WO2018159970A1 - Organic electroluminescent device - Google Patents
Organic electroluminescent device Download PDFInfo
- Publication number
- WO2018159970A1 WO2018159970A1 PCT/KR2018/002357 KR2018002357W WO2018159970A1 WO 2018159970 A1 WO2018159970 A1 WO 2018159970A1 KR 2018002357 W KR2018002357 W KR 2018002357W WO 2018159970 A1 WO2018159970 A1 WO 2018159970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- unsubstituted
- alkyl
- aryl
- membered
- Prior art date
Links
- 230000005525 hole transport Effects 0.000 claims abstract description 74
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims description 64
- 125000003118 aryl group Chemical group 0.000 claims description 58
- 150000001875 compounds Chemical class 0.000 claims description 52
- 125000001072 heteroaryl group Chemical group 0.000 claims description 50
- 125000001769 aryl amino group Chemical group 0.000 claims description 37
- 125000005104 aryl silyl group Chemical group 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 30
- 239000001257 hydrogen Substances 0.000 claims description 30
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 29
- 150000002431 hydrogen Chemical group 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 29
- 239000007924 injection Substances 0.000 claims description 29
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 25
- 229910052805 deuterium Inorganic materials 0.000 claims description 25
- 229910052736 halogen Inorganic materials 0.000 claims description 24
- 150000002367 halogens Chemical class 0.000 claims description 24
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 20
- 150000004982 aromatic amines Chemical class 0.000 claims description 18
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 18
- 229910052717 sulfur Inorganic materials 0.000 claims description 18
- 125000001424 substituent group Chemical group 0.000 claims description 17
- 125000003545 alkoxy group Chemical group 0.000 claims description 15
- 125000003282 alkyl amino group Chemical group 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 125000000732 arylene group Chemical group 0.000 claims description 12
- 125000005549 heteroarylene group Chemical group 0.000 claims description 12
- 125000006822 tri(C1-C30) alkylsilyl group Chemical group 0.000 claims description 12
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 11
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 8
- 125000003003 spiro group Chemical group 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 5
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 4
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 claims description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 3
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 3
- 125000004414 alkyl thio group Chemical group 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 125000005129 aryl carbonyl group Chemical group 0.000 claims description 3
- 125000005110 aryl thio group Chemical group 0.000 claims description 3
- 125000004104 aryloxy group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 3
- 125000003107 substituted aryl group Chemical group 0.000 claims description 3
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 3
- 125000004947 alkyl aryl amino group Chemical group 0.000 claims description 2
- 125000005107 alkyl diaryl silyl group Chemical group 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 125000005105 dialkylarylsilyl group Chemical group 0.000 claims description 2
- 125000005415 substituted alkoxy group Chemical group 0.000 claims description 2
- 125000004665 trialkylsilyl group Chemical group 0.000 claims description 2
- 125000005106 triarylsilyl group Chemical group 0.000 claims description 2
- 125000001475 halogen functional group Chemical group 0.000 claims 2
- 239000010410 layer Substances 0.000 description 152
- -1 azulene derivative compound Chemical class 0.000 description 33
- 0 C*(*)*C1C(C)(*)C(*)C(C)C([*-])C2(C)C1***2 Chemical compound C*(*)*C1C(C)(*)C(*)C(C)C([*-])C2(C)C1***2 0.000 description 19
- 239000002019 doping agent Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 15
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 15
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000000903 blocking effect Effects 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 125000001624 naphthyl group Chemical group 0.000 description 8
- 235000010290 biphenyl Nutrition 0.000 description 7
- 239000004305 biphenyl Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- HPJYKMSFRBJOSW-JHSUYXJUSA-N Damsin Chemical compound C[C@H]1CC[C@H]2C(=C)C(=O)O[C@H]2[C@]2(C)C(=O)CC[C@@H]12 HPJYKMSFRBJOSW-JHSUYXJUSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 5
- 125000004076 pyridyl group Chemical group 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 125000004306 triazinyl group Chemical group 0.000 description 4
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001555 benzenes Chemical group 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical group C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 3
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 3
- 125000001041 indolyl group Chemical group 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 125000005493 quinolyl group Chemical group 0.000 description 3
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000010189 synthetic method Methods 0.000 description 3
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 3
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- AYJJTPLDSZAGGA-UHFFFAOYSA-N 2-ethyl-7-methyl-5-(4-methylphenyl)-1,3,4,4a,5,9b-hexahydroindeno[1,2-c]pyridine Chemical compound C1N(CC)CCC2C1C1=CC=C(C)C=C1C2C1=CC=C(C)C=C1 AYJJTPLDSZAGGA-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VBMSQUHXMZWOPC-UHFFFAOYSA-N CC1(C=CC=CC1c1cccc2ccc3[n](C4c5ccccc5C(c5nc(-c6ccccc6)nc(-c6ccccc6)n5)=CC4)c(cc4C5)c6c3c12)c6c4-c1ccccc1C5c1ccccc1 Chemical compound CC1(C=CC=CC1c1cccc2ccc3[n](C4c5ccccc5C(c5nc(-c6ccccc6)nc(-c6ccccc6)n5)=CC4)c(cc4C5)c6c3c12)c6c4-c1ccccc1C5c1ccccc1 VBMSQUHXMZWOPC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000003775 Density Functional Theory Methods 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- FBVBNCGJVKIEHH-UHFFFAOYSA-N [1]benzofuro[3,2-b]pyridine Chemical compound C1=CN=C2C3=CC=CC=C3OC2=C1 FBVBNCGJVKIEHH-UHFFFAOYSA-N 0.000 description 2
- WIUZHVZUGQDRHZ-UHFFFAOYSA-N [1]benzothiolo[3,2-b]pyridine Chemical compound C1=CN=C2C3=CC=CC=C3SC2=C1 WIUZHVZUGQDRHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001349 alkyl fluorides Chemical class 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 125000005956 isoquinolyl group Chemical group 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- ZDPDDOIOIKNGEJ-UHFFFAOYSA-N 11h-indeno[1,2-h]quinoline Chemical group C1=CC=NC2=C3CC4=CC=CC=C4C3=CC=C21 ZDPDDOIOIKNGEJ-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- XFSYQOIWGVERAL-YFKPBYRVSA-N C=C=C[C@@H](N=C)O Chemical compound C=C=C[C@@H](N=C)O XFSYQOIWGVERAL-YFKPBYRVSA-N 0.000 description 1
- AWRYOPFOFAPLIM-UHFFFAOYSA-N CC(C)(C1C2)c3ccccc3C1C=CC2N(c(cc1)cc2c1-c1cc(cccc3)c3cc1C21C(C=CCC2)=C2c2ccccc12)C(C=C1)=CCC1c1ccccc1 Chemical compound CC(C)(C1C2)c3ccccc3C1C=CC2N(c(cc1)cc2c1-c1cc(cccc3)c3cc1C21C(C=CCC2)=C2c2ccccc12)C(C=C1)=CCC1c1ccccc1 AWRYOPFOFAPLIM-UHFFFAOYSA-N 0.000 description 1
- RYBRKTJTPOHENK-UHFFFAOYSA-N CC(C)(c1ccccc1-1)c2cccc3c2c-1nc(-[n](c1ccc2)c4ccc5c6c4c1c2-c(cccc1)c1-c6ccc5)n3 Chemical compound CC(C)(c1ccccc1-1)c2cccc3c2c-1nc(-[n](c1ccc2)c4ccc5c6c4c1c2-c(cccc1)c1-c6ccc5)n3 RYBRKTJTPOHENK-UHFFFAOYSA-N 0.000 description 1
- FWXJLLHALRZVHE-UHFFFAOYSA-N CC(C1)C(c2nc(-c3ccccc3)nc(-c3ccccc3)n2)=CC=C1[n](cc1C(C)(CC=CC2)C2(C)C2=C3c4ccccc4C4C=CC=CC24)c2c1C3=CCC2 Chemical compound CC(C1)C(c2nc(-c3ccccc3)nc(-c3ccccc3)n2)=CC=C1[n](cc1C(C)(CC=CC2)C2(C)C2=C3c4ccccc4C4C=CC=CC24)c2c1C3=CCC2 FWXJLLHALRZVHE-UHFFFAOYSA-N 0.000 description 1
- GGTWWCSYBMCBME-UHFFFAOYSA-N CC(C1)C=Cc(c2ccc34)c1cc(C1C=CC=CC1c1ccc5)c2c3c1c5[n]4-c1ccccn1 Chemical compound CC(C1)C=Cc(c2ccc34)c1cc(C1C=CC=CC1c1ccc5)c2c3c1c5[n]4-c1ccccn1 GGTWWCSYBMCBME-UHFFFAOYSA-N 0.000 description 1
- KSUXKEAUEVMTKO-UHFFFAOYSA-N CC(C1c2ccccc2-c2ccccc2-c2cccc3c12)N3c(c1c2cccc1)ccc2-c1nc(-c2ccccc2)nc(-c2ccccc2)n1 Chemical compound CC(C1c2ccccc2-c2ccccc2-c2cccc3c12)N3c(c1c2cccc1)ccc2-c1nc(-c2ccccc2)nc(-c2ccccc2)n1 KSUXKEAUEVMTKO-UHFFFAOYSA-N 0.000 description 1
- WYMZASPWANWXMI-UHFFFAOYSA-N CC(C1c2ccccc2-c2ccccc2-c2cccc3c12)N3c(cc1)ccc1-c1nc(-c2cc(cccc3)c3cc2)nc(-c2ccccc2)n1 Chemical compound CC(C1c2ccccc2-c2ccccc2-c2cccc3c12)N3c(cc1)ccc1-c1nc(-c2cc(cccc3)c3cc2)nc(-c2ccccc2)n1 WYMZASPWANWXMI-UHFFFAOYSA-N 0.000 description 1
- IHWKZWURGMLBAZ-UHFFFAOYSA-N CC(C1c2ccccc2-c2ccccc2-c2cccc3c12)N3c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c2ccccc2)n1 Chemical compound CC(C1c2ccccc2-c2ccccc2-c2cccc3c12)N3c(cc1)ccc1-c1nc(-c2ccccc2)nc(-c2ccccc2)n1 IHWKZWURGMLBAZ-UHFFFAOYSA-N 0.000 description 1
- MSRJNLDVXWMERW-UHFFFAOYSA-N CC(Cc1c(cccc2)c2c2)c([n]3C4=CC=CC(c5ccccc5)N4)c4-c1c2-c1ccccc1-c1cccc3c41 Chemical compound CC(Cc1c(cccc2)c2c2)c([n]3C4=CC=CC(c5ccccc5)N4)c4-c1c2-c1ccccc1-c1cccc3c41 MSRJNLDVXWMERW-UHFFFAOYSA-N 0.000 description 1
- AQFUSGKNACRMCE-UHFFFAOYSA-N CC1(C)c(cc(cc2)N(c(cc3)ccc3-c3ccccc3)c(cc3)ccc3-c(cc3)cc(c4c(cccc5)c5ccc44)c3[n]4-c3ccccc3)c2-c2ccccc12 Chemical compound CC1(C)c(cc(cc2)N(c(cc3)ccc3-c3ccccc3)c(cc3)ccc3-c(cc3)cc(c4c(cccc5)c5ccc44)c3[n]4-c3ccccc3)c2-c2ccccc12 AQFUSGKNACRMCE-UHFFFAOYSA-N 0.000 description 1
- BAKZEVASKYKKPP-QHSFNAQHSA-N CC[C@@H]1C([n]2c3c(cccc4)c4cc(-c4c-5cccc4)c3c3c4c-5cccc4ccc23)=NC(c2ccccc2)=C2C=CC=CC12 Chemical compound CC[C@@H]1C([n]2c3c(cccc4)c4cc(-c4c-5cccc4)c3c3c4c-5cccc4ccc23)=NC(c2ccccc2)=C2C=CC=CC12 BAKZEVASKYKKPP-QHSFNAQHSA-N 0.000 description 1
- MJTFAUQSXDUUKZ-UHFFFAOYSA-N CN1C=CC=NC1[n]1c2cccc(-c3c(-c4ccccc4-4)cccc3)c2c-4c1 Chemical compound CN1C=CC=NC1[n]1c2cccc(-c3c(-c4ccccc4-4)cccc3)c2c-4c1 MJTFAUQSXDUUKZ-UHFFFAOYSA-N 0.000 description 1
- IDGPMECYKMTEPY-UHFFFAOYSA-N CS1c(c(c2c3cccc2)c(cc2)[n]3-c(cc3)ccc3-c(cc3)ccc3N(c3ccccc3)c3cc(cccc4)c4cc3)c2-c2ccccc12 Chemical compound CS1c(c(c2c3cccc2)c(cc2)[n]3-c(cc3)ccc3-c(cc3)ccc3N(c3ccccc3)c3cc(cccc4)c4cc3)c2-c2ccccc12 IDGPMECYKMTEPY-UHFFFAOYSA-N 0.000 description 1
- QKCKMUYSPUUMJI-SFPAEFIJSA-N C[C@@H]1C([n]2c3c(cccc4)c4cc(-c4c-5cccc4)c3c3c4c-5cccc4ccc23)=NC(c2ccccc2)=NC1c1ccccc1 Chemical compound C[C@@H]1C([n]2c3c(cccc4)c4cc(-c4c-5cccc4)c3c3c4c-5cccc4ccc23)=NC(c2ccccc2)=NC1c1ccccc1 QKCKMUYSPUUMJI-SFPAEFIJSA-N 0.000 description 1
- DBECAZZCFPIVMX-DXQDCMHZSA-N C[C@@H]1C(c(c2c3cccc2)ccc3-[n](c2c3C(C4(C)C=CC=CC4c4ccc5)=CC6C=CC=CC26)c2c3c4c5cc2)=[N+](Cc2ccccc2)[N-]C1C1=CC=CCC1 Chemical compound C[C@@H]1C(c(c2c3cccc2)ccc3-[n](c2c3C(C4(C)C=CC=CC4c4ccc5)=CC6C=CC=CC26)c2c3c4c5cc2)=[N+](Cc2ccccc2)[N-]C1C1=CC=CCC1 DBECAZZCFPIVMX-DXQDCMHZSA-N 0.000 description 1
- YIABHBWOZDLDFN-YFGLDMBDSA-N C[C@H](C1c2ccccc2)c(cccc2)c2-c2c1ccc(N(c1ccccc1)c(cc1)ccc1-c1c3[s]c(cccc4)c4c3ccc1)c2 Chemical compound C[C@H](C1c2ccccc2)c(cccc2)c2-c2c1ccc(N(c1ccccc1)c(cc1)ccc1-c1c3[s]c(cccc4)c4c3ccc1)c2 YIABHBWOZDLDFN-YFGLDMBDSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- IXHWGNYCZPISET-UHFFFAOYSA-N N#CC(C#N)=C(C(F)=C(C1=C(C#N)C#N)F)C(F)=C1F Chemical compound N#CC(C#N)=C(C(F)=C(C1=C(C#N)C#N)F)C(F)=C1F IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- LQXFOLBBQWZYNH-UHFFFAOYSA-N N#CC(C#N)=C(C(F)=C(C1=C(C2=C(C#N)C#N)F)C(F)=C2F)C(F)=C1F Chemical compound N#CC(C#N)=C(C(F)=C(C1=C(C2=C(C#N)C#N)F)C(F)=C2F)C(F)=C1F LQXFOLBBQWZYNH-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N N#CC(C#N)=C(C=C1)C=CC1=C(C#N)C#N Chemical compound N#CC(C#N)=C(C=C1)C=CC1=C(C#N)C#N PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- ZZWCCDDTBOOLNR-UHFFFAOYSA-N N#CC(C#N)=C(C=C1)C=CC1=C(C=C1)C=CC1=C(C#N)C#N Chemical compound N#CC(C#N)=C(C=C1)C=CC1=C(C=C1)C=CC1=C(C#N)C#N ZZWCCDDTBOOLNR-UHFFFAOYSA-N 0.000 description 1
- AVBBXEPXBKMMGT-UHFFFAOYSA-N N#CC(C1c(cc(-c2ccccc2C2=C(C#N)C#N)c2c2)c2-c2c1cccc2)C#N Chemical compound N#CC(C1c(cc(-c2ccccc2C2=C(C#N)C#N)c2c2)c2-c2c1cccc2)C#N AVBBXEPXBKMMGT-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- XDNADZYPWVQFRI-UHFFFAOYSA-N [1]benzofuro[2,3-h]quinoline Chemical compound C1=CC=NC2=C3C4=CC=CC=C4OC3=CC=C21 XDNADZYPWVQFRI-UHFFFAOYSA-N 0.000 description 1
- CWDFYKZZCSEOPO-UHFFFAOYSA-N [1]benzothiolo[2,3-h]quinoline Chemical compound C1=CC=NC2=C3C4=CC=CC=C4SC3=CC=C21 CWDFYKZZCSEOPO-UHFFFAOYSA-N 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001545 azulenes Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- YAKFZVRTYZEDJB-UHFFFAOYSA-N c(cc1)ccc1-[n]1c(-c(cc2)ccc2-[n](c2c3c(-c4ccccc4-c4ccc5)ccc2)c2c3c4c5cc2)nc2c1c1ccccc1c1ccccc21 Chemical compound c(cc1)ccc1-[n]1c(-c(cc2)ccc2-[n](c2c3c(-c4ccccc4-c4ccc5)ccc2)c2c3c4c5cc2)nc2c1c1ccccc1c1ccccc21 YAKFZVRTYZEDJB-UHFFFAOYSA-N 0.000 description 1
- WFNMMEUPABAHAX-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)ccc1N(c1ccccc1)c(cc1)ccc1-c(cc1)ccc1-[n]1c(cc(c(c2c3cccc2)c2)[n]3-c3ccccc3)c2c2ccccc12 Chemical compound c(cc1)ccc1-c(cc1)ccc1N(c1ccccc1)c(cc1)ccc1-c(cc1)ccc1-[n]1c(cc(c(c2c3cccc2)c2)[n]3-c3ccccc3)c2c2ccccc12 WFNMMEUPABAHAX-UHFFFAOYSA-N 0.000 description 1
- NNEQFUIUGSDBIA-UHFFFAOYSA-N c(cc1)ccc1-c1cc(-[n](c2ccc3)c4ccc5c6c4c2c3-c(cccc2)c2-c6ccc5)nc2c1cccn2 Chemical compound c(cc1)ccc1-c1cc(-[n](c2ccc3)c4ccc5c6c4c2c3-c(cccc2)c2-c6ccc5)nc2c1cccn2 NNEQFUIUGSDBIA-UHFFFAOYSA-N 0.000 description 1
- DOPVDBDFAAPOPO-UHFFFAOYSA-N c(cc1-c2cccc3c2c2c45)ccc1-c4cccc5ccc2[n]3-c1ccc2c3nccnc3c(cccc3)c3c2c1 Chemical compound c(cc1-c2cccc3c2c2c45)ccc1-c4cccc5ccc2[n]3-c1ccc2c3nccnc3c(cccc3)c3c2c1 DOPVDBDFAAPOPO-UHFFFAOYSA-N 0.000 description 1
- UISXQVLFENUEJY-UHFFFAOYSA-N c(cc12)ccc1[o]c1c2c(cccc2)c2c2c1c1ccccc1c(-[n](c1cccc(-c(cccc3)c3-c3ccc4)c11)c5c1c3c4cc5)n2 Chemical compound c(cc12)ccc1[o]c1c2c(cccc2)c2c2c1c1ccccc1c(-[n](c1cccc(-c(cccc3)c3-c3ccc4)c11)c5c1c3c4cc5)n2 UISXQVLFENUEJY-UHFFFAOYSA-N 0.000 description 1
- IYAZZUXGUPXGCT-UHFFFAOYSA-N c(cc1c2c3)ccc1[o]c2cc(-c1cccc2c1c1c45)c3-c4cccc5ccc1[n]2-c1ccccn1 Chemical compound c(cc1c2c3)ccc1[o]c2cc(-c1cccc2c1c1c45)c3-c4cccc5ccc1[n]2-c1ccccn1 IYAZZUXGUPXGCT-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 125000005299 dibenzofluorenyl group Chemical group C1(=CC=CC2=C3C(=C4C=5C=CC=CC5CC4=C21)C=CC=C3)* 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000005551 pyridylene group Chemical group 0.000 description 1
- 125000005576 pyrimidinylene group Chemical group 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000005558 triazinylene group Chemical group 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/94—[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/93—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/50—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
- C07D333/78—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/10—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/06—Peri-condensed systems
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/156—Hole transporting layers comprising a multilayered structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
Definitions
- the present disclosure relates to an organic electroluminescent device comprising a light-emitting layer and a hole transport zone.
- OLED organic electroluminescent device
- TPD/Alq3 bilayer consisting of a light-emitting layer and a charge transport layer. Since then, the research on an OLED has been rapidly carried out, and it has been commercialized. At present, an OLED mainly uses phosphorescent materials having excellent luminous efficiency in panel implementation. Low driving voltage and high luminous efficiency are required for long lifespan and high resolution of display.
- U.S. Patent No. 6,902,831 discloses an azulene derivative as an organic electroluminescent compound, but it does not specifically disclose an organic electroluminescent compound of a fused azulene derivative. In addition, the document does not specifically disclose that the performance of an OLED can be improved by combining a host compound containing a fused azulene derivative and a specific material contained in a hole transport zone.
- the objective of the present disclosure is to provide an organic electroluminescent device having low driving voltage, high luminous efficiency and/or long lifespan properties by a combination of a light-emitting layer comprising a compound according to the present disclosure, and a hole transport zone comprising a compound having a specific HOMO (Highest Occupied Molecular Orbital) energy level.
- a specific HOMO Highest Occupied Molecular Orbital
- a light-emitting layer comprising a phosphorescent dopant is preferable to have a light-emitting material having excellent hole and electron current properties for low driving voltage, high efficiency, and long lifespan, and the material having the thermal stability for improvement of lifespan.
- using a light-emitting material having a narrow energy band gap can contribute to improve driving voltage and luminous efficiency by minimizing the charge trap.
- the azulene derivative comprised in the device of the present disclosure has a slow transition constant of the internal conversion of S 2 ⁇ S 1 , i.e. 7*10 -8 s, the transition constant of the internal conversion of S 1 ⁇ S 0 is fast, i.e.
- the fluorescence quantum yield of S 2 ⁇ S 0 increases, and so the azulene derivative is one of the representative materials which violates Kasha's rule.
- the levels of S 2 and S 1 of azulene are 3.565 eV and 1.771 eV, respectively, while the level difference of T 1 and S 0 is very small, i.e. the T 1 -S 0 transition is 1.711 eV.
- the conventional hole transport zone has limitations in increasing the efficiency of the light-emitting layer comprising the fused azulene derivative compound.
- a hole transport zone requires a compound having a high HOMO energy level in order to have a high hole mobility. If the HOMO energy level is high, the driving voltage decreases, but the efficiency of the light-emitting layer also decreases. On the contrary, if the HOMO energy level is low, the efficiency of the light-emitting layer increases, but the driving voltage also increases, and thus it is difficult to realize high luminous efficiency of the device.
- the present inventors found that the above-mentioned problems can be solved by comprising a fused azulene derivative of the present disclosure in a light-emitting layer, and an arylamine derivative having a specific HOMO energy level of the present disclosure in a hole transport zone.
- the present inventors found that the above objective can be achieved by an organic electroluminescent device comprising a first electrode, a second electrode facing the first electrode, a light-emitting layer between the first electrode and the second electrode, and a hole transport zone between the first electrode and the light-emitting layer, wherein the light-emitting layer comprises a compound represented by the following formula 1:
- X 1 represents N-L-(Ar) a , S, or O,
- L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
- Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino,
- Y 1 to Y 12 each independently, represent N or CR 1 ,
- R 1 each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30
- a represents an integer of 1 to 4, where if a is an integer of 2 or more, each of Ar may be the same or different;
- the hole transport zone comprises an arylamine derivative
- the HOMO energy level of the arylamine derivative satisfies the following equation 11:
- an organic electroluminescent device having low driving voltage, high luminous efficiency and/or long lifespan properties can be provided. Also, it is possible to produce a display device or a lighting device by using the organic electroluminescent device of the present disclosure.
- the organic electroluminescent device of the present disclosure comprises a first electrode, a second electrode facing the first electrode, a light-emitting layer between the first electrode and the second electrode, a hole transport zone between the first electrode and the light-emitting layer, and an electron transport zone between the light-emitting layer and the second electrode.
- One of the first and second electrodes may be an anode, and the other may be a cathode.
- the hole transport zone means a zone wherein holes are transported between the first electrode and the light-emitting layer.
- the hole transport zone may comprise at least one of a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer and an electron blocking layer.
- the hole injection layer, the hole transport layer, the hole auxiliary layer, the light-emitting auxiliary layer and the electron blocking layer, respectively, may be a single layer, or a plurality of layers in which two or more layers are stacked.
- the hole transport zone may comprise a first hole transport layer and a second hole transport layer, wherein the second hole transport layer may be at least one layer of a plurality of hole transport layers, and it may comprise at least one of a hole auxiliary layer, a light-emitting auxiliary layer and a electron blocking layer.
- the hole transport zone may comprise a first hole transport layer and a second hole transport layer, wherein the first hole transport layer may be placed between the first electrode and the light-emitting layer, the second hole transport layer may be placed between the first hole transport layer and the light-emitting layer, and the second hole transport layer may serve as a hole transport layer, a light-emitting auxiliary layer, a hole auxiliary layer and/or an electron blocking layer.
- the hole transport zone may comprise a p-doped hole injection layer, a hole transport layer, and a light-emitting auxiliary layer.
- the p-doped hole injection layer means a hole injection layer doped with a p-dopant.
- the p-dopant is a material capable of imparting p-type semiconductor properties.
- the p-type semiconductor properties mean the properties of injecting or transporting holes at the HOMO energy level, i.e., the properties of materials having a high hole conductivity.
- the hole transport layer may be placed between the anode (or the hole injection layer) and the light-emitting layer.
- the hole transport layer may function to smoothly move the holes transferred from the anode to the light-emitting layer, and to block the electrons transferred from the cathode to remain in the light-emitting layer.
- the light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer. When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or the hole transport, or for preventing the overflow of electrons.
- the light-emitting auxiliary layer When the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or the electron transport, or for preventing the overflow of holes.
- the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or the hole injection rate), thereby enabling the charge balance to be controlled.
- the electron blocking layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and can confine the excitions within the light-emitting layer by blocking the overflow of electrons from the light-emitting layer to prevent a light-emitting leakage.
- the further included hole transport layer may be used as a hole auxiliary layer or an electron blocking layer.
- the light-emitting auxiliary layer, the hole auxiliary layer and/or the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
- the electron transport zone may comprise at least one of an electron buffer layer, a hole blocking layer, an electron transport layer and an electron injection layer, and preferably, at least one of an electron transport layer and an electron injection layer.
- the electron buffer layer is a layer capable of improving the problem that light-emitting luminance deteriorates due to the change of current properties in the device when the device is exposed to a high temperature during a process of producing panels, and it can control the charge flow properties.
- the light-emitting layer in which light is emitted, may be a single layer, or a plurality of layers in which two or more layers are stacked.
- the doping concentration of the dopant compound with respect to the host compound of the light-emitting layer is preferably less than 20% by weight.
- (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert -butyl, etc.
- (C3-C30)cycloalkyl is a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
- (3- to 7-membered)heterocycloalkyl is a cycloalkyl having at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, preferably O, S, and N, and 3 to 7 ring backbone atoms, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.
- (C6-C30)aryl(ene) is a monocyclic or fused ring-type radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of ring backbone carbon atoms is preferably 6 to 20, more preferably 6 to 15, may be partially saturated, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
- (3- to 30-membered)heteroaryl(ene) is an aryl group having at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P, and 3 to 30 ring backbone atoms, in which the number of ring backbone atoms is preferably 3 to 20, more preferably 5 to 15; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl,
- substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or functional group, i.e., a substituent.
- the above substituents may be at least one selected from the group consisting of a methyl, a tert -butyl, a phenyl unsubstituted or substituted with a pyridinyl(s), a naphthyl, a biphenyl, a dimethylfluorenyl, a phenylfluorenyl, a diphenylfluorenyl, a phenanthrenyl, a triphenylenyl, a pyridinyl, a triazinyl substituted with a phenyl(s) and/or a naphthyl(s), an indolyl substituted with a diphenyl(s), a benzoimidazolyl substituted with a phenyl(s), a quinolyl, a quinazolinyl substituted with a phenyl(s), a carbazolyl, a dibenzofuranyl,
- X 1 represents N-L-(Ar) a , S, or O.
- L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene; preferably, a single bond, a substituted or unsubstituted (C6-C25)arylene, or a substituted or unsubstituted (5- to 25-membered)heteroarylene; and more preferably, a single bond, an unsubstituted (C6-C18)arylene, or an unsubstituted (5- to 18-membered)heteroarylene, wherein the heteroarylene may comprise at least one of nitrogen, oxygen, and/or sulfur.
- L may represent a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted naphthylene, a substituted or unsubstituted biphenylene, a substituted or unsubstituted pyridylene, a substituted or unsubstituted pyrimidinylene, a substituted or unsubstituted triazinylene, a substituted or unsubstituted quinazolinylene, a substituted or unsubstituted quinoxalinylene, a substituted or unsubstituted naphthyridinylene, a substituted or unsubstituted benzoquinazolinylene, a substituted or unsubstituted benzothienopyrimidinylene, a substituted or unsubstituted acenaphthopyrimidinylene, a substituted or unsubstituted
- Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; preferably, hydrogen, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C25)aryla
- Ar may represent a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted iso
- a represents an integer of 1 to 4, preferably, 1 or 2, where if a is an integer of 2 or more, each of Ar may be the same or different.
- Y 1 to Y 12 each independently, represent N or CR 1 . According to one embodiment of the present disclosure, all of Y 1 to Y 12 may represent CR 1 , and according to another embodiment of the present disclosure, at least one of Y 1 to Y 12 may represent N. Where there are a plurality of R 1 ’s, each of R 1 may be the same or different.
- R 1 each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30
- R 1 may each independently represent hydrogen, a substituted or unsubstituted methyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted phenylbiphenylamino, etc.
- At least one adjacent pair of Y 1 to Y 12 in formula 1 are CR 1 , and the adjacent two R 1 ’s of CR 1 are fused together to each independently form a ring represented by any one of the following formulas 2 to 6, but is not limited thereto.
- the formed ring may be a substituted or unsubstituted benzene ring, a naphthalene ring, a furan ring, a thiophene ring, a substituted or unsubstituted pyrrole ring, a pyridine ring, a benzofuran ring, a benzothiophene ring, a substituted or unsubstituted indole ring, a dibenzofuran ring, a dibenzothiophene ring, a substituted or unsubstituted carbazole ring, a phenanthrene ring, etc., including the ring of formulas 2 to 6.
- A represents N or CR 2 . According to one embodiment of the present disclosure, A may all represent CR 2 , and according to another embodiment of the present disclosure, at least one of A may represent N. Where there are a plurality of R 2 ’s, each of R 2 may be the same or different.
- R 2 each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30
- R 3 represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)ary
- the OLED according to the present disclosure comprises a hole transport zone between the first electrode and the light-emitting layer, wherein the hole transport zone comprises an arylamine derivative, and the HOMO energy level of the arylamine derivative satisfies the following equation 11.
- the HOMO energy level of the arylamine derivative satisfies the following equation 12.
- the OLED according to the present disclosure comprises a first hole transport layer between the first electrode and the light-emitting layer, and a second hole transport layer between the first hole transport layer and the light-emitting layer, wherein the second hole transport layer comprises an arylamine derivative containing a fluorene or a fused flourene, and the HOMO energy level of the arylamine derivative satisfies the equation 11.
- the second hole transport layer may be a single layer or a plurality of layers, and the second hole transport layer may serve as a hole transport layer, a light-emitting auxiliary layer, a hole auxiliary layer and/or an electron blocking layer.
- the hole transport zone includes a compound having a HOMO energy level of less than -5.0, e.g., -5.1 or less, it has a value lower than the HOMO energy level of the compound represented by the formula 1 comprised in the light-emitting layer.
- the injection of holes is hindered, and the driving voltage is increased. That is, even if the luminous efficiency of the device increases, since the driving voltage increases as the luminous efficiency increases, there is no gain in terms of power efficiency (lm/W), and rather low power efficiency can be exhibited.
- the hole transport zone comprises a compound having a HOMO energy level exceeding -4.65
- the energy barrier between the layer containing it, e.g., the second hole transport layer, and the light-emitting layer becomes too large, and the injection of holes is hindered.
- the difference between the upper limit value and the lower limit value of the HOMO energy level of the compound comprised in the hole transport zone may be more appropriate about 0.3 eV or less.
- the arylamine derivative comprised in the hole transport zone, preferably the second hole transport layer, for example, at least one of the light-emitting auxiliary layer and the hole auxiliary layer may comprise a compound represented by the following formula 11.
- L a to L c each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene; preferably, a single bond, a substituted or unsubstituted (C6-C25)arylene, a substituted or unsubstituted (5- to 25-membered)heteroarylene, or a substituted or unsubstituted (C3-C25)cycloalkylene; more preferably, a single bond, a (C6-C18)arylene unsubstituted or substituted with a di(C6-C18)arylamino(s), an unsubstituted (5- to 18-membered)heteroarylene, or an unsubstituted (C3-C18
- L a to L c each independently, may represent a single bond, a phenylene unsubstituted or substituted with a diphenylamino(s), or an unsubstituted biphenylene.
- Ar 1 to Ar 3 each independently, represent a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, with the proviso that at least one of Ar 1 to Ar 3 is selected from the following formulas.
- * represents a bonding site with L a , L b , or L c .
- X each independently, represents O, S, NR 8 , or CR 9 R 10
- Z and V each independently, represent O or S.
- B ring represents a substituted or unsubstituted C10 aryl; preferably, an unsubstituted C10 aryl. According to one embodiment of the present disclosure, B ring may represent a naphthalene ring.
- L d represents a single bond, or a substituted or unsubstituted (C6-C30)arylene.
- R 11 to R 35 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl(C1-C30)alkyl, -NR 36 R 37 , -SiR 38 R 39 R 40 , -SR 41 , -OR 42 , a cyano, a nitro, or a hydroxyl, or may be linked to an adjacent substituent(s) to form a substituted or unsubstitute
- R 11 to R 35 may represent hydrogen; R 11 , R 12 , R 14 to R 17 , R 22 to R 28 , and R 30 to R 35 , each independently, may be fused with the other adjacent R 11 , R 12 , R 14 to R 17 , R 22 to R 28 , and R 30 to R 35 to form a substituted or unsubstituted benzene ring.
- R 13 and R 17 each independently, may represent a biphenyl; R 17 may represent a phenyl substituted with a diphenylamino; two adjacent R 16 ’s may be fused with each other to form an unsubstituted benzene ring; R 18 and R 19 , each independently, may represent a methyl, a phenyl, or a triphenylenyl, and may be the same or different from each other; R 21 and R 22 , each independently, may represent a methyl; R 28 and R 29 , each independently, may represent a methyl or a phenyl, and may be the same or different from each other; and R 18 and R 19 , or R 20 and R 21 may be linked to each other to form a spiro structure, e.g., spiro[fluorene-fluorene] or spiro[fluorene-benzofluorene].
- a spiro structure e.g., spir
- R 8 to R 10 and R 36 to R 42 each independently, represent hydrogen, deuterium, a cyano, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C
- a 1 to A 12 each independently, represent N or CR 43 .
- each R 43 may be the same or different from each other.
- R 43 each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted or unsubstituted
- b, c, e, g, h, j, k, m, n, o, q, r, and s each independently, represent an integer of 1 to 4; d, f, p, and t, each independently, represent an integer of 1 to 3; i represents an integer of 1 to 6; l represents 1 or 2; where each of b to t is an integer of 2 or more, each of R 11 , R 12 , R 14 to R 17 , R 22 to R 28 , and R 30 to R 35 may be the same or different.
- the heteroaryl(ene) or the heterocycloalkyl contains at least one heteroatom selected from B, N, O, S, Si, and P, and preferably, at least one heteroatom selected from N, O, and S.
- the compound represented by formula 1 may be specifically exemplified by the following compounds, but is not limited thereto.
- the arylamine derivative satisfying the equation 11 may be specifically exemplified by the following compounds, but is not limited thereto.
- the compound of formula 1 according to the present disclosure may be produced by a synthetic method known to one skilled in the art.
- the compound of formula 1 may be produced by referring to the following reaction schemes, but are not limited thereto.
- the compound represented by formula 11 may be produced by a synthetic method known to one skilled in the art, and for example, by using or modifying the synthetic methods disclosed in Korean Patent Application Laid-Open Nos. 2014-0104895 A, 2015-0012488 A, 2015-0066202 A, and Korean Patent No. 1476231 B.
- the organic electroluminescent device of the present disclosure may comprise a p-doped hole injection layer.
- the p-doped hole injection layer is doped with a p-dopant, and the p-dopant may preferably be distributed substantially uniformly in the p-doped layer, which may be achieved by co-deposition of a p-dopant and a hole injection material.
- the p-dopant may be contained in an amount of 0.01 to 50 wt%, preferably 0.1 to 20 wt%, more preferably 1 to 10 wt%, based on the hole injection material.
- the p-dopant according to one embodiment of the present disclosure may include at least one of the following compounds P-1 to P-7.
- T 1 to T 38 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C50)alkyl fluoride, a cyano, a substituted or unsubstituted (C1-C50)alkoxy, a substituted or unsubstituted (C1-C50)alkyl, a substituted or unsubstituted (C6-C50)aryl, or substituted or unsubstituted (3-30 membered)heteroaryl.
- U 1 and U 2 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C50)alkyl fluoride, a cyano, a substituted or unsubstituted (C1-C50)alkoxy, a substituted or unsubstituted (C1-C50)alkyl, a substituted or unsubstituted (C6-C50)aryl, or substituted or unsubstituted (3-30 membered)heteroaryl.
- U 3 to U 8 each independently, represent a substituted or unsubstituted (C1-C50)alkylene fluoride, a substituted or unsubstituted (C1-C50)alkylene, a substituted or unsubstituted (C6-C50)arylene, or substituted or unsubstituted (3-30 membered)heteroarylene.
- the p-dopant may be specifically exemplified by the following compounds, but is not limited thereto.
- the dopant comprised in the light-emitting layer of the organic electroluminescent device of the present disclosure may be at least one phosphorescent or fluorescent dopont, and is preferably at least one phosphorescent dopant.
- the phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particulary limited, but may be preferably selected from the metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
- the dopant comprised in the light-emitting layer of the organic electroluminescent device of the present disclosure may comprise the compound represented by the following formula 101, but is not limited thereto.
- L is selected from the following structures 1 and 2:
- R 100 to R 103 , and R 104 to R 107 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen and/or deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or R 100 to R 103 may be linked to adjacent R 100 to R 103 , to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted, quinoline, benzofuropyridine, benzothienopyridine, indenopyridine, benzofuro
- R 201 to R 211 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen and/or deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to adjacent R 201 to R 211 to form a substituted or unsubstituted fused ring; and
- n an integer of 1 to 3.
- dopant compound is as follows, but are not limited thereto.
- a display system e.g., a display system for smart phones, tablets, notebooks, PCs, TVs, or cars; or a lighting system, e.g., an outdoor or indoor lighting system, can be produced.
- the organic electroluminescent device of the present disclosure is intended to explain one embodiment of the present disclosure, and is not meant in any way to restrict the scope of the disclosure.
- the present disclosure may be embodied in other forms.
- the present disclosure may be embodied in other forms.
- the HOMO energy levels of the present disclosure were measured by using a density functional theory (DFT) in a Gaussian 03 program of Gaussian, Inc. Specifically, the HOMO and LUMO energy levels in the Device Examples and Comparative Examples of the present disclosure were extracted from the structure with the lowest energy by comparing the calculated energies of isomers after structurally optimizing all possible isomer structures at the level of B3LYP/6-31g*.
- DFT density functional theory
- the efficiency of the OLED device can be improved by comprising the compound of formula 1 in the light-emitting layer and the arylamine derivative having a specific HOMO energy level in the hole transport zone.
- the following examples merely explain the properties of the OLED device according to the present disclosure for a detailed understanding thereof, but the present disclosure is not limited by the following examples.
- OLED devices according to the present disclosure were produced.
- a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone and isopropyl alcohol, sequentially, and then was stored in isopropyl alcohol.
- the ITO substrate was then mounted on a substrate holder of a vacuum vapor deposition apparatus.
- Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and then the pressure in the chamber of the apparatus was controlled to 10 -6 torr.
- compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
- Compound HT-2-46 was then introduced into a cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer.
- the compound of the second hole transport layer shown in Table 1 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer (auxiliary layer) having a thickness of 60 nm on the first hole transport layer.
- a light-emitting layer was formed thereon as follows:
- the host material shown in Table 1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell as a dopant.
- the two materials were evaporated and the dopant was deposited in a doping amount of 2 wt% based on the amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer.
- Compound ET-1 and compound EI-1 were then introduced into the other two cells and evaporated at a rate of 1:1 to form an electron transport layer having a thickness of 35 nm on the light-emitting layer.
- an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus.
- an OLED device was produced.
- OLED devices were produced in the same manner as in Device Example 1, except that the compound shown in the following Table 1 was used in the second hole transport layer, and the compound CBP was used in the host.
- An OLED device was produced in the same manner as in Device Example 1, except that the compound shown in the following Table 1 was used in the second hole transport layer.
- OLED devices were produced in the same manner as in Device Example 1, except that compound HT-1 and compound HI-2 were deposited at a ratio of 1:0.03 instead of the first and second hole injection layers to form a hole injection layer having a thickness of 5 nm, and compound HT-1 was then evaporated to form a first hole transport layer having a thickness of 100 nm, and the compound shown in Table 1 was used in the second hole transport layer.
- the driving voltage, the luminous efficiency, and the CIE color coordinates at luminance of 1,000 nits, and the lifespan (measured as the percentage to which the luminance decreased from 100% after 16.6 hours at a constant current and at a luminance of 5,000 nits) of the OLED devices produced in Device Examples 1 to 33 and Comparative Examples 1 to 20 are provided in Table 1 below.
- the HOMO energy levels of the compounds comprised in the second hole transport layer of Device Examples 1 to 33 and Comparative Examples 1 to 20 are shown in Table 2 below.
- Device Examples 1 to 33 exhibit lower driving voltage, higher luminous efficiency and/or longer lifespan than the Comparative Examples, by comprising the fused azulene derivative compound of the present disclosure in the light-emitting layer and the compound having the specific HOMO energy level of the present disclosure between the first hole transport layer and the light-emitting layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The present disclosure relates to an organic electroluminescent device comprising a light-emitting layer and a hole transport zone. By comprising a specific combination of a light-emitting layer and a hole transport zone, it is possible to provide an organic electroluminescent device having low driving voltage, high luminous efficiency and/or long lifespan properties.
Description
The present disclosure relates to an organic electroluminescent device comprising a light-emitting layer and a hole transport zone.
In 1987, Tang et al. of Eastman Kodak first developed a small molecule green organic electroluminescent device (OLED) of TPD/Alq3 bilayer consisting of a light-emitting layer and a charge transport layer. Since then, the research on an OLED has been rapidly carried out, and it has been commercialized. At present, an OLED mainly uses phosphorescent materials having excellent luminous efficiency in panel implementation. Low driving voltage and high luminous efficiency are required for long lifespan and high resolution of display.
U.S. Patent No. 6,902,831 discloses an azulene derivative as an organic electroluminescent compound, but it does not specifically disclose an organic electroluminescent compound of a fused azulene derivative. In addition, the document does not specifically disclose that the performance of an OLED can be improved by combining a host compound containing a fused azulene derivative and a specific material contained in a hole transport zone.
The objective of the present disclosure is to provide an organic electroluminescent device having low driving voltage, high luminous efficiency and/or long lifespan properties by a combination of a light-emitting layer comprising a compound according to the present disclosure, and a hole transport zone comprising a compound having a specific HOMO (Highest Occupied Molecular Orbital) energy level.
A light-emitting layer comprising a phosphorescent dopant is preferable to have a light-emitting material having excellent hole and electron current properties for low driving voltage, high efficiency, and long lifespan, and the material having the thermal stability for improvement of lifespan. In addition, for efficient energy transport from the host to the dopant of the light-emitting layer, using a light-emitting material having a narrow energy band gap can contribute to improve driving voltage and luminous efficiency by minimizing the charge trap. While the azulene derivative comprised in the device of the present disclosure has a slow transition constant of the internal conversion of S2→S1, i.e. 7*10-8 s, the transition constant of the internal conversion of S1→S0 is fast, i.e. 7*10-12 s. Thus, the fluorescence quantum yield of S2→S0 increases, and so the azulene derivative is one of the representative materials which violates Kasha's rule. According to a non-patent document of [Phys. Chem. Chem. Phys. 2015, 17, 23573, J. Phys. Chem. A, Vol. 103, No. 15, 1999 2529], the levels of S2 and S1 of azulene are 3.565 eV and 1.771 eV, respectively, while the level difference of T1 and S0 is very small, i.e. the T1-S0 transition is 1.711 eV. In addition, the intersystem crossing transition of S2→Tn transition is improved according to the conditions of the substitution material and the solvent polarity. Accordingly, there was report that due to the increase of the transition to the triplet, there may be an advantage in improvement of the phosphorous luminous properties. These azulene derivatives show a small energy gap of S1→T1, and have a relatively high HOMO characteristic compared to carbazole- or benzocarbazole-type compounds, thereby providing a narrow energy band gap.
However, the conventional hole transport zone has limitations in increasing the efficiency of the light-emitting layer comprising the fused azulene derivative compound. A hole transport zone requires a compound having a high HOMO energy level in order to have a high hole mobility. If the HOMO energy level is high, the driving voltage decreases, but the efficiency of the light-emitting layer also decreases. On the contrary, if the HOMO energy level is low, the efficiency of the light-emitting layer increases, but the driving voltage also increases, and thus it is difficult to realize high luminous efficiency of the device.
The present inventors found that the above-mentioned problems can be solved by comprising a fused azulene derivative of the present disclosure in a light-emitting layer, and an arylamine derivative having a specific HOMO energy level of the present disclosure in a hole transport zone. Specifically, the present inventors found that the above objective can be achieved by an organic electroluminescent device comprising a first electrode, a second electrode facing the first electrode, a light-emitting layer between the first electrode and the second electrode, and a hole transport zone between the first electrode and the light-emitting layer, wherein the light-emitting layer comprises a compound represented by the following formula 1:
wherein,
X1 represents N-L-(Ar)a, S, or O,
L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino,
Y1 to Y12, each independently, represent N or CR1,
R1, each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted ring, and
a represents an integer of 1 to 4, where if a is an integer of 2 or more, each of Ar may be the same or different; and
the hole transport zone comprises an arylamine derivative, and the HOMO energy level of the arylamine derivative satisfies the following equation 11:
-5.0 eV ≤ HOMO ≤ -4.65 eV --- (11).
According to the present disclosure, an organic electroluminescent device having low driving voltage, high luminous efficiency and/or long lifespan properties can be provided. Also, it is possible to produce a display device or a lighting device by using the organic electroluminescent device of the present disclosure.
Hereinafter, the present disclosure will be described in detail. However, the following description is intended to explain the disclosure, and is not meant in any way to restrict the scope of the present disclosure.
The organic electroluminescent device of the present disclosure comprises a first electrode, a second electrode facing the first electrode, a light-emitting layer between the first electrode and the second electrode, a hole transport zone between the first electrode and the light-emitting layer, and an electron transport zone between the light-emitting layer and the second electrode. One of the first and second electrodes may be an anode, and the other may be a cathode.
The hole transport zone means a zone wherein holes are transported between the first electrode and the light-emitting layer. For example, the hole transport zone may comprise at least one of a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer and an electron blocking layer. The hole injection layer, the hole transport layer, the hole auxiliary layer, the light-emitting auxiliary layer and the electron blocking layer, respectively, may be a single layer, or a plurality of layers in which two or more layers are stacked. According to one embodiment of the present disclosure, the hole transport zone may comprise a first hole transport layer and a second hole transport layer, wherein the second hole transport layer may be at least one layer of a plurality of hole transport layers, and it may comprise at least one of a hole auxiliary layer, a light-emitting auxiliary layer and a electron blocking layer. According to another embodiment of the present disclosure, the hole transport zone may comprise a first hole transport layer and a second hole transport layer, wherein the first hole transport layer may be placed between the first electrode and the light-emitting layer, the second hole transport layer may be placed between the first hole transport layer and the light-emitting layer, and the second hole transport layer may serve as a hole transport layer, a light-emitting auxiliary layer, a hole auxiliary layer and/or an electron blocking layer.
According to another embodiment of the present disclosure, the hole transport zone may comprise a p-doped hole injection layer, a hole transport layer, and a light-emitting auxiliary layer. Herein, the p-doped hole injection layer means a hole injection layer doped with a p-dopant. The p-dopant is a material capable of imparting p-type semiconductor properties. The p-type semiconductor properties mean the properties of injecting or transporting holes at the HOMO energy level, i.e., the properties of materials having a high hole conductivity.
The hole transport layer may be placed between the anode (or the hole injection layer) and the light-emitting layer. The hole transport layer may function to smoothly move the holes transferred from the anode to the light-emitting layer, and to block the electrons transferred from the cathode to remain in the light-emitting layer. The light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer. When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or the hole transport, or for preventing the overflow of electrons. When the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or the electron transport, or for preventing the overflow of holes. Also, the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or the hole injection rate), thereby enabling the charge balance to be controlled. Further, the electron blocking layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and can confine the excitions within the light-emitting layer by blocking the overflow of electrons from the light-emitting layer to prevent a light-emitting leakage. When an organic electroluminescent device includes two or more hole transport layers, the further included hole transport layer may be used as a hole auxiliary layer or an electron blocking layer. The light-emitting auxiliary layer, the hole auxiliary layer and/or the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
The electron transport zone may comprise at least one of an electron buffer layer, a hole blocking layer, an electron transport layer and an electron injection layer, and preferably, at least one of an electron transport layer and an electron injection layer. The electron buffer layer is a layer capable of improving the problem that light-emitting luminance deteriorates due to the change of current properties in the device when the device is exposed to a high temperature during a process of producing panels, and it can control the charge flow properties.
The light-emitting layer, in which light is emitted, may be a single layer, or a plurality of layers in which two or more layers are stacked. The doping concentration of the dopant compound with respect to the host compound of the light-emitting layer is preferably less than 20% by weight.
Herein, "(C1-C30)alkyl" is meant to be a linear or branched alkyl having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc. "(C3-C30)cycloalkyl" is a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. "(3- to 7-membered)heterocycloalkyl" is a cycloalkyl having at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, preferably O, S, and N, and 3 to 7 ring backbone atoms, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. "(C6-C30)aryl(ene)" is a monocyclic or fused ring-type radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of ring backbone carbon atoms is preferably 6 to 20, more preferably 6 to 15, may be partially saturated, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc. "(3- to 30-membered)heteroaryl(ene)" is an aryl group having at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P, and 3 to 30 ring backbone atoms, in which the number of ring backbone atoms is preferably 3 to 20, more preferably 5 to 15; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc. "Halogen" includes F, Cl, Br, and I.
Herein, "substituted" in the expression "substituted or unsubstituted" means that a hydrogen atom in a certain functional group is replaced with another atom or functional group, i.e., a substituent. The substituents of the substituted alkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted cycloalkyl, the substituted heterocycloalkyl, the substituted alkoxy, the substituted arylalkyl, the substituted trialkylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted triarylsilyl, the substituted mono- or di- alkylamino, the substituted mono- or di- arylamino, the substituted alkylarylamino, and the substituted ring in L, Ar, R1, La to Ld, Ar1 to Ar3, and R8 to R43 in the formulas of the present disclosure, each independently, are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a (3- to 7-membered)heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a (5- to 50-membered)heteroaryl unsubstituted or substituted with a (C1-C30)alkyl(s) and/or a (C6-C30)aryl(s), a (C6-C30)aryl unsubstituted or substituted with a (3- to 50-membered)heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl; preferably, at least one selected from the group consisting of a (C1-C20)alkyl, a (C6-C25)aryl unsubstituted or substituted with a (C1-C20)alkyl(s) and/or a (3- to 30-membered)heteroaryl(s); a (5- to 40-membered)heteroaryl unsubstituted or substituted with a (C1-C20)alkyl(s) and/or a (C6-C25)aryl(s); and a di(C6-C20)arylamino. For example, the above substituents may be at least one selected from the group consisting of a methyl, a tert-butyl, a phenyl unsubstituted or substituted with a pyridinyl(s), a naphthyl, a biphenyl, a dimethylfluorenyl, a phenylfluorenyl, a diphenylfluorenyl, a phenanthrenyl, a triphenylenyl, a pyridinyl, a triazinyl substituted with a phenyl(s) and/or a naphthyl(s), an indolyl substituted with a diphenyl(s), a benzoimidazolyl substituted with a phenyl(s), a quinolyl, a quinazolinyl substituted with a phenyl(s), a carbazolyl, a dibenzofuranyl, a dibenzothiophenyl, a benzocarbazolyl unsubstituted or substituted with a phenyl(s), a dibenzocarbazolyl, a benzophenanthrothiophenyl, a diphenylamino, a dimethylfluorenylphenylamino, or a substituted or unsubstituted (16- to 33-membered)heteroaryl containing at least one of nitrogen, oxygen and sulfur.
In formula 1, X1 represents N-L-(Ar)a, S, or O.
In formula 1, L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene; preferably, a single bond, a substituted or unsubstituted (C6-C25)arylene, or a substituted or unsubstituted (5- to 25-membered)heteroarylene; and more preferably, a single bond, an unsubstituted (C6-C18)arylene, or an unsubstituted (5- to 18-membered)heteroarylene, wherein the heteroarylene may comprise at least one of nitrogen, oxygen, and/or sulfur.
According to one embodiment of the present disclosure, L may represent a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted naphthylene, a substituted or unsubstituted biphenylene, a substituted or unsubstituted pyridylene, a substituted or unsubstituted pyrimidinylene, a substituted or unsubstituted triazinylene, a substituted or unsubstituted quinazolinylene, a substituted or unsubstituted quinoxalinylene, a substituted or unsubstituted naphthyridinylene, a substituted or unsubstituted benzoquinazolinylene, a substituted or unsubstituted benzothienopyrimidinylene, a substituted or unsubstituted acenaphthopyrimidinylene, a substituted or unsubstituted (13- to 16- membered)heteroarylene containing at least one of nitrogen, oxygen, and sulfur.
In formula 1, Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; preferably, hydrogen, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C25)arylamino; and more preferably, hydrogen, a substituted or unsubstituted (C6-C18)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, or a substituted or unsubstituted di(C6-C18)arylamino.
According to one embodiment of the present disclosure, Ar may represent a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted benzofuranyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted benzothienopyrimidinyl, a substituted or unsubstituted benzothienoquinolinyl, a substituted or unsubstituted benzofuroquinolinyl, a substituted or unsubstituted triaindenyl, a substituted or unsubstituted phenanthroimidazolyl, a substituted or unsubstituted (9- to 25- membered)heteroaryl containing at least one of nitrogen, oxygen, and sulfur, a substituted or unsubstituted diphenylamino, a substituted or unsubstituted phenylbiphenylamino, or a substituted or unsubstituted fluorenylphenylamino.
In formula 1, a represents an integer of 1 to 4, preferably, 1 or 2, where if a is an integer of 2 or more, each of Ar may be the same or different.
In formula 1, Y1 to Y12, each independently, represent N or CR1. According to one embodiment of the present disclosure, all of Y1 to Y12 may represent CR1, and according to another embodiment of the present disclosure, at least one of Y1 to Y12 may represent N. Where there are a plurality of R1’s, each of R1 may be the same or different.
R1, each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted ring; preferably, hydrogen, a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, or a substituted or unsubstituted di(C6-C25)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C25) aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; and more preferably, hydrogen, a substituted or unsubstituted (C1-C10)alkyl, a substituted or unsubstituted (C6-C18)aryl, a substituted or unsubstituted (5- to 18-membered)heteroaryl, or a substituted or unsubstituted di(C6-C18)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C5-C18) aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur.
According to one embodiment of the present disclosure, R1 may each independently represent hydrogen, a substituted or unsubstituted methyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted phenylbiphenylamino, etc.
According to one embodiment of the present disclosure, at least one adjacent pair of Y1 to Y12 in formula 1 are CR1, and the adjacent two R1’s of CR1 are fused together to each independently form a ring represented by any one of the following formulas 2 to 6, but is not limited thereto. For example, the formed ring may be a substituted or unsubstituted benzene ring, a naphthalene ring, a furan ring, a thiophene ring, a substituted or unsubstituted pyrrole ring, a pyridine ring, a benzofuran ring, a benzothiophene ring, a substituted or unsubstituted indole ring, a dibenzofuran ring, a dibenzothiophene ring, a substituted or unsubstituted carbazole ring, a phenanthrene ring, etc., including the ring of formulas 2 to 6.
In formulas 4 and 6, A represents N or CR2. According to one embodiment of the present disclosure, A may all represent CR2, and according to another embodiment of the present disclosure, at least one of A may represent N. Where there are a plurality of R2’s, each of R2 may be the same or different.
R2, each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; preferably, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted (5- to 25-membered)heteroaryl; and more preferably a substituted or unsubstituted (C6-C18)aryl, or a substituted or unsubstituted (5- to 18-membered)heteroaryl.
In formula 5, R3 represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; preferably, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted (5- to 25-membered)heteroaryl; and more preferably an unsubstituted (C6-C18)aryl, or an unsubstituted (5- to 18-membered)heteroaryl. For example, R3 may represent a phenyl.
The OLED according to the present disclosure comprises a hole transport zone between the first electrode and the light-emitting layer, wherein the hole transport zone comprises an arylamine derivative, and the HOMO energy level of the arylamine derivative satisfies the following equation 11.
-5.0 eV ≤ HOMO ≤ -4.65 eV --- (11)
According to one embodiment of the present disclosure, the HOMO energy level of the arylamine derivative satisfies the following equation 12.
-5.0 eV ≤ HOMO ≤ -4.70 eV --- (12)
According to one embodiment of the present disclosure, the OLED according to the present disclosure comprises a first hole transport layer between the first electrode and the light-emitting layer, and a second hole transport layer between the first hole transport layer and the light-emitting layer, wherein the second hole transport layer comprises an arylamine derivative containing a fluorene or a fused flourene, and the HOMO energy level of the arylamine derivative satisfies the equation 11. Herein, the second hole transport layer may be a single layer or a plurality of layers, and the second hole transport layer may serve as a hole transport layer, a light-emitting auxiliary layer, a hole auxiliary layer and/or an electron blocking layer.
When the hole transport zone includes a compound having a HOMO energy level of less than -5.0, e.g., -5.1 or less, it has a value lower than the HOMO energy level of the compound represented by the formula 1 comprised in the light-emitting layer. As a result, the injection of holes is hindered, and the driving voltage is increased. That is, even if the luminous efficiency of the device increases, since the driving voltage increases as the luminous efficiency increases, there is no gain in terms of power efficiency (lm/W), and rather low power efficiency can be exhibited. Meanwhile, if the hole transport zone comprises a compound having a HOMO energy level exceeding -4.65, the energy barrier between the layer containing it, e.g., the second hole transport layer, and the light-emitting layer becomes too large, and the injection of holes is hindered. As a result, the luminous efficiency can be reduced. Further, according to one embodiment of the present disclosure, the difference between the upper limit value and the lower limit value of the HOMO energy level of the compound comprised in the hole transport zone may be more appropriate about 0.3 eV or less.
According to one embodiment of the present disclosure, the arylamine derivative comprised in the hole transport zone, preferably the second hole transport layer, for example, at least one of the light-emitting auxiliary layer and the hole auxiliary layer may comprise a compound represented by the following formula 11.
In formula 11, La to Lc, each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene; preferably, a single bond, a substituted or unsubstituted (C6-C25)arylene, a substituted or unsubstituted (5- to 25-membered)heteroarylene, or a substituted or unsubstituted (C3-C25)cycloalkylene; more preferably, a single bond, a (C6-C18)arylene unsubstituted or substituted with a di(C6-C18)arylamino(s), an unsubstituted (5- to 18-membered)heteroarylene, or an unsubstituted (C3-C18)cycloalkylene. According to one embodiment of the present disclosure, La to Lc, each independently, may represent a single bond, a phenylene unsubstituted or substituted with a diphenylamino(s), or an unsubstituted biphenylene.
In formula 11, Ar1 to Ar3, each independently, represent a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, with the proviso that at least one of Ar1 to Ar3 is selected from the following formulas.
In the above formulas, * represents a bonding site with La, Lb, or Lc.
In the above formulas, X, each independently, represents O, S, NR8, or CR9R10, and Z and V, each independently, represent O or S.
In the above formulas, B ring represents a substituted or unsubstituted C10 aryl; preferably, an unsubstituted C10 aryl. According to one embodiment of the present disclosure, B ring may represent a naphthalene ring.
In the above formulas, Ld represents a single bond, or a substituted or unsubstituted (C6-C30)arylene.
In the above formulas, R11 to R35, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl(C1-C30)alkyl, -NR36R37, -SiR38R39R40, -SR41, -OR42, a cyano, a nitro, or a hydroxyl, or may be linked to an adjacent substituent(s) to form a substituted or unsubstituted ring, wherein the ring comprises a spiro structure; preferably, hydrogen, a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, or -NR36R37, or may be linked to an adjacent substituent to form a substituted or unsubstituted ring, wherein the ring may comprise a spiro structure; and more preferably, hydrogen, an unsubstituted (C1-C10)alkyl, a (C6-C18)aryl unsubstituted or substituted with a di(C6-C18)arylamino(s), or -NR36R37, or may be linked to an adjacent substituent to form an unsubstituted ring, wherein the ring may comprise a spiro structure. According to one embodiment of the present disclosure, R11 to R35 may represent hydrogen; R11, R12, R14 to R17, R22 to R28, and R30 to R35, each independently, may be fused with the other adjacent R11, R12, R14 to R17, R22 to R28, and R30 to R35 to form a substituted or unsubstituted benzene ring. For example, R13 and R17, each independently, may represent a biphenyl; R17 may represent a phenyl substituted with a diphenylamino; two adjacent R16’s may be fused with each other to form an unsubstituted benzene ring; R18 and R19, each independently, may represent a methyl, a phenyl, or a triphenylenyl, and may be the same or different from each other; R21 and R22, each independently, may represent a methyl; R28 and R29, each independently, may represent a methyl or a phenyl, and may be the same or different from each other; and R18 and R19, or R20 and R21 may be linked to each other to form a spiro structure, e.g., spiro[fluorene-fluorene] or spiro[fluorene-benzofluorene].
Herein, R8 to R10 and R36 to R42, each independently, represent hydrogen, deuterium, a cyano, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted ring; preferably, hydrogen, a substituted or unsubstituted (C6-C25)aryl, or a substituted or unsubstituted (5- to 25-membered)heteroaryl; more preferably, a (C6-C18)aryl unsubstituted or substituted with a (C1-C10)alkyl. According to one embodiment of the present disclosure, R36 and R37, each independently, may represent a phenyl, a naphthylphenyl, a biphenyl, or a dimethylfluorenyl.
In the above formulas, A1 to A12, each independently, represent N or CR43. When R43 is plural, each R43 may be the same or different from each other. R43, each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted ring; preferably, hydrogen, deuterium, a substituted or unsubstituted (C6-C18)aryl, or a substituted or unsubstituted (5- to 25-membered)heteroaryl, or two or more adjacent R43’s may be linked to each other to form a substituted or unsubstituted ring; more preferably, hydrogen, deuterium, an unsubstituted (C6-C18)aryl, or unsubstituted (5- to 18-membered)heteroaryl, or two or more adjacent R43’s may be linked to each other to form an unsubstituted ring. According to one embodiment of the present disclosure, R43, each independently, may represent hydrogen, or an unsubstituted pyridine, or two adjacent R43’s may be linked to each other to form a benzene ring.
In the above formulas, b, c, e, g, h, j, k, m, n, o, q, r, and s, each independently, represent an integer of 1 to 4; d, f, p, and t, each independently, represent an integer of 1 to 3; i represents an integer of 1 to 6; l represents 1 or 2; where each of b to t is an integer of 2 or more, each of R11, R12, R14 to R17, R22 to R28, and R30 to R35 may be the same or different.
The heteroaryl(ene) or the heterocycloalkyl contains at least one heteroatom selected from B, N, O, S, Si, and P, and preferably, at least one heteroatom selected from N, O, and S.
The compound represented by formula 1 may be specifically exemplified by the following compounds, but is not limited thereto.
The arylamine derivative satisfying the equation 11 may be specifically exemplified by the following compounds, but is not limited thereto.
The compound of formula 1 according to the present disclosure may be produced by a synthetic method known to one skilled in the art. For example, the compound of formula 1 may be produced by referring to the following reaction schemes, but are not limited thereto.
[Reaction Scheme 1]
[Reaction Scheme 2]
[Reaction Scheme 3]
In reaction schemes 1 to 3, L, Ar, Y1 to Y12, and a are as defined in formula 1.
The compound represented by formula 11 may be produced by a synthetic method known to one skilled in the art, and for example, by using or modifying the synthetic methods disclosed in Korean Patent Application Laid-Open Nos. 2014-0104895 A, 2015-0012488 A, 2015-0066202 A, and Korean Patent No. 1476231 B.
The organic electroluminescent device of the present disclosure may comprise a p-doped hole injection layer. The p-doped hole injection layer is doped with a p-dopant, and the p-dopant may preferably be distributed substantially uniformly in the p-doped layer, which may be achieved by co-deposition of a p-dopant and a hole injection material. Also, the p-dopant may be contained in an amount of 0.01 to 50 wt%, preferably 0.1 to 20 wt%, more preferably 1 to 10 wt%, based on the hole injection material.
The p-dopant according to one embodiment of the present disclosure may include at least one of the following compounds P-1 to P-7.
In the above formulas, T1 to T38, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C50)alkyl fluoride, a cyano, a substituted or unsubstituted (C1-C50)alkoxy, a substituted or unsubstituted (C1-C50)alkyl, a substituted or unsubstituted (C6-C50)aryl, or substituted or unsubstituted (3-30 membered)heteroaryl. In the above formulas, =Z1 to =Z11, each independently, may be represented by any one of the following formulas.
In the above formulas, U1 and U2, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C50)alkyl fluoride, a cyano, a substituted or unsubstituted (C1-C50)alkoxy, a substituted or unsubstituted (C1-C50)alkyl, a substituted or unsubstituted (C6-C50)aryl, or substituted or unsubstituted (3-30 membered)heteroaryl. U3 to U8, each independently, represent a substituted or unsubstituted (C1-C50)alkylene fluoride, a substituted or unsubstituted (C1-C50)alkylene, a substituted or unsubstituted (C6-C50)arylene, or substituted or unsubstituted (3-30 membered)heteroarylene.
The p-dopant may be specifically exemplified by the following compounds, but is not limited thereto.
The dopant comprised in the light-emitting layer of the organic electroluminescent device of the present disclosure may be at least one phosphorescent or fluorescent dopont, and is preferably at least one phosphorescent dopant. The phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particulary limited, but may be preferably selected from the metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
The dopant comprised in the light-emitting layer of the organic electroluminescent device of the present disclosure may comprise the compound represented by the following formula 101, but is not limited thereto.
In formula 101, L is selected from the following structures 1 and 2:
wherein, R100 to R103, and R104 to R107, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen and/or deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or R100 to R103 may be linked to adjacent R100 to R103, to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted, quinoline, benzofuropyridine, benzothienopyridine, indenopyridine, benzofuroquinoline, benzothienoquinoline, or indenoquinoline ring; and R104 to R107 may be linked to adjacent R104 to R107 to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted, naphthyl, fluorene, dibenzothiophene, dibenzofuran, indenopyridine, benzofuropyridine, or benzothienopyridine ring;
R201 to R211, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen and/or deuterium, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to adjacent R201 to R211 to form a substituted or unsubstituted fused ring; and
n represents an integer of 1 to 3.
The specific examples of the dopant compound are as follows, but are not limited thereto.
By using the organic electroluminescent device of the present disclosure, a display system, e.g., a display system for smart phones, tablets, notebooks, PCs, TVs, or cars; or a lighting system, e.g., an outdoor or indoor lighting system, can be produced.
The organic electroluminescent device of the present disclosure is intended to explain one embodiment of the present disclosure, and is not meant in any way to restrict the scope of the disclosure. The present disclosure may be embodied in other forms. The present disclosure may be embodied in other forms.
The HOMO energy levels of the present disclosure were measured by using a density functional theory (DFT) in a Gaussian 03 program of Gaussian, Inc. Specifically, the HOMO and LUMO energy levels in the Device Examples and Comparative Examples of the present disclosure were extracted from the structure with the lowest energy by comparing the calculated energies of isomers after structurally optimizing all possible isomer structures at the level of B3LYP/6-31g*.
Hereinafter, it will be explained whether the efficiency of the OLED device can be improved by comprising the compound of formula 1 in the light-emitting layer and the arylamine derivative having a specific HOMO energy level in the hole transport zone. However, the following examples merely explain the properties of the OLED device according to the present disclosure for a detailed understanding thereof, but the present disclosure is not limited by the following examples.
Device Examples 1 to 27: Producing an OLED device according to the
present disclosure
OLED devices according to the present disclosure were produced. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone and isopropyl alcohol, sequentially, and then was stored in isopropyl alcohol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor deposition apparatus. Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and then the pressure in the chamber of the apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above-introduced material, thereby forming a first hole injection layer having a thickness of 90 nm on the ITO substrate. Next, compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Compound HT-2-46 was then introduced into a cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. The compound of the second hole transport layer shown in Table 1 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer (auxiliary layer) having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layer and the hole transport layer, a light-emitting layer was formed thereon as follows: The host material shown in Table 1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell as a dopant. The two materials were evaporated and the dopant was deposited in a doping amount of 2 wt% based on the amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer. Compound ET-1 and compound EI-1 were then introduced into the other two cells and evaporated at a rate of 1:1 to form an electron transport layer having a thickness of 35 nm on the light-emitting layer. After depositing compound EI-1 as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus. Thus, an OLED device was produced.
Comparative Examples 1 to 19: Producing an OLED device not according to
the present disclosure
OLED devices were produced in the same manner as in Device Example 1, except that the compound shown in the following Table 1 was used in the second hole transport layer, and the compound CBP was used in the host.
Comparative Example 20: Producing an OLED device not according to the
present disclosure
An OLED device was produced in the same manner as in Device Example 1, except that the compound shown in the following Table 1 was used in the second hole transport layer.
The compounds used in Device Examples 1 to 27 and Comparative Examples 1 to 20 are as follows.
Device Examples 28 to 33: Producing an OLED device according to the
present disclosure
OLED devices were produced in the same manner as in Device Example 1, except that compound HT-1 and compound HI-2 were deposited at a ratio of 1:0.03 instead of the first and second hole injection layers to form a hole injection layer having a thickness of 5 nm, and compound HT-1 was then evaporated to form a first hole transport layer having a thickness of 100 nm, and the compound shown in Table 1 was used in the second hole transport layer.
The driving voltage, the luminous efficiency, and the CIE color coordinates at luminance of 1,000 nits, and the lifespan (measured as the percentage to which the luminance decreased from 100% after 16.6 hours at a constant current and at a luminance of 5,000 nits) of the OLED devices produced in Device Examples 1 to 33 and Comparative Examples 1 to 20 are provided in Table 1 below.
The HOMO energy levels of the compounds comprised in the second hole transport layer of Device Examples 1 to 33 and Comparative Examples 1 to 20 are shown in Table 2 below.
From Table 1 above, it can be confirmed that Device Examples 1 to 33 exhibit lower driving voltage, higher luminous efficiency and/or longer lifespan than the Comparative Examples, by comprising the fused azulene derivative compound of the present disclosure in the light-emitting layer and the compound having the specific HOMO energy level of the present disclosure between the first hole transport layer and the light-emitting layer.
Claims (10)
- An organic electroluminescent device comprising a first electrode, a second electrode facing the first electrode, a light-emitting layer between the first electrode and the second electrode, and a hole transport zone between the first electrode and the light-emitting layer, wherein the light-emitting layer comprises a compound represented by the following formula 1:wherein,X1 represents N-L-(Ar)a, S, or O,L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino,Y1 to Y12, each independently, represent N or CR1,R1, each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted ring, anda represents an integer of 1 to 4, where if a is an integer of 2 or more, each of Ar may be the same or different; andthe hole transport zone comprises an arylamine derivative, and the HOMO energy level of the arylamine derivative satisfies the following equation 11:-5.0 eV ≤ HOMO ≤ -4.65 eV --- (11).
- The organic electroluminescent device according to claim 1, wherein the substituents of the substituted alkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted cycloalkyl, the substituted alkoxy, the substituted trialkylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted triarylsilyl, the substituted mono- or di- alkylamino, the substituted mono- or di- arylamino, the substituted alkylarylamino, and the substituted ring in L, Ar, and R1, each independently, are at least one selected from the group consisting of deuterium; a halogen; a cyano; a carboxyl; a nitro; a hydroxyl; a (C1-C30)alkyl; a halo(C1-C30)alkyl; a (C2-C30)alkenyl; a (C2-C30)alkynyl; a (C1-C30)alkoxy; a (C1-C30)alkylthio; a (C3-C30)cycloalkyl; a (C3-C30)cycloalkenyl; a (3- to 7-membered)heterocycloalkyl; a (C6-C30)aryloxy; a (C6-C30)arylthio; a (5- to 50-membered)heteroaryl unsubstituted or substituted with a (C1-C30)alkyl(s) or a (C6-C30)aryl(s); a (C6-C30)aryl unsubstituted or substituted with a (3- to 50-membered)heteroaryl; a tri(C1-C30)alkylsilyl; a tri(C6-C30)arylsilyl; a di(C1-C30)alkyl(C6-C30)arylsilyl; a (C1-C30)alkyldi(C6-C30)arylsilyl; an amino; a mono- or di- (C1-C30)alkylamino; a mono- or di- (C6-C30)arylamino; a (C1-C30)alkyl(C6-C30)arylamino; a (C1-C30)alkylcarbonyl; a (C1-C30)alkoxycarbonyl; a (C6-C30)arylcarbonyl; a di(C6-C30)arylboronyl; a di(C1-C30)alkylboronyl; a (C1-C30)alkyl(C6-C30)arylboronyl; a (C6-C30)aryl(C1-C30)alkyl; and a (C1-C30)alkyl(C6-C30)aryl.
- The organic electroluminescent device according to claim 1, wherein at least one adjacent pair of Y1 to Y12 in formula 1 are CR1, and the adjacent two R1’s of CR1 are fused together to each independently form a ring represented by any one of the following formulas 2 to 6:wherein,A represents N or CR2;R2 and R3, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; and
- The organic electroluminescent device according to claim 1, wherein the arylamine derivative comprises a compound represented by the following formula 11:wherein,La to Lc, each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene,Ar1 to Ar3, each independently, represent a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, with the proviso that at least one of Ar1 to Ar3 is selected from the following formulas:wherein,X, each independently, represents O, S, NR8, or CR9R10,B ring represents a substituted or unsubstituted C10 aryl,Z and V, each independently, represent O or S,A1 to A12, each independently, represent N or CR43,Ld represents a single bond, or a substituted or unsubstituted (C6-C30)arylene,R11 to R35, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl(C1-C30)alkyl, -NR36R37, -SiR38R39R40, -SR41, -OR42, a cyano, a nitro, or a hydroxyl, or may be linked to an adjacent substituent to form a substituted or unsubstituted ring, wherein the ring comprises a spiro structure,R8 to R10 and R36 to R43, each independently, represent hydrogen, deuterium, a cyano, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted ring, andb, c, e, g, h, j, k, m, n, o, q, r, and s, each independently, represent an integer of 1 to 4; d, f, p, and t, each independently, represent an integer of 1 to 3; i represents an integer of 1 to 6; l represents 1 or 2; where each of b to t is an integer of 2 or more, each of R11, R12, R14 to R17, R22 to R28, and R30 to R35 may be the same or different.
- The organic electroluminescent device according to claim 4, wherein the substituents of the substituted alkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted cycloalkyl, the substituted heterocycloalkyl, the substituted arylalkyl, and the substituted ring in La to Ld, Ar1 to Ar3, and R8 to R43, each independently, are at least one selected from the group consisting of deuterium; a halogen; a cyano; a carboxyl; a nitro; a hydroxyl; a (C1-C30)alkyl; a halo(C1-C30)alkyl; a (C2-C30)alkenyl; a (C2-C30)alkynyl; a (C1-C30)alkoxy; a (C1-C30)alkylthio; a (C3-C30)cycloalkyl; a (C3-C30)cycloalkenyl; a (3- to 7-membered)heterocycloalkyl; a (C6-C30)aryloxy; a (C6-C30)arylthio; a (5- to 50-membered)heteroaryl unsubstituted or substituted with a (C1-C30)alkyl(s) or a (C6-C30)aryl(s); a (C6-C30)aryl unsubstituted or substituted with a (3- to 50-membered)heteroaryl; a tri(C1-C30)alkylsilyl; a tri(C6-C30)arylsilyl; a di(C1-C30)alkyl(C6-C30)arylsilyl; a (C1-C30)alkyldi(C6-C30)arylsilyl; an amino; a mono- or di- (C1-C30)alkylamino; a mono- or di- (C6-C30)arylamino; a (C1-C30)alkyl(C6-C30)arylamino; a (C1-C30)alkylcarbonyl; a (C1-C30)alkoxycarbonyl; a (C6-C30)arylcarbonyl; a di(C6-C30)arylboronyl; a di(C1-C30)alkylboronyl; a (C1-C30)alkyl(C6-C30)arylboronyl; a (C6-C30)aryl(C1-C30)alkyl; and a (C1-C30)alkyl(C6-C30)aryl.
- The organic electroluminescent device according to claim 1, wherein the HOMO energy level of the arylamine derivative satisfies the following equation 12:-5.0 eV ≤ HOMO ≤ -4.70 eV ----(12).
- The organic electroluminescent device according to claim 1, comprising a first hole transport layer between the first electrode and the light-emitting layer, and a second hole transport layer between the first hole transport layer and the light-emitting layer, wherein the second hole transport layer comprises an arylamine derivative containing a fluorene or a fused flourene, and the HOMO energy level of the arylamine derivative satisfies the equation 11.
- The organic electroluminescent device according to claim 1, wherein the hole transport zone comprises a p-doped hole injection layer, a hole transport layer, and a light-emitting auxiliary layer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/483,062 US11387417B2 (en) | 2017-02-28 | 2018-02-27 | Organic electroluminescent device |
CN201880011305.9A CN110268542B (en) | 2017-02-28 | 2018-02-27 | organic electroluminescent device |
JP2019544041A JP7109460B2 (en) | 2017-02-28 | 2018-02-27 | organic electroluminescent device |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0026014 | 2017-02-28 | ||
KR20170026014 | 2017-02-28 | ||
KR20170124258 | 2017-09-26 | ||
KR10-2017-0124258 | 2017-09-26 | ||
KR20170124285 | 2017-09-26 | ||
KR10-2017-0124285 | 2017-09-26 | ||
KR10-2017-0180988 | 2017-12-27 | ||
KR20170180988 | 2017-12-27 | ||
KR10-2018-0022906 | 2018-02-26 | ||
KR1020180022906A KR102690159B1 (en) | 2017-02-28 | 2018-02-26 | Organic electroluminescent device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159970A1 true WO2018159970A1 (en) | 2018-09-07 |
Family
ID=63370480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002357 WO2018159970A1 (en) | 2017-02-28 | 2018-02-27 | Organic electroluminescent device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018159970A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111004201A (en) * | 2019-12-27 | 2020-04-14 | 吉林奥来德光电材料股份有限公司 | Organic electroluminescent compound, preparation method thereof and organic electroluminescent device |
US20210028369A1 (en) * | 2018-03-27 | 2021-01-28 | Rohm And Haas Electronic Materials Korea Ltd. | Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same |
US11053437B2 (en) | 2019-06-28 | 2021-07-06 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent devices, organic electroluminescent device and electronic device |
US20220149295A1 (en) * | 2020-11-09 | 2022-05-12 | Samsung Sdi Co., Ltd. | Composition for organic optoelectronic device, organic optoelectronic device, and display device |
US11479544B2 (en) | 2017-03-08 | 2022-10-25 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150121337A (en) * | 2014-04-18 | 2015-10-29 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
-
2018
- 2018-02-27 WO PCT/KR2018/002357 patent/WO2018159970A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150121337A (en) * | 2014-04-18 | 2015-10-29 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
Non-Patent Citations (4)
Title |
---|
CALUS, S. ET AL.: "Optical Absorption And Fluorescence Spectra of Novel Annulated Analogues of Azafluoranthene and Azulene Dyes", MATERIALS CHEMISTRY AND PHYSICS, vol. 121, no. 3, 2010, pages 477 - 483, XP055538261 * |
GASIORSKI, P. ET AL.: "From Pirazoloquinolines to Annulated Azulene Dyes: UV-VIS Spectroscopy and Quantum Chemical Study", JOURNAL OF LUMINESCENCE, vol. 130, no. 12, 2010, pages 2460 - 2468, XP055538257 * |
GASIORSKI, P. ET AL.: "Synthesis And Spectroscopic Study Of Several Novel Annulated Azulene And Azafluoranthene Based Derivatives", JOURNAL OF FLUORESCENCE, vol. 21, no. 1, 2011, pages 443 - 451, XP019879047 * |
SZLACHCIC, P. ET AL.: "Organic Light Emitting Diodes (OLED) Based On Helical Structures Containing 7-Membered Fused Rings", DYES AND PIGMENTS, vol. 114, 2015, pages 184 - 195, XP055538255 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11479544B2 (en) | 2017-03-08 | 2022-10-25 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device |
US20210028369A1 (en) * | 2018-03-27 | 2021-01-28 | Rohm And Haas Electronic Materials Korea Ltd. | Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same |
US12082496B2 (en) * | 2018-03-27 | 2024-09-03 | Rohm And Haas Electronic Materials Korea Ltd. | Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same |
US11053437B2 (en) | 2019-06-28 | 2021-07-06 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent devices, organic electroluminescent device and electronic device |
CN111004201A (en) * | 2019-12-27 | 2020-04-14 | 吉林奥来德光电材料股份有限公司 | Organic electroluminescent compound, preparation method thereof and organic electroluminescent device |
CN111004201B (en) * | 2019-12-27 | 2023-04-07 | 吉林奥来德光电材料股份有限公司 | Organic electroluminescent compound, preparation method thereof and organic electroluminescent device |
US20220149295A1 (en) * | 2020-11-09 | 2022-05-12 | Samsung Sdi Co., Ltd. | Composition for organic optoelectronic device, organic optoelectronic device, and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016080791A1 (en) | A plurality of host materials and an organic electroluminescent device comprising the same | |
EP3172780A1 (en) | Organic electroluminescent device | |
WO2016010402A1 (en) | Organic electroluminescent device | |
WO2016013875A1 (en) | Organic electroluminescent device | |
WO2018105888A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2015167259A1 (en) | Multi-component host material and organic electroluminescent device comprising the same | |
EP3172779A1 (en) | Organic electroluminescent device | |
WO2015178732A1 (en) | Multi-component host material and an organic electroluminescence device comprising the same | |
EP3131879A1 (en) | Multi-component host material and an organic electroluminescence device comprising the same | |
WO2018021841A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
EP3494117A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
EP3129446A1 (en) | Multi-component host material and organic electroluminescent device comprising the same | |
WO2015156587A1 (en) | Multi-component host material and organic electroluminescent device comprising the same | |
EP3446345A1 (en) | A plurality of host materials and organic electroluminescent device comprising the same | |
WO2016076629A1 (en) | A plurality of host materials and an organic electroluminescence device comprising the same | |
WO2016036171A1 (en) | A plurality of host materials and organic electroluminescent devices comprising the same | |
WO2017183859A1 (en) | A plurality of host materials and organic electroluminescent device comprising the same | |
EP3140367A1 (en) | Multi-component host material and organic electroluminescent device comprising the same | |
EP3183234A1 (en) | A plurality of host materials and an organic electroluminescence device comprising the same | |
EP2875094A1 (en) | A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same | |
WO2015174738A1 (en) | Multi-component host material and organic electroluminescent device comprising the same | |
EP3313958A1 (en) | Multi-component host material and organic electroluminescent device comprising the same | |
WO2016060516A1 (en) | A plurality of host materials and an organic electroluminescence device comprising the same | |
WO2018159970A1 (en) | Organic electroluminescent device | |
EP3458457A1 (en) | Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761379 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019544041 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761379 Country of ref document: EP Kind code of ref document: A1 |