[go: up one dir, main page]

WO2018163595A1 - Engine support structure - Google Patents

Engine support structure Download PDF

Info

Publication number
WO2018163595A1
WO2018163595A1 PCT/JP2018/000594 JP2018000594W WO2018163595A1 WO 2018163595 A1 WO2018163595 A1 WO 2018163595A1 JP 2018000594 W JP2018000594 W JP 2018000594W WO 2018163595 A1 WO2018163595 A1 WO 2018163595A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
stopper
contact portion
support structure
vibration
Prior art date
Application number
PCT/JP2018/000594
Other languages
French (fr)
Japanese (ja)
Inventor
展久 冨田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2018163595A1 publication Critical patent/WO2018163595A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Definitions

  • the present invention mainly relates to an engine support structure for supporting a marine engine.
  • the engine receives a force from a reaction force (reaction torque) during operation. Therefore, when the engine is supported by vibration isolation, the engine may tilt during operation. Thereafter, the engine stops, and the reaction force does not work, so the engine tilt returns. At this time, the engine may vibrate so as to incline alternately in one direction and the other direction with the crankshaft direction as the rotation axis.
  • reaction torque reaction torque
  • Patent Document 1 discloses a configuration including a damper, a solenoid valve, and a fluid tank in order to prevent the engine from vibrating due to a change in reaction force.
  • the solenoid valve is provided in a pipe connecting the damper and the fluid tank. Since the fluid moves between the damper and the fluid tank by opening and closing the solenoid valve, the characteristics of the damper can be adjusted.
  • Patent Document 1 requires a plurality of devices in order to reduce vibrations based on changes in engine reaction force. Furthermore, in the configuration of Patent Document 1, since it is necessary to provide a control device that controls a device such as a solenoid valve, the configuration becomes complicated. Accordingly, the cost may increase and the installation space for the engine may increase.
  • the present invention has been made in view of the above circumstances, and its main object is to simplify vibration when the engine stops and the reaction force stops working in an engine support structure that supports a marine engine. It is in providing the structure suppressed by a structure.
  • an engine support structure having the following configuration. That is, the engine support structure includes a vibration isolator, a first contact portion, and a first stopper.
  • the vibration isolator supports the engine disposed on the ship in a vibration-proof manner.
  • the first contact portion tilts integrally with the engine and moves downward in the vertical direction when the engine tilts in a direction opposite to a direction tilted by a reaction force during operation.
  • the first stopper has a first stopper surface, and restricts the tilt of the engine when the first contact portion and the first stopper surface come into contact with each other.
  • the first stopper surface of the first stopper is the same height as the first contact portion when the engine is not operating or lower than the first contact portion when the engine is not operating. Placed in position.
  • the engine supported by anti-vibration is tilted by the reaction force during operation and returns to its original position when stopped.
  • vibration (inclined alternately in one direction and the other direction with the crankshaft direction as the rotation axis)
  • a tilt vibration when the engine is stopped) occurs.
  • the first stopper as described above, it is possible to quickly stop the tilt vibration when the engine is stopped with a simple configuration.
  • the first stopper surface is set to the above height, the first stopper does not get in the way even after the engine is stopped.
  • the engine support structure has the following configuration. That is, the engine support structure includes a second contact portion and a second stopper.
  • the second contact portion is inclined integrally with the engine, and is disposed on the opposite side of the first contact portion with the crankshaft of the engine interposed therebetween.
  • the second stopper has a second stopper surface, and the second contact portion and the second stopper surface come into contact with each other to contact the second contact portion and regulate the inclination of the engine.
  • the second stopper surface of the second stopper is the same height as the second contact portion when the engine is not operating or higher than the second contact portion when the engine is not operating. Placed in position.
  • the tilt of the engine can be regulated by the two stoppers, so that the tilt vibration when the engine is stopped can be stopped in a shorter period of time.
  • the engine support structure has the following configuration. That is, the engine support structure is formed with a third stopper surface, and restricts the tilt of the engine by the contact of the first contact portion and the third stopper surface, and above the first stopper. A third stopper is provided. The third stopper surface of the third stopper is disposed at a position higher than the first contact portion when the engine is operating.
  • FIG. 1 is a schematic side view of a ship provided with an engine support structure according to each embodiment.
  • the schematic diagram which shows the structure of the engine support structure of 1st Embodiment.
  • the schematic diagram which shows the structure of the engine support structure of 2nd Embodiment.
  • the schematic diagram which shows the structure of the engine support structure of 3rd Embodiment.
  • FIG. 1 is a schematic side view of the ship 1.
  • terms describing the positional relationship, size, shape, etc. are not limited to a configuration in which the meaning of the term is completely established, but also a configuration in which the meaning of the term is substantially established. Shall point to.
  • the hull 2 of the ship 1 is provided with an engine room 3.
  • a propulsion engine 4 In the engine room 3, a propulsion engine 4, a power generation engine 8, and a power generation device 9 are arranged.
  • the propulsion engine 4 is a diesel engine that generates a driving force for moving the ship 1.
  • the propulsion engine 4 is supported on the hull 2 by the engine support structure 100. Details of the engine support structure 100 will be described later.
  • the driving force generated by the propulsion engine 4 is transmitted to a reduction gear (not shown) and decelerated to a predetermined rotational speed.
  • a propulsion device 6 is connected to the reduction gear.
  • the propulsion device 6 is a screw or the like that generates a propulsive force for moving the ship 1.
  • the power generation engine 8 is a diesel engine that generates a driving force for generating power on the ship.
  • the power generation device 9 generates power using the driving force generated by the power generation engine 8. Only one power generation engine 8 may be mounted on the ship 1 or a plurality of power generation engines 8 may be mounted. When a plurality of power generation engines 8 are mounted, some of the power generation engines 8 may be stopped depending on necessary power or the like.
  • the engine support structure 100 is used to support the propulsion engine 4, but a similar support structure may be used to support the power generation engine 8. Further, at least one of the propulsion engine 4 and the power generation engine 8 may be an engine having a configuration different from that of the diesel engine (for example, a gasoline engine).
  • FIG. 2 is a schematic diagram showing the configuration of the engine support structure 100 of the first embodiment.
  • the propulsion engine 4 vibrates based on a change in reaction force. While the propulsion engine 4 is in operation, the propulsion engine 4 receives a reaction force (reaction torque) from the crankshaft 4a.
  • reaction torque reaction torque
  • the propulsion engine 4 Since the propulsion engine 4 is supported in an anti-vibration manner, the propulsion engine 4 is tilted by this reaction force (with the crankshaft 4a as a rotation axis, the tilting direction is opposite to the rotation direction of the crankshaft 4a).
  • the rotation direction of the crankshaft 4a In the propulsion engine 4 and a general engine, the rotation direction of the crankshaft 4a is fixed, and therefore the direction in which the propulsion engine 4 is tilted is always the same (the tilt direction during operation in FIG. 2).
  • the degree of inclination (inclination angle) varies depending on the output of the propulsion engine 4 and the vibration of the ship 1.
  • the propulsion engine 4 tries to return to the original position (original posture, horizontal position) by tilting the tilt angle toward 0. However, since there is momentum before returning to the original position, it passes through the original position and further tilts in the direction opposite to the inclining direction during operation. Thereafter, due to the restoring force of the vibration isolator 20, the propulsion engine 4 again tilts in the tilt direction during operation. By repeating this operation, the propulsion engine 4 vibrates. Hereinafter, this vibration is referred to as “inclination vibration when the engine is stopped”. Occurrence of tilt vibration when the engine is stopped may place a burden on components (for example, an exhaust flexible pipe) attached to the propulsion engine 4.
  • the engine support structure 100 of the present embodiment has a configuration for stopping tilt vibration when the engine is stopped with a simple configuration in a short time. Details will be described below.
  • the propulsion engine 4 is supported on the hull 2 via the engine support structure 100.
  • the engine support structure 100 includes a vibration isolation device 20, an engine support plate 30, and a first stopper 41.
  • the vibration isolator 20 includes a metal coil spring and two attachment portions for attaching the coil spring to the propulsion engine 4 and the hull 2, respectively. In addition, it may replace with a coil spring and the structure which uses vibration-proof rubber may be sufficient.
  • the metal coil spring has a small internal damping of vibration, tilt vibration when the engine is stopped is more likely to occur compared to anti-vibration rubber or the like. Therefore, the use of the coil spring can effectively utilize the effect of the present invention that suppresses the tilt vibration when the engine is stopped.
  • the engine support plate 30 is a metal plate disposed between the vibration isolator 20 and the propulsion engine 4.
  • the engine support plate 30 is fixed to both the vibration isolator 20 (specifically, a mounting portion for mounting the propulsion engine 4) and the propulsion engine 4 by a fixture (not shown) or the like. Accordingly, when tilt vibration occurs when the engine is stopped, the engine support plate 30 vibrates integrally with the propulsion engine 4.
  • the engine support plate 30 is formed with a first contact portion 31 and a first guide hole 31a.
  • the first contact portion 31 is a portion that contacts the first stopper 41 in order to stop the tilt vibration when the engine is stopped.
  • the first contact portion 31 may use the surface of the engine support plate 30 as it is, but the surface of the engine support plate 30 may be reduced in order to reduce noise, impact, rebound, etc. when it hits the first stopper 41.
  • gum, may be sufficient.
  • the first guide hole 31a is a hole for guiding the first stopper 41 (details are described below).
  • the first stopper 41 is supported by the hull 2 like the vibration isolator 20.
  • the first stopper 41 is formed with a first stopper surface 41a on the upper surface and a first stopper shaft 41b.
  • the first stopper surface 41a has the same height as the first contact portion 31 when the propulsion engine 4 is not operating (refers to after the end of the tilt vibration when the engine is stopped, the same applies hereinafter) (more specifically, the first stopper surface 41a). (The same height as the lower surface of the contact portion 31).
  • the engine support structure 100 is attached to the horizontal surface (surface perpendicular to the vertical direction) of the hull 2, so that “the same height” refers to the case where the height in the vertical direction is the same (hereinafter referred to as “the same height”). The same applies to the “height” described in the previous section).
  • the same height refers to the case where the height in the vertical direction is the same (hereinafter referred to as “the same height”). The same applies to the “height” described in the previous section).
  • the first stopper surface 41a may be disposed at a position lower than the first contact portion 31.
  • the first stopper 41 restricts the inclination of the propulsion engine 4 over a predetermined inclination angle when the first stopper surface 41 a and the first contact portion 31 come into contact with each other.
  • the propulsion engine 4 is restricted from being inclined from the position where the inclination angle of the propulsion engine 4 is zero to the opposite side of the in-operation inclination direction.
  • the first stopper shaft 41b is disposed so as to pass through the first guide hole 31a.
  • the opening diameter of the first guide hole 31a is larger than that of the first stopper shaft 41b so that the inner wall of the first guide hole 31a and the first stopper shaft 41b do not interfere even if the engine support plate 30 is inclined.
  • the first contact portion 31 moves downward in the vertical direction, and the first contact portion 31 is moved.
  • the lower surface of the first contact portion 31 hits the first stopper surface 41a, whereby the inclination of the propulsion engine 4 to the opposite side can be restricted.
  • the inclination vibration at the time of engine stop can be stopped with a simple configuration. Since the first stopper surface 41a is located at the same or lower side as the first contact portion 31 when the propulsion engine 4 is not operating, the first stopper 41 is provided even after the end of the tilt vibration when the engine is stopped. This prevents the propulsion engine 4 from being inclined.
  • the inclination angle of the propulsion engine 4 is substantially equal.
  • the first contact portion 31 hits the first stopper surface 41a at the zero position.
  • the restoring force of the vibration isolator 20 may be the smallest, and by operating the first stopper 41 in the vicinity thereof, the engine can be more efficiently stopped. The tilt vibration can be terminated.
  • FIG. 3 is a schematic diagram showing the configuration of the engine support structure 100 of the second embodiment.
  • the same or similar members as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description may be omitted.
  • the second embodiment differs from the first embodiment in that a second stopper 42 is provided in addition to the first stopper 41.
  • the 2nd stopper 42 is arrange
  • the second stopper 42 is formed with a second stopper surface 42a on the lower surface and a second stopper shaft 42b.
  • the engine support plate 30 of the second embodiment is further formed with a second contact portion 32 and a second guide hole 32a.
  • the second contact portion 32 is disposed on the opposite side of the first contact portion 31 with the crankshaft 4a interposed therebetween.
  • the second guide hole 32a is formed in the vicinity of the second contact portion 32, and is a hole for inserting the second stopper shaft 42b.
  • the second stopper surface 42a is the same height as the second contact portion 32 (specifically, the upper surface of the second contact portion 32) when the propulsion engine 4 is not operating, or is higher than the second contact portion 32. It is placed at a high position. With this configuration, when the propulsion engine 4 is stopped and the propulsion engine 4 is inclined in the direction opposite to the in-operation inclination direction, the second contact portion 32 (specifically, the upper surface of the second contact portion 32) is 2 By hitting the stopper surface 42a, the inclination to the opposite side can be restricted.
  • the second stopper 42 is disposed at a higher height than the second stopper 42.
  • the tilt vibration when the engine is stopped can be stopped by the two stoppers, the tilt vibration when the engine is stopped can be stopped in a shorter period of time.
  • FIG. 4 is a schematic diagram showing the configuration of the engine support structure 100 of the third embodiment.
  • a third stopper 43 is further arranged.
  • the third stopper 43 is supported by the first stopper shaft 41 b and is disposed above the first stopper 41.
  • a third stopper surface 43 a is formed on the lower surface of the third stopper 43.
  • the third stopper surface 43a contacts the first contact portion 31 (specifically, the upper surface of the first contact portion 31), thereby restricting the inclination of the propulsion engine 4.
  • the propulsion engine 4 can only be tilted within a range regulated by the first stopper 41 and the third stopper 43.
  • the third stopper surface 43a is higher than the first contact portion 31 (specifically, the upper surface of the first contact portion 31) when the propulsion engine 4 is not in operation, and the propulsion engine 4 is normal. It arrange
  • the engine support structure 100 of the above embodiment includes the vibration isolator 20, the first contact portion 31, and the first stopper 41.
  • the vibration isolator 20 provides vibration isolation support for the propulsion engine 4 disposed on the ship 1.
  • the first contact portion 31 tilts integrally with the propulsion engine 4 and moves downward in the vertical direction when the propulsion engine 4 tilts in a direction opposite to a direction tilted by a reaction force during operation.
  • the first stopper 41 is formed with a first stopper surface 41a, and the inclination of the propulsion engine 4 is restricted by the first contact portion 31 and the first stopper surface 41a coming into contact with each other.
  • the first stopper surface 41a of the first stopper 41 is the same height as the first contact portion 31 when the propulsion engine 4 is not operating, or the first contact portion when the propulsion engine 4 is not operating. It is arranged at a position lower than 31.
  • the propulsion engine 4 supported by vibration isolation is tilted by a reaction force during operation and returns to the original position when stopped, but at this time, tilt vibration occurs when the engine is stopped.
  • the first stopper 41 as described above, it is possible to quickly stop the tilt vibration when the engine is stopped with a simple configuration. Moreover, since there are few component parts, an installation man-hour can be reduced. Also, the installation space is reduced. Further, by setting the first stopper surface 41a to the above height, the first stopper 41 does not get in the way even after the propulsion engine 4 is stopped.
  • the engine support structure 100 of the embodiment includes the second contact portion 32 and the second stopper 42.
  • the second contact portion 32 tilts integrally with the propulsion engine 4 and is disposed on the opposite side of the first contact portion 31 with the crankshaft 4 a of the propulsion engine 4 interposed therebetween.
  • the second stopper 42 is formed with a second stopper surface 42a. When the second contact portion 32 and the second stopper surface 42a come into contact with each other, the second stopper 42 comes into contact with the second contact portion 32 to regulate the inclination of the propulsion engine 4. .
  • the second stopper surface 42a of the second stopper 42 is the same height as the second contact portion 32 when the propulsion engine 4 is not operating, or the second contact portion when the propulsion engine 4 is not operating. It is arranged at a position higher than 32.
  • the engine support structure 100 of the above-described embodiment is formed with a third stopper surface 43a, and the inclination of the propulsion engine 4 is regulated by the contact between the first contact portion 31 and the third stopper surface 43a.
  • the third stopper 43 is provided above the first stopper 41.
  • the third stopper surface 43a of the third stopper 43 is disposed at a position higher than the first contact portion 31 when the propulsion engine 4 is operating.
  • the number of the first stopper 41 to the third stopper 43 can be set arbitrarily, and a plurality of the stoppers may be arranged side by side in the direction along the crankshaft 4a, for example.
  • the first stopper 41 to the third stopper 43 are arranged close to the center of gravity of the propulsion engine 4. By disposing near the center of gravity, it is possible to prevent the propulsion engine 4 from starting to vibrate in different directions based on the forces received from the first stopper 41 to the third stopper 43. Therefore, for example, when the position of the center of gravity is in the vicinity of the center in the crankshaft direction, it is preferably arranged in the vicinity of the center.
  • the engine support structure 100 of the third embodiment is configured to include all of the first stopper 41, the second stopper 42, and the third stopper 43.
  • the second stopper 42 is omitted, and the first stopper 41 and the third stopper 43 are provided. It is good also as a structure provided with the stopper 43.
  • the first stopper 41 and the second stopper 42 may be attached to another member other than the hull 2 as long as the first stopper surface 41a and the second stopper surface 42a are in the above positions. Moreover, the 3rd stopper 43 is not restricted to the structure attached to the 1st stopper axis

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

This engine support structure (100) is provided with a vibration-proof device (20), a first contact part (31), and a first stopper (41). The vibration-proof device (20) supports, in a vibration-proof manner, a propulsion engine (4) disposed in a ship. The first contact part (31) is inclined integrally with the propulsion engine (4), and moves vertically downward when inclined in the reverse direction of the direction in which the propulsion engine (4) is inclined by a reaction force during operation. The first stopper (41) has a first stopper surface (41a), and the inclination of the propulsion engine (4) is restricted by means of contact between the first contact part (31) and the first stopper surface (41a). The first stopper surface (41a) is disposed at the same height as or lower than the height of the first contact part (31) when the propulsion engine (4) is not operating.

Description

エンジン支持構造Engine support structure
 本発明は、主として、船舶用のエンジンを支持するエンジン支持構造に関する。 The present invention mainly relates to an engine support structure for supporting a marine engine.
 エンジンは、稼動中において、反力(反トルク)により力を受ける。そのため、エンジンが防振支持されている場合、エンジンは稼動中に傾くことがある。その後、エンジンが停止することで、反力が働かなくなるため、エンジンの傾きが元に戻る。このとき、エンジンがクランク軸方向を回転軸として一方向及び他方向に交互に傾くように振動することがある。 The engine receives a force from a reaction force (reaction torque) during operation. Therefore, when the engine is supported by vibration isolation, the engine may tilt during operation. Thereafter, the engine stops, and the reaction force does not work, so the engine tilt returns. At this time, the engine may vibrate so as to incline alternately in one direction and the other direction with the crankshaft direction as the rotation axis.
 特許文献1では、エンジンが反力の変化に起因して振動することを防止するために、ダンパと、電磁弁と、流体タンクと、を備える構成を開示する。電磁弁はダンパと流体タンクとを結ぶパイプ内に設けられている。電磁弁を開閉することで、ダンパと流体タンクとの間で流体が移動するため、ダンパの特性を調整することができる。 Patent Document 1 discloses a configuration including a damper, a solenoid valve, and a fluid tank in order to prevent the engine from vibrating due to a change in reaction force. The solenoid valve is provided in a pipe connecting the damper and the fluid tank. Since the fluid moves between the damper and the fluid tank by opening and closing the solenoid valve, the characteristics of the damper can be adjusted.
実公平6-25392号公報Japanese Utility Model Publication No. 6-25392
 しかし、特許文献1の構成では、エンジンの反力の変化に基づく振動を軽減するために、複数の装置が必要である。更に、特許文献1の構成では、電磁弁等の装置を制御する制御装置を設ける必要があるため、構成が複雑になる。従って、コストが増加したり、エンジンの設置スペースが大きくなったりすることがある。 However, the configuration of Patent Document 1 requires a plurality of devices in order to reduce vibrations based on changes in engine reaction force. Furthermore, in the configuration of Patent Document 1, since it is necessary to provide a control device that controls a device such as a solenoid valve, the configuration becomes complicated. Accordingly, the cost may increase and the installation space for the engine may increase.
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、船舶用のエンジンを支持するエンジン支持構造において、エンジンが停止して反力が働かなくなった際の振動を簡単な構成で抑制する構成を提供することにある。 The present invention has been made in view of the above circumstances, and its main object is to simplify vibration when the engine stops and the reaction force stops working in an engine support structure that supports a marine engine. It is in providing the structure suppressed by a structure.
課題を解決するための手段及び効果Means and effects for solving the problems
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.
 本発明の観点によれば、以下の構成のエンジン支持構造が提供される。即ち、このエンジン支持構造は、防振装置と、第1接触部と、第1ストッパと、を備える。前記防振装置は、船舶に配置されるエンジンを防振支持する。前記第1接触部は、前記エンジンと一体的に傾くとともに、前記エンジンが稼動中の反力により傾く方向とは反対方向に傾いた際に、鉛直方向下側に動く。前記第1ストッパは、第1ストッパ面が形成されており、前記第1接触部と前記第1ストッパ面が当たることで前記エンジンの傾きを規制する。前記第1ストッパの前記第1ストッパ面は、前記エンジンが稼動していないときの前記第1接触部と同じ高さか、あるいは、前記エンジンが稼動していないときの前記第1接触部よりも低い位置に配置されている。 According to an aspect of the present invention, an engine support structure having the following configuration is provided. That is, the engine support structure includes a vibration isolator, a first contact portion, and a first stopper. The vibration isolator supports the engine disposed on the ship in a vibration-proof manner. The first contact portion tilts integrally with the engine and moves downward in the vertical direction when the engine tilts in a direction opposite to a direction tilted by a reaction force during operation. The first stopper has a first stopper surface, and restricts the tilt of the engine when the first contact portion and the first stopper surface come into contact with each other. The first stopper surface of the first stopper is the same height as the first contact portion when the engine is not operating or lower than the first contact portion when the engine is not operating. Placed in position.
 防振支持されるエンジンは、稼動中は反力により傾いており、停止した際に元の位置に戻るが、このとき、クランク軸方向を回転軸として一方向及び他方向に交互に傾く振動(以下、エンジン停止時の傾斜振動)が発生する。この点、上記のような第1ストッパを設けることで、エンジン停止時の傾斜振動を簡単な構成で早期に停止させることができる。また、第1ストッパ面を上記の高さにすることで、エンジンの停止後においても、第1ストッパが邪魔とならない。 The engine supported by anti-vibration is tilted by the reaction force during operation and returns to its original position when stopped. At this time, vibration (inclined alternately in one direction and the other direction with the crankshaft direction as the rotation axis) Hereinafter, a tilt vibration when the engine is stopped) occurs. In this regard, by providing the first stopper as described above, it is possible to quickly stop the tilt vibration when the engine is stopped with a simple configuration. In addition, by setting the first stopper surface to the above height, the first stopper does not get in the way even after the engine is stopped.
 前記のエンジン支持構造においては、以下の構成とすることが好ましい。即ち、このエンジン支持構造は、第2接触部と、第2ストッパと、を備える。前記第2接触部は、前記エンジンと一体的に傾くとともに、前記エンジンのクランク軸を挟んで前記第1接触部とは反対側に配置されている。前記第2ストッパは、第2ストッパ面が形成されており、前記第2接触部と前記第2ストッパ面が当たることで前記第2接触部と接触して前記エンジンの傾きを規制する。前記第2ストッパの前記第2ストッパ面は、前記エンジンが稼動していないときの前記第2接触部と同じ高さか、あるいは、前記エンジンが稼動していないときの前記第2接触部よりも高い位置に配置されている。 It is preferable that the engine support structure has the following configuration. That is, the engine support structure includes a second contact portion and a second stopper. The second contact portion is inclined integrally with the engine, and is disposed on the opposite side of the first contact portion with the crankshaft of the engine interposed therebetween. The second stopper has a second stopper surface, and the second contact portion and the second stopper surface come into contact with each other to contact the second contact portion and regulate the inclination of the engine. The second stopper surface of the second stopper is the same height as the second contact portion when the engine is not operating or higher than the second contact portion when the engine is not operating. Placed in position.
 これにより、2つのストッパでエンジンの傾きを規制できるので、エンジン停止時の傾斜振動をより短期間で停止させることができる。 ∙ As a result, the tilt of the engine can be regulated by the two stoppers, so that the tilt vibration when the engine is stopped can be stopped in a shorter period of time.
 前記のエンジン支持構造においては、以下の構成とすることが好ましい。即ち、このエンジン支持構造は、第3ストッパ面が形成されており、前記第1接触部と前記第3ストッパ面とが当たることで前記エンジンの傾きを規制するとともに、前記第1ストッパの上方に配置されている第3ストッパを備える。前記第3ストッパの前記第3ストッパ面は、前記エンジンが稼動しているときの前記第1接触部よりも高い位置に配置されている。 It is preferable that the engine support structure has the following configuration. That is, the engine support structure is formed with a third stopper surface, and restricts the tilt of the engine by the contact of the first contact portion and the third stopper surface, and above the first stopper. A third stopper is provided. The third stopper surface of the third stopper is disposed at a position higher than the first contact portion when the engine is operating.
 これにより、稼動中のエンジンの過剰な傾きを簡単な構成で防止できる。また、第1ストッパと第3ストッパとが同じ第1接触部と接触する構成であるため、構成を更に簡単にすることができる。 This makes it possible to prevent excessive tilting of the running engine with a simple configuration. In addition, since the first stopper and the third stopper are in contact with the same first contact portion, the configuration can be further simplified.
各実施形態に係るエンジン支持構造が設けられる船舶の概略側面図。1 is a schematic side view of a ship provided with an engine support structure according to each embodiment. 第1実施形態のエンジン支持構造の構成を示す模式図。The schematic diagram which shows the structure of the engine support structure of 1st Embodiment. 第2実施形態のエンジン支持構造の構成を示す模式図。The schematic diagram which shows the structure of the engine support structure of 2nd Embodiment. 第3実施形態のエンジン支持構造の構成を示す模式図。The schematic diagram which shows the structure of the engine support structure of 3rd Embodiment.
 次に、図面を参照して本発明の実施形態を説明する。初めに図1を参照して、各実施形態のエンジン支持構造100が設けられる船舶1について説明する。図1は、船舶1の概略側面図である。なお、以下の説明では、位置関係、大きさ、又は形状等を説明する用語は、その用語の意味が完全に成立している構成だけでなく、その用語の意味が略成立している構成も指すものとする。 Next, an embodiment of the present invention will be described with reference to the drawings. First, with reference to FIG. 1, the ship 1 provided with the engine support structure 100 of each embodiment will be described. FIG. 1 is a schematic side view of the ship 1. In the following description, terms describing the positional relationship, size, shape, etc. are not limited to a configuration in which the meaning of the term is completely established, but also a configuration in which the meaning of the term is substantially established. Shall point to.
 図1に示すように、船舶1の船体2には、機関室3が設けられている。機関室3には、推進用エンジン4と、発電用エンジン8と、発電装置9と、が配置されている。 As shown in FIG. 1, the hull 2 of the ship 1 is provided with an engine room 3. In the engine room 3, a propulsion engine 4, a power generation engine 8, and a power generation device 9 are arranged.
 推進用エンジン4は、船舶1を移動させるための駆動力を発生させるディーゼルエンジンである。推進用エンジン4は、エンジン支持構造100により船体2に支持されている。なお、エンジン支持構造100の詳細については後述する。 The propulsion engine 4 is a diesel engine that generates a driving force for moving the ship 1. The propulsion engine 4 is supported on the hull 2 by the engine support structure 100. Details of the engine support structure 100 will be described later.
 推進用エンジン4が発生させた駆動力は図略の減速機に伝達されて、所定の回転速度に減速される。この減速機には、推進装置6が接続されている。推進装置6は、船舶1を移動させるための推進力を発生させるスクリュー等である。 The driving force generated by the propulsion engine 4 is transmitted to a reduction gear (not shown) and decelerated to a predetermined rotational speed. A propulsion device 6 is connected to the reduction gear. The propulsion device 6 is a screw or the like that generates a propulsive force for moving the ship 1.
 発電用エンジン8は、船内で発電を行うための駆動力を発生させるディーゼルエンジンである。発電装置9は、発電用エンジン8が発生させた駆動力を用いて発電を行う。発電用エンジン8は、船舶1に1台だけ搭載されていても良いし、複数台搭載されていても良い。発電用エンジン8が複数台搭載されている場合、必要な電力等に応じて、一部の発電用エンジン8を停止させることがある。 The power generation engine 8 is a diesel engine that generates a driving force for generating power on the ship. The power generation device 9 generates power using the driving force generated by the power generation engine 8. Only one power generation engine 8 may be mounted on the ship 1 or a plurality of power generation engines 8 may be mounted. When a plurality of power generation engines 8 are mounted, some of the power generation engines 8 may be stopped depending on necessary power or the like.
 なお、本実施形態では、エンジン支持構造100は、推進用エンジン4を支持するために用いられているが、発電用エンジン8を支持するために同様の支持構造を用いることもできる。また、推進用エンジン4及び発電用エンジン8の少なくとも一方は、ディーゼルエンジンとは異なる構成のエンジン(例えばガソリンエンジン)であっても良い。 In the present embodiment, the engine support structure 100 is used to support the propulsion engine 4, but a similar support structure may be used to support the power generation engine 8. Further, at least one of the propulsion engine 4 and the power generation engine 8 may be an engine having a configuration different from that of the diesel engine (for example, a gasoline engine).
 次に、第1実施形態のエンジン支持構造100について図2を参照して説明する。図2は、第1実施形態のエンジン支持構造100の構成を示す模式図である。 Next, the engine support structure 100 of the first embodiment will be described with reference to FIG. FIG. 2 is a schematic diagram showing the configuration of the engine support structure 100 of the first embodiment.
 初めに、反力の変化に基づいて推進用エンジン4が振動することについて説明する。推進用エンジン4の稼動中は、クランク軸4aから反力(反トルク)を受けるため、推進用エンジン4は、クランク軸4aの回転方向とは反対側に力を受ける。 First, it will be described that the propulsion engine 4 vibrates based on a change in reaction force. While the propulsion engine 4 is in operation, the propulsion engine 4 receives a reaction force (reaction torque) from the crankshaft 4a.
 推進用エンジン4は、防振支持されているため、この反力により推進用エンジン4が傾く(クランク軸4aを回転軸として、クランク軸4aの回転方向と反対方向に傾斜する)。推進用エンジン4及び一般的なエンジンでは、クランク軸4aの回転方向は決まっているため、推進用エンジン4の稼動時に傾く方向も常に同じである(図2の稼動時傾斜方向)。なお、傾きの程度(傾斜角度)は、推進用エンジン4の出力及び船舶1の振動等に応じて変化する。 Since the propulsion engine 4 is supported in an anti-vibration manner, the propulsion engine 4 is tilted by this reaction force (with the crankshaft 4a as a rotation axis, the tilting direction is opposite to the rotation direction of the crankshaft 4a). In the propulsion engine 4 and a general engine, the rotation direction of the crankshaft 4a is fixed, and therefore the direction in which the propulsion engine 4 is tilted is always the same (the tilt direction during operation in FIG. 2). The degree of inclination (inclination angle) varies depending on the output of the propulsion engine 4 and the vibration of the ship 1.
 その後、推進用エンジン4が停止した場合、反力が働かなくなるため、推進用エンジン4は傾斜角度を0に近づける方向に傾いて元の位置(元の姿勢、水平位置)に戻ろうとする。しかし、元の位置に戻るまでに勢いが付いているため、元の位置を通過して、稼動時傾斜方向とは反対方向へ更に傾く。その後、防振装置20の復元力により、推進用エンジン4は再び稼動時傾斜方向に傾く。この動作が繰り返されることで、推進用エンジン4が振動する。以下、この振動を「エンジン停止時の傾斜振動」と称する。エンジン停止時の傾斜振動が発生することで、推進用エンジン4に取り付けられている部品(例えば排気用のフレキ管)に負担が掛かることがある。本実施形態のエンジン支持構造100は、エンジン停止時の傾斜振動を簡単な構成で短時間で止めるための構成を有している。以下、詳細に説明する。 After that, when the propulsion engine 4 stops, the reaction force does not work, so the propulsion engine 4 tries to return to the original position (original posture, horizontal position) by tilting the tilt angle toward 0. However, since there is momentum before returning to the original position, it passes through the original position and further tilts in the direction opposite to the inclining direction during operation. Thereafter, due to the restoring force of the vibration isolator 20, the propulsion engine 4 again tilts in the tilt direction during operation. By repeating this operation, the propulsion engine 4 vibrates. Hereinafter, this vibration is referred to as “inclination vibration when the engine is stopped”. Occurrence of tilt vibration when the engine is stopped may place a burden on components (for example, an exhaust flexible pipe) attached to the propulsion engine 4. The engine support structure 100 of the present embodiment has a configuration for stopping tilt vibration when the engine is stopped with a simple configuration in a short time. Details will be described below.
 図2に示すように、推進用エンジン4は、エンジン支持構造100を介して船体2に支持されている。エンジン支持構造100は、防振装置20と、エンジン支持板30と、第1ストッパ41と、を備える。 As shown in FIG. 2, the propulsion engine 4 is supported on the hull 2 via the engine support structure 100. The engine support structure 100 includes a vibration isolation device 20, an engine support plate 30, and a first stopper 41.
 防振装置20は、金属製のコイルバネと、このコイルバネを推進用エンジン4及び船体2にそれぞれ取り付けるための2つの取付部と、を含んで構成されている。なお、コイルバネに代えて防振ゴムを用いる構成であっても良い。ただし、金属製のコイルバネは振動の内部減衰が小さいため、防振ゴム等と比較して、エンジン停止時の傾斜振動が発生し易い。そのため、コイルバネを用いる方が、エンジン停止時の傾斜振動を抑制するという本発明の効果を有効に活用できる。 The vibration isolator 20 includes a metal coil spring and two attachment portions for attaching the coil spring to the propulsion engine 4 and the hull 2, respectively. In addition, it may replace with a coil spring and the structure which uses vibration-proof rubber may be sufficient. However, since the metal coil spring has a small internal damping of vibration, tilt vibration when the engine is stopped is more likely to occur compared to anti-vibration rubber or the like. Therefore, the use of the coil spring can effectively utilize the effect of the present invention that suppresses the tilt vibration when the engine is stopped.
 エンジン支持板30は、防振装置20と推進用エンジン4の間に配置されている金属製の板材である。エンジン支持板30には、図略の固定具等により、防振装置20(詳細には推進用エンジン4を取り付けるための取付部)及び推進用エンジン4の両方に固定されている。従って、エンジン停止時の傾斜振動が発生した場合、エンジン支持板30は推進用エンジン4と一体的に振動する。 The engine support plate 30 is a metal plate disposed between the vibration isolator 20 and the propulsion engine 4. The engine support plate 30 is fixed to both the vibration isolator 20 (specifically, a mounting portion for mounting the propulsion engine 4) and the propulsion engine 4 by a fixture (not shown) or the like. Accordingly, when tilt vibration occurs when the engine is stopped, the engine support plate 30 vibrates integrally with the propulsion engine 4.
 また、エンジン支持板30には、第1接触部31及び第1ガイド孔31aが形成されている。第1接触部31は、エンジン停止時の傾斜振動を停止させるために、第1ストッパ41に当たる部分である。なお、第1接触部31は、エンジン支持板30の表面をそのまま用いても良いが、第1ストッパ41に当たった際の音、衝撃、跳ね返り等を軽減するために、エンジン支持板30の表面にゴム等の弾性体を貼り付けた構成であっても良い。第1ガイド孔31aは、第1ストッパ41をガイドするための孔である(詳細は下記)。 Further, the engine support plate 30 is formed with a first contact portion 31 and a first guide hole 31a. The first contact portion 31 is a portion that contacts the first stopper 41 in order to stop the tilt vibration when the engine is stopped. The first contact portion 31 may use the surface of the engine support plate 30 as it is, but the surface of the engine support plate 30 may be reduced in order to reduce noise, impact, rebound, etc. when it hits the first stopper 41. The structure which affixed elastic bodies, such as rubber | gum, may be sufficient. The first guide hole 31a is a hole for guiding the first stopper 41 (details are described below).
 第1ストッパ41は、防振装置20と同じく船体2に支持されている。第1ストッパ41には、上面の第1ストッパ面41aと、第1ストッパ軸41bと、が形成されている。第1ストッパ面41aは、推進用エンジン4が稼動していないとき(エンジン停止時の傾斜振動の終了後を指す、以下同じ)の第1接触部31と同じ高さ(更に詳細には第1接触部31の下面と同じ高さ)に配置されている。なお、本実施形態ではエンジン支持構造100は、船体2の水平面(鉛直方向に垂直な面)に取り付けられているため、「同じ高さ」とは鉛直方向の高さが同じ場合を指す(以下で説明する「高さ」についても同様)。なお、エンジン支持構造100が船体2の水平面ではなく傾斜面に配置される場合は、傾斜面に垂直な方向における位置を「高さ」と称する。なお、第1ストッパ面41aは、第1接触部31よりも低い位置に配置されていても良い。第1ストッパ41は、第1ストッパ面41aと第1接触部31が当たることで、推進用エンジン4の所定の傾斜角度以上の傾きを規制する。本実施形態では、推進用エンジン4の傾斜角度がゼロの位置から、稼動時傾斜方向の反対側に傾斜することを規制する。 The first stopper 41 is supported by the hull 2 like the vibration isolator 20. The first stopper 41 is formed with a first stopper surface 41a on the upper surface and a first stopper shaft 41b. The first stopper surface 41a has the same height as the first contact portion 31 when the propulsion engine 4 is not operating (refers to after the end of the tilt vibration when the engine is stopped, the same applies hereinafter) (more specifically, the first stopper surface 41a). (The same height as the lower surface of the contact portion 31). In the present embodiment, the engine support structure 100 is attached to the horizontal surface (surface perpendicular to the vertical direction) of the hull 2, so that “the same height” refers to the case where the height in the vertical direction is the same (hereinafter referred to as “the same height”). The same applies to the “height” described in the previous section). When engine support structure 100 is arranged on an inclined surface instead of a horizontal surface of hull 2, a position in a direction perpendicular to the inclined surface is referred to as “height”. The first stopper surface 41a may be disposed at a position lower than the first contact portion 31. The first stopper 41 restricts the inclination of the propulsion engine 4 over a predetermined inclination angle when the first stopper surface 41 a and the first contact portion 31 come into contact with each other. In the present embodiment, the propulsion engine 4 is restricted from being inclined from the position where the inclination angle of the propulsion engine 4 is zero to the opposite side of the in-operation inclination direction.
 第1ストッパ軸41bは、第1ガイド孔31aを挿通するように配置されている。エンジン支持板30が傾斜しても第1ガイド孔31aの内壁と第1ストッパ軸41bとが干渉しないように、第1ガイド孔31aの開口径は第1ストッパ軸41bよりも大きい。 The first stopper shaft 41b is disposed so as to pass through the first guide hole 31a. The opening diameter of the first guide hole 31a is larger than that of the first stopper shaft 41b so that the inner wall of the first guide hole 31a and the first stopper shaft 41b do not interfere even if the engine support plate 30 is inclined.
 以上の構成により、推進用エンジン4が停止して、推進用エンジン4が稼動時傾斜方向と反対側に傾斜する場合において、第1接触部31が鉛直方向下側に動き、第1接触部31(詳細には第1接触部31の下面)が第1ストッパ面41aに当たることで、推進用エンジン4の当該反対側への傾斜を規制することができる。これにより、簡単な構成でエンジン停止時の傾斜振動を停止させることができる。なお、第1ストッパ面41aは、推進用エンジン4が稼動していないときの第1接触部31と同じか下方に位置するため、エンジン停止時の傾斜振動の終了後においても、第1ストッパ41によって推進用エンジン4が傾斜することがない。 With the above configuration, when the propulsion engine 4 is stopped and the propulsion engine 4 is inclined to the opposite side to the in-operation inclination direction, the first contact portion 31 moves downward in the vertical direction, and the first contact portion 31 is moved. (In detail, the lower surface of the first contact portion 31) hits the first stopper surface 41a, whereby the inclination of the propulsion engine 4 to the opposite side can be restricted. Thereby, the inclination vibration at the time of engine stop can be stopped with a simple configuration. Since the first stopper surface 41a is located at the same or lower side as the first contact portion 31 when the propulsion engine 4 is not operating, the first stopper 41 is provided even after the end of the tilt vibration when the engine is stopped. This prevents the propulsion engine 4 from being inclined.
 また、本実施形態では、推進用エンジン4が稼動していないときの第1接触部31の高さと第1ストッパ面41aの高さとが略同じであるため、推進用エンジン4の傾斜角度が略ゼロの位置で、第1接触部31が第1ストッパ面41aに当たる。推進用エンジン4の傾斜角度が略ゼロの位置においては、防振装置20の復元力が最も小さいこともあり、この近傍で第1ストッパ41を作用させることで、更に効率的にエンジン停止時の傾斜振動を終了させることができる。 Further, in the present embodiment, since the height of the first contact portion 31 and the height of the first stopper surface 41a when the propulsion engine 4 is not operating are substantially the same, the inclination angle of the propulsion engine 4 is substantially equal. The first contact portion 31 hits the first stopper surface 41a at the zero position. In the position where the inclination angle of the propulsion engine 4 is substantially zero, the restoring force of the vibration isolator 20 may be the smallest, and by operating the first stopper 41 in the vicinity thereof, the engine can be more efficiently stopped. The tilt vibration can be terminated.
 次に、図3を参照して第2実施形態を説明する。図3は、第2実施形態のエンジン支持構造100の構成を示す模式図である。なお、第2実施形態以降の説明においては、第1実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。 Next, a second embodiment will be described with reference to FIG. FIG. 3 is a schematic diagram showing the configuration of the engine support structure 100 of the second embodiment. In the description after the second embodiment, the same or similar members as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description may be omitted.
 第2実施形態では、第1ストッパ41に加え、第2ストッパ42を設けた点において、第1実施形態と異なる。第2ストッパ42は、クランク軸4aを挟んで第1ストッパ41とは反対側に配置されている。第2ストッパ42には、下面の第2ストッパ面42aと、第2ストッパ軸42bと、が形成されている。 The second embodiment differs from the first embodiment in that a second stopper 42 is provided in addition to the first stopper 41. The 2nd stopper 42 is arrange | positioned on the opposite side to the 1st stopper 41 on both sides of the crankshaft 4a. The second stopper 42 is formed with a second stopper surface 42a on the lower surface and a second stopper shaft 42b.
 また、第2ストッパ42を作用させるために、第2実施形態のエンジン支持板30には、更に第2接触部32と、第2ガイド孔32aと、が形成されている。第2接触部32は、クランク軸4aを挟んで第1接触部31とは反対側に配置されている。第2ガイド孔32aは、第2接触部32の近傍に形成されており、第2ストッパ軸42bを挿通するための孔である。 Further, in order to make the second stopper 42 act, the engine support plate 30 of the second embodiment is further formed with a second contact portion 32 and a second guide hole 32a. The second contact portion 32 is disposed on the opposite side of the first contact portion 31 with the crankshaft 4a interposed therebetween. The second guide hole 32a is formed in the vicinity of the second contact portion 32, and is a hole for inserting the second stopper shaft 42b.
 ここで、第2ストッパ面42aは、推進用エンジン4が稼動していないときの第2接触部32(詳細には第2接触部32の上面)と同じ高さか、第2接触部32よりも高い位置に配置されている。この構成により、推進用エンジン4が停止して、推進用エンジン4が稼動時傾斜方向と反対側に傾斜する場合において、第2接触部32(詳細には第2接触部32の上面)が第2ストッパ面42aに当たることで、当該反対側への傾斜を規制することができる。なお、第2ストッパ42は、第2ストッパ42より高い高さに配置されることとなる。 Here, the second stopper surface 42a is the same height as the second contact portion 32 (specifically, the upper surface of the second contact portion 32) when the propulsion engine 4 is not operating, or is higher than the second contact portion 32. It is placed at a high position. With this configuration, when the propulsion engine 4 is stopped and the propulsion engine 4 is inclined in the direction opposite to the in-operation inclination direction, the second contact portion 32 (specifically, the upper surface of the second contact portion 32) is 2 By hitting the stopper surface 42a, the inclination to the opposite side can be restricted. The second stopper 42 is disposed at a higher height than the second stopper 42.
 このように、第2実施形態では、2つのストッパでエンジン停止時の傾斜振動を停止できるので、エンジン停止時の傾斜振動をより短期間で停止させることができる。 As described above, in the second embodiment, since the tilt vibration when the engine is stopped can be stopped by the two stoppers, the tilt vibration when the engine is stopped can be stopped in a shorter period of time.
 次に、図4を参照して第3実施形態を説明する。図4は、第3実施形態のエンジン支持構造100の構成を示す模式図である。 Next, a third embodiment will be described with reference to FIG. FIG. 4 is a schematic diagram showing the configuration of the engine support structure 100 of the third embodiment.
 第3実施形態では、第2実施形態の構成に加え、更に、第3ストッパ43が配置されている。第3ストッパ43は、第1ストッパ軸41bに支持されており、第1ストッパ41よりも上方に配置されている。また、第3ストッパ43の下面には、第3ストッパ面43aが形成されている。第3ストッパ面43aは、第1接触部31(詳細には第1接触部31の上面)に当たることで、推進用エンジン4の傾斜を規制する。言い換えれば、推進用エンジン4は、第1ストッパ41と第3ストッパ43で規制される範囲内でしか傾斜できない。 In the third embodiment, in addition to the configuration of the second embodiment, a third stopper 43 is further arranged. The third stopper 43 is supported by the first stopper shaft 41 b and is disposed above the first stopper 41. A third stopper surface 43 a is formed on the lower surface of the third stopper 43. The third stopper surface 43a contacts the first contact portion 31 (specifically, the upper surface of the first contact portion 31), thereby restricting the inclination of the propulsion engine 4. In other words, the propulsion engine 4 can only be tilted within a range regulated by the first stopper 41 and the third stopper 43.
 第3ストッパ面43aは、推進用エンジン4が稼動していない場合の第1接触部31(詳細には第1接触部31の上面)よりも高い位置であって、推進用エンジン4が通常の負荷で稼動しているときの第1接触部31(詳細には第1接触部31の上面)よりも高い位置に配置されている。つまり、第3ストッパ43は、エンジン停止時の傾斜振動の低減が目的ではなく、推進用エンジン4の稼動時において、推進用エンジン4が稼動時傾斜方向に過剰に傾斜することを防止することが目的である。従って、第3ストッパ43を備えることで、推進用エンジン4の転倒を防止できる。 The third stopper surface 43a is higher than the first contact portion 31 (specifically, the upper surface of the first contact portion 31) when the propulsion engine 4 is not in operation, and the propulsion engine 4 is normal. It arrange | positions in the position higher than the 1st contact part 31 (specifically the upper surface of the 1st contact part 31) when operating with load. That is, the third stopper 43 is not intended to reduce the tilt vibration when the engine is stopped, and can prevent the propulsion engine 4 from excessively tilting in the tilt direction during operation when the propulsion engine 4 is operating. Is the purpose. Therefore, the provision of the third stopper 43 can prevent the propulsion engine 4 from falling.
 なお、第3実施形態では、第1ストッパ41の上方(エンジン支持板30を挟んで第1ストッパ41の反対側)に第3ストッパ43を設ける構成である。これに代えて又は加えて、第2ストッパ42の下方(エンジン支持板30を挟んで第2ストッパ42の反対側)にストッパを設けることによっても、推進用エンジン4の転倒を防止できる。 In addition, in 3rd Embodiment, it is the structure which provides the 3rd stopper 43 above the 1st stopper 41 (opposite side of the 1st stopper 41 on both sides of the engine support plate 30). Instead of this, or in addition to this, the propulsion engine 4 can be prevented from falling by providing a stopper below the second stopper 42 (on the opposite side of the second stopper 42 with the engine support plate 30 in between).
 以上に説明したように、上記実施形態のエンジン支持構造100は、防振装置20と、第1接触部31と、第1ストッパ41と、を備える。防振装置20は、船舶1に配置される推進用エンジン4を防振支持する。第1接触部31は、推進用エンジン4と一体的に傾くとともに、推進用エンジン4が稼動中の反力により傾く方向とは反対方向に傾いた際に、鉛直方向下側に動く。第1ストッパ41には、第1ストッパ面41aが形成されており、第1接触部31と第1ストッパ面41aが当たることで推進用エンジン4の傾きを規制する。第1ストッパ41の第1ストッパ面41aは、推進用エンジン4が稼動していないときの第1接触部31と同じ高さか、あるいは、推進用エンジン4が稼動していないときの第1接触部31よりも低い位置に配置されている。 As described above, the engine support structure 100 of the above embodiment includes the vibration isolator 20, the first contact portion 31, and the first stopper 41. The vibration isolator 20 provides vibration isolation support for the propulsion engine 4 disposed on the ship 1. The first contact portion 31 tilts integrally with the propulsion engine 4 and moves downward in the vertical direction when the propulsion engine 4 tilts in a direction opposite to a direction tilted by a reaction force during operation. The first stopper 41 is formed with a first stopper surface 41a, and the inclination of the propulsion engine 4 is restricted by the first contact portion 31 and the first stopper surface 41a coming into contact with each other. The first stopper surface 41a of the first stopper 41 is the same height as the first contact portion 31 when the propulsion engine 4 is not operating, or the first contact portion when the propulsion engine 4 is not operating. It is arranged at a position lower than 31.
 防振支持される推進用エンジン4は、稼動中は反力により傾いており、停止した際に元の位置に戻るが、このとき、エンジン停止時の傾斜振動が発生する。この点、上記のような第1ストッパ41を設けることで、エンジン停止時の傾斜振動を簡単な構成で早期に停止させることができる。また、構成部品が少ないため、取付工数を低減できる。また、設置スペースも小さくなる。また、第1ストッパ面41aを上記の高さにすることで、推進用エンジン4の停止後においても、第1ストッパ41が邪魔とならない。 The propulsion engine 4 supported by vibration isolation is tilted by a reaction force during operation and returns to the original position when stopped, but at this time, tilt vibration occurs when the engine is stopped. In this regard, by providing the first stopper 41 as described above, it is possible to quickly stop the tilt vibration when the engine is stopped with a simple configuration. Moreover, since there are few component parts, an installation man-hour can be reduced. Also, the installation space is reduced. Further, by setting the first stopper surface 41a to the above height, the first stopper 41 does not get in the way even after the propulsion engine 4 is stopped.
 また、上記実施形態のエンジン支持構造100は、第2接触部32と、第2ストッパ42と、を備える。第2接触部32は、推進用エンジン4と一体的に傾くとともに、推進用エンジン4のクランク軸4aを挟んで第1接触部31とは反対側に配置されている。第2ストッパ42は、第2ストッパ面42aが形成されており、第2接触部32と第2ストッパ面42aが当たることで第2接触部32と接触して推進用エンジン4の傾きを規制する。第2ストッパ42の第2ストッパ面42aは、推進用エンジン4が稼動していないときの第2接触部32と同じ高さか、あるいは、推進用エンジン4が稼動していないときの第2接触部32よりも高い位置に配置されている。 Further, the engine support structure 100 of the embodiment includes the second contact portion 32 and the second stopper 42. The second contact portion 32 tilts integrally with the propulsion engine 4 and is disposed on the opposite side of the first contact portion 31 with the crankshaft 4 a of the propulsion engine 4 interposed therebetween. The second stopper 42 is formed with a second stopper surface 42a. When the second contact portion 32 and the second stopper surface 42a come into contact with each other, the second stopper 42 comes into contact with the second contact portion 32 to regulate the inclination of the propulsion engine 4. . The second stopper surface 42a of the second stopper 42 is the same height as the second contact portion 32 when the propulsion engine 4 is not operating, or the second contact portion when the propulsion engine 4 is not operating. It is arranged at a position higher than 32.
 これにより、2つのストッパで推進用エンジン4の傾きを規制できるので、エンジン停止時の傾斜振動をより短期間で停止させることができる。 This makes it possible to regulate the inclination of the propulsion engine 4 with two stoppers, so that the inclination vibration when the engine is stopped can be stopped in a shorter period of time.
 また、上記実施形態のエンジン支持構造100には、第3ストッパ面43aが形成されており、第1接触部31と第3ストッパ面43aとが当たることで推進用エンジン4の傾きを規制するとともに、第1ストッパ41の上方に配置されている第3ストッパ43を備える。第3ストッパ43の第3ストッパ面43aは、推進用エンジン4が稼動しているときの第1接触部31よりも高い位置に配置されている。 Further, the engine support structure 100 of the above-described embodiment is formed with a third stopper surface 43a, and the inclination of the propulsion engine 4 is regulated by the contact between the first contact portion 31 and the third stopper surface 43a. The third stopper 43 is provided above the first stopper 41. The third stopper surface 43a of the third stopper 43 is disposed at a position higher than the first contact portion 31 when the propulsion engine 4 is operating.
 これにより、稼動中の推進用エンジン4の過剰な傾きを簡単な構成で防止できる。また、第1ストッパ41と第3ストッパ43とが同じ第1接触部31と接触する構成であるため、構成を更に簡単にすることができる。 This can prevent an excessive inclination of the propulsion engine 4 in operation with a simple configuration. In addition, since the first stopper 41 and the third stopper 43 are configured to contact the same first contact portion 31, the configuration can be further simplified.
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although a preferred embodiment of the present invention has been described above, the above configuration can be modified as follows, for example.
 第1ストッパ41~第3ストッパ43の設置数は任意であり、それぞれのストッパを例えばクランク軸4aに沿う方向に並べて複数設置しても良い。なお、第1ストッパ41~第3ストッパ43を効率的に設置するためには、第1ストッパ41~第3ストッパ43を、推進用エンジン4の重心位置に近くに配置することが好ましい。重心位置の近くに配置することで、第1ストッパ41~第3ストッパ43から受けた力に基づいて、推進用エンジン4が異なる方向へ振動を開始することを防止できる。従って、例えば、重心位置がクランク軸方向の中央の近傍である場合は、当該中央の近傍に配置することが好ましい。 The number of the first stopper 41 to the third stopper 43 can be set arbitrarily, and a plurality of the stoppers may be arranged side by side in the direction along the crankshaft 4a, for example. In order to efficiently install the first stopper 41 to the third stopper 43, it is preferable that the first stopper 41 to the third stopper 43 are arranged close to the center of gravity of the propulsion engine 4. By disposing near the center of gravity, it is possible to prevent the propulsion engine 4 from starting to vibrate in different directions based on the forces received from the first stopper 41 to the third stopper 43. Therefore, for example, when the position of the center of gravity is in the vicinity of the center in the crankshaft direction, it is preferably arranged in the vicinity of the center.
 第3実施形態のエンジン支持構造100は、第1ストッパ41、第2ストッパ42、及び第3ストッパ43の全てを備える構成であるが、第2ストッパ42を省略し、第1ストッパ41と第3ストッパ43を備える構成としても良い。 The engine support structure 100 of the third embodiment is configured to include all of the first stopper 41, the second stopper 42, and the third stopper 43. However, the second stopper 42 is omitted, and the first stopper 41 and the third stopper 43 are provided. It is good also as a structure provided with the stopper 43. FIG.
 第1ストッパ41及び第2ストッパ42は、第1ストッパ面41a及び第2ストッパ面42aが上記の位置であれば、船体2以外の別の部材に取り付けられていても良い。また、第3ストッパ43も第1ストッパ軸41bに取り付けられる構成に限られず、別の部材に取り付けられていても良い。 The first stopper 41 and the second stopper 42 may be attached to another member other than the hull 2 as long as the first stopper surface 41a and the second stopper surface 42a are in the above positions. Moreover, the 3rd stopper 43 is not restricted to the structure attached to the 1st stopper axis | shaft 41b, You may attach to another member.
 2 船体
 4 推進用エンジン(エンジン)
 8 発電用エンジン(エンジン)
 20 防振装置
 30 エンジン支持板
 31 第1接触部
 32 第2接触部
 41 第1ストッパ
 42 第2ストッパ
 43 第3ストッパ
 100 エンジン支持構造
2 Hull 4 Propulsion engine (engine)
8 Power generation engine (engine)
20 vibration isolator 30 engine support plate 31 first contact portion 32 second contact portion 41 first stopper 42 second stopper 43 third stopper 100 engine support structure

Claims (4)

  1.  船舶に配置されるエンジンを防振支持する防振装置と、
     前記エンジンと一体的に傾くとともに、前記エンジンが稼動中の反力により傾く方向とは反対方向に傾いた際に、鉛直方向下側に動く第1接触部と、
     第1ストッパ面が形成されており、前記第1接触部と前記第1ストッパ面が当たることで前記エンジンの傾きを規制する第1ストッパと、
    を備え、
     前記第1ストッパの前記第1ストッパ面は、前記エンジンが稼動していないときの前記第1接触部と同じ高さか、あるいは、前記エンジンが稼動していないときの前記第1接触部よりも低い位置に配置されていることを特徴とするエンジン支持構造。
    An anti-vibration device for supporting an anti-vibration engine disposed on the ship;
    A first contact portion that tilts integrally with the engine and moves downward in the vertical direction when the engine is tilted in a direction opposite to a direction tilted by a reaction force during operation;
    A first stopper surface is formed, and a first stopper that regulates an inclination of the engine by abutting the first contact portion and the first stopper surface;
    With
    The first stopper surface of the first stopper is the same height as the first contact portion when the engine is not operating or lower than the first contact portion when the engine is not operating. An engine support structure, wherein the engine support structure is disposed at a position.
  2.  請求項1に記載のエンジン支持構造であって、
     前記エンジンと一体的に傾くとともに、前記エンジンのクランク軸を挟んで前記第1接触部とは反対側に配置されている第2接触部と、
     第2ストッパ面が形成されており、前記第2接触部と前記第2ストッパ面が当たることで前記第2接触部と接触して前記エンジンの傾きを規制する第2ストッパと、
    を備え、
     前記第2ストッパの前記第2ストッパ面は、前記エンジンが稼動していないときの前記第2接触部と同じ高さか、あるいは、前記エンジンが稼動していないときの前記第2接触部よりも高い位置に配置されていることを特徴とするエンジン支持構造。
    The engine support structure according to claim 1,
    A second contact portion that is integrally tilted with the engine and is disposed on the opposite side of the first contact portion across the crankshaft of the engine;
    A second stopper surface is formed, and the second contact portion and the second stopper surface are in contact with each other so that the second contact portion contacts the second contact portion and regulates the inclination of the engine;
    With
    The second stopper surface of the second stopper is the same height as the second contact portion when the engine is not operating or higher than the second contact portion when the engine is not operating. An engine support structure, wherein the engine support structure is disposed at a position.
  3.  請求項1に記載のエンジン支持構造であって、
     第3ストッパ面が形成されており、前記第1接触部と前記第3ストッパ面とが当たることで前記エンジンの傾きを規制するとともに、前記第1ストッパの上方に配置されている第3ストッパを備え、
     前記第3ストッパの前記第3ストッパ面は、前記エンジンが稼動しているときの前記第1接触部よりも高い位置に配置されていることを特徴とするエンジン支持構造。
    The engine support structure according to claim 1,
    A third stopper surface is formed. The first stopper and the third stopper surface are in contact with each other to regulate the inclination of the engine, and a third stopper disposed above the first stopper. Prepared,
    The engine support structure, wherein the third stopper surface of the third stopper is disposed at a position higher than the first contact portion when the engine is operating.
  4.  請求項2に記載のエンジン支持構造であって、
     第3ストッパ面が形成されており、前記第1接触部と前記第3ストッパ面とが当たることで前記エンジンの傾きを規制するとともに、前記第1ストッパの上方に配置されている第3ストッパを備え、
     前記第3ストッパの前記第3ストッパ面は、前記エンジンが稼動しているときの前記第1接触部よりも高い位置に配置されていることを特徴とするエンジン支持構造。
    The engine support structure according to claim 2,
    A third stopper surface is formed. The first stopper and the third stopper surface are in contact with each other to regulate the inclination of the engine, and a third stopper disposed above the first stopper. Prepared,
    The engine support structure, wherein the third stopper surface of the third stopper is disposed at a position higher than the first contact portion when the engine is operating.
PCT/JP2018/000594 2017-03-08 2018-01-12 Engine support structure WO2018163595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-043774 2017-03-08
JP2017043774A JP6688753B2 (en) 2017-03-08 2017-03-08 Engine support structure

Publications (1)

Publication Number Publication Date
WO2018163595A1 true WO2018163595A1 (en) 2018-09-13

Family

ID=63447475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000594 WO2018163595A1 (en) 2017-03-08 2018-01-12 Engine support structure

Country Status (2)

Country Link
JP (1) JP6688753B2 (en)
WO (1) WO2018163595A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261496B (en) * 2022-03-03 2022-05-10 山东交通学院 An intelligent marine diesel engine attitude adjustment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163050A (en) * 1986-12-25 1988-07-06 Kawasaki Heavy Ind Ltd Hydraulic vibration isolator
JPH0471839U (en) * 1990-06-25 1992-06-25
JP2005308049A (en) * 2004-04-20 2005-11-04 Yanmar Co Ltd Installation structure of internal combustion engine or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163050A (en) * 1986-12-25 1988-07-06 Kawasaki Heavy Ind Ltd Hydraulic vibration isolator
JPH0471839U (en) * 1990-06-25 1992-06-25
JP2005308049A (en) * 2004-04-20 2005-11-04 Yanmar Co Ltd Installation structure of internal combustion engine or the like

Also Published As

Publication number Publication date
JP2018144730A (en) 2018-09-20
JP6688753B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
KR102485332B1 (en) Vibration damping device for vehicle
JP6551200B2 (en) Support device for internal combustion engine for vehicle
JP2019183854A (en) Vibration control device
JP2020034126A (en) Stopper and vibration control unit
WO2018163595A1 (en) Engine support structure
CN110382343B (en) Anti-vibration device and anti-vibration engine
CN105987123B (en) Centrifuge vibrator type vibration absorber
US7597173B2 (en) Device for coupled attachment of an exhaust system to an internal combustion engine
JPH10169705A (en) Vibration damping device
JP4257254B2 (en) Engine installation structure
JP2007333163A (en) Step-up/reduction gear
JP4736917B2 (en) Suspension system for internal combustion engine
JPH06104313B2 (en) Anti-vibration device for manipulator
JP2018184034A (en) Engine support structure
JP2013057348A (en) Anti-vibration support device, vehicle including the same, and method for reducing vehicle vibration
JP2004150486A (en) Dynamic damper
JPH03249440A (en) Vibration isolator
KR101645714B1 (en) Mounting apparatus for an electric car driving device
KR100570014B1 (en) Fluid Engine Mounts for Cars
JP3004093U (en) Upset stopper
JP6870055B2 (en) Vibration damping device
KR101449530B1 (en) Closed coil spring type torsional vibration damper
JP2006258141A (en) A vibration absorber using Coriolis force on a rocking body
JP2007051742A (en) Damping structure
JPH06264966A (en) Vibrationproof support device of vibrating body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763527

Country of ref document: EP

Kind code of ref document: A1