[go: up one dir, main page]

WO2018167405A1 - Procédé de fabrication de l'acide-2-hydroxy-4-méthylthio-butyrique - Google Patents

Procédé de fabrication de l'acide-2-hydroxy-4-méthylthio-butyrique Download PDF

Info

Publication number
WO2018167405A1
WO2018167405A1 PCT/FR2018/050550 FR2018050550W WO2018167405A1 WO 2018167405 A1 WO2018167405 A1 WO 2018167405A1 FR 2018050550 W FR2018050550 W FR 2018050550W WO 2018167405 A1 WO2018167405 A1 WO 2018167405A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmtba
phase
chromatography
salts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2018/050550
Other languages
English (en)
Inventor
Virginie Belliere-Baca
Didier Morvan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adisseo France SAS
Original Assignee
Adisseo France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adisseo France SAS filed Critical Adisseo France SAS
Priority to CN201880016345.2A priority Critical patent/CN110382461B/zh
Priority to JP2019550809A priority patent/JP6961009B2/ja
Priority to EP18713322.8A priority patent/EP3596045B1/fr
Priority to US16/624,323 priority patent/US11242316B2/en
Priority to ES18713322T priority patent/ES2884048T3/es
Priority to RU2019130014A priority patent/RU2759910C2/ru
Priority to KR1020197028147A priority patent/KR102292913B1/ko
Priority to SG11201908529Y priority patent/SG11201908529YA/en
Publication of WO2018167405A1 publication Critical patent/WO2018167405A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • C07C319/12Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by reactions not involving the formation of mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification

Definitions

  • the present invention relates to an improved process for the preparation of 2-hydroxy-4-methylthiobutyric acid (HMTBA) and its selective homologue, 2-hydroxy-4-methylselenobutyric acid. More particularly, this process incorporates an efficient step of purifying the HMTBA obtained by acid hydrolysis of 2-hydroxy-4-methylthiobutyronitrile (HMTBN).
  • HMTBA 2-hydroxy-4-methylthiobutyric acid
  • HMTBN 2-hydroxy-4-methylthiobutyronitrile
  • HMTBA 2-hydroxy-4-methylthiobutyric acid
  • its analogs such as salts, chelates, especially metal chelates (from Zn, Ca, Mn, Mg, Cu, Na, etc.) and esters of these acids, such as the isopropyl and tert-butyl esters of HMTBA, are widely used in animal nutrition.
  • the selenium derivatives of these hydroxyanalogues of methionine are also constituents of major interests in animal nutrition.
  • the HMTBA preparation can be operated by various direct or indirect hydrolysis methods, HMTBN.
  • This hydrolysis is conventionally carried out by a mineral acid such as hydrochloric acid or sulfuric acid, it can also be carried out by enzymatic hydrolysis.
  • WO 00 / 02852A1 describes the manufacture of HMTBA by hydrolysis of HMTBN with sulfuric acid in two stages.
  • a hydration reaction of 2-hydroxy-4-methylthiobutyronitrile (HMTBN) is carried out in 2-hydroxy-4-methylthiobutyramide (HMTBM) which is then hydrolysed in a second step [ 2] to 2-hydroxy-4-methylthiobutyric acid (HMTBA), as represented by the reactions below:
  • the resultant mixture containing HMTBA can then be treated with one or more purification steps as described in WO 00 / 02853A1, US 4524077A, US 4912257A or JP 2007238555A.
  • a direct extraction of the hydrolysis medium is carried out by a solvent immiscible with water, followed by evaporation of said solvent in the presence of a quantity of water so as to reduce the appearance of a brown coloring of the product got.
  • the solvent is chosen in particular from methyl ethyl ketone, methyl isobutyl ketone, methyl tert-butyl ether, diisopropyl ether and diethyl carbonate.
  • the salting out of an aqueous saline phase is then observed.
  • the solvent is removed from the organic phase by evaporation and the final HMTBA solution is commercially suitable by the addition of water.
  • US Pat. No. 4,912,257A discloses, following the steps of hydrolysis of HMTBN in the presence of sulfuric acid and of neutralization of the reaction medium with ammonia, a step of separating an organic phase containing HMTBA and remaining salts and an aqueous phase containing salts, essentially ammonium sulphate and traces of HMTBA, the organic phase being then concentrated and then filtered to recover the HMTBA, on the one hand, and the aqueous phase being concentrated then the precipitated salts, on the other hand.
  • the final title of the H MTBA thus obtained is carried out by adding water.
  • JP 2007238555A proposes carrying out, after the hydrolysis step but before the neutralization step, a distillation to remove light molecules, predominantly sulfur-containing and formic acid. This distillation is carried out at temperatures between 80 ° C and 120 ° C and at pressures between 0.5 and 1.5 bar. A biphasic separation into two organic and aqueous phases is then carried out as in the previous documents and the two phases also treated in the same way.
  • 2-hydroxy-4-methylseleno-butyric acid The synthesis of 2-hydroxy-4-methylseleno-butyric acid is also known. In particular, it can be manufactured by acid hydrolysis of 2-hydroxy-4-methylselenobutyronitrile as described in WO 2008/049927 A1.
  • these, and specifically ammonium sulfate can be recovered and in particular marketed as such or after one or more purification treatments.
  • the method of the invention makes it possible to overcome all these drawbacks by implementing an HMTBA isolation step that can be substituted for the existing one (s), this isolation being carried out by chromatography of a stream of HMTBA from the hydrolysis and neutralization reaction medium.
  • the invention provides a method of manufacturing HMTBA from
  • HMTBN comprising the following steps:
  • HMTBN is hydrolyzed to HMTBA in the presence of a mineral acid in an aqueous medium
  • Said medium is neutralized by addition of a base
  • said method comprising a step of separating the HMTBA from said salts of the first phase by subjecting the latter to chromatography.
  • Chromatography means any separative method which makes it possible to separate a phase comprising at least HMTBA and salts in two phases, one enriched in HMTBA and the other enriched in salts. Such a method implements a stationary phase and a mobile phase.
  • a static or non-static bed in one or more columns such as the chromatography systems of at least two columns described in FR2889077 or in the article Separation Science and Technology 35 (4): 519-534, 2000), or the chromatography systems of at least three columns such as the iSMB technologies as described in EP 0342629 and US 5064539), SSMB, AMB, VARICOL TM (as described in US 6,136,198, US 6,375,839, US 6,413,419 and US 6,712,973), MODICON TM (as described in US 7,479,228), POWERFEED TM (as described in US 5,102,553 and the article "Power Feed operation of simulated moving bed units: changing flow-rates during the switching interval" , Zhang et al., In Journal of Chromatography A, 1006: 87-99, 2003), or MCSGP (Multicolumn Countercurrent Solvent Gradient Purification).
  • MCSGP Multicolumn Countercurrent Solvent Gradient Purification
  • Chromatography is advantageously carried out by treating the first phase containing HMTBA on a resin.
  • the resin may be anionic or cationic resin.
  • the resin is anionic, it is preferably loaded with anions selected from OH “ , CI “ , SO 4 2 “ .
  • the chromatography is performed in a simulated sequential moving bed mode or Sequential Simulated Moving Bed (SSMB).
  • SSMB Sequential Simulated Moving Bed
  • the flow of HMTBA which is treated in the context of the process of the invention is therefore derived from the neutralization medium.
  • the neutralization step may be preceded by a distillation step as mentioned above with reference to document JP 2007238555A, and in particular under conditions of temperature of 80 ° C. to 120 ° C. and of pressure of 0 ° C. , 5 to 1.5 bar.
  • the treated HMTBA stream contains mostly HMTBA. It may contain water, salts, impurities and by-products, especially organic such as functionalized hydroxybutyrolactones and methylthiopropionic aldehyde (MMP).
  • the concentration of HMTBA of the stream to be treated by chromatography is 30 to 90% (m / m), or even 50 to 80% (m / m). If necessary, it is adjusted by addition of water.
  • the chromatography eluent is an aqueous solvent. It is advantageously chosen from water, the water being pure or resulting from recycling, and its mixtures with one or more organic solvents. These are preferably selected from alcohols, such as methanol and ethanol, furans such as tetrahydrofuran, and acetonitrile.
  • the aqueous solvent is chosen from water, an aqueous acidic solution and a basic aqueous solution. It is within the competence of the general skills and knowledge of those skilled in the art to choose the acid or basis, as well as their concentration, according to the HMTBA flow, it being understood that in an implementation on an industrial scale, the most economical solutions will be retained.
  • the chromatography is carried out under conditions of elution rate that the skilled person will determine in view of his general knowledge.
  • the chromatography is performed in a simulated bed mode (SMB) or in a simulated sequential moving bed mode (SSM B).
  • SMB simulated bed mode
  • SSM B simulated sequential moving bed mode
  • the separation step described above is suitable for any flow of HMTBA, in a preferred embodiment it is separated from the ammonium sulfate salts NH 4 HSO 4 or (NH 4 ) 2 HSO 4 and their mixtures, resulting from hydrolysis of HMTBA in the presence of sulfuric acid and then neutralization by addition of ammonia or ammonium hydroxide.
  • any additional steps for the purification of HMTBA may be incorporated into the process at any stage thereof.
  • a distillation step of the hydrolysis medium, for stripping the light molecules, before neutralization can be provided.
  • the above-mentioned chromatographic separation step is carried out on an HMTBA stream which is derived from a separation step, by decantation, of the first phase comprising at least HMTBA and salts and the second phase containing salts.
  • the separation efficiency is in these conditions much greater and the life of the chromatography columns considerably increased. Any other technique for separating these two phases such as centrifugation or liquid / liquid separation can be used as long as it does not involve extraction with solvents.
  • a phase rich in H MTBA and a phase rich in salts are recovered.
  • One and / or the other may be subjected to evaporation and the resulting aqueous solution recycled to at least one of the steps of said process.
  • is then returned to the title by evaporation of the excess water supplied during the separation on said column.
  • the product obtained is a dilute HMTBA which will be recovered at a rate of up to 95% during an evaporation step.
  • the water removed from the HMTBA will advantageously be reintroduced into the process at the chromatographic separation step or elsewhere.
  • the phase containing the ammonium sulphate may be reintroduced at the neutralization stage or elsewhere.
  • This separation may also be used to advantageously separate the sulfur species other than HMTBA to improve the quality of the finished product.
  • the phases containing HMTBA and ammonium sulfate will be treated in the same manner as described above, the new phase containing sulfur products will then be separated and treated suitably.
  • the invention also relates to 2-hydroxy-4-methylthiobutyric acid obtained according to the process above, in which the level of oligomers is reduced relative to the HMTBA obtained according to a method of the prior art and salt content of which is not more than 0.8% (w / w), not more than 0.5% and not more than 0.3%, and even salts only in the form of traces.
  • Figure 1 is a diagram of a known industrial process for manufacturing HMTBA
  • FIG. 2 is a diagram of a process for manufacturing HMTBA, according to the invention, on an industrial scale
  • Figure 3 is a graphical representation of the separation between ammonium sulfate and HMTBA
  • Figure 4 is a graphical representation of the separation of functionalized hydroxybutyrolactones.
  • FIG. 2 The process followed is illustrated in FIG. 2. It can be compared with FIG. 1 corresponding to a conventional process for synthesizing ⁇ .
  • HMTBN is synthesized according to a process which is a variant of that disclosed in EP 0739870A1 described for the synthesis of the amino acid DL-methionine. It differs only in the nitrile synthesis reagent, which according to the present example is ammonia-free water, whereas according to the document, the reagent is an aqueous ammonia solution. This manufacture is well known to those skilled in the art.
  • the product resulting from the above synthesis step is brought into contact with concentrated sulfuric acid, preferably at 98%, in an acidification loop where the product and the acid are mixed together.
  • concentrated sulfuric acid preferably at 98%
  • the acidification is carried out continuously with a large recirculation, by adding the concentrated sulfuric acid to the acidified solution of nitrile, this solution preferably having a concentration of 20-50% by weight of acid.
  • the acidification loop is provided with one or more heat exchangers so that the reaction temperature does not exceed 65 ° C.
  • the sulfuric acid / HMTBN molar ratio is between 0.8-1.5.
  • the proportion of water is adjusted so that the acidified solution is constituted by a single phase and is capable of maintaining in solution the ammonium sulphate which will be formed during the hydrolysis reaction and during the neutralization with the following ammonium hydroxide.
  • reaction medium obtained is heated at a temperature between 110 and 130 ° C, the residence time is between 2 hours and 4 hours to obtain the HMTBA.
  • the hydrolysis reaction mixture is cooled to 50-70 ° C., and its excess acid is neutralized with an ammonia solution of 20-35% by weight, said solution possibly being formed in situ by bubbling NH 3 gaseous. Said neutralization may require cooling in order not to exceed the temperature of 90 ° C.
  • the neutralized mass obtained comprises two phases which have significantly different densities and can be easily decanted. They consist of a first phase which contains 93-95% of ⁇ formed and a second phase which contains the remainder. The ammonium sulphate formed during the hydrolysis reaction and the neutralization of the acid used in excess, is distributed between the two phases, the second phase being the richest with 70-75% by weight.
  • the ammonium sulfate is precipitated by evaporation of the water at atmospheric pressure or under reduced pressure.
  • the resulting solid is separated by any standard solid-liquid separation process such as filtration and / or centrifugation, and the resulting liquid containing the portion of the ammonium sulfate that has not precipitated and the HMTBA , is recycled to the neutralization vessel.
  • This process provides ammonium sulfate which, when dried, has a high purity and is substantially free of HMTBA; the latter is recovered in its entirety by recycling at the beginning of the separation process, while remaining incorporated in the first phase.
  • first phase (Neutralization and recycling) is conducted to an adjustment tank for dilution prior to chromatographic column purification.
  • 800t per day of first phase are treated and in the context of the invention this phase is diluted with 240t per day of recycle water from post-purification evaporation on a chromatographic column.
  • This first phase contains, in particular and before dilution, 65% w / w of HMTBA, 14% w / w of ammonium sulphate, predominantly in its (NH 4 ) 2 SO 4 form .
  • the first diluted phase is then fed to a simulated mobile bed chromatography column for purification.
  • the eluent used is recycle water from the post-purification evaporation. 3700t per day of water are thus used for purification of the first phase which represents 1040t per day after the dilution step.
  • the separation is in the column by steric and ionic exclusion between the liquid phase and the solid phase of the column.
  • the separation between ammonium sulfate and HMTBA is shown in FIG. 3, in which HMTBA is represented under the name "Organic" and ammonium sulfate under the name "Sait".
  • the acronyms ADS and NVS represent liquid chromatographic analyzes carried out on two different sites for confirmation of the results
  • the separation between ammonium sulfate and HMTBA is 95%. In other words, 95% of the ammonium sulphate contained in the first phase is separated by the simulated moving bed technology.
  • This separation on a chromatographic column makes it possible, in addition, to separate an organic majority impurity contained in the first phase.
  • This impurity called MW236, is a functionalized hydroxybutyrolactone.
  • the graphical representation of this separation is given in FIG.
  • the purification step by chromatography can replace at least one or even all the separation steps conventionally performed, as the comparison of FIGS. 1 and 2 shows, and that it makes it possible to obtain a HMTBA, almost free of salts, and decreased oligomers and particularly organic impurities such as functionalized hydroxybutyrolactones and MMP.
  • two main streams are obtained, a first representing 1140t per day and containing 95% of the ammonium sulphate contained in the first starting phase and a second representing 3600t per day of a HMTBA-rich phase.
  • the phase rich in ammonium sulphate is called raffinate. Both phases are then sent to evaporators for concentration and recovery of water for recycling.
  • the ammonium sulphate rich phase is fed to an evaporator for concentration and recovery of water for recirculation in the process.
  • a mechanical compression evaporator is used but any technology Evaporator known to those skilled in the art can be used advantageously at this stage of the process.
  • the water recovered at this stage is redistributed at two points in the process.
  • a first stream representing 655t per day of water is recycled to the chromatography and used as an eluent and a second representative 240t per day of water, used in the first phase dilution step.
  • the concentrated ammonium sulfate phase which represents 125 t / day, is recycled to the neutralization stage of the process.
  • the phase rich in HMTBA output from the chromatography step is also condensed by mechanical compression evaporator or any suitable evaporation technology known to those skilled in the art.
  • the water recovered by evaporation is recycled in the process at the chromatography stage and serves as eluent. This water represents 3020t per day.
  • This evaporation also makes it possible to obtain a phase rich in HMTBA which is advantageously concentrated at 88% w / w of HMTBA to obtain directly the finished product, called AT88.
  • This AT88 product stream represents 560t per day.
  • this finished product contains (in w / w): 88% of HMTBA and its oligomeric derivatives, 11.2% of water, 0.8% of ammonium sulphate and traces of other organic products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

L'invention concerne un procédé de fabrication de l'acide-2-hydroxy-4- méthylthio-butyrique (HMTBA) à partir du 2-hydroxy-4-méthylthio-butyronitrile (HMTBN), comprenant les étapes suivantes: On hydrolyse l'HMTBN en HMTBA en présence d'un acide minéral en milieu aqueux, On neutralise ledit milieu par ajout d'une base, On sépare une première phase comprenant au moins l'HMTBA et des sels et une seconde phase contenant des sels, Ledit procédé comprenant la séparation de l'HMTBA desdits sels de la première phase, en soumettant cette dernière à une chromatographie.

Description

PROCEDE DE FABRICATION DE L'ACIDE-2-HYDROXY-4-METHYLTHIO-BUTYRIQUE
La présente invention concerne un procédé amélioré de préparation de l'acide 2-hydroxy-4-méthylthio-butyrique (HMTBA) et son homologue sélénié, l'acide 2- hydroxy-4-méthylséléno-butyrique. Plus particulièrement, ce procédé intègre une étape performante de purification de l'HMTBA obtenu par hydrolyse acide du 2- hydroxy-4-méthylthio-butyronitrile (HMTBN).
L'acide 2-hydroxy-4-méthylthio-butyrique (HMTBA) et ses analogues tels que les sels, les chélates, notamment les chélates métalliques (de Zn, Ca, Mn, Mg, Cu, Na...) et les esters de ces acides, comme les esters isopropylique et tertiobutylique de l'HMTBA, sont largement utilisés en nutrition animale. Les dérivés séléniés de ces hydroxyanalogues de la méthionine sont eux aussi des constituants d'intérêts majeurs en nutrition animale.
La préparation d'HMTBA peut être opérée par différents procédés d'hydrolyse directe ou indirecte, de l'HMTBN. Cette hydrolyse est classiquement réalisée par un acide minéral tel que l'acide chlorhydrique ou l'acide sulfurique, elle peut aussi être réalisée par hydrolyse enzymatique.
Ainsi WO 00/02852A1 décrit la fabrication d'HMTBA par hydrolyse d'HMTBN avec de l'acide sulfurique en deux étapes. Selon une première étape [1], on réalise une réaction d'hydratation du 2-hydroxy-4-méthylthio-butyronitrile (HMTBN) en 2- hydroxy-4-méthylthio-butyramide (HMTBM) qui est ensuite hydrolysé dans une seconde étape [2] en acide 2-hydroxy-4-méthylthio-butyrique (HMTBA), comme représenté par les réactions ci-dessous :
Figure imgf000002_0001
HMTBN HMTBM HMTBA
Le mélange obtenu contenant l'HMTBA peut être ensuite traité par une ou plusieurs étapes de purification comme décrit dans les documents WO 00/02853A1, US 4524077A, US 4912257A ou JP 2007238555A.
Ainsi selon US 4524077A, on réalise une extraction directe du milieu d'hydrolyse par un solvant non miscible à l'eau, suivie d'une évaporation dudit solvant en présence d'une quantité d'eau de façon à réduire l'apparition d'une coloration brune du produit obtenu. Le solvant est choisi notamment parmi la méthyléthylcétone, la méthylisobutylcétone, le méthyltertiobutyléther, le diisopropyléther, le diéthylcarbonate. On observe alors le relargage d'une phase aqueuse saline. Le solvant est éliminé de la phase organique par évaporation et la solution finale d'HMTBA est adaptée au titre commercial par addition d'eau.
US 4912257A décrit, à la suite des étapes d'hydrolyse d'HMTBN en présence d'acide sulfurique et de neutralisation du milieu réactionnel par de l'ammoniaque, une étape de séparation d'une phase organique contenant l'HMTBA et des sels subsistants et d'une phase aqueuse contenant des sels, essentiellement du sulfate d'ammonium et des traces d'HMTBA, la phase organique étant ensuite concentrée puis filtrée pour récupérer l'HMTBA, d'une part, et la phase aqueuse étant concentrée puis les sels précipités, d'autre part. La mise au titre final de l'H MTBA ainsi obtenu est effectuée par addition d'eau.
Enfin le document JP 2007238555A propose de réaliser, après l'étape d'hydrolyse mais avant l'étape de neutralisation, une distillation pour retirer des molécules légères, majoritairement soufrées et l'acide formique. Cette distillation s'opère à des températures entre 80°C et 120°C et à des pressions entre 0,5 et 1,5 bar. Une séparation biphasique en deux phases organique et aqueuse est ensuite effectuée comme da ns les documents précédents et les deux phases aussi traitées de la même manière.
La synthèse de l'acide 2-hydroxy-4-méthylséléno-butyrique est elle aussi connue. I l peut notamment être fabriqué par hydrolyse acide du 2-hydroxy-4- méthylséléno-butyronitrile comme décrit dans le document WO 2008/049927A1.
Ouelle que soit la technique de séparation des acides précités des sels résultant de la neutralisation, ceux-ci, et spécifiquement le sulfate d'ammonium, peuvent être valorisés et en particulier commercialisés tels quels ou après un ou des traitements complémentaires de purification.
Les procédés connus tels que ceux présentés ci-dessus souffrent toutefois d'inconvénients multiples résultant de la technique d'isolement du produit final HMTBA. I ls sont résumés ci-après :
a) La présence inévitable de 1 à 2% poids de sulfate d'ammonium, affectant la qualité de l'HMTBA et qui dans le produit fini, se substitue à l'eau. En effet, cette plus faible présence d'eau induit, par des lois thermodynamique d'équilibre, une plus grande concentration d'oligomères de l'HMTBA dans le produit fini. Ceci engendre une plus grande viscosité du produit fini et limite son acidité ; b) Une couleur brune foncée et une mauvaise odeur ;
c) Coût opératoire élevé en raison de la fiabilité et de la maintenance des étapes de filtration ;
d) Coût élevé du produit final en raison de l'emploi de moyens tels que l'extraction avec des solvants.
Le procédé de l'invention permet de surmonter l'ensemble de ces inconvénients grâce à la mise en œuvre d'une étape d'isolement de l'HMTBA qui peut se substituer à celle(s) existante(s), cet isolement étant réalisé par chromatographie d'un flux d'HMTBA issu du milieu réactionnel d'hydrolyse et neutralisation.
Ainsi, l'invention apporte un procédé de fabrication de l'HMTBA à partir de
HMTBN, comprenant les étapes suivantes :
On hydrolyse l'HMTBN en HMTBA en présence d'un acide minéral en milieu aqueux,
On neutralise ledit milieu par ajout d'une base,
On sépare une première phase comprenant au moins l'HMTBA et des sels et une seconde phase contenant des sels,
ledit procédé comprenant une étape selon laquelle on réalise la séparation de l'HMTBA desdits sels de la première phase, en soumettant cette dernière à une chromatographie.
Par chromatographie selon l'invention, on entend toute méthode séparative qui permet de séparer une phase comprenant au moins de l'HMTBA et des sels en deux phases, l'une enrichie en HMTBA et l'autre enrichie en sels. Une telle méthode met en œuvre une phase stationnaire et une phase mobile. A titre d'exemples, elle peut être réalisée en lit statique ou non statique dans une ou plusieurs colonnes tels que les systèmes de chromatographie d'au moins deux colonnes décrits dans FR2889077 ou dans l'article Séparation Science and Technology 35(4):519-534, 2000), ou les systèmes de chromatographie d'au moins trois colonnes comme les technologies iSMB telle que décrite dans EP 0342629 et US 5064539), SSMB, AMB, VARICOL™ (telle que décrite dans US 6,136,198, US 6,375,839, US 6,413,419 and US 6,712,973), MODICON™ (telle que décrite dans US 7,479,228), POWERFEED™ (telle que décrite dans US 5,102,553 et l'article «Power Feed opération of simulated moving bed units: changing flow-rates during the switching interval», Zhang et al. in Journal of Chromatography A, 1006:87- 99, 2003), ou MCSGP (Multicolumn Countercurrent Solvent Gradient Purification). II est apparu qu'il est possible d'éliminer des sels de façon très efficace d'un flux contenant de l'HMTBA par une chromatographie qui fait intervenir un double effet d'exclusion à la fois stérique et ionique. A titre indicatif, l'utilisation de cette étape de chromatographie permet de séparer 95% du sulfate d'ammonium contenu dans la première phase ainsi traitée.
La chromatographie est avantageusement réalisée par traitement de la première phase contenant l'HMTBA sur une résine. La résine peut être une résine anionique ou cationique.
Si la résine est anionique, elle est de préférence chargée en anions choisis parmi OH", CI", S04 2".
Si elle est cationique, elle est de préférence chargée en cations choisis parmi NH4 +, H+, Na+, K+ et Ca2+.
Avantageusement, la chromatographie est effectuée selon un mode en lit mobile séquentiel simulé ou Sequential Simulated Moving Bed (SSMB). Par différence d'affinité entre la phase liquide consistant en une solution aqueuse de HMTBA et le solide de la colonne, cette technique permet de séparer les sels minéraux, ici le sulfate d'ammonium, des espèces organiques, ici majoritairement l'HMTBA. En plus de son efficacité, cette séparation ne nécessite aucun ajout d'autre réactif et n'entraîne la formation d'aucun sel supplémentaire. Un autre avantage à cette technologie est la facilité d'exploitation et la longue durée de vie des colonnes.
Le flux d'HMTBA qui est traité dans le cadre du procédé de l'invention est donc issu du milieu de neutralisation. Selon une variante, l'étape de neutralisation peut être précédée d'une étape de distillation telle que mentionnée précédemment en référence au document JP 2007238555A, et en particulier dans des conditions de température de 80°C à 120°C et de pression de 0,5 à 1,5 bar. Le flux d'HMTBA traité contient majoritairement de l'HMTBA. Il peut contenir de l'eau, des sels, des impuretés et des sous-produits, notamment organiques comme des hydroxybutyrolactones fonctionnalisées et de l'aldéhyde méthylthioproprionique (MMP). De préférence, la concentration en HMTBA du flux à traiter par chromatographie est de 30 à 90% (m/m), voire de 50 à 80% (m/m). Si nécessaire, elle est ajustée par addition d'eau.
Dans une version préférée, l'éluant de chromatographie est un solvant aqueux. II est avantageusement choisi parmi l'eau, l'eau étant pure ou issue d'un recyclage, et ses mélanges avec un ou des solvants organiques. Ces derniers sont de préférence choisis parmi les alcools, comme le méthanol et l'éthanol, les furanes comme le tétrahydrofurane, et l'acétonitrile.
Selon une variante de l'invention, le solvant aqueux est choisi parmi l'eau, une solution aqueuse acide et une solution aqueuse basique. Il est du ressort des compétences et connaissances générales de l'homme du métier de choisir l'acide ou la base, ainsi que leur concentration, en fonction du flux d'HMTBA, étant entendu que dans une mise en œuvre à l'échelle industrielle, les solutions les plus économiques seront retenues.
Avantageusement, la chromatographie est réalisée dans des conditions de vitesse d'élution que l'homme du métier déterminera au vu de ses connaissances générales.
Dans une mise en œuvre particulière de l'étape de séparation, la chromatographie est effectuée selon un mode en lit simulé (SMB) ou selon un mode en lit mobile séquentiel simulé (SSM B).
Bien que l'étape de séparation décrite ci-dessus soit ada ptée à tout flux d'HMTBA, da ns un mode préféré, il est séparé des sels de sulfate d'ammonium NH4HS04 ou (NH4)2HS04 et leurs mélanges, provenant d'une hydrolyse de l'HMTBA en présence d'acide sulfurique puis neutralisation par ajout d'ammoniac ou d'hydroxyde d'ammonium.
Toute étape supplémentaire aux fins de la purification de l'HMTBA peut être incorporée dans le procédé à tout stade de celui-ci. Ainsi, comme indiqué précédemment, une étape de distillation du milieu d'hydrolyse, pour le stripping des molécules légères, avant neutralisation, peut être prévue. Aussi, selon une mise en œuvre très avantageuse du procédé de l'invention, l'étape de séparation par chromatographie précitée est réalisée sur un flux d'HMTBA qui est issu d'une étape de séparation, par décantation, de la première phase comprenant au moins l'HMTBA et des sels et de la seconde phase contenant des sels. L'efficacité de séparation est da ns ces conditions beaucoup plus grande et la durée de vie des colonnes de chromatographie considérablement augmentée. Toute a utre technique de séparation de ces deux phases telle que centrifugation ou séparation liquide/liquide peut être employée dès lors qu'elle n'implique pas d'extraction avec des solvants. Elle facilite extraordinairement les processus subséquents de purification et de récupération totale du HMTBA, d'une part, et du sulfate d'ammonium, d'autre part, avec un rendement et une efficacité élevés. Ainsi des techniques de séparation du type extraction impliquant un solvant non miscible à l'eau ne sont pas nécessaires voire contre-productives ; elles n'améliorent pas substantiellement la qualité ni le rendement, augmentent le prix du procédé et compliquent l'installation.
A la sortie de l'étape de séparation par chromatographie, on récupère une phase riche en H MTBA et une phase riche en sels. L'une et/ou l'autre peuvent être soumises à éva poration et le solva nt aqueux résultant recyclé à a u moins l'une quelconque des étapes dudit procédé. En sortie de colonne de chromatographie, ΓΗΜΤΒΑ est ensuite remis au titre par évaporation de l'excédent d'eau apporté lors de la séparation sur ladite colonne. Cette amélioration du procédé de fabrication de l'HMTBA permet d'augmenter la qualité du produit fini ainsi que faciliter l'exploitation.
Le produit obtenu est un HMTBA dilué qui sera remis à un titre pouvant atteindre 95%, lors d'une étape d'évaporation. L'eau retirée de l'HMTBA sera avantageusement réintroduite dans le procédé à l'étape de séparation chromatographique ou ailleurs. La phase contenant le sulfate d'ammonium pourra être réintroduite à l'étape de neutralisation ou ailleurs.
Le reste du procédé restant identique.
Cette séparation pourra également être utilisée pour séparer avantageusement les espèces soufrées autres que l'HMTBA pour améliorer la qualité du produit fini. Les phases contenant l'HMTBA et le sulfate d'ammonium seront traitées de la même façon que décrit plus haut, la nouvelle phase contenant des produits soufrés sera alors séparée et traitée à convenance.
L'invention concerne aussi l'acide 2-hydroxy-4-méthylthio-butyrique obtenu selon le procédé ci-dessus, dans lequel le taux d'oligomères est réduit par rapport à l'HMTBA obtenu selon un procédé de l'art antérieur et dont la proportion en sels est d'au plus 0,8% (m/m), voire d'au plus 0,5% et même d'au plus 0,3%, et même des sels seulement à l'état de traces.
La présente invention sera plus complètement décrite et ses avantages par rapport à l'état de la technique ressortiront à l'aide des exemples illustrant la fabrication d'HMTBA selon un procédé de l'invention, à l'échelle industrielle, et à l'appui des figures 1-4 ci-jointes selon lesquelles :
La figure 1 est un schéma d'un procédé industriel connu de fabrication de l'HMTBA ;
La figure 2 est un schéma d'un procédé de fabrication de l'HMTBA, selon l'invention, à l'échelle industrielle ;
La figure 3 est une représentation graphique de la séparation entre le sulfate d'ammonium et l'HMTBA
La figure 4 est une représentation graphique de la séparation d'hydroxybutyrolactones fonctionnalisées.
Cet exemple n'est bien entendu pas limitatif tant dans les conditions de mises en œuvre que dans le composé obtenu, qui selon l'invention peut aussi être l'acide 2- hydroxy-4-méthylséléno-butyrique. EXEMPLE : Fabrication d'HMTBA à partir d'HMTBN, selon l'invention
Le procédé suivi est illustré à la figure 2. Il peut être comparé à la figure 1 correspondant à un procédé classique de synthèse de ΓΗΜΤΒΑ.
1) Synthèse de ΓΗΜΤΒΝ
L'HMTBN est synthétisé selon un procédé qui est une variante de celui exposé dans le document EP 0739870A1 décrit pour la synthèse de l'acide aminé DL- méthionine. Il n'en diffère que par le réactif de synthèse du nitrile, qui selon le présent exemple est de l'eau exempte d'ammoniac, alors que selon le document, le réactif est une solution aqueuse ammoniacale. Cette fabrication est bien connue de l'homme du métier.
2) Synthèse de l'HMTBA
2.1) Hydrolyse de l'HMTBN
Le produit issu de l'étape de synthèse ci-dessus est mis en contact d'acide sulfurique concentré, de préférence à 98 %, dans une boucle d'acidification où le produit et l'acide sont mélangés les deux produits. Afin d'éviter des échauffements locaux conduisant à la destruction du nitrile et à la formation de réactions secondaires entraînant une augmentation de coloration, l'acidification est réalisée en continu avec une grande recirculation, en ajoutant l'acide sulfurique concentré à la solution acidifiée du nitrile, cette solution ayant de préférence une concentration de 20-50 % en poids d'acide.
Comme il est nécessaire d'éliminer la chaleur de dilution de l'acide sulfurique, la boucle d'acidification est pourvue d'un ou de plusieurs échangeurs de chaleur de façon que la température de réaction ne dépasse pas 65°C.
Le rapport molaire acide sulfurique/HMTBN est compris entre 0,8-1,5. La proportion d'eau est ajustée de telle manière que la solution acidifiée soit constituée par une seule phase et soit capable de maintenir en solution le sulfate d'ammonium qui va se former durant la réaction d'hydrolyse et au cours de la neutralisation avec de l'hydroxyde d'ammonium qui suit.
Après un temps de contact de 30-60 minutes, de l'eau est ajoutée jusqu'à obtenir une concentration de 20% à la sortie de l'étape d'hydrolyse. Le milieu réactionnel obtenu est chauffé à une température comprise entre 110 et 130°C, le temps de séjour est compris entre 2 heures et 4 heures pour obtenir le HMTBA.
Pendant le déroulement de l'hydrolyse, il convient d'appliquer au réacteur un léger vide (entre environ 20 et 200 mm) de façon à éliminer le petit excès de HCN utilisé dans la synthèse du HMTBN, ainsi que les impuretés volatiles qui pourraient s'être formées dans la réaction et auxquelles on attribue la mauvaise odeur du produit final. 2.2) Neutralisation du milieu d'hydrolyse
Le mélange réactionnel d'hydrolyse est refroidi à 50-70°C, et son excès d'acide est neutralisé avec une solution d'ammoniac de 20-35% en poids, ladite solution pouvant éventuellement être formée in situ par barbotage de NH3 gazeux. Ladite neutralisation peut nécessiter un refroidissement pour ne pas dépasser la température de 90°C.
3) Purification de Γ HMTBA
3.1) Etapes préalables de séparation
La masse neutralisée obtenue comprend deux phases qui présentent des densités nettement différentes et peuvent être facilement décantées Elles consistent en une première phase qui contient 93-95 % de ΓΗΜΤΒΑ formé et une seconde phase qui renferme le reste. Le sulfate d'ammonium formé durant la réaction d'hydrolyse et la neutralisation de l'acide utilisé en excès, se répartit entre les deux phases, la seconde phase étant la plus riche avec 70-75 % en poids.
A partir de la seconde phase on précipite le sulfate d'ammonium par évaporation de l'eau à la pression atmosphérique ou sous pression réduite. Le solide résultant est séparé par n'importe quel procédé standard de séparation solide-liquide tel que la filtration et/ou la centrifugation, et le liquide ainsi obtenu, contenant la partie du sulfate d'ammonium qui n'a pas précipité et le HMTBA, est recyclé au récipient de neutralisation. Ce procédé permet d'obtenir du sulfate d'ammonium qui, une fois séché, possède une grande pureté et est pratiquement exempt de HMTBA ; ce dernier est récupéré dans sa totalité par recyclage en tête du processus de séparation, tout en restant incorporé à la première phase.
3.2) Etape de séparation par chromatographie selon l'invention
La première phase qui provient du décanteur et contient ΓΗΜΤΒΑ des deux flux
(de neutralisation et de recyclage) est conduite à un réservoir d'ajustement pour effectuer une dilution avant purification sur colonne chromatographique. En fonctionnement normal, 800t par jour de première phase sont traitées et dans le cadre de l'invention cette phase est diluée avec 240t par jour d'eau de recyclage provenant de l'évaporation post-purification sur colonne chromatographique. Cette première phase contient notamment et avant dilution, 65%p/p d'HMTBA, 14%p/p de sulfate d'ammonium majoritairement sous sa forme (NH4)2S04.
La première phase diluée est ensuite acheminée sur une colonne chromatographique de technologie lit mobile simulé pour purification. L'éluant utilisé est de l'eau de recyclage provenant de l'évaporation post-purification. 3700t par jour d'eau sont ainsi utilisées pour purification de la première phase qui représente 1040t par jour après l'étape de dilution. La séparation se fait dans la colonne par exclusion stérique et ionique entre la phase liquide et la phase solide de la colonne. La séparation entre le sulfate d'ammonium et l'HMTBA est représenté sur la figure 3, sur laquelle l'HMTBA est représenté sous l'appellation « Organic » et le sulfate d'ammonium sous l'appellation « Sait ». Les sigles ADS et NVS représentant des analyses par chromatographie liquide effectuées sur deux sites différents pour confirmation des résultats
La séparation entre le sulfate d'ammonium et l'HMTBA est de 95%. Autrement dit, 95% du sulfate d'ammonium contenu dans la première phase sont séparés par la technologie de lit mobile simulé.
Cette séparation sur colonne chromatographique permet la possibilité, en outre, de séparer une impureté majoritaire organique contenue dans la première phase. Cette impureté, appelée MW236, est une hydroxybutyrolactone fonctionnalisée. La représentation graphique de cette séparation est donnée sur la figure 4.
80%p/p de cette impureté peut être retirée de la première phase par cette technologie séparative.
Il ressort de cet exemple que l'étape de purification par chromatographie peut remplacer au moins l'une voire toutes les étapes de séparation classiquement effectuées, comme la comparaison des figures 1 et 2 le met en évidence, et qu'elle permet d'obtenir un HMTBA, quasiment exempt de sels, et diminué en oligomères et en impuretés notamment organiques comme les hydroxybutyrolactones fonctionnalisées et le MMP.
La séparation des espèces ne se limitent pas à ces exemples.
Les exemples suivants illustrent l'étape de purification du procédé de l'invention réalisée sur d'autres flux d'HMTBA que celui de l'exemple précédent.
A la sortie de la colonne de chromatographie deux flux principaux sont obtenus, un premier représentant 1140t par jour et contenant 95% du sulfate d'ammonium contenu dans la première phase de départ et un deuxième représentant 3600t par jour d'une phase riche en HMTBA. La phase riche en sulfate d'ammonium est appelée raffinât. Les deux phases sont ensuite acheminées vers des évaporateurs pour concentration et récupération de l'eau pour recyclage.
La phase riche en sulfate d'ammonium, appelée raffinât, est acheminée vers un évaporateur pour concentration et récupération de l'eau pour recirculation dans le procédé. Un évaporateur par compression mécanique est utilisé mais toute technologie d'évaporateur connue de l'homme de l'art peut être utilisée avantageusement à cette étape du procédé.
L'eau récupérée à cette étape est redistribuée à deux endroits du procédé. Un premier flux représentant 655t par jour d'eau est recyclé à la chromatographie et utilisé comme éluant et un second représentant 240t par jour d'eau, utilisé dans l'étape de dilution de la première phase.
La phase concentrée en sulfate d'ammonium qui représente 125t par jour est recyclée à l'étape de neutralisation du procédé.
Un excès de condensât, représentant 105t par jour est éliminé du système à cette étape.
La phase riche en HMTBA sortie de l'étape de chromatographie est elle aussi condensée par évaporateur à compression mécanique ou toute technologie appropriée d'évaporation connue de l'homme de l'art. L'eau récupérée par évaporation est recyclée dans le procédé à l'étape de chromatographie et sert comme éluant. Cette eau représente 3020t par jour.
Cette évaporation permet également d'obtenir une phase riche en HMTBA qui est avantageusement concentrée à 88% p/p d'HMTBA pour obtenir directement le produit fini, appelée AT88. Ce flux de produit AT88 représente 560t par jour. Typiquement ce produit fini contient (en p/p): 88% d'HMTBA et ses dérivés oligomériques, 11,2% d'eau, 0,8% de sulfate d'ammonium et des traces d'autres produits organiques.
Le tableau ci-après présente l'efficacité d'un procédé de l'invention par rapport à un procédé connu, à partir d'un même flux de la première phase en sortie de décantation à un débit de 33 300 kg/h, en donnant la composition du produit fini :
Tableau
Figure imgf000011_0001
Grâce au procédé de l'invention, on obtient ΓΗΜΤΒΑ dans lequel la proportion subsistante de sels est diminuée de moitié et dans lequel on ne détecte plus d'impuretés organiques.

Claims

REVENDICATIONS
1. Procédé de fabrication de racide-2-hydroxy-4-méthylthio-butyrique (HMTBA) à partir du 2-hydroxy-4-méthylthio-butyronitrile (HMTBN), comprenant les étapes suivantes :
On hydrolyse ΓΗΜΤΒΝ en HMTBA en présence d'un acide minéral en milieu aqueux,
On neutralise ledit milieu par ajout d'une base,
On sépare une première phase comprenant au moins ΓΗΜΤΒΑ et des sels et une seconde phase contenant des sels,
Ledit procédé étant caractérisé en ce qu'on réalise la séparation de ΓΗΜΤΒΑ desdits sels de la première phase, en soumettant cette dernière à une chromatographie .
2. Procédé selon la revendication 1, caractérisé ce que la chromatographie est effectuée par traitement de la première phase contenant ΓΗΜΤΒΑ sur une résine.
3. Procédé selon la revendication 2, caractérisé en ce que la résine est une résine anionique qui est de préférence chargée en anions choisis parmi OH", Cl", S04 2".
4. Procédé selon la revendication 2, caractérisé en ce que la résine est une résine cationique qui est de préférence chargée en cations choisis parmi NH4 +, H+, Na+, K+ et Ca2+.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'éluant de la chromatographie est un solvant aqueux.
6. Procédé selon la revendication 5, caractérisé en ce que le solvant aqueux est choisi parmi l'eau et ses mélanges avec un ou des solvants organiques tels que les alcools et notamment le méthanol et l'éthanol, les furanes et notamment le tétrahydrofurane et l'acétonitrile.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le solvant aqueux est choisi parmi l'eau, une solution aqueuse acide et une solution aqueuse basique.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la chromatographie est effectuée selon un mode en lit simulé (SMB) ou selon un mode en lit mobile séquentiel simulé (SSMB).
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé ce que, avant séparation, la concentration de la première phase en HMTBA va de 30 à 90% (m/m), de préférence 50 à 80% (m/m).
10. Procédé selon la revendication 9, caractérisé en ce que la concentration en HMTBA est ajustée par addition d'eau.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'hydrolyse de l'HMTBN est effectuée en présence d'acide sulfurique et en ce que la neutralisation est effectuée par ajout d'ammoniac ou d'hydroxyde d'ammonium.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, après l'hydrolyse de l'HMTBN et avant la neutralisation, on réalise une distillation à une température de 80°C à 120°C et une pression de 0,5 à 1,5 bar.
13. Procédé selon la revendication 1, caractérisé ce qu'on sépare la première phase comprenant au moins l'HMTBA et des sels et la seconde phase contenant des sels, par décantation.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la phase riche en HMTBA et/ou la phase riche en sels récupérées à l'issue de la chromatographie sont soumises à évaporation et le solvant aqueux résultant recyclé à au moins l'une quelconque des étapes dudit procédé.
PCT/FR2018/050550 2017-03-16 2018-03-09 Procédé de fabrication de l'acide-2-hydroxy-4-méthylthio-butyrique Ceased WO2018167405A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880016345.2A CN110382461B (zh) 2017-03-16 2018-03-09 用于制备2-羟基-4-(甲硫基)丁酸的方法
JP2019550809A JP6961009B2 (ja) 2017-03-16 2018-03-09 2−ヒドロキシ−4−(メチルチオ)酪酸の製造方法
EP18713322.8A EP3596045B1 (fr) 2017-03-16 2018-03-09 Procédé de fabrication de l'acide-2-hydroxy-4-méthylthio-butyrique
US16/624,323 US11242316B2 (en) 2017-03-16 2018-03-09 Method for manufacturing 2-hydroxy-4-(methylthio)butyric acid
ES18713322T ES2884048T3 (es) 2017-03-16 2018-03-09 Procedimiento de fabricación del ácido 2-hidroxi-4-metiltio-butírico
RU2019130014A RU2759910C2 (ru) 2017-03-16 2018-03-09 Способ получения 2-гидрокси-4-(метилтио)бутановой кислоты
KR1020197028147A KR102292913B1 (ko) 2017-03-16 2018-03-09 2-하이드록시-4-(메틸티오)부티르산의 제조 방법
SG11201908529Y SG11201908529YA (en) 2017-03-16 2018-03-09 Method for manufacturing 2-hydroxy-4-(methylthio)butyric acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752163A FR3064006B1 (fr) 2017-03-16 2017-03-16 Procede de fabrication de l'acide-2-hydroxy-4-methylthio-butyrique
FR17/52163 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018167405A1 true WO2018167405A1 (fr) 2018-09-20

Family

ID=58707852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050550 Ceased WO2018167405A1 (fr) 2017-03-16 2018-03-09 Procédé de fabrication de l'acide-2-hydroxy-4-méthylthio-butyrique

Country Status (11)

Country Link
US (1) US11242316B2 (fr)
EP (1) EP3596045B1 (fr)
JP (1) JP6961009B2 (fr)
KR (1) KR102292913B1 (fr)
CN (1) CN110382461B (fr)
ES (1) ES2884048T3 (fr)
FR (1) FR3064006B1 (fr)
RU (1) RU2759910C2 (fr)
SG (1) SG11201908529YA (fr)
TW (1) TWI756385B (fr)
WO (1) WO2018167405A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232336A (zh) * 2018-11-09 2019-01-18 禄丰天宝磷化工有限公司 一种清洁环保的蛋氨酸羟基类似物生产方法
CN110483348A (zh) * 2019-09-03 2019-11-22 蓝星安迪苏南京有限公司 包含蛋氨酸羟基类似物及其低聚物的混合物及其制备方法
RU2841154C1 (ru) * 2020-10-23 2025-06-03 Адиссео Франс С.А.С. Способ каталитического получения аналога метионина

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349671B (zh) * 2022-03-18 2022-05-27 蓝星安迪苏南京有限公司 化合物及蛋氨酸羟基衍生物的制备方法
JP2024097644A (ja) * 2023-01-06 2024-07-19 Jfeスチール株式会社 焼鈍酸洗鋼板の製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524077A (en) 1983-11-14 1985-06-18 Monsanto Company Liquid 2-hydroxy-4-methylthiobutyric acid and process for the preparation thereof
EP0342629A1 (fr) 1988-05-17 1989-11-23 Mitsubishi Kasei Engineering Company Méthode de séparation chromatographique
US4912257A (en) 1988-02-22 1990-03-27 Sociedad De Desarrollo Tecnico Industrial Process for preparation of aqueous solutions of 2-hydroxy-4-methylthio butyric acid
US5102553A (en) 1988-12-16 1992-04-07 The Amalgamated Sugar Company Time variable simulated moving bed process
EP0739870A1 (fr) 1995-04-24 1996-10-30 Rhone-Poulenc Nutrition Animale Procédé de condensation de l'acide cyanhydrique avec un aldehyde
WO2000002852A1 (fr) 1998-07-10 2000-01-20 Aventis Animal Nutrition S.A. Procede de preparation de l'acide hydroxymethylthiobutyrique
WO2000002853A1 (fr) 1998-07-10 2000-01-20 Aventis Animal Nutrition S.A. Procede de separation de l'acide hydroxymethylthiobutyrique
US6136198A (en) 1998-10-29 2000-10-24 Institut Francais Du Petrole Process and device for separation with variable-length
US6375839B1 (en) 1998-10-29 2002-04-23 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
US6413419B1 (en) 1998-10-29 2002-07-02 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic
FR2889077A1 (fr) 2005-07-26 2007-02-02 Novasep Soc Par Actions Simpli Procede et dispositif de separation chromatographique de fractions d'un melange
JP2007238555A (ja) 2006-03-10 2007-09-20 Sumitomo Chemical Co Ltd 2−ヒドロキシ−4−メチルチオブタン酸の製造方法および製造装置
WO2008049927A1 (fr) 2006-10-27 2008-05-02 Tetrahedron Procédé de préparation de l'acide 2-hydroxy-4-méthylsélénobutyrique, seul ou en mélange avec son analogue soufré, ainsi que leurs utilisations en nutrition, en particulier en nutrition animale
US7479228B2 (en) 2002-08-02 2009-01-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for chromatographic component separation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1006756B (zh) * 1984-02-24 1990-02-14 孟山都公司 2-羟基-4-甲硫基丁酸液体动物饲料添加剂及其制备方法
DE60113158T2 (de) * 2000-12-22 2006-06-08 Eastman Chemical Co., Kingsport Verfahren zur herstellung von ascorbinsäure in gegenwart eines sulfits
JP4587694B2 (ja) * 2004-04-07 2010-11-24 旭化成ケミカルズ株式会社 アミノ酸とイミノジカルボン酸を分離回収する方法
JP4696496B2 (ja) * 2004-08-18 2011-06-08 住友化学株式会社 2−ヒドロキシ−4−メチルチオ酪酸の製造方法
CN104177280A (zh) * 2013-05-23 2014-12-03 厦门世达膜科技有限公司 一种蛋氨酸生产工艺
CN104262216A (zh) * 2014-10-15 2015-01-07 重庆紫光化工股份有限公司 一种2-羟基-4-甲硫基丁酸的制备方法
CN104693082A (zh) * 2015-04-03 2015-06-10 重庆紫光化工股份有限公司 一种制备蛋氨酸的方法
CN104926701B (zh) * 2015-06-30 2017-05-03 西安蓝晓科技新材料股份有限公司 一种蛋氨酸纯化的工艺
CN105130861A (zh) * 2015-07-28 2015-12-09 重庆紫光国际化工有限责任公司 氰醇水解法合成蛋氨酸羟基类似物的分离纯化方法
CN109310110A (zh) * 2016-06-24 2019-02-05 诺华丝国际股份有限公司 适用于特种化学应用的羟基甲硫氨酸类似物制剂
CN106432018A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的环保清洁生产方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524077A (en) 1983-11-14 1985-06-18 Monsanto Company Liquid 2-hydroxy-4-methylthiobutyric acid and process for the preparation thereof
US4912257A (en) 1988-02-22 1990-03-27 Sociedad De Desarrollo Tecnico Industrial Process for preparation of aqueous solutions of 2-hydroxy-4-methylthio butyric acid
EP0342629A1 (fr) 1988-05-17 1989-11-23 Mitsubishi Kasei Engineering Company Méthode de séparation chromatographique
US5064539A (en) 1988-05-17 1991-11-12 Ryoka Techno Engineering & Construction Co. Method of chromatographic separation
US5102553A (en) 1988-12-16 1992-04-07 The Amalgamated Sugar Company Time variable simulated moving bed process
EP0739870A1 (fr) 1995-04-24 1996-10-30 Rhone-Poulenc Nutrition Animale Procédé de condensation de l'acide cyanhydrique avec un aldehyde
WO2000002852A1 (fr) 1998-07-10 2000-01-20 Aventis Animal Nutrition S.A. Procede de preparation de l'acide hydroxymethylthiobutyrique
WO2000002853A1 (fr) 1998-07-10 2000-01-20 Aventis Animal Nutrition S.A. Procede de separation de l'acide hydroxymethylthiobutyrique
US6136198A (en) 1998-10-29 2000-10-24 Institut Francais Du Petrole Process and device for separation with variable-length
US6375839B1 (en) 1998-10-29 2002-04-23 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
US6413419B1 (en) 1998-10-29 2002-07-02 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic
US6712973B2 (en) 1998-10-29 2004-03-30 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
US7479228B2 (en) 2002-08-02 2009-01-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for chromatographic component separation
FR2889077A1 (fr) 2005-07-26 2007-02-02 Novasep Soc Par Actions Simpli Procede et dispositif de separation chromatographique de fractions d'un melange
JP2007238555A (ja) 2006-03-10 2007-09-20 Sumitomo Chemical Co Ltd 2−ヒドロキシ−4−メチルチオブタン酸の製造方法および製造装置
WO2008049927A1 (fr) 2006-10-27 2008-05-02 Tetrahedron Procédé de préparation de l'acide 2-hydroxy-4-méthylsélénobutyrique, seul ou en mélange avec son analogue soufré, ainsi que leurs utilisations en nutrition, en particulier en nutrition animale

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SÉPARATION SCIENCE AND TECHNOLOGY, vol. 35, no. 4, 2000, pages 519 - 534
ZHANG ET AL.: "Power Feed opération of simulated moving bed units: changing flow-rates during the switching interval", JOURNAL OF CHROMATOGRAPHY A, vol. 1006, no. 87-99, 2003

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232336A (zh) * 2018-11-09 2019-01-18 禄丰天宝磷化工有限公司 一种清洁环保的蛋氨酸羟基类似物生产方法
CN110483348A (zh) * 2019-09-03 2019-11-22 蓝星安迪苏南京有限公司 包含蛋氨酸羟基类似物及其低聚物的混合物及其制备方法
CN110483348B (zh) * 2019-09-03 2021-12-07 蓝星安迪苏南京有限公司 包含蛋氨酸羟基类似物及其低聚物的混合物及其制备方法
KR20220054672A (ko) * 2019-09-03 2022-05-03 블루스타 아디쎄오 난징 컴퍼니 리미티드 메티오닌 하이드록시 유사체 및 그의 올리고머를 포함하는 혼합물 및 그 제조 방법
JP2022547037A (ja) * 2019-09-03 2022-11-10 藍星安迪蘇南京有限公司 メチオニンヒドロキシアナログ及びそのオリゴマーを含む混合物、並びにその製造方法
US20230210138A1 (en) * 2019-09-03 2023-07-06 Bluestar Adisseo Nanjing Co., Ltd. Mixture Containing Methionine Hydroxy Analog and Oligomer Thereof, and Preparation Method Therefor
JP7367193B2 (ja) 2019-09-03 2023-10-23 藍星安迪蘇南京有限公司 メチオニンヒドロキシアナログ及びそのオリゴマーを含む混合物、並びにその製造方法
KR102742205B1 (ko) 2019-09-03 2024-12-16 블루스타 아디쎄오 난징 컴퍼니 리미티드 메티오닌 하이드록시 유사체 및 그의 올리고머를 포함하는 혼합물 및 그 제조 방법
RU2841154C1 (ru) * 2020-10-23 2025-06-03 Адиссео Франс С.А.С. Способ каталитического получения аналога метионина

Also Published As

Publication number Publication date
US20210188769A1 (en) 2021-06-24
CN110382461A (zh) 2019-10-25
FR3064006A1 (fr) 2018-09-21
SG11201908529YA (en) 2019-10-30
TW201841883A (zh) 2018-12-01
EP3596045B1 (fr) 2021-04-28
KR102292913B1 (ko) 2021-08-23
TWI756385B (zh) 2022-03-01
KR20190130579A (ko) 2019-11-22
RU2759910C2 (ru) 2021-11-18
JP6961009B2 (ja) 2021-11-05
US11242316B2 (en) 2022-02-08
RU2019130014A (ru) 2021-04-16
ES2884048T3 (es) 2021-12-10
RU2019130014A3 (fr) 2021-05-26
EP3596045A1 (fr) 2020-01-22
FR3064006B1 (fr) 2019-03-29
JP2020510076A (ja) 2020-04-02
CN110382461B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
EP3596045B1 (fr) Procédé de fabrication de l'acide-2-hydroxy-4-méthylthio-butyrique
BE1005719A3 (fr) Procede de production d'epichlorhydrine.
EP0330527B1 (fr) Procédé de préparation de solutions aqueuses de l'acide 2-hydroxy-4-méthylthio-butyrique
EP2791098B1 (fr) Procede de purification de la vanilline par extraction liquide-liquide
EP2294041B1 (fr) Procede de purification du glycerol brut
EP3063123B1 (fr) Procede de production d'esters (meth)acryliques legers
EP1097130B1 (fr) Procede de preparation de l'acide hydroxymethylthiobutyrique
FR2470762A1 (fr) Procede de traitement d'un residu de production d'acide adipique
EP2616452A1 (fr) Procede de fabrication de dioxolane
FR2581384A1 (fr) Procede d'extraction de tocopherol a l'aide de methanol
FR2780969A1 (fr) Procede de separation de l'acide hydroxymethylthiobutyrique
LU81684A1 (fr) Procede d'elimination des sels de potassium des sous produits de distillation
EP0296990B1 (fr) Procédé de fabrication de polybutadiène hydroxylé
EP1871736A1 (fr) Procede perfectionne de fabrication de (meth)acrylates d'alkyle par esterification directe
EP0222673B1 (fr) Procédé de préparation de sels alcalins de l'acide trifluoroacétique à l'état anhydre et cristallisé
EP3259244B1 (fr) Procédé de production de dioléfines à partir d'une charge diol diluée
FR3154728A1 (fr) Production de 5-HMF dans un solvant non aqueux avec concentration du 5-HMF avant extraction liquide-liquide
WO2012034904A1 (fr) Procede de purification du glycerol brut
BE434051A (fr)
BE484985A (fr)
FR2492371A1 (fr) Procede pour la recuperation de l'acide omega-amino-dodecanoique a partir des liqueurs-meres de cristallisation et acide obtenu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18713322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028147

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019130014

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2018713322

Country of ref document: EP

Effective date: 20191016