WO2018166106A1 - 一种增程式纯电动汽车的动力系统及控制方法 - Google Patents
一种增程式纯电动汽车的动力系统及控制方法 Download PDFInfo
- Publication number
- WO2018166106A1 WO2018166106A1 PCT/CN2017/090753 CN2017090753W WO2018166106A1 WO 2018166106 A1 WO2018166106 A1 WO 2018166106A1 CN 2017090753 W CN2017090753 W CN 2017090753W WO 2018166106 A1 WO2018166106 A1 WO 2018166106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- battery pack
- engine
- charging
- voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000005611 electricity Effects 0.000 claims abstract description 10
- 239000000446 fuel Substances 0.000 claims abstract description 9
- 239000002828 fuel tank Substances 0.000 claims abstract description 8
- 238000007600 charging Methods 0.000 claims description 44
- 238000007599 discharging Methods 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 238000010280 constant potential charging Methods 0.000 claims description 4
- 238000010277 constant-current charging Methods 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 238000010278 pulse charging Methods 0.000 claims description 4
- 239000003502 gasoline Substances 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 230000001186 cumulative effect Effects 0.000 claims description 2
- -1 diesel Substances 0.000 claims description 2
- 239000003345 natural gas Substances 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 abstract 1
- 238000001994 activation Methods 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L8/00—Electric propulsion with power supply from forces of nature, e.g. sun or wind
- B60L8/003—Converting light into electric energy, e.g. by using photo-voltaic systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the invention belongs to the technical field of electric vehicles, and particularly relates to a power system and a control method for an extended-program electric vehicle.
- a power system for an extended-range electric vehicle comprising: a power battery pack (1), an engine (4), a fuel tank (2) for supplying fuel to the engine (4), converting kinetic energy of the engine into Electric energy generator (5), power distribution a controller (8), and a drive motor (6) driving the vehicle, the power battery pack (1), the generator (5), and the drive motor (6) are both connected to a power distribution controller (8) Electrically connected, the power provided by the power battery pack (1) and the generator (5) is supplied to the drive motor (6) through the power distribution controller (8); when the power of the power battery pack (1) is insufficient, The engine (4) is started to drive the generator (5) to generate electricity, and the electric energy generated by the generator (5) is supplied to the driving motor, and the power battery pack (1) is charged.
- the system further includes a vehicle controller (8) and an engine controller (3), the power battery pack (1), a drive motor (6), an engine controller (3), and a power distribution controller ( 8) is connected to the vehicle controller (8) through a CAN bus, and when the vehicle controller (8) detects that the power of the power battery pack (1) is insufficient, the engine (4) is turned on,
- the driving motor (6) supplies power and monitors power consumption of the driving motor (6), and when the power consumption is greater than a predetermined value, charging the power battery pack (1) by using a first charging mode; When not greater than the predetermined value, the power battery pack (1) is charged in a second charging mode; the first charging mode is current limiting pulse charging, and the second charging mode is constant voltage charging.
- the vehicle controller (8) selects the mth voltage threshold, Initiating an activation procedure for the battery pack, the activation procedure comprising the steps of:
- Constant current charging to the charging cut-off voltage performing positive and negative alternating pulse current circulation 3-10 times in the vicinity of the charging cut-off voltage, the pulse current is 0.1-0.2C, the pulse action time is 10-60s, and the interval is 0. -20s.
- the fuel in the fuel tank (2) may be gasoline, diesel, natural gas, alcohol ether or a combination thereof.
- the power battery pack (1) is provided with two external charging ports, and the two external charging ports are respectively used for connecting a 380V fast charging pile or charging with a 220V ordinary power source by using a vehicle charger.
- the system has a solar panel (11) electrically connected to the power distribution controller (8); when the vehicle is in operation, the solar panel (11) is The drive motor (6) provides auxiliary power; the solar panel (11) charges the power battery pack (1) when the vehicle is stopped or idling.
- a method for controlling a power system of an extended-range electric vehicle comprising:
- the engine (4) does not work, and the power battery pack (1) is used to power the vehicle;
- the vehicle controller (8) sends Commanding to the engine controller (3), causing the engine (4) to operate to drive the generator (5) to generate electricity, the power generated by the generator (5) to generate power to the power battery pack (1), to power the drive motor, and to be the power battery pack (1) Charging.
- the system has a solar panel (11) electrically connected to the power distribution controller (8); when the vehicle is in operation, the solar panel (11) is The drive motor (6) provides auxiliary power; the solar panel (11) charges the power battery pack (1) when the vehicle is stopped or idling.
- the present invention has the following beneficial effects:
- An electric hybrid vehicle or an electric oil hybrid vehicle requires two sets of drive systems, and the pure electric vehicle of the present invention only needs one set of drive system, which saves the production cost of the automobile and reduces the overall weight of the electric vehicle;
- the current-limiting pulse charging mode preferentially guarantees the driving mileage in the case of preventing the battery pack from being over-released;
- the constant-voltage charging mode has a higher battery level when the battery pack is low. The high charging speed quickly restores the power of the battery pack, and the charging speed decreases as the battery pack voltage increases, so that the energy is properly distributed while ensuring constant power operation of the engine.
- the activation mode of the battery is activated to eliminate the polarization and prolong the service life of the battery.
- lithium is irreversibly embedded in the negative electrode (lithium in part of the SEI film) by pulse circulation at an overdischarge potential, and the lithium salt in part of the SEI film is dissolved to enable it to re-enter the battery charge.
- the battery capacity is restored; and the pulse is cycled near the charge cut-off voltage, thereby re-forming a stable SEI film, improving the cycle life of the battery;
- Solar panels are installed in the ceiling of the car. In the summer, the solar panels absorb the heat absorbed to generate electricity while reducing the temperature rise caused by the sun inside the car.
- FIG. 2 is a schematic diagram of a power system of an extended-range electric vehicle according to Embodiment 2 of the present invention.
- the vehicle controller (8) detects that the power of the power battery pack (1) is insufficient, the engine (4) is turned on to supply power to the drive motor (6), and the power consumption of the drive motor (6) is monitored.
- the power battery pack (1) is charged by using a first charging mode; when the power consumption is not greater than a predetermined value, the second charging mode is used as the power battery pack ( 1) charging; the first charging mode is current limiting pulse charging, and the second charging mode is constant voltage charging; the predetermined value is determined according to actual power of the engine and efficiency of the generator.
- an activation procedure for the battery pack is initiated, and the activation procedure includes the following steps:
- Embodiment 2 further adds a solar panel (12) to the ceiling of the pure electric vehicle on the basis of the embodiment 1;
- the pulse current is 0.2 C
- the pulse action time is 60 s
- the interval is 20 s.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种增程式纯电动汽车的动力系统,包括:动力电池组(1)、发动机(4)、为发动机(4)提供燃料的燃料箱(2)、将发动机的动能转化为电能的发电机(5)、功率分配控制器(8)以及驱动汽车行驶的驱动电机(6),动力电池组(1)、发电机(5)和驱动电机(6)均与功率分配控制器(8)电连接,动力电池组(1)和发电机(5)提供的电力通过功率分配控制器(8)供应给驱动电机(6),当动力电池组(1)的电量不足时,发动机(4)启动,带动发电机(5)发电,并将发电机(5)产生的电能给驱动电机(6)供电,并给动力电池组(1)充电。该系统能够根据汽车行驶情况为电池组充电,智能分配能源,以及对电池组进行养护,能够延长电动车的行驶里程以及电池组的工作寿命。还提供了一种增程式纯电动汽车的动力系统的控制方法。
Description
本发明属于电动汽车技术领域,具体涉及一种增程式纯电动汽车的动力系统及控制方法。
在未来国家和地方对新能源补贴减少的情况下,纯电动汽车具有以下明显优势。1、家用乘用车80%使用为上下班,接送孩子上学,城郊游,这个过程可全部使用纯电驱动,做到零排放。2、在未来充电设施完善的情况下,80%行程可以用动力电池和外插电源。3、城市物流车,物流距离一般不超过100km,在充电设施完善后的未来,几乎80%的行使过程使用外插电源充电。4、轻型客车,公司的通勤车,行使里程单程一般不大于100km,有足够的时间可以充电。5、中大型客车,如果用于通勤班车,可满足市内通勤。目前电动汽车受电池容量的限制,基本局限于短途,续航里程难以得到提高,因此,迫切需要开发这一种能够弥补由于电池容量限制而导致续驶里程短的电动汽车。
发明内容
本发明针对上述问题,提出了一种续航能力长,充电速度快,能够适应长途运行的增程式纯电动汽车的动力系统及控制方法。
具体方案:
一种增程式纯电动汽车的动力系统,所述系统包括:动力电池组(1)、发动机(4)、为所述发动机(4)提供燃料的燃料箱(2)、将发动机的动能转化为电能的发电机(5)、功率分配
控制器(8)、以及驱动汽车行驶的驱动电机(6),所述动力电池组(1)、所述发电机(5)和所述驱动电机(6)均与功率分配控制器(8)电连接,所述动力电池组(1)和发电机(5)提供的电力通过功率分配控制器(8)供应给驱动电机(6);当动力电池组(1)的电量不足时,所述发动机(4)启动,带动发电机(5)发电,并将发电机(5)产生的电能给驱动电机供电,并给动力电池组(1)充电。
进一步的,所述系统还包括整车控制器(8)和发动机控制器(3),所述动力电池组(1)、驱动电机(6)、发动机控制器(3)以及功率分配控制器(8)均通过CAN总线与所述整车控制器(8)连接,当所述整车控制器(8)检测到所述动力电池组(1)的电量不足时,开启发动机(4),为驱动电机(6)提供电力,并监控驱动电机(6)的功耗,当所述功耗大于预定值时,采用第一充电模式为所述动力电池组(1)充电;当所述功耗不大于预定值时,采用第二充电模式为所述动力电池组(1)充电;所述第一充电模式为限流脉冲充电,所述第二充电模式为恒压充电。
进一步的,其特征在于,所述整车控制器(8)中预置有m个电压阈值,从第1个电压阈值到第m个电压阈值依次增高,所述整车控制器(8)根据所述动力电池组(1)的累计的充电次数从预置的电压阈值中从1至m依次循环选择其中一个阈值,作为判断电池组电量是否不足的电压阈值,当所述电池组(1)的平均电池电压低于所述电压阈值时,判断所述动力电池组(1)的电量不足。
进一步的,当所述整车控制器(8)选择第m个电压阈值时,
启动对所述电池组的激活程序,所述激活程序包括以下步骤:
(1)限制所述驱动电机(6)的功耗,使其不大于预定值;
(2)对所述电池组中的单体电池进行放电,放电至过放电截止电压,所述过放电截止电压低于第1个电压阈值;
(3)将放电至过放电截止电压的电池组,在所述过放电截止电压附近进行正负交替脉冲电流循环3-10次,所述脉冲电流为0.1-0.2C,脉冲作用时间为10-60s,间隔0-20s;
(4)恒流充电至充电截止电压,在所述充电截止电压附近进行正负交替脉冲电流循环3-10次,所述脉冲电流为0.1-0.2C,脉冲作用时间为10-60s,间隔0-20s。
进一步的,所述燃料箱(2)内的燃料可以为汽油,柴油,天然气、醇醚或其组合。
进一步的,所述动力电池组(1)上设置有两个外插充电口,两个外插充电口分别用来连接380V快速充电桩或者利用车载充电机在220V普通电源充电。
进一步的,所述系统具有太阳能电池板(11),所述太阳能板(11)与所述功率分配控制器(8)电连接;当所述汽车运行时,所述太阳能电池板(11)为所述驱动电机(6)提供辅助电力;当所述汽车停止或怠速时,所述太阳能电池板(11)为动力电池组(1)充电。
一种上述的增程式纯电动汽车的动力系统的控制方法,包括:
当动力电池组(1)的电量充足时,发动机(4)不工作,采用动力电池组(1)给所述汽车提供动力;
当动力电池组(1)的电量不足时,整车控制器(8)发送
指令给发动机控制器(3),使发动机(4)运行带动发电机(5)发电,发电机(5)产生的电能给动力电池组(1)发电,为驱动电机供电,并为动力电池组(1)充电。
进一步的,所述系统具有太阳能电池板(11),所述太阳能板(11)与所述功率分配控制器(8)电连接;当所述汽车运行时,所述太阳能电池板(11)为所述驱动电机(6)提供辅助电力;当所述汽车停止或怠速时,所述太阳能电池板(11)为动力电池组(1)充电。
相对于现有技术,本发明具有以下有益效果:
1、避免为了提高续驶里程,而增加电池容量而导致的电池重量与整车重量占比过大。
2、电气混合动力汽车或电油混合动力汽车需要两套驱动系统,而本发明的纯电动汽车只需要一套驱动系统即可,节省了汽车的生产成本,减轻了电动汽车的整体重量;
3、使用发动机带动发电机发电,通过功率分配控制器为汽车供电和为动力电池组充电,能够控制发动机始终处于恒功率运行,提高燃油的利用效率。
4、监控车辆功率需求,根据功率需求确定对电池的充电模式;限流脉冲充电模式在防止电池组出现过放点的情况下优先保证行车里程;恒压充电模式在电池组电量低时具有较高的充电速度,迅速为电池组恢复电量,而后充电速度随着电池组电压升高而降低,合理分配能源,同时保证发动机的恒功率运行。
5、对于电池开始充电的阈值电压设定若干个不同的数值,避免电池始终在同一个阈值电压开始充电,防止电池产生记忆效应。
6、经过预定个数的循环周期,启动对电池的激活模式,消除极化延长电池的使用寿命。
7、激活模式中,通过在过放电电位下脉冲循环,从而将不可逆嵌入负极的锂(部分SEI膜中的锂)激活,将部分SEI膜中的锂盐溶解,使其能够重新进入电池的充放电循环中,恢复电池容量;并且在充电截止电压附近脉冲循环,从而重新形成稳定的SEI膜,提高电池的循环寿命;
8、使用太阳能板,充分利用自然能量,根据车辆行驶情况智能分配电量;优先采用太阳能电池板给动力电池组充电,减小发动机通过燃烧燃料发电的时间,以减少污染气体的排放。
9、在汽车的顶棚设置太阳能电池板,在夏天太阳能电池板将吸收的热量用来发电的同时降低了车内被晒导致的温度升高。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明实施例1的增程式纯电动汽车的动力系统的示意图;
图2是本发明实施例2的增程式纯电动汽车的动力系统的示意图。
其中:1、动力电池组,2、燃料箱,3、发动机控制器,4、发动机,5、发电机,6、驱动电机,7、功率分配控制器,8、整车控制器,9、充电装置,10、太阳能电池控制器,11、太阳能电池板。
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例1
如图1所示的增程式纯电动汽车的动力系统,所述系统包括:动力电池组(1)、发动机(4)、为所述发动机(4)提供燃料的燃料箱(2)、将发动机的动能转化为电能的发电机(5)、功率分配控制器(8)、驱动汽车行驶的驱动电机(6)、整车控制器(8)和发动机控制器(3);所述燃料箱(2)内的燃料为汽油。所述动力电池组(1)上设置有两个外插充电口,分别用来连接380V快速充电站和220V普通电源。所述动力电池组采用的单体电池为钛酸锂电池。
所述动力电池组(1)、所述发电机(5)和所述驱动电机(6)均与功率分配控制器(8)电连接,所述动力电池组(1)和发电机(5)提供的电力通过功率分配控制器(8)供应给驱动电机(6);所述动力电池组(1)、驱动电机(6)、发动机控制器(3)以及功率分配控
制器(8)均通过CAN总线与所述整车控制器(8)连接。
所述整车控制器(8)中预置有5个电压阈值,从第1个电压阈值到第5个电压阈值依次增高,所述整车控制器(8)根据所述动力电池组(1)的累计的充电次数从预置的电压阈值中从1至5依次循环选择其中一个阈值,作为判断电池组电量是否不足的电压阈值,当所述电池组(1)的平均电池电压低于所述电压阈值时,判断所述动力电池组(1)的电量为不足。
当所述整车控制器(8)检测到所述动力电池组(1)的电量不足时,开启发动机(4),为驱动电机(6)提供电力,并监控驱动电机(6)的功耗,当所述功耗大于预定值时,采用第一充电模式为所述动力电池组(1)充电;当所述功耗不大于预定值时,采用第二充电模式为所述动力电池组(1)充电;所述第一充电模式为限流脉冲充电,所述第二充电模式为恒压充电;所述预定值根据实际发动机的功率以及发电机的效率确定。
当所述整车控制器(8)选择所述第5个电压阈值时,启动对所述电池组的激活程序,所述激活程序包括以下步骤:
(1)控制所述驱动电机(6)的功耗,使其不大于预定值;
(2)对所述电池组中的单体电池进行放电,放电至过放电截止电压,所述过放电截止电压低于第1个电压阈值;
(3)将放电至过放电截止电压的电池组,在所述过放电截止电压附近进行正负交替脉冲电流循环3次,所述脉冲电流为0.1C,脉冲作用时间为10s,间隔0s;
(4)恒流充电至充电截止电压,在所述充电截止电压附近进行正负交替脉冲电流循环3次,所述脉冲电流为0.1C,脉冲作用时间为10s,间隔0s。
实施例2
实施例2在实施例1的基础上还增加了太阳能电池板(12),设置在纯电动汽车的顶棚上;
所述激活过程中的步骤3)、4)为:
(3)将放电至过放电截止电压的电池组,在所述过放电截止电压附近进行正负交替脉冲电流循环10次,所述脉冲电流为0.2C,脉冲作用时间为60s,间隔20s;
(4)恒流充电至充电截止电压,在所述充电截止电压附近进行正负交替脉冲电流循环10次,所述脉冲电流为0.2C,脉冲作用时间为60s,间隔20s。
应当理解,以上所描述的具体实施案例仅用于解释本发明,并不用于限定本发明。由本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。
Claims (9)
- 一种增程式纯电动汽车的动力系统,其特征在于,所述系统包括:动力电池组(1)、发动机(4)、为所述发动机(4)提供燃料的燃料箱(2)、将发动机的动能转化为电能的发电机(5)、功率分配控制器(8)、以及驱动汽车行驶的驱动电机(6),所述动力电池组(1)、所述发电机(5)和所述驱动电机(6)均与功率分配控制器(8)电连接,所述动力电池组(1)和发电机(5)提供的电力通过功率分配控制器(8)供应给驱动电机(6);当动力电池组(1)的电量不足时,所述发动机(4)启动,带动发电机(5)发电,并将发电机(5)产生的电能给驱动电机供电,并给动力电池组(1)充电。
- 根据权利要求1所述的增程式纯电动汽车的动力系统,所述系统还包括整车控制器(8)和发动机控制器(3),所述动力电池组(1)、驱动电机(6)、发动机控制器(3)以及功率分配控制器(8)均通过CAN总线与所述整车控制器(8)连接,当所述整车控制器(8)检测到所述动力电池组(1)的电量不足时,开启发动机(4),为驱动电机(6)提供电力,并监控驱动电机(6)的功耗,当所述功耗大于预定值时,采用第一充电模式为所述动力电池组(1)充电;当所述功耗不大于预定值时,采用第二充电模式为所述动力电池组(1)充电;所述第一充电模式为限流脉冲充电,所述第二充电模式为恒压充电。
- 根据权利要求2所述的增程式纯电动汽车的动力系统,所述整车控制器(8)中预置有m个电压阈值,从第1个电压阈值到第m个电压阈值依次增高,所述整车控制器(8)根据所述动力电池组(1)的累计的充电次数从预置的电压阈值中从1至 m依次循环选择其中一个阈值,作为判断电池组电量是否不足的电压阈值,当所述电池组(1)的平均电池电压低于所述电压阈值时,判断所述动力电池组(1)的电量不足。
- 根据权利要求3所述的增程式纯电动汽车的动力系统,当所述整车控制器(8)选择第m个电压阈值时,启动对所述电池组的激活程序,所述激活程序包括以下步骤:(1)限制所述驱动电机(6)的功耗,使其不大于预定值;(2)对所述电池组中的单体电池进行放电,放电至过放电截止电压,所述过放电截止电压低于第1个电压阈值;(3)将放电至过放电截止电压的电池组,在所述过放电截止电压附近进行正负交替脉冲电流循环;优选地,循环3-10次,所述脉冲电流为0.1-0.2C,脉冲作用时间为10-60s,间隔0-20s;(4)恒流充电至充电截止电压,在所述充电截止电压附近进行正负交替脉冲电流循环;优选地,循环3-10次,所述脉冲电流为0.1-0.2C,脉冲作用时间为10-60s,间隔0-20s。
- 根据权利要求1所述的增程式纯电动汽车的动力系统,所述燃料箱(2)内的燃料可以为汽油,柴油,天然气、醇醚或其组合。
- 根据权利要求1所述的增程式纯电动汽车的动力系统,所述动力电池组(1)上设置有两个外插充电口,两个外插充电口分别用来连接380V快速充电桩或者利用车载充电机在220V普通电源充电。
- 根据权利要求1所述的增程式纯电动汽车的动力系统,所述系统具有太阳能电池板(11),所述太阳能板(11)与所述功率分配控制器(8)电连接;当所述汽车运行时,所述太阳能 电池板(11)为所述驱动电机(6)提供辅助电力;当所述汽车停止或怠速时,所述太阳能电池板(11)为动力电池组(1)充电。
- 一种如权利要求1-7任一项所述的增程式纯电动汽车的动力系统的控制方法,其特征在于,当动力电池组(1)的电量充足时,发动机(4)不工作,采用动力电池组(1)给所述汽车提供动力;当动力电池组(1)的电量不足时,整车控制器(8)发送指令给发动机控制器(3),使发动机(4)运行带动发电机(5)发电,发电机(5)产生的电能给动力电池组(1)发电,为驱动电机供电,并为动力电池组(1)充电。
- 根据权利要求8所述的控制方法,所述系统具有太阳能电池板(11),所述太阳能板(11)与所述功率分配控制器(8)电连接;当所述汽车运行时,所述太阳能电池板(11)为所述驱动电机(6)提供辅助电力;当所述汽车停止或怠速时,所述太阳能电池板(11)为动力电池组(1)充电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710161074.7 | 2017-03-17 | ||
CN201710161074.7A CN107097656B (zh) | 2017-03-17 | 2017-03-17 | 一种增程式纯电动汽车的动力系统及控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018166106A1 true WO2018166106A1 (zh) | 2018-09-20 |
Family
ID=59674735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/090753 WO2018166106A1 (zh) | 2017-03-17 | 2017-06-29 | 一种增程式纯电动汽车的动力系统及控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107097656B (zh) |
WO (1) | WO2018166106A1 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110014879A (zh) * | 2017-09-19 | 2019-07-16 | 程君 | 纯电力驱动新能源车及其专用电池组 |
CN109677278A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种增程式电动汽车增程系统 |
CN109683601A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种无人驾驶汽车主动安全系统 |
CN109683598A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种电动汽车智能化无人驾驶系统 |
CN109677281A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种增程式电动汽车动力系统 |
CN109683600A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种无人驾驶汽车行进路线自主控制系统 |
CN109683599A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种无人驾驶汽车自主避障系统 |
CN109683597A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种基于太阳能的无人驾驶公共电动汽车系统 |
CN107901768A (zh) * | 2017-11-30 | 2018-04-13 | 安徽江淮汽车集团股份有限公司 | 一种太阳能汽车供电系统及方法 |
US20190337408A1 (en) * | 2018-05-04 | 2019-11-07 | Hybrid Kinetic Motors Corporation | Method for controlling range-extended electric vehicles having lithium titanate oxide (lto) battery with super high charge and discharge rates |
CN109177749B (zh) * | 2018-09-20 | 2022-02-08 | 哈尔滨理工大学 | 增程式电动客车三能源动力系统及能量管理方法 |
CN109501629B (zh) * | 2018-11-17 | 2020-08-18 | 宁波洁程汽车科技有限公司 | 一种基于增程器开发的充电装置用充电系统以及方法 |
CN111572748A (zh) * | 2019-02-15 | 2020-08-25 | 哈尔滨智明科技有限公司 | 一种增程式电动船 |
CN110696629A (zh) * | 2019-11-01 | 2020-01-17 | 刘思奇 | 一种交替更换电池方便快捷不受里程限制的纯电动汽车 |
CN113232577B (zh) * | 2021-06-28 | 2022-09-09 | 福州市唯联高鑫智能科技有限公司 | 一种增程式冷链物流车 |
CN114336886B (zh) * | 2022-01-06 | 2024-10-29 | 江西吉利新能源商用车有限公司 | 增程式充电系统及方法 |
CN118254607B (zh) * | 2024-05-09 | 2024-10-15 | 北京中环投资管理有限公司 | 电动汽车的动力系统及其控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004166350A (ja) * | 2002-11-11 | 2004-06-10 | Toyota Motor Corp | 電池制御装置 |
US7173396B2 (en) * | 2001-09-18 | 2007-02-06 | Nissan Motor Co., Ltd. | Hybrid electric vehicle with enhanced battery control |
CN101130341A (zh) * | 2006-08-25 | 2008-02-27 | 马自达汽车株式会社 | 混合动力车辆的控制装置 |
CN101224710A (zh) * | 2008-02-01 | 2008-07-23 | 深圳先进技术研究院 | 一种用于码头牵引车的混合动力系统和驱动控制方法 |
CN101570146A (zh) * | 2009-06-08 | 2009-11-04 | 奇瑞汽车股份有限公司 | 一种电动汽车驱动系统及其控制方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101051701B (zh) * | 2007-03-01 | 2010-08-11 | 华为技术有限公司 | 一种蓄电池脉冲快速充电方法及充电系统 |
EP2847027A4 (en) * | 2012-12-18 | 2015-12-30 | Emerald Automotive Llc | OPTIMIZATION OF A LARGE AUTONOMOUS ELECTRIC VEHICLE |
CN104656029B (zh) * | 2014-12-25 | 2018-06-12 | 深圳中智科创机器人有限公司 | 一种估算动力电池剩余容量的系统及方法 |
CN105416077B (zh) * | 2015-12-01 | 2017-07-28 | 北京理工大学 | 一种电动汽车的能量管理系统及管理方法 |
CN106505269A (zh) * | 2016-12-19 | 2017-03-15 | 蔡秋华 | 一种智能家居用锂离子电池运行激活系统 |
-
2017
- 2017-03-17 CN CN201710161074.7A patent/CN107097656B/zh active Active
- 2017-06-29 WO PCT/CN2017/090753 patent/WO2018166106A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173396B2 (en) * | 2001-09-18 | 2007-02-06 | Nissan Motor Co., Ltd. | Hybrid electric vehicle with enhanced battery control |
JP2004166350A (ja) * | 2002-11-11 | 2004-06-10 | Toyota Motor Corp | 電池制御装置 |
CN101130341A (zh) * | 2006-08-25 | 2008-02-27 | 马自达汽车株式会社 | 混合动力车辆的控制装置 |
CN101224710A (zh) * | 2008-02-01 | 2008-07-23 | 深圳先进技术研究院 | 一种用于码头牵引车的混合动力系统和驱动控制方法 |
CN101570146A (zh) * | 2009-06-08 | 2009-11-04 | 奇瑞汽车股份有限公司 | 一种电动汽车驱动系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107097656B (zh) | 2018-09-14 |
CN107097656A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018166106A1 (zh) | 一种增程式纯电动汽车的动力系统及控制方法 | |
CN106696721B (zh) | 纯电动汽车双源能量系统及供电控制方法、快充方法和慢充方法 | |
CN110040038B (zh) | 一种氢-电混合燃料电池客车能量管理控制方法及系统 | |
CN111251910B (zh) | 一种燃料电池汽车双源混合动力系统的上电启动方法 | |
CN102555765B (zh) | 一种燃料电池-锂离子电池混合动力系统 | |
KR101500080B1 (ko) | 친환경 자동차의 회생 제동시 저전압 직류변환장치의 출력 제어 방법 | |
CN110978991B (zh) | 一种太阳能和废气余热发电的混合动力商用车电气系统 | |
CN105539424B (zh) | 一种增程式电动车的能量控制方法 | |
CN107128184B (zh) | 燃料电池与储能电池混合动力车控制方法及车系统 | |
CN103863137B (zh) | 基于最长电池寿命考虑的增程式电动汽车控制方法 | |
CN110370951B (zh) | 电车供电控制方法、系统及电车 | |
CN214189325U (zh) | 一种车用充电宝系统 | |
CN205395802U (zh) | 燃料电池与储能电池混合动力车系统 | |
CN104002689A (zh) | 风光互补电动汽车动力系统及其控制方法 | |
JP2012080689A (ja) | 電気自動車用電源装置 | |
CN105365586B (zh) | 增程式电动汽车动力系统及增程方法、电动汽车 | |
CN103192724A (zh) | 一种无轨电车动力系统及其在网和无网运行方法 | |
US9948217B2 (en) | Synchronous energy source switching controller and method of operation thereof | |
CN101797895B (zh) | 电能动力系统、使用电能动力系统的电动车、电动船舶及电动飞机 | |
CN105790374A (zh) | 一种车载储电箱 | |
CN105291862A (zh) | 一种基于超级电容的汽车启停系统及方法 | |
CN204956133U (zh) | 一种智能环保电动车 | |
CN102785563B (zh) | 混合动力电动汽车动力系统 | |
CN111497630A (zh) | 轨道交通车辆混合供电系统及其控制方法、轨道交通车辆 | |
CN104786863A (zh) | 一种汽车用三电压电源系统及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17900773 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17900773 Country of ref document: EP Kind code of ref document: A1 |