R44、R47及びR48における前記ハロゲン原子は塩素原子、臭素原子、又はヨウ素原子であることが好ましい。
R44、R47及びR48における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R44、R47及びR48における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
<R 44 , R 47 and R 48 >
Examples of the halogen atom in R 44 , R 47 and R 48 include the same halogen atoms as those exemplified above for “<R 11 , R 12 and R 13 >”. Among them, it is preferable that the halogen atom in R 44, R 47 and R 48 is a chlorine atom, a bromine atom, or iodine atom.
Examples of the alkyl group having 1 to 10 carbon atoms for R 44 , R 47 and R 48 are the same as those exemplified in the above “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 44 , R 47 and R 48 is preferably a straight chain, and more preferably a methyl group or an ethyl group.
また、中でも、一般式(4)中、R48は、水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
また、中でも、一般式(4)中、R44及びR47は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
Among them, in the general formula (4), R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, a methyl group or an ethyl group. .
Among them, in the general formula (4), R 44 and R 47 are preferably the same, more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
<R45及びR46>
R45及びR46における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R45及びR46における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
R45及びR46における前記炭素数6~10のアリール基は、例えば、フェニル基、ベンジル基、トリル基、o-キシリル基、m-キシリル基、p-キシリル基等が挙げられ、これらに限定されない。中でも、R45及びR46における前記炭素数6~10のアリール基は、フェニル基、又はベンジル基であることが好ましく、フェニル基であることがより好ましい。
< R45 and R46 >
Examples of the alkyl group having 1 to 10 carbon atoms for R 45 and R 46 are the same as those exemplified above for “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 45 and R 46 is preferably a linear group, and more preferably a methyl group or an ethyl group.
Examples of the aryl group having 6 to 10 carbon atoms in R 45 and R 46 include phenyl group, benzyl group, tolyl group, o-xylyl group, m-xylyl group, p-xylyl group and the like. Not. Among these, the aryl group having 6 to 10 carbon atoms in R 45 and R 46 is preferably a phenyl group or a benzyl group, and more preferably a phenyl group.
中でも、一般式(4)中、R45及びR46は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基、又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。 Among these, in general formula (4), R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
<X41>
X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。
中でも、一般式(4)中、X41は珪素原子であること好ましい。
< X41 >
X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom.
Among these, in the general formula (4), X 41 is preferably a silicon atom.
<Y41>
一般式(4)中、Y41は単結合、-O-(CH2)n41-、-O-(CH2)n42-Ar41-、-NH-(CH2)n343-、又は、-NH-(CH2)n44-Ar42-である。Y41において、-O-又は-NH-のアルキレン基と反対の結合手が上記一般式(3)中の複素四員環を構成する炭素原子と結合している。また、-(CH2)n41-、-Ar41-、-(CH2)n43-又は-Ar42-の酸素原子(O)、アミノ基(NH)又はアルキレン基と反対の結合手が上記一般式(4)中のリン酸基と結合している。
n41、n42、n43及びn44はそれぞれ独立に1~10の整数である。
Ar41及びAr42はそれぞれ独立に置換又は無置換のアリーレン基である。
<Y 41 >
In the general formula (4), Y 41 is a single bond, —O— (CH 2 ) n41 —, —O— (CH 2 ) n42 —Ar 41 —, —NH— (CH 2 ) n343 —, or —NH — (CH 2 ) n44 —Ar 42 —. In Y 41 , the bond opposite to the alkylene group of —O— or —NH— is bonded to the carbon atom constituting the hetero four-membered ring in the general formula (3). Also, - (CH 2) n41 - , - Ar 41 -, - (CH 2) n43 - or -Ar 42 - oxygen atoms (O), amino group (NH) or opposite bond is the general alkylene group It is bonded to the phosphate group in formula (4).
n41, n42, n43 and n44 are each independently an integer of 1 to 10.
Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
n41、n42、n43及びn44は、それぞれY41におけるアルキレン基の繰り返し数である。n41、n42、n43及びn44は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。 n41, n42, n43 and n44 are the number of repetitions of the alkylene group for each Y 41. n41, n42, n43 and n44 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Y41における置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。 As the substituted or unsubstituted arylene group for Y 41, the same groups as those exemplified above for “<Y 11 >” can be mentioned.
中でも、一般式(4)中、Y41は単結合、-O-CH2-、-O-(CH2)2-、-O-CH2-Ph-、-NH-CH2-、-NH-(CH2)2-、又は、-NH-CH2-Ph-であることが好ましい。なお、ここで、「Ph」は置換又は無置換のフェニレン基を示す。 Among them, in the general formula (4), Y 41 is a single bond, —O—CH 2 —, —O— (CH 2 ) 2 —, —O—CH 2 —Ph—, —NH—CH 2 —, —NH It is preferably — (CH 2 ) 2 — or —NH—CH 2 —Ph—. Here, “Ph” represents a substituted or unsubstituted phenylene group.
化合物(4)で好ましいものとしては、例えば、下記一般式(4-1)で表される化合物(以下、「化合物(4-1)」と略記することがある)、又は、下記一般式(4-2)で表される化合物(以下、「化合物(4-2)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(4)の一例に過ぎず、好ましい化合物(4)はこれらに限定されない。
Preferred examples of the compound (4) include, for example, a compound represented by the following general formula (4-1) (hereinafter sometimes abbreviated as “compound (4-1)”), or a compound represented by the following general formula ( 4-2) (hereinafter sometimes abbreviated as “compound (4-2)”) and the like.
In addition, these compounds are only examples of a preferable compound (4), and a preferable compound (4) is not limited to these.
(一般式(4-1)中、R411及びR412はそれぞれ独立に炭素数1~10のアルキル基である。R413は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y411は単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-である。n411及びn412はそれぞれ独立に1~10の整数である。Ar411は置換又は無置換のアリーレン基である。
一般式(4-2)中、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。R423は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。)
(In General Formula (4-1), R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. R 413 is a group having an anionic functional group at its end. Is any one selected from the group consisting of a carboxy group, a sulfonic acid group and a phosphoric acid group, R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 44 , R 47 and R 48 are Each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms, and R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom, or a tin atom, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —. The .n411 and n412 is the .Ar 411 are each independently an integer of 1 to 10 is a substituted or unsubstituted arylene group.
In general formula (4-2), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. R 423 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —. n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group. )
<R411、R422、R421及びR422>
R411、R422、R421及びR422における前記炭素数1~10のアルキル基は、上述の「<R11、R12及びR13>」において例示されたものと同様のものが挙げられる。中でも、R411、R422、R421及びR422における前記炭素数1~10のアルキル基は、直鎖状のものが好ましく、メチル基又はエチル基がより好ましい。
< R411 , R422 , R421 and R422 >
Examples of the alkyl group having 1 to 10 carbon atoms in R 411 , R 422 , R 421 and R 422 are the same as those exemplified in the above “<R 11 , R 12 and R 13 >”. Among them, the alkyl group having 1 to 10 carbon atoms in R 411 , R 422 , R 421 and R 422 is preferably a linear group, and more preferably a methyl group or an ethyl group.
中でも、一般式(4-1)中、R411及びR412は、合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
また、一般式(4-2)中、R421及びR422は、合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
Among them, in general formula (4-1), R 411 and R 412 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
In general formula (4-2), R 421 and R 422 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or More preferred is an ethyl group.
<R413及びR423>
R413及びR423はそれぞれ独立して末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。
中でも、一般式(4-1)及び(4-2)における「末端にアニオン性官能基を有する基」は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましい。
< R413 and R423 >
R 413 and R 423 are each independently a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group.
Among them, the “group having an anionic functional group at the terminal” in the general formulas (4-1) and (4-2) is preferably a group consisting only of an anionic functional group because it is easy to synthesize.
<Y411及びY421>
Y411は単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-である。Ar411は置換又は無置換のアリーレン基である。
Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。Ar421は置換又は無置換のアリーレン基である。
n411、n412、n421及びn422はそれぞれY411及びY421におけるアルキレン基の繰り返し数である。n411、n412、n421及びn422は、親水性が高いことから、1~8の整数が好ましく、1~6の整数がより好ましく、1~4の整数がさらに好ましく、1~2の整数が特に好ましい。
Ar411及びAr421はそれぞれ独立に置換又は無置換のアリーレン基である。置換又は無置換のアリーレン基としては、上記「<Y11>」において例示されたものと同様のものが挙げられる。
< Y411 and Y421 >
Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —. Ar 411 is a substituted or unsubstituted arylene group.
Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —. Ar 421 is a substituted or unsubstituted arylene group.
n411, n412, n421 and n422 are the number of repetitions of the alkylene group for Y 411 and Y 421, respectively. n411, n412, n421, and n422 are preferably an integer of 1 to 8, more preferably an integer of 1 to 6, further preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2 because of high hydrophilicity. .
Ar 411 and Ar 421 are each independently a substituted or unsubstituted arylene group. Examples of the substituted or unsubstituted arylene group include the same groups as those exemplified above for “<Y 11 >”.
化合物(4-1)で好ましいものとしては、例えば、R411及びR412が直鎖状の炭素数1~10のアルキル基であり、R413がアニオン性官能基のみからなる基であり、R43及びR48が水素原子、メチル基又はエチル基であり、R44及びR47が水素原子、ハロゲン原子、メチル基又はエチル基であり、R45及びR46がメチル基、エチル基、フェニル基又はベンジル基であり、X41が珪素原子であり、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~8の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-1)でより好ましいものとしては、例えば、R411及びR412がメチル基又はエチル基であり、R413がカルボキシ基、スルホン酸基又はリン酸基であり、R43及びR48が水素原子であり、R44及びR47が水素原子又はハロゲン原子であり、R45及びR46がメチル基又はエチル基であり、X41が珪素原子であり、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~6の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (4-1) include, for example, R 411 and R 412 are linear alkyl groups having 1 to 10 carbon atoms, R 413 is a group composed of only an anionic functional group, 43 and R 48 are a hydrogen atom, a methyl group or an ethyl group, R 44 and R 47 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and R 45 and R 46 are a methyl group, an ethyl group or a phenyl group. Or a benzyl group, X 41 is a silicon atom, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 and n412 Are each independently an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
More preferable examples of the compound (4-1) include, for example, R 411 and R 412 are a methyl group or an ethyl group, R 413 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 43 and R 48 Is a hydrogen atom, R 44 and R 47 are a hydrogen atom or a halogen atom, R 45 and R 46 are a methyl group or an ethyl group, X 41 is a silicon atom, Y 411 is a single bond, —O — (CH 2 ) n411 — or —O— (CH 2 ) n412 —Ar 411 —, wherein n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group And the like.
化合物(4-2)で好ましいものとしては、例えば、R421及びR422が直鎖状の炭素数1~10のアルキル基であり、R423がアニオン性官能基のみからなる基であり、R43及びR48が水素原子、メチル基又はエチル基であり、R44及びR47が水素原子、ハロゲン原子、メチル基又はエチル基であり、R45及びR46がメチル基、エチル基、フェニル基又はベンジル基であり、X41が珪素原子であり、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~8の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-2)でより好ましいものとしては、例えば、R421及びR422がメチル基又はエチル基であり、R423がカルボキシ基、スルホン酸基又はリン酸基であり、R43及びR48が水素原子であり、R44及びR47が水素原子又はハロゲン原子であり、R46及びR47がメチル基又はエチル基であり、X41が珪素原子であり、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~6の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
Preferred examples of the compound (4-2) include, for example, R 421 and R 422 are linear alkyl groups having 1 to 10 carbon atoms, R 423 is a group consisting of only an anionic functional group, 43 and R 48 are a hydrogen atom, a methyl group or an ethyl group, R 44 and R 47 are a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and R 45 and R 46 are a methyl group, an ethyl group or a phenyl group. Or a benzyl group, X 41 is a silicon atom, Y 421 is —NH— (CH 2 ) n421 —, or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are independent of each other. And an integer of 1 to 8 and Ar 421- substituted or unsubstituted phenylene group.
More preferable examples of the compound (4-2) include, for example, R 421 and R 422 are a methyl group or an ethyl group, R 423 is a carboxy group, a sulfonic acid group, or a phosphoric acid group, and R 43 and R 48 Is a hydrogen atom, R 44 and R 47 are a hydrogen atom or a halogen atom, R 46 and R 47 are a methyl group or an ethyl group, X 41 is a silicon atom, and Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, wherein n421 and n422 are each independently an integer of 1 to 6, and Ar 421 is a substituted or unsubstituted phenylene group, etc. Is mentioned.
化合物(4)のうち、化合物(4-1)で好ましいものとしては、例えば、下記一般式(4-1-1)で表される化合物(以下、「化合物(4-1-1)」と略記することがある)、下記一般式(4-1-2)で表される化合物(以下、「化合物(4-1-2)」と略記することがある)、又は、下記一般式(4-1-3)で表される化合物(以下、「化合物(4-1-3)」と略記することがある)等が挙げられる。
化合物(4)のうち、化合物(4-2)で好ましいものとしては、例えば、下記一般式(4-2-1)で表される化合物(以下、「化合物(4-2-1)」と略記することがある)、下記一般式(4-2-2)で表される化合物(以下、「化合物(4-2-2)」、又は、下記一般式(4-2-3)で表される化合物(以下、「化合物(4-2-3)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(4)の一例に過ぎず、好ましい化合物(4)はこれらに限定されない。
Among the compounds (4), preferred as the compound (4-1) are, for example, compounds represented by the following general formula (4-1-1) (hereinafter referred to as “compound (4-1-1)”). May be abbreviated), a compound represented by the following general formula (4-1-2) (hereinafter sometimes abbreviated as “compound (4-1-2)”), or a compound represented by the following general formula (4 -1-3) (hereinafter sometimes abbreviated as “compound (4-1-3)”) and the like.
Among the compounds (4), preferred as the compound (4-2) are, for example, compounds represented by the following general formula (4-2-1) (hereinafter referred to as “compound (4-2-1)”). May be abbreviated), a compound represented by the following general formula (4-2-2) (hereinafter referred to as “compound (4-2-2)”, or represented by the following general formula (4-2-3): (Hereinafter sometimes abbreviated as “compound (4-2-3)”) and the like.
In addition, these compounds are only examples of a preferable compound (4), and a preferable compound (4) is not limited to these.
(一般式中、Y411及びY421はいずれも上記と同じである。) (In the general formula, Y 411 and Y 421 are the same as described above.)
化合物(4-1-1)で好ましいものとしては、例えば、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~8の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-1-1)でより好ましいものとしては、例えば、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~6の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (4-1-1), for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 And n412 each independently represents an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
More preferable compound (4-1-1) is, for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group.
化合物(4-1-2)で好ましいものとしては、例えば、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~8の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-1-2)でより好ましいものとしては、例えば、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~6の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (4-1-2), for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 And n412 each independently represents an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
More preferable compound (4-1-2) is, for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group.
化合物(4-1-3)で好ましいものとしては、例えば、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~8の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-1-3)でより好ましいものとしては、例えば、Y411が単結合、-O-(CH2)n411-、又は、-O-(CH2)n412-Ar411-であり、n411及びn412がそれぞれ独立に1~6の整数であり、Ar411が置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (4-1-3), for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, and n411 And n412 each independently represents an integer of 1 to 8, and Ar 411 is a substituted or unsubstituted phenylene group.
More preferable compound (4-1-3) is, for example, Y 411 is a single bond, —O— (CH 2 ) n411 —, or —O— (CH 2 ) n412 —Ar 411 —, n411 and n412 are each independently an integer of 1 to 6, and Ar 411 is a substituted or unsubstituted phenylene group.
化合物(4-2-1)で好ましいものとしては、例えば、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~8の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-2-1)でより好ましいものとしては、例えば、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~6の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (4-2-1), for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are Examples thereof are each independently an integer of 1 to 8, and Ar 421 substituted or unsubstituted phenylene group.
More preferable compound (4-2-1) is, for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 Are each independently an integer of 1 to 6, and Ar 421- substituted or unsubstituted phenylene group.
化合物(4-2-2)で好ましいものとしては、例えば、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~8の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-2-2)でより好ましいものとしては、例えば、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~6の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (4-2-2), for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are Examples thereof are each independently an integer of 1 to 8, and Ar 421 substituted or unsubstituted phenylene group.
More preferable compound (4-2-2) is, for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 Are each independently an integer of 1 to 6, and Ar 421- substituted or unsubstituted phenylene group.
化合物(4-2-3)で好ましいものとしては、例えば、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~8の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
化合物(4-2-3)でより好ましいものとしては、例えば、Y421が-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-であり、n421及びn422がそれぞれ独立に1~6の整数であり、Ar421置換又は無置換のフェニレン基であるもの等が挙げられる。
As a preferable compound (4-2-3), for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 are Examples thereof are each independently an integer of 1 to 8, and Ar 421 substituted or unsubstituted phenylene group.
More preferable compound (4-2-3) is, for example, Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —, and n421 and n422 Are each independently an integer of 1 to 6, and Ar 421- substituted or unsubstituted phenylene group.
化合物(4)のうち、化合物(4-1-1)で好ましいものとしては、例えば、下記式(4-1-1a)で表される化合物(以下、「化合物(4-1-1a)」と略記することがある)、下記式(4-1-1b)で表される化合物(以下、「化合物(4-1-1b)」と略記することがある)、又は、下記式(4-1-1c)で表される化合物(以下、「化合物(4-1-1c)」と略記することがある)等が挙げられる。
化合物(4)のうち、化合物(4-1-2)で好ましいものとしては、例えば、下記式(4-1-2a)で表される化合物(以下、「化合物(4-1-2a)」と略記することがある)、下記式(4-1-2b)で表される化合物(以下、「化合物(4-1-2b)」と略記することがある)、又は、下記式(4-1-2c)で表される化合物(以下、「化合物(4-1-2c)」と略記することがある)等が挙げられる。
化合物(4)のうち、化合物(4-1-3)で好ましいものとしては、例えば、下記式(4-1-3a)で表される化合物(以下、「化合物(4-1-3a)」と略記することがある)、下記式(4-1-3b)で表される化合物(以下、「化合物(4-1-3b)」と略記することがある)、又は、下記式(4-1-3c)で表される化合物(以下、「化合物(4-1-3c)」と略記することがある)等が挙げられる。
化合物(4)のうち、化合物(4-2-1)で好ましいものとしては、例えば、下記式(4-2-1a)で表される化合物(以下、「化合物(4-2-1a)」と略記することがある)、下記式(4-2-1b)で表される化合物(以下、「化合物(4-2-1b)」と略記することがある)、又は、下記式(4-2-1c)で表される化合物(以下、「化合物(4-2-1c)」と略記することがある)等が挙げられる。
化合物(4)のうち、化合物(4-2-2)で好ましいものとしては、例えば、下記式(4-2-2a)で表される化合物(以下、「化合物(4-2-2a)」と略記することがある)、下記式(4-2-2b)で表される化合物(以下、「化合物(4-2-2b)」と略記することがある)、又は、下記式(4-2-2c)で表される化合物(以下、「化合物(4-2-2c)」と略記することがある)等が挙げられる。
化合物(4)のうち、化合物(4-2-3)で好ましいものとしては、例えば、下記式(4-2-3a)で表される化合物(以下、「化合物(4-2-3a)」と略記することがある)、下記式(4-2-3b)で表される化合物(以下、「化合物(4-2-3b)」と略記することがある)、又は、下記式(4-2-3c)で表される化合物(以下、「化合物(4-2-3c)」と略記することがある)等が挙げられる。
なお、これら化合物は、好ましい化合物(4)の一例に過ぎず、好ましい化合物(4)はこれらに限定されない。
Among the compounds (4), preferred as the compound (4-1-1) are, for example, compounds represented by the following formula (4-1-1a) (hereinafter referred to as “compound (4-1-1a)”) Or a compound represented by the following formula (4-1-1b) (hereinafter sometimes abbreviated as “compound (4-1-1b)”), or a compound represented by the following formula (4- 1-1c) (hereinafter, may be abbreviated as “compound (4-1-1c)”) and the like.
Among the compounds (4), preferred as the compound (4-1-2) are, for example, compounds represented by the following formula (4-1-2a) (hereinafter referred to as “compound (4-1-2a)”) Or a compound represented by the following formula (4-1-2b) (hereinafter sometimes abbreviated as “compound (4-1-2b)”), or a compound represented by the following formula (4- 1-2c) (hereinafter sometimes abbreviated as “compound (4-1-2c)”) and the like.
Of the compounds (4), preferred as the compound (4-1-3) are, for example, compounds represented by the following formula (4-1-3a) (hereinafter referred to as “compound (4-1-3a)”. Or a compound represented by the following formula (4-1-3b) (hereinafter sometimes abbreviated as “compound (4-1-3b)”), or a compound represented by the following formula (4- 1-3c) (hereinafter sometimes abbreviated as “compound (4-1-3c)”) and the like.
Among the compounds (4), preferred as the compound (4-2-1) are, for example, compounds represented by the following formula (4-2-1a) (hereinafter referred to as “compound (4-2-1a)”. Or a compound represented by the following formula (4-2-1b) (hereinafter sometimes abbreviated as “compound (4-2-1b)”), or a compound represented by the following formula (4- 2-1c) (hereinafter sometimes abbreviated as “compound (4-2-1c)”) and the like.
Of the compounds (4), preferred as the compound (4-2-2) are, for example, compounds represented by the following formula (4-2-2a) (hereinafter referred to as “compound (4-2-2a)”. Or a compound represented by the following formula (4-2-2b) (hereinafter sometimes abbreviated as “compound (4-2-2b)”), or a compound represented by the following formula (4- 2-2c) (hereinafter sometimes abbreviated as “compound (4-2-2c)”) and the like.
Among the compounds (4), preferred as the compound (4-2-3) are, for example, compounds represented by the following formula (4-2-3a) (hereinafter referred to as “compound (4-2-3a)”. Or a compound represented by the following formula (4-2-3b) (hereinafter sometimes abbreviated as “compound (4-2-3b)”), or a compound represented by the following formula (4- 2-3c) (hereinafter sometimes abbreviated as “compound (4-2-3c)”) and the like.
In addition, these compounds are only examples of a preferable compound (4), and a preferable compound (4) is not limited to these.
化合物(4)は、ALPにより加水分解されリン酸基が脱離し、化合物(4)-1に変化することによって、近赤外色(蛍光波長:650nm以上程度)の蛍光を発生する。 The compound (4) is hydrolyzed by ALP, the phosphate group is eliminated, and the compound (4) -1 is changed to the compound (4) -1, thereby generating near-infrared (fluorescence wavelength: about 650 nm or more) fluorescence.
本実施形態の化合物(4)は、実質的に非解離型(ニュートラル型)の化合物として存在しているが、リン酸基がALPとの酵素反応により脱離することによって、解離型(アニオン型)の化合物(4)-1となる。よって、本実施形態の化合物(4)は、ALPとの酵素反応前及び酵素反応後において最大吸収波長が大きく変化するため、ALPを高感度に測定するための蛍光プローブとして利用することができる。 Although the compound (4) of this embodiment exists as a substantially non-dissociation type (neutral type) compound, the dissociation type (anion type) is caused by the elimination of the phosphate group by an enzymatic reaction with ALP. ) Compound (4) -1. Therefore, the compound (4) of the present embodiment can be used as a fluorescent probe for measuring ALP with high sensitivity because the maximum absorption wavelength greatly changes before and after the enzyme reaction with ALP.
≪化合物(4)の製造方法≫
化合物(4)は、例えば、Y41、R41及びR42の種類に応じて、公知の反応を用いて、キサンテン系骨格にベンゼン誘導体及びリン酸基を有する化合物を反応させることで製造できる。より具体的には以下のとおりである。
<< Method for Producing Compound (4) >>
Compound (4) can be produced, for example, by reacting a compound having a xanthene skeleton with a benzene derivative and a phosphate group using a known reaction according to the types of Y 41 , R 41 and R 42 . More specifically, it is as follows.
<化合物(4-1)の製造方法>
・R43:水素原子
化合物(4)のうち、化合物(4-1)は、例えば、R43が水素原子である場合、下記一般式(4-1a)で表される化合物(以下、「化合物(4-1a)」と略記することがある)と、下記一般式(4-1b1)で表される化合物(以下、「化合物(4-1b1)」と略記することがある)と、を反応させて、下記一般式(4-1c1’)で表される化合物(以下、「化合物(4-1c1’)」と略記することがある)を得る工程(以下、「化合物(4-1c1’)製造工程」と略記することがある)、化合物(4-1c1’)から下記一般式(4-1c1)で表される化合物(以下、「化合物(4-1c1)」と略記することがある)を得る工程(以下、「化合物(4-1c1)製造工程」と略記することがある)、化合物(4-1c1)と、下記一般式(4-1d1)で表される化合物(以下、「化合物(4-1d1)」と略記することがある)と、を反応させて、下記一般式(4-1e1)で表される化合物(以下、「化合物(4-1e1)」と略記することがある)を得る工程(以下、「化合物(4-1e1)製造工程」と略記することがある)、及び化合物(4-1e1)から化合物(4-1)-1を得る工程(以下、「化合物(4-1)-1製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (4-1)>
R 43 : hydrogen atom Among the compounds (4), the compound (4-1) is, for example, a compound represented by the following general formula (4-1a) when R 43 is a hydrogen atom (hereinafter referred to as “compound (4-1a) ”and a compound represented by the following general formula (4-1b1) (hereinafter sometimes abbreviated as“ compound (4-1b1) ”) To obtain a compound represented by the following general formula (4-1c1 ′) (hereinafter sometimes abbreviated as “compound (4-1c1 ′)”) (hereinafter referred to as “compound (4-1c1 ′)”). Production process ”), a compound represented by the following general formula (4-1c1) from the compound (4-1c1 ′) (hereinafter sometimes abbreviated as“ compound (4-1c1) ”) (Hereinafter sometimes abbreviated as “compound (4-1c1) production process”), The compound (4-1c1) and a compound represented by the following general formula (4-1d1) (hereinafter sometimes abbreviated as “compound (4-1d1)”) are reacted to give the following general formula: (4-1) may be abbreviated as a “compound (4-1e1) production process” (hereinafter, abbreviated as “compound (4-1e1)”). ) And a step of obtaining compound (4-1) -1 from compound (4-1e1) (hereinafter sometimes abbreviated as “compound (4-1) -1 production step”). it can.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、TBSはtert-ブチルジメチルシリル基である。R414は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。X41、Y411、R44、R45、R46、R47、R48、R411、R412及びR413はいずれも上記と同じである。)
(Wherein Bzl is a benzyl group and TBS is a tert-butyldimethylsilyl group. R 414 is a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a terminal) X 41 , Y 411 , R 44 ,
[化合物(4-1c1’)製造工程]
前記化合物(4-1c1’)製造工程においては、化合物(4-1a)と化合物(4-1b1)とを反応させて、化合物(4-1c1’)を得る。
[Production Process of Compound (4-1c1 ′)]
In the production step of the compound (4-1c1 ′), the compound (4-1a) and the compound (4-1b1) are reacted to obtain the compound (4-1c1 ′).
(化合物(4-1a))
化合物(4-1a)は公知化合物である。
化合物(4-1a)において、R411及びR412はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(4-1a)において、R411及びR412は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
(Compound (4-1a))
Compound (4-1a) is a known compound.
In the compound (4-1a), R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-1a), R 411 and R 412 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
化合物(4-1a)において、R413は末端にアニオン性官能基を有する基である。
中でも、化合物(4-1a)において、R413は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基、又はリン酸基であることがより好ましい。
In the compound (4-1a), R 413 is a group having an anionic functional group at the terminal.
Among them, in the compound (4-1a), R 413 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group, because it is easy to synthesize. preferable.
(化合物(4-1b1))
化合物(4-1b1)は公知化合物である。
化合物(4-1b1)において、R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。
中でも、化合物(4-1b1)において、R44及びR47は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
また、R48は水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
(Compound (4-1b1))
Compound (4-1b1) is a known compound.
In the compound (4-1b1), R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
Among them, in the compound (4-1b1), R 44 and R 47 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
化合物(4-1b1)において、R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。
中でも、化合物(4-1b1)において、R45及びR46は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基、又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
In the compound (4-1b1), R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Among them, in the compound (4-1b1), R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group. Or it is more preferable that it is an ethyl group.
化合物(4-1b1)において、X41は珪素原子、ゲルマニウム原子又はスズ原子である。
中でも、化合物(4-1b1)において、X41は珪素原子であること好ましい。
In the compound (4-1b1), X 41 is a silicon atom, a germanium atom or a tin atom.
Among these, in the compound (4-1b1), X 41 is preferably a silicon atom.
(化合物(4-1c1’))
化合物(4-1c1’)は公知化合物である。
化合物(4-1c1’)において、R411、R412及びR413は、化合物(4-1a)におけるR411、R412及びR413と同じであり、R44、R45、R46、R47、R48及びX41は、化合物(4-1b1)におけるR44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-1c1 ′))
The compound (4-1c1 ′) is a known compound.
In the compound (4-1c1 '), R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a), R 44, R 45, R 46, R 47 , R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-1b1).
(反応条件)
化合物(4-1c1’)製造工程においては、強塩基を予め化合物(4-1a)と混合させた後に、化合物(4-1b1)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(4-1a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-1c1 ′), it is preferred that a strong base is mixed with compound (4-1a) in advance and then reacted with compound (4-1b1).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-1a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(4-1c1’)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-1c1 ′), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1c1’)製造工程において、化合物(4-1b1)の使用量は、化合物(4-1a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production process of compound (4-1c1 ′), the amount of compound (4-1b1) used is 0.1 to 0.3 times the amount of compound (4-1a) used. preferable.
化合物(4-1c1’)製造工程においては、化合物(4-1a)、化合物(4-1b)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (4-1c1 ′), it is preferable to react compound (4-1a), compound (4-1b), and strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(4-1c1’)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(4-1c1’)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the step of producing compound (4-1c1 ′), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production process of compound (4-1c1 ′), the reaction time is preferably 5 hours or longer and 25 hours or shorter, and more preferably 10 hours or longer and 20 hours or shorter.
化合物(4-1c1’)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-1c1’)をさらに同様の方法で精製してもよい。また、得られた化合物(4-1c1’)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-1)-1の収率が向上する点から、取り出すことが好ましい。 In the production process of compound (4-1c1 ′), after completion of the reaction, the compound (4-1c1 ′) can be taken out in the same manner as in the production process of compound (1-1b) described above. You may refine | purify by the method of. Further, the obtained compound (4-1c1 ′) may be used in the next step without being taken out after completion of the reaction. However, from the viewpoint of improving the yield of the target compound (4-1) -1. It is preferable to take out.
[化合物(4-1c1)製造工程]
前記化合物(4-1c1)製造工程においては、化合物(4-1c1’)から化合物(4-1c1)を得る。
[Production process of compound (4-1c1)]
In the production step of the compound (4-1c1), the compound (4-1c1) is obtained from the compound (4-1c1 ′).
(化合物(4-1c1))
化合物(4-1c1)は公知化合物である。
化合物(4-1c1)において、R411、R412及びR413は、化合物(4-1a)におけるR411、R412及びR413と同じであり、R44、R45、R46、R47、R48及びX41は、化合物(4-1b1)におけるR44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-1c1))
Compound (4-1c1) is a known compound.
In the compound (4-1c1), R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a), R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-1b1).
(反応条件)
化合物(4-1c1)製造工程においては、テトラキス(トリフェニルホスフィン)パラジウム及び1,3-ジメチルバルビツール酸等の触媒を用いて、行うことが好ましい。
(Reaction conditions)
The production process of compound (4-1c1) is preferably carried out using a catalyst such as tetrakis (triphenylphosphine) palladium and 1,3-dimethylbarbituric acid.
化合物(4-1c1)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスは特に限定されないが、例えば、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等が挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (4-1c1), it is preferable to carry out the reaction in an inert gas atmosphere.
The inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, and xenon.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1c1)製造工程において、反応温度は、20℃以上50℃以下であることが好ましく、25℃以上45℃以下であることがより好ましい。
化合物(4-1c1)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、8時間以上16時間以下であることがより好ましい。
In the production process of compound (4-1c1), the reaction temperature is preferably 20 ° C. or higher and 50 ° C. or lower, more preferably 25 ° C. or higher and 45 ° C. or lower.
In the production process of compound (4-1c1), the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 8 hours or longer and 16 hours or shorter.
化合物(4-1c1)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-1c1)をさらに同様の方法で精製してもよい。また、得られた化合物(4-1c1)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-1)-1の収率が向上する点から、取り出すことが好ましい。 In the compound (4-1c1) production process, after completion of the reaction, the compound (4-1c1) can be removed in the same manner as in the above-mentioned compound (1-1b) production process. You may refine by. Further, the obtained compound (4-1c1) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-1) -1 is improved, It is preferable to take out.
[化合物(4-1e1)製造工程]
前記化合物(4-1e)製造工程においては、化合物(4-1c1)と化合物(4-1d1)とを反応させて、化合物(4-1e1)を得る。
[Production process of compound (4-1e1)]
In the step of producing compound (4-1e), compound (4-1c1) and compound (4-1d1) are reacted to obtain compound (4-1e1).
(化合物(4-1d1))
化合物(4-1d1)は公知化合物である。
化合物(4-1d1)において、R414は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(4-1d1)において、R414は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (4-1d1))
Compound (4-1d1) is a known compound.
In the compound (4-1d1), R 414 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
Among these, in the compound (4-1d1), R 414 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(4-1e1))
化合物(4-1e1)は新規化合物である。
化合物(4-1e1)において、Y411は上記「≪化合物(4)≫」の「<Y411及びY421>」で例示されたものと同じである。
また、 化合物(4-1e1)において、R411、R412及びR413は、化合物(4-1a)におけるR411、R412及びR413と同じであり、R44、R45、R46、R47、R48及びX41は、化合物(4-1b1)におけるR44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-1e1))
Compound (4-1e1) is a novel compound.
In the compound (4-1e1), Y 411 is the same as those exemplified for “<Y 411 and Y 421 >” in the above “<< Compound (4) >>”.
Further, in the compound (4-1e1), R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a), R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-1b1).
(反応条件)
化合物(4-1e1)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(4-1c1)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-1e1), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (4-1c1) used.
化合物(4-1e1)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(4-1c1)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (4-1e1), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-1c1) used.
化合物(4-1e1)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(4-1c1)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (4-1e1), an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-1c1).
化合物(4-1e1)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (4-1e1), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1e1)製造工程において、化合物(4-1d1)の使用量は、化合物(4-1c1)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production process of compound (4-1e1), the amount of compound (4-1d1) used is preferably 1 to 2 times the amount of compound (4-1c1).
化合物(4-1e1)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(4-1e1)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production process of compound (4-1e1), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production process of compound (4-1e1), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(4-1e1)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-1e1)をさらに同様の方法で精製してもよい。また、得られた化合物(4-1e1)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-1)-1の収率が向上する点から、取り出すことが好ましい。 Compound (4-1e1) can be taken out in the same manner as in the above-described compound (1-1b) production step, and the taken out compound (4-1e1) may be further purified in the same manner. Further, the obtained compound (4-1e1) may be used in the next step without removal after the completion of the reaction. However, since the yield of the target compound (4-1) -1 is improved, It is preferable to take out.
[化合物(4-1)-1製造工程]
前記化合物(4-1)-1製造工程においては、化合物(4-1e1)から化合物(4-1)-1を得る。
化合物(4-1)-1を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R413に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基、又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (4-1) -1 Production Process]
In the production step of compound (4-1) -1, compound (4-1) -1 is obtained from compound (4-1e1).
The method for obtaining the compound (4-1) -1 is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Note that when a protective group is bonded to R 413 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(4-1)-1製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-1) -1, an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1)-1製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(4-1)-1製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (4-1) -1, the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (4-1) -1, the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
化合物(4-1)-1製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(4-1)-1を取り出すことができ、取り出した化合物(4-1)をさらに同様の方法で精製してもよい。 In the production process of compound (4-1) -1, after completion of the reaction, compound (4-1) -1 can be taken out in the same manner as in the production process of compound (1-1b). (4-1) may be further purified by the same method.
化合物(4-1)-1、化合物(4-1a)、化合物(4-1b1)、化合物(4-1c1’)、化合物(4-1c1)、化合物(4-1d1)、化合物(4-1e1)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Compound (4-1) -1, Compound (4-1a), Compound (4-1b1), Compound (4-1c1 ′), Compound (4-1c1), Compound (4-1d1), Compound (4-1e1) The structure of each compound such as) can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
・R43:水素原子以外
化合物(4)のうち、化合物(4-1)は、例えば、R43が水素原子以外である場合、下記一般式(4-1a)で表される化合物(以下、「化合物(4-1a)」と略記することがある)と、下記一般式(4-1b2)で表される化合物(以下、「化合物(4-1b2)」と略記することがある)と、を反応させて、下記一般式(4-1c2)で表される化合物(以下、「化合物(4-1c2)」と略記することがある)を得る工程(以下、「化合物(4-1c2)製造工程」と略記することがある)、化合物(4-1c2)と、下記一般式(4-1d2)で表される化合物(以下、「化合物(4-1d2)」と略記することがある)と、を反応させて、下記一般式(4-1e2)で表される化合物(以下、「化合物(4-1e2)」と略記することがある)を得る工程(以下、「化合物(4-1e2)製造工程」と略記することがある)、及び化合物(4-1e2)から化合物(4-1)-2を得る工程(以下、「化合物(4-1)-2を製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
R 43 : other than a hydrogen atom Among the compounds (4), the compound (4-1) is, for example, a compound represented by the following general formula (4-1a) when R 43 is other than a hydrogen atom (hereinafter, “Sometimes abbreviated as“ compound (4-1a) ”), a compound represented by the following general formula (4-1b2) (hereinafter sometimes abbreviated as“ compound (4-1b2) ”), To obtain a compound represented by the following general formula (4-1c2) (hereinafter sometimes abbreviated as “compound (4-1c2)”) (hereinafter referred to as “compound (4-1c2) production”). Step ”), compound (4-1c2), compound represented by general formula (4-1d2) below (hereinafter sometimes abbreviated as“ compound (4-1d2) ”), , To give a compound represented by the following general formula (4-1e2) Compound (4-1e2) ”(hereinafter sometimes abbreviated as“ compound (4-1e2) production step ”), and compound (4-1e2) to compound (4 -1) -2 (hereinafter may be abbreviated as “production step of compound (4-1) -2”).
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、TBSはtert-ブチルジメチルシリル基である。X41、Y411、R43、R44、R45、R46、R47、R48、R411、R412、R414及びR414はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group and TBS is a tert-butyldimethylsilyl group. X 41 , Y 411 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 411 , R 412 , R 414 and R 414 are all the same as above.)
[化合物(4-1c2)製造工程]
前記化合物(4-1c2)製造工程においては、化合物(4-1a)と化合物(4-1b2)とを反応させて、化合物(4-1c2)を得る。
[Production process of compound (4-1c2)]
In the step of producing compound (4-1c2), compound (4-1a) and compound (4-1b2) are reacted to obtain compound (4-1c2).
(化合物(4-1a))
化合物(4-1a)は公知化合物である。
化合物(4-1a)において、R411及びR412はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(4-1a)において、R411及びR412は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(4-1a)において、R413は末端にアニオン性官能基を有する基である。
中でも、化合物(4-1a)において、R413は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基又はリン酸基であることがより好ましい。
(Compound (4-1a))
Compound (4-1a) is a known compound.
In the compound (4-1a), R 411 and R 412 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-1a), R 411 and R 412 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (4-1a), R 413 is a group having an anionic functional group at the terminal.
Among them, in the compound (4-1a), R 413 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
(化合物(4-1b2))
化合物(4-1b2)は公知化合物である。
化合物(4-1b2)において、R43は直鎖状の炭素数1~10のアルキル基である。中でも、化合物(4-1b2)において、R43はメチル基又はエチル基であることが好ましい。
化合物(4-1b2)において、R44、R47、及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は炭素数1~10のアルキル基である。
中でも、化合物(4-1b2)において、R44及びR47は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
また、R48は水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
(Compound (4-1b2))
Compound (4-1b2) is a known compound.
In the compound (4-1b2), R 43 is an alkyl group having 1 to 10 carbon atoms linear. Among these, in the compound (4-1b2), R 43 is preferably a methyl group or an ethyl group.
In the compound (4-1b2), R 44 , R 47 , and R 48 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
Among these, in the compound (4-1b2), R 44 and R 47 are preferably the same, and more preferably a hydrogen atom or a halogen atom, because they are easily synthesized.
R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
化合物(4-1b2)において、R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。
中でも、化合物(4-1b2)において、R45及びR46は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
In the compound (4-1b2), R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Among them, in the compound (4-1b2), R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
化合物(4-1b2)において、X41は珪素原子、ゲルマニウム原子又はスズ原子である。
中でも、化合物(4-1b2)において、X41は珪素原子であること好ましい。
In the compound (4-1b2), X 41 is a silicon atom, a germanium atom or a tin atom.
Among these, in the compound (4-1b2), X 41 is preferably a silicon atom.
(反応条件)
化合物(4-1c2)製造工程においては、強塩基を予め化合物(4-1a)と混合させた後に、化合物(4-1b2)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(4-1a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-1c2), it is preferable that a strong base is mixed with compound (4-1a) in advance and then reacted with compound (4-1b2).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-1a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(4-1c2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-1c2), an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1c2)製造工程において、化合物(4-1b2)の使用量は、化合物(4-1a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production step of compound (4-1c2), the amount of compound (4-1b2) used is preferably 0.1 to 0.3 times the amount of compound (4-1a) used. .
化合物(4-1c2)製造工程においては、化合物(4-1a)、化合物(4-1b2)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (4-1c2), it is preferable to react compound (4-1a), compound (4-1b2), and a strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(4-1c2)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(4-1c2)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the step of producing compound (4-1c2), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, more preferably 80 ° C. or higher and 130 ° C. or lower.
In the step of producing compound (4-1c2), the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 10 hours or longer and 20 hours or shorter.
化合物(4-1c2)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-1c2)をさらに同様の方法で精製してもよい。また、得られた化合物(4-1c2)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-1)-2の収率が向上する点から、取り出すことが好ましい。 In the compound (4-1c2) production process, after completion of the reaction, the compound (4-1c2) can be removed in the same manner as in the above-described compound (1-1b) production process. You may refine by. Further, the obtained compound (4-1c2) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-1) -2 is improved, It is preferable to take out.
[化合物(4-1e)製造工程]
前記化合物(4-1e2)製造工程においては、化合物(4-1c2)と化合物(4-1d2)とを反応させて、化合物(4-1e2)を得る。
[Compound (4-1e) Production Process]
In the production step of the compound (4-1e2), the compound (4-1c2) and the compound (4-1d2) are reacted to obtain the compound (4-1e2).
(化合物(4-1c2))
化合物(4-1c2)は公知化合物である。
化合物(4-1c2)において、R411、R412及びR413は、化合物(4-1a)におけるR411、R412及びR413と同じであり、R43、R44、R45、R46、R47、R48及びX41は、化合物(4-1b2)におけるR43、R44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-1c2))
Compound (4-1c2) is a known compound.
In the compound (4-1c2), R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a), R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-1b2).
(化合物(4-1d2))
化合物(4-1d2)は公知化合物である。
化合物(4-1d2)において、R414は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(4-1d2)において、R414は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (4-1d2))
The compound (4-1d2) is a known compound.
In the compound (4-1d2), R 414 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
Among these, in the compound (4-1d2), R 414 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(4-1e2))
化合物(4-1e2)は新規化合物である。
化合物(4-1e2)において、Y411は上記「≪化合物(4)≫」の「<Y411及びY421>」で例示されたものと同じである。
また、化合物(4-1e2)において、R411、R412及びR413は、化合物(4-1a)におけるR411、R412及びR413と同じであり、R43、R44、R45、R46、R47、R48及びX41は、化合物(4-1b2)におけるR43、R44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-1e2))
Compound (4-1e2) is a novel compound.
In compound (4-1e2), Y 411 is the same as that exemplified for “<Y 411 and Y 421 >” in “<< Compound (4) >>” above.
Further, in the compound (4-1e2), R 411, R 412 and R 413 are the same as R 411, R 412 and R 413 in the compound (4-1a), R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-1b2).
(反応条件)
化合物(4-1e2)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(4-1c2)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-1e2), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (4-1c2) used.
化合物(4-1e2)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(4-1c2)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (4-1e2), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-1c2) used.
化合物(4-1e2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(4-1c2)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (4-1e2), an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-1c2).
化合物(4-1e2)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-1e2), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1e2)製造工程において、化合物(4-1d2)の使用量は、化合物(4-1c2)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production step of compound (4-1e2), the amount of compound (4-1d2) used is preferably 1 to 2 times the amount of compound (4-1c2).
化合物(4-1e2)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(4-1e2)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production step of compound (4-1e2), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production step of compound (4-1e2), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(4-1e2)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-1e2)をさらに同様の方法で精製してもよい。また、得られた化合物(4-1e2)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-1)-2の収率が向上する点から、取り出すことが好ましい。 Compound (4-1e2) can be taken out by the same method as in the above-mentioned compound (1-1b) production step, and the taken out compound (4-1e2) may be further purified by the same method. Further, the obtained compound (4-1e2) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-1) -2 is improved, It is preferable to take out.
[化合物(4-1)-2製造工程]
前記化合物(4-1)-2製造工程においては、化合物(4-1e2)から化合物(4-1)-2を得る。
化合物(4-1)-2を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R413及びR43に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基、又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Production Process of Compound (4-1) -2]
In the production step of compound (4-1) -2, compound (4-1) -2 is obtained from compound (4-1e2).
The method for obtaining the compound (4-1) -2 is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. In addition, also when a protective group has couple | bonded with R413 and R43 , a protective group is similarly removed and a carboxy group, a sulfonic acid group, or a phosphoric acid group is formed.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(4-1)-2製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-1) -2, an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-1)-2製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(4-1)-2製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (4-1) -2, the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (4-1) -2, the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
化合物(4-1)-2製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(4-1)-2を取り出すことができ、取り出した化合物(4-1)-2をさらに同様の方法で精製してもよい。 In the production process of compound (4-1) -2, after completion of the reaction, compound (4-1) -2 can be taken out in the same manner as in the production process of compound (1-1b). (4-1) -2 may be further purified by the same method.
化合物(4-1)-2、化合物(4-1a)、化合物(4-1b2)、化合物(4-1c2)、化合物(4-1d2)、化合物(4-1e2)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as compound (4-1) -2, compound (4-1a), compound (4-1b2), compound (4-1c2), compound (4-1d2), compound (4-1e2), etc. The structure can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
<化合物(4-2)の製造方法>
・R43:水素原子
化合物(4)のうち、化合物(4-2)は、例えば、R43が水素原子である場合、下記一般式(4-2a)で表される化合物(以下、「化合物(4-2a)」と略記することがある)と、下記一般式(4-2b1)で表される化合物(以下、「化合物(4-2b1)」と略記することがある)と、を反応させて、下記一般式(4-2c1’)で表される化合物(以下、「化合物(4-2c1’)」と略記することがある)を得る工程(以下、「化合物(4-2c1’)製造工程」と略記することがある)、化合物(4-2c1’)から下記一般式(4-2c1)で表される化合物(以下、「化合物(4-2c1)」と略記することがある)を得る工程(以下、「化合物(4-2c1)製造工程」と略記することがある)、化合物(4-2c1)と、下記一般式(4-2d1)で表される化合物(以下、「化合物(4-2d1)」と略記することがある)と、を反応させて、下記一般式(4-2e1)で表される化合物(以下、「化合物(4-2e1)」と略記することがある)を得る工程(以下、「化合物(4-2e1)製造工程」と略記することがある)、及び化合物(4-2e1)から化合物(4-2)-1を得る工程(以下、「化合物(4-2)-1製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
<Method for Producing Compound (4-2)>
R 43 : hydrogen atom Of the compound (4), the compound (4-2) is, for example, a compound represented by the following general formula (4-2a) when R 43 is a hydrogen atom (hereinafter referred to as “compound (4-2a) ”and a compound represented by the following general formula (4-2b1) (hereinafter, sometimes abbreviated as“ compound (4-2b1) ”) To obtain a compound represented by the following general formula (4-2c1 ′) (hereinafter sometimes abbreviated as “compound (4-2c1 ′)”) (hereinafter referred to as “compound (4-2c1 ′)”). Production process ”), a compound represented by the following general formula (4-2c1) from the compound (4-2c1 ′) (hereinafter sometimes abbreviated as“ compound (4-2c1) ”) (Hereinafter sometimes abbreviated as “compound (4-2c1) production process”), The compound (4-2c1) is reacted with a compound represented by the following general formula (4-2d1) (hereinafter sometimes abbreviated as “compound (4-2d1)”) to give the following general formula: (4-2-2) may be abbreviated as “compound (4-2e1) production step” (hereinafter, referred to as “compound (4-2e1) production step”). ) And a step of obtaining compound (4-2) -1 from compound (4-2e1) (hereinafter sometimes abbreviated as “compound (4-2) -1 production step”). it can.
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、Phは無置換のフェニル基である。R424は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。X41、Y421、R44、R45、R46、R47、R48、R421、R422及びR423はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group and Ph is an unsubstituted phenyl group. R 424 is a hydrogen atom, a hydroxyl group, a leaving group (for example, a halogen atom), or a leaving group (for example, a terminal group) And an alkylene group having 1 to 10 carbon atoms, which may contain at least one of an oxygen atom and an arylene group, X 41 , Y 421 , R 44 , R 45 , R 46 , R 47 , R 48 , R 421 , R 422 and R 423 are all the same as above.)
[化合物(4-2c1’)製造工程]
前記化合物(4-2c1’)製造工程においては、化合物(4-2a)と化合物(4-2b1)とを反応させて、化合物(4-2c1’)を得る。
[Production Process of Compound (4-2c1 ′)]
In the production step of the compound (4-2c1 ′), the compound (4-2a) and the compound (4-2b1) are reacted to obtain the compound (4-2c1 ′).
(化合物(4-2a))
化合物(4-2a)は公知化合物である。
化合物(4-2a)において、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(4-2a)において、R421及びR422は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(4-2a)において、R423は末端にアニオン性官能基を有する基である。
中でも、化合物(4-2a)において、R423は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基、又はリン酸基であることがより好ましい。
(Compound (4-2a))
Compound (4-2a) is a known compound.
In the compound (4-2a), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-2a), R 421 and R 422 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (4-2a), R 423 is a group having an anionic functional group at the terminal.
Among these, in the compound (4-2a), R 423 is preferably a group consisting only of an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. preferable.
(化合物(4-2b1))
化合物(4-2b1)は公知化合物である。
化合物(4-2b1)において、R44、R47、及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。
中でも、化合物(4-2b1)において、R44及びR47は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
また、R48は水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
(Compound (4-2b1))
Compound (4-2b1) is a known compound.
In the compound (4-2b1), R 44 , R 47 , and R 48 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
Among these, in the compound (4-2b1), R 44 and R 47 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
化合物(4-2b1)において、R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。
中でも、化合物(4-2b1)において、R45及びR46は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
In the compound (4-2b1), R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Among them, in the compound (4-2b1), R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
化合物(4-2b1)において、X41は珪素原子、ゲルマニウム原子又はスズ原子である。
中でも、化合物(4-2b1)において、X41は珪素原子であること好ましい。
In the compound (4-2b1), X 41 is a silicon atom, a germanium atom or a tin atom.
Among these, in the compound (4-2b1), X 41 is preferably a silicon atom.
(化合物(4-2c1’))
化合物(4-2c1’)は公知化合物である。
化合物(4-2c1’)において、R421、R422及びR423は、化合物(4-2a)におけるR421、R422、及びR423と同じであり、R44、R45、R46、R47、R48及びX41は、化合物(4-2b1)におけるR44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-2c1 ′))
The compound (4-2c1 ′) is a known compound.
In the compound (4-2c1 '), R 421, R 422 and R 423 are the same as R 421, R 422, and R 423 in the compound (4-2a), R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-2b1).
(反応条件)
化合物(4-2c1’)製造工程においては、強塩基を予め化合物(4-2a)と混合させた後に、化合物(4-2b1)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(4-2a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-2c1 ′), it is preferred that a strong base is previously mixed with compound (4-2a) and then reacted with compound (4-2b1).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-2a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(4-2c1’)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-2c1 ′), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2c1’)製造工程において、化合物(4-2b1)の使用量は、化合物(4-2a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production process of compound (4-2c1 ′), the amount of compound (4-2b1) used is 0.1 to 0.3 times the amount of compound (4-2a) used. preferable.
化合物(4-2c1’)製造工程においては、化合物(4-2a)、化合物(4-2b1)、及び強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (4-2c1 ′), it is preferable to react compound (4-2a), compound (4-2b1), and a strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(4-2c1’)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(4-2c1’)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production process of compound (4-2c1 ′), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
In the production process of compound (4-2c1 ′), the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 10 hours or longer and 20 hours or shorter.
化合物(4-2c1’)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-2c1’)をさらに同様の方法で精製してもよい。また、得られた化合物(4-2c1’)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-2)-1の収率が向上する点から、取り出すことが好ましい。 In the production process of the compound (4-2c1 ′), after completion of the reaction, the compound (4-2c1 ′) can be taken out in the same manner as in the production process of the compound (1-1b) described above. You may refine | purify by the method of. The obtained compound (4-2c1 ′) may be used in the next step without being taken out after completion of the reaction. However, the yield of the target compound (4-2) -1 is improved. It is preferable to take out.
[化合物(4-2c1)製造工程]
前記化合物(4-2c1)製造工程においては、化合物(4-2c1’)から化合物(4-2c1)を得る。
[Production process of compound (4-2c1)]
In the production step of the compound (4-2c1), the compound (4-2c1) is obtained from the compound (4-2c1 ′).
(化合物(4-2c1))
化合物(4-2c1)は公知化合物である。
化合物(4-2c1)において、R421、R422及びR413は、化合物(4-2a)におけるR421、R422及びR413と同じであり、R44、R45、R46、R47、R48及びX41は、化合物(4-2b1)におけるR44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-2c1))
Compound (4-2c1) is a known compound.
In the compound (4-2c1), R 421, R 422 and R 413 are the same as R 421, R 422 and R 413 in the compound (4-2a), R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-2b1).
(反応条件)
化合物(4-2c1)製造工程においては、テトラキス(トリフェニルホスフィン)パラジウム及び1,3-ジメチルバルビツール酸等の触媒を用いて、行うことが好ましい。
(Reaction conditions)
The production process of the compound (4-2c1) is preferably carried out using a catalyst such as tetrakis (triphenylphosphine) palladium and 1,3-dimethylbarbituric acid.
化合物(4-2c1)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスは特に限定されないが、例えば、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等が挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-2c1), it is preferable to carry out the reaction in an inert gas atmosphere.
The inert gas is not particularly limited, and examples thereof include nitrogen, helium, neon, argon, krypton, and xenon.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2c1)製造工程において、反応温度は、20℃以上50℃以下であることが好ましく、25℃以上45℃以下であることがより好ましい。
化合物(4-2c1)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、8時間以上16時間以下であることがより好ましい。
In the production step of compound (4-2c1), the reaction temperature is preferably 20 ° C. or higher and 50 ° C. or lower, more preferably 25 ° C. or higher and 45 ° C. or lower.
In the production step of compound (4-2c1), the reaction time is preferably 5 hours or longer and 25 hours or shorter, and more preferably 8 hours or longer and 16 hours or shorter.
化合物(4-2c1)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-2c1)をさらに同様の方法で精製してもよい。また、得られた化合物(4-2c1)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-2)-1の収率が向上する点から、取り出すことが好ましい。 In the production step of compound (4-2c1), after completion of the reaction, it can be taken out in the same manner as in the production step of compound (1-1b) described above, and the taken out compound (4-2c1) is further treated in the same manner. You may refine by. Further, the obtained compound (4-2c1) may be used in the next step without being taken out after completion of the reaction. However, since the yield of the target compound (4-2) -1 is improved, It is preferable to take out.
[化合物(4-2e1)製造工程]
前記化合物(4-2e1)製造工程においては、化合物(4-2c1)と化合物(4-2d1)とを反応させて、化合物(4-2e1)を得る。
[Production process of compound (4-2e1)]
In the production step of the compound (4-2e1), the compound (4-2c1) and the compound (4-2d1) are reacted to obtain the compound (4-2e1).
(化合物(4-2d1))
化合物(4-2d1)は公知化合物である。
化合物(4-2d1)において、R424は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(4-2d1)において、R424は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (4-2d1))
The compound (4-2d1) is a known compound.
In the compound (4-2d1), R 424 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
Among these, in the compound (4-2d1), R 424 is preferably a hydrogen atom, a halogen atom, —O—CH 2 —X, or —O—Ph—CH 2 —X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(4-2e1))
化合物(4-2e1)は新規化合物である。
化合物(4-2e1)において、Y421は上記「≪化合物(4)≫」の「<Y411及びY421>」で例示されたものと同じである。
また、化合物(4-2e1)において、R421、R422及びR423は、化合物(4-2a)におけるR421、R422及びR423と同じであり、R44、R45、R46、R47、R48及びX41は、化合物(4-2b1)におけるR44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-2e1))
Compound (4-2e1) is a novel compound.
In the compound (4-2e1), Y 421 is the same as those exemplified for “<Y 411 and Y 421 >” in the above “<< Compound (4) >>”.
Further, in the compound (4-2e1), R 421, R 422 and R 423 are the same as R 421, R 422 and R 423 in the compound (4-2a), R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 44, R 45, R 46 , R 47, R 48 and X 41 in the compound (4-2b1).
(反応条件)
化合物(4-2e1)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(4-2c1)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-2e1), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (4-2c1).
化合物(4-2e1)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(4-2c1)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (4-2e1), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-2c1) used.
化合物(4-2e1)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(4-2c1)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (4-2e1), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-2c1).
化合物(4-2e1)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (4-2e1), the reaction is preferably performed in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2e1)製造工程において、化合物(4-2d1)の使用量は、化合物(4-2c1)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production step of compound (4-2e1), the amount of compound (4-2d1) used is preferably 1 to 2 times the amount of compound (4-2c1).
化合物(4-2e1)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(4-2e1)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production step of compound (4-2e1), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production step of compound (4-2e1), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(4-2e1)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-2e1)をさらに同様の方法で精製してもよい。また、得られた化合物(4-2e1)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-2)-1の収率が向上する点から、取り出すことが好ましい。 Compound (4-2e1) can be taken out in the same manner as in the above-described compound (1-1b) production step, and the taken out compound (4-2e1) may be further purified in the same manner. Further, the obtained compound (4-2e1) may be used in the next step without removal after the completion of the reaction. However, since the yield of the target compound (4-2) -1 is improved, It is preferable to take out.
[化合物(4-2)-1製造工程]
前記化合物(4-2)-1製造工程においては、化合物(4-2e1)から化合物(4-2)-1を得る。
化合物(4-2)を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R423に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基又はリン酸基が形成される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Compound (4-2) -1 Production Process]
In the production step of compound (4-2) -1, compound (4-2) -1 is obtained from compound (4-2e1).
The method for obtaining the compound (4-2) is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 423 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(4-2)-1製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-2) -1, an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2)-1製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(4-2)-1製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (4-2) -1, the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (4-2) -1, the reaction time is preferably 30 minutes or longer and 5 hours or shorter, more preferably 1 hour or longer and 3 hours or shorter.
化合物(4-2)-1製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(4-2)-1を取り出すことができ、取り出した化合物(4-2)-1をさらに同様の方法で精製してもよい。 In the production process of compound (4-2) -1, after completion of the reaction, compound (4-2) -1 can be taken out in the same manner as in the production process of compound (1-1b). (4-2) -1 may be further purified by the same method.
化合物(4-2)-1、化合物(4-2a)、化合物(4-2b1)、化合物(4-2c1)、化合物(4-2d1)、化合物(4-2e1)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as compound (4-2) -1, compound (4-2a), compound (4-2b1), compound (4-2c1), compound (4-2d1), compound (4-2e1) The structure can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
・R43:水素原子以外
化合物(4)のうち、化合物(4-2)は、例えば、R43が水素原子以外である場合、下記一般式(4-2a)で表される化合物(以下、「化合物(4-2a)」と略記することがある)と、下記一般式(4-2b2)で表される化合物(以下、「化合物(4-2b2)」と略記することがある)と、を反応させて、下記一般式(4-2c2)で表される化合物(以下、「化合物(4-2c2)」と略記することがある)を得る工程(以下、「化合物(4-2c2)製造工程」と略記することがある)、化合物(4-2c2)と、下記一般式(4-2d2)で表される化合物(以下、「化合物(4-2d2)」と略記することがある)と、を反応させて、下記一般式(4-2e2)で表される化合物(以下、「化合物(4-2e2)」と略記することがある)を得る工程(以下、「化合物(4-2e2)製造工程」と略記することがある)、及び化合物(4-2e2)から化合物(4-2)-2を得る工程(以下、「化合物(4-2)-2製造工程」と略記することがある)を有する製造方法により、製造できる。
以下、各工程について、詳細に説明する。
R 43 : other than a hydrogen atom Among the compounds (4), the compound (4-2) is, for example, a compound represented by the following general formula (4-2a) (wherein R 43 is other than a hydrogen atom) “Sometimes abbreviated as“ compound (4-2a) ”), a compound represented by the following general formula (4-2b2) (hereinafter sometimes abbreviated as“ compound (4-2b2) ”), To obtain a compound represented by the following general formula (4-2c2) (hereinafter sometimes abbreviated as “compound (4-2c2)”) (hereinafter referred to as “compound (4-2c2) production). Step (sometimes abbreviated as “step”), compound (4-2c2), compound represented by the following general formula (4-2d2) (hereinafter sometimes abbreviated as “compound (4-2d2)”), , To give a compound represented by the following general formula (4-2e2) Compound (4-2e2) ”(hereinafter sometimes abbreviated as“ compound (4-2e2) production step ”), and compound (4-2e2) to compound (4 -2) It can be produced by a production method having a step of obtaining -2 (hereinafter sometimes abbreviated as "compound (4-2) -2 production step").
Hereinafter, each step will be described in detail.
(式中、Bzlはベンジル基であり、Phは無置換のフェニル基である。X41、Y421、R43、R44、R45、R46、R47、R48、R421、R422、R423及びR424はいずれも上記と同じである。) (In the formula, Bzl is a benzyl group and Ph is an unsubstituted phenyl group. X 41 , Y 421 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 421 , R 422 , R 423 and R 424 are the same as above.)
[化合物(4-2c2)製造工程]
前記化合物(4-2c2)製造工程においては、化合物(4-2a)と化合物(4-2b2)とを反応させて、化合物(4-2c2)を得る。
[Production process of compound (4-2c2)]
In the step of producing compound (4-2c2), compound (4-2a) and compound (4-2b2) are reacted to obtain compound (4-2c2).
(化合物(4-2a))
化合物(4-2a)は公知化合物である。
化合物(4-2a)において、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。中でも、化合物(4-2a)において、R421及びR422は合成しやすいことから、同じであることが好ましく、直鎖状の炭素数1~10のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましい。
化合物(4-2a)において、R423は末端にアニオン性官能基を有する基である。
中でも、化合物(4-2a)において、R423は、合成しやすいことから、アニオン性官能基のみからなる基であることが好ましく、カルボキシ基、スルホン酸基又はリン酸基であることがより好ましい。
(Compound (4-2a))
Compound (4-2a) is a known compound.
In the compound (4-2a), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. Among them, in the compound (4-2a), R 421 and R 422 are preferably the same because they are easy to synthesize, more preferably a linear alkyl group having 1 to 10 carbon atoms, a methyl group or an ethyl group Is more preferable.
In the compound (4-2a), R 423 is a group having an anionic functional group at the terminal.
Among these, in the compound (4-2a), R 423 is preferably a group consisting of only an anionic functional group, and more preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group because it is easy to synthesize. .
(化合物(4-2b2))
化合物(4-2b2)は公知化合物である。
化合物(4-2b2)において、R43は直鎖状の炭素数1~10のアルキル基である。中でも、化合物(4-2b2)において、R43はメチル基又はエチル基であることが好ましい。
化合物(4-2b2)において、R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子又は炭素数1~10のアルキル基である。
中でも、化合物(4-2b2)において、R44及びR47は、合成しやすいことから、同じであることが好ましく、水素原子又はハロゲン原子であることがより好ましい。
また、R48は水素原子又は直鎖状の炭素数1~10のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましい。
(Compound (4-2b2))
The compound (4-2b2) is a known compound.
In the compound (4-2b2), R 43 is a linear alkyl group having 1 to 10 carbon atoms. Among these, in the compound (4-2b2), R 43 is preferably a methyl group or an ethyl group.
In the compound (4-2b2), R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms.
Among them, in the compound (4-2b2), R 44 and R 47 are preferably the same because of easy synthesis, and more preferably a hydrogen atom or a halogen atom.
R 48 is preferably a hydrogen atom or a linear alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
化合物(4-2b2)において、R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。
中でも、化合物(4-2b2)において、R45及びR46は、合成しやすいことから、同じであることが好ましく、メチル基、エチル基、フェニル基又はベンジル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
In the compound (4-2b2), R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Among them, in the compound (4-2b2), R 45 and R 46 are preferably the same because they are easily synthesized, and are preferably a methyl group, an ethyl group, a phenyl group, or a benzyl group, More preferably, it is an ethyl group.
化合物(4-2b2)において、X41は珪素原子、ゲルマニウム原子又はスズ原子である。
中でも、化合物(4-2b2)において、X41は珪素原子であること好ましい。
In the compound (4-2b2), X 41 is a silicon atom, a germanium atom or a tin atom.
Among these, in the compound (4-2b2), X 41 is preferably a silicon atom.
(反応条件)
化合物(4-2c2)製造工程においては、強塩基を予め化合物(4-2a)と混合させた後に、化合物(4-2b2)と反応させることが好ましい。
前記強塩基としては、例えば、sec-ブチルリチウム等が挙げられる。
前記強塩基の使用量は、化合物(4-2a)の使用量の0.5倍モル量以上1.0倍モル量以下であることが好ましい。
強塩基と予め混合する際の温度は、-90℃以上-60℃以下であることが好ましい。
強塩基と予め混合する際の時間は、10分以上1時間以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-2c2), it is preferable that a strong base is mixed with compound (4-2a) in advance and then reacted with compound (4-2b2).
Examples of the strong base include sec-butyllithium.
The amount of the strong base used is preferably 0.5 to 1.0 times the amount of the compound (4-2a) used.
The temperature when mixing with a strong base in advance is preferably −90 ° C. or higher and −60 ° C. or lower.
The time for mixing with a strong base in advance is preferably from 10 minutes to 1 hour.
化合物(4-2c2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-2c2), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2c2)製造工程において、化合物(4-2b2)の使用量は、化合物(4-2a)の使用量の0.1倍モル量以上0.3倍モル量以下であることが好ましい。 In the production process of compound (4-2c2), the amount of compound (4-2b2) used is preferably 0.1 to 0.3 times the amount of compound (4-2a) used. .
化合物(4-2c2)製造工程においては、化合物(4-2a)、化合物(4-2b2)、及び、強塩基を酸性条件下で反応させることが好ましい。
前記酸としては、例えば、塩酸等の無機酸;酢酸、パラトルエンスルホン酸等の有機酸等が挙げられる。
反応時において、例えば、酸の使用量は、例えば、1M以上5M以下であることが好ましい。
In the production step of compound (4-2c2), it is preferable to react compound (4-2a), compound (4-2b2), and a strong base under acidic conditions.
Examples of the acid include inorganic acids such as hydrochloric acid; organic acids such as acetic acid and p-toluenesulfonic acid.
In the reaction, for example, the amount of acid used is preferably 1 M or more and 5 M or less, for example.
化合物(4-2c2)製造工程において、反応温度は、70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。
化合物(4-2c2)製造工程において、反応時間は、5時間以上25時間以下であることが好ましく、10時間以上20時間以下であることがより好ましい。
In the production step of compound (4-2c2), the reaction temperature is preferably 70 ° C. or higher and 150 ° C. or lower, and more preferably 80 ° C. or higher and 130 ° C. or lower.
In the step of producing compound (4-2c2), the reaction time is preferably 5 hours or longer and 25 hours or shorter, more preferably 10 hours or longer and 20 hours or shorter.
化合物(4-2c2)製造工程において、反応終了後は、上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-2c2)をさらに同様の方法で精製してもよい。また、得られた化合物(4-2c2)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-2)-2の収率が向上する点から、取り出すことが好ましい。 In the production step of compound (4-2c2), after completion of the reaction, it can be taken out in the same manner as in the production step of compound (1-1b) described above, and the taken out compound (4-2c2) is further treated in the same manner. You may refine by. Further, the obtained compound (4-2c2) may be used in the next step without being taken out after the completion of the reaction. However, since the yield of the target compound (4-2) -2 is improved, It is preferable to take out.
[化合物(4-2e2)製造工程]
前記化合物(4-2e2)製造工程においては、化合物(4-2c2)と化合物(4-2d2)とを反応させて、化合物(4-2e2)を得る。
[Production process of compound (4-2e2)]
In the production step of the compound (4-2e2), the compound (4-2c2) and the compound (4-2d2) are reacted to obtain the compound (4-2e2).
(化合物(4-2c2))
化合物(4-2c2)は公知化合物である。
化合物(4-2c2)において、R421、R422及びR423は、化合物(4-2a)におけるR421、R422及びR423と同じであり、R43、R44、R45、R46、R47、R48及びX41は、化合物(4-2b2)におけるR43、R44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-2c2))
Compound (4-2c2) is a known compound.
In the compound (4-2c2), R 421, R 422 and R 423 are the same as R 421, R 422 and R 423 in the compound (4-2a), R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-2b2).
(化合物(4-2d2))
化合物(4-2d2)は公知化合物である。
化合物(4-2d2)において、R424は水素原子、水酸基、脱離基(例えば、ハロゲン原子等)、又は、末端に脱離基(例えば、ハロゲン原子等)を有し、且つ、酸素原子及びアリーレン基のうち少なくともいずれか一つを含んでいてもよい炭素数1~10のアルキレン基である。
中でも、化合物(4-2d2)において、R424は水素原子、ハロゲン原子、-O-CH2-X、又は、-O-Ph-CH2-Xであることが好ましい。ここで、「X」はハロゲン原子を示し、「Ph」は置換又は無置換のフェニレン基を示す。
(Compound (4-2d2))
The compound (4-2d2) is a known compound.
In the compound (4-2d2), R 424 has a hydrogen atom, a hydroxyl group, a leaving group (eg, a halogen atom), or a leaving group (eg, a halogen atom) at the terminal, and an oxygen atom and An alkylene group having 1 to 10 carbon atoms which may contain at least one of arylene groups.
Among them, the compound (4-2d2), R 424 represents a hydrogen atom, a halogen atom, -O-CH 2 -X, or, preferably a -O-Ph-CH 2 -X. Here, “X” represents a halogen atom, and “Ph” represents a substituted or unsubstituted phenylene group.
(化合物(4-2e2))
化合物(4-2e2)は新規化合物である。
化合物(4-2e2)において、Y421は上記「≪化合物(4)≫」の「<Y411及びY421>」で例示されたものと同じである。
また、化合物(4-2e2)において、R421、R422及びR423は、化合物(4-2a)におけるR421、R422及びR423と同じであり、R43、R44、R45、R46、R47、R48及びX41は、化合物(4-2b2)におけるR43、R44、R45、R46、R47、R48及びX41と同じである。
(Compound (4-2e2))
Compound (4-2e2) is a novel compound.
In the compound (4-2e2), Y 421 is the same as that exemplified for “<Y 411 and Y 421 >” in the above “<< Compound (4) >>”.
Further, in the compound (4-2e2), R 421, R 422 and R 423 are the same as R 421, R 422 and R 423 in the compound (4-2a), R 43, R 44, R 45, R 46, R 47, R 48 and X 41 are the same as R 43, R 44, R 45 , R 46, R 47, R 48 and X 41 in the compound (4-2b2).
(反応条件)
化合物(4-2e2)製造工程においては、塩基を用いて反応を行うことが好ましい。
前記塩基は特に限定されないが、例えば、トリエチルアミン、DIEA等のトリアルキルアミン等が挙げられる。
前記塩基は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記塩基の使用量は、化合物(4-2c2)の使用量の1倍モル量以上3倍モル量以下であることが好ましい。
(Reaction conditions)
In the production step of compound (4-2e2), it is preferable to carry out the reaction using a base.
The base is not particularly limited, and examples thereof include trialkylamines such as triethylamine and DIEA.
The bases may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
The amount of the base used is preferably 1 to 3 times the amount of the compound (4-2c2).
化合物(4-2e2)製造工程においては、縮合剤を用いて反応を行うことが好ましい。
前記縮合剤は特に限定されないが、例えば、DMAP等が挙げられる。
前記縮合剤は1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記縮合剤の使用量は、化合物(4-2c2)の使用量の0.05モル量以上0.2倍モル量以下であることが好ましい。
In the production step of compound (4-2e2), it is preferable to carry out the reaction using a condensing agent.
The condensing agent is not particularly limited, and examples thereof include DMAP.
The said condensing agent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the condensing agent used is preferably 0.05 mol amount or more and 0.2 times mol amount or less of the amount of the compound (4-2c2) used.
化合物(4-2e2)製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
前記溶媒の使用量は、化合物(4-2c2)の使用量の1倍モル量以上5倍モル量以下であることが好ましい。
In the production process of compound (4-2e2), it is preferable to use an aprotic solvent as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
The amount of the solvent used is preferably 1 to 5 times the amount of the compound (4-2c2).
化合物(4-2e2)製造工程においては、不活性ガス雰囲気下で反応を行うことが好ましい。
前記不活性ガスとしては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記不活性ガスは、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of the compound (4-2e2), it is preferable to carry out the reaction in an inert gas atmosphere.
Examples of the inert gas include those similar to those exemplified in “[Compound (1-1d) Production Process]”.
The said inert gas may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2e2)製造工程において、化合物(4-2d2)の使用量は、化合物(4-2c2)の使用量の1倍モル量以上2倍モル量以下であることが好ましい。 In the production step of compound (4-2e2), the amount of compound (4-2d2) used is preferably 1 to 2 times the amount of compound (4-2c2).
化合物(4-2e2)製造工程において、反応温度は、-50℃以上0℃以下であることが好ましく、-30℃以上―5℃以下であることがより好ましい。
化合物(4-2e2)製造工程において、反応時間は、30分以上10時間以下であることが好ましく、1時間以上5時間以下であることがより好ましい。
In the production process of compound (4-2e2), the reaction temperature is preferably −50 ° C. or higher and 0 ° C. or lower, and more preferably −30 ° C. or higher and −5 ° C. or lower.
In the production step of compound (4-2e2), the reaction time is preferably 30 minutes or longer and 10 hours or shorter, more preferably 1 hour or longer and 5 hours or shorter.
化合物(4-2e2)は上述の化合物(1-1b)製造工程の場合と同様の方法で取り出すことができ、取り出した化合物(4-2e2)をさらに同様の方法で精製してもよい。また、得られた化合物(4-2e2)は、反応終了後、取り出さずに次工程で用いてもよいが、目的物である化合物(4-2)-2の収率が向上する点から、取り出すことが好ましい。 The compound (4-2e2) can be extracted by the same method as in the above-described compound (1-1b) production process, and the extracted compound (4-2e2) may be further purified by the same method. Further, the obtained compound (4-2e2) may be used in the next step without being taken out after the completion of the reaction. However, since the yield of the target compound (4-2) -2 is improved, It is preferable to take out.
[化合物(4-2)-2製造工程]
前記化合物(4-2)-2製造工程においては、化合物(4-2e2)から化合物(4-2)-2を得る。
化合物(4-2)-2を得る方法は、公知の脱保護反応である。すなわち、本工程では、ベンジル基が除去されて、水酸基が形成される。なお、R423に保護基が結合している場合にも、同様に保護基が除去されて、カルボキシ基、スルホン酸基又はリン酸基が形成される。また、R43に保護基が結合している場合にも、同様に保護基が除去される。
前記脱保護反応は、例えば、還元条件下で行うことができる。
[Production process of compound (4-2) -2]
In the production step of compound (4-2) -2, compound (4-2) -2 is obtained from compound (4-2e2).
The method for obtaining the compound (4-2) -2 is a known deprotection reaction. That is, in this step, the benzyl group is removed and a hydroxyl group is formed. Even when a protective group is bonded to R 423 , the protective group is similarly removed to form a carboxy group, a sulfonic acid group, or a phosphoric acid group. Further, when a protective group is bonded to R 43 , the protective group is similarly removed.
The deprotection reaction can be performed, for example, under reducing conditions.
還元条件とするために用いるものとしては、例えば、水素雰囲気下でパラジウム炭素触媒を用いる方法、ナトリウム/液体アンモニアを用いたバーチ還元法等が挙げられる。 Examples of what is used for reducing conditions include a method using a palladium carbon catalyst in a hydrogen atmosphere, a birch reduction method using sodium / liquid ammonia, and the like.
化合物(4-2)-2製造工程においては、非プロトン性溶媒を反応溶媒として用いることが好ましい。
前記非プロトン性溶媒としては、「[化合物(1-1d)製造工程]」において例示されたものと同様のものが挙げられる。
前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the production process of compound (4-2) -2, an aprotic solvent is preferably used as a reaction solvent.
Examples of the aprotic solvent include the same solvents as those exemplified in “[Compound (1-1d) Production Process]”.
The said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
化合物(4-2)-2製造工程において、反応温度は、15℃以上40℃以下であることが好ましく、20℃以上30℃以下であることがより好ましい。
化合物(4-2)-2製造工程において、反応時間は、30分以上5時間以下であることが好ましく、1時間以上3時間以下であることがより好ましい。
In the production process of compound (4-2) -2, the reaction temperature is preferably 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 30 ° C. or lower.
In the production process of compound (4-2) -2, the reaction time is preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
化合物(4-2)-2製造工程において、反応終了後は、化合物(1-1b)製造工程の場合と同様の方法で、化合物(4-2)-2を取り出すことができ、取り出した化合物(4-2)-2をさらに同様の方法で精製してもよい。 In the production process of compound (4-2) -2, after completion of the reaction, compound (4-2) -2 can be taken out in the same manner as in the production process of compound (1-1b). (4-2) -2 may be further purified by the same method.
化合物(4-2)-2、化合物(4-2a)、化合物(4-2b2)、化合物(4-2c)、化合物(4-2d2)、化合物(4-2e2)等の各化合物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)等、公知の手法で構造を確認できる。 Each compound such as compound (4-2) -2, compound (4-2a), compound (4-2b2), compound (4-2c), compound (4-2d2), compound (4-2e2) is, for example, The structure can be confirmed by a known method such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR).
≪ALP検出用蛍光プローブ≫
本発明の一実施形態に係るALP検出用蛍光プローブは、アニオン性官能基と、リン酸基とを有する化合物を含むものである。
≪Fluorescent probe for ALP detection≫
A fluorescent probe for detecting ALP according to an embodiment of the present invention includes a compound having an anionic functional group and a phosphate group.
本実施形態のALP検出用蛍光プローブによれば、生体試料中のALPの酵素活性を高い定量性及び感度で計測することができる。 According to the fluorescent probe for ALP detection of the present embodiment, the enzymatic activity of ALP in a biological sample can be measured with high quantitativeness and sensitivity.
<化合物>
本実施形態における化合物は、アニオン性官能基と、リン酸基とを有するものである。
なお、本明細書において、「アニオン性官能基」とは、水性媒体中でマイナスチャージを持ってイオン解離する官能基を意味し、「カチオン性官能基」とは、水性媒体中でプラスチャージを持ってイオン解離する官能基を意味する。
前記アニオン性官能基としては、例えば、水酸基、チオール基、カルボキシ基、ジチオカルボキシ基、ヒドロキシチオキソメチル基、メルカプトカルボニル基、スルホン酸基、リン酸基、シアノ基、及び、これらの塩等が挙げられる。中でも、前記アニオン性官能基としては、カルボキシ基、スルホン酸基又はリン酸基が好ましい。
<Compound>
The compound in this embodiment has an anionic functional group and a phosphate group.
In the present specification, “anionic functional group” means a functional group that ionically dissociates with a negative charge in an aqueous medium, and “cationic functional group” means a positive charge in an aqueous medium. It means a functional group that has ionic dissociation.
Examples of the anionic functional group include a hydroxyl group, a thiol group, a carboxy group, a dithiocarboxy group, a hydroxythioxomethyl group, a mercaptocarbonyl group, a sulfonic acid group, a phosphoric acid group, a cyano group, and salts thereof. Can be mentioned. Especially, as said anionic functional group, a carboxy group, a sulfonic acid group, or a phosphoric acid group is preferable.
本実施形態における化合物は、そのままでは蛍光を発せず、ALPによる加水分解によりリン酸基が脱離することで、初めて蛍光を発する。 The compound in this embodiment does not emit fluorescence as it is, but emits fluorescence for the first time when the phosphate group is eliminated by hydrolysis with ALP.
本実施形態における化合物としてより具体的には、例えば、上述の化合物(1)、上述の化合物(2)、上述の化合物(3)、上述の化合物(4)等が挙げられる。
化合物(1)で好ましいものとしては、例えば、上述の化合物(1-1)、上述の化合物(1-2)等が挙げられる。
化合物(2)で好ましいものとしては、例えば、上述の化合物(2-1)、上述の化合物(2-2)等が挙げられる。
化合物(3)で好ましいものとしては、例えば、上述の化合物(3-1)、上述の化合物(3-2)等が挙げられる。
化合物(4)で好ましいものとしては、例えば、上述の化合物(4-1)、上述の化合物(4-2)等が挙げられる。
なお、これら化合物は、好ましい化合物(1)、(2)、(3)及び(4)の一例に過ぎず、好ましい化合物(1)、(2)、(3)及び(4)はこれらに限定されない。
More specifically, examples of the compound in the present embodiment include the above-mentioned compound (1), the above-mentioned compound (2), the above-mentioned compound (3), the above-mentioned compound (4), and the like.
Preferred examples of the compound (1) include the above compound (1-1) and the above compound (1-2).
Preferred examples of the compound (2) include the above compound (2-1) and the above compound (2-2).
Preferred examples of the compound (3) include the above compound (3-1) and the above compound (3-2).
Preferred examples of the compound (4) include the above compound (4-1) and the above compound (4-2).
These compounds are only examples of preferred compounds (1), (2), (3) and (4), and preferred compounds (1), (2), (3) and (4) are limited to these. Not.
化合物(1)のうち、化合物(1-1)で好ましいものとしては、例えば、上述の化合物(1-1-1)、上述の化合物(1-1-2)、上述の化合物(1-1-3)等が挙げられる。
化合物(1)のうち、化合物(1-2)で好ましいものとしては、例えば、上述の化合物(1-2-1)、上述の化合物(1-2-2)、上述の化合物(1-2-3)等が挙げられる。
Among the compounds (1), preferable examples of the compound (1-1) include, for example, the above compound (1-1-1), the above compound (1-1-2), and the above compound (1-1). -3).
Among the compounds (1), preferable examples of the compound (1-2) include, for example, the above compound (1-2-1), the above compound (1-2-2), and the above compound (1-2). -3).
化合物(2)のうち、化合物(2-1)で好ましいものとしては、例えば、上述の化合物(2-1-1)、上述の化合物(2-1-2)、上述の化合物(2-1-3)等が挙げられる。
化合物(2)のうち、化合物(2-2)で好ましいものとしては、例えば、上述の化合物(2-2-1)、上述の化合物(2-2-2)、上述の化合物(2-2-3)等が挙げられる。
Among the compounds (2), preferable examples of the compound (2-1) include, for example, the above compound (2-1-1), the above compound (2-1-2), and the above compound (2-1). -3).
Among the compounds (2), preferable examples of the compound (2-2) include, for example, the above compound (2-2-1), the above compound (2-2-2), and the above compound (2-2). -3).
化合物(3)のうち、化合物(3-1)で好ましいものとしては、例えば、上述の化合物(3-1-1)、上述の化合物(3-1-2)、上述の化合物(3-1-3)等が挙げられる。
化合物(3)のうち、化合物(3-2)で好ましいものとしては、例えば、上述の化合物(3-2-1)、上述の化合物(3-2-2)、上述の化合物(3-2-3)等が挙げられる。
Among the compounds (3), preferred as the compound (3-1) are, for example, the above compound (3-1-1), the above compound (3-1-2), and the above compound (3-1). -3).
Among the compounds (3), preferred as the compound (3-2) are, for example, the above compound (3-2-1), the above compound (3-2-2), and the above compound (3-2). -3).
化合物(4)のうち、化合物(4-1)で好ましいものとしては、例えば、上述の化合物(4-1-1)、上述の化合物(4-1-2)、上述の化合物(4-1-3)等が挙げられる。
化合物(4)のうち、化合物(4-2)で好ましいものとしては、例えば、上述の化合物(4-2-1)、上述の化合物(4-2-2)、上述の化合物(4-2-3)等が挙げられる。
なお、これら化合物は、好ましい化合物(1)、(2)、(3)及び(4)の一例に過ぎず、好ましい化合物(1)、(2)、(3)及び(4)はこれらに限定されない。
Among the compounds (4), preferred as the compound (4-1) are, for example, the above compound (4-1-1), the above compound (4-1-2), and the above compound (4-1). -3).
Among the compounds (4), preferable examples of the compound (4-2) include, for example, the above compound (4-2-1), the above compound (4-2-2), and the above compound (4-2). -3).
These compounds are only examples of preferred compounds (1), (2), (3) and (4), and preferred compounds (1), (2), (3) and (4) are limited to these. Not.
化合物(1)のうち、化合物(1-1-1)で好ましいものとしては、例えば、上述の化合物(1-1-1a)、上述の化合物(1-1-1b)、又は、上述の化合物(1-1-1c)等が挙げられる。
化合物(1)のうち、化合物(1-1-2)で好ましいものとしては、例えば、上述の化合物(1-1-2a)、上述の化合物(1-1-2b)、又は、上述の化合物(1-1-2c)等が挙げられる。
化合物(1)のうち、化合物(1-1-3)で好ましいものとしては、例えば、上述の化合物(1-1-3a)、上述の化合物(1-1-3b)、又は、上述の化合物(1-1-3c)等が挙げられる。
化合物(1)のうち、化合物(1-2-1)で好ましいものとしては、例えば、上述の化合物(1-2-1a)、上述の化合物(1-2-1b)、又は、上述の化合物(1-2-1c)等が挙げられる。
化合物(1)のうち、化合物(1-2-2)で好ましいものとしては、例えば、上述の化合物(1-2-2a)、上述の化合物(1-2-2b)、又は、上述の化合物(1-2-2c)等が挙げられる。
化合物(1)のうち、化合物(1-2-3)で好ましいものとしては、例えば、上述の化合物(1-2-3a)、上述の化合物(1-2-3b)、又は、上述の化合物(1-2-3c)等が挙げられる。
Among the compounds (1), preferable examples of the compound (1-1-1) include, for example, the above compound (1-1-1a), the above compound (1-1-1b), or the above compound (1-1-1c) and the like.
Among the compounds (1), preferred as the compound (1-1-2) are, for example, the above compound (1-1-2a), the above compound (1-1-2b), or the above compound (1-1-2c) and the like.
Among the compounds (1), preferred as the compound (1-1-3) are, for example, the above compound (1-1-3a), the above compound (1-1-3b), or the above compound (1-1-3c) and the like.
Among the compounds (1), preferable examples of the compound (1-2-1) include, for example, the above compound (1-2-1a), the above compound (1-2-1b), or the above compound (1-2-1c) and the like.
Among the compounds (1), preferred as the compound (1-2-2) are, for example, the above compound (1-2-2a), the above compound (1-2-2b), or the above compound (1-2-2c) and the like.
Among the compounds (1), preferable examples of the compound (1-2-3) include, for example, the above compound (1-2-3a), the above compound (1-2-3b), or the above compound (1-2-3c) and the like.
化合物(2)のうち、化合物(2-1-1)で好ましいものとしては、例えば、上述の化合物(2-1-1a)、上述の化合物(2-1-1b)、又は、上述の化合物(2-1-1c)等が挙げられる。
化合物(2)のうち、化合物(2-1-2)で好ましいものとしては、例えば、上述の化合物(2-1-2a)、上述の化合物(2-1-2b)、又は、上述の化合物(2-1-2c)等が挙げられる。
化合物(2)のうち、化合物(2-1-3)で好ましいものとしては、例えば、上述の化合物(2-1-3a)、上述の化合物(2-1-3b)、又は、上述の化合物(2-1-3c)等が挙げられる。
化合物(2)のうち、化合物(2-2-1)で好ましいものとしては、例えば、上述の化合物(2-2-1a)、上述の化合物(2-2-1b)、又は、上述の化合物(2-2-1c)等が挙げられる。
化合物(2)のうち、化合物(2-2-2)で好ましいものとしては、例えば、上述の化合物(2-2-2a)、上述の化合物(2-2-2b)、又は、上述の化合物(2-2-2c)等が挙げられる。
化合物(2)のうち、化合物(2-2-3)で好ましいものとしては、例えば、上述の化合物(2-2-3a)、上述の化合物(2-2-3b)、又は、上述の化合物(2-2-3c)等が挙げられる。
Among the compounds (2), preferable examples of the compound (2-1-1) include, for example, the above compound (2-1-1a), the above compound (2-1-1b), or the above compound (2-1-1c) and the like.
Among the compounds (2), preferable examples of the compound (2-1-2) include, for example, the above compound (2-1-2a), the above compound (2-1-2b), or the above compound (2-1-2c) and the like.
Among the compounds (2), preferred as the compound (2-1-3) are, for example, the above compound (2-1-3a), the above compound (2-1-3b), or the above compound (2-1-3c) and the like.
Among the compounds (2), preferable examples of the compound (2-2-1) include, for example, the above compound (2-2-1a), the above compound (2-2-1b), or the above compound (2-2-1c).
Among the compounds (2), preferable examples of the compound (2-2-2) include, for example, the above compound (2-2-2a), the above compound (2-2-2b), or the above compound (2-2-2c).
Among the compounds (2), preferred as the compound (2-2-3) are, for example, the above compound (2-2-3a), the above compound (2-2-3b), or the above compound (2-2-3c) and the like.
化合物(3)のうち、化合物(3-1-1)で好ましいものとしては、例えば、上述の化合物(3-1-1a)、上述の化合物(3-1-1b)、又は、上述の化合物(3-1-1c)等が挙げられる。
化合物(3)のうち、化合物(3-1-2)で好ましいものとしては、例えば、上述の化合物(3-1-2a)、上述の化合物(3-1-2b))、又は、上述の化合物(3-1-2c)等が挙げられる。
化合物(3)のうち、化合物(3-1-3)で好ましいものとしては、例えば、上述の化合物(3-1-3a)、上述の化合物(3-1-3b))、又は、上述の化合物(3-1-3c)等が挙げられる。
化合物(3)のうち、化合物(3-2-1)で好ましいものとしては、例えば、上述の化合物(3-2-1a)、上述の化合物(3-2-1b))、又は、上述の化合物(3-2-1c)等が挙げられる。
化合物(3)のうち、化合物(3-2-2)で好ましいものとしては、例えば、上述の化合物(3-2-2a)、上述の化合物(3-2-2b)、又は、上述の化合物(3-2-2c)等が挙げられる。
化合物(3)のうち、化合物(3-2-3)で好ましいものとしては、例えば、上述の化合物(3-2-3a)、上述の化合物(3-2-3b)、又は、上述の化合物(3-2-3c)等が挙げられる。
Among the compounds (3), preferred as the compound (3-1-1) are, for example, the above compound (3-1-1a), the above compound (3-1-1b), or the above compound (3-1-1c).
Among the compounds (3), preferred as the compound (3-1-2) are, for example, the above compound (3-1-2a), the above compound (3-1-2b)), or the above compound (3-1-2). Examples thereof include compound (3-1-2c).
Among the compounds (3), preferred as the compound (3-1-3) are, for example, the above compound (3-1-3a), the above compound (3-1-3b)), or the above compound (3-1-3). Examples thereof include compound (3-1-3c).
Among the compounds (3), preferred as the compound (3-2-1) are, for example, the above compound (3-2-1a), the above compound (3-2-1b)), or the above compound (3-2-1). Examples thereof include compound (3-2-1c).
Among the compounds (3), preferred as the compound (3-2-2) are, for example, the above compound (3-2-2a), the above compound (3-2-2b), or the above compound (3-2-2c) and the like.
Among the compounds (3), preferred as the compound (3-2-3) are, for example, the above compound (3-2-3a), the above compound (3-2-3b), or the above compound (3-2-3c) and the like.
化合物(4)のうち、化合物(4-1-1)で好ましいものとしては、例えば、上述の化合物(4-1-1a)、上述の化合物(4-1-1b)、又は、上述の化合物(4-1-1c)等が挙げられる。
化合物(4)のうち、化合物(4-1-2)で好ましいものとしては、例えば、上述の化合物(4-1-2a)、上述の化合物(4-1-2b)、又は、上述の化合物(4-1-2c)等が挙げられる。
化合物(4)のうち、化合物(4-1-3)で好ましいものとしては、例えば、上述の化合物(4-1-3a)、上述の化合物(4-1-3b)、又は、上述の化合物(4-1-3c)等が挙げられる。
化合物(4)のうち、化合物(4-2-1)で好ましいものとしては、例えば、上述の化合物(4-2-1a)、上述の化合物(4-2-1b)、又は、上述の化合物(4-2-1c)等が挙げられる。
化合物(4)のうち、化合物(4-2-2)で好ましいものとしては、例えば、上述の化合物(4-2-2a)、上述の化合物(4-2-2b)、又は、上述の化合物(4-2-2c)等が挙げられる。
化合物(4)のうち、化合物(4-2-3)で好ましいものとしては、例えば、上述の化合物(4-2-3a)、上述の化合物(4-2-3b)、又は、上述の化合物(4-2-3c)等が挙げられる。
なお、これら化合物は、好ましい化合物(1)、(2)、(3)及び(4)の一例に過ぎず、好ましい化合物(1)、(2)、(3)及び(4)はこれらに限定されない。
Among the compounds (4), preferred as the compound (4-1-1) are, for example, the above compound (4-1-1a), the above compound (4-1-1b), or the above compound (4-1-1c) and the like.
Among the compounds (4), preferable examples of the compound (4-1-2) include, for example, the above compound (4-1-2a), the above compound (4-1-2b), or the above compound (4-1-2c) and the like.
Among the compounds (4), preferable examples of the compound (4-1-3) include, for example, the above compound (4-1-3a), the above compound (4-1-3b), or the above compound (4-1-3c).
Among the compounds (4), preferable examples of the compound (4-2-1) include, for example, the above compound (4-2-1a), the above compound (4-2-1b), or the above compound (4-2-1c) and the like.
Among the compounds (4), preferable examples of the compound (4-2-2) include, for example, the above compound (4-2-2a), the above compound (4-2-2b), or the above compound (4-2-2c) and the like.
Among the compounds (4), preferable examples of the compound (4-2-3) include, for example, the above compound (4-2-3a), the above compound (4-2-3b), or the above compound (4-2-3c) and the like.
These compounds are only examples of preferred compounds (1), (2), (3) and (4), and preferred compounds (1), (2), (3) and (4) are limited to these. Not.
ALPを含む生体試料に対して、本実施形態のALP検出用蛍光プローブを1nM~1mM程度、特に1μM~50μM程度添加することが好ましい。
前記生体試料としては、ALPを含むものであれば特別な限定はなく、例えば、被検動物から採取された体液試料、被検動物から採取された細胞の抽出液、培養細胞の抽出液等が挙げられ、これらに限定されない。
It is preferable to add the fluorescent probe for ALP detection of the present embodiment to about 1 nM to 1 mM, particularly about 1 μM to 50 μM to a biological sample containing ALP.
The biological sample is not particularly limited as long as it contains ALP, for example, a body fluid sample collected from a test animal, a cell extract collected from a test animal, a culture cell extract, etc. But are not limited to these.
本実施形態において、被検動物としては、特別な限定はなく、例えば、ヒト、サル、イヌ、ネコ、ウサギ、ブタ、ウシ、マウス、ラット等が挙げられ、これらに限定されない。 In this embodiment, the test animal is not particularly limited, and examples thereof include, but are not limited to, humans, monkeys, dogs, cats, rabbits, pigs, cows, mice, rats, and the like.
前記被検動物から採取された体液試料として、より具体的には、例えば、血液、血清、血漿、尿、パフィーコート、唾液、精液、胸部滲出液、脳脊髄液、涙液、痰、粘液、リンパ液、腹水、胸水、羊水、膀胱洗浄液、気管支肺胞洗浄液等が挙げられ、これらに限定されない。 More specifically, as a body fluid sample collected from the test animal, for example, blood, serum, plasma, urine, puffy coat, saliva, semen, chest exudate, cerebrospinal fluid, tears, sputum, mucus, Examples include, but are not limited to, lymph, ascites, pleural effusion, amniotic fluid, bladder lavage fluid, and bronchoalveolar lavage fluid.
被検動物から採取された細胞又は培養細胞の種類として、より具体的には、例えば、肝臓、腎臓、骨芽細胞、胎盤、小腸等の組織由来の細胞等が挙げられ、これらに限定されない。 More specifically, examples of the types of cells or cultured cells collected from test animals include cells derived from tissues such as liver, kidney, osteoblast, placenta, and small intestine, but are not limited thereto.
<用途>
本実施形態のALP検出用蛍光プローブは、例えば、ブロット膜上に固着させた標的物質(例えば、抗原等)を、該標的物質に対する特異的結合物質(例えば、該抗原に対する抗体)と反応させ、さらにALPで標識された前記特異的結合物質に特異的な二次結合物質(例えば、ALP標識二次抗体)で検出する方法、これを改変及び修飾した方法等のブロッティング法に用いることができる。
前記標的物質としては、例えば、タンパク質、核酸、脂質、糖類等の生体関連物質等が挙げられる。
また、ブロッティング法の具体例としては、例えば、ウェスタンブロッテイング、サザンブロッティング、ノーザンブロッティング、ドット/スロットブロッティング、コロニーブロッティング等、当業界で汎用されているブロッティング法が挙げられる。さらに、イムノクロマト法等もブロッテ イング法に含まれる。
<Application>
The fluorescent probe for detecting ALP of the present embodiment reacts, for example, a target substance (for example, an antigen or the like) fixed on a blot membrane with a specific binding substance (for example, an antibody against the antigen) for the target substance, Furthermore, it can be used in a blotting method such as a method of detecting with a secondary binding substance (for example, an ALP-labeled secondary antibody) specific to the specific binding substance labeled with ALP, a method of modifying or modifying the method.
Examples of the target substance include biological substances such as proteins, nucleic acids, lipids, and saccharides.
Specific examples of the blotting method include blotting methods widely used in the industry such as Western blotting, Southern blotting, Northern blotting, dot / slot blotting, and colony blotting. Furthermore, immunochromatography and the like are also included in the blotting method.
又は、本実施形態のALP検出用蛍光プローブを、後述のマイクロデバイスのウェル内に備えることにより、生体試料中のALPの酵素活性を検出する方法に用いることができる。 Alternatively, the ALP detection fluorescent probe of the present embodiment can be used in a method for detecting the enzymatic activity of ALP in a biological sample by providing it in a well of a microdevice described later.
≪マイクロデバイス≫
本発明の一実施形態に係るマイクロデバイスは、上述のALP検出用蛍光プローブを備えるものである。
≪Micro device≫
A microdevice according to an embodiment of the present invention includes the above-described fluorescent probe for ALP detection.
本実施形態のマイクロデバイスによれば、生体試料中のALPの酵素活性を高い定量性及び感度で検出することができる。 According to the microdevice of this embodiment, the enzymatic activity of ALP in a biological sample can be detected with high quantitativeness and sensitivity.
マイクロデバイスの材料は特に限定されず、例えばガラス材料、シリコン、樹状ポリマー又はコポリマーを含むプラスチック等が挙げられる。ガラス材料としては、例えば、ソーダ石灰ガラス、パイレックス(登録商標)ガラス、バイコール(登録商標)ガラス、石英ガラス等が挙げられる。樹脂ポリマーとしては、例えば、ポリ(塩化ビニル)、ポリ(ビニルアルコール)、ポリ(メタクリル酸メチル)、ポリ(酢酸ビニル-共-無水マレイン酸)、ポリ(ジメチルシロキサン)モノメタクリレート、環状オレフィンポリマー、フルオロカーボンポリマー、ポリスチレン、ポリプロピレン、ポリエチレンイミン等が挙げられる。コポリマーとしては、例えば、ポリ(酢酸ビニル-共-無水マレイン酸)、ポリ(スチレン-共-無水マレイン酸)、ポリ(エチレン-共-アクリル酸)又はこれらの誘導体等が挙げられる。
また、マイクロデバイスの形状は、例えば、図1Aに示すように、任意の数のウェルが配置されたマルチウェルプレート等が挙げられる。ウェルの数としては、プレート1枚当たり、例えば1個以上100万個以下、例えば10個以上50万個以下、例えば10万個程度等が挙げられる。
The material of the microdevice is not particularly limited, and examples thereof include a glass material, silicon, a plastic including a dendritic polymer, or a copolymer. Examples of the glass material include soda lime glass, Pyrex (registered trademark) glass, Vycor (registered trademark) glass, and quartz glass. Examples of the resin polymer include poly (vinyl chloride), poly (vinyl alcohol), poly (methyl methacrylate), poly (vinyl acetate-co-maleic anhydride), poly (dimethylsiloxane) monomethacrylate, cyclic olefin polymer, Fluorocarbon polymer, polystyrene, polypropylene, polyethyleneimine and the like can be mentioned. Examples of the copolymer include poly (vinyl acetate-co-maleic anhydride), poly (styrene-co-maleic anhydride), poly (ethylene-co-acrylic acid), and derivatives thereof.
Examples of the shape of the microdevice include a multi-well plate in which an arbitrary number of wells are arranged as shown in FIG. 1A. Examples of the number of wells include 1 to 1 million, for example, 10 to 500,000, for example, about 100,000 per plate.
本実施形態のマイクロデバイスのウェルの孔径は、例えば10nm以上10μm以下であればよく、例えば100nm以上10μm以下であればよく、例えば1μm以上10μm以下であればよい。
また、本実施形態のマイクロデバイスのウェルの深さは、例えば10nm以上1μm以下であればよく、例えば100nm以上800μm以下であればよく、例えば200nm以上700nm以下であればよい。
孔径及び深さが上記範囲内であることにより、ウェル内に1分子のALPを捕捉することができ、生体試料中のALP1分子ずつの酵素活性を検出することができる。
The pore diameter of the well of the microdevice of the present embodiment may be, for example, 10 nm or more and 10 μm or less, for example, 100 nm or more and 10 μm or less, for example, 1 μm or more and 10 μm or less.
Further, the depth of the well of the microdevice of the present embodiment may be, for example, 10 nm or more and 1 μm or less, for example, 100 nm or more and 800 μm or less, for example, 200 nm or more and 700 nm or less.
When the pore diameter and depth are within the above ranges, one molecule of ALP can be captured in the well, and the enzyme activity of each ALP molecule in the biological sample can be detected.
本実施形態のマイクロデバイスは、1ウェルに1種類の上述のALP検出用蛍光プローブを備えていてもよい。
これにより、生体試料中のALP1分子に対して、1種類のALP検出用蛍光プローブの蛍光強度を検出し、ALP1分子同士の酵素活性を比較することができる。
The microdevice of this embodiment may include one type of the above-described fluorescent probe for ALP detection per well.
Thereby, with respect to ALP1 molecule in a biological sample, the fluorescence intensity of one type of fluorescent probe for ALP detection can be detected, and the enzyme activities of ALP1 molecules can be compared.
また、本実施形態のマイクロデバイスは、1ウェルに異なる反応点を有し、且つ、異なる蛍光波長の2種類以上の上述のALP検出用蛍光プローブを備えていてもよい。
なお、本明細書において、「異なる反応点を有する」とは、ALPによる切断位置が異なること、すなわち、蛍光を発する化合物の母核(例えば、クマリン骨格)からALPにより加水分解されるリン酸基までの長さが異なることを意味する。具体的には、異なる反応点を有し、且つ異なる蛍光波長の2種類のALP検出用蛍光プローブとしては、例えば、以下に示す化合物(1-1-1a)及び化合物(2-2-1b)が挙げられる。
In addition, the microdevice of the present embodiment may include two or more kinds of the above-described fluorescent probes for ALP detection having different reaction points in one well and having different fluorescence wavelengths.
In the present specification, “having different reaction points” means that the cleavage position by ALP is different, that is, a phosphate group hydrolyzed by ALP from the mother nucleus (for example, coumarin skeleton) of a fluorescent compound. It means that the length is different. Specifically, as two types of ALP detection fluorescent probes having different reaction points and different fluorescence wavelengths, for example, the following compound (1-1-1a) and compound (2-2-1b) Is mentioned.
ALPには、ALP1、ALP2、ALP3、ALP4、ALP5、ALP6、ALPI等のサブタイプが存在することが知られている。各サブタイプの特徴としては、以下に示すとおりである。
ALP1:高分子ALPである。胆管の閉塞により胆管内圧が亢進し、胆汁成分が類洞へ逆流する状態で血中に出現する。ALP1が出現する場合にはALP2の増加を伴う。
ALP2:肝性ALPである。成人の血清ALPの主体をなす。胆管に何らかの障害が及ぶ場合、肝臓での合成が亢進し、血中濃度が増加する。
ALP3:骨性ALPである。小児血清ALPの主体をなす。骨の新生に伴い増加する。
ALP4:胎盤性ALPである。妊娠後期に血清中に胎盤に由来するALPとして検出される。また、低頻度ながら、悪性腫瘍患者血清中に腫瘍細胞産生のALPとして検出される。
ALP5:小腸性ALPである。このALPは、脂肪の吸収に伴って小腸粘膜から胸管リンパを経て大循環系に入る。しかしながら、血液型がB型、O型のヒトでは正常者であっても血中に出現し、肝硬変、慢性腎不全、糖尿病等では、その程度が増強する。これは肝臓での処理の低下によるものであると考えられる。小腸ALP増量による家族性高ALP血症が存在する。
ALP6: 免疫グロブリン結合ALPである。潰瘍性大腸炎の極期に出現することが多い。
ALPI:ポリアクリルアミドゲル電気泳動で検出されるアイソザイムである。肝癌ALP(variant ALP)であり、肝細胞癌により産出される。肝細胞癌の腫瘍マーカーである。
It is known that ALP has subtypes such as ALP1, ALP2, ALP3, ALP4, ALP5, ALP6, and ALPI. The characteristics of each subtype are as follows.
ALP1: high molecular ALP. The bile duct obstruction increases the internal pressure of the bile duct, and the bile component appears in the blood in a state of flowing back into the sinusoids. When ALP1 appears, it is accompanied by an increase in ALP2.
ALP2: Hepatic ALP. Consists of adult serum ALP. If the bile duct is damaged in some way, synthesis in the liver increases and blood levels increase.
ALP3: Bone ALP. The main component of pediatric serum ALP. It increases with bone renewal.
ALP4: placental ALP. Detected as ALP derived from placenta in serum in late pregnancy. In addition, it is detected as ALP produced by tumor cells in the serum of malignant tumor patients with low frequency.
ALP5: small intestinal ALP. This ALP enters the large circulatory system through the thoracic lymph from the small intestinal mucosa with the absorption of fat. However, in humans with blood types B and O, even if they are normal, they appear in the blood, and in liver cirrhosis, chronic renal failure, diabetes, etc., the degree is enhanced. This is thought to be due to a decrease in processing in the liver. There is familial hyperalpemia due to increased small bowel ALP.
ALP6: immunoglobulin-bound ALP. It often appears at the extreme stage of ulcerative colitis.
ALPI: isozyme detected by polyacrylamide gel electrophoresis. Liver cancer ALP (variant ALP) produced by hepatocellular carcinoma. It is a tumor marker for hepatocellular carcinoma.
1ウェルに異なる反応点を有し、且つ、異なる蛍光波長の2種類以上の上述のALP検出用蛍光プローブを備えることにより、蛍光強度のパターンからALPのサブタイプを分類することができる。
さらに、1ウェルに異なる反応点を有し、且つ、異なる蛍光波長の2種類以上の上述のALP検出用蛍光プローブを備えるマイクロデバイスを用いて、健常者及び疾患を有する被検者由来の生体試料のALP蛍光アッセイを行うことで、疾患特異的に見出されるALPのサブタイプの発見及び疾患の診断方法に応用することができる(図2参照)。
By providing two or more kinds of the above-described fluorescent probes for ALP detection having different reaction points in one well and different fluorescent wavelengths, ALP subtypes can be classified from the fluorescence intensity pattern.
Furthermore, a biological sample derived from a healthy subject and a subject having a disease using a microdevice having two or more kinds of the above-described fluorescent probes for detecting ALP having different reaction points in one well. Thus, it can be applied to the discovery of a subtype of ALP that is found in a disease-specific manner and a method for diagnosing the disease (see FIG. 2).
また、本実施形態のマイクロデバイスの1ウェルに含まれるALP検出用蛍光プローブの量としては、例えば100nM以上100μM以下であればよく、例えば1μM以上100μM以下であればよく、例えば10μM以上100μM以下であればよい。 In addition, the amount of the fluorescent probe for ALP detection contained in one well of the microdevice of the present embodiment may be, for example, 100 nM or more and 100 μM or less, for example, 1 μM or more and 100 μM or less, for example, 10 μM or more and 100 μM or less. I just need it.
本実施形態のマイクロデバイスの使用方法としては、まず、生体試料を含む溶液をマイクロデバイスに添加する。次いで、マイクロデバイスのウェル内の生体試料中のALPを封入するために、シーリングオイルを滴下する。このとき、ALPによる加水分解を受けてリン酸基が脱離し、蛍光を発する。しかしながら、従来の化合物(例えば、化合物(10))は高い脂溶性を有するため、シーリングオイルに溶解し、マイクロデバイス外に漏出する問題があった(図1B参照)。
一方、本実施形態のマイクロデバイスでは、蛍光プローブに含まれる化合物(例えば、化合物(1-1-1a))は、アニオン性官能基(例えば、カルボキシ基)を有するため、シーリングオイルに溶解せず、マイクロデバイス外に漏出しない(図1B参照)。このことにより、ALPを高い定量性及び感度で検出することができる。
As a method of using the microdevice of this embodiment, first, a solution containing a biological sample is added to the microdevice. Next, sealing oil is dropped to encapsulate ALP in the biological sample in the well of the microdevice. At this time, the phosphate group is eliminated due to hydrolysis by ALP and emits fluorescence. However, since the conventional compound (for example, compound (10)) has high fat solubility, there existed a problem which melt | dissolves in sealing oil and leaks out of a microdevice (refer FIG. 1B).
On the other hand, in the microdevice of this embodiment, the compound (eg, compound (1-1-1a)) contained in the fluorescent probe has an anionic functional group (eg, carboxy group), and thus does not dissolve in the sealing oil. Does not leak out of the microdevice (see FIG. 1B). Thereby, ALP can be detected with high quantitativeness and sensitivity.
≪生体試料中のALPの酵素活性の検出方法≫
本発明の一実施形態に係る生体試料中のアルカリフォスファターゼの酵素活性の検出方法は、上述のマイクロデバイスを用いる方法である。
<< Method for detecting enzyme activity of ALP in biological sample >>
The method for detecting the enzymatic activity of alkaline phosphatase in a biological sample according to an embodiment of the present invention is a method using the above-described microdevice.
本実施形態の検出方法によれば、生体試料中のALPの酵素活性を高い定量性及び感度で検出することができる。
本実施形態の検出方法について、以下に詳細を示す。
According to the detection method of this embodiment, the enzymatic activity of ALP in a biological sample can be detected with high quantitativeness and sensitivity.
Details of the detection method of this embodiment will be described below.
[工程1]
まず、上述のALP検出用蛍光プローブを備えるマイクロデバイスに、生体試料を含む溶液を添加する。生体試料としては、上述の「≪ALP検出用蛍光プローブ≫」において例示されたものと同様のものが挙げられる。
生体試料を含む溶液のpHは生体内に近しい値であればよく、具体的には、例えば6.0以上8.0以下であればよい。
生体試料のタンパク質濃度は、例えば1pM以上100pM以下であればよく、例えば 10pM以上100pM以下であればよい。
生体試料のタンパク質濃度の測定方法としては、例えば、抗体抗原反応を利用した方法(例えば、ELISA法等)、タンパク質と試薬との反応を利用した比色法(例えば、ビシンコニン酸(BCA)法、ブラッドフォード法、ローリー法、ビウレット法等)が挙げられる。
生体試料は上記濃度となるように、各種水性溶媒等を用いて、希釈してもよい。前記水性溶媒としては、例えば、水、生理食塩水、リン酸緩衝生理食塩水(Phosphate buffered saline;PBS)、トリス緩衝生理食塩水(Tris Buffered Saline;TBS)、HEPES緩衝生理食塩水等が挙げられ、これらに限定されない。
[Step 1]
First, a solution containing a biological sample is added to a microdevice including the above-described ALP detection fluorescent probe. Examples of the biological sample include those similar to those exemplified in the above-mentioned “<< ALP detection fluorescent probe >>”.
The pH of the solution containing the biological sample may be a value close to that in the living body, and specifically, for example, may be 6.0 or more and 8.0 or less.
The protein concentration of the biological sample may be, for example, from 1 pM to 100 pM, for example, from 10 pM to 100 pM.
Examples of the method for measuring the protein concentration of a biological sample include a method using an antibody antigen reaction (for example, ELISA method), a colorimetric method using a reaction between a protein and a reagent (for example, a bicinchoninic acid (BCA) method, Bradford method, Raleigh method, Biuret method, etc.).
The biological sample may be diluted with various aqueous solvents or the like so as to have the above concentration. Examples of the aqueous solvent include water, physiological saline, phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline, and the like. However, it is not limited to these.
[工程2]
次いで、上述のALP検出用蛍光プローブを備えるマイクロデバイスのウェル内の生体試料中のALPを封入するために、シーリングオイルを滴下する。シーリングオイルとしては、通常マイクロデバイスにおいて試料の封入用途で用いられる公知のものであればよく、例えば、フッ素系オイル(FC-40等)等が挙げられる。
[Step 2]
Next, sealing oil is dropped to encapsulate the ALP in the biological sample in the well of the microdevice provided with the above-described fluorescent probe for ALP detection. Any known sealing oil may be used as long as it is generally used for enclosing a sample in a microdevice, and examples thereof include fluorinated oil (FC-40, etc.).
[工程3]
次いで、蛍光スキャナー等を用いて、マイクロデバイスのウェル内の蛍光を検出する。検出された蛍光強度から、酵素活性を評価することができる。
また、1ウェルに異なる反応点を有し、且つ異なる蛍光波長の2種類以上の上述のALP検出用蛍光プローブを備えるマイクロデバイスを用いた場合では、健常者及び疾患を有する被検者由来の生体試料のALPの酵素活性を比較することで、疾患特異的に見出されるALPのサブタイプの発見及び疾患の診断方法に応用することができる(図2参照)。
[Step 3]
Next, the fluorescence in the well of the microdevice is detected using a fluorescence scanner or the like. Enzyme activity can be evaluated from the detected fluorescence intensity.
In addition, in the case of using a microdevice having two or more kinds of the above-described fluorescent probes for detecting ALP having different reaction points in one well, a living body derived from a healthy subject and a subject having a disease By comparing the enzyme activity of ALP in a sample, it can be applied to the discovery of ALP subtypes that are found in a disease-specific manner and a method for diagnosing the disease (see FIG. 2).
以下、実施例及び比較例等を挙げて本発明をさらに詳述するが、本発明はこれらの実施例等に限定されるものではない。
なお、以下においては、例えば、「一般式(1)で表される化合物」を「化合物(1)」と称する等、各化合物に付している符号を用いて、その化合物の名称を確定した。
EXAMPLES Hereinafter, although an Example and a comparative example etc. are given and this invention is further explained in full detail, this invention is not limited to these Examples.
In the following, the name of the compound was determined using the symbols attached to each compound, for example, “the compound represented by the general formula (1)” is referred to as “compound (1)”. .
[製造例1]化合物(1-1-1a)の製造
以下に示す経路で、化合物(1)として化合物(1-1-1a)を製造した。
[Production Example 1] Production of Compound (1-1-1a) Compound (1-1-1a) was produced as Compound (1) by the route shown below.
[化合物(1-1b-1)の製造]
乾燥したフラスコに、マロン酸ジベンジル(Dibenzyl Malonate)6.18g(21.7mmol、1eq)、2,4-ジヒドロキシベンズアルデヒド(2,4-Dihydroxybenzaldehyde)3.00g(21.7mmol、1eq)、及びピぺリジン(Piperidine)92.5mg(1.09mmol、0.05eq)を入れて、110℃で14時間加熱還流した。次いで、薄層クロマトグラフィー(Thin-Layer Chromatography;TLC)により、原料が消失したことを確認した。次いで、得られた粗生成物を、カラムクロマトグラフィー(シリカ;酢酸エチル/ヘキサン=1/1、0.5%酢酸含有)を用いて精製し、化合物(1-1b-1)を3.89g(13.1mmol、収率60%)得た。
[Production of Compound (1-1b-1)]
To a dried flask was added 6.18 g (21.7 mmol, 1 eq) of dibenzyl malonate, 3.00 g (21.7 mmol, 1 eq) of 2,4-dihydroxybenzaldehyde, and pipette. Lysine (Piperidine) 92.5 mg (1.09 mmol, 0.05 eq) was added, and the mixture was heated to reflux at 110 ° C. for 14 hours. Subsequently, the disappearance of the raw material was confirmed by thin-layer chromatography (TLC). Subsequently, the obtained crude product was purified using column chromatography (silica; ethyl acetate / hexane = 1/1, containing 0.5% acetic acid) to obtain 3.89 g of compound (1-1b-1). (13.1 mmol, 60% yield).
得られた化合物(1-1b-1)の1H-NMR、13C-NMR、及び高分解能質量分析(high-resolution Mass Spectrometry;HR-MS)計による分析結果を以下に示す。
1H-NMR(DMSO-d6, 400MHz)δ5.36(s, 2H), 6.74(d, 1H, J = 2.4 Hz), 6.85(dd, 1H, J = 8.5, 2.2 Hz), 7.36-7.45(m, 5H), 7.78(d, 1H, J = 8.3Hz), 8.73(s, 1H), 11.13(s, 1H).
13C-NMR(DMSO-d6, 100MHz)δ66.1, 101.8, 110.4, 111.7, 114.0, 127.8, 128.4, 132.3, 136.0, 149.8, 156.4, 157.2, 162.8, 164.2.
HR-MS(ESI+): Calcd for [M+Na] +, 319.05824, Found, 319.05829 (+0.05 mmu).
The analysis results of the obtained compound (1-1b-1) by 1 H-NMR, 13 C-NMR, and high-resolution mass spectrometry (HR-MS) are shown below.
1 H-NMR (DMSO-d 6, 400MHz) δ5.36 (s, 2H), 6.74 (d, 1H, J = 2.4 Hz), 6.85 (dd, 1H, J = 8.5, 2.2 Hz), 7.36-7.45 (m, 5H), 7.78 (d, 1H, J = 8.3Hz), 8.73 (s, 1H), 11.13 (s, 1H).
13 C-NMR (DMSO-d 6 , 100 MHz) δ 66.1, 101.8, 110.4, 111.7, 114.0, 127.8, 128.4, 132.3, 136.0, 149.8, 156.4, 157.2, 162.8, 164.2.
HR-MS (ESI + ): Calcd for [M + Na] + , 319.05824, Found, 319.05829 (+0.05 mmu).
[化合物(1-1d-1)の製造]
乾燥したフラスコに、化合物(1-1b-1)を900mg(3.04mmol、1eq)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。ここに、さらにアセトニトリル(脱水)に溶解させた四塩化炭素1169mg(7.6mmol、2.5eq)、N,N-ジイソプロピルエチルアミン(N,N-diisopropylethylamine;DIEA)824mg(6.38mmol、2.1eq)、及びN,N-ジメチル-4-アミノピリジン(N,N-dimethyl-4-aminopyridine;DMAP)38mg(0.31mmol、0.1eq)を加え、-10℃に冷却した。さらに、反応液にアセトニトリル(脱水)に溶解させたホスホン酸ジベンジル1156mg(4.41mmol、1.45eq)を少しずつ加え、アルゴン雰囲気下、-10℃で2時間撹拌した。次いで、液体クロマトグラフィー質量分析(Liquid chromatography-Mass Spectrometry;LC-MS)計で、化合物(1-1d-1)の生成を確認した。次いで、pH8.0のTris-HCl緩衝液(50mM、1mM塩化マグネシウム含有)を加え、減圧下でアセトニトリルを留去した。得られた固体をカラムクロマトグラフィー(シリカ;酢酸エチル/ヘキサン=22/78→43/57)を用いて精製し、化合物(1-1d-1)を612mg(1.01mmol、収率36%)得た。
[Production of Compound (1-1d-1)]
In a dried flask, 900 mg (3.04 mmol, 1 eq) of compound (1-1b-1) was placed and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Further, carbon tetrachloride (1169 mg, 7.6 mmol, 2.5 eq), N, N-diisopropylethylamine (DIEA) (824 mg, 6.38 mmol, 2.1 eq) dissolved in acetonitrile (dehydrated) was added. ) And 38 mg (0.31 mmol, 0.1 eq) of N, N-dimethyl-4-aminopyridine (DMAP) were added, and the mixture was cooled to −10 ° C. Furthermore, 1156 mg (4.41 mmol, 1.45 eq) of dibenzyl phosphonate dissolved in acetonitrile (dehydrated) was added little by little to the reaction solution, and the mixture was stirred at −10 ° C. for 2 hours under an argon atmosphere. Subsequently, formation of the compound (1-1d-1) was confirmed by a liquid chromatography-mass spectrometry (LC-MS) meter. Subsequently, pH 8.0 Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) was added, and acetonitrile was distilled off under reduced pressure. The obtained solid was purified using column chromatography (silica; ethyl acetate / hexane = 22/78 → 43/57) to obtain 612 mg (1.01 mmol, yield 36%) of compound (1-1d-1). Obtained.
得られた化合物(1-1d-1)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI+): Calcd for [M+Na] +, 579.11847, Found, 579.11535 (-3.12 mmu).
The results of analysis of the obtained compound (1-1d-1) using an HR-MS meter are shown below.
HR-MS (ESI + ): Calcd for [M + Na] + , 579.11847, Found, 579.11535 (-3.12 mmu).
[化合物(1-1-1a)の製造]
乾燥したフラスコに、化合物(1-1d-1)を407mg(0.73mmol)入れて、アセトニトリル(脱水)に溶解させた。ここに、10%パラジウム炭素触媒をスパーテル一杯分加え、水素雰囲気下、室温で、2時間撹拌した。次いで、LC-MS計で、化合物(1-1-1a)の生成を確認した。次いで、pH7.0のTris-HCl緩衝液(50mM、1mM塩化マグネシウム含有)を少量加え、吸引濾過でパラジウム炭素触媒を除去した。次いで、減圧下で、アセトニトリルを留去した。次いで、得られた溶液を高速液体クロマトグラフィー(high performance liquid chromatography;HPLC)(30分間でA/B=99/1→0/100、13分時点で溶出、A:0.1%トリエチルアミン-酢酸緩衝液(Triethylammonium acetate;TEAA)、B:0.1%TEAA/80%アセトニトリル/20%水)を用いて精製し、化合物(1-1-1a)を34mg(0.12mmol、収率16%)得た。
[Production of Compound (1-1-1a)]
In a dry flask, 407 mg (0.73 mmol) of the compound (1-1d-1) was added and dissolved in acetonitrile (dehydrated). A 10% palladium carbon catalyst was added to a spatula, and the mixture was stirred for 2 hours at room temperature in a hydrogen atmosphere. Subsequently, formation of the compound (1-1-1a) was confirmed with an LC-MS meter. Next, a small amount of Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) having a pH of 7.0 was added, and the palladium carbon catalyst was removed by suction filtration. Subsequently, acetonitrile was distilled off under reduced pressure. Subsequently, the obtained solution was subjected to high performance liquid chromatography (HPLC) (A / B = 99/1 → 0/100 in 30 minutes, eluted at 13 minutes, A: 0.1% triethylamine-acetic acid Purification was performed using a buffer solution (Trithylamonium acetate; TEAA), B: 0.1% TEAA / 80% acetonitrile / 20% water), and 34 mg (0.12 mmol, 16% yield) of the compound (1-1-1a) was obtained. )Obtained.
得られた化合物(1-1-1a)の1H-NMR、13C-NMR、及びHR-MS計による分析結果を以下に示す。
1H-NMR(DMSO-d6, 400MHz)δ7.16(d, 1H. J = 8.3 Hz), 7.21(s, 1H), 7.78(d, 1H, J = 8.8 Hz), 8.68(s, 1H).
13C-NMR(DMSO-d6, 100MHz)δ106.2, 112.3, 114.7, 117.3, 130.9, 148.6, 155.9, 157.3, 159.7, 164.3.
HR-MS(ESI+): Calcd for [M+Na] +, 308.97762, Found, 308.97724 (-0.38 mmu).
The analysis results of the obtained compound (1-1-1a) by 1 H-NMR, 13 C-NMR, and HR-MS meter are shown below.
1 H-NMR (DMSO-d 6 , 400 MHz) δ 7.16 (d, 1H.J = 8.3 Hz), 7.21 (s, 1H), 7.78 (d, 1H, J = 8.8 Hz), 8.68 (s, 1H ).
13 C-NMR (DMSO-d 6 , 100 MHz) δ 106.2, 112.3, 114.7, 117.3, 130.9, 148.6, 155.9, 157.3, 159.7, 164.3.
HR-MS (ESI + ): Calcd for [M + Na] + , 308.97762, Found, 308.97724 (-0.38 mmu).
また、得られた化合物(1-1-1a)において、ALPによる酵素反応で、リン酸基が脱離後の化合物(1-1-1a)-1の光学特性を以下の表1及び図3に示す。なお、「Neutral Form」はリン酸ナトリウム溶液(pH3.0)に化合物(1-1-1a)-1を溶解し測定し、「Anion Form」は0.1N水酸化ナトリウム水溶液に化合物(1-1-1a)-1を溶解し測定した。 Further, in the obtained compound (1-1-1a), the optical properties of the compound (1-1-1a) -1 after the phosphate group is eliminated by an enzymatic reaction with ALP are shown in Table 1 and FIG. Shown in “Neutral Form” was measured by dissolving compound (1-1-1a) -1 in a sodium phosphate solution (pH 3.0), and “Anion Form” was measured by adding compound (1- 1-1a) -1 was dissolved and measured.
[製造例2]化合物(2-1-2a)の製造
以下に示す経路で、化合物(2)として化合物(2-1-2a)を製造した。
[Production Example 2] Production of Compound (2-1-2a) Compound (2-1-2a) was produced as Compound (2) by the route shown below.
[1-ブロモ-2,4-ジメトキシ-5-スルホベンゼンの製造]
乾燥したフラスコに、濃硫酸0.925mL(17.40mmol、1eq)に、アルゴン雰囲気下、0℃でトリフルオロ酢酸無水物(trifluoroacetic anhydride;TFAA)5.26mL(36.54mmol、2.1eq)をゆっくりと加えた。その後室温に戻して、3時間撹拌した。次いで、溶液が一様になったら、1-ブロモ-2,4-ジメトキシベンゼン(1-bromo-2,4-dimethoxybenzene)3775mg(17.40mmol、1eq)を0℃で少しずつ加え、その後水を加えた。次いで、減圧下でTFAA、水を留去した。次いで、得られた固体を再び水に溶解し、3回濾過した。次いで、減圧下から濾液から水を留去し、1-ブロモ-2,4-ジメトキシ-5-スルホベンゼンを4429mg(14.91mmol、収率86%)得た。
[Production of 1-bromo-2,4-dimethoxy-5-sulfobenzene]
To a dry flask, 0.925 mL (17.40 mmol, 1 eq) of concentrated sulfuric acid and 5.26 mL (36.54 mmol, 2.1 eq) of trifluoroacetic anhydride (TFAA) were added at 0 ° C. under an argon atmosphere. Slowly added. The mixture was then returned to room temperature and stirred for 3 hours. Then, when the solution became uniform, 3775 mg (17.40 mmol, 1 eq) of 1-bromo-2,4-dimethoxybenzene was added little by little at 0 ° C., and then water was added. added. Subsequently, TFAA and water were distilled off under reduced pressure. The resulting solid was then redissolved in water and filtered three times. Next, water was distilled off from the filtrate under reduced pressure to obtain 4429 mg (14.91 mmol, yield 86%) of 1-bromo-2,4-dimethoxy-5-sulfobenzene.
得られた1-ブロモ-2,4-ジメトキシ-5-スルホベンゼンの1H-NMR、13C-NMR、及びHR-MS計による分析結果を以下に示す。
1H-NMR(D2O, 300MHz)δ3.78, 3.79(s, 3H), 6.59(s, 1H), 7.75(s, 1H).
13C-NMR(CD3OD, 75MHz)δ56.7, 57.1, 98.4, 101.1, 126.4, 133.6, 159.1, 160.4.
HR-MS(ESI-): Calcd for [M-H]-, 294.92758, Found, 294.92760 (+0.01 mmu).
The analysis results of the obtained 1-bromo-2,4-dimethoxy-5-sulfobenzene by 1 H-NMR, 13 C-NMR, and HR-MS are shown below.
1 H-NMR (D 2 O, 300 MHz) δ 3.78, 3.79 (s, 3H), 6.59 (s, 1H), 7.75 (s, 1H).
13 C-NMR (CD 3 OD, 75 MHz) δ 56.7, 57.1, 98.4, 101.1, 126.4, 133.6, 159.1, 160.4.
HR-MS (ESI -): Calcd for [MH] -, 294.92758, Found, 294.92760 (+0.01 mmu).
[化合物(2-1a-1)の製造]
乾燥したフラスコに、2-プロパノール30mLに溶解させた1-ブロモ-2,4-ジメトキシ-5-スルホベンゼン1011mg(3.40mmol)、及びオルトギ酸トリイソプロピル(triisopropyl orthoformate)6mLを加え、55℃で3時間撹拌した。次いで、TLCを用いて化合物(2b-1)の製造を確認した。次いで、減圧下で溶媒を留去した。次いで、得られた固体をカラムクロマトグラフィー(シリカ;酢酸エチル/ヘキサン=18/82→39/61)で精製し、化合物(2-1a-1)を782mg(2.31mmol、収率68%)得た。
[Production of Compound (2-1a-1)]
To the dried flask was added 1011 mg (3.40 mmol) of 1-bromo-2,4-dimethoxy-5-sulfobenzene dissolved in 30 mL of 2-propanol and 6 mL of triisopropyl orthoformate at 55 ° C. Stir for 3 hours. Then, production of compound (2b-1) was confirmed using TLC. Subsequently, the solvent was distilled off under reduced pressure. Subsequently, the obtained solid was purified by column chromatography (silica; ethyl acetate / hexane = 18/82 → 39/61), and 782 mg (2.31 mmol, yield 68%) of compound (2-1a-1) was obtained. Obtained.
得られた化合物(2-1a-1)の1H-NMR、及び13C-NMRによる分析結果を以下に示す。
1H-NMR(CDCl3, 300MHz)δ1.31(d, 6H, J = 5.9 Hz), 3.98, 3.99(s, 3H), 4.76(m, 1H), 6.52(s, 1H), 8.07(s, 1H).
13C-NMR(CDCl3, 75MHz)δ22.7, 56.5, 56.6, 77.5, 96.6, 101.4, 117.9, 134.9, 158.3, 161.1.
The analysis results by 1 H-NMR and 13 C-NMR of the obtained compound (2-1a-1) are shown below.
1 H-NMR (CDCl 3 , 300 MHz) δ1.31 (d, 6H, J = 5.9 Hz), 3.98, 3.99 (s, 3H), 4.76 (m, 1H), 6.52 (s, 1H), 8.07 (s , 1H).
13 C-NMR (CDCl 3 , 75 MHz) δ 22.7, 56.5, 56.6, 77.5, 96.6, 101.4, 117.9, 134.9, 158.3, 161.1.
[化合物(2-1c-1)の製造]
乾燥したフラスコに、化合物(2-1a-1)を202mg(0.60mmol、1eq)入れて、脱水テトラヒドロフラン(tetrahydrofuran;THF)に溶解させ、アルゴン雰囲気下、-78℃で30分間撹拌した。次いで、ここに1Mセカンダリーブチルリチウム(sec-butyllithium;sec-BuLi)0.60mL(0.60mmol、1eq)を少しずつ加え、アルゴン雰囲気下、-78℃で30分間撹拌した。次いで、さらに反応液に、無水THFに溶解させたdiTBS Xanthone54.8mg(0.12mmol、0.2eq)を少しずつ加えた後、アルゴン雰囲気下、室温で2時間撹拌した。次いで、2N HCl溶液を反応液に加え、110℃で13時間加熱還流した。次いで、LC-MSで化合物(2-1c-1)の生成を確認した。次いで、溶液にトルエンを加え、減圧下で溶媒を留去した。次いで、得られた固体をHPLC(30分間でA/B=99/1→0/100、15分時点で溶出、A:0.1%トリフルオロ酢酸(TFA)/水、B:0.1%TFA/80%アセトニトリル/20%水)で精製し、化合物(2-1c-1)を5mg(0.012mmol、収率10%)得た。
[Production of Compound (2-1c-1)]
In a dried flask, 202 mg (0.60 mmol, 1 eq) of compound (2-1a-1) was added, dissolved in dehydrated tetrahydrofuran (THF), and stirred at −78 ° C. for 30 minutes under an argon atmosphere. Next, 0.60 mL (0.60 mmol, 1 eq) of 1M secondary butyllithium (sec-butyllithium; sec-BuLi) was added little by little, and the mixture was stirred at −78 ° C. for 30 minutes in an argon atmosphere. Next, after further adding 54.8 mg (0.12 mmol, 0.2 eq) of diTBS Xanthone dissolved in anhydrous THF to the reaction solution little by little, the mixture was stirred at room temperature for 2 hours under an argon atmosphere. Next, 2N HCl solution was added to the reaction solution, and the mixture was heated to reflux at 110 ° C. for 13 hours. Then, formation of compound (2-1c-1) was confirmed by LC-MS. Subsequently, toluene was added to the solution, and the solvent was distilled off under reduced pressure. Subsequently, the obtained solid was subjected to HPLC (A / B in 99 minutes = 99/1 → 0/100, eluted at 15 minutes, A: 0.1% trifluoroacetic acid (TFA) / water, B: 0.1 % TFA / 80% acetonitrile / 20% water) to obtain 5 mg (0.012 mmol, yield 10%) of the compound (2-1c-1).
得られた化合物(2-1c-1)の1H-NMR、13C-NMR、及びHR-MS計による分析結果を以下に示す。
1H-NMR(D2O/KOD, 400MHz)δ3.51(s, 3H, b), 4.15(s, 3H, a), 6.28(m, 4H), 6.77(s, 1H), 6.83(d, 2H, J = 9.6 Hz), 7.94(s, 1H).
13C-NMR(D2O/KOD, 100MHz)δ56.6, 57.1, 97.7, 104.3, 112.5, 113.3, 123.6, 131.2, 131.7, 152.6, 158.7, 159.8, 160.9, 169.2, 181.3.
HR-MS(ESI+): Calcd for [M+Na] +,451.04636, Found, 451.05134 (+4.99 mmu).
The analysis results of the obtained compound (2-1c-1) by 1 H-NMR, 13 C-NMR, and HR-MS meter are shown below.
1 H-NMR (D 2 O / KOD, 400 MHz) δ3.51 (s, 3H, b), 4.15 (s, 3H, a), 6.28 (m, 4H), 6.77 (s, 1H), 6.83 (d , 2H, J = 9.6 Hz), 7.94 (s, 1H).
13 C-NMR (D 2 O / KOD, 100 MHz) δ 56.6, 57.1, 97.7, 104.3, 112.5, 113.3, 123.6, 131.2, 131.7, 152.6, 158.7, 159.8, 160.9, 169.2, 181.3.
HR-MS (ESI + ): Calcd for [M + Na] + , 451.04636, Found, 451.05134 (+4.99 mmu).
[化合物(2-1e-1)の製造]
乾燥したフラスコに化合物(2-1c-1)を120mg(0.28mmol、1eq)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここにアセトニトリル(脱水)に溶解させた四塩化炭素215mg(1.4mmol、5eq)、DIEA76mg(0.59mmol、2.1eq)、及びDMAP3.7mg(0.03mmol、0.1eq)を加え、-10℃に冷却した。さらに、反応液にアセトニトリル(脱水)に溶解させたホスホン酸ジベンジル114mg(0.41mmol、1.45eq)を少しずつ加えた後、アルゴン雰囲気下、-10℃で2時間撹拌した。次いで、LC-MSで化合物(2-1e-1)の生成を確認した。次いで、pH8.0のTris-HCl緩衝液(50mM、 1mM塩化マグネシウム含有)を加え、減圧下でアセトニトリルを留去した。次いで、ジクロロメタンで抽出し、硫酸ナトリウムで脱水後、減圧下で溶媒を留去した。次いで、得られた固体をHPLC(30分間でA/B=60/40→0/100、15分時点で溶出、A:0.1%TFA/水、B:0.1%TFA/80%アセトニトリル/20%水)で精製し、化合物(2-1e-1)を13mg(0.019mmol、収率7%)得た。
[Production of Compound (2-1e-1)]
120 mg (0.28 mmol, 1 eq) of the compound (2-1c-1) was put in a dried flask and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 215 mg (1.4 mmol, 5 eq) of carbon tetrachloride dissolved in acetonitrile (dehydrated), 76 mg (0.59 mmol, 2.1 eq) of DIEA, and 3.7 mg (0.03 mmol, 0.1 eq) of DMAP were added thereto. And cooled to -10 ° C. Further, 114 mg (0.41 mmol, 1.45 eq) of dibenzyl phosphonate dissolved in acetonitrile (dehydrated) was added little by little to the reaction solution, and the mixture was stirred at −10 ° C. for 2 hours under an argon atmosphere. Then, formation of compound (2-1e-1) was confirmed by LC-MS. Subsequently, Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) at pH 8.0 was added, and acetonitrile was distilled off under reduced pressure. Subsequently, extraction with dichloromethane was performed, and after dehydration with sodium sulfate, the solvent was distilled off under reduced pressure. Subsequently, the obtained solid was subjected to HPLC (A / B in 30 minutes = 60/40 → 0/100, eluted at 15 minutes, A: 0.1% TFA / water, B: 0.1% TFA / 80% Purification with acetonitrile / 20% water) yielded 13 mg (0.019 mmol, yield 7%) of compound (2-1e-1).
得られた化合物(2-1e-1)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI+): Calcd for [M+H] +, 689.12464, Found, 689.12239 (-2.26 mmu).
The results of analysis of the obtained compound (2-1e-1) using an HR-MS meter are shown below.
HR-MS (ESI + ): Calcd for [M + H] + , 689.12464, Found, 689.12239 (-2.26 mmu).
[化合物(2-1-2a)の製造]
乾燥したフラスコに化合物(2-1e-1)を10mg(0.015mmol)入れて、メタノール及びジクロロメタンに溶解させた。次いで、ここにパラジウム炭素触媒をスパーテル一杯分加え、水素雰囲気下、室温で2時間撹拌した。次いで、LC-MSで原料の消失を確認した。次いで、パラジウム炭素触媒を吸引濾過で除去し、PBSを加えて減圧下で有機溶媒を留去した。その後、溶液にジクロロメタンに溶解させたクロラニルを加え、室温で1時間撹拌した。次いで、LC-MSで化合物(2-1-2a)の生成を確認した。次いで、PBS及びジクロロメタンで抽出した。次いで、PBS溶液の量を減圧下で減らした。次いで、溶液をHPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1%TFAA/水、B:0.1%TFAA/80%アセトニトリル/20%水)にて精製し、化合物(2-1-2a)を痕跡量得た。
[Production of Compound (2-1-2a)]
10 mg (0.015 mmol) of the compound (2-1e-1) was put in a dried flask and dissolved in methanol and dichloromethane. Next, a palladium carbon catalyst was added to the spatula, and the mixture was stirred at room temperature for 2 hours under a hydrogen atmosphere. Next, disappearance of the raw materials was confirmed by LC-MS. Subsequently, the palladium carbon catalyst was removed by suction filtration, PBS was added, and the organic solvent was distilled off under reduced pressure. Thereafter, chloranil dissolved in dichloromethane was added to the solution, and the mixture was stirred at room temperature for 1 hour. Then, formation of compound (2-1-2a) was confirmed by LC-MS. It was then extracted with PBS and dichloromethane. The amount of PBS solution was then reduced under reduced pressure. The solution was then HPLC (A / B for 30 minutes = 99/1 → 0/100, eluted at 17 minutes, A: 0.1% TFAA / water, B: 0.1% TFAA / 80% acetonitrile / 20 % Water) to obtain a trace amount of compound (2-1-2a).
得られた化合物(2-1-2a)の1H-NMR及びHR-MS計による分析結果を以下に示す。
1H-NMR(D2O, 300MHz)δ3.63(s, 3H), 3.95(s, 3H), 6.43(m, 2H), 6.82(s, 1H), 7.04(d, 1H, J = 8.8 Hz), 7.23(m, 3H), 7.55(s, 1H).
HR-MS(ESI+): Calcd for [M+H]+, 509.03074, Found, 509.02780 (-2.95 mmu).
The analysis results of the obtained compound (2-1-2a) by 1 H-NMR and HR-MS are shown below.
1 H-NMR (D 2 O, 300 MHz) δ3.63 (s, 3H), 3.95 (s, 3H), 6.43 (m, 2H), 6.82 (s, 1H), 7.04 (d, 1H, J = 8.8 Hz), 7.23 (m, 3H), 7.55 (s, 1H).
HR-MS (ESI + ): Calcd for [M + H] + , 509.03074, Found, 509.02780 (-2.95 mmu).
また、得られた化合物(2-1-2a)において、ALPによる酵素反応で、リン酸基が脱離後の化合物(2-1-2a)-1の光学特性を以下の表2及び図4に示す。なお、「Neutral Form」はリン酸ナトリウム溶液(pH3.0)に化合物(2-1-2a)-1を溶解し測定し、「Anion Form」は0.1N水酸化ナトリウム水溶液に化合物(2-1-2a)-1を溶解し測定した。 Further, in the obtained compound (2-1-2a), the optical properties of the compound (2-1-2a) -1 after the phosphate group is eliminated by an enzymatic reaction with ALP are shown in Table 2 and FIG. Shown in “Neutral Form” was measured by dissolving compound (2-1-2a) -1 in a sodium phosphate solution (pH 3.0), and “Anion Form” was measured by adding compound (2- 1-2a) -1 was dissolved and measured.
[製造例3]化合物(10)の製造
以下に示す経路で、従来の蛍光プローブ用化合物として、化合物(10)を製造した。
[Production Example 3] Production of Compound (10) Compound (10) was produced as a conventional fluorescent probe compound by the route shown below.
[製造例4]化合物(20)の製造
以下に示す経路で、従来の蛍光プローブ用化合物として、公知の方法(参考文献:国際公開第2006/093067号、「Urano Y et al., “Evolution of fluorescein as a platform for finely tunable fluorescence probes”, Journal of the American Chemical Society, vol.127, no.13, p4888-4894, 2005.」)を用いて、化合物(20)を製造した。
[Production Example 4] Production of Compound (20) As a conventional fluorescent probe compound, a known method (reference document: International Publication No. 2006/093067, “Urano Y et al.,“ Evolution of Fluorescein as a platform for finely tunable fluorescence probes ", Journal of the American Chemical Society, vol. 127, no. 13, p4888-4894, 2005.
[試験例1]インビトロアルカリフォスファターゼ蛍光アッセイ
1.蛍光プローブの希釈
まず、製造例1~4で得られた化合物(1-1-1a)、化合物(2-2-1a)、化合物(10)、及び化合物(20)をそれぞれ10μmol/Lとなるようにアッセイバッファーで希釈した。アッセイバッファーの組成は、0.05mol/L Tris-HCl緩衝液(pH7.0)、1.0mmol/L塩化マグネシウムである。
[Test Example 1] In vitro alkaline phosphatase fluorescence assay Dilution of fluorescent probe First, the compound (1-1-1a), the compound (2-2-1a), the compound (10), and the compound (20) obtained in Production Examples 1 to 4 are each 10 μmol / L. Dilute with assay buffer as follows. The composition of the assay buffer is 0.05 mol / L Tris-HCl buffer (pH 7.0), 1.0 mmol / L magnesium chloride.
2.マイクロデバイスを用いたアルカリフォスファターゼ蛍光アッセイ
マルチウェルプレートからなるマイクロデバイスのウェルに「1.蛍光プローブの希釈」で希釈した希釈液3mLをそれぞれ添加した。次いで、アルカリフォスファターゼ(Alkaline Phosphatase;ALP)(分子量約12万~15万、EC3.1.3.1、シグマ-アルドリッチ社製)を添加し、蛍光測定を開始した。蛍光測定開始から22分後、132分後に、各希釈液が添加されたマイクロデバイスを蛍光顕微鏡で撮影した画像を図5A及び図6Aに示す。また、蛍光測定開始から132分後の各希釈液が添加されたマイクロデバイスにおける蛍光強度を図5B及び図6Bに示す。
2. Alkaline phosphatase fluorescence assay using a microdevice 3 mL of the diluted solution diluted in “1. Dilution of fluorescent probe” was added to each well of a microdevice consisting of a multiwell plate. Next, alkaline phosphatase (ALP) (molecular weight of about 120,000 to 150,000, EC 3.1.3.1, manufactured by Sigma-Aldrich) was added, and fluorescence measurement was started. FIGS. 5A and 6A show images obtained by photographing a microdevice to which each diluent is added 22 minutes and 132 minutes after the start of fluorescence measurement with a fluorescence microscope. In addition, FIG. 5B and FIG. 6B show the fluorescence intensity in the microdevice to which each diluted solution 132 minutes after the start of fluorescence measurement was added.
図5A及び図5Bから、ALPによる酵素反応により青色の蛍光を発する化合物(10)を用いたALP蛍光アッセイでは、デバイス外への化合物(10)の漏出により、蛍光の上昇が全く観察及び検出されなかった。一方、ALPによる酵素反応により青色の蛍光を発する化合物(1-1-1a)を用いたALP蛍光アッセイでは、ALPが封入されたウェルでのみ蛍光の上昇が観察及び検出された。 From FIG. 5A and FIG. 5B, in the ALP fluorescence assay using the compound (10) that emits blue fluorescence by the enzymatic reaction with ALP, the increase in fluorescence is completely observed and detected due to leakage of the compound (10) to the outside of the device. There wasn't. On the other hand, in the ALP fluorescence assay using the compound (1-1-1a) that emits blue fluorescence by the enzymatic reaction with ALP, an increase in fluorescence was observed and detected only in the wells in which ALP was encapsulated.
また、図6A及び図6Bから、ALPによる酵素反応により緑色の蛍光を発する化合物(2-2-1a)及び化合物(20)を用いたALP蛍光アッセイでは、いずれもALPが封入されたウェルでのみ蛍光の上昇が観察及び検出された。しかしながら、化合物(20)を用いたALP蛍光アッセイでは、蛍光強度が低く、デバイス外への漏出が起きていることが示唆された。 Also, from FIGS. 6A and 6B, in the ALP fluorescence assay using the compound (2-2-1a) and the compound (20) that emit green fluorescence by the enzymatic reaction with ALP, both are only in wells encapsulating ALP. An increase in fluorescence was observed and detected. However, in the ALP fluorescence assay using compound (20), the fluorescence intensity was low, suggesting that leakage outside the device occurred.
[製造例5]化合物(3-1-2a)の製造
以下に示す経路で、化合物(3)として化合物(3-1-2a)を製造した。
[Production Example 5] Production of Compound (3-1-2a) Compound (3-1-2a) was produced as Compound (3) by the route shown below.
[化合物(3-1-2a)-1の製造]
乾燥したフラスコに、化合物(2-1a-1)を249mg(0.73mmol、1eq)入れて、脱水テトラヒドロフラン(tetrahydrofuran;THF)に溶解させ、アルゴン雰囲気下、-78℃で30分間撹拌した。次いで、ここに1Mセカンダリーブチルリチウム(sec-butyllithium;sec-BuLi)0.73mL(0.73mmol、1eq)を少しずつ加え、アルゴン雰囲気下、-78℃で30分間撹拌した。次いで、さらに反応液に、無水THFに溶解させた化合物(3-1b-1)53mg(0.15mmol、0.20eq)を少しずつ加えた後、アルゴン雰囲気下、室温で5時間撹拌した。次いで、2N HCl溶液を反応液に加え、110℃で13時間加熱還流した。次いで、LC-MSで化合物(3-1-2a)-1の生成を確認した。次いで、溶液にトルエンを加え、減圧下で溶媒を留去した。次いで、得られた溶液をHPLC(30分間でA/B=99/1→0/100、15分時点で溶出、A:0.1%トリフルオロ酢酸(TFA)/水、B:0.1%TFA/80%アセトニトリル/20%水)で精製し、化合物(3-1-2a)-1を32mg(0.068mmol、収率45%)得た。
[Production of Compound (3-1-2a) -1]
In a dry flask, 249 mg (0.73 mmol, 1 eq) of compound (2-1a-1) was added, dissolved in dehydrated tetrahydrofuran (THF), and stirred at −78 ° C. for 30 minutes under an argon atmosphere. Next, 0.73 mL (0.73 mmol, 1 eq) of 1M secondary butyllithium (sec-butyllithium; sec-BuLi) was added little by little, and the mixture was stirred at −78 ° C. for 30 minutes in an argon atmosphere. Next, 53 mg (0.15 mmol, 0.20 eq) of compound (3-1b-1) dissolved in anhydrous THF was added little by little to the reaction solution, and the mixture was stirred at room temperature for 5 hours in an argon atmosphere. Next, 2N HCl solution was added to the reaction solution, and the mixture was heated to reflux at 110 ° C. for 13 hours. Subsequently, formation of compound (3-1-2a) -1 was confirmed by LC-MS. Subsequently, toluene was added to the solution, and the solvent was distilled off under reduced pressure. The resulting solution was then HPLC (A / B for 30 minutes = 99/1 → 0/100, eluted at 15 minutes, A: 0.1% trifluoroacetic acid (TFA) / water, B: 0.1 % TFA / 80% acetonitrile / 20% water) to obtain 32 mg (0.068 mmol, yield 45%) of compound (3-1-2a) -1.
[化合物(3-1e-1)の製造]
乾燥したフラスコに化合物(3-1-2a)-1を714mg(1.52mmol)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここにアセトニトリル(脱水)に溶解させた、18mg(0.15mmol)のDMAP、557μL(3.19mmol)のDIEA、及び、735μL(7.6mmol)の四塩化炭素を加え、-10℃に冷却した。さらに、反応液にアセトニトリル(脱水)に溶解させたホスホン酸ジベンジル514μL(2.20mmol)を少しずつ加えた後、アルゴン雰囲気下、-10℃で2時間撹拌した。次いで、LC-MSで化合物(3-1e-1)の生成を確認した。次いで、pH8.0のTris-HCl緩衝液(50mM、 1mM塩化マグネシウム含有)を加え、減圧下でアセトニトリルを留去した。次いで、HPLC(30分間でA/B=50/50→0/100、15分時点で溶出、A:0.1MのTEAA、B:0.1MのTEAA/80%アセトニトリル/20%水)で精製し、オレンジ色の固体の化合物(3-1e-1)を99mg(0.14mmol、収率9.2%)得た。
[Production of Compound (3-1e-1)]
714 mg (1.52 mmol) of the compound (3-1-2a) -1 was put in a dried flask and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 18 mg (0.15 mmol) of DMAP, 557 μL (3.19 mmol) of DIEA, and 735 μL (7.6 mmol) of carbon tetrachloride dissolved in acetonitrile (dehydrated) were added thereto, and the mixture was heated to −10 ° C. Cooled down. Further, 514 μL (2.20 mmol) of dibenzyl phosphonate dissolved in acetonitrile (dehydrated) was added little by little to the reaction solution, followed by stirring at −10 ° C. for 2 hours under an argon atmosphere. Then, formation of compound (3-1e-1) was confirmed by LC-MS. Subsequently, Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) at pH 8.0 was added, and acetonitrile was distilled off under reduced pressure. Then HPLC (A / B = 30/30 in 30 minutes → 0/100, elution at 15 minutes, A: 0.1 M TEAA, B: 0.1 M TEAA / 80% acetonitrile / 20% water) Purification gave 99 mg (0.14 mmol, 9.2% yield) of an orange solid compound (3-1e-1).
得られた化合物(3-1e-1)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI+): Calcd for [M+H] +, 731.15360, Found, 731.14971 (-3.89 mmu).
The results of analysis of the obtained compound (3-1e-1) using an HR-MS meter are shown below.
HR-MS (ESI + ): Calcd for [M + H] + , 731.15360, Found, 731.14971 (-3.89 mmu).
[化合物(3-1-2a)の製造]
乾燥したフラスコに化合物(3-1e-1)を91mg(0.13mmol)入れて、2mLのメタノール及び1mLのジクロロメタンに溶解させた。次いで、ここに10%のパラジウム炭素触媒をスパーテル一杯分加え、水素雰囲気下、室温で2時間撹拌した。次いで、LC-MSで原料の消失を確認した。次いで、パラジウム炭素触媒を吸引濾過で除去し、PBSを加えて減圧下で有機溶媒を留去した。その後、溶液にジクロロメタン及び44mg(0.20mmol)の2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)を加え、室温で1時間撹拌した。次いで、LC-MSで化合物(2-1-2a)の生成を確認した。次いで、PBSを加えて減圧下で有機溶媒を留去した。次いで、溶液をHPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)にて精製した。次いで、得られた溶液を脱塩し、減圧下で水分を蒸発させた。次いで、凍結乾燥して、赤色固体の化合物(3-1-2a)を1415mg(0.03mmol、収率23%)得た。
[Production of Compound (3-1-2a)]
91 mg (0.13 mmol) of compound (3-1e-1) was placed in a dry flask and dissolved in 2 mL of methanol and 1 mL of dichloromethane. Next, a 10% palladium carbon catalyst was added to the spatula, and the mixture was stirred at room temperature for 2 hours in a hydrogen atmosphere. Next, disappearance of the raw materials was confirmed by LC-MS. Subsequently, the palladium carbon catalyst was removed by suction filtration, PBS was added, and the organic solvent was distilled off under reduced pressure. Thereafter, dichloromethane and 44 mg (0.20 mmol) of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) were added to the solution, followed by stirring at room temperature for 1 hour. Then, formation of compound (2-1-2a) was confirmed by LC-MS. Subsequently, PBS was added and the organic solvent was distilled off under reduced pressure. The solution was then HPLC (A / B for 30 minutes = 99/1 → 0/100, eluted at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile. / 20% water). The resulting solution was then desalted and the water was evaporated under reduced pressure. Subsequently, freeze-drying gave 1415 mg (0.03 mmol, 23% yield) of a red solid compound (3-1-2a).
得られた化合物(3-1-2a)の1H-NMR及びHR-MS計による分析結果を以下に示す。
1H-NMR (400 MHz, DMSO-d6) δ 6.99 (s, 1H), 6.59 (dd, 1H, J = 8.8 Hz, 2.0 Hz), 6.50 (d, 1H, J = 10.0 Hz), 6.40 (d, 1H, J = 8.8 Hz), 6.25 (d, 1H, J = 2.4 Hz), 6.19 (d, 1H, J = 2.0 Hz), 5.62 (d, 1H, J = 10.0 Hz), 5.59 (d, 1H, J = 2.4 Hz), 3.37 (s, 3H), 3.27 (s, 3H), 0.00 (s, 3H), -0.11 (s, 3H).
13C (100 MHz, DMSO-d6) δ 183.6, 161.4, 160.2, 159.6, 155.5, 148.3, 143.3, 139.8, 139.1, 136.7, 135.7, 135.5, 129.6, 127.2, 126.7, 125.6, 121.6, 121.5, 106.6, 99.7, 56.5, 56.2, 0.0, -1.7.
HR-MS(ESI+): Calcd for [M+H]+, 551.05970, Found, 551.05808 (-1.62 mmu).
The analysis results of the obtained compound (3-1-2a) by 1 H-NMR and HR-MS are shown below.
1 H-NMR (400 MHz, DMSO-d 6 ) δ 6.99 (s, 1H), 6.59 (dd, 1H, J = 8.8 Hz, 2.0 Hz), 6.50 (d, 1H, J = 10.0 Hz), 6.40 ( d, 1H, J = 8.8 Hz), 6.25 (d, 1H, J = 2.4 Hz), 6.19 (d, 1H, J = 2.0 Hz), 5.62 (d, 1H, J = 10.0 Hz), 5.59 (d, 1H, J = 2.4 Hz), 3.37 (s, 3H), 3.27 (s, 3H), 0.00 (s, 3H), -0.11 (s, 3H).
13 C (100 MHz, DMSO-d 6 ) δ 183.6, 161.4, 160.2, 159.6, 155.5, 148.3, 143.3, 139.8, 139.1, 136.7, 135.7, 135.5, 129.6, 127.2, 126.7, 125.6, 121.6, 121.5, 106.6, 99.7, 56.5, 56.2, 0.0, -1.7.
HR-MS (ESI + ): Calcd for [M + H] + , 551.05970, Found, 551.05808 (-1.62 mmu).
また、得られた化合物(3-1-2a)において、ALPによる酵素反応で、リン酸基が脱離後の化合物(3-1-2a)-1の光学特性を図7A及び図7Bに示す。なお、「Phenol Form」は100mMのリン酸ナトリウム溶液(pH3.4)に化合物(3-1-2a)-1を溶解し測定し、「Phenoxide Form」は0.1N水酸化ナトリウム水溶液(pH13)に化合物(3-1-2a)-1を溶解し測定した。 Further, in the obtained compound (3-1-2a), the optical characteristics of the compound (3-1-2a) -1 after the phosphate group is eliminated by an enzymatic reaction with ALP are shown in FIGS. 7A and 7B. . “Phenolform” was measured by dissolving compound (3-1-2a) -1 in 100 mM sodium phosphate solution (pH 3.4), and “Phenoxide Form” was 0.1N sodium hydroxide aqueous solution (pH 13). Compound (3-1-2a) -1 was dissolved in and measured.
[試験例2]インビトロアルカリフォスファターゼ蛍光アッセイ
1.蛍光プローブの希釈
まず、製造例5で得られた化合物(3-1-2a)を10μmol/Lとなるようにアッセイバッファーで希釈した。アッセイバッファーの組成は、1.0mMの塩化マグネシウム含有DEA緩衝液(pH9.3)である。
[Test Example 2] In vitro alkaline phosphatase fluorescence assay Dilution of fluorescent probe First, the compound (3-1-2a) obtained in Production Example 5 was diluted with an assay buffer so as to be 10 μmol / L. The composition of the assay buffer is 1.0 mM magnesium chloride-containing DEA buffer (pH 9.3).
2.マイクロデバイスを用いたアルカリフォスファターゼ蛍光アッセイ
マルチウェルプレートからなるマイクロデバイスのウェルに「1.蛍光プローブの希釈」で希釈した希釈液3mLをそれぞれ添加した。次いで、ALP(メタノール資化酵母Pichia pastorisを用いた組換え蛋白質)を添加し、蛍光測定を開始した。ALP添加前(ALP(-))、及び、ALP添加(ALP(+))から5分後の希釈液が添加されたマイクロデバイスにおける蛍光強度を図8に示す。なお、化合物(3-1-2a)の蛍光測定は、590nmの励起下で行った。
2. Alkaline phosphatase fluorescence assay using a microdevice 3 mL of the diluted solution diluted in “1. Dilution of fluorescent probe” was added to each well of a microdevice consisting of a multiwell plate. Subsequently, ALP (recombinant protein using methanol-utilizing yeast Pichia pastoris) was added, and fluorescence measurement was started. FIG. 8 shows the fluorescence intensity in the microdevice to which the diluted solution before addition of ALP (ALP (−)) and 5 minutes after addition of ALP (ALP (+)) was added. The fluorescence measurement of the compound (3-1-2a) was performed under excitation at 590 nm.
図8に示すように、化合物(3-1-2a)を用いたALPによる酵素反応前後での蛍光スペクトルを測定した結果、約84倍の蛍光増大がみられた。 As shown in FIG. 8, the fluorescence spectrum before and after the enzyme reaction with ALP using the compound (3-1-2a) was measured, and as a result, the fluorescence increased about 84 times.
[製造例6]化合物(1-1-1b)の製造
以下に示す経路で、化合物(1)として化合物(1-1-1b)を製造した。
[Production Example 6] Production of Compound (1-1-1b) Compound (1-1-1b) was produced as Compound (1) by the route shown below.
[化合物(1-1d-2)の製造]
乾燥したフラスコに化合物(1-1-1a)-1を300mg(1.01mmol)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここにアセトニトリル(脱水)に溶解させた、687μL(4.04mmol)のDIEA、及び、dibenzyl chloromethyl phosphate 394mg(1.21mmol)を少しずつ加えた後、アルゴン雰囲気下、50℃で2時間撹拌した。次いで、減圧下でアセトニトリルを留去した。次いで、カラムクロマトグラフィー(20分間で酢酸エチル/ヘキサン=30/70→80/20)で精製し、化合物(1-1d-2)を83mg(0.14mmol、収率14%)得た。
[Production of Compound (1-1d-2)]
300 mg (1.01 mmol) of the compound (1-1-1a) -1 was placed in a dried flask and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 687 μL (4.04 mmol) of DIEA and 394 mg (1.21 mmol) of dibenzyl chloromethyl phosphate dissolved in acetonitrile (dehydrated) were added little by little, followed by stirring at 50 ° C. for 2 hours under an argon atmosphere. did. Subsequently, acetonitrile was distilled off under reduced pressure. Subsequently, the residue was purified by column chromatography (ethyl acetate / hexane = 30/70 → 80/20 over 20 minutes) to obtain 83 mg (0.14 mmol, 14% yield) of the compound (1-1d-2).
[化合物(1-1-1b)の製造]
乾燥したフラスコに、化合物(1-1d-2)を83mg(0.14mmol)入れて、アセトニトリル(脱水)に溶解させた。ここに、10%パラジウム炭素触媒をスパーテル一杯分加え、水素雰囲気下、室温で、2時間撹拌した。次いで、LC-MS計で、化合物(1-1-1b)の生成を確認した。次いで、pH7.0のTris-HCl緩衝液(50mM、1mM塩化マグネシウム含有)を少量加え、吸引濾過でパラジウム炭素触媒を除去した。次いで、減圧下で、アセトニトリルを留去した。次いで、得られた溶液をHPLC(30分間でA/B=99/1→0/100、13分時点で溶出、A:0.1%トリエチルアミン-酢酸緩衝液(Triethylammonium acetate;TEAA)、B:0.1%TEAA/80%アセトニトリル/20%水)を用いて精製し、化合物(1-1-1b)を12mg(0.038mmol、収率27%)得た。
[Production of Compound (1-1-1b)]
In a dry flask, 83 mg (0.14 mmol) of the compound (1-1d-2) was added and dissolved in acetonitrile (dehydrated). A 10% palladium carbon catalyst was added to a spatula, and the mixture was stirred for 2 hours at room temperature in a hydrogen atmosphere. Subsequently, formation of the compound (1-1-1b) was confirmed with an LC-MS meter. Next, a small amount of Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) having a pH of 7.0 was added, and the palladium carbon catalyst was removed by suction filtration. Subsequently, acetonitrile was distilled off under reduced pressure. Then, the resulting solution was subjected to HPLC (A / B = 30/1 → 0/100 in 30 minutes, eluted at 13 minutes, A: 0.1% triethylamine-acetate buffer (TEAA), B: Purification using 0.1% TEAA / 80% acetonitrile / 20% water) gave 12 mg (0.038 mmol, 27% yield) of compound (1-1-1b).
得られた化合物(1-1-1b)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI-): Calcd for [M-H] -, 314.99059, Found, 314.98632 (-4.27 mmu).
The results of analysis of the obtained compound (1-1-1b) using an HR-MS meter are shown below.
HR-MS (ESI -): Calcd for [MH] -, 314.99059, Found, 314.98632 (-4.27 mmu).
[製造例7]化合物(2-1-2b)の製造
以下に示す経路で、化合物(2)として化合物(2-1-2b)を製造した。
[Production Example 7] Production of Compound (2-1-2b) Compound (2-1-2b) was produced as Compound (2) by the route shown below.
[化合物(2-1e-2)の製造]
乾燥したフラスコに化合物(2-1-2a)-1を100mg(0.23mmol)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここにアセトニトリル(脱水)に溶解させた、150mg(0.46mmol)の炭酸セシウムを加え、アルゴン雰囲気下にて室温で混合した。さらに、反応液にアセトニトリル(脱水)に溶解させたdibenzyl chloromethyl phosphate 150mg(0.46mmol)を少しずつ加えた後、アルゴン雰囲気下、60℃で2時間撹拌した。次いで、LC-MSで化合物(2-1e-2)の生成を確認した。次いで、PBSを加え、減圧下でアセトニトリルを留去した。次いで、HPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)で精製し、化合物(2-1e-2)を16mg(0.022mmol、収率9.6%)得た。
[Production of Compound (2-1e-2)]
100 mg (0.23 mmol) of the compound (2-1-2a) -1 was put in a dried flask and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 150 mg (0.46 mmol) of cesium carbonate dissolved in acetonitrile (dehydrated) was added thereto and mixed at room temperature under an argon atmosphere. Further, 150 mg (0.46 mmol) of dibenzyl chloromethyl phosphate dissolved in acetonitrile (dehydrated) was added little by little to the reaction solution, and the mixture was stirred at 60 ° C. for 2 hours in an argon atmosphere. Then, formation of compound (2-1e-2) was confirmed by LC-MS. Subsequently, PBS was added and acetonitrile was distilled off under reduced pressure. Next, HPLC (A / B in 30 minutes = 99/1 → 0/100, elution at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile / 20 % Water) to obtain 16 mg (0.022 mmol, 9.6% yield) of the compound (2-1e-2).
[化合物(2-1-2b)の製造]
乾燥したフラスコに化合物(2-1e-2)を5mg(0.007mmol)入れて、2mLのメタノール及び1mLのジクロロメタンに溶解させた。次いで、ここに10%のパラジウム炭素触媒をスパーテル一杯分加え、水素雰囲気下、室温で2時間撹拌した。次いで、LC-MSで原料の消失を確認した。次いで、パラジウム炭素触媒を吸引濾過で除去し、PBSを加えて減圧下で有機溶媒を留去した。その後、溶液にジクロロメタン及び2mg(0.009mmol)のクロラニルを加え、室温で1時間撹拌した。次いで、LC-MSで化合物(2-1-2b)の生成を確認した。次いで、PBSを加えて減圧下で有機溶媒を留去した。次いで、溶液をHPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)にて精製した。次いで、得られた溶液を脱塩し、減圧下で水分を蒸発させた。次いで、凍結乾燥して、化合物(2-1-2b)を痕跡量得た。
[Production of Compound (2-1-2b)]
5 mg (0.007 mmol) of compound (2-1e-2) was placed in a dry flask and dissolved in 2 mL of methanol and 1 mL of dichloromethane. Next, a 10% palladium carbon catalyst was added to the spatula, and the mixture was stirred at room temperature for 2 hours in a hydrogen atmosphere. Next, disappearance of the raw materials was confirmed by LC-MS. Subsequently, the palladium carbon catalyst was removed by suction filtration, PBS was added, and the organic solvent was distilled off under reduced pressure. Thereafter, dichloromethane and 2 mg (0.009 mmol) of chloranil were added to the solution and stirred at room temperature for 1 hour. Then, formation of compound (2-1-2b) was confirmed by LC-MS. Subsequently, PBS was added and the organic solvent was distilled off under reduced pressure. The solution was then HPLC (A / B for 30 minutes = 99/1 → 0/100, eluted at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile. / 20% water). The resulting solution was then desalted and the water was evaporated under reduced pressure. Subsequently, lyophilization was carried out to obtain a trace amount of compound (2-1-2b).
得られた化合物(2-1-2b)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI+): Calcd for [M+H]+, 539.04131, Found, 539.03653 (-4.78 mmu).
The results of analysis of the obtained compound (2-1-2b) by HR-MS meter are shown below.
HR-MS (ESI + ): Calcd for [M + H] + , 539.04131, Found, 539.03653 (-4.78 mmu).
[製造例8]化合物(3-1-2b)の製造
以下に示す経路で、化合物(3)として化合物(3-1-2b)を製造した。
[Production Example 8] Production of compound (3-1-2b) Compound (3-1-2b) was produced as compound (3) by the route shown below.
[化合物(3-1e-2)の製造]
乾燥したフラスコに化合物(3-1-2a)-1を1134mg(2.41mmol)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここに15mLのアセトニトリル(脱水)に溶解させた、3141mg(9.64mmol)の炭酸セシウム、dibenzyl chloromethyl phosphate 1030mg(3.15mmol)及び、5mLのDMSOを少しずつ加えた後、アルゴン雰囲気下、60℃で2時間撹拌した。次いで、LC-MSで化合物(3-1e-2)の生成を確認した。次いで、PBSを加え、減圧下でアセトニトリルを留去した。次いで、HPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)で精製した。次いで、得られた溶液を脱塩し、減圧下で水分を蒸発させた。次いで、凍結乾燥して、赤色固体の化合物(3-1e-2)を45mg(0.059mmol、収率2.4%)得た。
[Production of Compound (3-1e-2)]
1134 mg (2.41 mmol) of compound (3-1-2a) -1 was placed in a dried flask and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 3141 mg (9.64 mmol) of cesium carbonate, dibenzyl chloromethyl phosphate 1030 mg (3.15 mmol) and 5 mL of DMSO dissolved in 15 mL of acetonitrile (dehydrated) were added little by little, and then under an argon atmosphere. Stir at 60 ° C. for 2 hours. Then, formation of compound (3-1e-2) was confirmed by LC-MS. Subsequently, PBS was added and acetonitrile was distilled off under reduced pressure. Next, HPLC (A / B in 30 minutes = 99/1 → 0/100, elution at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile / 20 % Water). The resulting solution was then desalted and the water was evaporated under reduced pressure. Next, freeze-drying gave 45 mg (0.059 mmol, yield 2.4%) of a red solid compound (3-1e-2).
得られた化合物(3-1e-2)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI-): Calcd for [M-H]-, 759.14907, Found, 759.14793 (-1.14 mmu).
The results of analysis of the obtained compound (3-1e-2) using an HR-MS meter are shown below.
HR-MS (ESI -): Calcd for [MH] -, 759.14907, Found, 759.14793 (-1.14 mmu).
[化合物(3-1-2b)の製造]
乾燥したフラスコに化合物(3-1e-2)を45mg(0.059mmol)入れて、2mLのメタノール及び1mLのジクロロメタンに溶解させた。次いで、ここに10%のパラジウム炭素触媒をスパーテル一杯分加え、水素雰囲気下、室温で2時間撹拌した。次いで、LC-MSで原料の消失を確認した。次いで、パラジウム炭素触媒を吸引濾過で除去し、PBSを加えて減圧下で有機溶媒を留去した。その後、溶液にジクロロメタン及び16mg(0.059mmol)のクロラニルを加え、室温で1時間撹拌した。次いで、LC-MSで化合物(2-1-2b)の生成を確認した。次いで、PBSを加えて減圧下で有機溶媒を留去した。次いで、溶液をHPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)にて精製した。次いで、得られた溶液を脱塩し、減圧下で水分を蒸発させた。次いで、凍結乾燥して、赤色固体の化合物(3-1-2b)を痕跡量得た。
[Production of Compound (3-1-2b)]
45 mg (0.059 mmol) of the compound (3-1e-2) was placed in a dry flask and dissolved in 2 mL of methanol and 1 mL of dichloromethane. Next, a 10% palladium carbon catalyst was added to the spatula, and the mixture was stirred at room temperature for 2 hours in a hydrogen atmosphere. Next, disappearance of the raw materials was confirmed by LC-MS. Subsequently, the palladium carbon catalyst was removed by suction filtration, PBS was added, and the organic solvent was distilled off under reduced pressure. Thereafter, dichloromethane and 16 mg (0.059 mmol) of chloranil were added to the solution, and the mixture was stirred at room temperature for 1 hour. Then, formation of compound (2-1-2b) was confirmed by LC-MS. Subsequently, PBS was added and the organic solvent was distilled off under reduced pressure. The solution was then HPLC (A / B for 30 minutes = 99/1 → 0/100, eluted at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile. / 20% water). The resulting solution was then desalted and the water was evaporated under reduced pressure. Subsequently, lyophilization was performed to obtain a trace amount of red solid compound (3-1-2b).
得られた化合物(3-1-2b)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI-): Calcd for [M-H]-, 579.05462, Found, 579.05270 (-1.91 mmu).
The results of analysis of the obtained compound (3-1-2b) using an HR-MS meter are shown below.
HR-MS (ESI -): Calcd for [MH] -, 579.05462, Found, 579.05270 (-1.91 mmu).
[試験例3]インビトロアルカリフォスファターゼ蛍光アッセイ
1.蛍光プローブの希釈
まず、製造例6~8で得られた化合物(1-1-1b)、化合物(2-1-2b)及び化合物(3-1-2b)をそれぞれ10μmol/Lとなるようにアッセイバッファーで希釈した。アッセイバッファーの組成は、1.0mMの塩化マグネシウム含有100mMのTris-HCl緩衝液(pH8.0)である。
[Test Example 3] In vitro alkaline phosphatase fluorescence assay Dilution of fluorescent probe First, the compound (1-1-1b), the compound (2-1-2b) and the compound (3-1-2b) obtained in Production Examples 6 to 8 were each adjusted to 10 μmol / L. Dilute with assay buffer. The composition of the assay buffer is 100 mM Tris-HCl buffer (pH 8.0) containing 1.0 mM magnesium chloride.
2.マイクロデバイスを用いたアルカリフォスファターゼ蛍光アッセイ
マルチウェルプレートからなるマイクロデバイスのウェルに「1.蛍光プローブの希釈」で希釈した希釈液3mLをそれぞれ添加した。次いで、ALP(メタノール資化酵母Pichia pastorisを用いた組換え蛋白質)を添加し、蛍光測定を開始した。ALP添加前(ALP(-))、及び、ALP添加(ALP(+))から10分後の希釈液が添加されたマイクロデバイスにおける蛍光強度を図9(化合物(1-1-1b))、図10(化合物(2-1-2b))及び図11(化合物(3-1-2b))に示す。なお、化合物(1-1-1b)の蛍光測定は400nmの励起下で、化合物(2-1-2b)の蛍光測定は490nmの励起下で、化合物(3-1-2b)の蛍光測定は590nmの励起下で行った。
2. Alkaline phosphatase fluorescence assay using a microdevice 3 mL of the diluted solution diluted in “1. Dilution of fluorescent probe” was added to each well of a microdevice consisting of a multiwell plate. Subsequently, ALP (recombinant protein using methanol-utilizing yeast Pichia pastoris) was added, and fluorescence measurement was started. FIG. 9 (compound (1-1-1b)) shows the fluorescence intensity in the microdevice to which the diluted solution was added 10 minutes after the addition of ALP (ALP (−)) and 10 minutes after the addition of ALP (ALP (+)). Shown in FIG. 10 (compound (2-1-2b)) and FIG. 11 (compound (3-1-2b)). The fluorescence measurement of the compound (1-1-1b) was conducted under excitation of 400 nm, the fluorescence measurement of the compound (2-1-2b) was conducted under excitation of 490 nm, and the fluorescence measurement of the compound (3-1-2b) was measured. Performed under 590 nm excitation.
図9~11に示すように、化合物(1-1-1b)、化合物(2-1-2b)及び化合物(3-1-2b)を用いたALPによる酵素反応前後での蛍光スペクトルを測定した結果、顕著な蛍光の上昇が検出された。 As shown in FIGS. 9 to 11, fluorescence spectra before and after the enzymatic reaction with ALP using the compound (1-1-1b), the compound (2-1-2b) and the compound (3-1-2b) were measured. As a result, a significant increase in fluorescence was detected.
[製造例9]化合物(2-1-2c)の製造
以下に示す経路で、化合物(2)として化合物(2-1-2c)を製造した。
[Production Example 9] Production of Compound (2-1-2c) Compound (2-1-2c) was produced as Compound (2) by the route shown below.
[化合物(21)の製造]
乾燥したフラスコに4‐ヒドロキシベンジルアルコールを248mg(2.0mmol)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここにアセトニトリル(脱水)に溶解させた四塩化炭素96μL(10mmol)、DIEA 733μL(4.2mmol)、及び、DMAP 24mg(0.2mmol)を加え、-10℃に冷却した。さらに、反応液にアセトニトリル(脱水)に溶解させたホスホン酸ジベンジル639μL(2.9mmol)を少しずつ加えた後、アルゴン雰囲気下、-10℃で2時間撹拌した。次いで、LC-MSで化合物(21)の生成を確認した。次いで、pH8.0のTris-HCl緩衝液(50mM、 1mM塩化マグネシウム含有)を加え、減圧下でアセトニトリルを留去した。次いで、ジクロロメタンで抽出し、硫酸ナトリウムで脱水後、減圧下で溶媒を留去した。次いで、得られた固体をHPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)にて粗精製し、化合物(21)を233mg(不純物含む)得た。
[Production of Compound (21)]
In a dried flask, 248 mg (2.0 mmol) of 4-hydroxybenzyl alcohol was added and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 96 μL (10 mmol) of carbon tetrachloride dissolved in acetonitrile (dehydrated), 733 μL (4.2 mmol) of DIEA, and 24 mg (0.2 mmol) of DMAP were added thereto, and the mixture was cooled to −10 ° C. Further, 639 μL (2.9 mmol) of dibenzyl phosphonate dissolved in acetonitrile (dehydrated) was added little by little to the reaction solution, followed by stirring at −10 ° C. for 2 hours in an argon atmosphere. Then, formation of compound (21) was confirmed by LC-MS. Subsequently, Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) at pH 8.0 was added, and acetonitrile was distilled off under reduced pressure. Subsequently, extraction with dichloromethane was performed, and after dehydration with sodium sulfate, the solvent was distilled off under reduced pressure. Subsequently, the obtained solid was subjected to HPLC (A / B in 30 minutes = 99/1 → 0/100, eluted at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile / 20% water) was roughly purified to obtain 233 mg (including impurities) of compound (21).
[化合物(22)の製造]
乾燥したフラスコに化合物(21)を233mg(不純物含む)入れて、ジクロロメタンに溶解させた。次いで、ここにジクロロメタンに溶解させた四臭化炭素477mg(1.44mmol)及びトリフェニルホスフィン226mg(0.86mmol)を加え、アルゴン雰囲気下、室温で2時間撹拌した。次いで、LC-MSで化合物(22)の生成を確認した。次いで、pH8.0のTris-HCl緩衝液(50mM、 1mM塩化マグネシウム含有)を加え、減圧下でアセトニトリルを留去した。次いで、ジクロロメタンで抽出し、硫酸ナトリウムで脱水後、減圧下で溶媒を留去した。次いで、得られた溶液をHPLC(30分間でA/B=60/40→0/100、15分時点で溶出、A:0.1%TFA/水、B:0.1%TFA/80%アセトニトリル/20%水)で粗精製し、化合物(22)を753mg(不純物含む)得た。
[Production of Compound (22)]
In a dry flask, 233 mg (including impurities) of compound (21) was added and dissolved in dichloromethane. Next, 477 mg (1.44 mmol) of carbon tetrabromide dissolved in dichloromethane and 226 mg (0.86 mmol) of triphenylphosphine were added thereto, and the mixture was stirred at room temperature for 2 hours under an argon atmosphere. Then, formation of compound (22) was confirmed by LC-MS. Subsequently, Tris-HCl buffer (containing 50 mM and 1 mM magnesium chloride) at pH 8.0 was added, and acetonitrile was distilled off under reduced pressure. Subsequently, extraction with dichloromethane was performed, and after dehydration with sodium sulfate, the solvent was distilled off under reduced pressure. The resulting solution was then HPLC (A / B = 30/40 → 0/100 in 30 minutes, eluted at 15 minutes, A: 0.1% TFA / water, B: 0.1% TFA / 80% Crude purification was performed with acetonitrile / 20% water) to obtain 753 mg (including impurities) of Compound (22).
[化合物(2-1e-3)の製造]
次いで、乾燥したフラスコに化合物(2-1-2a)-1を51mg(0.12mmol)入れて、アルゴン雰囲気下でアセトニトリル(脱水)に溶解させた。次いで、ここにアセトニトリル(脱水)に溶解させた、156mg(0.48mmol)の炭酸セシウム、化合物(22)753mg(不純物含む)、及び、5mLのDMSOを少しずつ加えた後、アルゴン雰囲気下、室温で2時間撹拌した。次いで、LC-MSで化合物(2-1e-3)の生成を確認した。次いで、PBSを加え、減圧下でアセトニトリルを留去した。次いで、HPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)で精製した。次いで、得られた溶液を脱塩し、減圧下で水分を蒸発させた。次いで、凍結乾燥して、化合物(2-1e-3)を32mg(0.04mmol)得た。
[Production of Compound (2-1e-3)]
Next, 51 mg (0.12 mmol) of the compound (2-1-2a) -1 was placed in a dried flask and dissolved in acetonitrile (dehydrated) under an argon atmosphere. Next, 156 mg (0.48 mmol) of cesium carbonate dissolved in acetonitrile (dehydrated), 753 mg (including impurities) of compound (22), and 5 mL of DMSO were added little by little, and then at room temperature under an argon atmosphere. For 2 hours. Then, formation of compound (2-1e-3) was confirmed by LC-MS. Subsequently, PBS was added and acetonitrile was distilled off under reduced pressure. Next, HPLC (A / B in 30 minutes = 99/1 → 0/100, elution at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile / 20 % Water). The resulting solution was then desalted and the water was evaporated under reduced pressure. Then, it was freeze-dried to obtain 32 mg (0.04 mmol) of the compound (2-1e-3).
得られた化合物(2-1e-3)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI+): Calcd for [M+H]+, 795.16651, Found, 795.16473 (-1.77 mmu).
The results of analysis of the obtained compound (2-1e-3) by HR-MS meter are shown below.
HR-MS (ESI + ): Calcd for [M + H] + , 795.16651, Found, 795.16473 (-1.77 mmu).
[化合物(2-1-2c)の製造]
乾燥したフラスコに化合物(2-1e-3)を32mg(0.04mmol)入れて、ジクロロメタンに溶解させた。次いで、ここにジクロロメタンに溶解させたトリメチルシリルヨージド25μL(0.18mmol)及びピリジンン37μL(0.46mmol)を加え、水素雰囲気下、0℃で2時間撹拌した。次いで、LC-MSで化合物(2-1-2c)の生成を確認した。次いで、PBSを加えて減圧下で有機溶媒を留去した。次いで、溶液をHPLC(30分間でA/B=99/1→0/100、17分時点で溶出、A:0.1MのTEAA/100%水、B:0.1MのTEAA/80%アセトニトリル/20%水)にて精製した。次いで、得られた溶液を脱塩し、減圧下で水分を蒸発させた。次いで、凍結乾燥して、化合物(2-1-2c)を痕跡量得た。
[Production of Compound (2-1-2c)]
32 mg (0.04 mmol) of the compound (2-1e-3) was placed in a dry flask and dissolved in dichloromethane. Next, 25 μL (0.18 mmol) of trimethylsilyl iodide dissolved in dichloromethane and 37 μL (0.46 mmol) of pyridine were added thereto, followed by stirring at 0 ° C. for 2 hours in a hydrogen atmosphere. Then, formation of compound (2-1-2c) was confirmed by LC-MS. Subsequently, PBS was added and the organic solvent was distilled off under reduced pressure. The solution was then HPLC (A / B for 30 minutes = 99/1 → 0/100, eluted at 17 minutes, A: 0.1 M TEAA / 100% water, B: 0.1 M TEAA / 80% acetonitrile. / 20% water). The resulting solution was then desalted and the water was evaporated under reduced pressure. Then, it was freeze-dried to obtain a trace amount of compound (2-1-2c).
得られた化合物(2-1-2c)のHR-MS計による分析結果を以下に示す。
HR-MS(ESI+): Calcd for [M+H]+, 613.05696, Found, 613.05837 (+1.41 mmu).
The results of analysis of the obtained compound (2-1-2c) by HR-MS meter are shown below.
HR-MS (ESI + ): Calcd for [M + H] + , 613.05696, Found, 613.05837 (+1.41 mmu).
また、得られた化合物(2-1-2c)は自己切断型リンカーが付与されており、下記式に示すように、ALPによる酵素反応によって、二段階で脱離反応が生じ、蛍光団が放出される。 Further, the obtained compound (2-1-2c) has a self-cleaving linker, and as shown in the following formula, an elimination reaction occurs in two steps by an enzymatic reaction with ALP, and a fluorophore is released. Is done.
[試験例3]インビトロアルカリフォスファターゼ蛍光アッセイ
1.蛍光プローブの希釈
まず、製造例9で得られた化合物(2-1-2c)を10μmol/Lとなるようにアッセイバッファーで希釈した。アッセイバッファーの組成は、1.0mMの塩化マグネシウム含有100mMのTris-HCl緩衝液(pH8.0)である。
[Test Example 3] In vitro alkaline phosphatase fluorescence assay Dilution of fluorescent probe First, the compound (2-1-2c) obtained in Production Example 9 was diluted with an assay buffer so as to be 10 μmol / L. The composition of the assay buffer is 100 mM Tris-HCl buffer (pH 8.0) containing 1.0 mM magnesium chloride.
2.マイクロデバイスを用いたアルカリフォスファターゼ蛍光アッセイ
マルチウェルプレートからなるマイクロデバイスのウェルに「1.蛍光プローブの希釈」で希釈した希釈液3mLをそれぞれ添加した。次いで、ALP(メタノール資化酵母Pichia pastorisを用いた組換え蛋白質)を添加し、蛍光測定を開始した。ALP添加前(ALP(-))、及び、ALP添加(ALP(+))から10分後の希釈液が添加されたマイクロデバイスにおける蛍光強度を図12に示す。なお、化合物(2-1-2c)の蛍光測定は、490nmの励起下で行った。
2. Alkaline phosphatase fluorescence assay using a microdevice 3 mL of the diluted solution diluted in “1. Dilution of fluorescent probe” was added to each well of a microdevice consisting of a multiwell plate. Subsequently, ALP (recombinant protein using methanol-utilizing yeast Pichia pastoris) was added, and fluorescence measurement was started. FIG. 12 shows the fluorescence intensity in the microdevice to which the diluted solution was added before the addition of ALP (ALP (−)) and after 10 minutes from the addition of ALP (ALP (+)). The fluorescence measurement of the compound (2-1-2c) was performed under excitation at 490 nm.
図12に示すように、化合物(2-1-2c)を用いたALPによる酵素反応前後での蛍光スペクトルを測定した結果、顕著な蛍光の上昇が検出された。 As shown in FIG. 12, as a result of measuring the fluorescence spectrum before and after the enzymatic reaction with ALP using the compound (2-1-2c), a remarkable increase in fluorescence was detected.
以上のことから、本実施形態のALP検出用蛍光プローブは、マイクロデバイス外への漏出がなく、ALPの酵素活性を高い精度で計測することができる。 From the above, the fluorescent probe for ALP detection of the present embodiment does not leak out of the microdevice, and can measure the enzymatic activity of ALP with high accuracy.
本実施形態のALP検出用蛍光プローブによれば、生体試料中のALPの酵素活性を高い定量性及び感度で計測することができる。 According to the fluorescent probe for ALP detection of this embodiment, the enzymatic activity of ALP in a biological sample can be measured with high quantitativeness and sensitivity.
Claims (21)
一般式(2)中、R21はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR21は互いに同じであってもよく、異なっていてもよい。R22はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR22は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。X21は酸素原子又はN+HR’である。R’は水素原子又は炭素数1~10のアルキル基である。Y21は単結合、-O-(CH2)n21-、-O-(CH2)n22-Ar21-、-NH-(CH2)n23-、又は、-NH-(CH2)n24-Ar22-である。n21、n22、n23及びn24はそれぞれ独立に1~10の整数である。Ar21及びAr22はそれぞれ独立に置換又は無置換のアリーレン基である。
一般式(3)中、R31はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR31は互いに同じであってもよく、異なっていてもよい。R32はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR32は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。X32は酸素原子又はN+HR”である。R”は水素原子又は炭素数1~10のアルキル基である。Y31は単結合、-O-(CH2)n31-、-O-(CH2)n32-Ar31-、-NH-(CH2)n33-、又は、-NH-(CH2)n34-Ar32-である。n31、n32、n33及びn34はそれぞれ独立に1~10の整数である。Ar31及びAr32はそれぞれ独立に置換又は無置換のアリーレン基である。
一般式(4)中、R41はベンゼン環上に存在する1~2個の一価の置換基であって、電子供与基である。複数存在するR41は互いに同じであってもよく、異なっていてもよい。R42はベンゼン環上に存在する1~2個の一価の置換基であって、末端にアニオン性官能基を有する基である。複数存在するR42は互いに同じであってもよく、異なっていてもよい。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R45及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y41は単結合、-O-(CH2)n41-、-O-(CH2)n42-Ar41-、-NH-(CH2)n43-、又は、-NH-(CH2)n44-Ar42-である。n41、n42、n43及びn44はそれぞれ独立に1~10の整数である。Ar41及びAr42はそれぞれ独立に置換又は無置換のアリーレン基である。 The fluorescent probe for detecting alkaline phosphatase according to claim 1 or 2, wherein the compound is a compound represented by the following general formula (1), (2), (3) or (4).
In the general formula (2), R 21 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 21 may be the same as or different from each other. R 22 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 22 may be the same as or different from each other. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. X 21 is an oxygen atom or N + HR ′. R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Y 21 represents a single bond, -O- (CH 2) n21 - , - O- (CH 2) n22 -Ar 21 -, - NH- (CH 2) n23 -, or, -NH- (CH 2) n24 - Ar 22 - is. n21, n22, n23 and n24 are each independently an integer of 1 to 10. Ar 21 and Ar 22 are each independently a substituted or unsubstituted arylene group.
In the general formula (3), R 31 is 1-2 monovalent substituents present on the benzene ring and is an electron donating group. A plurality of R 31 may be the same as or different from each other. R 32 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 32 may be the same as or different from each other. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. X 32 is an oxygen atom or N + HR ″. R ″ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Y 31 represents a single bond, -O- (CH 2) n31 - , - O- (CH 2) n32 -Ar 31 -, - NH- (CH 2) n33 -, or, -NH- (CH 2) n34 - Ar 32 —. n31, n32, n33 and n34 are each independently an integer of 1 to 10. Ar 31 and Ar 32 are each independently a substituted or unsubstituted arylene group.
In the general formula (4), R 41 is 1 to 2 monovalent substituents present on the benzene ring, and is an electron donating group. A plurality of R 41 may be the same as or different from each other. R 42 is a group having 1 to 2 monovalent substituents present on the benzene ring and having an anionic functional group at the terminal. A plurality of R 42 may be the same as or different from each other. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 45 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 41 represents a single bond, -O- (CH 2) n41 - , - O- (CH 2) n42 -Ar 41 -, - NH- (CH 2) n43 -, or, -NH- (CH 2) n44 - Ar 42 —. n41, n42, n43 and n44 are each independently an integer of 1 to 10. Ar 41 and Ar 42 are each independently a substituted or unsubstituted arylene group.
一般式(1-2)中、R121は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。Y121は-NH-(CH2)n121-、又は、-NH-(CH2)n122-Ar121-である。n121及びn122はそれぞれ独立に1~10の整数である。Ar121は置換又は無置換のアリーレン基である。)
一般式(2-2)中、R221及びR222はそれぞれ独立に炭素数1~10のアルキル基である。R223は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R224は水素原子又は炭素数1~10のアルキル基である。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。)
一般式(3-2)中、R321及びR322はそれぞれ独立に炭素数1~10のアルキル基である。R323は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R324は水素原子又は炭素数1~10のアルキル基である。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。)
一般式(4-2)中、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。R423は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。) The compound is represented by the following general formula (1-1), (1-2), (2-1), (2-2), (3-1), (3-2), (4-1) or (4 The fluorescent probe for detecting alkaline phosphatase according to claim 3, which is a compound represented by -2).
In the general formula (1-2), R 121 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. Y 121 is —NH— (CH 2 ) n121 — or —NH— (CH 2 ) n122 —Ar 121 —. n121 and n122 are each independently an integer of 1 to 10. Ar 121 is a substituted or unsubstituted arylene group. )
In general formula (2-2), R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms. R 223 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —. n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group. )
In general formula (3-2), R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. R 323 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —. n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group. )
In general formula (4-2), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. R 423 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —. n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group. )
一般式(2-2)中、R221及びR222はそれぞれ独立に炭素数1~10のアルキル基である。R223は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R224は水素原子又は炭素数1~10のアルキル基である。R23、R24、R25及びR26はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。Y221は単結合、-NH-(CH2)n221-、又は、-NH-(CH2)n222-Ar221-である。n221及びn222はそれぞれ独立に1~10の整数である。Ar221は置換又は無置換のアリーレン基である。) The compound according to claim 11, wherein the compound is a compound represented by the following general formula (2-1) or (2-2).
In general formula (2-2), R 221 and R 222 are each independently an alkyl group having 1 to 10 carbon atoms. R 223 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 224 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 23 , R 24 , R 25 and R 26 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. Y 221 is a single bond, —NH— (CH 2 ) n221 —, or —NH— (CH 2 ) n222 —Ar 221 —. n221 and n222 are each independently an integer of 1 to 10. Ar 221 is a substituted or unsubstituted arylene group. )
一般式(3-2)中、R321及びR322はそれぞれ独立に炭素数1~10のアルキル基である。R323は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R324は水素原子又は炭素数1~10のアルキル基である。R33、R34、R37及びR38はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R35及びR36はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X31は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y321は単結合、-NH-(CH2)n321-、又は、-NH-(CH2)n322-Ar321-である。n321及びn322はそれぞれ独立に1~10の整数である。Ar321は置換又は無置換のアリーレン基である。) The compound according to claim 14, wherein the compound is a compound represented by the following general formula (3-1) or (3-2).
In general formula (3-2), R 321 and R 322 are each independently an alkyl group having 1 to 10 carbon atoms. R 323 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 324 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 33 , R 34 , R 37 and R 38 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 35 and R 36 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 31 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 321 is a single bond, —NH— (CH 2 ) n321 —, or —NH— (CH 2 ) n322 —Ar 321 —. n321 and n322 are each independently an integer of 1 to 10. Ar 321 is a substituted or unsubstituted arylene group. )
一般式(4-2)中、R421及びR422はそれぞれ独立に炭素数1~10のアルキル基である。R423は末端にアニオン性官能基を有する基である。前記アニオン性官能基はカルボキシ基、スルホン酸基及びリン酸基からなる群より選ばれるいずれか一つである。R43は水素原子又は炭素数1~10のアルキル基である。R44、R47及びR48はそれぞれ独立に水素原子、ハロゲン原子、又は、炭素数1~10のアルキル基である。R45及びR46はそれぞれ独立に炭素数1~10のアルキル基又は炭素数6~10のアリール基である。X41は珪素原子、リン原子、ゲルマニウム原子又はスズ原子である。Y421は-NH-(CH2)n421-、又は、-NH-(CH2)n422-Ar421-である。n421及びn422はそれぞれ独立に1~10の整数である。Ar421は置換又は無置換のアリーレン基である。) The compound according to claim 18, wherein the compound is a compound represented by the following general formula (4-1) or (4-2).
In general formula (4-2), R 421 and R 422 are each independently an alkyl group having 1 to 10 carbon atoms. R 423 is a group having an anionic functional group at the terminal. The anionic functional group is any one selected from the group consisting of a carboxy group, a sulfonic acid group, and a phosphoric acid group. R 43 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 44 , R 47 and R 48 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms. R 45 and R 46 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. X 41 is a silicon atom, a phosphorus atom, a germanium atom or a tin atom. Y 421 is —NH— (CH 2 ) n421 — or —NH— (CH 2 ) n422 —Ar 421 —. n421 and n422 are each independently an integer of 1 to 10. Ar 421 is a substituted or unsubstituted arylene group. )
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017-041149 | 2017-03-03 | ||
| JP2017041149 | 2017-03-03 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018159810A1 true WO2018159810A1 (en) | 2018-09-07 |
Family
ID=63370092
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/007993 Ceased WO2018159810A1 (en) | 2017-03-03 | 2018-03-02 | Fluorescent probe for detecting alkaline phosphatase, and use for same |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018159810A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020246616A1 (en) | 2019-06-07 | 2020-12-10 | 国立大学法人 東京大学 | Fluorescent probe for detection of enpp activity |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59130284A (en) * | 1982-12-24 | 1984-07-26 | バイエル・アクチエンゲゼルシヤフト | Phosphatase or sulfatase colorimetry and colorimeter |
| WO2005024049A1 (en) * | 2003-09-05 | 2005-03-17 | Daiichi Pure Chemicals Co., Ltd. | Fluorescent probe |
| JP2007533828A (en) * | 2004-04-23 | 2007-11-22 | ジーイー・ヘルスケア・アクスイェ・セルスカプ | Fluorescence resonance energy transfer enzyme substrate |
| US20100086957A1 (en) * | 2008-09-30 | 2010-04-08 | University Of Southern California | Method for monitoring intracellular tyrosine phosphatase activity |
| WO2012099218A1 (en) * | 2011-01-20 | 2012-07-26 | 国立大学法人 東京大学 | Fluorescent probe |
-
2018
- 2018-03-02 WO PCT/JP2018/007993 patent/WO2018159810A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59130284A (en) * | 1982-12-24 | 1984-07-26 | バイエル・アクチエンゲゼルシヤフト | Phosphatase or sulfatase colorimetry and colorimeter |
| WO2005024049A1 (en) * | 2003-09-05 | 2005-03-17 | Daiichi Pure Chemicals Co., Ltd. | Fluorescent probe |
| JP2007533828A (en) * | 2004-04-23 | 2007-11-22 | ジーイー・ヘルスケア・アクスイェ・セルスカプ | Fluorescence resonance energy transfer enzyme substrate |
| US20100086957A1 (en) * | 2008-09-30 | 2010-04-08 | University Of Southern California | Method for monitoring intracellular tyrosine phosphatase activity |
| WO2012099218A1 (en) * | 2011-01-20 | 2012-07-26 | 国立大学法人 東京大学 | Fluorescent probe |
Non-Patent Citations (3)
| Title |
|---|
| FUJITA, SATOSHI ET AL.: "Highly sensitive detection of membrane-bound DNA using fluorescein derivatives", ANALYTICA CHIMICA ACTA, vol. 339, 1997, pages 289 - 296, XP055538430 * |
| OBAYASHI, YUSUKE ET AL.: "A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate", ANALYST, vol. 140, 2015, pages 5065 - 5073, XP055529811 * |
| WAHLER, DENIS ET AL.: "Enzyme Fingerprints of Activity, and Stereo- and Enantioselectivity from Fluorogenic and Chromogenic Substrate Arrays", CHEMISTRY A EUROPEAN JOURNAL, vol. 8, no. 14, 2002, pages 3211 - 3228, XP002255071 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020246616A1 (en) | 2019-06-07 | 2020-12-10 | 国立大学法人 東京大学 | Fluorescent probe for detection of enpp activity |
| EP3981778A4 (en) * | 2019-06-07 | 2023-07-19 | The University of Tokyo | FLUORESCENT PROBE FOR ENPP ACTIVITY DETECTION |
| JP7628233B2 (en) | 2019-06-07 | 2025-02-10 | 国立大学法人 東京大学 | Fluorescent probe for detecting ENPP activity |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6351511B2 (en) | Synthesis of asymmetric Si rhodamine and rhodol | |
| CN107235946A (en) | A kind of glutathione fluorescence probe and its preparation method and application | |
| CN104830317B (en) | A kind of hydrogen sulfide fluorescence probe and its preparation method and application | |
| JP4069987B2 (en) | Novel 1,2-dioxetane compound having haloalkoxy group, preparation method thereof and use thereof | |
| CN109336835B (en) | Fluorescent probe for detecting activity of myeloperoxidase and preparation method and application thereof | |
| CN109438319B (en) | Compound for detecting leucine aminopeptidase and preparation method and application thereof | |
| JP6310575B2 (en) | A novel chromophore structure for lanthanide chelates | |
| CN112779001A (en) | Preparation and application of near-infrared viscosity fluorescent probe | |
| CN114394986A (en) | A ratio type peroxynitrosyl fluorescent probe, preparation method and application | |
| CN116217503B (en) | Preparation method and application of viscosity fluorescent probe | |
| CN105693736A (en) | Glycine structure containing Rhodamine photo-control fluorescent switch probe and application thereof | |
| CN103044947A (en) | A kind of Nile blue fluorescent dye, its preparation method and application | |
| WO2018159810A1 (en) | Fluorescent probe for detecting alkaline phosphatase, and use for same | |
| CN105693673A (en) | 2,4-dinitrobenzenesulfonyl-containing coumarin compound and preparation method and application thereof | |
| CN111548305B (en) | A kind of quinoline compound that can be used for targeting PSMA and preparation method thereof | |
| CN108218817B (en) | A kind of differentiation GSH, Cys, SO2Fluorescence probe and its preparation method and application | |
| CN116375692B (en) | Near infrared fluorescent molecular probe for detecting cysteine, preparation method and kit thereof | |
| CN107445946B (en) | A kind of Mitochondrially targeted fluorine ion fluorescence probe and its preparation method and application | |
| CN113603722B (en) | A kind of polar fluorescent probe and its preparation method and application | |
| CN101424641B (en) | Strong acid type ph fluorescent probe based on fluoro-boron fluorescent dye | |
| JP7628233B2 (en) | Fluorescent probe for detecting ENPP activity | |
| JP2005022985A (en) | Zinc fluorescent probe | |
| CN113548981A (en) | Triphenylamine phenolic compound, preparation method thereof and application thereof in tryptophan detection | |
| CN103980297B (en) | A kind of Multifunctional imaging probe detecting mercury ion | |
| CN114907222A (en) | A TPE-based aggregation-induced luminescence fluorescent probe and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761370 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18761370 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |