[go: up one dir, main page]

WO2018167672A1 - Compositions contenant une hydrofluorooléfine et procédés d'utilisation de celles-ci - Google Patents

Compositions contenant une hydrofluorooléfine et procédés d'utilisation de celles-ci Download PDF

Info

Publication number
WO2018167672A1
WO2018167672A1 PCT/IB2018/051674 IB2018051674W WO2018167672A1 WO 2018167672 A1 WO2018167672 A1 WO 2018167672A1 IB 2018051674 W IB2018051674 W IB 2018051674W WO 2018167672 A1 WO2018167672 A1 WO 2018167672A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrofluoroolefin
composition according
composition
heat transfer
tempo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2018/051674
Other languages
English (en)
Inventor
Zhongxing Zhang
Sean M. Smith
Karl J. Warren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of WO2018167672A1 publication Critical patent/WO2018167672A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/048Boiling liquids as heat transfer materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • B23K1/015Vapour-condensation soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • compositions, apparatuses, and methods that include hydrofluoroolefins.
  • a composition comprising a hydrofluoroolefin having Structural Formula (I):
  • Rf is a perfluoroalkyl group having 2 - 6 carbon atoms.
  • the composition further includes a free radical scavenger.
  • an apparatus for heat transfer includes a device and a mechanism for transferring heat to or from the device.
  • the mechanism includes a heat transfer fluid that comprises the above-described composition.
  • HFOs hydrofluoroolefins
  • HFOs hydrofluoroolefins
  • these HFOs have very good environmental and toxicological properties such as low global warming potential and low toxicity.
  • dissolved oxygen reacts with the HFOs to form epoxides and other undesirable oxidation byproducts.
  • epoxidation by oxygen proceeds by nucleophilic mechanism where oxygen first performs a nucleophilic conjugate addition to alkene to give a stabilized carbon ion. This carbon ion then attacks the same oxygen atom to close epoxide ring and form epoxidation products.
  • the epoxidation is occurring via a free radical mechanism. It has been further discovered that certain additives can significantly inhibit the reaction of oxygen with the HFOs and prevent formation of epoxides and other oxidation by-products.
  • the present disclosure is directed to the incorporation of additives into certain hydrofluoroolefin containing working fluids to improve the stability and useful working life time of such fluids.
  • the additives may function to inhibit reactions of the hydrofluoroolefins with oxygen and prevent formation of epoxides and other oxidation byproducts when the working fluids are used in high temperature environments.
  • device refers to an object or contrivance which is heated, cooled, or maintained at a predetermined temperature or temperature range
  • free radical scavenger refers to a molecule or compound that functions to remove or de-activate free radical impurities such as those generated by oxidants
  • int refers to chemical compositions that are generally not chemically reactive under normal conditions of use
  • mechanism refers to a system of parts or a mechanical appliance
  • perfluoro- (for example, in reference to a group or moiety, such as in the case of "perfluoroalkylene” or “perfluoroalkylcarbonyl” or “perfluorinated”) means completely fluorinated such that, except as may be otherwise indicated, there are no carbon-bonded hydrogen atoms replaceable with fluorine.
  • the present disclosure is directed to a working fluid that includes a hydrofluoroolefin and a free radical scavenger.
  • the hydrofluoroolefin may be represented by Structural Formula (I):
  • each Rf is, independently, a perfluoroalkyl group having 1-6, 2-6, 3-5, 3-4, or 3 carbon atoms. In some embodiments, each Rf is the same perfluoroalkyl group.
  • the hydfluoroolefin may be a liquid at 25, 22, or 20 degrees Celsius. In some embodiments, the hydfluoroolefin may be represented by Structural Formula (II):
  • hydrofluoroolefin compounds may include the E isomer, the Z isomer, or any mixture of the E and Z isomers, irrespective of what is depicted in any of the general formulas or chemical structures.
  • the working fluids of the present disclosure may further include one or more free radical scavengers.
  • the free radical scavengers may be present in the working fluids in an amount of between 1 and 10,000 ppm, 1 and 1000 ppm, or 10 and 100 ppm, based on the total weight of the hydrofluoroolefin and the free radical scavengers in the working in the fluid.
  • the free radical scavengers may include (individually or in any combination), hydroquinone, hydroquinone monomethyl ether, methylhydroquinone, p-benzoquinone, phenothiazine, TEMPO, 4-hydroxyl-TEMPO, 4-amino-TEMPO, or 4- oxo-TEMPO.
  • any conventional free radical scavenger or combination of conventional free radical scavengers may be employed.
  • the working fluids may include the above-described hydrofluoroolefins as a major component.
  • the working fluids may include at least 25%, at least 50%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% by weight of the above-described hydrofluoroolefins based on the total weight of the working fluid.
  • the working fluids may include a total of up to 75%, up to 50%, up to 30%, up to 20%), up to 10%), up to 5%), or up to 1%> by weight of one or more of the following components (individually or in any combination): alcohols, ethers, alkanes, alkenes, perfluorocarbons, perfluorinated tertiary amines, perfluoroethers, cycloalkanes, esters, ketones, oxiranes, aromatics, siloxanes, hydrochlorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluoroolefins, hydrofluoroethers, perfluoroketones, or mixtures thereof, based on the total weight of the working fluid.
  • Such additional components can be chosen to modify or enhance the properties of a composition for a particular use. Minor amounts of optional components can also be added to the working fluids to impart particular desired properties for particular uses.
  • Useful components can include conventional additives such as, for example, surfactants, coloring agents, stabilizers, anti-oxidants, flame retardants, and the like, and mixtures thereof.
  • the working fluids of the present disclosure may exhibit properties that render them particularly useful as heat transfer fluids.
  • the working fluids may be chemically inert (i.e., they do not easily react with base, acid, water, etc.), and may have high boiling points (up to 300°C), low freezing points (they may be liquid at -40°C or lower), low viscosity, high thermal stability over extended periods, good thermal conductivity, adequate solvency in a range of potentially useful solvents, and low toxicity.
  • Hydrocarbon alkenes are known to react with hydroxyl radicals and ozone in the lower atmosphere at rates sufficient to lead to short atmospheric lifetimes (see Atkinson, R.; Arey, J., Chem Rev. 2003, 103 4605-4638).
  • ethene has an atmospheric lifetime by reaction with hydroxyl radicals and ozone of 1.4 days and 10 days, respectively.
  • Propene has an atmospheric lifetime by reaction with hydroxyl radicals and ozone of 5.3 hours and 1.6 days, respectively.
  • hydrofluoroolefins of the present disclosure were found to react at a very high rate with ozone in the gas phase. As a result, it is believed that these compounds have relatively short atmospheric lifetimes.
  • the working fluids of the present disclosure may have a low environmental impact.
  • the working fluids may have a global warming potential (GWP) of less 300, 200, 100 or even less than 10.
  • GWP is a relative measure of the warming potential of a compound based on the structure of the compound.
  • Intergovernmental Panel on Climate Change in 1990 and updated in 2007, is calculated as the warming due to the release of 1 kilogram of a compound relative to the warming due to the release of 1 kilogram of C02 over a specified integration time horizon (ITH).
  • ai is the radiative forcing per unit mass increase of a compound in the atmosphere (the change in the flux of radiation through the atmosphere due to the IR absorbance of that compound),
  • C is the atmospheric concentration of a compound
  • is the atmospheric lifetime of a compound
  • t is time
  • i is the compound of interest.
  • the commonly accepted ITH is 100 years representing a compromise between short-term effects (20 years) and longer-term effects (500 years or longer).
  • the concentration of an organic compound, / ' in the atmosphere is assumed to follow pseudo first order kinetics (i.e., exponential decay).
  • the concentration of C02 over that same time interval incorporates a more complex model for the exchange and removal of C02 from the atmosphere (the Bern carbon cycle model).
  • the above-described hydrofluoroolefins may be prepared by using halogenated butenes such as, for example, l,4-dibromo-2-butene, l-chloro-4- bromo- 2-butene, l,4-dichloro-2-butene, l,4-diiodo-2-butene, or the mixture of these butenes as an alkylating agent.
  • halogenated butenes such as, for example, l,4-dibromo-2-butene, l-chloro-4- bromo- 2-butene, l,4-dichloro-2-butene, l,4-diiodo-2-butene, or the mixture of these butenes as an alkylating agent.
  • Addition of fluoride ion, F-, to a perfluoroolefin can form a
  • fluorocarb anion which can be alkylated to form the desired product.
  • the fluoride ion sources may be metal salts of fluoride such as LiF, NaF, KF, CsF, AgF, , individually, or as a mixture thereof.
  • Other halogen salt such as KBr, CsBr, AgBr, CuBr, KI, Csl, Agl, Cul can be used to assist the alkylation reaction by halogen exchange with the l,4-dihalo-2-butene.
  • the perfluoroolefin can be one or a mixture of (Z)-l, 1,1,2,3,4,5, 5,5-nonafluoro-4-(trifluoromethyl)pent-2-ene, (£)- l,l, l,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent-2-ene or 1, 1, 1,3,4,4,5, 5, 5-nonafluoro- 2-(trifluoromethyl)pent-2-ene.
  • the amount of fluoride ion may be at least a stoichiometric amount, i.e., one mole of perfluoroolefin requires one mole or more of fluoride ion.
  • a polar organic solvent may be used to dissolve sufficient amount of fluorocarb anion and alkylating agent in order for the reaction to occur. Many polar solvents such as
  • DMSO dimethyl sulfoxide
  • one or more catalysts may be employed.
  • Suitable catalysts may include quaternary ammonium salt, phosphonium salt, and crown ethers, such as 18-crown-6, dibenzo-18-crown-6, diaza-18-crown-6, 12-crown- 4, 15-crown-5, or combinations thereof.
  • working fluids of the present disclosure can be used in various applications.
  • the working fluids which may include the above-described
  • hydrofluoroolefins and one or more free radical inhibitors are believed to possess the required stability as well as the necessary short atmospheric lifetime (or low global warming potential) to make them commercially viable environmentally-friendly candidates for high temperature heat transfer applications.
  • the present disclosure is further directed to an apparatus for heat transfer that includes a device and a mechanism for transferring heat to or from the device.
  • the mechanism for transferring heat may include a heat transfer fluid that includes the working fluids of the present disclosure.
  • the provided apparatus for heat transfer may include a device.
  • the device may be a component, work-piece, assembly, etc. to be cooled, heated or maintained at a predetermined temperature or temperature range.
  • Such devices include electrical components, mechanical components and optical components.
  • Examples of devices of the present disclosure include, but are not limited to microprocessors, wafers used to manufacture semiconductor devices, power control semiconductors, electrical distribution switch gear, power transformers, circuit boards, multi-chip modules, packaged and unpackaged semiconductor devices, lasers, chemical reactors, fuel cells, and
  • the device can include a chiller, a heater, or a combination thereof.
  • the devices can include electronic devices, such as processors, including microprocessors. As these electronic devices become more powerful, the amount of heat generated per unit time increases. Therefore, the mechanism of heat transfer plays an important role in processor performance.
  • the heat-transfer fluid typically has good heat transfer performance, good electrical compatibility (even if used in "indirect contact” applications such as those employing cold plates), as well as low toxicity, low (or non-) flammability and low environmental impact. Good electrical compatibility suggests that the heat-transfer fluid candidate exhibit high dielectric strength, high volume resistivity, and poor solvency for polar materials. Additionally, the heat-transfer fluid should exhibit good mechanical compatibility, that is, it should not affect typical materials of construction in an adverse manner.
  • the provided apparatus may include a mechanism for transferring heat.
  • the mechanism may include a heat transfer fluid.
  • the heat transfer fluid may include the working fluids of the present disclosure. Heat may be transferred by placing the heat transfer mechanism in thermal contact with the device. The heat transfer mechanism, when placed in thermal contact with the device, removes heat from the device or provides heat to the device, or maintains the device at a selected temperature or temperature range.
  • the direction of heat flow (from device or to device) is determined by the relative temperature difference between the device and the heat transfer mechanism.
  • the heat transfer mechanism may include facilities for managing the heat-transfer fluid, including, but not limited to pumps, valves, fluid containment systems, pressure control systems, condensers, heat exchangers, heat sources, heat sinks, refrigeration systems, active temperature control systems, and passive temperature control systems.
  • suitable heat transfer mechanisms include, but are not limited to, temperature controlled wafer chucks in plasma enhanced chemical vapor deposition (PECVD) tools, temperature-controlled test heads for die performance testing, temperature-controlled work zones within semiconductor process equipment, thermal shock test bath liquid reservoirs, and constant temperature baths.
  • PECVD plasma enhanced chemical vapor deposition
  • the upper desired operating temperature may be as high as 170°C, as high as 200°C, or even as high as 240°C.
  • Heat can be transferred by placing the heat transfer mechanism in thermal contact with the device.
  • the heat transfer mechanism when placed in thermal contact with the device, may remove heat from the device or provide heat to the device, or maintain the device at a selected temperature or temperature range.
  • the direction of heat flow is determined by the relative temperature difference between the device and the heat transfer mechanism.
  • the provided apparatus can also include refrigeration systems, cooling systems, testing equipment and machining equipment.
  • the provided apparatus can be a constant temperature bath or a thermal shock test bath.
  • the upper desired operating temperature may be as high as 170°C, as high as 200°C, or even higher.
  • the working fluids of the present disclosure may be used as a heat transfer agent for use in vapor phase soldering.
  • the process described in, for example, U.S. Pat. No. 5, 104,034 (Hansen) can be used, which description is hereby incorporated by reference in its entirety. Briefly, such process includes immersing a component to be soldered in a body of vapor comprising the working fluids of the present disclosure to melt the solder.
  • a liquid pool of the working fluid is heated to boiling in a tank to form a saturated vapor in the space between the boiling liquid and a condensing means.
  • a workpiece to be soldered is immersed in the vapor (at a temperature of greater than 170°C, greater than 200°C, greater than 230°C, or even greater), whereby the vapor is condensed on the surface of the vvorkpiece so as to melt and reflow the solder. Finally, the soldered workpiece is then removed from the space containing the vapor.
  • composition comprising:
  • Rf(CF 3 )2CCH2CH CHCH2C(CF3) 2 R f (I) wherein Rf is a perfluoroalkyl group having 2 - 6 carbon atoms;
  • composition according to any one of the previous embodiments, wherein the free radical scavenger comprises hydroquinone, hydroquinone monomethyl ether, methylhydroquinone, p-benzoquinone, phenothiazine, TEMPO, 4-hydroxyl-TEMPO, 4- amino-TEMPO, or 4-oxo-TEMPO.
  • composition according to any one of the previous embodiments, wherein the hydrofluoroolefin is a liquid at 25 degrees Celsius. 6. The composition according to any one of the previous embodiments, wherein the hydrofluoroolefin has Structural Formula (II):
  • An apparatus for heat transfer comprising:
  • a mechanism for transferring heat to or from the device comprising a heat transfer fluid that comprises the composition according to any one of the previous embodiments.
  • a semiconductor device a power control semiconductor, an electrochemical cell, an electrical distribution switch gear, a power transformer, a circuit board, a multi-chip module, a packaged or unpackaged semiconductor device, a fuel cell, and a laser.
  • a method of transferring heat comprising:
  • Example 1 (E)-1, 1, 1,2,2,3,3, 10, 10,11, 11, 12, 12,12-tetradecafluoro-4,4, 9,9- tetrakis(trifluoromethyl)dodec-6-ene and MEHQ
  • the cooling step was intended to allow more oxygen to enter the fluid in the flask.
  • 100 ppm of PTZ was added to the fluid, and heating and cooling proceeded as described for CE3.
  • Results of the GC-MS analysis are provided in Table 1. Analysis of the samples taken at the end of each cycle by GC-MS indicated that the amount of epoxide increased dramatically as a function of the number of cycles for CE3, whereas Example 3 exhibited much lower increases in the amount of epoxide present.
  • Table 1 Amount of Epoxide (ppm) after Heating/Cooling Cycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne une composition comprenant une hydrofluorooléfine représentée par la formule développée (I) : (I), dans laquelle Rf est un groupe perfluoroalkyle ayant 2 à 6 atomes de carbone. Ladite composition comprend en outre un anti-radicalaire.
PCT/IB2018/051674 2017-03-15 2018-03-13 Compositions contenant une hydrofluorooléfine et procédés d'utilisation de celles-ci Ceased WO2018167672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762471571P 2017-03-15 2017-03-15
US62/471,571 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018167672A1 true WO2018167672A1 (fr) 2018-09-20

Family

ID=63523443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051674 Ceased WO2018167672A1 (fr) 2017-03-15 2018-03-13 Compositions contenant une hydrofluorooléfine et procédés d'utilisation de celles-ci

Country Status (1)

Country Link
WO (1) WO2018167672A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773812A (zh) * 2021-09-13 2021-12-10 浙江巨化技术中心有限公司 一种包含杂环促进剂的组合物、及其用于液冷剂的用途以及浸没式液冷系统
CN113861949A (zh) * 2021-10-12 2021-12-31 浙江巨化技术中心有限公司 一种传热组合物及其应用以及浸没冷却系统
CN113969144A (zh) * 2021-10-12 2022-01-25 浙江巨化技术中心有限公司 一种组合物及其用于液冷剂的用途以及液冷系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173654A (en) * 1977-01-03 1979-11-06 California Institute Of Technology Novel fluorohydrocarbons
US20110215273A1 (en) * 2008-11-13 2011-09-08 Solvay Fluor Gmbh Hydrofluoroolefins, manufacture of hydrofluoroolefins and methods of using hydrofluoroolefins
US20150135745A1 (en) * 2005-11-01 2015-05-21 E I Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
WO2016094113A1 (fr) * 2014-12-08 2016-06-16 3M Innovative Properties Company Hydrofluoro-oléfines et leurs procédés d'utilisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173654A (en) * 1977-01-03 1979-11-06 California Institute Of Technology Novel fluorohydrocarbons
US20150135745A1 (en) * 2005-11-01 2015-05-21 E I Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US20110215273A1 (en) * 2008-11-13 2011-09-08 Solvay Fluor Gmbh Hydrofluoroolefins, manufacture of hydrofluoroolefins and methods of using hydrofluoroolefins
WO2016094113A1 (fr) * 2014-12-08 2016-06-16 3M Innovative Properties Company Hydrofluoro-oléfines et leurs procédés d'utilisation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773812A (zh) * 2021-09-13 2021-12-10 浙江巨化技术中心有限公司 一种包含杂环促进剂的组合物、及其用于液冷剂的用途以及浸没式液冷系统
CN113861949A (zh) * 2021-10-12 2021-12-31 浙江巨化技术中心有限公司 一种传热组合物及其应用以及浸没冷却系统
CN113969144A (zh) * 2021-10-12 2022-01-25 浙江巨化技术中心有限公司 一种组合物及其用于液冷剂的用途以及液冷系统
CN113861949B (zh) * 2021-10-12 2023-08-15 浙江巨化技术中心有限公司 一种传热组合物及其应用以及浸没冷却系统

Similar Documents

Publication Publication Date Title
KR102515530B1 (ko) 열 전달 유체 및 이의 사용 방법
WO2016094113A1 (fr) Hydrofluoro-oléfines et leurs procédés d'utilisation
US7128133B2 (en) Hydrofluoroether as a heat-transfer fluid
JP2020527613A (ja) 浸漬冷却用流体
JP7689661B2 (ja) ハイドロフルオロエーテル及びその使用方法
KR20140019399A (ko) 열 전달 유체로서의 플루오르화 옥시란
WO2018167672A1 (fr) Compositions contenant une hydrofluorooléfine et procédés d'utilisation de celles-ci
WO2018222384A1 (fr) Diaminooléfines fluorées et procédés d'utilisation de celles-ci
WO2019082053A1 (fr) Compositions contenant un hydrofluoroépoxyde et procédés d'utilisation de celles-ci
JP7295858B2 (ja) ハイドロフルオロオレフィンエーテル、組成物、これらを使用するための装置及び方法
WO2018167644A1 (fr) Compositions contenant des hydrofluorooléfines et leurs procédés d'utilisation
TWI864018B (zh) 氟化芳族及其使用方法
US10934281B2 (en) Nitrogen and dioxolane-containing hydrofluoroethers and methods of using the same
TWI885035B (zh) 氯化氟芳族化合物及其使用方法
WO2020128964A2 (fr) Hydrofluorooléfines et leurs procédés d'utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768663

Country of ref document: EP

Kind code of ref document: A1