WO2018163853A1 - レーダ装置およびレーダ装置の物標位置検出方法 - Google Patents
レーダ装置およびレーダ装置の物標位置検出方法 Download PDFInfo
- Publication number
- WO2018163853A1 WO2018163853A1 PCT/JP2018/006597 JP2018006597W WO2018163853A1 WO 2018163853 A1 WO2018163853 A1 WO 2018163853A1 JP 2018006597 W JP2018006597 W JP 2018006597W WO 2018163853 A1 WO2018163853 A1 WO 2018163853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dispersion
- unit
- target
- radio wave
- signal
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 239000006185 dispersion Substances 0.000 claims abstract description 130
- 238000009826 distribution Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 230000003321 amplification Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
- G01S13/426—Scanning radar, e.g. 3D radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
- G01S3/46—Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/068—Two dimensional planar arrays using parallel coplanar travelling wave or leaky wave aerial units
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
- H01Q21/12—Parallel arrangements of substantially straight elongated conductive units
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S2013/0236—Special technical features
- G01S2013/0245—Radar with phased array antenna
- G01S2013/0263—Passive array antenna
Definitions
- the present invention relates to a radar apparatus and a target position detection method for the radar apparatus.
- the radar device generally uses a method of analyzing where a target exists within the viewing angle.
- a radar apparatus capable of detecting the position of a target in a direction orthogonal to the viewing angle has been proposed.
- Patent Document 1 has a problem that the configuration of the apparatus is complicated because it is necessary to use a plurality of transmission antennas.
- the present invention provides a radar device that detects a target by radio waves, wherein a receiving antenna element having a predetermined length in a first direction is substantially perpendicular to the first direction.
- a plurality of receiving array antennas arranged side by side in the direction, a dispersive part arranged in the vicinity of the receiving array antenna, in which a dispersion characteristic of the radio wave changes with respect to the first direction, and reflected by the dispersive part
- a detection unit that detects a position of the target in the first direction based on the radio wave. According to such a configuration, the position of the target in the direction orthogonal to the viewing angle can be detected without complicating the apparatus.
- the present invention is characterized in that the receiving array antenna is disposed on a circuit board, and the dispersion unit is disposed in the vicinity of the receiving array antenna on the circuit board. According to such a configuration, by providing the dispersion unit on the same circuit board as the receiving array antenna, the configuration can be simplified and an increase in the manufacturing cost of the device can be suppressed.
- the present invention is characterized in that the reception array antenna is disposed on a circuit board, and the dispersion unit is disposed on a radome that covers the circuit board on which the reception array antenna is disposed. According to such a structure, it can prevent that the size of a circuit board becomes large by providing a dispersion
- the present invention is characterized in that the two dispersion units are arranged so as to sandwich the reception array antenna, and the two dispersion units have the same dispersion characteristic in the first direction. According to such a configuration, the detection sensitivity in the first direction can be improved by increasing the number of dispersion portions.
- the two dispersion units are arranged so as to sandwich the reception array antenna, and the two dispersion units have characteristics in which the dispersion characteristics in the first direction are mutually inverted. According to such a configuration, an output that is inverted according to the position in the first direction can be obtained, so that the detection sensitivity in the first direction can be improved.
- the present invention is characterized in that the receiving antenna elements are arranged with an interval of ⁇ / 2 in the second direction when the wavelength of the radio wave is ⁇ . According to such a configuration, the angle in the viewing angle direction can be reliably detected.
- the present invention is characterized in that the receiving antenna elements are arranged with an interval of less than ⁇ / 2 in the second direction when the wavelength of the radio wave is ⁇ . According to such a structure, the information regarding the position where the dispersion
- the dispersion unit is configured by a plurality of resonance elements, and the resonance element that resonates at substantially the same frequency as the radio wave is disposed in the center of the first direction, and a low frequency is disposed on the lower side.
- the resonance element that resonates at is disposed, and the resonance element that resonates at a high frequency is disposed on the upper side. According to such a configuration, desired dispersion characteristics can be obtained by setting the frequency of the resonant element.
- this invention has the electric power feeding part which supplies electric power to the said dispersion
- the power supply unit supplies power to the dispersion unit. According to such a configuration, the function of detecting the position of the target in the first direction can be turned on / off as necessary.
- the detection unit may detect the position of the target in the first direction by comparing a signal level of the radio wave reflected by the dispersion unit with a predetermined threshold value.
- the detection unit compares the signal level of the radio wave reflected by one of the two dispersion units with the signal level of the radio wave reflected by the other, thereby The position of the target in the direction of is detected. According to such a configuration, the position of the target in the elevation angle direction can be reliably detected by simple processing.
- the detection unit includes a signal processor. With such a configuration, the position of the target in the elevation angle direction can be reliably detected with a simple configuration.
- a receiving antenna element having a predetermined length in a first direction is substantially perpendicular to the first direction.
- the position of the target in the first direction is detected based on the radio wave reflected by. According to such a method, the position of the target in the direction orthogonal to the viewing angle can be detected without complicating the apparatus.
- a radar apparatus and a target position detection method for a radar apparatus that can detect the position of a target in a direction orthogonal to the viewing angle without complicating the apparatus.
- FIG. 2 is a diagram illustrating a detailed configuration example of a control / processing unit illustrated in FIG. 1.
- FIG. 4 is a perspective view of the receiving antenna array shown in FIG. 3.
- FIG. 5 is a diagram when the diagram shown in FIG. 4 is viewed from the direction of arrow A.
- FIG. 4 is a perspective view of the receiving antenna array shown in FIG. 3.
- FIG. 4 is a perspective view of the receiving antenna array shown in FIG. 3.
- FIG. 1 is a diagram illustrating a configuration example of a radar apparatus according to the first embodiment of the present invention.
- the radar apparatus 1 according to the first embodiment of the present invention includes a local oscillation unit 10, a transmission unit 11, a control / processing unit 15, a reception unit 16, and an A / D (Analog to Digital).
- the conversion unit 21 is a main component.
- the local oscillation unit 10 generates a CW (Continuous Wave) signal having a predetermined frequency and supplies it to the transmission unit 11 and the reception unit 16.
- CW Continuous Wave
- the transmission unit 11 includes a modulation unit 12 and a transmission antenna 13.
- the CW signal supplied from the local oscillation unit 10 is pulse-modulated by the modulation unit 12 and transmitted to the target via the transmission antenna 13. To do.
- the modulation unit 12 of the transmission unit 11 is controlled by the control / processing unit 15 to pulse-modulate and output the CW signal supplied from the local oscillation unit 10.
- the transmission antenna 13 transmits the pulse signal supplied from the modulation unit 12 toward the target.
- the control / processing unit 15 controls the local oscillation unit 10, the modulation unit 12, the antenna switching unit 18, and the variable gain amplification unit 19, and performs arithmetic processing on the received data supplied from the A / D conversion unit 21. To detect the target.
- FIG. 2 is a block diagram showing a detailed configuration example of the control / processing unit 15 shown in FIG.
- the control / processing unit 15 includes a control unit 15a, a processing unit 15b, a detection unit 15c, and a communication unit 15d.
- the control unit 15a includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and each unit of the apparatus based on data stored in the ROM and RAM.
- the processing unit 15b is configured by, for example, a DSP (Digital Signal Processor) or the like, and executes processing on the digital signal supplied from the A / D conversion unit 21.
- the detection unit 15c is configured by, for example, a DSP and executes processing for detecting a target.
- the communication unit 15d notifies the detection result of the detection unit 15c to an external device.
- the reception unit 16 includes a first reception antenna 17-1 to an Nth reception antenna 17 -N (N ⁇ 2), an antenna switching unit 18, a variable gain amplification unit 19, and a demodulation unit 20. A signal transmitted and scattered by the target is received and demodulated, and then output to the A / D converter 21.
- the first receiving antenna 17-1 to the Nth receiving antenna 17-N of the receiving unit 16 are composed of N antenna elements, receive a signal transmitted from the transmitting antenna 13 and scattered by the target, and perform antenna switching. Supply to unit 18.
- the antenna switching unit 18 is controlled by the control unit 15a of the control / processing unit 15 and selects any one of the first reception antenna 17-1 to the Nth reception antenna 17-N to variably amplify the reception signal. Supplied to the unit 19.
- the gain variable amplification unit 19 is controlled in gain by the control unit 15 a of the control / processing unit 15, amplifies the reception signal supplied from the antenna switching unit 18 with a predetermined gain, and outputs the amplified signal to the demodulation unit 20.
- the demodulator 20 demodulates the received signal supplied from the variable gain amplifier 19 using the CW signal supplied from the local oscillator 10 and outputs the demodulated signal.
- the A / D converter 21 samples the received signal supplied from the demodulator 20 at a predetermined period, converts it into a digital signal, and supplies the digital signal to the controller / processor 15.
- FIG. 3 is a diagram showing a more detailed configuration example of the first reception antenna 17-1 to the Nth reception antenna 17-N.
- the first reception antenna 17-1 to the eighth reception antenna 17-8 constitute a reception array antenna 17.
- each of the first receiving antenna 17-1 to the eighth receiving antenna 17-8 has a predetermined length L in the vertical direction of FIG. 3, and a width W (W ⁇ L )have.
- the first reception antenna 17-1 to the eighth reception antenna 17-8 are arranged on the plate surface of the circuit board 30 with a distance D therebetween.
- the resonance elements 31-1 to 31-3 constituting the dispersion unit 31 are arranged on the right side of the eighth receiving antenna 17-8.
- the lengths of the resonance elements 31-1 to 31-3 are L1 to L3 (L1 ⁇ L2 ⁇ L3), and the width is W1.
- FIG. 4 is a diagram for explaining the operation of the first embodiment. 4, the horizontal direction (the horizontal direction in FIG. 3) of the circuit board 30 is the Y axis, and the vertical direction (the vertical direction in FIG. 3) of the circuit board 30 is the X axis. The normal direction is taken as the Z axis.
- FIG. 4 it is assumed that a scattered wave from a target (not shown) is incident as indicated by a solid line from above the Z axis.
- FIG. 5 shows a state where the circuit board 30 is viewed from the direction of arrow A in FIG.
- a thick solid line incident from the same direction as the normal indicated by the thin solid line indicates the incident direction of the scattered wave in FIG.
- the dispersion unit 31 includes three resonant elements 31-1 to 31-3.
- the resonance element 31-2 is an element having a resonance frequency that is substantially the same frequency f2 as the frequency of the radio wave transmitted by the radar apparatus 1.
- the resonance element 31-1 is an element having a resonance frequency at a frequency f1 higher than the frequency of the radio wave transmitted by the radar apparatus 1.
- the resonant element 31-3 is an element that uses a frequency f3 lower than the frequency of the radio wave transmitted by the radar apparatus 1 as a resonant frequency. That is, it is set so that f1> f2> f3.
- the resonance elements 31-1 to 31-3 constituting the dispersion unit 31 have different resonance frequencies, the dispersion characteristics, that is, the propagation speed depending on the frequency change. More specifically, the radio wave reflected by the resonant element 31-1 has a higher propagation speed when reflected compared to the radio wave reflected by the resonant element 31-3, and thus is reflected by the resonant element 31-1.
- the phase of the radio wave is advanced than that of the radio wave reflected by the resonance element 31-3.
- the phase advances in the order of the resonance element 31-1, the resonance element 31-2, and the resonance element 31-3.
- the phase difference between the resonant element 31-1 and the resonant element 31-3 is represented by ⁇ .
- the resonance element 31-1 Assuming that the phase difference between the incident scattered wave and the scattered wave incident on the resonant element 31-3 is ⁇ , ⁇ can be expressed by the following equation (1).
- equation (1) d represents the length of the dispersion part 31 in the X-axis direction, and ⁇ represents the wavelength of the scattered wave.
- the phase difference of the radio wave emitted from the dispersion unit 31 is obtained by adding the phase difference ⁇ generated upon incidence and the phase difference ⁇ due to dispersion.
- the radio wave emitted from the dispersion unit 31 has the same phase as that of the radio wave emitted from the resonance element 31-3, as schematically shown by a broken line in FIG. More advanced than that.
- FIG. 10 is a diagram illustrating a state of the radio wave reflected by the dispersion unit 31 when the angle is 0 ° indicated by a thick solid line in FIG.
- the phase of the radio wave indicated by shading in FIG. 9 is delayed in phase of the radio wave reflected by the resonance element 31-3 as compared to the resonance element 31-1.
- the phases of the radio waves reflected by the resonant element 31-1 and the resonant element 31-3 are substantially the same.
- the first reception antenna 17-1 to the eighth reception antenna 17-8 receive the reflected waves shown in FIGS.
- the first receiving antenna 17-1 to the eighth receiving antenna 17-8 have a length in the X-axis direction of L, and the electric signals output from these receive the radio waves integrated in the length L direction. This is the value obtained.
- the phase of the radio wave in each of the first receiving antenna 17-1 to the eighth receiving antenna 17-8 is substantially the same, and thus obtained by integration.
- the value obtained is a predetermined value corresponding to the phase at that time.
- the radio wave emitted from the dispersion unit 31 is in the state shown in FIG. 9, the phase of the radio wave in each of the first receiving antenna 17-1 to the eighth receiving antenna 17-8 is shifted, so that integration is performed.
- the obtained value is offset and becomes a smaller value than in the case of FIG.
- FIG. 12 shows an example of a signal detected by the radar apparatus 1 in FIGS. More specifically, FIG. 12A shows signals detected in the state shown in FIG.
- the horizontal axis indicates the angle in the Y-axis direction (the angle in which the normal direction is 0 °, the Y-axis positive side is negative, and the Y-axis negative side is positive), and the vertical axis is The signal level is shown.
- the range of ⁇ to ⁇ represents a normal detection range (for example, ⁇ 60 ° to + 60 °), and 90 ° represents a signal reflected by the dispersion unit 31.
- FIG. 12 shows signals detected in the state shown in FIG.
- the horizontal axis indicates the angle in the Y-axis direction (the angle in which the normal direction is 0 °, the Y-axis positive side is negative, and the Y-axis negative side is positive)
- the vertical axis is The signal level is shown.
- the range of ⁇ to ⁇ represents a normal detection range
- the level of the signal detected is low because the phase of the signal reflected by the dispersion unit 31 is not aligned.
- the level of the signal detected is high because the phases of the signals reflected by the dispersion unit 31 are aligned.
- the detected signal is intermediate between FIGS. 12A and 12C. Note that a constant output may be generated only in the case of FIG. 12C, and settings that hardly generate an output in FIGS. 12A and 12B may be used.
- a target when a target is detected in the range of - ⁇ to ⁇ , refer to the level of the signal incident from the dispersion unit 31, that is, the signal incident from an angle of 90 °.
- the signal level is greater than the predetermined threshold Th2
- Th1 the level of a signal incident from an angle of 90 °
- the target is in the minus direction shown in FIG. It is determined that it exists.
- the radar apparatus 1 is described as an example when it is attached to a vehicle such as an automobile.
- the circuit board 30 shown in FIG. 3 is attached so that the X axis is in the vertical (vertical) direction of the vehicle and the Y axis is in the horizontal (horizontal) direction of the vehicle.
- the resonance element 31-3 is mounted so as to be positioned in the upward direction of the vehicle and the resonance element 31-1 is positioned in the downward direction of the vehicle.
- the control / processing unit 15 controls the modulation unit 12 to transmit a pulse wave from the transmission antenna 13.
- the pulse wave transmitted from the transmitting antenna 13 is scattered by the target and received by the first receiving antenna 17-1 to the eighth receiving antenna 17-8. Further, the pulse wave scattered by the target is dispersed by the dispersion unit 31 shown in FIG. 3, and then received by the first reception antenna 17-1 to the eighth reception antenna 17-8.
- the control / processing unit 15 controls the antenna switching unit 18 to sequentially select reception signals from the first reception antenna 17-1 to the eighth reception antenna 17-8 and supply them to the variable gain amplification unit 19.
- the variable gain amplification unit 19 amplifies the signal supplied from the antenna switching unit 18 and supplies the amplified signal to the demodulation unit 20.
- the demodulator 20 demodulates the signal supplied from the variable gain amplifier 19 and supplies the demodulated signal to the A / D converter 21.
- the A / D conversion unit 21 converts the analog signal supplied from the demodulation unit 20 into a digital signal and supplies the digital signal to the control / processing unit 15.
- the control / processing unit 15 performs an analysis process on the digital signal supplied from the A / D conversion unit 21 to detect a target. For example, when the target is another vehicle traveling in front of the host vehicle (when the target is the same height as the host vehicle), the reflected wave from the target is an angle shown in FIG. 4 (shown in FIG. 5). Incident at a solid line angle). In this case, the target is detected in the range of - ⁇ to ⁇ shown in FIG. 12, and a signal having a level as shown in FIG. 12B is detected at a position of 90 °.
- the control / processing unit 15 performs clustering processing and tracking processing on the signal corresponding to the target detected in the range of - ⁇ to ⁇ to detect another vehicle that is the target, and 90 ° It is determined from the level of the position signal that the target is at the same height as the vehicle.
- the bridge as the target is detected in the range of ⁇ to ⁇ shown in FIG.
- a signal having a level of 12 (C) is detected.
- the control / processing unit 15 performs a clustering process and a tracking process on a signal corresponding to a target detected in the range of - ⁇ to ⁇ to detect a bridge as a target, and at the 90 ° position. It is determined from the signal level that the target is present at a position higher than the own vehicle. In such a case, since the bridge and the vehicle do not collide, a warning is not issued.
- a road ahead is detected as a target when approaching a downhill.
- the target road is detected in the range of ⁇ to ⁇ shown in FIG.
- a signal having a level as shown in FIG. 12A is detected.
- the control / processing unit 15 performs a clustering process and a tracking process on a signal corresponding to a target detected in the range of - ⁇ to ⁇ to detect a road that is a target, and at the 90 ° position. It is determined from the signal level that the target is present at a position lower than the own vehicle. In such a case, since the road and the vehicle do not collide, no warning is issued.
- the dispersion unit 31 is provided in the vicinity of the first receiving antenna 17-1 to the eighth receiving antenna 17-8, and the received signal is analyzed. By detecting the level of the signal appearing at the position, the position of the target in the height direction can be detected. Thereby, a bridge existing at a position higher than the own vehicle and a road on a slope existing at a lower position can be excluded from collision targets.
- the level of the target when it is not a slope, it is possible to estimate the level of the target by referring to the level of the signal appearing at the 90 ° position. For example, when a truck or the like is traveling in front of the vehicle, the reflected wave from the same position and a lower position as well as the reflected wave from a higher position than the host vehicle are received. Compared with the case of reception, the level of the signal appearing at the 90 ° position is increased. For this reason, the magnitude in the height direction may be determined by comparing the level of the signal appearing at the 90 ° position with a threshold value. Further, when a strong reflected wave is received only from above, it can be determined as a sign or the like.
- the reflected wave from the same position and a low position when the reflected wave from the same position and a low position is received, it can determine with the object (for example, a general vehicle or a pedestrian) of a moderate magnitude
- FIG. 13 is a flowchart for explaining the flow of processing executed in the first embodiment.
- the following steps are executed.
- step S10 the control unit 15a of the control / processing unit 15 controls the modulation unit 12 to start transmission of a pulse signal from the transmission antenna 13.
- the pulse wave transmitted from the transmission antenna 13 is scattered by the target, is incident on the first reception antenna 17-1 to the Nth reception antenna 17-N, is reflected by the dispersion unit 31, and The light enters the first receiving antenna 17-1 to the Nth receiving antenna 17-N.
- step S11 the control unit 15a of the control / processing unit 15 controls the antenna switching unit 18 to change the gain of the signal received by any of the first reception antenna 17-1 to the Nth reception antenna 17-N. This is supplied to the amplifying unit 19.
- step S12 the control unit 15a of the control / processing unit 15 determines whether or not reception by all of the first reception antenna 17-1 to the Nth reception antenna 17-N is completed, and reception by all the antennas is completed. If it has not been completed and it is determined that the repetitive process is to be executed (step S12: Y), the process returns to step S11 and the same process is repeated. Otherwise (step S12: N), the process proceeds to step S13.
- step S13 the detection unit 15c of the control / processing unit 15 executes target detection processing based on the received signal received by the repetition processing of step S10 to step S12. Specifically, the target is detected by clustering processing and tracking processing.
- step S14 if the detection unit 15c of the control / processing unit 15 determines that the target is detected as a result of the detection process in step S13 (step S14: Y), the process proceeds to step S15, and otherwise ( In step S14: N), the process proceeds to step S17.
- step S15 the detection unit 15c of the control / processing unit 15 detects a 90 ° signal in the result of the detection process in step S13.
- step S16 the detection unit 15c of the control / processing unit 15 detects the position in the vertical direction of the target based on the 90 ° signal level detected in step S15. More specifically, when the 90 ° signal level is greater than the predetermined threshold Th2, it is determined that the target is above the host vehicle, and the 90 ° signal level is the predetermined threshold Th1 (Th1 ⁇ Th2). If it is greater than the threshold value, it can be determined that the target exists below the host vehicle. If the threshold value is equal to or greater than the threshold Th1 and equal to or less than the threshold Th2, it can be determined that the target exists at the same height as the host vehicle.
- step S17 the communication unit 15d of the control / processing unit 15 outputs the detection result of the target to another device (for example, an ECU (Electric Control Unit) or the like).
- another device for example, an ECU (Electric Control Unit) or the like.
- step S18 the control unit 15a of the control / processing unit 15 determines whether or not to end the process, and if it is determined that the process is to be continued (step S18: N), the process returns to step S10 and the case described above. Similar processing is repeated, and in other cases (step S18: Y), the processing ends.
- the position of the target in the viewing angle direction can be detected, and the position of the target in the vertical direction can be detected.
- FIGS. 1 and 2 are the same as that in the first embodiment, but the configuration of the dispersion unit shown in FIG. 14 is different.
- a dispersion unit 32 is added in addition to the dispersion unit 31.
- Other configurations are the same as those in FIG.
- the dispersion unit 32 is provided in the vicinity of the first receiving antenna 17-1, and includes resonance elements 32-1 to 32-3.
- the resonant elements 32-1 to 32-3 have the same configuration as the resonant elements 31-1 to 31-3. That is, the resonant element 32-1 has a rectangular structure with a width W1 and a length L1, the resonant element 32-2 has a rectangular structure with a width W1 and a length L2, and the resonant element 32-3 has a width W1 and a length. It has a rectangular structure of L3.
- the resonance elements 32-1 to 32-3 are arranged with a gap g therebetween.
- FIG. 15 is a diagram for explaining the operation of the second embodiment of the present invention.
- the second embodiment of the present invention not only the signal from the dispersion unit 31 appears at the 90 ° position as in the first embodiment, but also the dispersion unit at the ⁇ 90 ° position.
- the signal by 32 appears.
- the signal appearing at the ⁇ 90 ° position is the same as the signal appearing at the 90 ° position.
- the target is present at the position indicated by the broken line shown in FIG. 5, the signal as shown in FIG.
- the signal increases as shown in FIG. 15B, and the target exists at the position of the alternate long and short dash line shown in FIG. In this case, the signal becomes maximum as shown in FIG.
- the position of the target in the X-axis direction When detecting the position of the target in the X-axis direction, the average value of the signals at the 90 ° position and the ⁇ 90 ° position is obtained, and the position of the target in the X-axis direction is determined based on the average value. You may make it detect. According to such a method, the position of the target in the X-axis direction can be detected more accurately by using the average value of the reflected waves from the two dispersion units 31 and 32.
- the dispersion portions 31 and 32 are arranged on both sides of the first receiving antenna 17-1 to the eighth receiving antenna 17-8, -90 ° And a signal indicating the vertical position of the target can be generated at an angular position of 90 °.
- the signal indicating the vertical position can be doubled to improve the detection accuracy.
- FIGS. 1 and 2 are the same as that in the first embodiment, but the configuration of the dispersion unit shown in FIG. 16 is different.
- a dispersion unit 33 is added in addition to the dispersion unit 31.
- the first receiving antenna 17-1 to the eighth receiving antenna 17-8 are arranged at an interval shorter than ⁇ / 2.
- Other configurations are the same as those in FIG.
- the dispersion unit 33 is provided in the vicinity of the first receiving antenna 17-1, and includes resonance elements 33-1 to 33-3.
- the resonance elements 33-1 to 33-3 have the same configuration as that of the resonance elements 31-1 to 31-3, but the direction in which the resonance elements 33-1 to 33-3 are arranged is opposite to that of the dispersion unit 31. That is, the resonant element 33-1 has a rectangular structure with a width W1 and a length L1, the resonant element 33-2 has a rectangular structure with a width W1 and a length L2, and the resonant element 33-3 has a width W1 and a length. It has a rectangular structure of L3.
- the resonant elements 33-1 to 33-3 are arranged with a gap g therebetween.
- FIG. 17 is a diagram illustrating the relationship between the viewing angle and the power (
- 2 ) of the received signal when D ⁇ / 2 is set.
- FIG. 17A shows the characteristics of a received signal when a signal of 24 GHz is incident from a direction with a viewing angle of 10 °.
- FIG. 17B shows the characteristics of the received signal by the signal reflected by the dispersion unit 31.
- FIG. 17C shows a signal that is actually detected when a 24 GHz signal is incident from a direction with a viewing angle of 10 ° and the reflection signal from the dispersion unit 31 is received with the reflection coefficient of the target being 0.3. An example is shown.
- FIG. 18 is a diagram showing the relationship between the viewing angle and the received signal power (
- 2 ) when D ⁇ / 2.5.
- FIG. 18A shows the characteristics of a received signal when a signal of 24 GHz is incident from a direction with a viewing angle of 10 °.
- FIG. 18B shows the characteristics of the received signal based on the signal reflected by the dispersion unit 31.
- FIG. 18C shows a signal that is actually detected when a signal of 24 GHz is incident from a direction with a viewing angle of 10 ° and a reflection signal from the dispersion unit 31 is received with a reflection coefficient of the target being 0.3. An example is shown. From a comparison between FIG. 17B and FIG.
- the signal from the dispersion unit 31 appears not only at the 90 ° position, but also at the ⁇ 90 ° position as in the first embodiment.
- a signal from the dispersion unit 33 appears. Note that the signal appearing at the ⁇ 90 ° position is opposite to the signal appearing at the 90 ° position, and when the target is present at the position of the alternate long and short dash line shown in FIG. 5, as shown in FIG. The signal is very small, and when the target exists at the position of the solid line shown in FIG. 5, the signal increases as shown in FIG. 19B, and the target exists at the position of the broken line shown in FIG. In this case, the signal becomes maximum as shown in FIG.
- the difference value between the 90 ° signal and the -90 ° signal (90 ° signal-(-90 ° signal)) is calculated. If the difference value is positive, the target is placed in the positive direction of the X axis. It is determined that the target exists, and if the difference value is negative, it is determined that the target exists in the negative direction of the X axis, and if the value is close to 0, it is determined that the target exists in the X axis direction. Good.
- the dispersion units 31 and 33 are arranged on both sides of the first reception antenna 17-1 to the eighth reception antenna 17-8, and the dispersion unit 33 is configured.
- the resonance elements 33-1 to 33-3 are arranged in the direction opposite to the dispersion unit 31.
- the first receiving antenna 17-1 to the eighth receiving antenna 17-8 are arranged at an interval shorter than ⁇ / 2. Therefore, signals indicating the vertical position of the target can be generated at the angular positions of -90 ° and 90 °, and these signals are inverted according to the vertical position of the target. Can do.
- the signal indicating the vertical position can be doubled to improve the detection accuracy. Further, when one signal is small, the other is large, so that the occurrence of erroneous detection can be reduced.
- FIGS. 1 and 2 are the same as those in the first embodiment, but the configuration of the dispersion unit shown in FIG. 20 is different.
- the dispersion unit 31 is replaced with the dispersion unit 34 as compared with FIG. 3.
- Other configurations are the same as those in FIG.
- the dispersion unit 34 is provided in the vicinity of the first receiving antenna 17-1, and includes resonance elements 34-1 to 34-3.
- Each of the resonant elements 34-1 to 34-3 has a protrusion at the center of the rectangular shape, and power can be supplied through these protrusions.
- the resonant element 34-1 has a rectangular structure with a width W1 and a length L1, and has a protrusion at the center.
- the resonant element 34-2 has a rectangular structure with a width W1 and a length L2, and has a protrusion at the center.
- the resonant element 34-3 has a rectangular structure with a width W1 and a length L3, and has a protrusion at the center.
- the resonance elements 34-1 to 34-3 are arranged with a gap g therebetween.
- a difference value between 90 ° signals when power is supplied and when power is not supplied may be calculated, and the position of the target in the X-axis direction may be detected based on the difference value. According to such a configuration, the influence of noise can be reduced.
- the present invention is not limited to the case described above.
- a resonant element having a rectangular shape is used.
- the reflective element is not limited to such a shape.
- FIG. A reflective element having a shape can be used.
- the present invention is implemented by appropriately designing a dispersion portion having a length in the X-axis direction in FIG. 8 and a shape that is non-symmetrical with respect to the Y-axis.
- the dispersion unit is configured by arranging two resonant elements on a straight line.
- the dispersion unit is configured by arranging three dispersion elements in parallel.
- the dispersion unit is configured by arranging two dispersion elements in parallel.
- it is constituted by a resonant element having a shape similar to the numeral “2”, a resonant element similar to the alphabet “Z”, and a rectangular resonant element.
- a resonance element having a T-shaped notch formed in the lower part of a rectangle, a resonance element having a rectangular notch, and a resonance element having no notch are formed. .
- both ends of a rectangle extending in the left-right direction extend in the up-down direction and curved inward, a resonance element in which both ends of the rectangle extended in the left-right direction extend in the up-down direction, And a rectangular resonance element extending in the direction.
- Each resonance element constituting the dispersion part constituting FIGS. 21A to 21F may be set to resonate at different frequencies as described above. That is, the frequency of the resonant element existing on the upper side in the vertical direction in FIG. 21 may be set low, and the frequency of the resonant element existing on the lower side may be set higher.
- the dispersion portion is configured by a plurality of members.
- the distribution unit is configured by a single member having a triangular shape.
- the dispersion portion illustrated in FIG. 22A is merely an example, and may have a shape other than a triangular shape as long as the dispersion characteristics of radio waves change.
- the end portion of the circuit board 30 may be cut obliquely to form the dispersion portion.
- a plurality of holes are formed in the end portion of the circuit board 30 to form a dispersion portion. May be. Since the ground conductor is formed on one surface on the back surface of the circuit board 30, as shown in FIG. 22C, a plurality of holes are formed in the conductor so as to function as a slot antenna. Also good.
- the dispersive element is not configured by the conductor, but the above-described dispersive element may be configured by, for example, a radio wave absorber or a reflection pair. Moreover, you may make it comprise a dispersion
- FIGS. 22 (A) to (C) are replaced with, for example, the first receiving antenna 17-1 to the eighth receiving antenna 17 as shown in the first embodiment. It can be provided on one side of -8, it can be provided on both sides in a similar arrangement as shown in the second embodiment, it can be provided on both sides in a reverse arrangement, as shown in the third embodiment, As shown in the fourth embodiment, a power supply unit may be provided to supply power.
- the resonance element arranged in the center portion resonates at the same frequency as the frequency of the radio wave, but of course, it may resonate at a frequency different from the radio wave.
- the resonance frequency is different from the frequency of the radio wave. Also good.
- the dispersion unit is provided on the circuit board 30.
- the dispersion unit covers the circuit board 30 on which the first reception antenna 17-1 to the eighth reception antenna 17-8 are formed. You may make it form a dispersion part in a radome.
- the circuit board 30 is not provided in the same layer where the first reception antenna 17-1 to the eighth reception antenna 17-8 are formed, but may be provided in a different layer (for example, an intermediate layer or a back side surface). Good.
- the radome may be disposed inside the resin constituting the radome instead of being provided on the surface of the radome.
- FMCW Frequency-Modulated-Continuous-Wave
- the output from the first receiving antenna 17-1 to the Nth receiving antenna 17-N is alternatively selected by the antenna switching unit 18, but the first receiving antenna 17 ⁇ 1 to Nth receiving antennas 17-N are provided with a variable gain amplifying unit 19, a demodulating unit 20, and an A / D converting unit 21, and an output of the A / D converting unit 21 is selected by a selecting unit.
- the control / processing unit 15 may be supplied.
- a selection unit may be provided after the variable gain amplification unit 19 or the demodulation unit 20, and the output of the variable gain amplification unit 19 or the demodulation unit 20 may be selected by the selection unit.
- the shapes of the first receiving antenna 17-1 to the eighth receiving antenna 17-8 shown in FIG. 3 and the like are examples, and it goes without saying that the present invention is not limited to the shape shown in FIG.
- the description has been given by taking an example of an automobile as a vehicle.
- a motorcycle or a bicycle may be detected. That is, in the present specification, the vehicle is not limited to an automobile.
- the radar apparatus is attached to a moving body such as a vehicle has been described as an example.
- the present invention may be applied to a radar apparatus that is fixedly arranged.
- Any material can be used as long as it has the property of dispersing the.
- a conductor such as copper, aluminum, or gold, or a conductor such as a conductive resin can be used.
- a conductor not only a conductor but also a dielectric having dispersion characteristics can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
【課題】視野角に直交する方向の物標の位置を検出することが可能なレーダ装置を提供すること。 【解決手段】電波により物標を検出するレーダ装置において、第1の方向に所定の長さを有する受信アンテナ素子(第1受信アンテナ17-1~第8受信アンテナ17-8)が、第1の方向に略直交する第2の方向に複数並べて配置された受信アレーアンテ(受信アレーアンテナ17)と、受信アレーアンテナの近傍に配置され、第1の方向に対して電波の分散特性が変化する分散部(分散部31)と、分散部によって反射された電波に基づいて、第1の方向における物標の位置を検出する検出部(制御・処理部15)と、を有することを特徴とするレーダ装置。
Description
本発明は、レーダ装置およびレーダ装置の物標位置検出方法に関するものである。
レーダ装置は、物標が視野角内のどこに存在するかを解析する方法が一般的である。ところで、近年、視野角に直交する方向の物標の位置についても検出可能なレーダ装置が提案されている。
特許文献1に開示された技術では、地面に対して垂直方向における物標の方位である垂直方位として、送信アンテナから送信される送信波が物標で反射した反射波から地上にある実像の方位である実像垂直方位を算出するとともに、送信アンテナから送信される送信波が物標で反射し、さらに地面に反射した反射波から地下に存在する虚像の方位である虚像垂直方位を算出する。そして、算出された実像垂直方位と虚像垂直方位との角度差を算出し、算出された角度差を用いて、ターゲットの地面からの高さを算出する。
しかしながら、特許文献1に示す技術では、複数の送信アンテナを用いる必要があることから、装置の構成が複雑化するという問題点がある。
本発明は、装置を複雑化することなく、視野角に直交する方向の物標の位置を検出することが可能なレーダ装置およびレーダ装置の物標位置検出方法を提供することを目的としている。
上記課題を解決するために、本発明は、電波により物標を検出するレーダ装置において、第1の方向に所定の長さを有する受信アンテナ素子が、前記第1の方向に略直交する第2の方向に複数並べて配置された受信アレーアンテナと、前記受信アレーアンテナの近傍に配置され、前記第1の方向に対して前記電波の分散特性が変化する分散部と、前記分散部によって反射された前記電波に基づいて、前記第1の方向における前記物標の位置を検出する検出部と、を有することを特徴とする。
このような構成によれば、装置を複雑化することなく、視野角に直交する方向の物標の位置を検出することができる。
このような構成によれば、装置を複雑化することなく、視野角に直交する方向の物標の位置を検出することができる。
また、本発明は、前記受信アレーアンテナは回路基板に配置され、前記分散部は、前記回路基板の前記受信アレーアンテナの近傍に配置されている、ことを特徴とする。
このような構成によれば、受信アレーアンテナと同じ回路基板に分散部を設けることで、構成を簡略化して、装置の製造コストの上昇を抑制できる。
このような構成によれば、受信アレーアンテナと同じ回路基板に分散部を設けることで、構成を簡略化して、装置の製造コストの上昇を抑制できる。
また、本発明は、前記受信アレーアンテナは回路基板に配置され、前記分散部は、前記受信アレーアンテナが配置された前記回路基板を覆設するレドームに配置されている、ことを特徴とする。
このような構成によれば、レドームに分散部を設けることで、回路基板のサイズが大きくなることを防止できる。
このような構成によれば、レドームに分散部を設けることで、回路基板のサイズが大きくなることを防止できる。
また、本発明は、前記受信アレーアンテナを挟むように2つの前記分散部が配置され、2つの前記分散部は、前記第1の方向に同じ分散特性を有することを特徴とする。
このような構成によれば、分散部を増やすことで、第1の方向の検出感度を向上できる。
このような構成によれば、分散部を増やすことで、第1の方向の検出感度を向上できる。
また、本発明は、前記受信アレーアンテナを挟むように2つの前記分散部が配置され、2つの前記分散部は、前記第1の方向の分散特性が相互に反転した特性を有することを。
このような構成によれば、第1方向の位置に応じて反転した出力を得ることができるので、第1の方向に対する検出感度を向上できる。
このような構成によれば、第1方向の位置に応じて反転した出力を得ることができるので、第1の方向に対する検出感度を向上できる。
また、本発明は、前記受信アンテナ素子は、前記電波の波長をλとする場合に、前記第2の方向についてλ/2の間隔を隔てて配置されていることを特徴とする。
このような構成によれば、視野角方向の角度を確実に検出することができる。
このような構成によれば、視野角方向の角度を確実に検出することができる。
また、本発明は、前記受信アンテナ素子は、前記電波の波長をλとする場合に、前記第2の方向についてλ/2未満の間隔を隔てて配置されていることを特徴とする。
このような構成によれば、第2方向において、分散部が設けられた位置に関する情報を得ることができる。
このような構成によれば、第2方向において、分散部が設けられた位置に関する情報を得ることができる。
また、本発明は、前記分散部は、複数の共振素子によって構成され、前記第1の方向の中央には前記電波と略同じ周波数で共振する前記共振素子が配置され、下側には低い周波数で共振する前記共振素子が配置され、上側には高い周波数で共振する前記共振素子が配置されていることを特徴とする。
このような構成によれば、共振素子の周波数を設定することで、所望の分散特性を得ることができる。
このような構成によれば、共振素子の周波数を設定することで、所望の分散特性を得ることができる。
また、本発明は、前記分散部に電力を供給する給電部を有し、前記検出部が前記第1の方向における前記物標の位置を検出する場合には前記給電部は前記分散部に対する電力の供給を停止し、検出しない場合には前記給電部は前記分散部に対して電力を供給することを特徴とする。
このような構成によれば、第1の方向における物標の位置の検出機能を必要に応じてオン/オフすることができる。
このような構成によれば、第1の方向における物標の位置の検出機能を必要に応じてオン/オフすることができる。
また、本発明は、前記検出部は、前記分散部によって反射された前記電波の信号レベルと所定の閾値とを比較することで、前記第1の方向における前記物標の位置を検出することを特徴とする。
このような構成によれば、簡単な処理によって物標の仰角方向の位置を検出することができる。
このような構成によれば、簡単な処理によって物標の仰角方向の位置を検出することができる。
また、本発明は、前記検出部は、前記2つの分散部の一方によって反射された前記電波の信号レベルと、他方によって反射された前記電波の信号レベルと、を比較することで、前記第1の方向における前記物標の位置を検出することを特徴とする。
このような構成によれば、簡単な処理によって物標の仰角方向の位置を確実に検出することができる。
このような構成によれば、簡単な処理によって物標の仰角方向の位置を確実に検出することができる。
また、本発明は、前記検出部は、シグナルプロセッサによって構成されることを特徴とする。
このような構成によれば、簡易な構成によって物標の仰角方向の位置を確実に検出することができる。
このような構成によれば、簡易な構成によって物標の仰角方向の位置を確実に検出することができる。
また、本発明は、電波により物標を検出するレーダ装置の物標位置検出方法において、第1の方向に所定の長さを有する受信アンテナ素子が、前記第1の方向に略直交する第2の方向に複数並べて配置された受信アレーアンテナと、前記受信アレーアンテナの近傍に配置され、前記第1の方向に対して前記電波の分散特性が変化する分散部と、を有し、前記分散部によって反射された前記電波に基づいて、前記第1の方向における前記物標の位置を検出する、ことを特徴とする。
このような方法によれば、装置を複雑化することなく、視野角に直交する方向の物標の位置を検出することができる。
このような方法によれば、装置を複雑化することなく、視野角に直交する方向の物標の位置を検出することができる。
本発明によれば、装置を複雑化することなく、視野角に直交する方向の物標の位置を検出することが可能なレーダ装置およびレーダ装置の物標位置検出方法を提供することが可能となる。
次に、本発明の実施形態について説明する。
(A)第1実施形態の構成の説明
図1は、本発明の第1実施形態に係るレーダ装置の構成例を示す図である。この図に示すように、本発明の第1実施形態に係るレーダ装置1は、局部発振部10、送信部11、制御・処理部15、受信部16、および、A/D(Analog to Digital)変換部21を主要な構成要素としている。
図1は、本発明の第1実施形態に係るレーダ装置の構成例を示す図である。この図に示すように、本発明の第1実施形態に係るレーダ装置1は、局部発振部10、送信部11、制御・処理部15、受信部16、および、A/D(Analog to Digital)変換部21を主要な構成要素としている。
ここで、局部発振部10は、所定の周波数のCW(Continuous Wave)信号を生成して、送信部11と受信部16に供給する。
送信部11は、変調部12、および、送信アンテナ13を有し、局部発振部10から供給されるCW信号を、変調部12によってパルス変調し、送信アンテナ13を介して物標に向けて送信する。
送信部11の変調部12は、制御・処理部15によって制御され、局部発振部10から供給されるCW信号をパルス変調して出力する。送信アンテナ13は、変調部12から供給されるパルス信号を、物標に向けて送信する。
制御・処理部15は、局部発振部10、変調部12、アンテナ切換部18、および、利得可変増幅部19を制御するとともに、A/D変換部21から供給される受信データに対して演算処理を実行することで、物標を検出する。
図2は、図1に示す制御・処理部15の詳細な構成例を示すブロック図である。図2に示すように、制御・処理部15は、制御部15a、処理部15b、検出部15c、および、通信部15dを有している。ここで、制御部15aは、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等によって構成され、ROMおよびRAMに記憶されているデータに基づいて装置の各部を制御する。処理部15bは、例えば、DSP(Digital Signal Processor)等によって構成され、A/D変換部21から供給されるデジタル信号に対する処理を実行する。検出部15cは、例えば、DSP等によって構成され物標を検出する処理を実行する。通信部15dは、検出部15cによる検出結果を、外部の装置に対して通知する。
図1に戻る。受信部16は、第1受信アンテナ17-1~第N受信アンテナ17-N(N≧2)、アンテナ切換部18、利得可変増幅部19、および、復調部20を有し、送信アンテナ13から送信され、物標によって散乱された信号を受信して復調処理を施した後、A/D変換部21に出力する。
受信部16の第1受信アンテナ17-1~第N受信アンテナ17-Nは、N個のアンテナ素子によって構成され、送信アンテナ13から送信され、物標によって散乱された信号を受信し、アンテナ切換部18に供給する。
アンテナ切換部18は、制御・処理部15の制御部15aによって制御され、第1受信アンテナ17-1~第N受信アンテナ17-Nのいずれか1つを選択して、受信信号を利得可変増幅部19に供給する。利得可変増幅部19は、制御・処理部15の制御部15aによって利得が制御され、アンテナ切換部18から供給される受信信号を所定の利得で増幅して復調部20に出力する。復調部20は、利得可変増幅部19から供給される受信信号を、局部発振部10から供給されるCW信号を用いて復調して出力する。
A/D変換部21は、復調部20から供給される受信信号を所定の周期でサンプリングし、デジタル信号に変換して制御・処理部15に供給する。
図3は、第1受信アンテナ17-1~第N受信アンテナ17-Nのより詳細な構成例を示す図である。なお、図3の例では、第1受信アンテナ17-1~第8受信アンテナ17-8が配置されており、N=8の場合を例示している。なお、第1受信アンテナ17-1~第8受信アンテナ17-8は受信アレーアンテナ17を構成する。図3に示すように、第1受信アンテナ17-1~第8受信アンテナ17-8は、それぞれが図3の上下方向に所定の長さLを有し、左右方向に幅W(W<L)を有している。第1受信アンテナ17-1~第8受信アンテナ17-8は、回路基板30の板面上に、間隔Dをそれぞれ隔てて配置される。第8受信アンテナ17-8の右隣には、分散部31を構成する共振素子31-1~31-3が配置されている。なお、共振素子31-1~31-3のそれぞれの長さはL1~L3(L1<L2<L3)とされ、また、幅はW1とされている。
(B)第1実施形態の動作の説明
つぎに、本発明の第1実施形態の動作を説明する。図4は、第1実施形態の動作を説明するための図である。なお、図4の下に示すように、回路基板30の左右方向(図3の左右方向)をY軸とし、回路基板30の上下方向(図3の上下方向)をX軸とし、回路基板30の法線方向をZ軸とする。このような図4において、図示しない物標からの散乱波がZ軸の上方向から実線で示すように入射されたとする。より詳細には、図4において、矢印Aの方向から回路基板30を眺めた状態を図5に示す。図5において、細い実線で示す法線(回路基板30の板面に対する法線)と同じ方向から入射される太い実線が図4における散乱波の入射方向を示している。
つぎに、本発明の第1実施形態の動作を説明する。図4は、第1実施形態の動作を説明するための図である。なお、図4の下に示すように、回路基板30の左右方向(図3の左右方向)をY軸とし、回路基板30の上下方向(図3の上下方向)をX軸とし、回路基板30の法線方向をZ軸とする。このような図4において、図示しない物標からの散乱波がZ軸の上方向から実線で示すように入射されたとする。より詳細には、図4において、矢印Aの方向から回路基板30を眺めた状態を図5に示す。図5において、細い実線で示す法線(回路基板30の板面に対する法線)と同じ方向から入射される太い実線が図4における散乱波の入射方向を示している。
分散部31は、3つの共振素子31-1~31-3によって構成される。ここで、共振素子31-2は、レーダ装置1が送信する電波の周波数と略同じ周波数f2を共振周波数とする素子である。共振素子31-1は、レーダ装置1が送信する電波の周波数よりも高い周波数f1を共振周波数とする素子である。共振素子31-3は、レーダ装置1が送信する電波の周波数よりも低い周波数f3を共振周波数とする素子である。すなわち、f1>f2>f3となるように設定されている。
分散部31に対して、図5の実線で示すように、法線方向と同じ角度の散乱波が入射されると、入射波は分散部31によって様々な方向に反射されるが、第1受信アンテナ17-1~第8受信アンテナ17-8の方向に反射される電波に注目すると、これらの電波は図4において実線で示すように、法線に対して略直角に反射されて第1受信アンテナ17-1~第8受信アンテナ17-8に入射される。
このとき、分散部31を構成する共振素子31-1~31-3は、共振周波数が異なることから、分散特性、すなわち、周波数による伝搬速度が変化する。より詳細には、共振素子31-1によって反射された電波は、共振素子31-3によって反射された電波に比較して反射時に伝搬速度が速くなることから、共振素子31-1によって反射された電波の方が共振素子31-3によって反射された電波よりも位相が進んだ状態となる。この結果、図4に模式的に示すように、共振素子31-1、共振素子31-2、共振素子31-3の順に位相が進んだ状態となる。なお、このとき、共振素子31-1と共振素子31-3の位相差をΔΦで表すものとする。
つぎに、図5に破線で示すように、散乱波の入射角を法線に対して角度θだけX軸のマイナス方向に設定した場合(-θに設定した場合)、共振素子31-1に入射される散乱波と、共振素子31-3に入射される散乱波の位相差をΔφとすると、Δφは以下の式(1)で表すことができる。なお、式(1)において、dは分散部31のX軸方向の長さを示し、λは散乱波の波長を示すものとする。
Δφ=2πd/λ・sinθ ・・・(1)
この場合、分散部31から出射される電波の位相差は、入射される際に生じる位相差Δφと、分散による位相差ΔΦを加算したものとなる。このため、分散部31から出射される電波は、図6に破線で模式的に示すように、共振素子31-1から出射される電波の位相が共振素子31-3から出射される電波の位相よりもさらに進んだ状態となる。
つぎに、図5に一点鎖線で示すように、散乱波の入射角を法線に対して角度θだけX軸のプラス方向に設定した場合(+θに設定した場合)、共振素子31-1に入射される散乱波と、共振素子31-3に入射される散乱波の位相差をΔφとすると、Δφは以下の式(2)で表すことができる。
Δφ=-2πd/λ・sinθ ・・・(2)
このとき、仮に、入射される際に生じる位相差Δφと、分散による位相差ΔΦが同じ位相差である場合(-Δφ=ΔΦ)には、これらを加算した結果は0となることから、図7に一点鎖線で模式的に示すように、共振素子31-1~共振素子31-3から出射される電波の位相は略同じ状態となる。
図9~図11は、図8に示すように、分散部31に対してx軸およびy軸を設定した場合に、散乱波の入射角を-30°、0°、30°と変化させたときの分散部31によって反射される電波の状態をシミュレーションした結果を示す図である。より詳細には、図8に示すように、分散部31の共振素子31-1~31-3の中央にx軸を設定し、共振素子31-2の中央にy軸を設定している。また、共振素子31-1~31-3の長さL1~L3は、L1=2mm、L2=6mm、L3=10mmに設定し、共振素子31-1~31-3の素子間のギャップgは1mmに設定し、散乱波の周波数は24GHzに設定している。
図9は、図5に破線で示す-θの入射角においてθ=30°とした場合(-30°の入射角)における分散部31によって反射される電波の状態を示す図である。また、図10は、図5に太い実線で示す0°とした場合における分散部31によって反射される電波の状態を示す図である。また、図11は、図5に一点鎖線で示す+θの入射角においてθ=30°とした場合(+30°の入射角)における分散部31によって反射される電波の状態を示す図である。
図9~図11の比較から、図中に濃淡で示す電波の位相は、図9では共振素子31-1に比較して共振素子31-3で反射された電波の位相が遅れているが、図11では共振素子31-1と共振素子31-3で反射された電波の位相はほぼ同じ状態になっている。
第1受信アンテナ17-1~第8受信アンテナ17-8は、図9~図11に示す反射波を入力する。ここで、第1受信アンテナ17-1~第8受信アンテナ17-8は、X軸方向の長さがLであり、これらから出力される電気信号は、長さL方向に電波を積分して得られる値となる。
分散部31から出射される電波が図11に示す状態である場合、第1受信アンテナ17-1~第8受信アンテナ17-8のそれぞれにおける電波の位相は略同じであることから積分して得られる値はその時点における位相に応じた所定の値となる。一方、分散部31から出射される電波が図9に示す状態である場合、第1受信アンテナ17-1~第8受信アンテナ17-8のそれぞれにおける電波の位相がずれていることから積分して得られる値は、相殺されて図11の場合よりも小さい値となる。
図12は、図9~図11において、レーダ装置1によって検出される信号の一例を示している。より詳細には、図12(A)は、図9に示す状態において検出される信号を示している。なお、図12(A)において、横軸はY軸方向の角度(法線方向を0°とし、Y軸プラス側をマイナスとし、Y軸マイナス側をプラスとする角度)を示し、縦軸は信号のレベルを示している。また、図12において、-Θ~Θの範囲は通常の検出範囲(例えば、-60°~+60°)を示し、90°は分散部31によって反射された信号を示している。図12(A)では、分散部31によって反射された信号の位相が揃っていないことから検出される信号のレベルは低い状態になっている。一方、図12(C)では、分散部31によって反射された信号の位相が揃っていることから検出される信号のレベルは高い状態になっている。図12(B)では検出される信号は、図12(A)および図12(C)の中間となっている。なお、図12(C)の場合のみ一定の出力を生じ、図12(A),(B)は殆ど出力を生じない設定としてもよい。
本発明の第1実施形態では、-Θ~Θの範囲において、物標を検出した場合には、分散部31から入射される信号、すなわち、90°の角度から入射される信号のレベルを参照し、信号のレベルが所定の閾値Th2よりも大きい場合には図5に示すプラス方向に物標が存在していると判定する。また、-Θ~Θの範囲において、物標を検出した場合において、90°の角度から入射される信号のレベルが所定の閾値Th1よりも小さい場合には図5に示すマイナス方向に物標が存在していると判定する。さらに、-Θ~Θの範囲において、物標を検出した場合において、90°の角度から入射される信号のレベルが所定の閾値Th1より大きく、閾値Th2より小さい場合には、図5に示す0°の方向に物標が存在していると判定する。もちろん、図5に示す3つの場合を全て検出するのではなく、例えば、プラス方向だけを検出するようにしてもよい。
つぎに、本発明の第1実施形態の詳細な動作について説明する。なお、以下では、レーダ装置1が、例えば、自動車等の車両に取り付けられている場合を例に挙げて説明する。取り付け方法としては、図3に示す回路基板30のX軸が車両の上下(垂直)方向となるようにするとともに、Y軸が車両の左右(水平)方向になるように取り付ける。また、共振素子31-3が車両の上方向に位置し、共振素子31-1が車両の下方向に位置するように取り付ける。
車両が動作中において、制御・処理部15は、変調部12を制御して、送信アンテナ13からパルス波を送信させる。送信アンテナ13から送信されたパルス波は、物標によって散乱され、第1受信アンテナ17-1~第8受信アンテナ17-8によって受信される。また、物標によって散乱されたパルス波は、図3に示す分散部31によって分散された後、第1受信アンテナ17-1~第8受信アンテナ17-8によって受信される。
制御・処理部15は、アンテナ切換部18を制御して、第1受信アンテナ17-1~第8受信アンテナ17-8による受信信号を順次選択して利得可変増幅部19に供給する。利得可変増幅部19は、アンテナ切換部18から供給された信号を増幅し、復調部20に供給する。復調部20は、利得可変増幅部19から供給された信号を復調して、A/D変換部21に供給する。A/D変換部21は、復調部20から供給されたアナログ信号をデジタル信号に変換して制御・処理部15に供給する。
制御・処理部15は、A/D変換部21から供給されるデジタル信号に対して解析処理を実行し、物標を検出する。例えば、物標が自車両の前方を走行する他の車両である場合(自車両と同じ高さの物標である場合)、物標からの反射波は図4に示す角度(図5に示す実線の角度)で入射される。この場合には、物標が図12に示す-Θ~Θの範囲に検出されるとともに、90°の位置に図12(B)のようなレベルの信号が検出される。制御・処理部15は、-Θ~Θの範囲に検出される物標に対応する信号に対してクラスタリング処理およびトラッキング処理を施すことで物標である他の車両を検出するとともに、90°の位置の信号のレベルから物標が自車両と同じ高さに存在すると判定する。
また、例えば、道路の上方に橋が存在し、この橋が物標として検出される場合を想定する。この場合、物標からの散乱波は、図5に示す+θ方向から入射するので、物標である橋は図12に示す-Θ~Θの範囲に検出されるとともに、90°の位置に図12(C)のようなレベルの信号が検出される。制御・処理部15は、-Θ~Θの範囲に検出される物標に対応する信号に対してクラスタリング処理およびトラッキング処理を施すことで物標である橋を検出するとともに、90°の位置の信号のレベルから物標が自車両よりも高い位置に存在すると判定する。このような場合には、橋と車両が衝突することはないので、警告を発することはない。
さらに、例えば、下り坂にさしかかった場合おいて、前方の道路が物標として検出される場合を想定する。この場合、物標からの散乱波は、図5に示す-θ方向から入射するので、物標である道路は図12に示す-Θ~Θの範囲に検出されるとともに、90°の位置に図12(A)のようなレベルの信号が検出される。制御・処理部15は、-Θ~Θの範囲に検出される物標に対応する信号に対してクラスタリング処理およびトラッキング処理を施すことで物標である道路を検出するとともに、90°の位置の信号のレベルから物標が自車両よりも低い位置に存在すると判定する。このような場合には、道路と車両が衝突することはないので、警告を発することはない。
以上に説明したように、本発明の第1実施形態では、第1受信アンテナ17-1~第8受信アンテナ17-8の近傍に分散部31を設け、受信信号を解析した結果、90°の位置に現れる信号のレベルを検出することで、物標の高さ方向の位置を検出することができる。これにより、自車両よりも高い位置に存在する橋や、低い位置に存在する坂道の道路を衝突対象から除外することができる。
また、坂道でない場合に、90°の位置に現れる信号のレベルを参照することで、物標の高さがどの程度であるかを推定するようにしてもよい。例えば、トラック等が前方を走行している場合には、自車両よりも高い位置からの反射波とともに、同じ位置および低い位置からの反射波も受信することから、高い位置からの反射波のみを受信する場合に比較して、90°の位置に現れる信号のレベルが大きくなる。このため、90°の位置に現れる信号のレベルと、閾値とを比較することで、高さ方向の大きさを判定するようにしてもよい。また、上方向のみから強い反射波を受信した場合には、標識等と判定することができる。また、同じ位置および低い位置からの反射波を受信した場合には中程度の大きさの物標(例えば、一般車両または歩行者)と判定することができる。また、同じ位置のみからの反射波を受信した場合には、例えば、ガードレールと判定することができる。さらに、低い位置のみからの反射波を受信した場合には、例えば、縁石または歩道と判定することができる。
つぎに、第1実施形態において実行される処理について説明する。図13は、第1実施形態において実行される処理の流れを説明するためのフローチャートである。図13に示すフローチャートの処理が開始されると、以下のステップが実行される。
ステップS10では、制御・処理部15の制御部15aは、変調部12を制御して、送信アンテナ13からパルス信号の送信を開始させる。この結果、送信アンテナ13から送信されたパルス波は、物標によって散乱され、第1受信アンテナ17-1~第N受信アンテナ17-Nに入射されるとともに、分散部31によって反射された後に第1受信アンテナ17-1~第N受信アンテナ17-Nに入射される。
ステップS11では、制御・処理部15の制御部15aは、アンテナ切換部18を制御して、第1受信アンテナ17-1~第N受信アンテナ17-Nのいずれかによって受信された信号を利得可変増幅部19に供給する。
ステップS12では、制御・処理部15の制御部15aは、第1受信アンテナ17-1~第N受信アンテナ17-Nの全てによる受信が終了したか否かを判定し、全てのアンテナによる受信が終了しておらず、繰り返し処理を実行すると判定する場合(ステップS12:Y)にはステップS11に戻って同様の処理を繰り返し、それ以外の場合(ステップS12:N)にはステップS13に進む。
ステップS13では、制御・処理部15の検出部15cは、ステップS10~ステップS12の繰り返し処理によって受信された受信信号に基づいて、物標の検出処理を実行する。具体的には、クラスタリング処理およびトラッキング処理によって物標を検出する。
ステップS14では、制御・処理部15の検出部15cは、ステップS13による検出処理の結果、物標を検出したと判定した場合(ステップS14:Y)にはステップS15に進み、それ以外の場合(ステップS14:N)にはステップS17に進む。
ステップS15では、制御・処理部15の検出部15cは、ステップS13による検出処理の結果における90°の信号を検出する。
ステップS16では、制御・処理部15の検出部15cは、ステップS15において検出した90°の信号レベルに基づいて、物標の上下方向(垂直方向)の位置を検出する。より詳細には、90°の信号レベルが所定の閾値Th2よりも大きい場合には物標が自車両よりも上に存在すると判定し、90°の信号レベルが所定の閾値Th1(Th1<Th2)よりも大きい場合には物標が自車両よりも下に存在すると判定し、閾値Th1以上かつ閾値Th2以下の場合には物標が自車両と同じ高さに存在すると判定することができる。
ステップS17では、制御・処理部15の通信部15dは、物標の検出結果を他の装置(例えば、ECU(Electric Control Unit)等)に対して出力する。
ステップS18では、制御・処理部15の制御部15aは、処理を終了するか否かを判定し、処理を継続すると判定した場合(ステップS18:N)にはステップS10に戻って前述の場合と同様の処理を繰り返し、それ以外の場合(ステップS18:Y)には処理を終了する。
以上に説明したように、図13の処理によれば、物標の視野角方向の位置を検出するとともに、物標の上下方向の位置を検出することができる。
(C)第2実施形態の構成の説明
つぎに、本発明の第2実施形態について説明する。なお、第2実施形態では、図1および図2に示す構成は、第1実施形態と同様であるが、図14に示す分散部の構成が異なっている。図14の例では、図3と比較すると、分散部31に加えて、分散部32が追加されている。これ以外の構成は、図3と同様である。
つぎに、本発明の第2実施形態について説明する。なお、第2実施形態では、図1および図2に示す構成は、第1実施形態と同様であるが、図14に示す分散部の構成が異なっている。図14の例では、図3と比較すると、分散部31に加えて、分散部32が追加されている。これ以外の構成は、図3と同様である。
分散部32は、第1受信アンテナ17-1の近傍に設けられており、共振素子32-1~32-3を有している。共振素子32-1~32-3は、共振素子31-1~31-3と同様の構成を有している。すなわち、共振素子32-1は幅W1および長さL1の矩形構造を有し、共振素子32-2は幅W1および長さL2の矩形構造を有し、共振素子32-3は幅W1および長さL3の矩形構造を有している。また、共振素子32-1~32-3は、ギャップgを隔てて配置されている。
(D)第2実施形態の動作の説明
つぎに、本発明の第2実施形態の動作について説明する。図15は、本発明の第2実施形態の動作を説明するための図である。図15に示すように、本発明の第2実施形態では、第1実施形態と同様に90°の位置に分散部31による信号が現れているだけでなく、-90°の位置にも分散部32による信号が現れている。なお、-90°の位置に現れる信号は、90°の位置に現れる信号と同じで、図5に示す破線の位置に物標が存在する場合には、図15(A)に示すように信号はごくわずかで、図5に示す実線の位置に物標が存在する場合には、図15(B)に示すように信号が増加し、図5に示す一点鎖線の位置に物標が存在する場合には、図15(C)に示すように信号が最大となる。
つぎに、本発明の第2実施形態の動作について説明する。図15は、本発明の第2実施形態の動作を説明するための図である。図15に示すように、本発明の第2実施形態では、第1実施形態と同様に90°の位置に分散部31による信号が現れているだけでなく、-90°の位置にも分散部32による信号が現れている。なお、-90°の位置に現れる信号は、90°の位置に現れる信号と同じで、図5に示す破線の位置に物標が存在する場合には、図15(A)に示すように信号はごくわずかで、図5に示す実線の位置に物標が存在する場合には、図15(B)に示すように信号が増加し、図5に示す一点鎖線の位置に物標が存在する場合には、図15(C)に示すように信号が最大となる。
なお、物標のX軸方向の位置を検出する場合には、90°の位置および-90°の位置の信号の平均値を求め、この平均値に基づいて物標のX軸方向の位置を検出するようにしてもよい。このような方法によれば、2つの分散部31,32からの反射波の平均値を用いることで、より正確に物標のX軸方向の位置を検出することができる。
以上に説明したように、本発明の第2実施形態では、第1受信アンテナ17-1~第8受信アンテナ17-8の両側に分散部31,32を配置するようにしたので、-90°と90°の角度位置に、物標の上下方向の位置を示す信号を発生させることができる。これにより、分散部31を1つだけ設ける場合に比較して、上下方向の位置を示す信号を2倍にして、検出精度を向上させることができる。
(E)第3実施形態の構成の説明
つぎに、本発明の第3実施形態について説明する。なお、第3実施形態では、図1および図2に示す構成は、第1実施形態と同様であるが、図16に示す分散部の構成が異なっている。図16の例では、図3と比較すると、分散部31に加えて、分散部33が追加されている。また、第1受信アンテナ17-1~第8受信アンテナ17-8は、λ/2よりも短い間隔で配置されている。これ以外の構成は、図3と同様である。
つぎに、本発明の第3実施形態について説明する。なお、第3実施形態では、図1および図2に示す構成は、第1実施形態と同様であるが、図16に示す分散部の構成が異なっている。図16の例では、図3と比較すると、分散部31に加えて、分散部33が追加されている。また、第1受信アンテナ17-1~第8受信アンテナ17-8は、λ/2よりも短い間隔で配置されている。これ以外の構成は、図3と同様である。
分散部33は、第1受信アンテナ17-1の近傍に設けられており、共振素子33-1~33-3を有している。共振素子33-1~33-3は、共振素子31-1~31-3と同様の構成を有しているが、配置される方向が分散部31と逆になっている。すなわち、共振素子33-1は幅W1および長さL1の矩形構造を有し、共振素子33-2は幅W1および長さL2の矩形構造を有し、共振素子33-3は幅W1および長さL3の矩形構造を有している。また、共振素子33-1~33-3は、ギャップgを隔てて配置されている。
(F)第3実施形態の動作の説明
つぎに、本発明の第3実施形態の動作について説明する。第3実施形態では、前述したように、第1受信アンテナ17-1~第8受信アンテナ17-8は、λ/2よりも短い間隔で配置されている。すなわち、図16において、D<λ/2に設定されている。図17は、D=λ/2に設定した場合における視野角と受信信号の電力(|v|2)の関係を示す図である。図17(A)は、視野角10°の方向から24GHzの信号を入射した場合の受信信号の特性を示している。また、図17(B)は分散部31によって反射された信号による受信信号の特性を示している。図17(C)は、視野角10°の方向から24GHzの信号を入射するとともに、分散部31からの反射信号を物標の反射係数を0.3として受信した場合に実際に検出される信号の一例を示している。
つぎに、本発明の第3実施形態の動作について説明する。第3実施形態では、前述したように、第1受信アンテナ17-1~第8受信アンテナ17-8は、λ/2よりも短い間隔で配置されている。すなわち、図16において、D<λ/2に設定されている。図17は、D=λ/2に設定した場合における視野角と受信信号の電力(|v|2)の関係を示す図である。図17(A)は、視野角10°の方向から24GHzの信号を入射した場合の受信信号の特性を示している。また、図17(B)は分散部31によって反射された信号による受信信号の特性を示している。図17(C)は、視野角10°の方向から24GHzの信号を入射するとともに、分散部31からの反射信号を物標の反射係数を0.3として受信した場合に実際に検出される信号の一例を示している。
一方、図18は、D=λ/2.5に設定した場合における視野角と受信信号の電力(|v|2)の関係を示す図である。図18(A)は、視野角10°の方向から24GHzの信号を入射した場合の受信信号の特性を示している。また、図18(B)は分散部31によって反射された信号による受信信号の特性を示している。図18(C)は、視野角10°の方向から24GHzの信号を入射するとともに、分散部31からの反射信号を物標の反射係数を0.3として受信した場合に実際に検出される信号の一例を示している。図17(B)と図18(B)の比較から、D=λ/2の場合(図17の場合)では、分散部31による反射信号が-90°と+90°の双方に現れていることからいずれの方向からの入射信号か分からない。しかし、D=λ/2.5の場合(図18の場合)では、分散部31による反射信号が+90°のみに現れていることからいずれの方向からの入射信号かが識別できる。なお、第1実施形態および第2実施形態では、いずれの方向からの入射信号かが分からなくても支障はないため、第1実施形態および第2実施形態では、D≦λ/2に設定している。
また、図19に示すように、本発明の第3実施形態では、第1実施形態と同様に90°の位置に分散部31による信号が現れているだけでなく、-90°の位置にも分散部33による信号が現れている。なお、-90°の位置に現れる信号は、90°の位置に現れる信号と逆で、図5に示す一点鎖線の位置に物標が存在する場合には、図19(C)に示すように信号はごくわずかで、図5に示す実線の位置に物標が存在する場合には、図19(B)に示すように信号が増加し、図5に示す破線の位置に物標が存在する場合には、図19(A)に示すように信号が最大となる。
なお、90°の信号と-90°の信号の差分値(90°の信号―(―90°の信号))を計算し、差分値がプラスの場合にはX軸のプラス方向に物標が存在すると判定し、差分値がマイナスの場合にはX軸のマイナス方向に物標が存在すると判定し、0に近い値の場合にはX軸方向に物標が存在すると判定するようにしてもよい。
以上に説明したように、本発明の第3実施形態では、第1受信アンテナ17-1~第8受信アンテナ17-8の両側に分散部31,33を配置するとともに、分散部33を構成する共振素子33-1~33-3を分散部31とは逆方向に配列するようにした。また、第1受信アンテナ17-1~第8受信アンテナ17-8は、λ/2よりも短い間隔で配置している。このため、-90°と90°の角度位置に、物標の上下方向の位置を示す信号を発生させることができるとともに、これらを物標の上下方向の位置に応じて反転した信号とすることができる。これにより、分散部31を1つだけ設ける場合に比較して、上下方向の位置を示す信号を2倍にして、検出精度を向上させることができる。また、一方の信号が小さい場合には他方が大きくなるので、誤検出の発生を低減できる。
(G)第4実施形態の構成の説明
つぎに、本発明の第4実施形態について説明する。なお、第4実施形態では、図1および図2に示す構成は、第1実施形態と同様であるが、図20に示す分散部の構成が異なっている。図20の例では、図3と比較すると、分散部31が分散部34に置換されている。これ以外の構成は、図3と同様である。
つぎに、本発明の第4実施形態について説明する。なお、第4実施形態では、図1および図2に示す構成は、第1実施形態と同様であるが、図20に示す分散部の構成が異なっている。図20の例では、図3と比較すると、分散部31が分散部34に置換されている。これ以外の構成は、図3と同様である。
分散部34は、第1受信アンテナ17-1の近傍に設けられており、共振素子34-1~34-3を有している。共振素子34-1~34-3のそれぞれは、矩形形状の中央部に突起部を有しており、これらの突起部を介して給電することが可能とされている。共振素子34-1は幅W1および長さL1の矩形構造で中央部に突起部を有し、共振素子34-2は幅W1および長さL2の矩形構造で中央部に突起部を有し、共振素子34-3は幅W1および長さL3の矩形構造で中央部に突起部を有している。また、共振素子34-1~34-3は、ギャップgを隔てて配置されている。
(H)第4実施形態の動作の説明
つぎに、本発明の第4実施形態の動作について説明する。第4実施形態では、共振素子34-1~34-3のそれぞれへの給電を停止することで分散部として機能させ、給電することで(例えば、共振素子34-1~34-3をグランドレベルとすることで)分散部としての機能を停止させることができる。これにより、上下方向の位置を検出する必要が生じた場合にのみ、共振素子34-1~34-3のそれぞれへの給電を停止して分散部として機能させることができる。これにより、分散部としての機能が不要な場合には、共振素子34-1~34-3に給電することで、共振素子34-1~34-3からの反射を抑制し、ノイズの発生を低減することができる。
つぎに、本発明の第4実施形態の動作について説明する。第4実施形態では、共振素子34-1~34-3のそれぞれへの給電を停止することで分散部として機能させ、給電することで(例えば、共振素子34-1~34-3をグランドレベルとすることで)分散部としての機能を停止させることができる。これにより、上下方向の位置を検出する必要が生じた場合にのみ、共振素子34-1~34-3のそれぞれへの給電を停止して分散部として機能させることができる。これにより、分散部としての機能が不要な場合には、共振素子34-1~34-3に給電することで、共振素子34-1~34-3からの反射を抑制し、ノイズの発生を低減することができる。
なお、給電する場合と、給電しない場合における90°の信号の差分値を計算し、差分値に基づいて物標のX軸方向の位置を検出するようにしてもよい。そのような構成によれば、ノイズの影響を低減することができる。
(I)変形実施形態の説明
以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、第1~第4実施形態では、矩形形状を有する共振素子を用いるようにしたが、反射素子はこのような形状にのみ限定されるものではなく、例えば、図21に示すような様々な形状の反射素子を用いることができる。より詳細には、一般には、図8におけるX軸方向に長さを有し、Y軸に対して非線対称となるような形状を有する分散部を適宜設計することで本発明を実施することが可能であるが、例えば、図21(A)では、分散部は2つの共振素子が直線上に配置されて構成されている。図21(B)では、分散部は3つの分散素子が平行に配置されて構成されている。図21(C)では、分散部は2つの分散素子が平行に配置されて構成されている。図21(D)では、数字の「2」に類似した形状の共振素子と、アルファベットの「Z」に類似した共振素子と、矩形形状の共振素子とによって構成されている。図21(E)では、矩形の下部にT字状の切り欠きが形成された共振素子と、矩形の切り欠きが形成された共振素子と、切り欠きを有しない共振素子とによって構成されている。図21(F)では、左右方向に伸びた矩形の両端が上下方向に伸出して内側に湾曲した共振素子と、左右方向に伸びた矩形の両端が上下方向に伸出した共振素子と、左右方向に伸びた矩形のみの共振素子とによって構成されている。図21(A)~(F)に示すような分散部を用いても前述の場合と同様の効果を得ることができる。図21(A)~(F)を構成する分散部を構成するそれぞれの共振素子は、前述したように異なる周波数で共振するように設定すればよい。すなわち、図21の上下方向の上側に存在する共振素子の周波数を低く設定し、下側に存在する共振素子の周波数を高く設定するようにすればよい。
以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、第1~第4実施形態では、矩形形状を有する共振素子を用いるようにしたが、反射素子はこのような形状にのみ限定されるものではなく、例えば、図21に示すような様々な形状の反射素子を用いることができる。より詳細には、一般には、図8におけるX軸方向に長さを有し、Y軸に対して非線対称となるような形状を有する分散部を適宜設計することで本発明を実施することが可能であるが、例えば、図21(A)では、分散部は2つの共振素子が直線上に配置されて構成されている。図21(B)では、分散部は3つの分散素子が平行に配置されて構成されている。図21(C)では、分散部は2つの分散素子が平行に配置されて構成されている。図21(D)では、数字の「2」に類似した形状の共振素子と、アルファベットの「Z」に類似した共振素子と、矩形形状の共振素子とによって構成されている。図21(E)では、矩形の下部にT字状の切り欠きが形成された共振素子と、矩形の切り欠きが形成された共振素子と、切り欠きを有しない共振素子とによって構成されている。図21(F)では、左右方向に伸びた矩形の両端が上下方向に伸出して内側に湾曲した共振素子と、左右方向に伸びた矩形の両端が上下方向に伸出した共振素子と、左右方向に伸びた矩形のみの共振素子とによって構成されている。図21(A)~(F)に示すような分散部を用いても前述の場合と同様の効果を得ることができる。図21(A)~(F)を構成する分散部を構成するそれぞれの共振素子は、前述したように異なる周波数で共振するように設定すればよい。すなわち、図21の上下方向の上側に存在する共振素子の周波数を低く設定し、下側に存在する共振素子の周波数を高く設定するようにすればよい。
また、図21の例では、分散部は、複数の部材によって構成されるようにしたが、例えば、図22(A)に示すように、三角形状を有する単一部材によって構成されるようにしてもよい。もちろん、図22(A)に示す分散部は一例であって、電波の分散特性が変化すれば三角形状以外の形状を有するようにしてもよい。また、図22(B)に示すように、回路基板30の端部を斜めにカットすることで、分散部を形成するようにしてもよい。また、回路基板30の端部を斜めにカットするのではなく、図22(C)に示すように、回路基板30の端部に複数の穴を形成することで、分散部を形成するようにしてもよい。回路基板30の裏面には、グランド用の導体が一面に形成されているので、図22(C)に示すように、導体に複数の穴を形成することで、スロットアンテナとして機能させるようにしてもよい。
なお、導体によって分散素子を構成するのではなく、例えば、電波の吸収体または反射対によって前述した分散素子を構成するようにしてもよい。また、誘電体の厚みを変化させることで、分散部を構成するようにしてもよい。
なお、図21(A)~(F)および図22(A)~(C)に示す分散部を、例えば、第1実施形態に示すように第1受信アンテナ17-1~第8受信アンテナ17-8の片側に設けるようにしたり、第2実施形態に示すように両側に同様の配列で設けるようにしたり、第3実施形態に示すように両側に逆方向の配列で設けるようにしたり、第4実施形態に示すように給電部を設けて給電するようにしてもよい。
また、以上の各実施形態では、中央部に配置される共振素子が電波の周波数と同じ周波数で共振するようにしたが、もちろん、電波とは異なる周波数で共振するようにしてもよい。要は、入射角度が変化した場合に、第1受信アンテナ17-1~第8受信アンテナ17-8の長さ方向に分散特性が変化するようにできれば共振周波数は電波の周波数とは異なっていてもよい。
また、以上の各実施形態では、分散部は、回路基板30上に設けるようにしたが、例えば、第1受信アンテナ17-1~第8受信アンテナ17-8が形成された回路基板30を覆うレドームに分散部を形成するようにしてもよい。また、回路基板30の第1受信アンテナ17-1~第8受信アンテナ17-8が形成された同じ層に設けるのではなく、異なる層(例えば、中間層や裏側面)に設けるようにしてもよい。また、レドームについても、レドームの表面に設けるのではなく、レドームを構成する樹脂の内部に配置するようにしてもよい。
また、図3に示す構成では、送信アンテナ13からはパルス信号を送信するようにしたが、FMCW(Frequency Modulated Continuous Wave)を用いるようにしてもよい。
また、図3に示す実施形態では、アンテナ切換部18によって第1受信アンテナ17-1~第N受信アンテナ17-Nからの出力を択一的に選択するようにしたが、第1受信アンテナ17-1~第N受信アンテナ17-Nのそれぞれに対して利得可変増幅部19、復調部20、および、A/D変換部21を設け、A/D変換部21の出力を選択部によって選択して制御・処理部15に供給するようにしてもよい。もちろん、利得可変増幅部19または復調部20の後段に選択部を設け、選択部によって利得可変増幅部19または復調部20の出力を選択するようにしてもよい。
また、以上の実施形態では、第1受信アンテナ17-1~第8受信アンテナ17-8を用いる場合(すなわち、N=8)の場合を例に挙げて説明したが、これ以外の本数であってもよい。なお、FFT(Fast Fourier Transform)処理を施す都合から、2のべき乗の本数を用いることが望ましい。
また、図3等に示す第1受信アンテナ17-1~第8受信アンテナ17-8の形状は一例であって、本発明が図3に示す形状のみに限定されないことはいうまでもない。
また、以上の実施形態では、車両として自動四輪車を例に挙げて説明したが、これ以外にも自動二輪車や自転車等を検出するようにしてもよい。すなわち、本明細書中において、車両とは自動四輪車には限定されない。
また、図13に示すフローチャートの処理は一例であって、本発明がこれらフローチャートの処理に限定されるものではないことはいうまでもない。
また、以上の実施形態では、レーダ装置が車両等の移動体に取り付けられる場合を例に挙げて説明したが、固定的に配置されるレーダ装置に本願発明を適用するようにしてもよい。
また、分散部31,32,33,34を構成する共振素子31-1~31-3,32-1~32-3,33-1~33-3,34-1~34-3は、電波を分散する特性を有するものであればどのような素材でも用いることができる。例えば、銅、アルミニウム、金等の導電体や導電性樹脂等の導電体を用いることができる。また、導電体だけでなく、分散特性を有する誘電体を用いることもできる。
1 レーダシステム
10 局部発振部
11 送信部
12 変調部
13 送信アンテナ
15 制御・処理部
15a 制御部
15b 処理部
15c 検出部
15d 通信部
16 受信部
17 受信アレーアンテナ
17-1~17-8 第1受信アンテナ~第8受信アンテナ
18 アンテナ切換部
19 利得可変増幅部
20 復調部
21 A/D変換部
30 回路基板
31,32,33,34 分散部
31-1~31-3,32-1~32-3,33-1~33-3,34-1~34-3 共振素子
10 局部発振部
11 送信部
12 変調部
13 送信アンテナ
15 制御・処理部
15a 制御部
15b 処理部
15c 検出部
15d 通信部
16 受信部
17 受信アレーアンテナ
17-1~17-8 第1受信アンテナ~第8受信アンテナ
18 アンテナ切換部
19 利得可変増幅部
20 復調部
21 A/D変換部
30 回路基板
31,32,33,34 分散部
31-1~31-3,32-1~32-3,33-1~33-3,34-1~34-3 共振素子
Claims (13)
- 電波により物標を検出するレーダ装置において、
第1の方向に所定の長さを有する受信アンテナ素子が、前記第1の方向に略直交する第2の方向に複数並べて配置された受信アレーアンテナと、
前記受信アレーアンテナの近傍に配置され、前記第1の方向に対して前記電波の分散特性が変化する分散部と、
前記分散部によって反射された前記電波に基づいて、前記第1の方向における前記物標の位置を検出する検出部と、
を有することを特徴とするレーダ装置。 - 前記受信アレーアンテナは回路基板に配置され、
前記分散部は、前記回路基板の前記受信アレーアンテナの近傍に配置されている、
ことを特徴とする請求項1に記載のレーダ装置。 - 前記受信アレーアンテナは回路基板に配置され、
前記分散部は、前記受信アレーアンテナが配置された前記回路基板を覆設するレドームに配置されている、
ことを特徴とする請求項1に記載のレーダ装置。 - 前記受信アレーアンテナを挟むように2つの前記分散部が配置され、2つの前記分散部は、前記第1の方向に同じ分散特性を有することを特徴とする請求項1乃至3のいずれか1項に記載のレーダ装置。
- 前記受信アレーアンテナを挟むように2つの前記分散部が配置され、2つの前記分散部は、前記第1の方向の分散特性が相互に反転した特性を有することを特徴とする請求項1乃至3のいずれか1項に記載のレーダ装置。
- 前記受信アンテナ素子は、前記電波の波長をλとする場合に、前記第2の方向についてλ/2の間隔を隔てて配置されていることを特徴とする請求項1乃至5のいずれか1項に記載のレーダ装置。
- 前記受信アンテナ素子は、前記電波の波長をλとする場合に、前記第2の方向についてλ/2未満の間隔を隔てて配置されていることを特徴とする請求項1乃至5のいずれか1項に記載のレーダ装置。
- 前記分散部は、複数の共振素子によって構成され、前記第1の方向の中央には前記電波と略同じ周波数で共振する前記共振素子が配置され、下側には低い周波数で共振する前記共振素子が配置され、上側には高い周波数で共振する前記共振素子が配置されていることを特徴とする請求項1乃至7のいずれか1項に記載のレーダ装置。
- 前記分散部に電力を供給する給電部を有し、
前記検出部が前記第1の方向における前記物標の位置を検出する場合には前記給電部は前記分散部に対する電力の供給を停止し、検出しない場合には前記給電部は前記分散部に対して電力を供給することを特徴とする請求項1乃至8のいずれか1項に記載のレーダ装置。 - 前記検出部は、前記分散部によって反射された前記電波の信号レベルと所定の閾値とを比較することで、前記第1の方向における前記物標の位置を検出することを特徴とする請求項1乃至9のいずれか1項に記載のレーダ装置。
- 前記検出部は、前記2つの分散部の一方によって反射された前記電波の信号レベルと、他方によって反射された前記電波の信号レベルと、を比較することで、前記第1の方向における前記物標の位置を検出することを特徴とする請求項5に記載のレーダ装置。
- 前記検出部は、シグナルプロセッサによって構成されることを特徴とする請求項1乃至11のいずれか1項に記載のレーダ装置。
- 電波により物標を検出するレーダ装置の物標位置検出方法において、
第1の方向に所定の長さを有する受信アンテナ素子が、前記第1の方向に略直交する第2の方向に複数並べて配置された受信アレーアンテナと、前記受信アレーアンテナの近傍に配置され、前記第1の方向に対して前記電波の分散特性が変化する分散部と、を有し、
前記分散部によって反射された前記電波に基づいて、前記第1の方向における前記物標の位置を検出する、
ことを特徴とするレーダ装置の物標位置検出方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18764751.6A EP3594713B1 (en) | 2017-03-09 | 2018-02-22 | Radar device and target position detection method of radar device |
US16/491,915 US11977146B2 (en) | 2017-03-09 | 2018-02-22 | Radar device and detection method of target position of radar device |
CN201880016471.8A CN110418975B (zh) | 2017-03-09 | 2018-02-22 | 雷达装置和雷达装置的目标位置检测方法 |
JP2019504469A JP6896058B2 (ja) | 2017-03-09 | 2018-02-22 | レーダ装置およびレーダ装置の物標位置検出方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017045499 | 2017-03-09 | ||
JP2017-045499 | 2017-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163853A1 true WO2018163853A1 (ja) | 2018-09-13 |
Family
ID=63447806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006597 WO2018163853A1 (ja) | 2017-03-09 | 2018-02-22 | レーダ装置およびレーダ装置の物標位置検出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11977146B2 (ja) |
EP (1) | EP3594713B1 (ja) |
JP (1) | JP6896058B2 (ja) |
CN (1) | CN110418975B (ja) |
WO (1) | WO2018163853A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153719A (ja) * | 2019-03-18 | 2020-09-24 | 古河電気工業株式会社 | レーダ装置およびレーダ装置の制御方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7504759B2 (ja) * | 2020-10-15 | 2024-06-24 | パナソニックオートモーティブシステムズ株式会社 | レーダ装置 |
TWI789853B (zh) | 2021-07-29 | 2023-01-11 | 立積電子股份有限公司 | 雷達裝置及干擾抑制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06252635A (ja) * | 1993-02-22 | 1994-09-09 | Miri Ueibu:Kk | ミリ波帯アンテナ |
JP2001358518A (ja) * | 2000-06-09 | 2001-12-26 | Sony Corp | アンテナ装置及び無線装置 |
JP2005181203A (ja) * | 2003-12-22 | 2005-07-07 | Mitsubishi Electric Corp | 電波探知装置 |
US20070057858A1 (en) * | 2005-08-12 | 2007-03-15 | Lockie Douglas G | Multiple-point to multiple-point communication system |
JP2010008319A (ja) * | 2008-06-30 | 2010-01-14 | Toyota Central R&D Labs Inc | レーダアンテナ及びレーダ装置 |
JP2014052187A (ja) | 2012-09-04 | 2014-03-20 | Fujitsu Ten Ltd | レーダ装置および物標高算出方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004044120A1 (de) * | 2004-09-13 | 2006-03-16 | Robert Bosch Gmbh | Antennenstruktur für seriengespeiste planare Antennenelemente |
US7450071B1 (en) * | 2007-02-20 | 2008-11-11 | Lockheed Martin Corporation | Patch radiator element and array thereof |
JP4545174B2 (ja) * | 2007-06-11 | 2010-09-15 | 三菱電機株式会社 | レーダ装置 |
DE102008038365A1 (de) * | 2008-07-02 | 2010-01-07 | Adc Automotive Distance Control Systems Gmbh | Fahrzeug-Radarsystem und Verfahren zur Bestimmung einer Position zumindest eines Objekts relativ zu einem Fahrzeug |
CN101383479A (zh) * | 2008-09-28 | 2009-03-11 | 中国科学院上海光学精密机械研究所 | 二维光纤激光阵列锁相和孔径装填装置 |
JP5568237B2 (ja) * | 2009-01-13 | 2014-08-06 | 松永ジオサーベイ株式会社 | 三次元位置推定システム、及び、ダイポールアレイアンテナ |
JP2010237087A (ja) * | 2009-03-31 | 2010-10-21 | Hitachi Automotive Systems Ltd | レーダ装置及びそれを用いた電波到来方向の計測方法 |
US9124006B2 (en) * | 2011-03-11 | 2015-09-01 | Autoliv Asp, Inc. | Antenna array for ultra wide band radar applications |
US9035840B1 (en) * | 2012-03-14 | 2015-05-19 | Amazon Technologies, Inc. | Dual-band antenna with grounded patch and coupled feed |
JP6211254B2 (ja) * | 2012-08-23 | 2017-10-11 | Ntn株式会社 | 導波管スロットアレイアンテナ |
CN104656092A (zh) * | 2013-11-18 | 2015-05-27 | 均利科技股份有限公司 | 多段距离选择与超低功率的全模拟式微波检测器 |
DE102014118036A1 (de) * | 2014-12-05 | 2016-06-23 | Astyx Gmbh | Radarantenne und geeignetes Verfahren zum Beeinflussen der Abstrahlcharakteristik einer Radarantenne |
-
2018
- 2018-02-22 US US16/491,915 patent/US11977146B2/en active Active
- 2018-02-22 CN CN201880016471.8A patent/CN110418975B/zh active Active
- 2018-02-22 WO PCT/JP2018/006597 patent/WO2018163853A1/ja unknown
- 2018-02-22 EP EP18764751.6A patent/EP3594713B1/en active Active
- 2018-02-22 JP JP2019504469A patent/JP6896058B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06252635A (ja) * | 1993-02-22 | 1994-09-09 | Miri Ueibu:Kk | ミリ波帯アンテナ |
JP2001358518A (ja) * | 2000-06-09 | 2001-12-26 | Sony Corp | アンテナ装置及び無線装置 |
JP2005181203A (ja) * | 2003-12-22 | 2005-07-07 | Mitsubishi Electric Corp | 電波探知装置 |
US20070057858A1 (en) * | 2005-08-12 | 2007-03-15 | Lockie Douglas G | Multiple-point to multiple-point communication system |
JP2010008319A (ja) * | 2008-06-30 | 2010-01-14 | Toyota Central R&D Labs Inc | レーダアンテナ及びレーダ装置 |
JP2014052187A (ja) | 2012-09-04 | 2014-03-20 | Fujitsu Ten Ltd | レーダ装置および物標高算出方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153719A (ja) * | 2019-03-18 | 2020-09-24 | 古河電気工業株式会社 | レーダ装置およびレーダ装置の制御方法 |
JP7327961B2 (ja) | 2019-03-18 | 2023-08-16 | 古河電気工業株式会社 | レーダ装置およびレーダ装置の制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US11977146B2 (en) | 2024-05-07 |
JP6896058B2 (ja) | 2021-06-30 |
US20200072960A1 (en) | 2020-03-05 |
EP3594713B1 (en) | 2022-04-06 |
CN110418975A (zh) | 2019-11-05 |
CN110418975B (zh) | 2023-10-03 |
EP3594713A4 (en) | 2020-07-29 |
JPWO2018163853A1 (ja) | 2020-01-09 |
EP3594713A1 (en) | 2020-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8169361B2 (en) | Electronically scanned radar system | |
JP5130079B2 (ja) | 電子走査式レーダ装置及び受信用アレーアンテナ | |
CN104422929B (zh) | 天线、雷达设备和信号处理方法 | |
JP4656121B2 (ja) | レーダ装置、および保持部材 | |
EP2113788A2 (en) | Mobile radar and planar antenna | |
US8593369B2 (en) | Antenna assembly | |
JPWO2005055366A1 (ja) | 車載用レーダ | |
JP3942722B2 (ja) | 車載レーダ装置 | |
JP7174668B2 (ja) | 電子機器、電子機器の制御方法、及び電子機器の制御プログラム | |
EP1617234A1 (en) | On-vehicle radar | |
WO2018163853A1 (ja) | レーダ装置およびレーダ装置の物標位置検出方法 | |
JP6212860B2 (ja) | 車載レーダ装置 | |
JP5659587B2 (ja) | レーダ装置、路側器及び車載装置 | |
JP2019211346A (ja) | レーダ装置 | |
JP2013257249A (ja) | 物体検出装置 | |
US10020588B2 (en) | Antenna device and method for manufacturing same | |
JP7327961B2 (ja) | レーダ装置およびレーダ装置の制御方法 | |
EP4105680A2 (en) | Radar calibration system and method thereof | |
JP6909302B2 (ja) | レーダ装置、アンテナ装置 | |
CN115020977B (zh) | 一种天线阵列及雷达的探测方法 | |
EP3855213A1 (en) | Electronic device, electronic device control method, and electronic device control program | |
TWI815334B (zh) | 雷達校正系統及其方法 | |
JP7588018B2 (ja) | 電子機器 | |
Rashid et al. | An RF multiplier integrated planar antenna for DOA estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764751 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019504469 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018764751 Country of ref document: EP Effective date: 20191009 |