[go: up one dir, main page]

WO2018163859A1 - 多層基板、電子機器および多層基板の製造方法 - Google Patents

多層基板、電子機器および多層基板の製造方法 Download PDF

Info

Publication number
WO2018163859A1
WO2018163859A1 PCT/JP2018/006679 JP2018006679W WO2018163859A1 WO 2018163859 A1 WO2018163859 A1 WO 2018163859A1 JP 2018006679 W JP2018006679 W JP 2018006679W WO 2018163859 A1 WO2018163859 A1 WO 2018163859A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating base
mounting
base material
multilayer substrate
material layer
Prior art date
Application number
PCT/JP2018/006679
Other languages
English (en)
French (fr)
Inventor
伊藤 慎悟
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201890000453.6U priority Critical patent/CN210899888U/zh
Publication of WO2018163859A1 publication Critical patent/WO2018163859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a multilayer substrate, and in particular, a multilayer substrate formed by laminating a plurality of insulating base layers, and a conductor pattern formed on the insulating base layer, and an electronic including the multilayer substrate
  • the present invention also relates to a device and a method for manufacturing the multilayer substrate.
  • Patent Document 1 in a structure in which a plurality of insulating base material layers having a conductor pattern attached to the surface is laminated, the surface roughness on one main surface side of the conductor pattern attached to the insulating base material layer is on the other hand, a multilayer substrate having a surface roughness larger than that of the main surface is disclosed. With this configuration, the bonding strength of the conductor pattern to the insulating base layer can be increased.
  • the mounting surface of the mounting electrode for mounting the multilayer substrate on the mounting substrate or the like is the other main surface of the conductor pattern having a relatively smaller surface roughness than the one main surface. . Therefore, the contact area of the mounting electrode with respect to the conductive bonding material is small, high bonding strength cannot be obtained, and the multilayer substrate may be peeled off from the mounting substrate or the like after mounting.
  • An object of the present invention is to provide a mounting board when mounted on a mounting board or the like in a configuration including a laminate formed by laminating a plurality of insulating base layers and a mounting electrode formed on the insulating base layer. It is an object of the present invention to provide a multilayer substrate that can ensure a sufficient bonding strength with respect to the above.
  • the multilayer substrate of the present invention is A laminated body having a mounting surface and formed by laminating a plurality of insulating base material layers including a first insulating base material layer and a second insulating base material layer; A mounting electrode that has a first surface and a second surface opposite to the first surface, and is formed on any of the plurality of insulating base layers; With The mounting electrode has the first insulating base layer so that the first surface faces the first insulating base layer and the second surface faces the second insulating base layer. And the second insulating base material layer, The surface roughness of the first surface is greater than the surface roughness of the second surface, The first insulating base material layer has a base material layer non-forming portion that exposes a part of the first surface.
  • the second surface of the mounting electrode is conductive.
  • the contact area of the mounting electrode with respect to the conductive bonding material is increased as compared with the case where the bonding electrode is bonded to the mounting substrate or the like. Therefore, with this configuration, the conductive bonding material and the mounting electrode can be bonded with high bonding strength, and peeling of the multilayer substrate from the mounting substrate or the like after mounting can be suppressed. Also, with this configuration, the conductor loss of the mounting electrode can be reduced as compared with the case where the surface roughness of both the first surface and the second surface of the mounting electrode is large.
  • a said 1st insulating base material layer and a said 2nd insulating base material layer consist of the same resin material.
  • the mounting electrode does not reach the outer edge of the mounting surface when viewed from the stacking direction of the plurality of insulating base layers.
  • the mounting electrode reaches the surface of the multilayer body (when it is exposed on the surface of the multilayer body)
  • the mounting electrode is easily peeled from the multilayer substrate by applying an external force to the exposed portion of the mounting electrode.
  • the mounting electrode since the mounting electrode is not exposed from the outer edge (surface) of the mounting surface of the laminate, it is possible to suppress the peeling of the mounting electrode from the multilayer substrate due to the application of external force. Also, with this configuration, it is possible to prevent peeling of the mounting electrode from the laminate due to stress applied to the end portion of the mounting electrode when separating the individual pieces from the collective substrate.
  • the first insulating base layer covers more than half of the outer periphery of the first surface.
  • the mounting electrode is disposed in the vicinity of an outer edge of the mounting surface when viewed from the stacking direction of the plurality of insulating base layers, and the base layer non-forming portion is the plurality of base layers. It is preferable to reach the outer edge of the mounting surface when viewed from the stacking direction of the insulating base layer.
  • the electronic device of the present invention The multilayer substrate according to any one of (1) to (5) above; A mounting board; With The first surface of the mounting electrode is bonded to the mounting substrate through a conductive bonding material.
  • the conductive bonding material and the mounting electrode can be bonded with high bonding strength, and an electronic device in which peeling of the multilayer substrate from the mounting substrate after mounting can be realized.
  • the electronic device of the present invention The multilayer substrate according to the above (4) or (5); A mounting board; With The first surface of the mounting electrode is bonded to the mounting substrate by forming a solder fillet.
  • the method for producing the multilayer substrate of the present invention comprises: A laminated body having a mounting surface and formed by laminating a plurality of insulating base material layers including a first insulating base material layer and a second insulating base material layer; A mounting electrode facing the first surface and the first surface, having a second surface having a smaller surface roughness than the first surface, and formed on any of the plurality of insulating base layers; A method for producing a multilayer substrate comprising: Forming the mounting electrode such that the first surface is in contact with the surface of the first insulating base layer; After the electrode forming step, the plurality of insulating base layers are formed so that the first surface faces the first insulating base layer and the second surface faces the second insulating base layer.
  • the laminated body is formed by heating and pressurizing the plurality of laminated insulating base material layers, and the mounting electrode is embedded in the laminated body.
  • the layered body forming step the layered body is removed from the mounting surface side, and a base material layer non-forming portion that exposes a part of the first surface is formed on the first insulating base material layer. Process, It is characterized by providing.
  • the mounting substrate is mounted on the mounting substrate or the like. It is possible to realize a multi-layer substrate that can ensure sufficient bonding strength to the above.
  • FIG. 1 is a perspective view of a multilayer substrate 101 according to the first embodiment.
  • 2A is an AA cross-sectional view in FIG. 1, and
  • FIG. 2B is an exploded cross-sectional view of the multilayer substrate 101.
  • FIG. 3 is a bottom view of the multilayer substrate 101.
  • FIG. 4 is a cross-sectional view illustrating a main part of the electronic apparatus 301 according to the first embodiment.
  • FIG. 5 is a cross-sectional view sequentially showing the manufacturing steps of the multilayer substrate 101.
  • FIG. 6 is a perspective view of the multilayer substrate 102 according to the second embodiment.
  • 7A is a cross-sectional view taken along the line BB in FIG. 6, and
  • FIG. 7B is a bottom view of the multilayer substrate 102.
  • FIG. 8 is a cross-sectional view illustrating a main part of the electronic device 302 according to the second embodiment.
  • FIG. 1 is a perspective view of a multilayer substrate 101 according to the first embodiment.
  • 2A is an AA cross-sectional view in FIG. 1
  • FIG. 2B is an exploded cross-sectional view of the multilayer substrate 101.
  • FIG. 3 is a bottom view of the multilayer substrate 101. 2A and 2B, the thickness of each insulating base material layer and the surface roughness of the mounting electrode are exaggerated. The same applies to the cross-sectional views shown below. Further, in FIG. 3, in order to make the structure easy to understand, a portion exposed from the stacked body in the first surface of the mounting electrode is shown by a dot pattern.
  • the multilayer substrate 101 includes a laminated body 10A formed by laminating a plurality of insulating base layers 11, 12, 13, 14, and 15, mounting electrodes P1 and P2, a plurality of conductors 21, 22, 23, 24, and 25, and A plurality of interlayer connection conductors V1, V2, etc. are provided.
  • the laminated body 10A is a substantially rectangular parallelepiped made of a thermoplastic resin whose longitudinal direction coincides with the X-axis direction, and has a first main surface VS1 and a second main surface VS2 facing each other.
  • the laminated body 10A is formed by laminating a plurality of insulating base material layers 11, 12, 13, 14, and 15 in this order.
  • the plurality of insulating base material layers 11, 12, 13, 14, and 15 are thermoplastic resin flat plates each having a rectangular planar outer shape.
  • the insulating base layers 11, 12, 13, 14, 15 are resin sheets whose main material is, for example, liquid crystal polymer (LCP) or polyether ether ketone (PEEK).
  • the first main surface VS1 of the stacked body 10A corresponds to the “mounting surface” in the present invention.
  • the insulating base material layer 11 corresponds to the “first insulating base material layer” in the present invention
  • the insulating base material layers 12, 13, 14, and 15 are the “second insulating base material layer” in the present invention. Is equivalent to.
  • the mounting electrodes P1 and P2 are rectangular conductors formed on any of the plurality of insulating base layers 11, 12, 13, 14, and 15, and have a first surface S1 and a second surface facing each other.
  • the mounting electrodes P1 and P2 are conductor patterns such as Cu foil, for example.
  • the surface roughness (Ra1) of the first surfaces S1A and S1B of the mounting electrodes P1 and P2 is larger than the surface roughness (Ra2) of the second surfaces S2A and S2B (Ra1> Ra2).
  • the surfaces of the first surfaces S1A and S1B of the mounting electrode P1 are roughened by, for example, a sand blaster method, a plasma method, a plating method, an etching method, or the like.
  • the surface roughness of the first surfaces S1A and S1B is 0.5 ⁇ m, for example, and the surface roughness of the second surfaces S2A and S2B is 0.2 ⁇ m, for example.
  • the standard (arithmetic average roughness) defined in [JIS B 0601-2001] is adopted.
  • the mounting electrodes P1 and P2 have the first surfaces S1A and S1B facing the first insulating base layer (insulating base layer 11), and the second surfaces S2A and S2B have the second insulating base layer (insulating). It is sandwiched between the first insulating base layer and the second insulating base layer so as to face the base layer 12).
  • the first insulating base material layer has rectangular base material layer non-forming portions NFP1 and NFP2 that expose a part of the first surfaces S1A and S1B.
  • the first insulating base material layer covers the entire outer periphery of the first surfaces S1A and S1B, and the center of the first surfaces S1A and S1B. The part is exposed from the laminated body 10A as shown in FIG.
  • the mounting electrodes P1 and P2 are viewed from the stacking direction (Z-axis direction) of the plurality of insulating base material layers 11, 12, 13, 14, and 15, and the first main surface ( It is arranged near the outer edge of the mounting surface.
  • the mounting electrode P1 is disposed in the vicinity of the first side of the mounting surface (the left side of the first main surface of the stacked body 10A in FIG. 3) as viewed from the Z-axis direction.
  • the mounting electrode P2 is disposed in the vicinity of the second side of the mounting surface (the right side of the first main surface of the stacked body 10A in FIG. 3) as viewed from the Z-axis direction.
  • the mounting electrodes P1 and P2 do not reach the outer edge of the first main surface (mounting surface) when viewed from the Z-axis direction.
  • the plurality of conductors 21, 22, 23, 24, and 25 and the plurality of interlayer connection conductors V1 and V2 are conductors formed in the multilayer body 10A.
  • the conductor 21 is a conductor pattern formed on the surface of the insulating base material layer 12.
  • the conductors 22 and 23 are conductor patterns formed on the surface of the insulating base material layer 13.
  • the conductors 24 and 25 are conductor patterns formed on the surface of the insulating base material layer 14.
  • the conductor 21 and the conductor 22 are connected to each other via an interlayer connection conductor V1 formed on the insulating base material layer 13.
  • the conductor 23 and the conductor 24 are connected to each other through an interlayer connection conductor V2 formed on the insulating base layer 14.
  • the conductors 21, 22, 23, 24, and 25 are conductor patterns such as Cu foil, for example.
  • FIG. 4 is a cross-sectional view illustrating a main part of the electronic apparatus 301 according to the first embodiment.
  • the electronic device 301 includes a multilayer substrate 101, a mounting substrate 201, and the like. As shown in FIG. 4, the multilayer substrate 101 is mounted on the mounting substrate 201.
  • the mounting board 201 is, for example, a printed wiring board.
  • Conductors 41 and 42 are formed on the main surface of the mounting substrate 201.
  • the first surfaces S1A and S1B of the mounting electrodes P1 and P2 are bonded to the conductors 41 and 42 of the mounting substrate 201 via the conductive bonding material 1, respectively.
  • the conductive bonding material 1 is, for example, solder.
  • the multilayer substrate 101 according to this embodiment has the following effects.
  • the first surfaces S1A and S1B of the mounting electrodes P1 and P2 are bonded to the mounting substrate or the like via the conductive bonding material 1, and the surface roughness (Ra1) of the first surfaces S1A and S1B Is larger than the surface roughness (Ra2) of the second surfaces S2A and S2B (Ra1> Ra2). Therefore, compared with the case where the second surfaces S2A and S2B of the mounting electrode P2 are bonded to the mounting substrate or the like via the conductive bonding material 1, the contact area of the mounting electrodes P1 and P2 with respect to the conductive bonding material 1 is increased.
  • the conductive bonding material 1 and the mounting electrodes P1 and P2 can be bonded with high bonding strength, and peeling of the multilayer substrate 101 from the mounting substrate or the like after mounting can be suppressed.
  • the conductor loss of the mounting electrodes P1 and P2 can be reduced as compared with the case where the surface roughness of the first surfaces S1A and S1B and the second surfaces S2A and S2B of the mounting electrodes P1 and P2 is large.
  • FIGS. 2A and 3 In the multilayer substrate 101, as shown in FIGS. 2A and 3, a part of the mounting electrodes P1 and P2 (outer edge portions of the mounting electrodes P1 and P2 in FIG. It is sandwiched between the material layer (insulating base material layer 11) and the second insulating base material layer (insulating base material layer 12). Therefore, compared with the case where mounting electrodes P1 and P2 are formed on the surface of stacked body 10A, mounting electrodes P1 and P2 can be made difficult to peel from stacked body 10A.
  • the first insulating base layer (insulating base layer 11) and the second insulating base layer (insulating base layer 12) are made of the same resin material. With this configuration, there is no physical property difference between the first insulating base material layer and the second insulating base material layer sandwiching part of the mounting electrodes P1 and P2, and the first insulating base material layer and the second insulating base material layer The bonding strength between the two increases. Therefore, peeling of the mounting electrodes P1 and P2 from the multilayer substrate is suppressed.
  • the mounting electrodes P1 and P2 do not reach the outer edge of the first main surface VS1 (mounting surface) when viewed from the Z-axis direction.
  • an external force is applied to the exposed portions of the mounting electrodes P1 and P2, thereby causing the mounting electrodes P1 and P2 to be exposed.
  • P2 becomes easy to peel from the multilayer substrate.
  • this configuration since the mounting electrodes P1 and P2 are not exposed from the outer edge (surface) of the mounting surface of the multilayer body 10A, peeling of the mounting electrodes P1 and P2 from the multilayer substrate due to an external force can be suppressed.
  • this configuration eliminates the need to separate the mounting electrodes P1 and P2 when separating individual pieces (multilayer substrates) from the collective substrate (described in detail later). Therefore, it is possible to prevent peeling of the mounting electrodes P1 and P2 from the stacked body 10A due to stress applied to the end portions of the mounting electrodes P1 and P2 during manufacturing.
  • the first insulating base layer (insulating base layer 11) covers the entire outer periphery of the first surfaces S1A and S1B. With this configuration, it is possible to make it difficult to peel the mounting electrode from the multilayer substrate (laminated body) as compared with the case where the first insulating base material layer covers a part of the outer periphery of the first surfaces S1A and S1B of the mounting electrodes P1 and P2.
  • the first surfaces S1A and S1B of the mounting electrodes P1 and P2 of the multilayer substrate 101 are bonded to the mounting substrate 201 via the conductive bonding material 1.
  • the conductive bonding material 1 and the mounting electrodes P1 and P2 can be bonded with high bonding strength, and an electronic device in which peeling of the multilayer substrate from the mounting substrate 201 or the like can be realized after mounting.
  • FIG. 5 is a cross-sectional view sequentially showing the manufacturing steps of the multilayer substrate 101.
  • FIG. 5 for the convenience of explanation, the manufacturing process using one chip (individual piece) will be described. However, the actual manufacturing process of the diaphragm is performed in a collective substrate state.
  • insulating base material layers 11, 12, 13, 14, and 15 are prepared.
  • the insulating base layers 11, 12, 13, 14, and 15 are thermoplastic resin sheets such as liquid crystal polymer (LCP) or polyether ether ketone (PEEK).
  • mounting electrodes P1 and P2 having first surfaces S1A and S1B and second surfaces S2A and S2B facing each other are formed on the insulating base layer 11 (first insulating base layer).
  • a metal foil for example, Cu foil
  • the metal foil is patterned by photolithography to form mounting electrodes P1 and P2.
  • the first surfaces S1A and S1B of the mounting electrodes P1 and P2 are roughened.
  • the first surfaces S1A and S1B are roughened by, for example, a sand blaster method, a plasma method, a plating method, an etching method, or the like.
  • This step of forming the mounting electrodes P1, P2 so that the first surfaces S1A, S1B are in contact with the surface of the first insulating base layer (insulating base layer 11) is an example of the “electrode forming step” in the present invention. is there.
  • conductors 21, 22, 23, 24, 25, etc. are respectively formed on the plurality of insulating base material layers 12, 13, 14 (second insulating base material layers).
  • a metal foil for example, Cu foil
  • the metal foil is laminated on one side main surface of the insulating base material layers 12, 13, and 14 in the aggregated substrate state, and the metal foil is patterned by photolithography, whereby the conductor 21 , 22, 23, 24, 25, and the like.
  • one surface of the conductors 21, 22, 23, 24, 25 in contact with the insulating base material layers 12, 13, 14 is the mounting electrode P1 described above.
  • P2 are roughened in the same manner as the first surfaces S1A and S1B.
  • interlayer connection conductors V1 and V2 are formed on the plurality of insulating base material layers 13 and 14, respectively.
  • Interlayer connection conductors V1 and V2 are made of a conductive paste containing one or more of Cu, Ag, Sn, Ni, Mo, etc. or an alloy thereof after providing through holes in insulating base layers 13 and 14 with a laser or the like. It is provided by being disposed and cured (solidified) by subsequent heating and pressing. Therefore, the interlayer connection conductors V1 and V2 are made of a material having a melting point (melting temperature) lower than the temperature at the time of subsequent heating and pressurization.
  • the insulating base layers 11, 12, 13, 14, and 15 are laminated in this order.
  • the first surfaces S1A and S1B of the mounting electrodes P1 and P2 are opposed to the first insulating base layer (insulating base layer 11), and the second surfaces S2A and S2B are the second insulating base layer (insulating).
  • a plurality of insulating base layers 11, 12, 13, 14, and 15 are laminated so that the second surfaces S2A and S2B face the base layer 12).
  • a plurality of insulating base materials are provided such that the first surfaces S1A and S1B face the first insulating base material layer and the second surfaces S2A and S2B face the second insulating base material layer.
  • This step of laminating the layers 11, 12, 13, 14, and 15 is an example of the “lamination step” in the present invention.
  • the stacked body 10AP is configured. At this time, the mounting electrodes P1 and P2 are embedded in the stacked body 10AP.
  • the laminated insulating base material layers 11, 12, 13, 14, and 15 are heated and pressurized to form the laminated body 10AP, and the mounting electrodes P1 and P2 are disposed inside the laminated body 10AP.
  • This step of embedding in the substrate is an example of the “laminated body forming step” in the present invention.
  • the laminated body 10AP is removed, and the first insulating base material layer (insulating base material layer 11) is exposed to a part of the first surfaces S1A and S1B.
  • the material layer non-formation parts NFP1 and NFP2 are formed.
  • the first main surface VS1 of the stacked body 10AP is formed by a laser beam LR that is irradiated toward the stacking direction (Z-axis direction).
  • the laser beam LR is blocked by the mounting electrodes P1 and P2 embedded in the stacked body 10AP. Therefore, by using this manufacturing method, it is possible to easily form the base material layer non-forming portions NFP1, NFP2 that expose a part of the first surfaces S1A, S1B.
  • the layered body 10AP is removed from the mounting surface side, and the base material from which the first surfaces S1A and S1B are partially exposed to the first insulating base material layer (insulating base material layer 11).
  • This step of forming the layer non-forming portions NFP1 and NFP2 is an example of the “removal step” in the present invention.
  • the mounting electrodes P1 and P2 do not reach the outer edge of the first main surface VS1 (mounting surface) when viewed from the Z-axis direction. Therefore, when separating the individual pieces (multilayer substrate) from the collective substrate, it is not necessary to separate the mounting electrodes P1 and P2 into individual pieces. Therefore, it is possible to prevent the mounting electrodes P1 and P2 from being peeled off from the stacked body 10A during manufacturing.
  • the plurality of insulating base material layers 11, 12, 13, 14, and 15 forming the laminate are made of a thermoplastic resin. According to the manufacturing method described above, since the laminated body 10A can be easily formed by collectively pressing the plurality of laminated insulating base material layers 11, 12, 13, 14, and 15, the man-hours for the manufacturing process of the insulating base material are reduced. The cost can be kept low.
  • Second Embodiment the example of the multilayer substrate from which the structure of a base material layer non-formation part differs is shown.
  • FIG. 6 is a perspective view of the multilayer substrate 102 according to the second embodiment.
  • 7A is a cross-sectional view taken along the line BB in FIG. 6, and
  • FIG. 7B is a bottom view of the multilayer substrate 102.
  • a portion of the first surface of the mounting electrode that is exposed from the stacked body is indicated by a dot pattern.
  • the multilayer substrate 102 includes a laminated body 10B formed by laminating a plurality of insulating base layers 11, 12, 13, 14, and 15, mounting electrodes P1 and P2, a plurality of conductors 21, 22, 23, 24, and 25, and A plurality of interlayer connection conductors V1, V2, etc. are provided.
  • the multilayer substrate 102 is different from the multilayer substrate 101 according to the first embodiment in the shapes of the base material layer non-forming portions NFP1 and NFP2. Other configurations are substantially the same as those of the multilayer substrate 101.
  • the base material layer non-forming portions NFP1, NFP2 reach the outer edge of the first main surface (mounting surface) as viewed from the Z-axis direction (the base material layer non-forming portion in FIG. 7B). (See the left side of the forming part NFP1 and the right side of the base material layer non-forming part NFP2).
  • the first insulating base material layer (see the insulating base material layer 11 in FIG. 7A) is the outer periphery of the first surface (S1A, S1B). Covers more than half. Specifically, the first insulating base layer covers about 3/4 of the outer periphery of the first surface (S1A) (the upper side, the right side, and the lower side of the mounting electrode P1 in FIG. 7B). In addition, the first insulating base layer covers about 3/4 of the outer periphery of the first surface (S1B) (the upper side, the left side, and the lower side of the mounting electrode P2 in FIG. 7B).
  • FIG. 8 is a cross-sectional view illustrating a main part of the electronic device 302 according to the second embodiment.
  • the electronic device 302 includes a multilayer substrate 102, a mounting substrate 201, and the like. As shown in FIG. 8, the multilayer substrate 102 is mounted on the mounting substrate 201.
  • the mounting substrate 201 is the same as that described in the first embodiment.
  • the first surfaces S1A and S1B of the mounting electrodes P1 and P2 are bonded to the conductors 41 and 42 of the mounting substrate 201 through the conductive bonding material 1, respectively. As shown in FIG. 8, the first surfaces S1A and S1B are bonded to the mounting substrate 201 by forming solder fillets.
  • the multilayer substrate 102 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
  • the mounting electrodes P1 and P2 do not reach the outer edge of the first main surface (mounting surface) when viewed from the Z-axis direction.
  • the base material layer non-forming portions NFP1, NFP2 reach the outer edge of the first main surface (mounting surface) when viewed from the Z-axis direction.
  • the example of the multilayer substrate in which the first insulating base material layer covers about 3/4 of the outer periphery of the first surface (S1A, S1B) is shown, but the present invention is limited to this configuration. is not. If the first insulating base layer (insulating base layer 11) covers more than half of the outer periphery of the first surface (S1A, S1B), it is difficult to peel the mounting electrodes P1, P2 from the multilayer substrate (laminated body). The effect
  • the laminated body 10A, 10B showed the example which is a substantially rectangular parallelepiped shape, it is not limited to this structure.
  • the planar shape of the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited, and may be, for example, a polygon, a circle, an ellipse, an L shape, a crank shape, a T shape, a Y shape, or the like.
  • the some insulating base material layers 11, 12, 13, 14, and 15 which form a laminated body consist of a thermoplastic resin is not limited to this structure.
  • the plurality of insulating base layers 11, 12, 13, 14, and 15 may be thermosetting resins.
  • the insulating base material layers 11, 12, 13, 14, and 15 are thermoplastic resins, the insulating base material can be easily formed as described above, thereby reducing the number of steps in the manufacturing process of the multilayer substrate. Cost can be kept low.
  • the multilayer substrate provided with the laminated body formed by laminating the five insulating base material layers 11, 12, 13, 14, and 15 has been described.
  • the present invention is not limited to this configuration. It is not something.
  • the number of insulating base material layers forming the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited.
  • one first insulating base material layer (insulating base material layer 11) and four second insulating base material layers (insulating base material layers 12, 13, 14, 15) are laminated.
  • the number of the first insulating base layers and the number of the second insulating base layers are not limited thereto.
  • the number of the first insulating base material layers and the number of the second insulating base material layers can be appropriately changed within a range where the functions and effects of the present invention are exhibited.
  • the number of first insulating base layers may be two or more, for example.
  • the number of the second insulating base layers may be one or two or more.
  • the present invention is not limited to this configuration.
  • the shape of the mounting electrode can be changed as appropriate within the scope of the operation and effect of the present invention.
  • the mounting electrode may be polygonal, circular, elliptical, L-shaped, crank-shaped, T-shaped, Y-shaped, or the like.
  • the number of mounting electrodes can be appropriately changed according to a circuit formed on the multilayer substrate.
  • the 1st insulating base material layer showed the example which has rectangular base material layer non-formation part NFP1, NFP2, it is not limited to this structure.
  • the shape of the base material layer non-forming part can be appropriately changed within the range where the functions and effects of the present invention are exhibited, and may be, for example, a polygon, a circle, an ellipse or the like.
  • the number of base material layer non-formation parts is not limited to two, and may be one or three or more.
  • stacking several insulating base material layers 11, 12, 13, 14, and 15 protection of a solder resist film, a coverlay film, etc. was shown.
  • the layer may be formed on the first main surface VS1 or the second main surface VS2 of the stacked body.
  • the circuit formed on the multilayer substrate can be freely configured as long as the operations and effects of the present invention are achieved.
  • a transmission line such as a stripline structure, a microstripline structure, or a coplanar line may be formed on the multilayer substrate, and for example, a coil or a capacitor formed of a conductor pattern may be formed.
  • chip components such as chip inductors and chip capacitors may be mounted on the multilayer substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

多層基板(101)は、複数の絶縁基材層(11,12,13,14,15)を積層して形成される積層体(10A)と、互いに対向する第1面(S1A,S1B)および第2面(S2A,S2B)を有する実装電極(P1,P2)とを備える。実装電極(P1,P2)は、第1面(S1A)が第1絶縁基材層(絶縁基材層(11))と対向するように、且つ、第2面(S2A,S2B)が第2絶縁基材層(絶縁基材層(12))と対向するように、第1絶縁基材層と第2絶縁基材層との間に挟まれる。第1面(S1A,S1B)の表面粗さ(Ra1)は、第2面(S2A,S2B)の表面粗さ(Ra2)よりも大きい(Ra1>Ra2)。第1絶縁基材層(絶縁基材層(11))は、第1面(S1A,S1B)の一部を露出させる基材層非形成部(NFP1,NFP2)を有する。

Description

多層基板、電子機器および多層基板の製造方法
 本発明は、多層基板に関し、特に複数の絶縁基材層を積層して形成される積層体と、絶縁基材層に形成される導体パターンと、を備える多層基板と、その多層基板を備える電子機器、さらには上記多層基板の製造方法に関する。
 従来、銅箔等の導体パターンを表面に貼り付けられた複数の絶縁基材層を積層して、積層体を形成する方法が知られている。
 例えば、特許文献1には、導体パターンが表面に貼り付けられた複数の絶縁基材層を積層する構造において、絶縁基材層に貼り付けられる導体パターンの一方主面側の表面粗さを、他方主面側の表面粗さよりも大きくした多層基板が開示されている。この構成により、絶縁基材層に対する導体パターンの接合強度を高めることができる。
国際公開第2014/115433号
 しかし、特許文献1に示される構成では、多層基板を実装基板等に実装するための実装電極の実装面が、一方主面よりも相対的に表面粗さの小さな導体パターンの他方主面となる。そのため、導電性接合材に対する実装電極の接触面積が小さく、高い接合強度が得られず、実装後に実装基板等から多層基板が剥離する虞がある。
 本発明の目的は、複数の絶縁基材層を積層して形成される積層体と、絶縁基材層に形成される実装電極とを備える構成において、実装基板等に実装した際に、実装基板等に対する十分な接合強度を確保できる多層基板を提供することにある。
(1)本発明の多層基板は、
 実装面を有し、第1絶縁基材層および第2絶縁基材層を含む複数の絶縁基材層を積層して形成される積層体と、
 第1面および前記第1面に対向する第2面を有し、前記複数の絶縁基材層のいずれかに形成される実装電極と、
 を備え、
 前記実装電極は、前記第1面が前記第1絶縁基材層と対向するように、且つ、前記第2面が前記第2絶縁基材層と対向するように、前記第1絶縁基材層と前記第2絶縁基材層との間に挟まれ、
 前記第1面の表面粗さは、前記第2面の表面粗さよりも大きく、
 前記第1絶縁基材層は、前記第1面の一部を露出させる基材層非形成部を有することを特徴とする。
 この構成では、導電性接合材を介して実装基板等に接合される実装電極の第1面の表面粗さが、第2面の表面粗さよりも大きいため、実装電極の第2面が導電性接合材を介して実装基板等に接合される場合に比べて、導電性接合材に対する実装電極の接触面積が大きくなる。したがって、この構成により、導電性接合材と実装電極とを高い接合強度で接合でき、実装後において実装基板等からの多層基板の剥離を抑制できる。また、この構成により、実装電極の第1面および第2面の表面粗さをいずれも大きい場合に比べて、実装電極の導体損を低減できる。
 また、この構成では、実装電極の一部が、第1絶縁基材層と第2絶縁基材層とで挟まれる。そのため、実装電極が積層体の表面に形成されている場合に比べ、積層体から実装電極を剥離し難くできる。
(2)上記(1)において、前記第1絶縁基材層および前記第2絶縁基材層は、同じ樹脂材料からなることが好ましい。この構成により、実装電極の一部を挟む第1絶縁基材層と第2絶縁基材層との間の物性差が無くなり、第1絶縁基材層と第2絶縁基材層との間の接合強度が高まる。そのため、多層基板からの実装電極の剥離が抑制される。
(3)上記(1)または(2)において、前記実装電極は、前記複数の絶縁基材層の積層方向から視て、前記実装面の外縁に達していないことが好ましい。実装電極が積層体の表面にまで達している場合(積層体の表面に露出している場合)、実装電極が露出した部分に外力が加わることで、実装電極が多層基板から剥離しやすくなる。一方、この構成では、実装電極が積層体の実装面の外縁(表面)から露出していないため、外力が加わることによる多層基板からの実装電極の剥離を抑制できる。また、この構成により、集合基板から個片を分離する際に、実装電極の端部に応力が掛ることに起因した、積層体からの実装電極の剥離を防止できる。
(4)上記(1)から(3)のいずれかにおいて、前記第1絶縁基材層は、前記第1面の外周の半分以上を覆うことが好ましい。この構成により、絶縁基材層が実装電極の第1面の外周の半分未満を覆う場合に比べて、多層基板から実装電極を剥離し難くできる。
(5)上記(4)において、前記実装電極は、前記複数の絶縁基材層の積層方向から視て、前記実装面の外縁近傍に配置され、前記基材層非形成部は、前記複数の絶縁基材層の積層方向から視て、前記実装面の前記外縁に達することが好ましい。この構成により、実装面の外縁にまで達する基材層非形成部を利用して、多層基板の実装面積を大きくすることなく、はんだフィレットを形成できる。そのため、実装基板等に対する接合信頼性を高め、高密度配置が可能な多層基板を実現できる。
(6)本発明の電子機器は、
 上記(1)から(5)のいずれかに記載の多層基板と、
 実装基板と、
 を備え、
 前記実装電極の前記第1面は、導電性接合材を介して前記実装基板に接合されることを特徴とする。
 この構成により、導電性接合材と実装電極とを高い接合強度で接合でき、実装後において実装基板等から多層基板の剥離を抑制した電子機器を実現できる。
(7)本発明の電子機器は、
 上記(4)または(5)に記載の多層基板と、
 実装基板と、
 を備え、
 前記実装電極の前記第1面は、はんだフィレットを形成して前記実装基板に接合されていることを特徴とする。
 この構成により、多層基板の実装面積を大きくすることなく、実装基板等に対する多層基板の接合信頼性を高めた電子機器を実現できる。
(8)本発明の多層基板の製造方法は、
 実装面を有し、第1絶縁基材層および第2絶縁基材層を含む複数の絶縁基材層を積層して形成される積層体と、
 第1面、および前記第1面に対向し、前記第1面よりも表面粗さが小さな第2面を有し、前記複数の絶縁基材層のいずれかに形成される実装電極と、
 を備える多層基板の製造方法であって、
  前記第1絶縁基材層の表面に、前記第1面が接するように前記実装電極を形成する、電極形成工程と、
  前記電極形成工程の後に、前記第1絶縁基材層に前記第1面が対向し、且つ、前記第2絶縁基材層に前記第2面が対向するように前記複数の絶縁基材層を積層する、積層工程と、
 前記積層工程の後に、積層した前記複数の絶縁基材層を加熱加圧して前記積層体を形成するとともに、前記実装電極を前記積層体の内部に埋設する、積層体形成工程と、
 前記積層体形成工程の後に、前記積層体を前記実装面側から除去し、前記第1絶縁基材層に、前記第1面の一部を露出させる基材層非形成部を形成する、除去工程と、
 を備えることを特徴とする。
 この製造方法により、複数の絶縁基材層を積層して形成される積層体と、絶縁基材層のいずれかに形成される実装電極とを備える構成において、実装基板等に実装した際に、実装基板等に対する十分な接合強度を確保できる多層基板を容易に製造できる。
 本発明によれば、複数の絶縁基材層を積層して形成される積層体と、絶縁基材層に形成される実装電極とを備える構成において、実装基板等に実装した際に、実装基板等に対する十分な接合強度を確保できる多層基板を実現できる。
図1は第1の実施形態に係る多層基板101の斜視図である。 図2(A)は図1におけるA-A断面図であり、図2(B)は多層基板101の分解断面図である。 図3は、多層基板101の底面図である。 図4は、第1の実施形態に係る電子機器301の主要部を示す断面図である。 図5は多層基板101の製造工程を順に示す断面図である。 図6は、第2の実施形態に係る多層基板102の斜視図である。 図7(A)は図6におけるB-B断面図であり、図7(B)は、多層基板102の底面図である。 図8は、第2の実施形態に係る電子機器302の主要部を示す断面図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 《第1の実施形態》
 図1は第1の実施形態に係る多層基板101の斜視図である。図2(A)は図1におけるA-A断面図であり、図2(B)は多層基板101の分解断面図である。図3は、多層基板101の底面図である。図2(A)および図2(B)において、各絶縁基材層の厚み、および実装電極の表面粗さは誇張して図示している。このことは、以降に示す各断面図でも同様である。また、図3では、構造を分かりやすくするため、実装電極の第1面のうち、積層体から露出する部分をドットパターンで示している。
 多層基板101は、複数の絶縁基材層11,12,13,14,15を積層して形成される積層体10A、実装電極P1,P2、複数の導体21,22,23,24,25および複数の層間接続導体V1,V2等を備える。
 積層体10Aは、長手方向がX軸方向に一致した熱可塑性樹脂製の略直方体であり、互いに対向する第1主面VS1および第2主面VS2を有する。積層体10Aは、複数の絶縁基材層11,12,13,14,15の順に積層して形成される。複数の絶縁基材層11,12,13,14,15は、それぞれ平面外形が矩形である熱可塑性樹脂の平板である。絶縁基材層11,12,13,14,15は、例えば液晶ポリマー(LCP)またはポリエーテルエーテルケトン(PEEK)を主材料とする樹脂シートである。
 なお、積層体10Aの第1主面VS1は、本発明における「実装面」に相当する。また、本実施形態では、絶縁基材層11が本発明における「第1絶縁基材層」に相当し、絶縁基材層12,13,14,15が本発明における「第2絶縁基材層」に相当する。
 実装電極P1,P2は、複数の絶縁基材層11,12,13,14,15のいずれかに形成される矩形の導体であり、互いに対向する第1面S1および第2面を有する。実装電極P1,P2は、例えばCu箔等の導体パターンである。
 実装電極P1,P2の第1面S1A,S1Bの表面粗さ(Ra1)は、第2面S2A,S2Bの表面粗さ(Ra2)よりも大きい(Ra1>Ra2)。実装電極P1の第1面S1A,S1Bは、例えばサンドブラスタ法、プラズマ法、めっき法、エッチング法等によって、表面が粗面化されている。第1面S1A,S1Bの表面粗さは例えば0.5μmであり、第2面S2A,S2Bの表面粗さは例えば0.2μmである。表面粗さの算定は、[JIS B 0601-2001]で定められた規格(算術平均粗さ)を採用する。
 実装電極P1,P2は、第1面S1A,S1Bが第1絶縁基材層(絶縁基材層11)と対向するように、且つ、第2面S2A,S2Bが第2絶縁基材層(絶縁基材層12)と対向するように、第1絶縁基材層と第2絶縁基材層との間に挟まれている。図3に示すように、第1絶縁基材層は、第1面S1A,S1Bの一部を露出させる矩形の基材層非形成部NFP1,NFP2を有する。
 本実施形態では、第1絶縁基材層(図2(A)における絶縁基材層11を参照)が、第1面S1A,S1Bの外周全部を覆っており、第1面S1A,S1Bの中央部は、図3に示すように、積層体10Aから露出している。
 また、本実施形態では、実装電極P1,P2が、複数の絶縁基材層11,12,13,14,15の積層方向(Z軸方向)から視て、積層体10Aの第1主面(実装面)の外縁近傍に配置されている。具体的には、実装電極P1が、Z軸方向から視て、実装面の第1辺(図3における積層体10Aの第1主面の左辺)近傍に配置されている。また、実装電極P2は、Z軸方向から視て、実装面の第2辺(図3における積層体10Aの第1主面の右辺)近傍に配置されている。さらに、本実施形態では、実装電極P1,P2は、Z軸方向から視て、第1主面(実装面)の外縁に達していない。
 複数の導体21,22,23,24,25および複数の層間接続導体V1,V2は、積層体10Aに形成される導体である。具体的には、導体21は、絶縁基材層12の表面に形成される導体パターンである。導体22,23は、絶縁基材層13の表面に形成される導体パターンである。導体24,25は、絶縁基材層14の表面に形成される導体パターンである。導体21および導体22は、絶縁基材層13に形成される層間接続導体V1を介して、互いに接続される。導体23および導体24は、絶縁基材層14に形成される層間接続導体V2を介して、互いに接続される。導体21,22,23,24,25は、例えばCu箔等の導体パターンである。
 次に、導電性接合材を用いて、多層基板101を実装基板に実装した状態について、図を参照して説明する。図4は、第1の実施形態に係る電子機器301の主要部を示す断面図である。
 電子機器301は、多層基板101および実装基板201等を備える。図4に示すように、多層基板101は、実装基板201に実装される。実装基板201は例えばプリント配線基板である。
 実装基板201の主面には導体41,42が形成されている。実装電極P1,P2の第1面S1A,S1Bは、導電性接合材1を介して、実装基板201の導体41,42にそれぞれ接合される。導電性接合材1は例えばはんだ等である。
 本実施形態に係る多層基板101によれば、次のような効果を奏する。
(a)多層基板101は、実装電極P1,P2の第1面S1A,S1Bが、導電性接合材1を介して実装基板等に接合され、第1面S1A,S1Bの表面粗さ(Ra1)は第2面S2A,S2Bの表面粗さ(Ra2)よりも大きい(Ra1>Ra2)。そのため、実装電極P2の第2面S2A,S2Bが導電性接合材1を介して実装基板等に接合される場合に比べ、導電性接合材1に対する実装電極P1,P2の接触面積は大きくなる。したがって、この構成により、導電性接合材1と実装電極P1,P2とを高い接合強度で接合でき、実装後において実装基板等からの多層基板101の剥離を抑制できる。また、この構成により、実装電極P1,P2の第1面S1A,S1Bおよび第2面S2A,S2Bの表面粗さをいずれも大きい場合に比べて、実装電極P1,P2の導体損を低減できる。
(b)また、多層基板101では、図2(A)および図3に示すように、実装電極P1,P2の一部(図3における実装電極P1,P2の外縁部分)が、第1絶縁基材層(絶縁基材層11)と第2絶縁基材層(絶縁基材層12)とで挟まれる。そのため、実装電極P1,P2が積層体10Aの表面に形成されている場合に比べ、積層体10Aから実装電極P1,P2を剥離し難くできる。
(c)多層基板101では、第1絶縁基材層(絶縁基材層11)および第2絶縁基材層(絶縁基材層12)が、同じ樹脂材料からなる。この構成により、実装電極P1,P2の一部を挟む第1絶縁基材層と第2絶縁基材層との間の物性差が無くなり、第1絶縁基材層と第2絶縁基材層との間の接合強度が高まる。そのため、多層基板からの実装電極P1,P2の剥離が抑制される。
(d)また、多層基板101では、実装電極P1,P2が、Z軸方向から視て、第1主面VS1(実装面)の外縁に達していない。実装電極P1,P2が積層体10Aの表面にまで達している場合(積層体の表面に露出している場合)、実装電極P1,P2が露出した部分に外力が加わることで、実装電極P1,P2が多層基板から剥離しやすくなる。一方、この構成では、実装電極P1,P2が積層体10Aの実装面の外縁(表面)から露出していないため、外力が加わることによる多層基板からの実装電極P1,P2の剥離を抑制できる。また、この構成により、集合基板から個片(多層基板)を分離する際(後に詳述する)に、実装電極P1,P2ごとを分離する必要がない。そのため、製造時において、実装電極P1,P2の端部に応力が掛ることに起因した、積層体10Aからの実装電極P1,P2の剥離を防止できる。
(e)また、多層基板101では、第1絶縁基材層(絶縁基材層11)が、第1面S1A,S1Bの外周全部を覆っている。この構成により、第1絶縁基材層が実装電極P1,P2の第1面S1A,S1Bの外周の一部を覆う場合に比べて、多層基板(積層体)から実装電極を剥離し難くできる。
(f)また、本実施形態に係る電子機器301では、上記多層基板101の実装電極P1,P2の第1面S1A,S1Bが、導電性接合材1を介して実装基板201に接合される。この構成により、導電性接合材1と実装電極P1,P2とを高い接合強度で接合でき、実装後において実装基板201等から多層基板の剥離を抑制した電子機器を実現できる。
 なお、本実施形態に係る多層基板101は、例えば次の工程で製造される。図5は多層基板101の製造工程を順に示す断面図である。なお、図5では、説明の都合上ワンチップ(個片)での製造工程で説明するが、実際の振動板の製造工程は集合基板状態で行われる。
 図5中の(1)に示すように、まず複数の絶縁基材層11,12,13,14,15を準備する。絶縁基材層11,12,13,14,15は、例えば液晶ポリマー(LCP)またはポリエーテルエーテルケトン(PEEK)等の熱可塑性樹脂シートである。
 その後、絶縁基材層11(第1絶縁基材層)に、互いに対向する第1面S1A,S1Bおよび第2面S2A,S2Bを有した実装電極P1,P2を形成する。具体的には、集合基板状態の絶縁基材層11の片側主面に、金属箔(例えばCu箔)を、その金属箔の第1面S1A,S1B側が絶縁基材層11に接するように、ラミネートする。その後、その金属箔をフォトリソグラフィでパターンニングすることで、実装電極P1,P2を形成する。実装電極P1,P2の第1面S1A,S1Bは粗面化されている。第1面S1A,S1Bの粗面化は、例えばサンドブラスタ法、プラズマ法、めっき法、エッチング法等によって行われる。
 第1絶縁基材層(絶縁基材層11)の表面に、第1面S1A,S1Bが接するように実装電極P1,P2を形成するこの工程が、本発明における「電極形成工程」の例である。
 また、複数の絶縁基材層12,13,14(第2絶縁基材層)に、導体21,22,23,24,25等をそれぞれ形成する。具体的には、集合基板状態の絶縁基材層12,13,14の片側主面に、金属箔(例えばCu箔)をラミネートし、その金属箔をフォトリソグラフィでパターンニングすることで、導体21,22,23,24,25等を形成する。なお、絶縁基材層12,13,14に接する導体21,22,23,24,25の一方面(図5における導体21,22,23,24,25の下面)は、上述した実装電極P1,P2の第1面S1A,S1Bと同様に、粗面化されている。
 なお、複数の絶縁基材層13,14には、層間接続導体V1,V2が形成される。層間接続導体V1,V2は、絶縁基材層13,14にレーザー等で貫通孔を設けた後、Cu,Ag,Sn,Ni,Mo等のうち1以上もしくはそれらの合金を含む導電性ペーストを配設し、後の加熱加圧で硬化(固化)させることによって設けられる。そのため、層間接続導体V1,V2は、後の加熱加圧時の温度よりも融点(溶融温度)が低い材料とする。
 次に、図5中の(2)に示すように、絶縁基材層11,12,13,14,15の順に積層する。このとき、第1絶縁基材層(絶縁基材層11)に実装電極P1,P2の第1面S1A,S1Bが対向し、且つ、第2面S2A,S2Bが第2絶縁基材層(絶縁基材層12)に第2面S2A,S2Bが対向するように複数の絶縁基材層11,12,13,14,15を積層する。
 上記「電極形成工程」の後に、第1絶縁基材層に第1面S1A,S1Bが対向し、且つ第2絶縁基材層に第2面S2A,S2Bが対向するように複数の絶縁基材層11,12,13,14,15を積層するこの工程が、本発明における「積層工程」の例である。
 その後、図5中の(2)(3)に示すように、積層した複数の絶縁基材層11,12,13,14,15を加熱加圧(一括プレス)することにより、集合基板状態の積層体10APを構成する。このとき、実装電極P1,P2は、積層体10APの内部に埋設される。
 上記「積層工程」の後に、積層した複数の絶縁基材層11,12,13,14,15を加熱加圧して、積層体10APを形成するとともに、実装電極P1,P2を積層体10APの内部に埋設するこの工程が、本発明における「積層体形成工程」の例である。
 次に、図5中の(3)に示すように、積層体10APを除去し、第1絶縁基材層(絶縁基材層11)に、第1面S1A,S1Bの一部を露出させる基材層非形成部NFP1,NFP2を形成する。具体的には、積層体10APの第1主面VS1に対し、積層方向(Z軸方向)に向かって照射されるレーザー光LRによって形成される。レーザー光LRは、積層体10APの内部に埋設される実装電極P1,P2で遮られる。したがって、この製造方法を用いることで、第1面S1A,S1Bの一部を露出させる基材層非形成部NFP1,NFP2を容易に形成できる。
 上記「積層体形成工程」の後に、積層体10APを実装面側から除去し、第1絶縁基材層(絶縁基材層11)に、第1面S1A,S1Bの一部を露出させる基材層非形成部NFP1,NFP2を形成するこの工程が、本発明における「除去工程」の例である。
 最後に、集合基板から個々の個片に分離して、図5中の(4)に示すような多層基板101を得る。
 上記の製造方法により、複数の絶縁基材層11,12,13,14,15を積層して形成される積層体10Aと、絶縁基材層のいずれかに形成される実装電極P1,P2とを備える構成において、実装基板等に実装した際に、実装基板等に対する十分な接合強度を確保できる多層基板を容易に製造できる。
 また、多層基板101は、実装電極P1,P2が、Z軸方向から視て、第1主面VS1(実装面)の外縁に達していない。そのため、集合基板から個片(多層基板)を分離する際に、実装電極P1,P2ごと個片に分離する必要がない。したがって、製造時における積層体10Aからの実装電極P1,P2の剥離を防止できる。
 さらに、本実施形態では、積層体を形成する複数の絶縁基材層11,12,13,14,15が熱可塑性樹脂からなる。上記製造方法によれば、積層した複数の絶縁基材層11,12,13,14,15を一括プレスすることにより、積層体10Aを容易に形成できるため、絶縁基材の製造工程の工数が削減され、コストを低く抑えることができる。
 《第2の実施形態》
 第2の実施形態では、基材層非形成部の構成が異なる多層基板の例を示す。
 図6は、第2の実施形態に係る多層基板102の斜視図である。図7(A)は図6におけるB-B断面図であり、図7(B)は、多層基板102の底面図である。図7(B)では、構造を分かりやすくするため、実装電極の第1面のうち、積層体から露出する部分をドットパターンで示している。
 多層基板102は、複数の絶縁基材層11,12,13,14,15を積層して形成される積層体10B、実装電極P1,P2、複数の導体21,22,23,24,25および複数の層間接続導体V1,V2等を備える。
 多層基板102は、基材層非形成部NFP1,NFP2の形状が、第1の実施形態に係る多層基板101と異なる。その他の構成については、多層基板101と実質的に同じである。
 以下、第1の実施形態に係る多層基板101と異なる部分について説明する。
 本実施形態では、基材層非形成部NFP1,NFP2が、Z軸方向から視て、が、第1主面(実装面)の外縁に達している(図7(B)における基材層非形成部NFP1の左辺、および基材層非形成部NFP2の右辺を参照)。
 また、本実施形態では、図7(B)に示すように、第1絶縁基材層(図7(A)における絶縁基材層11を参照)が、第1面(S1A,S1B)の外周の半分以上を覆っている。具体的には、第1絶縁基材層は、第1面(S1A)の外周の約3/4(図7(B)における実装電極P1の上辺、右辺および下辺)を覆っている。また、第1絶縁基材層は、第1面(S1B)の外周の約3/4(図7(B)における実装電極P2の上辺、左辺および下辺)を覆っている。
 次に、導電性接合材を用いて、多層基板102を実装基板に実装した状態について、図を参照して説明する。図8は、第2の実施形態に係る電子機器302の主要部を示す断面図である。
 電子機器302は、多層基板102および実装基板201等を備える。図8に示すように、多層基板102は、実装基板201に実装される。実装基板201は、第1の実施形態で説明したものと同じである。
 実装電極P1,P2の第1面S1A,S1Bは、導電性接合材1を介して、実装基板201の導体41,42にそれぞれ接合される。図8に示すように、第1面S1A,S1Bは、はんだフィレットを形成して実装基板201に接合される。
 本実施形態に係る多層基板102によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
(a)多層基板102では、実装電極P1,P2が、Z軸方向から視て、第1主面(実装面)の外縁に達していない。一方、基材層非形成部NFP1,NFP2は、Z軸方向から視て、第1主面(実装面)の外縁に達している。この構成により、図8に示すように、実装面の外縁にまで達する基材層非形成部NFP1,NFP2を利用して、多層基板の実装面積を大きくすることなく、はんだフィレットを形成できる。そのため、実装基板201等に対する接合信頼性を高め、高密度配置が可能な多層基板を実現できる。
 すなわち、この構成により、多層基板の実装面積を大きくすることなく、実装基板201等に対する多層基板の接合信頼性を高めた電子機器を実現できる。
 なお、本実施形態では、第1絶縁基材層が、第1面(S1A,S1B)の外周の約3/4を覆っている多層基板の例を示したが、この構成に限定されるものではない。第1絶縁基材層(絶縁基材層11)が、第1面(S1A,S1B)の外周の半分以上を覆っていれば、多層基板(積層体)から実装電極P1,P2を剥離し難くできるという作用・効果を奏する(上記(e)を参照)。但し、多層基板から実装電極P1,P2を剥離し難くできるという点では、第1絶縁基材層は、第1面(S1A,S1B)の外周全部を覆うことが好ましい。
 《その他の実施形態》
 以上に示した各実施形態では、積層体10A,10Bが略直方体状である例を示したが、この構成に限定されるものではない。積層体の平面形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば多角形、円形、楕円形、L字形、クランク形、T字形、Y字形等であってもよい。
 以上に示した各実施形態では、積層体を形成する複数の絶縁基材層11,12,13,14,15が熱可塑性樹脂からなる例について示したが、この構成に限定されるものではない。複数の絶縁基材層11,12,13,14,15は、熱硬化性樹脂であってもよい。複数の絶縁基材層11,12,13,14,15が熱可塑性樹脂である場合には、上述したように、絶縁基材を容易に形成できるため、多層基板の製造工程の工数が削減され、コストを低く抑えることができる。
 また、以上に示した各実施形態では、5つの絶縁基材層11,12,13,14,15を積層して形成される積層体を備えた多層基板について示したが、この構成に限定されるものではない。積層体を形成する絶縁基材層の層数は、本発明の作用・効果を奏する範囲において適宜変更可能である。
 さらに、以上に示した各実施形態では、1つの第1絶縁基材層(絶縁基材層11)および4つの第2絶縁基材層(絶縁基材層12,13,14,15)を積層して形成される積層体の例を示したが、第1絶縁基材層の数および第2絶縁基材層の数はこれに限定されるものではない。第1絶縁基材層の数および第2絶縁基材層の数は、本発明の作用・効果を奏する範囲において適宜変更可能である。第1絶縁基材層の数は、例えば2つ以上であってもよい。また、第2絶縁基材層の数は、1つであってもよく、2つ以上であってもよい。
 以上に示した各実施形態では、矩形の実装電極P1,P2を備える多層基板の例を示したが、この構成に限定されるものではない。実装電極の形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば多角形、円形、楕円形、L字形、クランク形、T字形、Y字形等であってもよい。また、実装電極の個数は多層基板に形成される回路に応じて適宜変更可能である。
 さらに、以上に示した各実施形態では、第1絶縁基材層が、矩形の基材層非形成部NFP1,NFP2を有する例を示したが、この構成に限定されるものではない。基材層非形成部の形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば多角形、円形、楕円形等であってもよい。また、基材層非形成部の数は2つに限定されず、1つであってもよく、3つ以上であってもよい。
 以上に示した各実施形態では、複数の絶縁基材層11,12,13,14,15を積層して形成される積層体の例を示したが、ソルダーレジスト膜やカバーレイフィルム等の保護層が、積層体の第1主面VS1または第2主面VS2に形成されていてもよい。
 なお、多層基板に形成される回路は、本発明の作用・効果を奏する範囲において、自由に構成可能である。多層基板には、例えばストリップライン構造、マイクロストリップライン構造、またはコプレーナ線路等の伝送線路が形成されていてもよく、例えば導体パターンで形成されるコイルまたはキャパシタが形成されていてもよい。さらに、多層基板には、チップインダクタやチップキャパシタ等のチップ部品が実装されていてもよい。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
LR…レーザー光
NFP1,NFP2…基材層非形成部
P1,P2…実装電極
S1A,S1B…実装電極の第1面
S2A,S2B…実装電極の第2面
V1,V2…層間接続導体
VS1…積層体の第1主面(実装面)
VS2…積層体の第2主面
1…導電性接合材
10A,10AP,10B…積層体
11,12,13,14,15…絶縁基材層
21,22,23,24,25,41,42…導体
101,102…多層基板
201…実装基板
301,302…電子機器

Claims (8)

  1.  実装面を有し、第1絶縁基材層および第2絶縁基材層を含む複数の絶縁基材層を積層して形成される積層体と、
     第1面および前記第1面に対向する第2面を有し、前記複数の絶縁基材層のいずれかに形成される実装電極と、
     を備え、
     前記実装電極は、前記第1面が前記第1絶縁基材層と対向するように、且つ、前記第2面が前記第2絶縁基材層と対向するように、前記第1絶縁基材層と前記第2絶縁基材層との間に挟まれ、
     前記第1面の表面粗さは、前記第2面の表面粗さよりも大きく、
     前記第1絶縁基材層は、前記第1面の一部を露出させる基材層非形成部を有する、多層基板。
  2.  前記第1絶縁基材層および前記第2絶縁基材層は、同じ樹脂材料からなる、請求項1に記載の多層基板。
  3.  前記実装電極は、前記複数の絶縁基材層の積層方向から視て、前記実装面の外縁に達していない、請求項1または2に記載の多層基板。
  4.  前記第1絶縁基材層は、前記第1面の外周の半分以上を覆う、請求項1から3のいずれかに記載の多層基板。
  5.  前記実装電極は、前記複数の絶縁基材層の積層方向から視て、前記実装面の外縁近傍に配置され、
     前記基材層非形成部は、前記複数の絶縁基材層の積層方向から視て、前記実装面の前記外縁に達する、請求項4に記載の多層基板。
  6.  請求項1から5のいずれかに記載の多層基板と、
     実装基板と、
     を備え、
     前記実装電極の前記第1面は、導電性接合材を介して前記実装基板に接合される、電子機器。
  7.  請求項4または5に記載の多層基板と、
     実装基板と、
     を備え、
     前記実装電極の前記第1面は、はんだフィレットを形成して前記実装基板に接合されている、電子機器。
  8.  実装面を有し、第1絶縁基材層および第2絶縁基材層を含む複数の絶縁基材層を積層して形成される積層体と、
     第1面、および前記第1面に対向し、前記第1面よりも表面粗さが小さな第2面を有し、前記複数の絶縁基材層のいずれかに形成される実装電極と、
     を備える多層基板の製造方法であって、
      前記第1絶縁基材層の表面に、前記第1面が接するように前記実装電極を形成する、電極形成工程と、
      前記電極形成工程の後に、前記第1絶縁基材層に前記第1面が対向し、且つ、前記第2絶縁基材層に前記第2面が対向するように前記複数の絶縁基材層を積層する、積層工程と、
     前記積層工程の後に、積層した前記複数の絶縁基材層を加熱加圧して前記積層体を形成するとともに、前記実装電極を前記積層体の内部に埋設する、積層体形成工程と、
     前記積層体形成工程の後に、前記積層体を前記実装面側から除去し、前記第1絶縁基材層に、前記第1面の一部を露出させる基材層非形成部を形成する、除去工程と、
     を備える、多層基板の製造方法。
PCT/JP2018/006679 2017-03-06 2018-02-23 多層基板、電子機器および多層基板の製造方法 WO2018163859A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000453.6U CN210899888U (zh) 2017-03-06 2018-02-23 多层基板以及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-041925 2017-03-06
JP2017041925 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018163859A1 true WO2018163859A1 (ja) 2018-09-13

Family

ID=63447817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006679 WO2018163859A1 (ja) 2017-03-06 2018-02-23 多層基板、電子機器および多層基板の製造方法

Country Status (2)

Country Link
CN (1) CN210899888U (ja)
WO (1) WO2018163859A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071473A1 (ja) * 2018-10-04 2020-04-09 株式会社村田製作所 積層体及びその製造方法
WO2021261416A1 (ja) * 2020-06-24 2021-12-30 株式会社村田製作所 樹脂多層基板及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816157A (ja) * 1971-07-08 1973-03-01
JP2004207636A (ja) * 2002-12-26 2004-07-22 Fujikura Ltd 多層配線板およびその製造方法
JP2005072085A (ja) * 2003-08-28 2005-03-17 Ngk Spark Plug Co Ltd 配線基板の製造方法、及び配線基板
JP2011258590A (ja) * 2010-06-04 2011-12-22 Shinko Electric Ind Co Ltd 配線基板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816157A (ja) * 1971-07-08 1973-03-01
JP2004207636A (ja) * 2002-12-26 2004-07-22 Fujikura Ltd 多層配線板およびその製造方法
JP2005072085A (ja) * 2003-08-28 2005-03-17 Ngk Spark Plug Co Ltd 配線基板の製造方法、及び配線基板
JP2011258590A (ja) * 2010-06-04 2011-12-22 Shinko Electric Ind Co Ltd 配線基板及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071473A1 (ja) * 2018-10-04 2020-04-09 株式会社村田製作所 積層体及びその製造方法
JPWO2020071473A1 (ja) * 2018-10-04 2021-09-02 株式会社村田製作所 積層体及びその製造方法
US11445606B2 (en) 2018-10-04 2022-09-13 Murata Manufacturing Co., Ltd. Laminated body and method for manufacturing the same
JP7283481B2 (ja) 2018-10-04 2023-05-30 株式会社村田製作所 積層体及びその製造方法
WO2021261416A1 (ja) * 2020-06-24 2021-12-30 株式会社村田製作所 樹脂多層基板及びその製造方法
JPWO2021261416A1 (ja) * 2020-06-24 2021-12-30
US20230119857A1 (en) * 2020-06-24 2023-04-20 Murata Manufacturing Co., Ltd. Multilayer resin substrate and method for producing same
JP7315102B2 (ja) 2020-06-24 2023-07-26 株式会社村田製作所 樹脂多層基板
US12269238B2 (en) * 2020-06-24 2025-04-08 Murata Manufacturing Co., Ltd. Multilayer resin substrate and method for producing same

Also Published As

Publication number Publication date
CN210899888U (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
TWI710301B (zh) 薄型天線電路板的製作方法
US9247646B2 (en) Electronic component built-in substrate and method of manufacturing the same
US8863379B2 (en) Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
JP2011199077A (ja) 多層配線基板の製造方法
JP4341588B2 (ja) 多層基板及びその製造方法
JP2014041988A (ja) リジッドフレキシブル回路基板及びその製作方法とリジッドフレキシブル回路板及びその製作方法
JP6380715B1 (ja) 多層基板、多層基板の回路基板への実装構造、多層基板の実装方法および多層基板の製造方法
CN207124812U (zh) 线圈内置基板
TWI578864B (zh) Base board for built-in parts and method of manufacturing the same
JP2014045164A (ja) リジッドフレキシブル回路基板及びその製作方法とリジッドフレキシブル回路板及びその製作方法
WO2018163859A1 (ja) 多層基板、電子機器および多層基板の製造方法
TWI519225B (zh) 多層軟性線路結構的製作方法
JP6536751B2 (ja) 積層コイルおよびその製造方法
JP6673304B2 (ja) 多層基板
JP5302927B2 (ja) 多層配線基板の製造方法
JP2014204088A (ja) 多層配線基板およびその製造方法
JP5293692B2 (ja) フレックスリジッド配線基板及びその製造方法
CN107889356B (zh) 软硬复合线路板
JP2011171579A (ja) プリント配線基板
JP5483921B2 (ja) プリント基板の製造方法
TWI461135B (zh) 製作電路板之方法
WO2020203724A1 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
WO2015083216A1 (ja) 多層基板、及び、その製造方法
TWI519224B (zh) 多層軟性線路結構的製作方法
JP5633256B2 (ja) 部品内蔵基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP