[go: up one dir, main page]

WO2018163276A1 - フラクションコレクタ制御装置及び分取液体クロマトグラフ - Google Patents

フラクションコレクタ制御装置及び分取液体クロマトグラフ Download PDF

Info

Publication number
WO2018163276A1
WO2018163276A1 PCT/JP2017/008960 JP2017008960W WO2018163276A1 WO 2018163276 A1 WO2018163276 A1 WO 2018163276A1 JP 2017008960 W JP2017008960 W JP 2017008960W WO 2018163276 A1 WO2018163276 A1 WO 2018163276A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold value
user
peak
threshold
fraction collector
Prior art date
Application number
PCT/JP2017/008960
Other languages
English (en)
French (fr)
Inventor
宗一朗 玉置
努 大古場
隆之 入来
史織 上田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201780087990.9A priority Critical patent/CN110446923B/zh
Priority to US16/491,282 priority patent/US11782034B2/en
Priority to JP2019504162A priority patent/JP6809596B2/ja
Priority to PCT/JP2017/008960 priority patent/WO2018163276A1/ja
Priority to TW107107398A priority patent/TWI712796B/zh
Publication of WO2018163276A1 publication Critical patent/WO2018163276A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors
    • G01N30/82Automatic means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8627Slopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis

Definitions

  • the present invention relates to a fraction collector control device that controls the operation of a fraction collector that fractionally collects sample components based on a signal from a detector of the liquid chromatograph, and a preparative liquid chromatograph equipped with the fraction collector control device. Is.
  • a preparative liquid chromatograph that separates and collects a plurality of components contained in a sample using a liquid chromatograph such as a high performance liquid chromatograph is known.
  • the preparative liquid chromatograph is a chromatograph unit equipped with a liquid feeding device, an analytical column, a detector, etc. for feeding a mobile phase, a fraction collector provided on the rear side of the chromatograph unit, and controls these components.
  • a control device is provided.
  • the fraction collector is configured to operate based on the signal of the detector in the chromatograph section, and the sample components temporally separated by the analysis column are fractionated and collected by the fraction collector.
  • the parameter for detecting the peak is a threshold value of the signal level or the slope of the signal waveform.
  • a sample to be analyzed is analyzed on a trial basis in order to set the threshold, then (1) A step in which the user sensuously sets a threshold for detecting a desired peak based on the chromatogram obtained by the analysis; and (2) a desired peak with a threshold set by the user sensibly. It has been necessary to repeat the step of performing the simulation of whether or not is detected until the peak detected in the simulation of (2) matches the desired peak. Therefore, the threshold setting operation for peak detection has become very complicated.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to make it possible to perform a threshold setting operation for detecting a peak to be sorted more quickly and simply. is there.
  • the fraction collector control device controls the operation of the fraction collector for fractionating and collecting the sample components separated by the analysis column of the liquid chromatograph based on the signal obtained by the detector of the liquid chromatograph. It is.
  • the fraction collector control device is configured to display a chromatogram based on analysis data of a liquid chromatograph acquired in advance as a setting chromatogram, and to allow a user to select at least one peak in the setting chromatogram.
  • a peak specifying unit a parameter extracting unit configured to extract the signal level and / or slope at the start point and end point of each peak specified by the user as parameters, and the parameters extracted by the parameter extracting unit Can be used as a common threshold for detecting the start of all peaks specified by the user and a common threshold for detecting the end of all peaks specified by the user.
  • Threshold candidate generator configured to generate threshold candidates And controlling the fraction collector so as to detect and collect fractions using a threshold value determined based on the threshold value candidate generated by the threshold value candidate generation unit.
  • a control unit configured as described above.
  • the threshold parameters for detecting the peak start and end points are the signal level and slope of the detector, but it is better to use both signal level and slope as the threshold. Whether it is better to use only the level or whether it is better to use only the slope may vary depending on, for example, the presence or absence of the baseline drift and its slope. Conventionally, such a determination condition is determined by the user by looking at the signal waveform.
  • the fraction collector control device of the present invention based on the shape of the setting chromatogram, as the threshold value, only the signal level, only the slope, or both the signal level and the slope are used. It further includes a determination condition selection unit configured to select whether or not. This reduces the work burden on the user's threshold setting.
  • the device automatically determines a threshold value to be used for actual peak detection based on the threshold value candidate generated by the threshold value candidate generation unit. Also good. On the other hand, if fraction collection of sample components is performed using a threshold automatically determined by the apparatus, it may happen that the peak range desired by the user cannot be collected.
  • a threshold value determination unit that presents the threshold value candidate generated by the threshold value candidate generation unit to the user and allows the user to determine the threshold value. Then, the user can refer to the threshold value candidate generated by the threshold value candidate generating unit, and the user himself / herself can set an optimum threshold value based on the threshold value candidate. The user decides the threshold value by selecting an appropriate threshold value from the proposed threshold candidates and by the user setting a value based on the proposed threshold candidates. Including.
  • the threshold value candidate generating unit generates a simulation parameter based on the parameter extracted by the parameter extracting unit, and uses the simulation parameter to perform a peak detection simulation in the setting chromatogram. Only the simulation parameters used for the simulation executed and detected only the peak designated by the user are configured as the threshold candidates. As a result, a simulation using the generated parameter candidates is automatically performed, and only parameters for which only the peak designated by the user is detected are threshold candidates. There is no need to confirm whether or not the designated peak is actually detected.
  • the threshold value determination unit is executed using the threshold value candidate together with the threshold value candidate generated by the threshold value candidate generation unit. It is preferable that the simulation result is presented to the user. Then, when the user determines the threshold value, the simulation result using the threshold value candidate can be referred to together with the threshold value candidate, so that the threshold value can be easily determined.
  • the fraction collector control apparatus of this invention can respond
  • the threshold candidate generation unit is configured to generate threshold candidates for detecting peak components designated by the user in chromatograms obtained by a plurality of detectors. This facilitates setting of a threshold necessary for detection of peak components based on signals from a plurality of detectors.
  • the preparative liquid chromatograph includes a liquid feeding device that feeds a mobile phase, an analysis flow channel in which the mobile phase fed by the liquid feeding device flows, and a sample that is injected into the analysis flow channel A sample injection section; an analysis column that separates the sample into components downstream from the sample injection section on the analysis flow path; and a sample component separated by the analysis column downstream from the analysis column on the analysis flow path On the outlet side of the detector, a fraction collector for collecting the sample components that have passed through the detector, and the analysis column based on the detection signal obtained by the detector.
  • the fraction collector control device of the present invention for controlling the fraction collector so that the collected sample component is fractionated and collected by the fraction collector; It is equipped with a.
  • the signal level and / or slope at the start point and end point of each peak designated by the user on the setting chromatogram are extracted as parameters, and the user is based on the extracted parameters.
  • Threshold candidates that can be used as a common threshold for detecting the start point of all peaks specified by and the common threshold for detecting the end point of all peaks specified by the user Since the threshold value candidates are configured to be generated, usable threshold value candidates are automatically generated, and it is not necessary to repeat the sensory adjustment of the threshold value by the user and the simulation using the threshold value. This simplifies the threshold setting operation.
  • Fig. 1 schematically shows the configuration of a preparative liquid chromatograph.
  • the preparative liquid chromatograph includes a liquid feeding device 4 for feeding a mobile phase in the analysis channel 2, a sample injection unit 6 for injecting a sample into the analysis channel 2, an analysis column 8 for separating the sample into components, The detector 10 for detecting the sample components separated by the analysis column 8, the fraction collector 12 for fractionating and collecting the sample components separated by the analysis column 8, and the overall operation of the preparative liquid chromatograph are performed.
  • a control device 14 is provided.
  • the sample injection unit 6 is provided downstream of the liquid feeding device 4 on the analysis flow path 2.
  • the sample injection unit 6 is an autosampler configured to automatically collect a sample and inject the sample into the analysis flow path 2 in which the mobile phase from the liquid feeding device 4 flows.
  • An analysis column 8 is provided downstream of the sample injection unit 6 on the analysis flow path 2. The sample injected by the sample injection unit 6 is transported to the analysis column 8 by the mobile phase from the liquid feeding device 4 and separated for each component.
  • the detector 10 is provided downstream of the analysis column 8 on the analysis flow path 2, and the sample component separated by the analysis column 8 appears as a peak in the detection waveform obtained by the detector 10.
  • the fraction collector 12 is provided on the rear stage side of the detector 10. The operation of the fraction collector 12 is controlled by the control device 14.
  • the control device 14 functions as a fraction collector control device that controls the operation of the fraction collector 12 based on a signal from the detector 10.
  • the control device 14 is configured to control not only the fraction collector 12 but also the operation of a column oven (not shown) that adjusts the temperature of the liquid delivery device 4, the sample injection unit 6, and the analysis column 8.
  • the control device 14 is realized by a computer dedicated to the preparative liquid chromatograph or a general-purpose personal computer.
  • the fraction collector 12 may have any configuration as long as it can fractionate and collect a portion including a desired sample component in the mobile phase flowing out from the detector 10.
  • the fraction collector 12 is configured such that a flow path from the outlet of the detector 10 is connected to a flow path switching valve, and a mobile phase containing a desired sample component is guided to an individual container by switching the flow path switching valve. It may be what was done.
  • the fraction collector 12 is connected to the mobile probe at the flow path from the detector 10 so that the mobile phase containing a desired sample component is dropped from the tip of the probe to an individual container. It may be configured to move.
  • the control device 14 detects a peak corresponding to a desired sample component (targeted for fraction collection specified by the user) from the signal waveform obtained by the detector 10, and the mobile phase corresponding to the peak portion is fractionated.
  • the operation of the fraction collector 12 is controlled so as to be collected.
  • threshold values for detecting the start point and the end point of the peak are set. .
  • the threshold setting function for peak detection in the control device 14 will be described with reference to the block diagram of FIG.
  • the control device 14 includes a chromatogram creation unit 16, a peak designation unit 18, a parameter extraction unit 20, a determination condition selection unit 22, a threshold candidate generation unit 24, a threshold determination unit 26, a threshold holding unit 28, and a control.
  • the unit 30 is provided.
  • an input unit 32 and a display unit 34 are connected to the control unit 14.
  • the input unit 32 is realized by, for example, a keyboard or a mouse, and a user inputs information to the control unit 14 via the input unit 32.
  • the display unit 34 is realized by, for example, a liquid crystal display, and various information such as a chromatogram created based on detection signal data obtained by the detector 10 is displayed on the display unit 34, for example.
  • the threshold for peak detection is set for each sample. Before setting the threshold value, it is necessary to conduct a trial analysis on the sample (hereinafter, this analysis is referred to as “setting analysis”) and acquire analysis data of the sample.
  • the chromatogram creation unit 16 creates a chromatogram based on the analysis data acquired as described above.
  • the chromatogram created based on the analysis data obtained by the setting analysis is referred to as a “setting chromatogram”.
  • the peak designating unit 18 is configured to display a setting chromatogram on the display unit 34 and to allow the user to designate a peak to be fractionated and collected on the setting chromatogram. For example, if the setting chromatogram is the one shown in FIG. 4, as shown by the broken line in the figure, the user sets the start point and end point of the peak to be collected. . This setting designates 1 to 5 peaks to be collected.
  • the parameter extraction unit 20 extracts (calculates) parameters at the start point and end point of the peak designated by the user, that is, the signal level and the slope.
  • a parameter table as shown in Table 1 is obtained.
  • start point is the peak start time (seconds)
  • end point is the peak end time (seconds)
  • start slope is the slope at the peak start point
  • start level is the peak.
  • the signal level at the start point, “end slope” means the slope at the peak end point, and “end level” means the signal level at the peak end point.
  • the determination condition selection unit 22 uses only the signal level, only the inclination, and the signal level as parameters used for the threshold for peak detection. Which parameter to use for both of the inclinations is selected as a determination condition. For example, in the chromatogram of FIG. 4, the baseline is inclined in the direction of increasing, and when the signal level is used as a threshold parameter, a signal level that detects peak 5 is set as the threshold. Then, the signal level of the threshold value becomes significantly higher than the signal level at the start point of peaks 1 to 4, and detection of peaks 1 to 4 is delayed. Accordingly, in the chromatogram as shown in FIG. 4, “slope only” is selected as the determination condition.
  • the threshold candidate generation unit 24 can detect all of the peaks designated by the user based on the parameters extracted by the parameter extraction unit 20 and the determination conditions selected by the determination condition selection unit 22. It is configured to generate value candidates.
  • the threshold candidate generation unit 24 generates a plurality of simulation parameters based on the parameters extracted by the parameter extraction unit 20, and sequentially detects the peak in the setting chromatogram using the generated simulation parameters.
  • the threshold value candidate that can detect all the peaks specified by the user may be searched.
  • the simulation parameter generated based on the parameter extracted by the parameter extraction unit 20 may be the parameter itself extracted by the parameter extraction unit 20, or the parameter extracted by the parameter extraction unit 20 is processed. The parameter obtained in this way may be used.
  • a threshold candidate search method there is a method of executing a simulation in order from the smallest value in each parameter extracted by the parameter extraction unit 20.
  • Simulation means that a setting chromatogram is used like a chromatogram obtained by actual analysis, and a peak start point and a peak end point are detected virtually by a threshold value.
  • the peak start point and end point are detected when the value of the peak determination condition (signal level and / or slope) “crosses” the threshold value, respectively.
  • “Exceeding the threshold value” means that in the detection of the peak start point, the value of the determination condition (signal level and / or slope) is equal to or greater than the threshold value.
  • the determination condition “signal level” means that the signal level value is less than or equal to the threshold value
  • the determination condition “inclination” means that the inclination value is greater than or equal to the threshold value.
  • the threshold parameter used in this chromatogram is “slope only”, so that “880” is the smallest in the start slope first, and is the absolute most in the end slope. “ ⁇ 500” having the smallest value, that is, the gentlest slope, is used as a simulation parameter, and these simulation parameters are threshold values for detecting a peak start point and threshold values for detecting a peak end point. And a peak detection simulation is executed in the setting chromatogram of FIG.
  • the peak detected by the simulation matches the peak specified by the user. If they match, the start slope “880” and the end slope “ ⁇ 500” are set as threshold candidates. . If the peak detected by the simulation does not match the peak specified by the user, those numerical values are excluded from the threshold candidates.
  • the determination system for the degree of coincidence of peaks is improved by determining whether or not the times at which the peaks appear are the same.
  • the degree of coincidence of appearance times can be determined based on whether or not the time difference between the peak start point and the end point is within a preset reference range.
  • the above-mentioned simulation and peak coincidence determination is executed by using the parameters (“slope” and / or “signal level”) that are the determination conditions, for example, in order from the smallest absolute value and specified by the user.
  • One or more threshold candidates are generated that can detect all of the current peaks.
  • either or both of the start slope and end slope are Change to a smaller simulation parameter and run the simulation.
  • the threshold value of the start slope is “880” and the threshold value of the end slope is “ ⁇ 500”
  • the threshold value of the start slope is fixed to “880” and the end slope threshold value is fixed.
  • the simulation may be executed by changing the threshold value to “ ⁇ 1340”.
  • the determination condition is “both signal level and slope”
  • one of the peaks that can be detected by the user can be detected while changing the parameter values of the signal level and the slope.
  • a plurality of threshold candidates are searched and generated.
  • the simulation parameters used for the simulation are not limited to the parameters extracted by the parameter extraction unit 20, but are parameters obtained by processing the parameters extracted by the parameter extraction unit 20. Also good.
  • the simulation parameter may be generated by increasing the value at a constant value interval based on the smallest value of the parameter that is the determination condition among the parameter values extracted by the parameter extraction unit 20.
  • the simulation parameters for the start slope can be generated as “880 + ⁇ ”, “880 + 2 ⁇ ”, “880 + 3 ⁇ ”... Using the minimum value “880” of the extracted start slope, and the end.
  • the simulation parameters for the slope can be generated as “ ⁇ 500 ⁇ ”, “ ⁇ 500 ⁇ 2 ⁇ ”, “ ⁇ 500 ⁇ 3 ⁇ ”, and so on.
  • the threshold determination unit 26 displays the threshold candidates generated by the threshold candidate generation unit 24 on the display unit 34 to present it to the user, and causes the user to determine the threshold.
  • the determination of the threshold value by the user may be made by the user to select from the threshold candidates displayed on the display unit 34, or based on the threshold candidates displayed on the display unit 34. The user may adjust the value.
  • a threshold candidate When a threshold candidate is presented on the display unit 34, a result of a simulation executed using the threshold candidate is also displayed automatically or in response to a request from the user. Is preferred. Then, the user can select or adjust the threshold value while viewing the simulation result, and the convenience for the user is improved.
  • the threshold determined by the user is held in the threshold holding unit 28.
  • the control unit 30 detects a desired peak from the detection signal obtained by the detector 10 using the threshold value held in the threshold value holding unit 28, and the mobile phase portion corresponding to the peak is fractionally captured.
  • the operation of the fraction collector 12 is controlled to be collected.
  • the chromatogram creation unit 16, peak designation unit 18, parameter extraction unit 20, determination condition selection unit 22, threshold candidate generation unit 24, threshold determination unit 26, and control unit 30 are provided in the control device 14. This is a function realized by an arithmetic element such as a microcomputer executing a predetermined program.
  • the threshold value holding unit 28 is a function realized by a partial storage area of the storage device provided in the control device 14.
  • Step S1 a trial analysis (setting analysis) is performed on the target sample, and a setting chromatogram is created.
  • the peak designating unit 18 displays the setting chromatogram on the display unit 34 (step S1), and the peak that is the target of fraction collection on the setting chromatogram is displayed by the user.
  • the judgment condition selection unit 22 selects a judgment condition suitable for detecting all the designated peaks based on the drift state of the setting chromatogram (step S3).
  • the parameter extraction unit 20 extracts each parameter (signal level and / or slope) at the start point and end point of each designated peak (step S4).
  • the threshold value candidate generating unit 24 generates a simulation parameter based on each extracted parameter of each peak (step S5).
  • the simulation parameter generated first is, for example, the smallest value in each parameter used for the determination condition.
  • the threshold value candidate generating unit 24 executes a peak detection simulation in the setting chromatogram using the generated simulation parameter (step S6), and the peak detected in the simulation (detected peak) is designated by the user. It is determined whether or not the peaks (designated peaks) match (step S7). If the detected peak matches the designated peak, the parameter is set as a threshold candidate (step S8). Otherwise, the parameter is excluded from the threshold candidate. By executing this simulation and coincidence determination operation for a plurality of parameter values, one or a plurality of threshold candidates are searched and generated.
  • the generated threshold candidates are presented to the user (step S10).
  • the threshold value determination unit 26 causes the user to determine a threshold value to be used for actual analysis from the generated threshold value candidates (step S11).
  • the determined threshold value is stored in the threshold value holding unit 28 (step S12).
  • the operation of the fraction collector 12 is controlled based on the signal of one detector 10, but the present invention is not limited to this, and a preparative liquid having a plurality of detectors. It can also be applied to chromatographs.
  • FIG. 5 schematically shows an example of such a preparative liquid chromatograph.
  • three detectors 10a to 10c are provided, and each detects a sample component flowing out from the analysis column 10.
  • the detectors 10a to 10c have different detection methods, and the obtained chromatograms are also different.
  • the control device 14 takes in the detection signals of the detectors 10a to 10c and controls the operation of the fraction collector 12 based on the signal waveforms.
  • threshold values for detecting a desired peak in each chromatogram are also different.
  • the threshold value setting method may be the same as in the case where there is only one detector as in the embodiment described with reference to FIG.
  • each setting chromatograph based on the measurement data obtained by each detector 10a to 10c prepared in advance is used.
  • a gram is displayed.
  • the user can designate a desired peak on any of the setting chromatograms.
  • the control device 14 extracts various parameters of the specified peak start point and end, and generates a threshold candidate capable of detecting all the peaks specified by the user by executing a simulation based on these parameters. Present to the user.
  • the control device 14 determines threshold values for peak detection in the detection signal of each detector based on the presented threshold candidates.
  • the control device 14 holds a threshold value determined by the user, and controls the operation of the fraction collector 12 using the held threshold value.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

フラクションコレクタ制御装置は、設定用クロマトグラムを表示し、その設定用クロマトグラムにおける少なくとも1つのピークをユーザに選択させるピーク指定部と、ユーザにより指定された各ピークの開始点及び終了点における信号レベル及び/又は傾きをパラメータとして抽出するパラメータ抽出部と、前記パラメータ抽出部により抽出されたパラメータに基づいて、ユーザにより指定されたすべてのピークの開始点を検出するための共通のしきい値及びユーザにより指定されたすべてのピークの終了点を検出するための共通のしきい値として使用可能なしきい値候補を生成するように構成されたしきい値候補生成部と、を備えている。

Description

フラクションコレクタ制御装置及び分取液体クロマトグラフ
 本発明は、液体クロマトグラフの検出器の信号に基づいて試料成分を分画捕集するフラクションコレクタの動作制御を行なうフラクションコレクタ制御装置と、そのフラクションコレクタ制御装置を備えた分取液体クロマトグラフに関するものである。
 高速液体クロマトグラフを始めとする液体クロマトグラフを利用して、試料の含まれる複数の成分を分離して採取する分取液体クロマトグラフが知られている。分取液体クロマトグラフは、移動相を送液する送液装置や分析カラム、検出器等を備えたクロマトグラフ部と、そのクロマトグラフ部の後段側に設けられたフラクションコレクタ、及びこれらを制御する制御装置を備えている。フラクションコレクタはクロマトグラフ部の検出器の信号に基づいて動作するように構成されており、分析カラムによって時間的に分離された試料成分がフラクションコレクタによって分画捕集される。
 上記のような分取液体クロマトグラフでは、検出器の信号に現れるピークを検出するためのパラメータを予め設定しておく必要がある。ピークを検出するためのパラメータとは、信号レベルや信号波形の傾きのしきい値のことである。1つの試料の分析で複数のピークが現れる場合に、それらのピークを検出するために共通のしきい値を用いる方式と、ピークごとに個別のしきい値を用いる方式(例えば、特許文献1参照。)と、がある。
特開2002-005914号公報
 従来、検出器の信号に現れる複数のピークを共通のしきい値を用いて検出する方式では、しきい値を設定するために分析対象の試料について試験的に分析を行なった後、(1)その分析で得られたクロマトグラムに基づいて所望のピークを検出すためのしきい値をユーザが感覚的に設定する工程と、(2)ユーザが感覚的に設定したしきい値で所望のピークが検出されるか否かのシミュレーションを実施する工程と、を、(2)のシミュレーションで検出されるピークが所望のピークと一致するまで繰り返す必要があった。そのため、ピーク検出用のしきい値設定操作が非常に煩雑なものとなっていた。
 本発明は上記の問題に鑑みてなされたものであり、分取対象のピークを検出するためのしきい値設定操作をより迅速かつ簡潔に行なうことができるようにすることを目的とするものである。
 本発明に係るフラクションコレクタ制御装置は、液体クロマトグラフの検出器で得られる信号に基づき、前記液体クロマトグラフの分析カラムで分離された試料成分を分画捕集するフラクションコレクタの動作を制御するものである。該フラクションコレクタ制御装置は、予め取得された液体クロマトグラフの分析データに基づくクロマトグラムを設定用クロマトグラムとして表示し、その設定用クロマトグラムにおける少なくとも1つのピークをユーザに選択させるように構成されたピーク指定部と、ユーザにより指定された各ピークの開始点及び終了点における信号レベル及び/又は傾きをパラメータとして抽出するように構成されたパラメータ抽出部と、前記パラメータ抽出部により抽出されたパラメータに基づいて、ユーザにより指定されたすべてのピークの開始点を検出するための共通のしきい値及びユーザにより指定されたすべてのピークの終了点を検出するための共通のしきい値として使用可能なしきい値候補を生成するように構成されたしきい値候補生成部と、前記しきい値候補生成部により生成された前記しきい値候補に基づいて決定されたしきい値を用いてピーク成分を検出して分画捕集するように、前記フラクションコレクタを制御するように構成された制御部と、を備えている。
 ピークの開始点及び終了点を検出するためのしきい値用のパラメータは、検出器の信号レベルと傾きであるが、しきい値として信号レベルと傾きの両方を用いた方がよいのか、信号レベルのみを用いた方がよいのか、又は傾きのみを用いた方がよいのかは、例えばベースラインのドリフトの有無やその傾きなどによって変わり得る。従来では、このような判定条件をユーザが信号波形を見て判断していた
 これに対し、本発明のフラクションコレクタ制御装置の好ましい実施形態では、前記設定用クロマトグラムの形状に基づき、前記しきい値として、信号レベルのみ、傾きのみ、信号レベルと傾きの両方のいずれを用いるかを選定するように構成された判定条件選定部をさらに備えている。これにより、ユーザのしきい値設定における作業負担が軽減される。
 本発明のフラクションコレクタ制御装置では、しきい値候補生成部によって生成されたしきい値候補に基づいて、実際のピーク検出に使用するしきい値を装置が自動的に決定するようになっていてもよい。一方で、装置によって自動的に決定されたしきい値を使用して試料成分の分画捕集を行なうと、ユーザが所望するピーク範囲を分取することができないということも起こり得る。
 そこで、前記しきい値候補生成部により生成されたしきい値候補をユーザに提示し、ユーザにしきい値を決定させるしきい値決定部をさらに備えていることが好ましい。そうすれば、しきい値候補生成部によって生成されたしきい値候補をユーザが参照し、それに基づいてユーザ自身が最適なしきい値を設定することが可能になる。ユーザがしきい値を決定するとは、提示されたしきい値候補の中から適当なものをしきい値として選択することのほか、提示されたしきい値候補に基づく値をユーザが設定することも含む。
 好ましい実施形態では、しきい値候補生成部が、前記パラメータ抽出部により抽出されたパラメータに基づいてシミュレーション用パラメータを生成し、そのシミュレーション用パラメータを用いて前記設定用クロマトグラムにおけるピーク検出のシミュレーションを実行し、ユーザによって指定されているピークのみが検出されたシミュレーションに用いられたシミュレーション用パラメータのみを前記しきい値候補とするように構成されている。これにより、生成されたパラメータ候補を用いたシミュレーションが自動的になされ、ユーザによって指定されているピークのみが検出されるようなパラメータのみがしきい値候補となるので、ユーザがシミュレーションを実行して指定したピークが実際に検出されるか否かを確認する必要がなくなる。
 上記のようにシミュレーションが実行される場合には、前記しきい値決定部は、前記しきい値候補生成部により生成された前記しきい値候補とともに、そのしきい値候補を用いて実行された前記シミュレーションの結果をユーザに提示するように構成されていることが好ましい。そうすれば、ユーザがしきい値を決定する際に、しきい値候補とともにそのしきい値候補を用いたシミュレーション結果を参照することができるので、しきい値を決定しやすくなる。
 なお、本発明のフラクションコレクタ制御装置は、複数種類の検出器を具備する液体クロマトグラフにも対応することができるようになっていることが好ましい。その場合、前記しきい値候補生成部は、ユーザによって指定されたピーク成分を複数の検出器で得られるクロマトグラムにおいて検出するためのしきい値候補を生成するように構成されている。これにより、複数の検出器の信号に基づくピーク成分の検出に必要なしきい値の設定も容易になる。
 本発明に係る分取液体クロマトグラフは、移動相を送液する送液装置と、前記送液装置によって送液される移動相が流れる分析流路と、前記分析流路中に試料を注入する試料注入部と、前記分析流路上における前記試料注入部よりも下流において試料を成分ごとに分離する分析カラムと、前記分析流路上における前記分析カラムよりも下流において前記分析カラムにより分離された試料成分を検出する検出器と、前記検出器の出口側において、前記検出器を経た試料成分を捕集するためのフラクションコレクタと、前記検出器で得られる検出信号に基づいて、前記分析カラムで分離された試料成分が前記フラクションコレクタによって分画捕集されるように、前記フラクションコレクタを制御する本発明のフラクションコレクタ制御装置と、を備えている。
 本発明のフラクションコレクタ制御装置では、設定用クロマトグラム上でユーザにより指定された各ピークの開始点及び終了点における信号レベル及び/又は傾きをパラメータとして抽出し、抽出されたパラメータに基づいて、ユーザにより指定されたすべてのピークの開始点を検出するための共通のしきい値及びユーザにより指定されたすべてのピークの終了点を検出するための共通のしきい値として使用可能なしきい値候補を生成するように構成されているので、使用可能なしきい値の候補が自動的に生成され、ユーザによるしきい値の感覚的な調整とそのしきい値を用いたシミュレーションとを繰り返す必要がなくなる。これにより、しきい値の設定操作が簡略化される。
 本発明の分取液体クロマトグラフでは、上述のフラクションコレクタ制御装置を備えているので、所望のピークを分取するためのしきい値の設定操作が容易である。
分取液体クロマトグラフの一実施例を示す概略流路構成図である。 同実施例の制御装置の構成を概略的に示すブロック図である。 同実施例のピーク検出用しきい値の設定動作を示すフローチャートである。 検出器で得られる測定データに基づいて作成されるクロマトグラムの一例である。 分取液体クロマトグラフの他の実施例を示す概略流路構成図である。
 以下、本発明のフラクションコレクタ制御装置及び分取液体クロマトグラフの一実施例について、図面を用いて説明する。
 図1に分取液体クロマトグラフの構成を概略的に示す。
 この分取液体クロマトグラフは、分析流路2において移動相を送液する送液装置4、分析流路2中に試料を注入する試料注入部6、試料を成分ごとに分離する分析カラム8、分析カラム8で分離された試料成分を検出する検出器10、分析カラム8で分離された試料成分を分画して捕集するフラクションコレクタ12、及びこの分取液体クロマトグラフ全体の動作制御を行なう制御装置14を備えている。
 試料注入部6は分析流路2上における送液装置4の下流に設けられている。試料注入部6は、試料を自動的に採取して送液装置4からの移動相が流れる分析流路2中に試料を注入するように構成されたオートサンプラである。分析流路2上における試料注入部6の下流に分析カラム8が設けられている。試料注入部6によって注入された試料は、送液装置4からの移動相によって分析カラム8へ搬送され、成分ごとに分離される。
 分析流路2上における分析カラム8の下流に検出器10が設けられており、分析カラム8で分離された試料成分が検出器10で得られる検出波形においてピークとして表れる。フラクションコレクタ12は検出器10の後段側に設けられている。フラクションコレクタ12の動作は制御装置14によって制御される。
 制御装置14は、検出器10からの信号に基づいてフラクションコレクタ12の動作制御を行なうフラクションコレクタ制御装置としての機能を果たすものである。制御装置14は、フラクションコレクタ12だけでなく、送液装置4や試料注入部6、分析カラム8の温度調節を行なうカラムオーブン(図示は省略)の動作制御も行なうように構成されている。制御装置14は、この分取液体クロマトグラフ専用のコンピュータ又は汎用のパーソナルコンピュータによって実現される。
 フラクションコレクタ12は、検出器10から流出する移動相のうち、所望の試料成分を含む部分を分画して捕集することができる構成であればいかなる構成のものであってもよい。例えば、フラクションコレクタ12は、検出器10の出口からの流路が流路切替バルブに接続され、その流路切替バルブの切替えによって所望の試料成分を含む移動相を個別の容器へ導くように構成されたものであってもよい。また、フラクションコレクタ12は、検出器10の出口からの流路が移動式のプローブに接続され、所望の試料成分を含む移動相がプローブの先端から個別の容器へ滴下されるように、プローブを移動させるように構成されたものであってもよい。
 制御装置14は、検出器10で得られる信号波形から所望の(ユーザによって指定された分画捕集対象の)試料成分に相当するピークを検出し、そのピーク部分に相当する移動相が分画捕集されるように、フラクションコレクタ12の動作を制御する。制御装置14には、検出器10で得られる信号波形から所望の試料成分に相当するピークを検出するために、ピークの開始点と終了点をそれぞれ検出するためのしきい値が設定されている。
 制御装置14におけるピーク検出用のしきい値設定機能について、図2のブロック図を用いて説明する。
 制御装置14は、クロマトグラム作成部16、ピーク指定部18、パラメータ抽出部20、判定条件選定部22、しきい値候補生成部24、しきい値決定部26、しきい値保持部28及び制御部30を備えている。
 また、制御部14には入力部32と表示部34が接続されている。入力部32は、例えばキーボードやマウスなどによって実現されるものであり、入力部32を介してユーザが制御部14への情報入力を行なうようになっている。表示部34は、例えば液晶ディスプレイなどによって実現され、例えば検出器10で得られる検出信号データに基づいて作成されたクロマトグラムなどの種々の情報が表示部34に表示される。
 通常、ピーク検出を行なうためのしきい値の設定は試料ごとに行なわれる。しきい値設定を行なう前に、その試料について試験的な分析(以下、この分析を「設定用分析」と称する。)を行ない、その試料の分析データを取得しておく必要がある。クロマトグラム作成部16は、そのようにして取得された分析データに基づき、クロマトグラムを作成する。以下、設定用分析で得られた分析データに基づいて作成されたクロマトグラムを「設定用クロマトグラム」と称する。
 ピーク指定部18は、設定用クロマトグラムを表示部34に表示し、その設定用クロマトグラム上において分画捕集の対象とするピークをユーザに指定させるように構成されている。例えば、設定用クロマトグラムが図4に示されるものであった場合、同図において破線で示されているように、分画捕集の対象としたいピークの開始点と終了点をユーザに設定させる。この設定により、分画捕集の対象となる1~5のピークが指定される。
 パラメータ抽出部20は、ユーザにより指定されたピークの開始点及び終了点におけるパラメータ、すなわち信号レベルと傾きを抽出(算出)する。この抽出により、表1に示されるようなパラメータテーブルが得られる。なお、表1における「開始点」はピーク開始点の時刻(秒)、「終了点」はピーク終了点の時刻(秒)、「開始スロープ」はピーク開始点における傾き、「開始レベル」はピーク開始点の信号レベル、「終了スロープ」はピーク終了点における傾き、「終了レベル」はピーク終了点の信号レベルをそれぞれ意味する。
Figure JPOXMLDOC01-appb-T000001
 判定条件選定部22は、設定用クロマトグラムの形状、例えばベースラインのドリフトの有無やその傾きに基づいて、ピーク検出用のしきい値に用いるパラメータとして、信号レベルのみ、傾きのみ、信号レベルと傾きの両方、のいずれのパラメータを用いるかを判定条件として選定するように構成されている。例えば、図4のクロマトグラムであれば、ベースラインが上昇する方向に傾いており、信号レベルをしきい値のパラメータとして用いた場合、ピーク5を検出するような信号レベルをしきい値として設定すると、しきい値の信号レベルがピーク1~4の開始点の信号レベルよりも大幅に高くなってしまい、ピーク1~4の検出が遅れることになる。したがって、図4のようなクロマトグラムでは、「傾きのみ」が判定条件として選定される。
 しきい値候補生成部24は、パラメータ抽出部20により抽出されたパラメータと、判定条件選定部22により選定された判定条件に基づき、ユーザの指定したピークのすべてを検出することができるようなしきい値候補を生成するように構成されている。
 例えば、しきい値候補生成部24は、パラメータ抽出部20によって抽出されたパラメータに基づいて複数のシミュレーション用パラメータを生成し、生成したシミュレーション用のパラメータを順に用いて、設定用クロマトグラムにおいてピーク検出のシミュレーションを実行し、ユーザの指定したピークのすべてを検出することができるようなしきい値候補を探索するように構成されていてもよい。パラメータ抽出部20によって抽出されたパラメータに基づいて生成されるシミュレーション用パラメータとは、パラメータ抽出部20によって抽出されたパラメータそのものであってもよいし、パラメータ抽出部20によって抽出されたパラメータを加工して得られたパラメータであってもよい。
 しきい値候補の探索方法として、パラメータ抽出部20によって抽出された各パラメータにおいて最も小さい値から順にシミュレーションを実行する方法が挙げられる。「シミュレーション」とは、設定用クロマトグラムを実際の分析で得られたクロマトグラムのように用い、しきい値によるピーク開始点とピーク終了点の検出を仮想的に行なうことを意味する。
 ここで、実際の分析及びシミュレーションにおけるピークの検出では、ピークの判定条件(信号レベル及び/又は傾き)の値がしきい値を「越えた」ときにピークの開始点と終了点をそれぞれ検出する。しきい値を「越える」とは、ピークの開始点の検出では、判定条件(信号レベル及び/又は傾き)の値がしきい値以上となることを意味し、ピークの終了点の検出では、判定条件「信号レベル」については信号レベルの値がしきい値以下となることを意味し、判定条件「傾き」については傾きの値がしきい値以上となることを意味する。
 図4のクロマトグラムを例に説明すると、このクロマトグラムに用いるしきい値用のパラメータは「傾き(スロープ)のみ」であるから、最初に開始スロープにおいて最も小さい「880」、終了スロープにおいて最も絶対値の小さい、すなわち傾きの最もなだらかな「-500」をそれぞれシミュレーション用パラメータとし、これらのシミュレーション用パラメータをピーク開始点を検出するためのしきい値、ピーク終了点を検出するためのしきい値として用い、図4の設定用クロマトグラムにおいてピーク検出のシミュレーションを実行する。
 そのシミュレーションで検出されたピークとユーザにより指定されているピークが一致しているか否かを判定し、一致していれば開始スロープ「880」と終了スロープ「-500」をしきい値候補とする。そのシミュレーションで検出されたピークとユーザにより指定されているピークが一致していなければ、それらの数値はしきい値候補から除外する。
 ここで、シミュレーションで検出されたピークとユーザにより指定されているピークが一致しているとは、少なくともユーザにより指定されているピークの数がシミュレーションで検出されたピークと一致していることを意味する。図4の例でいえば、ユーザが1~5の5つのピークを指定しているにも拘わらず、シミュレーションで4つ以下のピークしか検出されたなかった場合や6つ以上のピークが検出された場合は、シミュレーションで検出されたピークがユーザにより指定されているピークと一致していないと判定する。この場合、そのシミュレーションに用いられたシミュレーション用パラメータはしきい値候補として採用されない。
 さらには、各ピークが現れる時間が一致しているか否かも判定基準となっていることで、ピークの一致度の判定制度が向上する。出現時間の一致度の判定は、両者のピーク開始点及び終了点の時間の差が予め設定された基準範囲内にあるか否かにより行なうことができる。これにより、シミュレーションで検出されたピークの数がユーザにより指定されたピークの数と一致しているものの、いずれかのピークの出現時間に違いがあるような場合も両者は一致していないと判定され、そのシミュレーションに用いられたシミュレーション用パラメータはしきい値候補として採用されない。
 上記のシミュレーションとピークの一致判定は、判定条件となっているパラメータ(「傾き」及び/又は「信号レベル」)について、例えば絶対値の小さいほうから順に用いて実行していき、ユーザによって指定されているピークのすべてを検出可能な1つ又は複数のしきい値候補を生成する。開始スロープ(傾き)のしきい値を「880」、終了スロープ(傾き)のしきい値を「-500」としてシミュレーションを実行した後は、開始スロープと終了スロープのいずれか一方又は両方を次に小さいシミュレーション用パラメータに変更してシミュレーションを実行する。例えば、開始スロープのしきい値を「880」、終了スロープのしきい値を「-500」としたシミュレーションの後は、開始スロープのしきい値を「880」のまま固定して、終了スロープのしきい値を「-1340」に変更してシミュレーションを実行してもよい。
 なお、必ずしも、判定条件となっているパラメータのすべてについてシミュレーションを実行する必要はない。例えば、絶対値の小さいパラメータ値から順に用いてシミュレーションを実行していき、ユーザの指定したピークのうちシミュレーションで検出されないピークが現れたときは、そのシミュレーションで使用したパラメータ値よりも絶対値の大きいパラメータ値を使用したシミュレーションを実行しなくてもよい。
 また、判定条件が「信号レベルと傾きの両方」となっている場合は、信号レベルと傾きのパラメータ値をそれぞれ変化させていきながら、ユーザによって指定されているピークのすべてを検出可能な1つ又は複数のしきい値候補を探索し、生成する。
 なお、既述のように、シミュレーションに用いるシミュレーション用パラメータは、パラメータ抽出部20により抽出されたパラメータに限定されず、パラメータ抽出部20により抽出されたパラメータを加工して得られたパラメータであってもよい。例えば、パラメータ抽出部20により抽出されたパラメータ値のうち判定条件となっているパラメータの最も小さい値を基準に一定値間隔で値を増加させるようにしてシミュレーション用パラメータを生成してもよい。例えば、開始スロープについてのシミュレーション用パラメータを、抽出された開始スロープの最小値「880」を用いて、「880+α」、「880+2α」、「880+3α」・・・というように生成することができ、終了スロープについてのシミュレーション用パラメータを、「-500-α」、「-500-2α」、「-500-3α」・・・というように生成することができる。
 しきい値決定部26は、しきい値候補生成部24により生成されたしきい値候補を表示部34に表示することによってユーザに提示し、ユーザにしきい値を決定させる。ユーザによるしきい値の決定は、表示部34に表示されたしきい値候補の中からユーザが選択するようになっていてもよいし、表示部34に表示されたしきい値候補に基づいてユーザが値を調整するようになっていてもよい。
 表示部34にしきい値候補が提示される際、自動的に又はユーザからの要求に応じて、そのしきい値候補を用いて実行されたシミュレーションの結果も表示されるように構成されていることが好ましい。そうすれば、ユーザはシミュレーション結果を見ながらしきい値の選定又は調整を行なうことができ、ユーザの利便性が向上する。
 ユーザにより決定されたしきい値は、しきい値保持部28に保持される。制御部30は、しきい値保持部28に保持されたしきい値を用いて検出器10で得られた検出信号から所望のピークを検出し、そのピークに相当する移動相部分が分画捕集されるようにフラクションコレクタ12の動作を制御するように構成されている。
 上記のクロマトグラム作成部16、ピーク指定部18、パラメータ抽出部20、判定条件選定部22、しきい値候補生成部24、しきい値決定部26及び制御部30は、制御装置14に設けられたマイクロコンピュータなどの演算素子が、所定のプログラムを実行することによって実現される機能である。また、しきい値保持部28は、制御装置14に設けられた記憶装置の一部の記憶領域によって実現される機能である。
 この実施例のしきい値設定手順の一例について、図2とともに図3のフローチャートを用いて説明する。
 このしきい値設定手順が実施される前段階で、対象となる試料についての試験的な分析(設定用分析)が行われ、設定用クロマトグラムが作成されている。しきい値設定モードが実行されると、ピーク指定部18が設定用クロマトグラムを表示部34に表示し(ステップS1)、その設定用クロマトグラム上で分画捕集の対象となるピークをユーザに指定させる(ステップS2)。ユーザがピークを指定すると、判定条件選定部22が、指定されたピークのすべてを検出するのに適した判定条件を設定用クロマトグラムのドリフト状況等に基づいて選定する(ステップS3)。パラメータ抽出部20は、指定された各ピークの開始点と終了点における各パラメータ(信号レベル及び/又は傾き)を抽出する(ステップS4)。
 しきい値候補生成部24は、抽出された各ピークの各パラメータに基づき、シミュレーション用パラメータを生成する(ステップS5)。最初に生成されるシミュレーションパラメータは、例えば判定条件に用いられる各パラメータにおいて最も小さい値である。しきい値候補生成部24は、生成したシミュレーションパラメータを用いて設定用クロマトグラムにおけるピーク検出のシミュレーションを実行し(ステップS6)、シミュレーションにおいて検出されたピーク(検出ピーク)とユーザにより指定されているピーク(指定ピーク)が一致するか否かを判定する(ステップS7)。検出ピークが指定ピークと一致していれば、そのパラメータをしきい値候補とし(ステップS8)、そうでなければそのパラメータをしきい値候補から除外する。このシミュレーションと一致判定の動作を複数のパラメータ値について実行することにより、1又は複数のしきい値候補を探索し、生成する。
 しきい値候補の生成が終了した後(ステップS9)、生成されたしきい値候補をユーザに提示する(ステップS10)。しきい値決定部26は、生成されたしきい値候補の中から実際の分析に使用するしきい値をユーザに決定させる(ステップS11)。決定されたしきい値はしきい値保持部28に保存される(ステップS12)。
 以上において説明した実施例は、1つの検出器10の信号に基づいてフラクションコレクタ12の動作を制御するものであるが、本発明はこれに限定されず、複数の検出器を備えた分取液体クロマトグラフに対しても適用することができる。図5はそのような分取液体クロマトグラフの一例を概略的に示したものである。
 図5の実施例では、3つの検出器10a~10cが設けられており、それぞれが分析カラム10から流出した試料成分を検出するようになっている。各検出器10a~10cは互いに検出方式が異なるものであり、得られるクロマトグラムも異なっている。制御装置14は各検出器10a~10cの検出信号を取り込み、それらの信号波形に基づいてフラクションコレクタ12の動作を制御する。
 このような分取液体クロマトグラフでは、各検出器10a~10cで得られるクロマトグラムが相違するため、各クロマトグラムにおいて所望のピークを検出するためのしきい値も相違する。一方で、そのしきい値の設定方法は、図1を用いて説明した実施例のような検出器が1つのみの場合と同じでよい。
 このような複数の検出器10a~10cを備えた分取液体クロマトグラフにおいてしきい値を設定する際、予め作成された各検出器10a~10cで得られた測定データに基づくそれぞれの設定用クロマトグラムが表示される。ユーザは、それらの設定用クロマトグラムのうち任意の設定用クロマトグラム上で所望のピークを指定することができる。制御装置14は、指定されたピークの開始点及び終了の各種パラメータを抽出し、それらのパラメータに基づくシミュレーションを実行することによって、ユーザの指定したピークのすべてを検出可能なしきい値候補を生成し、ユーザに提示する。ユーザが複数の設定用クロマトグラム上でピークを指定している場合には、それに応じてユーザに提示されるしきい値候補の数も多くなる。ユーザは提示されたしきい値候補に基づいて、各検出器の検出信号におけるピーク検出用のしきい値をそれぞれ決定する。制御装置14は、ユーザによって決定されたしきい値を保持し、保持したしきい値を用いてフラクションコレクタ12の動作を制御する。
   2   分析流路
   4   送液装置
   6   試料注入部
   8   分析カラム
   10,10a,10b,10c   検出器
   12   フラクションコレクタ
   14   制御装置
   16   クロマトグラム作成部
   18   ピーク指定部
   20   パラメータ抽出部
   22   判定条件選定部
   24   しきい値候補生成部
   26   しきい値決定部
   28   しきい値保持部
   30   制御部
   32   入力部
   34   表示部

Claims (7)

  1.  液体クロマトグラフの検出器で得られる信号に基づき、前記液体クロマトグラフの分析カラムで分離された試料成分を分画捕集するフラクションコレクタの動作を制御するフラクションコレクタ制御装置であって、
     予め取得された液体クロマトグラフの分析データに基づくクロマトグラムを設定用クロマトグラムとして表示し、その設定用クロマトグラムにおける少なくとも1つのピークをユーザに選択させるように構成されたピーク指定部と、
     ユーザにより指定された各ピークの開始点及び終了点における信号レベル及び/又は傾きをパラメータとして抽出するように構成されたパラメータ抽出部と、
     前記パラメータ抽出部により抽出されたパラメータに基づいて、ユーザにより指定されたすべてのピークの開始点を検出するための共通のしきい値及びユーザにより指定されたすべてのピークの終了点を検出するための共通のしきい値として使用可能なしきい値候補を生成するように構成されたしきい値候補生成部と、
     前記しきい値候補生成部により生成された前記しきい値候補に基づいて決定されたしきい値を用いてピーク成分を検出して分画捕集するように、前記フラクションコレクタを制御するように構成された制御部と、を備えたフラクションコレクタ制御装置。
  2.  前記設定用クロマトグラムの形状に基づき、前記しきい値として、信号レベルのみ、傾きのみ、信号レベルと傾きの両方のいずれを用いるかを選定するように構成された判定条件選定部をさらに備えている請求項1に記載のフラクションコレクタ制御装置。
  3.  前記しきい値候補生成部により生成されたしきい値候補をユーザに提示し、ユーザにしきい値を決定させるしきい値決定部をさらに備えた請求項1又は2に記載のフラクションコレクタ制御装置。
  4.  前記しきい値候補生成部は、前記パラメータ抽出部により抽出されたパラメータに基づいてシミュレーション用パラメータを生成し、そのシミュレーション用パラメータを用いて前記設定用クロマトグラムにおけるピーク検出のシミュレーションを実行し、ユーザによって指定されているピークのみが検出されたシミュレーションに用いられたシミュレーション用パラメータのみを前記しきい値候補とするように構成されている請求項1から3のいずれか一項に記載のフラクションコレクタ制御装置。
  5.  前記しきい値候補生成部により生成されたしきい値候補をユーザに提示し、ユーザにしきい値を決定させるしきい値決定部を備え、
     前記しきい値決定部は、前記しきい値候補生成部により生成された前記しきい値候補とともに、そのしきい値候補を用いて実行された前記シミュレーションの結果をユーザに提示するように構成されている請求項4に記載のフラクションコレクタ制御装置。
  6.  前記液体クロマトグラフは複数種類の検出器を具備するものであって、
     前記しきい値候補生成部は、ユーザによって指定されたピーク成分を各検出器で得られるクロマトグラムにおいて検出するためのしきい値候補を生成するように構成されている請求項1から5のいずれか一項に記載のフラクションコレクタ制御装置。
  7.  移動相を送液する送液装置と、
     前記送液装置によって送液される移動相が流れる分析流路と、
     前記分析流路中に試料を注入する試料注入部と、
     前記分析流路上における前記試料注入部よりも下流において試料を成分ごとに分離する分析カラムと、
     前記分析流路上における前記分析カラムよりも下流において前記分析カラムにより分離された試料成分を検出する検出器と、
     前記検出器の出口側において、前記検出器を経た試料成分を捕集するためのフラクションコレクタと、
     前記検出器で得られる検出信号に基づいて、前記分析カラムで分離された試料成分が前記フラクションコレクタによって分画捕集されるように、前記フラクションコレクタを制御する請求項1から6のいずれか一項に記載のフラクションコレクタ制御装置と、を備えた分取液体クロマトグラフ。
PCT/JP2017/008960 2017-03-07 2017-03-07 フラクションコレクタ制御装置及び分取液体クロマトグラフ WO2018163276A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780087990.9A CN110446923B (zh) 2017-03-07 2017-03-07 分液收集器控制装置以及分液色谱仪
US16/491,282 US11782034B2 (en) 2017-03-07 2017-03-07 Fraction collector control device and preparative liquid chromatograph
JP2019504162A JP6809596B2 (ja) 2017-03-07 2017-03-07 フラクションコレクタ制御装置及び分取液体クロマトグラフ
PCT/JP2017/008960 WO2018163276A1 (ja) 2017-03-07 2017-03-07 フラクションコレクタ制御装置及び分取液体クロマトグラフ
TW107107398A TWI712796B (zh) 2017-03-07 2018-03-06 分液收集器控制裝置以及分液色譜儀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008960 WO2018163276A1 (ja) 2017-03-07 2017-03-07 フラクションコレクタ制御装置及び分取液体クロマトグラフ

Publications (1)

Publication Number Publication Date
WO2018163276A1 true WO2018163276A1 (ja) 2018-09-13

Family

ID=63448905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008960 WO2018163276A1 (ja) 2017-03-07 2017-03-07 フラクションコレクタ制御装置及び分取液体クロマトグラフ

Country Status (5)

Country Link
US (1) US11782034B2 (ja)
JP (1) JP6809596B2 (ja)
CN (1) CN110446923B (ja)
TW (1) TWI712796B (ja)
WO (1) WO2018163276A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942277A (zh) * 2021-02-15 2022-08-26 株式会社岛津制作所 液相色谱仪
JP7472775B2 (ja) 2020-12-21 2024-04-23 株式会社島津製作所 波形処理支援装置および波形処理支援方法
JP7524816B2 (ja) 2021-04-05 2024-07-30 株式会社島津製作所 分取液体クロマトグラフ
JP7548066B2 (ja) 2021-03-02 2024-09-10 株式会社島津製作所 分取液体クロマトグラフ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117929610A (zh) * 2023-06-16 2024-04-26 常州三泰科技有限公司 一种液相色谱仪系统控制方法及装置
CN116660440B (zh) * 2023-07-31 2023-11-10 广州禾信仪器股份有限公司 分液收集器控制方法、装置和分液收集器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021099A2 (en) * 2000-09-08 2002-03-14 Waters Investments Limited Method and apparatus for determining the boundaries of a detector response profile and for controlling processes
JP2008122081A (ja) * 2006-11-08 2008-05-29 Dkk Toa Corp 分析計及び分析プログラム
JP2010256070A (ja) * 2009-04-22 2010-11-11 Jasco Corp クロマトグラフィー・データ処理装置およびプログラム
JP2016197037A (ja) * 2015-04-03 2016-11-24 株式会社島津製作所 分取クロマトグラフ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670054A (en) * 1996-04-04 1997-09-23 Warner Lambert Company Method and system for identification, purification, and quantitation of reaction components
JP3573686B2 (ja) 2000-06-23 2004-10-06 株式会社島津製作所 分取液体クロマトグラフ
JP2002031627A (ja) * 2000-07-14 2002-01-31 Shimadzu Corp 分取液体クロマトグラフ
US6652746B2 (en) * 2002-03-26 2003-11-25 Biotage, Inc. Chromatography system for automatically separating different compounds in a sample
JP3849601B2 (ja) * 2002-07-12 2006-11-22 株式会社島津製作所 分取液体クロマトグラフ装置
WO2005079263A2 (en) * 2004-02-13 2005-09-01 Waters Investments Limited Apparatus and method for identifying peaks in liquid chromatography/mass spectrometry data and for forming spectra and chromatograms
JP4665765B2 (ja) * 2006-01-06 2011-04-06 株式会社島津製作所 分取クロマトグラフ装置
JP6379463B2 (ja) 2013-09-18 2018-08-29 株式会社島津製作所 波形処理支援方法および波形処理支援装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021099A2 (en) * 2000-09-08 2002-03-14 Waters Investments Limited Method and apparatus for determining the boundaries of a detector response profile and for controlling processes
JP2008122081A (ja) * 2006-11-08 2008-05-29 Dkk Toa Corp 分析計及び分析プログラム
JP2010256070A (ja) * 2009-04-22 2010-11-11 Jasco Corp クロマトグラフィー・データ処理装置およびプログラム
JP2016197037A (ja) * 2015-04-03 2016-11-24 株式会社島津製作所 分取クロマトグラフ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Bunshu Chromatography ni Okeru Chromatography System no Aratana Teian", JASIS2013 BOOTH-NAI SHO SEMINOR DIGEST, 2013, Retrieved from the Internet <URL:https://www.jasco.co.jp/jpn/technique/exhibition/jasis20l3/PDF/semiLC.pdf> [retrieved on 20170509] *
"Saishinban Koko de shika Kikenai Bunshu Know- how", JASIS2016 BOOTH-NAI SHO SEMINOR DIGEST, September 2016 (2016-09-01), Retrieved from the Internet <URL:https://www.jasco.co.jp/jpn/technique/exhibition/jasis2016/PDF/LC_Prep-KnowHow.pdf> [retrieved on 20170509] *
"Semi-bunshu System no Jitsuyo-teki na Tsukaikata", JASIS2012 BOOTH-NAI SHO SEMINOR DIGEST, 2012, Retrieved from the Internet <URL:https://www.jasco.co.jp/jpn/technique/exhibition/jasis2012/PDF/semiprep.pdf> [retrieved on 20170905] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472775B2 (ja) 2020-12-21 2024-04-23 株式会社島津製作所 波形処理支援装置および波形処理支援方法
CN114942277A (zh) * 2021-02-15 2022-08-26 株式会社岛津制作所 液相色谱仪
JP7548066B2 (ja) 2021-03-02 2024-09-10 株式会社島津製作所 分取液体クロマトグラフ
JP7524816B2 (ja) 2021-04-05 2024-07-30 株式会社島津製作所 分取液体クロマトグラフ

Also Published As

Publication number Publication date
JPWO2018163276A1 (ja) 2019-12-26
US20200240966A1 (en) 2020-07-30
TW201833547A (zh) 2018-09-16
US11782034B2 (en) 2023-10-10
CN110446923B (zh) 2022-01-11
TWI712796B (zh) 2020-12-11
JP6809596B2 (ja) 2021-01-06
CN110446923A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018163276A1 (ja) フラクションコレクタ制御装置及び分取液体クロマトグラフ
US11828737B2 (en) Preparative liquid chromatograph
JP4665765B2 (ja) 分取クロマトグラフ装置
CN106662556B (zh) 制备型液相色谱装置及制备条件探索方法
CN104458981B (zh) 波形处理辅助方法和波形处理辅助系统
JP6558032B2 (ja) 分取クロマトグラフ
JP6747574B2 (ja) フラクションコレクタ制御装置及び分取液体クロマトグラフ
CN107615059A (zh) 色谱数据处理装置以及程序
JP7088306B2 (ja) クロマトグラフ装置
JP5134636B2 (ja) 高速液体クロマトグラフ装置及び高速液体クロマトグラフ装置の液体送液方法
JP4826579B2 (ja) クロマトグラフ用データ処理装置
JPH11326304A (ja) クロマトグラフ用データ処理装置
JP2004271422A (ja) クロマトグラフ用データ処理装置
JP3573686B2 (ja) 分取液体クロマトグラフ
JP2002031627A (ja) 分取液体クロマトグラフ
CN114646715B (zh) 波形处理辅助装置以及波形处理辅助方法
JP5206544B2 (ja) クロマトグラフ用データ処理装置
JP2007163435A (ja) 分取クロマトグラフ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899331

Country of ref document: EP

Kind code of ref document: A1