[go: up one dir, main page]

WO2018168008A1 - Line pattern printing method and screen plate for printing line pattern - Google Patents

Line pattern printing method and screen plate for printing line pattern Download PDF

Info

Publication number
WO2018168008A1
WO2018168008A1 PCT/JP2017/031404 JP2017031404W WO2018168008A1 WO 2018168008 A1 WO2018168008 A1 WO 2018168008A1 JP 2017031404 W JP2017031404 W JP 2017031404W WO 2018168008 A1 WO2018168008 A1 WO 2018168008A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen plate
line pattern
substrate
printed
metal foil
Prior art date
Application number
PCT/JP2017/031404
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 宮田
達昭 篠田
福田 正人
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Publication of WO2018168008A1 publication Critical patent/WO2018168008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/40Inking units
    • B41F15/42Inking units comprising squeegees or doctors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present disclosure relates to a line pattern printing method and a line pattern printing screen plate.
  • the screen version using a wire mesh (wire mesh, # 360- ⁇ 16CL) is mainly used.
  • the width of the finger electrode to be printed is approximately 45 to 50 ⁇ m.
  • New wire meshes are also being manufactured with the aim of further thinning.
  • next-generation wire meshes (# 380- ⁇ 14CL, # 430- ⁇ 13CL) with an increased mesh count (mesh count), and knotless screen (knotless screen).
  • Patent Document 1 discloses a method of printing finger electrodes of a solar cell by off-contact screen printing.
  • the inventors of the present application have developed an original screen printing mesh in which an opening is provided in a metal foil, unlike a screen plate using a wire mesh, and have advanced the development of thinning technology.
  • the line pattern printed by screen printing is thin in the width direction and the width is as uniform as possible.
  • a phenomenon called “bleed” in which the length of the line pattern in the width direction partially expands may occur.
  • Development of a technique capable of suppressing the occurrence of bleeding is required, including the configuration disclosed in Patent Document 1.
  • an object of the present disclosure is to provide a line pattern printing method and a line pattern printing screen plate that can suppress the occurrence of bleeding, in order to solve the above problems.
  • a line pattern printing method includes a metal foil in which a large number of holes are formed along one direction, and a direction crossing the one direction on the back surface of the metal foil.
  • the squeegee is moved along the one direction on the surface of the screen plate so that the screen plate is pressed against the substrate to be printed and the paste is discharged from the opening to form a linear shape on the substrate to be printed.
  • the average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is kept at a certain value or more. Characterized in that it was.
  • a line pattern printing method uses a screen plate having a wire mesh and a resin that is arranged on the back surface of the wire mesh at an interval and forms an opening together with the wire mesh.
  • the screen plate is pressed against the substrate to be printed to discharge the paste from the opening, and a linear line is formed on the substrate to be printed.
  • a pattern is printed, and at the time of printing, the screen plate and the printing base on the downstream side in the moving direction of the squeegee And wherein the mean angle between that you have to keep a certain value or more.
  • the screen pattern for line pattern printing includes a metal foil in which a large number of holes are formed along one direction, and a space in the direction intersecting the one direction on the surface of the metal foil.
  • the ribs of the metal foil between the openings and the openings that meet each other have a cross-sectional area per unit length along the direction in which the openings are formed of 4000 ⁇ m 2 / mm or more.
  • the occurrence of bleeding can be suppressed.
  • the metal foil in which a large number of holes are formed along one direction and the back surface of the metal foil are arranged at intervals in a direction intersecting the one direction A method of printing a linear line pattern on a substrate to be printed using a screen plate having a resin that forms an opening together with the metal foil by opening a central portion of a hole, the surface of the screen plate By moving the squeegee along the one direction, the screen plate is pressed against the substrate to be printed, the paste is discharged from the opening, and a linear line pattern is printed on the substrate to be printed.
  • a line pattern printing method characterized in that an average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is maintained at a certain value or more. To provide. In this way, by keeping the average angle at a certain value or more, bleeding of the line pattern can be suppressed, which can contribute to thinning of the line pattern.
  • a method of printing a linear line pattern wherein a bias angle of the wire mesh is set to an angle at which a crossing portion where wires cross each other is not exposed to the opening, and the opening on the surface of the screen plate
  • an average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is a certain value or less. Characterized in that to keep the, to provide a line pattern printing method. In this way, by keeping the average angle at a certain value or more, bleeding of the line pattern can be suppressed, which can contribute to thinning of the line pattern.
  • the line pattern printing method according to the first aspect or the second aspect is provided, wherein the average angle is 0.7 degrees or more. In this way, by keeping the average angle at 0.7 degrees or more, it is possible to further suppress line pattern bleeding.
  • the screen plate is fixed on the upstream side and the downstream side in the moving direction of the squeegee, and the distance is set to 320 mm or less.
  • a line pattern printing method according to any one of the aspects is provided. According to such a method, the downstream angle formed by the screen plate and the substrate to be printed is larger than when the distance is set to exceed 320 mm. Thereby, the average angle on the downstream side formed by the screen plate and the substrate to be printed during printing can be increased, and bleeding of the line pattern can be further suppressed.
  • the line according to any one of the first to fourth aspects, wherein an interval between the substrate to be printed and the screen plate is set to 1.6 mm or more.
  • a pattern printing method is provided. According to such a method, the downstream angle formed by the screen plate and the substrate to be printed can be increased as compared with the case where the distance is set to be smaller than 1.6 mm. Thereby, the average angle on the downstream side formed by the screen plate and the substrate to be printed during printing can be increased, and bleeding of the line pattern can be further suppressed.
  • the line pattern printing method according to any one of the first to fifth aspects, wherein the line pattern is used as a finger electrode of a solar cell. According to such a method, since the finger electrode of a solar cell can be formed thinly, the conversion efficiency of the solar cell can be improved.
  • the metal foil in which a large number of holes are formed along one direction and the back surface of the metal foil are arranged at intervals in a direction intersecting the one direction, A resin for forming an opening together with the metal foil by opening a central portion of the hole, and a screen plate for printing a linear line pattern on a substrate to be printed, the adjacent opening and the
  • the rib of the metal foil between the openings has a cross-sectional area per unit length along the direction in which the openings are formed of 4000 ⁇ m 2 / mm or more.
  • the line pattern printing screen plate according to the seventh aspect is provided, wherein the line pattern is a finger electrode of a solar cell.
  • the printing is performed such that the average angle on the downstream side formed by the screen plate and the substrate to be printed is maintained at a certain value or more, so that the finger electrode of the solar cell is thinly formed while suppressing bleeding. Therefore, the conversion efficiency of the solar cell can be improved.
  • FIG. 1 is a plan view showing a part of the screen plate 2.
  • 2A is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 2B is a cross-sectional view taken along the line BB in FIG.
  • the screen plate 2 includes a metal foil 4 and a resin 6.
  • the metal foil 4 is a metal foil mesh formed of a metal such as SUS, Ni, Ni alloy.
  • a large number of holes 8 are formed in the metal foil 4 along the X direction.
  • a rib 4 a is formed between the adjacent holes 8 in the metal foil 4. As shown in FIGS. 2A and 2B, the rib 4a may have a tapered cross section whose width decreases from the front surface to the back surface.
  • the metal foil 4 may be produced by an arbitrary method such as an electroforming method (electroforming method), an etching method, a laser processing method, or a machining method.
  • Resin 6 is a resin provided on the back side of the metal foil 4. As shown in FIG. 1, the resin 6 is arranged at an interval in the Y direction that intersects the X direction. In the example of FIG. 1, the Y direction is orthogonal to the X direction, but is not limited to this.
  • the resin 6 opens the central portion of the hole 8 of the metal foil 4 and forms the opening 10 together with the metal foil 4.
  • a member of any material may be used as long as it is a member (opening forming member) that forms the opening 10 together with the metal foil 4.
  • the screen plate 2 is fixed in a substantially horizontal direction by a metal frame (aluminum frame) 14.
  • the screen plate 2 is fixed to the metal frame 14 at the upstream end 22a and the downstream end 22b.
  • a distance D from the upstream end 22 a to the downstream end 22 b is the same as the inner diameter of the metal frame 14.
  • the substrate 12 to be printed is arranged below the screen plate 2 with an interval.
  • the printed substrate 12 is fixed so as to be substantially parallel to the screen plate 2.
  • an interval adjusting mechanism is provided for adjusting the interval (clearance C) in the vertical direction between the screen plate 2 and the substrate 12 to be printed, and the clearance C can be adjusted.
  • the squeegee 13 is moved along the X direction on the surface of the screen plate 2. Thereby, the screen plate 2 is pressed against the substrate 12 to be printed, and the paste 16 is discharged from the opening 10 described above, so that a linear line pattern can be formed on the substrate 12 to be printed.
  • the screen plate 2 of the present embodiment described above is a screen plate for printing finger electrodes of solar cells using the metal foil 4, and the inventors of the present application use the metal foil 4 used for such a screen plate 2. Have been developing.
  • a screen plate 100 using a conventional wire mesh is shown in FIG. As shown in FIG. 4, the wire mesh 104 is exposed from between the resins 102 provided at intervals. In the wire mesh 104, an intersection (wire intersection, knot) 106 where the wires intersect is exposed.
  • the screen plate 2 using the metal foil 4 shown in FIG. 1 has one feature that the opening 10 does not have a wire intersection. By not having wire intersections, the regions of the openings 10 can be formed regularly. Thereby, there is little clogging of the paste 16 in the opening part 10, and the permeability
  • the paste 16 is excessively discharged, the amount of paste transferred to the substrate 12 to be printed may increase. As a result, the paste 16 spreads in the width direction, and bleeding may occur. When bleeding occurs, the width of the finger electrode increases and the conversion efficiency of the solar cell decreases.
  • FIG. 5 shows an example of the result of forming the finger electrode line pattern using the screen plate 2 shown in FIG.
  • the finger electrode line pattern L1 in which bleeding occurs is shown on the left side
  • the finger electrode line pattern L2 in which bleeding hardly occurs is shown on the right side.
  • the left line pattern L1 it is understood that “bleeding” spreading in the width direction Y1 is partially generated.
  • the line pattern L2 on the right side it can be seen that the length in the width direction Y2 is substantially constant, and blurring hardly occurs.
  • the bleeding that occurs in the line pattern L1 shown on the left side of FIG. 5 occurs regularly and at regular intervals.
  • the inventors of the present application have confirmed that these bleedings occur at positions corresponding to the openings 10.
  • bleeding is suppressed at positions corresponding to the ribs 4 a of the metal foil 4.
  • a line pattern L1 in which the length in the width direction Y1 is thick and narrow is periodically repeated as shown on the left side of FIG. 5 is formed.
  • FIG. 5 The phenomenon shown in FIG. 5 is considered to occur on the same principle even in a knotless screen in which the wire intersection is not exposed in the opening as in the screen plate 2 in FIG.
  • An example of a knotless screen is shown in FIG.
  • the wire mesh 204 is exposed from between the resins 202 arranged at intervals, but the wire intersection 206 is not exposed to the opening. That is, the bias angle of the wire mesh 204 is set to an angle (for example, within ⁇ 1.0 °) that does not expose the wire intersection 206 where the wires intersect with each other in the opening.
  • Such a knotless screen 200 is also an object of the present invention.
  • the screen plate 2 using the metal frame 14 having a small inner diameter is more line-shaped than the screen plate 2 using the metal frame 14 having a large inner diameter. It was found that the bleeding of the pattern can be reduced.
  • the metal frame 14 having a larger inner diameter is 390 mm (outer diameter is 450 mm), and the metal frame 14 having a smaller inner diameter is 300 mm (outer diameter is 355 mm).
  • the upstream angle in the moving direction (X direction) of the squeegee 13 is ⁇ 1, and the downstream angle is ⁇ 2.
  • the upstream angle in the moving direction of the squeegee 13 is ⁇ 1, and the downstream angle is ⁇ 2.
  • the metal frame 14b having a smaller inner diameter has a larger angle between the upstream side and the downstream side of the metal frame 14b having a smaller inner diameter even at the same position on the substrate 12 to be printed. Accordingly, the phenomenon shown in FIG. 5 in which bleeding is suppressed is that the angles ⁇ 1 and ⁇ 2 formed by the screen plate 2b and the printing substrate 12 are larger than the angles ⁇ 1 and ⁇ 2 formed by the screen plate 2a and the printing substrate 12. It is thought to be caused by
  • FIG. 8 is a schematic diagram showing the change of the screen plate 2 when the squeegee 13 moves from upstream to downstream.
  • the screen plate 2 at the initial position (print start point) of the squeegee 13 is indicated by a dotted line
  • the screen plate 2 at the final position (print end point) of the squeegee 13 is indicated by a dashed line.
  • the inventors of the present application focused on the change in the downstream angle formed by the screen plate 2 and the substrate 12 to be printed.
  • the downstream angle formed by the screen plate 2 and the substrate 12 to be printed increases ( ⁇ 1 ⁇ ⁇ 2).
  • the upstream angle formed by the screen plate 2 and the substrate 12 to be printed becomes smaller as the squeegee 13 moves downstream ( ⁇ 3 ⁇ ⁇ 4).
  • the distance between the screen plate 2 on the upstream side after the squeegee 13 passes and the substrate 12 to be printed becomes smaller (the angle becomes smaller), and the separation of the plate becomes worse.
  • the plate separation becomes worse means that the screen plate 2 becomes difficult to separate from the substrate 12 to be printed. If the plate separation is deteriorated, it causes printing unevenness and bleeding. Therefore, an off-contact function for forcibly lifting the upstream side of the screen plate 2 after the squeegee 13 passes is used to promote plate separation.
  • the angle on the downstream side of the screen plate 2 and the substrate to be printed 12 is increased (the upstream angle is reversed). The occurrence of bleeding can be suppressed.
  • the screen plate 2 using the metal foil 4 does not expose the mesh intersection in the opening 10 as described above. high. Therefore, it is presumed that it is insufficient to suppress bleeding of the line pattern only by promoting the plate separation after the squeegee 13 passes by the off-contact function. From this, it is effective to control the angle formed between the screen plate 2 and the printed substrate 12 downstream from the stage where the paste 16 is pushed by the squeegee 13 and passes through the opening 10 of the screen plate 2. The inventors have newly found out.
  • FIG. 9 shows a case where the screen plate 2a is fixed to the metal frame 14a having a large inner diameter shown in FIG. 7, that is, a case where the angle ⁇ 2 formed between the screen plate 2a and the printed substrate 12 is small.
  • FIG. 10 shows a case where the screen plate 2b is fixed to the metal frame 14b having a small inner diameter shown in FIG. 7, that is, a case where the angle ⁇ 2 formed between the screen plate 2b and the printed substrate 12 is large.
  • the method conceived by the inventors of the present application is completely different from the purpose of the off-contact function of promoting plate separation after the squeegee 13 passes. Specifically, when the paste 16 is pushed into the opening 10 of the screen plate 2 by the squeegee 13, the downstream angle formed by the screen plate 2 and the substrate 12 to be printed is controlled, so that the line pattern of the finger electrode is controlled. It reduces bleeding. Thus, it is completely different from the known off-contact function.
  • a method of controlling a “squeegee angle” (an angle formed by the squeegee 13 and the substrate 12 to be printed, also referred to as an “attack angle”), which is an inclination angle of the squeegee 13 is also conceivable.
  • the attack angle is an angle formed by the squeegee 13 and the substrate 12 to be printed.
  • the inventors of the present application newly found that the “downstream angle formed by the screen plate 2 and the substrate 12 to be printed” is effective in suppressing bleeding, unlike the method of controlling the attack angle.
  • FIG. 11 is a schematic diagram for obtaining the downstream angle ⁇ formed by the screen plate 2 and the substrate 12 to be printed.
  • the distance between the screen plate 2 and the substrate 12 to be printed is C
  • the inner diameter of the metal frame 14 is D, as in FIG.
  • the angle ⁇ can be calculated from the following equation 1.
  • FIGS. 12 and 13 show the results of calculating the angle ⁇ using Equation 1 and plotting representative points under various conditions. 12 and 13, the horizontal axis represents the position of the squeegee 13 (the downstream end of the printed substrate 12 is 0 mm), and the vertical axis represents the downstream angle formed by the screen plate 2 and the printed substrate 12. represents ⁇ .
  • FIG. 12 shows the calculation results of Condition 1 and Condition 2.
  • the length of the printed substrate 12 in the X direction is 157 mm.
  • the angle ⁇ increases as the squeegee 13 moves from upstream to downstream in both conditions 1 and 2.
  • the angle ⁇ increases as the squeegee 13 moves from upstream to downstream than in the condition 2 using the metal frame 14 having a small inner diameter.
  • the average angle ⁇ was 0.66 °
  • the average angle ⁇ was 0.48 °. From this, it can be seen that even with the same clearance C, printing can be performed with the angle ⁇ kept large by using the metal frame 14 having a smaller inner diameter.
  • FIG. 13 shows the calculation results of Condition 3 and Condition 4.
  • the length of the substrate 12 to be printed in the X direction is 157 mm.
  • the average angle ⁇ of condition 3 is 0.7 degrees or more.
  • the inventors of the present application keep the average angle of the downstream angle ⁇ formed by the screen plate 2 and the substrate 12 to be printed above a certain value, particularly 0.7 ° or more.
  • the present inventors have found that there is a remarkable effect in suppressing the bleeding of the line pattern of the finger electrode.
  • Such knowledge about the average angle is considered to be similarly applicable to the knotless screen 200 described above.
  • the average angle ⁇ during printing is 0.71.
  • the printing conditions of the present invention can be realized.
  • the screen plate 2 is fixed using the metal frame 14 having an inner diameter of 390 mm, even if the clearance C is increased to 2.0 mm, the average angle increases only to 0.64 °.
  • the clearance C increases, the average angle ⁇ can be increased, but the load on the screen plate 2 (particularly the metal foil 4) pushed by the squeegee 13 increases. For this reason, in order to suppress breakage of the metal foil 4 and the like, it is preferable to set the clearance C to 2.0 mm or less.
  • the upper limit value of the average angle ⁇ may be set to 2.2 °, for example, in consideration of the load applied to the metal foil 4.
  • the inner diameter D of the metal frame 14 may be 300 mm and the clearance C may be 5 mm.
  • the clearance C or the inner diameter D of the metal frame 14 may be adjusted as can be seen from Equation 1.
  • the clearance C can be adjusted by, for example, the above-described interval adjusting mechanism (not shown).
  • the inner diameter D of the metal frame 14 can be adjusted by properly using the type of the metal frame 14 to be used.
  • FIG. 14 shows the relationship between the average angle ⁇ and the spread width of the finger electrode for the results of screen printing under various conditions.
  • the horizontal axis represents the average angle of the downstream angle ⁇ formed by the screen plate 2 and the substrate 12 to be printed
  • the vertical axis represents the spread width of the printed finger electrode.
  • “Bleeding width” is (finger electrode width) ⁇ (width of opening 10) measured with an optical microscope. It can be said that the smaller the value of the bleeding width, the less the bleeding.
  • FIG. 14 shows the experimental results of Condition 5, Condition 6, and Condition 7.
  • the metal foil 4 is made of stainless steel foil (SUS301).
  • the squeegee angle is set to 60 °
  • condition 7 the squeegee angle is set to 70 °.
  • Condition 5 uses a metal frame 14 with an inner diameter of 300 mm and sets the clearance C to 1.4 mm.
  • Condition 6 uses a metal frame 14 having an inner diameter of 300 mm and sets the clearance C to 1.7 mm.
  • Condition 7 uses a metal frame 14 having an inner diameter of 390 mm and sets the clearance C to 2.0 mm.
  • condition 5 the result of three patterns with different thicknesses of the screen plate 2 is represented.
  • the condition 6 represents the results of three patterns with different widths of the opening 10
  • the condition 7 represents the results of four patterns with different widths of the opening 10.
  • the average angle of the downstream angle ⁇ formed by the screen plate 2 and the substrate 12 to be printed is about 0.58 ° for the condition 5 and about 0.71 ° for the condition 6. In the case of 7, it is about 0.62 °.
  • the finger electrode line is maintained by keeping the average angle formed by the screen plate 2 and the substrate 12 to be printed at the downstream side in the moving direction of the squeegee 13 at a certain value or more, particularly 0.7 ° or more. It can be seen that the bleeding of the pattern can be suppressed. Thereby, it can contribute to thinning of a line pattern.
  • Example 2 Next, the inventors of the present invention relate to a line pattern printing method for performing printing while keeping the average angle on the downstream side formed by the screen plate 2 and the substrate to be printed 12 at a certain value or more. In order to find out the characteristics of the metal foil 4, an experiment shown in FIG.
  • FIG. 15 shows a result of whether or not the metal foil 4 is broken when the above-described line pattern printing method is performed while changing the specification of the metal foil 4. Specifically, the strength of the metal foil 4 when the screen plate 2 using the stainless steel foil (SUS301) metal foil 4 was fixed to the metal frame 14 having an inner diameter of 300 mm and screen-printed was examined.
  • SUS301 stainless steel foil
  • “mesh specification” represents the pitch a of the openings 10 / the width b of the openings 10 (FIG. 16).
  • “80/50” in the “mesh specification” column means that the pitch a of the openings 10 is 80 ⁇ m and the width b of the openings 10 is 50 ⁇ m.
  • the “mesh thickness” represents the thickness of the metal foil 4 (the thickness of the rib 4a) ( ⁇ m).
  • cross-sectional area per unit length is obtained by calculating the cross-sectional area per unit length in the X direction of the rib 4 a under each condition.
  • the cross-sectional area is determined by cutting the metal foil 4 along the cutting plane B (FIG. 16), measuring the cross-sectional area of each rib 4a by SEM observation, and measuring the ribs per mm from the pitch a of the openings 10.
  • the cross-sectional area of 4a was calculated (truncated to 100 ⁇ m 2 units).
  • the “cross-sectional area per unit length” was 4000 ⁇ m 2 / mm or more, and the metal foil 4 did not break during the printing test with the clearance C being 2 mm (evaluation). Is ⁇ ).
  • the metal foil 4 No breakage occurs. That is, by setting such a cross-sectional area, the metal foil 4 and the screen plate 2 suitable for the line pattern printing method of the present invention can be obtained.
  • the cross-sectional area of the rib 4a is 4,000 ⁇ m 2 / mm or more. It is preferable that
  • the aspect ratio of the opening 10 in the screen plate 2 is the thickness of the screen plate 2 / the width b of the opening 10.
  • the aspect ratio of the opening 10 may be set to 1.4 or less.
  • the resistance of the paste 16 that passes through the opening 10 can be set low.
  • the opening width c of the opening 10 is the length in the width direction of the opening 10 determined by the interval between the resins 6 as shown in FIG.
  • the opening width c may be set to 15 ⁇ m or more and 100 ⁇ m or less.
  • the opening width c By setting the opening width c to 100 ⁇ m or less, the width of the line pattern can be reduced. As a result, it is possible to avoid a situation where the line pattern itself becomes thick and the influence of bleeding does not become a problem.
  • the opening width c by setting the opening width c to 15 ⁇ m or more, it is possible to suppress deterioration of the paste dischargeability due to the resistance of the inner wall surface of the resin 6. Thereby, it is possible to avoid that the problems of rubbing, leveling (level difference), and disconnection become dominant as problems other than bleeding.
  • the average angle formed by the screen plate 2 and the printing substrate 12 is controlled to 0.7 degrees or more has been described.
  • the average angle may be set to a value that can suppress bleeding of the line pattern according to various conditions.
  • the invention of the present disclosure can be applied to a line pattern printing method and a screen pattern for line pattern printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Methods (AREA)
  • Screen Printers (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

A method for printing a linear line pattern onto a substrate to be printed onto using a screen plate having: metal foil formed with a multiplicity of holes along one direction; and resin arranged with a gap therebetween in a direction crossing the one direction on a back surface of the metal foil, leaving the centers of the multiplicity of holes open and thereby forming opening parts with the metal foil. The method comprises: moving a squeegee in the one direction on a top surface of the screen plate to press the screen plate against the substrate to be printed onto and to eject paste from the opening parts to print a linear line pattern on the substrate to be printed onto; and, during printing, maintaining at a certain value or more an average angle formed between the screen plate and the substrate to be printed onto, on a downstream side in a movement direction of the squeegee.

Description

ラインパターン印刷方法及びラインパターン印刷用スクリーン版Line pattern printing method and line pattern printing screen plate
 本開示は、ラインパターン印刷方法及びラインパターン印刷用スクリーン版に関する。 The present disclosure relates to a line pattern printing method and a line pattern printing screen plate.
 太陽電池の分野において、光電変換効率を向上させるために、フィンガー電極(finger electrode)を細く形成してフィンガー電極の遮光面積を減らす細線化の技術開発が活発化している。 In the field of solar cells, in order to improve the photoelectric conversion efficiency, the development of thinning technology to reduce the light-shielding area of the finger electrodes by thinly forming the finger electrodes (finger electrodes) has been activated.
 太陽電池のフィンガー電極を形成する際には、スクリーン版を用いたスクリーン印刷が行われる。現状は、ワイヤメッシュ(wire mesh、#360―φ16CL)を用いたスクリーン版が主流である。このようなワイヤメッシュの量産技術によれば、印刷されるフィンガー電極の幅は概ね45~50μmである。更に細線化を目指して、新たなワイヤメッシュも製造されている。具体的には、メッシュカウント数(mesh count)を増加させた次世代ワイヤメッシュ(#380―φ14CL、#430―φ13CL)、および、ノットレススクリーン(knotless screen)がある。ノットレススクリーンは、ワイヤメッシュにバイアス角度(bias angle)を設けず(バイアス角度=0°)、ワイヤ同士が交差するワイヤ交差点がペーストを吐出するための開口部に露出しないものである。 When forming the finger electrode of the solar cell, screen printing using a screen plate is performed. At present, the screen version using a wire mesh (wire mesh, # 360-φ16CL) is mainly used. According to such a mass production technique of wire mesh, the width of the finger electrode to be printed is approximately 45 to 50 μm. New wire meshes are also being manufactured with the aim of further thinning. Specifically, there are next-generation wire meshes (# 380-φ14CL, # 430-φ13CL) with an increased mesh count (mesh count), and knotless screen (knotless screen). The knotless screen does not provide a bias angle (bias angle) to the wire mesh (bias angle = 0 °), and the wire intersection where the wires intersect with each other is not exposed to the opening for discharging the paste.
 例えば特許文献1には、オフコンタクト方式(off contact)のスクリーン印刷によって太陽電池のフィンガー電極を印刷する方法が開示されている。 For example, Patent Document 1 discloses a method of printing finger electrodes of a solar cell by off-contact screen printing.
特開2013-28112号公報JP 2013-28112 A
 一方、本願発明者らは、ワイヤメッシュを用いたスクリーン版とは異なり、金属箔に開口部を設けた独自のスクリーン印刷用メッシュを開発し、細線化の技術開発を進めてきた。 On the other hand, the inventors of the present application have developed an original screen printing mesh in which an opening is provided in a metal foil, unlike a screen plate using a wire mesh, and have advanced the development of thinning technology.
 ここで、太陽電池のフィンガー電極を形成する際に、スクリーン印刷によって印刷されるラインパターンは、幅方向に細く、かつ、その幅ができるだけ均一であることが望ましい。一方で、スクリーン印刷の条件等によっては、ラインパターンの幅方向の長さが部分的に広がる「滲み(bleed)」という現象が生じる場合がある。特許文献1に開示されるような構成を含めて、滲みの発生を抑制できる技術の開発が求められている。 Here, when forming the finger electrode of the solar cell, it is desirable that the line pattern printed by screen printing is thin in the width direction and the width is as uniform as possible. On the other hand, depending on screen printing conditions, a phenomenon called “bleed” in which the length of the line pattern in the width direction partially expands may occur. Development of a technique capable of suppressing the occurrence of bleeding is required, including the configuration disclosed in Patent Document 1.
 従って、本開示の目的は、上記問題を解決することにあって、滲みの発生を抑制することができるラインパターン印刷方法およびラインパターン印刷用スクリーン版を提供することにある。 Therefore, an object of the present disclosure is to provide a line pattern printing method and a line pattern printing screen plate that can suppress the occurrence of bleeding, in order to solve the above problems.
 上記目的を達成するために、本開示の一態様によるラインパターン印刷方法は、一方向に沿って多数の孔が形成された金属箔と、前記金属箔の裏面において前記一方向に交差する方向に間隔を空けて配置され、前記多数の孔の中央部を開放して前記金属箔とともに開口部を形成する樹脂とを有するスクリーン版を用いて、被印刷基板に線状のラインパターンを印刷する方法であって、前記スクリーン版の表面で前記一方向に沿ってスキージを移動させることにより、前記スクリーン版を前記被印刷基板に押し付けて前記開口部からペーストを吐出し、前記被印刷基板に線状のラインパターンを印刷し、前記印刷時において、前記スキージの移動方向下流側における前記スクリーン版と前記被印刷基板の成す平均角度を一定値以上に保つようにしたことを特徴とする。 In order to achieve the above object, a line pattern printing method according to an aspect of the present disclosure includes a metal foil in which a large number of holes are formed along one direction, and a direction crossing the one direction on the back surface of the metal foil. A method of printing a linear line pattern on a substrate to be printed using a screen plate that is arranged at intervals and has a resin that opens a central portion of the plurality of holes and forms an opening with the metal foil. The squeegee is moved along the one direction on the surface of the screen plate so that the screen plate is pressed against the substrate to be printed and the paste is discharged from the opening to form a linear shape on the substrate to be printed. In this printing, the average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is kept at a certain value or more. Characterized in that it was.
 また、本開示の別の態様によるラインパターン印刷方法は、ワイヤメッシュと、前記ワイヤメッシュの裏面において間隔を空けて配置され、前記ワイヤメッシュとともに開口部を形成する樹脂とを有するスクリーン版を用いて、被印刷基板に線状のラインパターンを印刷する方法であって、前記ワイヤメッシュのバイアス角度は、ワイヤ同士が交差する交差部を前記開口部に露出しない値に設定されており、前記スクリーン版の表面で前記開口部が形成される方向に沿ってスキージを移動させることにより、前記スクリーン版を前記被印刷基板に押し付けて前記開口部からペーストを吐出し、前記被印刷基板に線状のラインパターンを印刷し、前記印刷時において、前記スキージの移動方向下流側における前記スクリーン版と前記被印刷基板の成す平均角度を一定値以上に保つようにしたことを特徴とする。 In addition, a line pattern printing method according to another aspect of the present disclosure uses a screen plate having a wire mesh and a resin that is arranged on the back surface of the wire mesh at an interval and forms an opening together with the wire mesh. A method of printing a linear line pattern on a substrate to be printed, wherein the bias angle of the wire mesh is set to a value that does not expose an intersection where wires intersect with each other in the opening. By moving the squeegee along the direction in which the opening is formed on the surface of the substrate, the screen plate is pressed against the substrate to be printed to discharge the paste from the opening, and a linear line is formed on the substrate to be printed. A pattern is printed, and at the time of printing, the screen plate and the printing base on the downstream side in the moving direction of the squeegee And wherein the mean angle between that you have to keep a certain value or more.
 また、本開示の一態様によるラインパターン印刷用スクリーン版は、一方向に沿って多数の孔が形成された金属箔と、前記金属箔の表面において前記一方向に交差する方向に間隔を空けて配置され、前記多数の孔の中央部を開放して前記金属箔とともに開口部を形成する樹脂とを有し、被印刷基板に線状のラインパターンを印刷するためのスクリーン版であって、隣り合う前記開口部と前記開口部の間の前記金属箔のリブは、前記開口部が形成される方向沿いの単位長さ当たりの断面積が4000μm/mm以上であることを特徴とする。 Further, the screen pattern for line pattern printing according to one aspect of the present disclosure includes a metal foil in which a large number of holes are formed along one direction, and a space in the direction intersecting the one direction on the surface of the metal foil. A screen plate for printing a linear line pattern on a substrate to be printed. The ribs of the metal foil between the openings and the openings that meet each other have a cross-sectional area per unit length along the direction in which the openings are formed of 4000 μm 2 / mm or more.
  本開示のラインパターン印刷方法およびラインパターン印刷用スクリーン版によれば、滲みの発生を抑制することができる。 According to the line pattern printing method and the line pattern printing screen plate of the present disclosure, the occurrence of bleeding can be suppressed.
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
実施形態に係る金属箔を用いたスクリーン版を示す部分平面図 図1におけるA-A断面図 図1におけるB-B断面図 スクリーン版を用いて被印刷基板にラインパターンを印刷する方法を説明するための概略図 従来のワイヤメッシュを用いたスクリーン版を示す部分平面部 スクリーン印刷結果の例を示す図 ノットレススクリーンを示す部分平面図 スクリーン版と被印刷基板とが成す角度を模式的に表す図 スキージが上流から下流に移動する際のスクリーン版の変化を表した模式図 内径の大きな金属フレームにスクリーン版を固定した場合の模式図 内径の小さな金属フレームにスクリーン版を固定した場合の模式図 スクリーン版と被印刷基板の成す下流側の角度を算出する方法を示す図 スクリーン版と被印刷基板の成す下流側の角度を算出した例を示す図 スクリーン版と被印刷基板の成す下流側の角度を算出した例を示す図 実施例1の条件・結果を示す図 実施例2の条件・結果を示す図 金属箔を用いたスクリーン版を示す部分平面図
These aspects and features of the invention will become apparent from the following description, taken in conjunction with the preferred embodiments with reference to the accompanying drawings, in which:
The fragmentary top view which shows the screen plate using the metal foil which concerns on embodiment AA sectional view in FIG. BB sectional view in FIG. Schematic for explaining a method of printing a line pattern on a substrate to be printed using a screen plate Partial plane portion showing a screen plate using a conventional wire mesh Figure showing an example of screen printing results Partial plan view showing a knotless screen A diagram that schematically shows the angle between the screen plate and the substrate to be printed Schematic showing changes in screen plate when squeegee moves from upstream to downstream Schematic diagram when screen plate is fixed to metal frame with large inner diameter Schematic diagram when screen plate is fixed to metal frame with small inner diameter The figure which shows the method of calculating the downstream angle which a screen plate and a to-be-printed substrate comprise The figure which shows the example which calculated the angle of the downstream which the screen plate and the to-be-printed substrate make The figure which shows the example which calculated the angle of the downstream which the screen plate and the to-be-printed substrate make The figure which shows the conditions and the result of Example 1 The figure which shows the conditions and the result of Example 2 Partial plan view showing a screen plate using metal foil
 本開示の第1態様によれば、一方向に沿って多数の孔が形成された金属箔と、前記金属箔の裏面において前記一方向に交差する方向に間隔を空けて配置され、前記多数の孔の中央部を開放して前記金属箔とともに開口部を形成する樹脂とを有するスクリーン版を用いて、被印刷基板に線状のラインパターンを印刷する方法であって、前記スクリーン版の表面で前記一方向に沿ってスキージを移動させることにより、前記スクリーン版を前記被印刷基板に押し付けて前記開口部からペーストを吐出し、前記被印刷基板に線状のラインパターンを印刷し、前記印刷時において、前記スキージの移動方向下流側における前記スクリーン版と前記被印刷基板の成す平均角度を一定値以上に保つようにしたことを特徴とする、ラインパターン印刷方法を提供する。このように、平均角度を一定値以上に保つことで、ラインパターンの滲みを抑制することができ、ラインパターンの細線化に寄与することができる。 According to the first aspect of the present disclosure, the metal foil in which a large number of holes are formed along one direction and the back surface of the metal foil are arranged at intervals in a direction intersecting the one direction, A method of printing a linear line pattern on a substrate to be printed using a screen plate having a resin that forms an opening together with the metal foil by opening a central portion of a hole, the surface of the screen plate By moving the squeegee along the one direction, the screen plate is pressed against the substrate to be printed, the paste is discharged from the opening, and a linear line pattern is printed on the substrate to be printed. A line pattern printing method characterized in that an average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is maintained at a certain value or more. To provide. In this way, by keeping the average angle at a certain value or more, bleeding of the line pattern can be suppressed, which can contribute to thinning of the line pattern.
 本開示の第2態様によれば、ワイヤメッシュと、前記ワイヤメッシュの裏面において間隔を空けて配置され、前記ワイヤメッシュとともに開口部を形成する樹脂とを有するスクリーン版を用いて、被印刷基板に線状のラインパターンを印刷する方法であって、前記ワイヤメッシュのバイアス角度は、ワイヤ同士が交差する交差部を前記開口部に露出しない角度に設定されており、前記スクリーン版の表面で前記開口部が形成される方向に沿ってスキージを移動させることにより、前記スクリーン版を前記被印刷基板に押し付けて前記開口部からペーストを吐出し、前記被印刷基板に線状のラインパターンを印刷し、前記印刷時において、前記スキージの移動方向下流側における前記スクリーン版と前記被印刷基板の成す平均角度を一定値以上に保つようにしたことを特徴とする、ラインパターン印刷方法を提供する。このように、平均角度を一定値以上に保つことで、ラインパターンの滲みを抑制することができ、ラインパターンの細線化に寄与することができる。 According to the second aspect of the present disclosure, using a screen plate having a wire mesh and a resin that is arranged at a distance on the back surface of the wire mesh and that forms an opening together with the wire mesh, A method of printing a linear line pattern, wherein a bias angle of the wire mesh is set to an angle at which a crossing portion where wires cross each other is not exposed to the opening, and the opening on the surface of the screen plate By moving the squeegee along the direction in which the portion is formed, the screen plate is pressed against the substrate to be printed to discharge paste from the opening, and a linear line pattern is printed on the substrate to be printed. At the time of printing, an average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is a certain value or less. Characterized in that to keep the, to provide a line pattern printing method. In this way, by keeping the average angle at a certain value or more, bleeding of the line pattern can be suppressed, which can contribute to thinning of the line pattern.
 本開示の第3態様によれば、前記平均角度は0.7度以上であることを特徴とする、第1態様又は第2態様に記載のラインパターン印刷方法を提供する。このように、平均角度を0.7度以上に保つことで、ラインパターンの滲みをより抑制することができる。 According to the third aspect of the present disclosure, the line pattern printing method according to the first aspect or the second aspect is provided, wherein the average angle is 0.7 degrees or more. In this way, by keeping the average angle at 0.7 degrees or more, it is possible to further suppress line pattern bleeding.
 本開示の第4態様によれば、前記スクリーン版を前記スキージの移動方向の上流側と下流側で固定するとともに、その距離を320mm以下に設定することを特徴とする、第1態様から第3態様のいずれか1つに記載のラインパターン印刷方法を提供する。このような方法によれば、320mmを超える距離に設定した場合に比べて、スクリーン版と被印刷基板の成す下流側の角度が大きくなる。これにより、印刷時におけるスクリーン版と被印刷基板の成す下流側の平均角度を大きくすることができ、ラインパターンの滲みをより抑制することができる。 According to the fourth aspect of the present disclosure, the screen plate is fixed on the upstream side and the downstream side in the moving direction of the squeegee, and the distance is set to 320 mm or less. A line pattern printing method according to any one of the aspects is provided. According to such a method, the downstream angle formed by the screen plate and the substrate to be printed is larger than when the distance is set to exceed 320 mm. Thereby, the average angle on the downstream side formed by the screen plate and the substrate to be printed during printing can be increased, and bleeding of the line pattern can be further suppressed.
 本開示の第5態様によれば、前記被印刷基板と前記スクリーン版の間隔を1.6mm以上に設定することを特徴とする、第1態様から第4態様のいずれか1つに記載のラインパターン印刷方法を提供する。このような方法によれば、1.6mmよりも小さい距離に設定した場合に比べて、スクリーン版と被印刷基板の成す下流側の角度を大きくすることができる。これにより、印刷時におけるスクリーン版と被印刷基板の成す下流側の平均角度を大きくすることができ、ラインパターンの滲みをより抑制することができる。 According to a fifth aspect of the present disclosure, the line according to any one of the first to fourth aspects, wherein an interval between the substrate to be printed and the screen plate is set to 1.6 mm or more. A pattern printing method is provided. According to such a method, the downstream angle formed by the screen plate and the substrate to be printed can be increased as compared with the case where the distance is set to be smaller than 1.6 mm. Thereby, the average angle on the downstream side formed by the screen plate and the substrate to be printed during printing can be increased, and bleeding of the line pattern can be further suppressed.
 本開示の第6態様によれば、前記ラインパターンを太陽電池のフィンガー電極として用いることを特徴とする、第1態様から第5態様のいずれか1つに記載のラインパターン印刷方法を提供する。このような方法によれば、太陽電池のフィンガー電極を細く形成することができるため、太陽電池の変換効率を向上させることができる。 According to the sixth aspect of the present disclosure, there is provided the line pattern printing method according to any one of the first to fifth aspects, wherein the line pattern is used as a finger electrode of a solar cell. According to such a method, since the finger electrode of a solar cell can be formed thinly, the conversion efficiency of the solar cell can be improved.
 本開示の第7態様によれば、一方向に沿って多数の孔が形成された金属箔と、前記金属箔の裏面において前記一方向に交差する方向に間隔を空けて配置され、前記多数の孔の中央部を開放して前記金属箔とともに開口部を形成する樹脂とを有し、被印刷基板に線状のラインパターンを印刷するためのスクリーン版であって、隣り合う前記開口部と前記開口部の間の前記金属箔のリブは、前記開口部が形成される方向沿いの単位長さ当たりの断面積が4000μm/mm以上であることを特徴とする、ラインパターン印刷用スクリーン版を提供する。金属箔のリブの単位長さ当たりの断面積をこのような値以上に設定することにより、金属箔の強度を向上させることができる。スクリーン版と被印刷基板の成す下流側の平均角度を一定値以上に保つようにして印刷を行う場合、金属箔に負荷がかかりやすくなるが、このように金属箔の強度を向上させることで、金属箔の破断を抑制することができる。 According to the seventh aspect of the present disclosure, the metal foil in which a large number of holes are formed along one direction and the back surface of the metal foil are arranged at intervals in a direction intersecting the one direction, A resin for forming an opening together with the metal foil by opening a central portion of the hole, and a screen plate for printing a linear line pattern on a substrate to be printed, the adjacent opening and the The rib of the metal foil between the openings has a cross-sectional area per unit length along the direction in which the openings are formed of 4000 μm 2 / mm or more. provide. By setting the cross-sectional area per unit length of the rib of the metal foil to such a value or more, the strength of the metal foil can be improved. When printing is performed so that the average angle on the downstream side formed by the screen plate and the substrate to be printed is maintained at a certain value or more, it is easy to apply a load to the metal foil.In this way, by improving the strength of the metal foil, Breaking of the metal foil can be suppressed.
 本開示の第8態様によれば、前記ラインパターンは、太陽電池のフィンガー電極であることを特徴とする、第7態様に記載のラインパターン印刷用スクリーン版を提供する。このような構成によれば、スクリーン版と被印刷基板の成す下流側の平均角度を一定値以上に保つようにして印刷を行うことで、滲みを抑制しながら太陽電池のフィンガー電極を細く形成することができるため、太陽電池の変換効率を向上させることができる。 According to an eighth aspect of the present disclosure, the line pattern printing screen plate according to the seventh aspect is provided, wherein the line pattern is a finger electrode of a solar cell. According to such a configuration, the printing is performed such that the average angle on the downstream side formed by the screen plate and the substrate to be printed is maintained at a certain value or more, so that the finger electrode of the solar cell is thinly formed while suppressing bleeding. Therefore, the conversion efficiency of the solar cell can be improved.
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments according to the present disclosure will be described in detail based on the drawings.
(実施形態)
 図1、2A、2Bは、本実施形態にかかるスクリーン版2を示す図である。図1は、スクリーン版2の一部を示す平面図である。図2Aは、図1におけるA-A断面図であり、図2Bは、図1におけるB-B断面図である。
(Embodiment)
1, 2A and 2B are views showing a screen plate 2 according to the present embodiment. FIG. 1 is a plan view showing a part of the screen plate 2. 2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB in FIG.
 図1、2A、2Bに示すように、スクリーン版2は、金属箔4と、樹脂6とを備える。 As shown in FIGS. 1, 2A and 2B, the screen plate 2 includes a metal foil 4 and a resin 6.
 金属箔4は、SUS、Ni、Ni合金などの金属で形成された金属箔メッシュである。金属箔4には、X方向に沿って多数の孔8が形成されている。金属箔4において隣り合う孔8と孔8の間には、リブ(rib)4aが形成される。リブ4aは、図2A、2Bに示すように、表面から裏面に向かって幅が小さくなるテーパ状の断面を有していても良い。 The metal foil 4 is a metal foil mesh formed of a metal such as SUS, Ni, Ni alloy. A large number of holes 8 are formed in the metal foil 4 along the X direction. A rib 4 a is formed between the adjacent holes 8 in the metal foil 4. As shown in FIGS. 2A and 2B, the rib 4a may have a tapered cross section whose width decreases from the front surface to the back surface.
 金属箔4は、電鋳法(エレクトロ・フォーミング法)、エッチング法、レーザー加工法、機械加工法など、任意の方法によって作製されてもよい。 The metal foil 4 may be produced by an arbitrary method such as an electroforming method (electroforming method), an etching method, a laser processing method, or a machining method.
 樹脂6は、金属箔4の裏面側に設けられた樹脂である。図1に示すように、樹脂6は、X方向に交差するY方向に間隔を空けて配置される。図1の例では、Y方向はX方向に直交するが、これに限定されない。樹脂6は、金属箔4の孔8の中央部を開放して、金属箔4とともに開口部10を形成する。本実施形態では樹脂を用いているが、金属箔4とともに開口部10を形成する部材(開口形成部材)であれば、任意の材質の部材を用いてもよい。 Resin 6 is a resin provided on the back side of the metal foil 4. As shown in FIG. 1, the resin 6 is arranged at an interval in the Y direction that intersects the X direction. In the example of FIG. 1, the Y direction is orthogonal to the X direction, but is not limited to this. The resin 6 opens the central portion of the hole 8 of the metal foil 4 and forms the opening 10 together with the metal foil 4. Although resin is used in the present embodiment, a member of any material may be used as long as it is a member (opening forming member) that forms the opening 10 together with the metal foil 4.
 このようなスクリーン版2を用いて被印刷基板に線状のラインパターン(line pattern)を形成する方法について、図3を用いて説明する。 A method for forming a linear line pattern on a substrate to be printed using such a screen plate 2 will be described with reference to FIG.
 図3に示すように、スクリーン版2は、金属フレーム(アルミニウム枠)14によって略水平方向に固定される。スクリーン版2は、上流端22aと下流端22bで金属フレーム14に固定される。上流端22aから下流端22bまでの距離Dは金属フレーム14の内径と同じである。 As shown in FIG. 3, the screen plate 2 is fixed in a substantially horizontal direction by a metal frame (aluminum frame) 14. The screen plate 2 is fixed to the metal frame 14 at the upstream end 22a and the downstream end 22b. A distance D from the upstream end 22 a to the downstream end 22 b is the same as the inner diameter of the metal frame 14.
 スクリーン版2の下方には、被印刷基板12が間隔を空けて配置される。被印刷基板12は、スクリーン版2と略平行になるように固定される。図示しないが、スクリーン版2と被印刷基板12の上下方向の間隔(クリアランスC)を調整するための間隔調整機構が設けられており、クリアランスCを調整可能である。 The substrate 12 to be printed is arranged below the screen plate 2 with an interval. The printed substrate 12 is fixed so as to be substantially parallel to the screen plate 2. Although not shown, an interval adjusting mechanism is provided for adjusting the interval (clearance C) in the vertical direction between the screen plate 2 and the substrate 12 to be printed, and the clearance C can be adjusted.
 このような構成において、スクリーン版2の表面でX方向に沿ってスキージ13を移動させる。これにより、スクリーン版2を被印刷基板12に押し付けて、前述した開口部10からペースト16を吐出し、被印刷基板12に線状のラインパターンを形成することができる。 In such a configuration, the squeegee 13 is moved along the X direction on the surface of the screen plate 2. Thereby, the screen plate 2 is pressed against the substrate 12 to be printed, and the paste 16 is discharged from the opening 10 described above, so that a linear line pattern can be formed on the substrate 12 to be printed.
 上述した本実施形態のスクリーン版2は、金属箔4を用いて太陽電池のフィンガー電極を印刷するためのスクリーン版であり、本願発明者らは、このようなスクリーン版2に用いる金属箔4を開発してきた。これに対して、従来のワイヤメッシュを用いたスクリーン版100を図4に示す。図4に示すように、間隔を空けて設けられた樹脂102の間からワイヤメッシュ104が露出している。ワイヤメッシュ104において、ワイヤ同士が交差する交差部(ワイヤ交差点、ノット(knot))106が露出している。 The screen plate 2 of the present embodiment described above is a screen plate for printing finger electrodes of solar cells using the metal foil 4, and the inventors of the present application use the metal foil 4 used for such a screen plate 2. Have been developing. On the other hand, a screen plate 100 using a conventional wire mesh is shown in FIG. As shown in FIG. 4, the wire mesh 104 is exposed from between the resins 102 provided at intervals. In the wire mesh 104, an intersection (wire intersection, knot) 106 where the wires intersect is exposed.
 図4に示すワイヤメッシュ104とは異なり、図1に示した金属箔4を用いたスクリーン版2は、開口部10にワイヤ交差点を持たないことを1つの特長としている。ワイヤ交差点を持たないことにより、開口部10の領域を規則正しく形成できる。これにより、開口部10でのペースト16の目詰まりが少なく、ペースト16の透過性が良好になる。このため、断線が少なく、レベリング(leveling)が良い(凹凸が小さい)、フィンガー電極の印刷が可能になる。 Unlike the wire mesh 104 shown in FIG. 4, the screen plate 2 using the metal foil 4 shown in FIG. 1 has one feature that the opening 10 does not have a wire intersection. By not having wire intersections, the regions of the openings 10 can be formed regularly. Thereby, there is little clogging of the paste 16 in the opening part 10, and the permeability | transmittance of the paste 16 becomes favorable. For this reason, there are few disconnections, the leveling is good (the unevenness is small), and the finger electrode can be printed.
 一方で、ペースト16が出過ぎることにより、被印刷基板12に転写されるペースト量が多くなる場合がある。結果として、ペースト16が幅方向に広がり、滲み(bleed)が発生する場合がある。滲みが生じると、フィンガー電極の幅が太くなり、太陽電池の変換効率は低下する。 On the other hand, if the paste 16 is excessively discharged, the amount of paste transferred to the substrate 12 to be printed may increase. As a result, the paste 16 spreads in the width direction, and bleeding may occur. When bleeding occurs, the width of the finger electrode increases and the conversion efficiency of the solar cell decreases.
 図1に示したスクリーン版2を用いて、フィンガー電極のラインパターンを形成した結果の例を図5に示す。図5に示す例では、左側に、滲みが発生しているフィンガー電極のラインパターンL1が示され、右側に、滲みがほとんど発生していないフィンガー電極のラインパターンL2が示される。図5に示すように、左側のラインパターンL1では、幅方向Y1に広がった「滲み」が部分的に生じていることがわかる。一方で、右側のラインパターンL2では、幅方向Y2の長さが略一定であり、滲みがほとんど生じていないことがわかる。 FIG. 5 shows an example of the result of forming the finger electrode line pattern using the screen plate 2 shown in FIG. In the example shown in FIG. 5, the finger electrode line pattern L1 in which bleeding occurs is shown on the left side, and the finger electrode line pattern L2 in which bleeding hardly occurs is shown on the right side. As shown in FIG. 5, in the left line pattern L1, it is understood that “bleeding” spreading in the width direction Y1 is partially generated. On the other hand, in the line pattern L2 on the right side, it can be seen that the length in the width direction Y2 is substantially constant, and blurring hardly occurs.
 図5の左側に示すラインパターンL1で発生している滲みは規則正しく、等間隔で発生している。本願発明者らは、これらの滲みが開口部10に対応する位置で発生していることを確認している。一方、金属箔4のリブ4aに対応する位置では、滲みが抑制されている。これより、図5の左側に示すような、幅方向Y1の長さが太い・狭いを周期的に繰り返したラインパターンL1が形成されている。一方、印刷条件等によっては、図5の右側に示すような滲みの少ないラインパターンL2が印刷される。 The bleeding that occurs in the line pattern L1 shown on the left side of FIG. 5 occurs regularly and at regular intervals. The inventors of the present application have confirmed that these bleedings occur at positions corresponding to the openings 10. On the other hand, bleeding is suppressed at positions corresponding to the ribs 4 a of the metal foil 4. As a result, a line pattern L1 in which the length in the width direction Y1 is thick and narrow is periodically repeated as shown on the left side of FIG. 5 is formed. On the other hand, a line pattern L2 with less bleeding as shown on the right side of FIG.
 図5に示す現象は、図1のスクリーン版2と同様に、開口部にワイヤ交差点を露出させないノットレススクリーンでも同様の原理で発生すると考えられる。ノットレススクリーンの例を図6に示す。図6に示すノットレススクリーン200は、間隔を空けて配置された樹脂202の間からワイヤメッシュ204が露出するが、ワイヤ交差点206は開口部に露出しない。すなわち、ワイヤメッシュ204のバイアス角度は、ワイヤ同士が交差するワイヤ交差点206を開口部に露出しない角度(例えば±1.0°以内)に設定されている。このようなノットレススクリーン200についても、本願発明の対象となる。 The phenomenon shown in FIG. 5 is considered to occur on the same principle even in a knotless screen in which the wire intersection is not exposed in the opening as in the screen plate 2 in FIG. An example of a knotless screen is shown in FIG. In the knotless screen 200 shown in FIG. 6, the wire mesh 204 is exposed from between the resins 202 arranged at intervals, but the wire intersection 206 is not exposed to the opening. That is, the bias angle of the wire mesh 204 is set to an angle (for example, within ± 1.0 °) that does not expose the wire intersection 206 where the wires intersect with each other in the opening. Such a knotless screen 200 is also an object of the present invention.
 このような中で、種々の条件で印刷試験を重ねてきた結果、内径の小さな金属フレーム14を用いたスクリーン版2の方が、内径の大きな金属フレーム14を用いたスクリーン版2よりも、ラインパターンの滲みを少なくできるということを見出した。ここでの金属フレーム14の内径の具体的な寸法としては、内径の大きな金属フレーム14が390mm(外径が450mm)であり、内径の小さな金属フレーム14が300mm(外径が355mm)である。 Under such circumstances, as a result of repeated printing tests under various conditions, the screen plate 2 using the metal frame 14 having a small inner diameter is more line-shaped than the screen plate 2 using the metal frame 14 having a large inner diameter. It was found that the bleeding of the pattern can be reduced. As specific dimensions of the inner diameter of the metal frame 14 here, the metal frame 14 having a larger inner diameter is 390 mm (outer diameter is 450 mm), and the metal frame 14 having a smaller inner diameter is 300 mm (outer diameter is 355 mm).
 この現象を理解するために、本願発明者らは以下のモデルを考えた。 In order to understand this phenomenon, the present inventors considered the following model.
 図7には、内径390mmの金属フレーム14aにスクリーン版2aを固定した場合と、内径300mmの金属フレーム14bにスクリーン版2bを固定した場合において、スクリーン版2a、2bと、被印刷基板12とが成す角度を模式的に表す図である。 In FIG. 7, when the screen plate 2a is fixed to the metal frame 14a having an inner diameter of 390 mm and when the screen plate 2b is fixed to the metal frame 14b having an inner diameter of 300 mm, the screen plates 2a and 2b and the printing substrate 12 are It is a figure which represents typically the formed angle.
 図7に示すように、スクリーン版2aと被印刷基板12とが成す角度のうち、スキージ13の移動方向(X方向)の上流側の角度をα1とし、下流側の角度をα2とする。同様に、スクリーン版2bと被印刷基板12とが成す角度のうち、スキージ13の移動方向の上流側の角度をβ1とし、下流側の角度をβ2とする。 As shown in FIG. 7, among the angles formed by the screen plate 2a and the substrate 12 to be printed, the upstream angle in the moving direction (X direction) of the squeegee 13 is α1, and the downstream angle is α2. Similarly, among the angles formed by the screen plate 2b and the substrate 12 to be printed, the upstream angle in the moving direction of the squeegee 13 is β1, and the downstream angle is β2.
 図7に示すように、α1<β1、α2<β2であることがわかる。すなわち、同じ被印刷基板12上の位置であっても、内径の小さな金属フレーム14bの方が、スクリーン版2と被印刷基板12の成す角度は上流側でも下流側でも大きいことがわかる。これより、図5に示した滲みが抑制される現象は、スクリーン版2bと被印刷基板12の成す角度β1、β2が、スクリーン版2aと被印刷基板12の成す角度α1、α2よりも大きいことに起因していると考えられる。 As can be seen from FIG. 7, α1 <β1 and α2 <β2. That is, it can be seen that the metal frame 14b having a smaller inner diameter has a larger angle between the upstream side and the downstream side of the metal frame 14b having a smaller inner diameter even at the same position on the substrate 12 to be printed. Accordingly, the phenomenon shown in FIG. 5 in which bleeding is suppressed is that the angles β1 and β2 formed by the screen plate 2b and the printing substrate 12 are larger than the angles α1 and α2 formed by the screen plate 2a and the printing substrate 12. It is thought to be caused by
 図8には、スキージ13が上流から下流に移動する際のスクリーン版2の変化を表した模式図を示す。図8には、スキージ13の初期位置(印刷開始地点)におけるスクリーン版2を点線で示し、スキージ13の最終位置(印刷終了地点)におけるスクリーン版2を一点鎖線で示す。 FIG. 8 is a schematic diagram showing the change of the screen plate 2 when the squeegee 13 moves from upstream to downstream. In FIG. 8, the screen plate 2 at the initial position (print start point) of the squeegee 13 is indicated by a dotted line, and the screen plate 2 at the final position (print end point) of the squeegee 13 is indicated by a dashed line.
 ここで、本願発明者らが注目したのは、スクリーン版2と被印刷基板12が成す下流側の角度の変化である。スキージ13が下流に移動するに従い、スクリーン版2と被印刷基板12の成す下流側の角度は大きくなる(θ1→θ2)。一方、スクリーン版2と被印刷基板12が成す上流側の角度は逆に、スキージ13が下流に移動するに従って小さくなる(θ3→θ4)。 Here, the inventors of the present application focused on the change in the downstream angle formed by the screen plate 2 and the substrate 12 to be printed. As the squeegee 13 moves downstream, the downstream angle formed by the screen plate 2 and the substrate 12 to be printed increases (θ1 → θ2). On the other hand, the upstream angle formed by the screen plate 2 and the substrate 12 to be printed becomes smaller as the squeegee 13 moves downstream (θ3 → θ4).
 一般的には、スキージ13が下流に移動するに従い、スキージ13が通過した後の上流側のスクリーン版2と被印刷基板12との距離は小さくなり(角度は小さくなり)、版離れが悪くなる。「版離れが悪くなる」とは、被印刷基板12に対してスクリーン版2が離れにくくなることを意味する。版離れが悪くなると、印刷ムラおよび滲みの原因となるため、版離れを促進するために、スキージ13が通過した後のスクリーン版2の上流側を強制的に持ち上げるオフコンタクト機能が用いられる。 In general, as the squeegee 13 moves downstream, the distance between the screen plate 2 on the upstream side after the squeegee 13 passes and the substrate 12 to be printed becomes smaller (the angle becomes smaller), and the separation of the plate becomes worse. . “The plate separation becomes worse” means that the screen plate 2 becomes difficult to separate from the substrate 12 to be printed. If the plate separation is deteriorated, it causes printing unevenness and bleeding. Therefore, an off-contact function for forcibly lifting the upstream side of the screen plate 2 after the squeegee 13 passes is used to promote plate separation.
 しかしながら、本願発明者らによる金属箔4を用いたスクリーン版2では、図7に示したように、スクリーン版2と被印刷基板12の下流側の角度を大きくする(上流側の角度は逆に小さくなる)ことで、滲みの発生を抑制できる。 However, in the screen plate 2 using the metal foil 4 by the present inventors, as shown in FIG. 7, the angle on the downstream side of the screen plate 2 and the substrate to be printed 12 is increased (the upstream angle is reversed). The occurrence of bleeding can be suppressed.
 本願発明者らはこの違いを以下のように考える。 The present inventors consider this difference as follows.
 従来のワイヤメッシュを用いたスクリーン版(図4)に比べて、金属箔4を用いたスクリーン版2では、前述したように開口部10にメッシュ交差部が露出しないため、ペースト16の透過性が高い。よって、オフコンタクト機能によって、スキージ13が通過した後の版離れを促進するだけでは、ラインパターンの滲みを抑制するには不十分であると推測される。これより、ペースト16がスキージ13に押されてスクリーン版2の開口部10を通過する段階から、スクリーン版2と被印刷基板12の下流側の成す角度を制御することが有効であることを、本願発明者らは新たに見出した。 Compared to the conventional screen plate using a wire mesh (FIG. 4), the screen plate 2 using the metal foil 4 does not expose the mesh intersection in the opening 10 as described above. high. Therefore, it is presumed that it is insufficient to suppress bleeding of the line pattern only by promoting the plate separation after the squeegee 13 passes by the off-contact function. From this, it is effective to control the angle formed between the screen plate 2 and the printed substrate 12 downstream from the stage where the paste 16 is pushed by the squeegee 13 and passes through the opening 10 of the screen plate 2. The inventors have newly found out.
 スクリーン版2と被印刷基板12の下流側の成す角度を制御することにより、ラインパターンの滲みを抑制できる原理について、図9、図10を用いて説明する。以下で説明する原理は仮説モデルであって、このような特定の原理に拘束される訳ではない。 The principle by which the bleeding of the line pattern can be suppressed by controlling the angle formed between the screen plate 2 and the substrate 12 to be printed will be described with reference to FIGS. The principle described below is a hypothetical model and is not bound by such a specific principle.
 図9は、図7で示した内径の大きな金属フレーム14aにスクリーン版2aを固定した場合、すなわち、スクリーン版2aと被印刷基板12の下流側の成す角度α2が小さい場合を示す。一方で、図10は、図7で示した内径の小さな金属フレーム14bにスクリーン版2bを固定した場合、すなわち、スクリーン版2bと被印刷基板12の下流側の成す角度β2が大きい場合を示す。 FIG. 9 shows a case where the screen plate 2a is fixed to the metal frame 14a having a large inner diameter shown in FIG. 7, that is, a case where the angle α2 formed between the screen plate 2a and the printed substrate 12 is small. On the other hand, FIG. 10 shows a case where the screen plate 2b is fixed to the metal frame 14b having a small inner diameter shown in FIG. 7, that is, a case where the angle β2 formed between the screen plate 2b and the printed substrate 12 is large.
 図9に示すように、スクリーン版2aでは開口部10aにメッシュ交差部がないため、スキージ13に押された多量のペースト16が開口部10aを通過しようとする(矢印R1)。スクリーン版2aと被印刷基板12の下流側の成す角度α2が小さい場合、金属箔4のリブ4aによって跳ね返されるペースト16の量が多くなり(矢印R2)、ペースト16が開口部10aで滞留しやすい状況が発生する。更に、スクリーン版2aにおいて被印刷基板12と接触した部分の下流側では空気が抜けにくくなっており、リブ4aの直下付近で空気溜りHが発生することが考えられる。このようなことから、多量のペースト16が開口部10aから侵入したにも拘わらず、リブ4a同士の間においてペースト16が滞留しやすく、結果として、ラインパターンの幅方向に広がる滲みが開口部10aに対応する位置で発生すると考えられる。 As shown in FIG. 9, in the screen plate 2a, since there is no mesh intersection in the opening 10a, a large amount of paste 16 pushed by the squeegee 13 tries to pass through the opening 10a (arrow R1). When the angle α2 formed between the screen plate 2a and the downstream side of the printed substrate 12 is small, the amount of the paste 16 rebounded by the rib 4a of the metal foil 4 increases (arrow R2), and the paste 16 tends to stay in the opening 10a. A situation occurs. Further, it is difficult for air to escape on the downstream side of the screen plate 2a in contact with the substrate 12 to be printed, and it is conceivable that an air pocket H is generated in the vicinity immediately below the rib 4a. For this reason, the paste 16 tends to stay between the ribs 4a even though a large amount of the paste 16 has entered from the opening 10a. It is considered to occur at a position corresponding to.
 これに対して、図10に示すように、スクリーン版2bと被印刷基板12の下流側の成す角度を大きく設定した場合、金属箔4のリブ4aの傾きが変化する。このため、リブ4aによって跳ね返されるペースト16が向かう方向は、図9に示した場合と比較して、前方(上流側)に向きやすくなる(矢印R3)。これにより、開口部10bに滞留するペースト16の量が低減される。更に、スクリーン版2bと被印刷基板12の下流側の成す角度を大きく設定することにより、空気の抜け道を確保することができ、図9に示した空気溜まりHは生じにくい。これにより、開口部10bに進入したペースト16が前方に進行しやすくなる。この結果、リブ4a同士の間に滞留するペースト16の量を低減することができ、ペースト16の流れ方向とは垂直な幅方向に広がる滲みを抑制できると考えられる。 On the other hand, as shown in FIG. 10, when the angle formed between the screen plate 2b and the downstream side of the substrate 12 to be printed is set large, the inclination of the rib 4a of the metal foil 4 changes. For this reason, the direction in which the paste 16 bounced back by the rib 4a is directed forward (upstream) is easier than the case shown in FIG. 9 (arrow R3). Thereby, the amount of the paste 16 staying in the opening 10b is reduced. Further, by setting a large angle between the screen plate 2b and the downstream side of the substrate 12 to be printed, an air escape path can be secured, and the air reservoir H shown in FIG. Thereby, the paste 16 that has entered the opening 10b is likely to travel forward. As a result, it is considered that the amount of the paste 16 staying between the ribs 4a can be reduced, and bleeding spreading in the width direction perpendicular to the flow direction of the paste 16 can be suppressed.
 従来から、スキージ13が通過した上流側で版離れを促進させるオフコンタクト機能によって滲みを抑制することはよく知られており、オフコンタクト機能を備えたスクリーン印刷機も実用化・販売されている。 Conventionally, it is well known to suppress bleeding by an off-contact function that promotes plate separation on the upstream side through which the squeegee 13 passes, and screen printing machines having an off-contact function have been put into practical use and sold.
 一方、本願発明者らが想到した方法は、スキージ13が通過した後の版離れを促進するというオフコンタクト機能の目的とは全く異なるものである。具体的には、ペースト16がスキージ13によってスクリーン版2の開口部10に押し込まれる際に、スクリーン版2と被印刷基板12の成す下流側の角度を制御することで、フィンガー電極のラインパターンの滲みを低減するものである。このように、公知のオフコンタクト機能とは全く異なるものである。 On the other hand, the method conceived by the inventors of the present application is completely different from the purpose of the off-contact function of promoting plate separation after the squeegee 13 passes. Specifically, when the paste 16 is pushed into the opening 10 of the screen plate 2 by the squeegee 13, the downstream angle formed by the screen plate 2 and the substrate 12 to be printed is controlled, so that the line pattern of the finger electrode is controlled. It reduces bleeding. Thus, it is completely different from the known off-contact function.
 なお、スキージ13の傾斜角度である「スキージ角度」(スキージ13と被印刷基板12が成す角度、「アタック角度」とも呼ばれる。)を制御するという方法も考えられる。しかしながら、アタック角度はあくまでもスキージ13と被印刷基板12が成す角度である。本願発明者らは、アタック角度を制御する方法とは異なり、「スクリーン版2と被印刷基板12が成す下流側の角度」が滲みの抑制に効力を発揮することを新たに見出した。 Note that a method of controlling a “squeegee angle” (an angle formed by the squeegee 13 and the substrate 12 to be printed, also referred to as an “attack angle”), which is an inclination angle of the squeegee 13 is also conceivable. However, the attack angle is an angle formed by the squeegee 13 and the substrate 12 to be printed. The inventors of the present application newly found that the “downstream angle formed by the screen plate 2 and the substrate 12 to be printed” is effective in suppressing bleeding, unlike the method of controlling the attack angle.
 次に、本願発明を実現するための具体的な角度の制御方法について、図11を用いて説明する。 Next, a specific angle control method for realizing the present invention will be described with reference to FIG.
 図11は、スクリーン版2と被印刷基板12が成す下流側の角度θを求めるための模式図である。図11に示す例では、図3と同様に、スクリーン版2と被印刷基板12の間隔をC、金属フレーム14の内径をDとする。ここで、スクリーン版2の上流端2aから、スキージ13に押されて被印刷基板12に接触する位置までの距離Xが決まれば、以下の式1から、角度θを算出することができる。 FIG. 11 is a schematic diagram for obtaining the downstream angle θ formed by the screen plate 2 and the substrate 12 to be printed. In the example shown in FIG. 11, the distance between the screen plate 2 and the substrate 12 to be printed is C, and the inner diameter of the metal frame 14 is D, as in FIG. Here, if the distance X from the upstream end 2a of the screen plate 2 to the position touched by the squeegee 13 and contacting the substrate 12 to be printed is determined, the angle θ can be calculated from the following equation 1.
(式1)
 θ=tan-1{C/(D-X)}
(Formula 1)
θ = tan −1 {C / (D−X)}
 式1を用いて、スクリーン版2と被印刷基板12の成す下流側の角度θを算出した例を、図12、図13に示す。図12、図13は、各種条件のもとに、式1を用いて角度θを算出し、代表的な点をプロットした結果を示す。図12、図13は、横軸に、スキージ13の位置(被印刷基板12の下流端部を0mmとした)を表し、縦軸に、スクリーン版2と被印刷基板12の成す下流側の角度θを表す。 An example in which the downstream angle θ between the screen plate 2 and the printing substrate 12 is calculated using Equation 1 is shown in FIGS. 12 and 13 show the results of calculating the angle θ using Equation 1 and plotting representative points under various conditions. 12 and 13, the horizontal axis represents the position of the squeegee 13 (the downstream end of the printed substrate 12 is 0 mm), and the vertical axis represents the downstream angle formed by the screen plate 2 and the printed substrate 12. represents θ.
 図12は、条件1、条件2の算出結果を示す。条件1は、内径300mm(D=300mm)の金属フレーム14を用いて、クリアランスCを1.5mmに設定した例である。条件2は、内径390mm(D=390mm)の金属フレーム14を用いて、クリアランスCを1.5mmに設定した例である。条件1、条件2いずれも、被印刷基板12のX方向の長さは157mmである。 FIG. 12 shows the calculation results of Condition 1 and Condition 2. Condition 1 is an example in which the clearance C is set to 1.5 mm using a metal frame 14 having an inner diameter of 300 mm (D = 300 mm). Condition 2 is an example in which the clearance C is set to 1.5 mm using a metal frame 14 having an inner diameter of 390 mm (D = 390 mm). In both condition 1 and condition 2, the length of the printed substrate 12 in the X direction is 157 mm.
 図12に示すように、条件1、条件2ともに、スキージ13が上流から下流に移動するにしたがって、角度θが増加していることがわかる。また、内径の小さな金属フレーム14を用いた条件1の方が、内径の小大きな金属フレーム14を用いた条件2よりも、スキージ13が上流から下流に移動するにしたがって角度θが増加していることがわかる。条件1では、角度θの平均角度は0.66°であり、条件2では、角度θの平均角度は0.48°であった。これより、同じクリアランスCでも、内径の小さい金属フレーム14を用いた方が、角度θを大きく保って印刷可能なことが分かる。 As shown in FIG. 12, it can be seen that the angle θ increases as the squeegee 13 moves from upstream to downstream in both conditions 1 and 2. In addition, in the condition 1 using the metal frame 14 having a small inner diameter, the angle θ increases as the squeegee 13 moves from upstream to downstream than in the condition 2 using the metal frame 14 having a small inner diameter. I understand that. In condition 1, the average angle θ was 0.66 °, and in condition 2, the average angle θ was 0.48 °. From this, it can be seen that even with the same clearance C, printing can be performed with the angle θ kept large by using the metal frame 14 having a smaller inner diameter.
 図13は、条件3、条件4の算出結果を示す。条件3は、内径300mm(D=300mm)の金属フレーム14を用いて、クリアランスCを1.6mmに設定した例である。条件4は、内径390mm(D=390mm)の金属フレーム14を用いて、クリアランスCを2.0mmに設定した例である。条件3、条件4いずれも、条件1、条件2と同様に、被印刷基板12のX方向の長さは157mmである。 FIG. 13 shows the calculation results of Condition 3 and Condition 4. Condition 3 is an example in which the clearance C is set to 1.6 mm using a metal frame 14 having an inner diameter of 300 mm (D = 300 mm). Condition 4 is an example in which a clearance C is set to 2.0 mm using a metal frame 14 having an inner diameter of 390 mm (D = 390 mm). In both conditions 3 and 4, as in conditions 1 and 2, the length of the substrate 12 to be printed in the X direction is 157 mm.
 図13に示す条件3では、角度θの平均角度は0.71°であり、条件4では、角度θの平均角度は0.64°であった。 In condition 3 shown in FIG. 13, the average angle of angle θ was 0.71 °, and in condition 4, the average angle of angle θ was 0.64 °.
 図12、図13に示した条件1-4のうち、条件3の角度θの平均角度は、0.7度以上である。本願発明者らは、図14を参照しながら後述するように、スクリーン版2と被印刷基板12の成す下流側の角度θの平均角度を一定値以上、特に0.7度以上に保つことにより、フィンガー電極のラインパターンの滲みの抑制に顕著な効果があることを見出した。このような平均角度に関する知見は、前述したノットレススクリーン200についても同様に当てはまると考えられる。 Of the conditions 1-4 shown in FIGS. 12 and 13, the average angle θ of condition 3 is 0.7 degrees or more. As will be described later with reference to FIG. 14, the inventors of the present application keep the average angle of the downstream angle θ formed by the screen plate 2 and the substrate 12 to be printed above a certain value, particularly 0.7 ° or more. The present inventors have found that there is a remarkable effect in suppressing the bleeding of the line pattern of the finger electrode. Such knowledge about the average angle is considered to be similarly applicable to the knotless screen 200 described above.
 図12に示した条件3のように、内径300mmの金属フレーム14を用いてスクリーン版2を固定した場合、クリアランスCを1.6mmで印刷すると、印刷時の角度θの平均角度は0.71°となり、本願発明の印刷条件を実現可能である。しかしながら、内径390mmの金属フレーム14を用いてスクリーン版2を固定した場合、クリアランスCを2.0mmまで大きくしても、平均角度は0.64°にまでしか上がらない。クリアランスCを大きくするほど、角度θの平均角度を大きくできるが、スキージ13によって押されるスクリーン版2(特に金属箔4)の負荷が大きくなる。このため、金属箔4の破断等を抑制するためにも、クリアランスCを2.0mm以下に設定することが好ましい。(1)クリアランスCを2.0mm以下に設定すること、(2)角度θの平均角度を0.7°以上に設定すること、および、(3)本願発明の印刷方法を量産現場で安定して実現することを考慮すると、金属フレーム14の内径を300mm、特に320mm以下に設定することが好ましい。 When the screen plate 2 is fixed using the metal frame 14 having an inner diameter of 300 mm as in the condition 3 shown in FIG. 12, when the clearance C is printed at 1.6 mm, the average angle θ during printing is 0.71. Thus, the printing conditions of the present invention can be realized. However, when the screen plate 2 is fixed using the metal frame 14 having an inner diameter of 390 mm, even if the clearance C is increased to 2.0 mm, the average angle increases only to 0.64 °. As the clearance C increases, the average angle θ can be increased, but the load on the screen plate 2 (particularly the metal foil 4) pushed by the squeegee 13 increases. For this reason, in order to suppress breakage of the metal foil 4 and the like, it is preferable to set the clearance C to 2.0 mm or less. (1) Set the clearance C to 2.0 mm or less, (2) Set the average angle of the angle θ to 0.7 ° or more, and (3) Stabilize the printing method of the present invention at the mass production site. Therefore, it is preferable to set the inner diameter of the metal frame 14 to 300 mm, particularly 320 mm or less.
 角度θの平均角度の上限値については、金属箔4に掛かる負荷などを考慮して、例えば2.2°に設定してもよい。角度θの平均角度を2.2°にするには、例えば被印刷基板の長さが157mmのときに、金属フレーム14の内径Dを300mm、クリアランスCを5mmにすればよい。 The upper limit value of the average angle θ may be set to 2.2 °, for example, in consideration of the load applied to the metal foil 4. In order to set the average angle of the angle θ to 2.2 °, for example, when the length of the substrate to be printed is 157 mm, the inner diameter D of the metal frame 14 may be 300 mm and the clearance C may be 5 mm.
 また図12、13では、式1を用いて角度θを算出した結果から代表的な点をプロットして角度θの平均角度を求めたが、このような場合に限らない。例えば、式1を積分した値を角度θの平均角度として求めてもよい。 12 and 13, representative points are plotted from the result of calculating the angle θ using Equation 1, and the average angle θ is obtained. However, the present invention is not limited to such a case. For example, a value obtained by integrating Equation 1 may be obtained as the average angle of the angle θ.
 なお、角度θの平均角度を制御するためには、式1から分かるように、クリアランスC又は金属フレーム14の内径Dを調整すればよい。クリアランスCは例えば、前述した間隔調整機構(図示せず)により調整可能である。金属フレーム14の内径Dは例えば、使用する金属フレーム14の種類を使い分けることで調整可能である。 In order to control the average angle θ, the clearance C or the inner diameter D of the metal frame 14 may be adjusted as can be seen from Equation 1. The clearance C can be adjusted by, for example, the above-described interval adjusting mechanism (not shown). For example, the inner diameter D of the metal frame 14 can be adjusted by properly using the type of the metal frame 14 to be used.
(実施例1)
 次に、各種条件のもとにスクリーン印刷を行った結果について、角度θの平均角度と、フィンガー電極の滲み幅の関係を図14に示す。図14では、横軸に、スクリーン版2と被印刷基板12の成す下流側の角度θの平均角度を表し、縦軸に、印刷されたフィンガー電極の滲み幅を表す。「滲み幅」とは、光学顕微鏡で測定された(フィンガー電極の幅)-(開口部10の幅)である。滲み幅の値が小さいほど、滲みが少ないといえる。
Example 1
Next, FIG. 14 shows the relationship between the average angle θ and the spread width of the finger electrode for the results of screen printing under various conditions. In FIG. 14, the horizontal axis represents the average angle of the downstream angle θ formed by the screen plate 2 and the substrate 12 to be printed, and the vertical axis represents the spread width of the printed finger electrode. “Bleeding width” is (finger electrode width) − (width of opening 10) measured with an optical microscope. It can be said that the smaller the value of the bleeding width, the less the bleeding.
 図14では、条件5、条件6、条件7の実験結果を示す。条件5-条件7に共通する条件として、金属箔4はステンレス箔(SUS301)を用いている。条件5、6では、スキージ角度を60°に設定し、条件7では、スキージ角度を70°に設定している。条件5は、内径300mmの金属フレーム14を用いて、クリアランスCを1.4mmに設定している。条件6は、内径300mmの金属フレーム14を用いて、クリアランスCを1.7mmに設定している。条件7は、内径390mmの金属フレーム14を用いて、クリアランスCを2.0mmに設定している。 FIG. 14 shows the experimental results of Condition 5, Condition 6, and Condition 7. As conditions common to condition 5 and condition 7, the metal foil 4 is made of stainless steel foil (SUS301). In conditions 5 and 6, the squeegee angle is set to 60 °, and in condition 7, the squeegee angle is set to 70 °. Condition 5 uses a metal frame 14 with an inner diameter of 300 mm and sets the clearance C to 1.4 mm. Condition 6 uses a metal frame 14 having an inner diameter of 300 mm and sets the clearance C to 1.7 mm. Condition 7 uses a metal frame 14 having an inner diameter of 390 mm and sets the clearance C to 2.0 mm.
 また、条件5に関しては、スクリーン版2の厚みを異ならせた3パターンの結果を表す。条件6に関しては、開口部10の幅を異ならせた3パターンの結果を表し、条件7に関しては、開口部10の幅を異ならせた4パターンの結果を表す。 In addition, regarding condition 5, the result of three patterns with different thicknesses of the screen plate 2 is represented. The condition 6 represents the results of three patterns with different widths of the opening 10, and the condition 7 represents the results of four patterns with different widths of the opening 10.
 図14に示すように、スクリーン版2と被印刷基板12の成す下流側の角度θの平均角度は、条件5の場合に約0.58°、条件6の場合に約0.71°、条件7の場合に約0.62°である。 As shown in FIG. 14, the average angle of the downstream angle θ formed by the screen plate 2 and the substrate 12 to be printed is about 0.58 ° for the condition 5 and about 0.71 ° for the condition 6. In the case of 7, it is about 0.62 °.
 図14の結果から分かるように、条件5、7のように、スクリーン版2と被印刷基板12の成す下流側の角度θの平均角度が0.7°未満の場合、滲み幅は16~35μmと大きい値になっている。一方で、条件6のように、平均角度が0.7°以上の場合、滲み幅は8~15μmと大幅に小さくすることができた。 As can be seen from the result of FIG. 14, when the average angle of the downstream angle θ formed by the screen plate 2 and the substrate 12 to be printed is less than 0.7 ° as in the conditions 5 and 7, the spread width is 16 to 35 μm. It is a large value. On the other hand, as in Condition 6, when the average angle was 0.7 ° or more, the spread width could be greatly reduced to 8 to 15 μm.
 図14の結果より、印刷時において、スキージ13の移動方向下流側におけるスクリーン版2と被印刷基板12の成す平均角度を一定値以上、特に0.7°以上に保つことで、フィンガー電極のラインパターンの滲みを抑制できることがわかる。これにより、ラインパターンの細線化に寄与することができる。 From the results shown in FIG. 14, the finger electrode line is maintained by keeping the average angle formed by the screen plate 2 and the substrate 12 to be printed at the downstream side in the moving direction of the squeegee 13 at a certain value or more, particularly 0.7 ° or more. It can be seen that the bleeding of the pattern can be suppressed. Thereby, it can contribute to thinning of a line pattern.
(実施例2)
 次に、本願発明者らは、上述したスクリーン版2と被印刷基板12の成す下流側の平均角度を一定値以上に保ちながら印刷を行うラインパターン印刷方法に関して、それに適したスクリーン版2、特に金属箔4の特性を見出すべく、図15に示す実験を行った。
(Example 2)
Next, the inventors of the present invention relate to a line pattern printing method for performing printing while keeping the average angle on the downstream side formed by the screen plate 2 and the substrate to be printed 12 at a certain value or more. In order to find out the characteristics of the metal foil 4, an experiment shown in FIG.
 図15は、金属箔4の仕様を変更しながら、上述したラインパターン印刷方法を行った場合に、金属箔4の破断が生じたかどうかの結果を表したものである。具体的には、ステンレス箔(SUS301)の金属箔4を用いたスクリーン版2を、内径300mmの金属フレーム14に固定してスクリーン印刷した場合の、金属箔4の強度を調査した。 FIG. 15 shows a result of whether or not the metal foil 4 is broken when the above-described line pattern printing method is performed while changing the specification of the metal foil 4. Specifically, the strength of the metal foil 4 when the screen plate 2 using the stainless steel foil (SUS301) metal foil 4 was fixed to the metal frame 14 having an inner diameter of 300 mm and screen-printed was examined.
 図15において、「メッシュ仕様」とは、開口部10のピッチa/開口部10の幅bを表す(図16)。例えば、「メッシュ仕様」の欄における「80/50」は、開口部10のピッチaが80μmであり、開口部10の幅bが50μmを意味する。また、「メッシュ厚」とは、金属箔4の厚み(リブ4aの厚み)を表す(μm)。 15, “mesh specification” represents the pitch a of the openings 10 / the width b of the openings 10 (FIG. 16). For example, “80/50” in the “mesh specification” column means that the pitch a of the openings 10 is 80 μm and the width b of the openings 10 is 50 μm. The “mesh thickness” represents the thickness of the metal foil 4 (the thickness of the rib 4a) (μm).
 図15において、「単位長当たり断面積」とは、それぞれの条件下において、リブ4aのX方向における単位長さ当たりの断面積を算出したものである。当該断面積は、切断面B(図16)に沿って金属箔4を切断し、1個当たりのリブ4aの断面積をSEM観察により計測し、開口部10のピッチaから、1mm当たりのリブ4aの断面積を算出した(百μm単位に切り捨て)。 In FIG. 15, “cross-sectional area per unit length” is obtained by calculating the cross-sectional area per unit length in the X direction of the rib 4 a under each condition. The cross-sectional area is determined by cutting the metal foil 4 along the cutting plane B (FIG. 16), measuring the cross-sectional area of each rib 4a by SEM observation, and measuring the ribs per mm from the pitch a of the openings 10. The cross-sectional area of 4a was calculated (truncated to 100 μm 2 units).
 「メッシュ仕様」が80/60および85/65(メッシュ厚:20μm)の条件の場合、クリアランスCを2mmにした印刷試験時に、金属箔4の破断が発生した(評価は×)。これらの条件における「単位長当たり断面積」はいずれも4000μm/mm未満であった。 When the “mesh specifications” were 80/60 and 85/65 (mesh thickness: 20 μm), the metal foil 4 was broken during the printing test with the clearance C being 2 mm (evaluation was x). The “cross-sectional area per unit length” under these conditions was all less than 4000 μm 2 / mm.
 一方で、それ以外の条件の場合、「単位長当たり断面積」はいずれも4000μm/mm以上であり、クリアランスCを2mmにした印刷試験時に、金属箔4の破断は発生しなかった(評価は○)。 On the other hand, in the case of other conditions, the “cross-sectional area per unit length” was 4000 μm 2 / mm or more, and the metal foil 4 did not break during the printing test with the clearance C being 2 mm (evaluation). Is ○).
 図15に示す結果より、リブ4aに関するX方向沿いの単位長さ当たりの断面積を4000μm/mm以上とすることにより、上述した本願発明のラインパターン印刷方法を実施した場合でも、金属箔4の破断が生じない。すなわち、このような断面積に設定することにより、本願発明のラインパターン印刷方法に適した金属箔4およびスクリーン版2とすることができる。特に、内径300mmの金属フレーム14を用いて、クリアランスCを2mm以下とし、平均角度を0.7°以上に保って印刷する場合に、前述のリブ4aの断面積を4,000μm/mm以上とすることが好ましい。 From the result shown in FIG. 15, even when the above-described line pattern printing method of the present invention is performed by setting the cross-sectional area per unit length along the X direction with respect to the rib 4 a to 4000 μm 2 / mm or more, the metal foil 4 No breakage occurs. That is, by setting such a cross-sectional area, the metal foil 4 and the screen plate 2 suitable for the line pattern printing method of the present invention can be obtained. In particular, when printing is performed using a metal frame 14 having an inner diameter of 300 mm and a clearance C of 2 mm or less and an average angle of 0.7 ° or more, the cross-sectional area of the rib 4a is 4,000 μm 2 / mm or more. It is preferable that
 次に、スクリーン版2における開口部10のアスペクト比について説明する。開口部10のアスペクト比とは、スクリーン版2の厚み/開口部10の幅bである。開口部10のアスペクト比は、1.4以下に設定してもよい。開口部10のアスペクト比を1.4以下に設定することで、開口部10を通過するペースト16の抵抗を低く設定することができる。これにより、金属箔4を用いたスクリーン版2のように開口部10にメッシュ交差部が露出しないスクリーン版において、ペースト16の吐出性が安定し、印刷されたラインパターンに擦れ若しくは断線が発生しないようにすることができる。 Next, the aspect ratio of the opening 10 in the screen plate 2 will be described. The aspect ratio of the opening 10 is the thickness of the screen plate 2 / the width b of the opening 10. The aspect ratio of the opening 10 may be set to 1.4 or less. By setting the aspect ratio of the opening 10 to 1.4 or less, the resistance of the paste 16 that passes through the opening 10 can be set low. Thereby, in the screen plate in which the mesh intersection is not exposed in the opening 10 as in the screen plate 2 using the metal foil 4, the discharge property of the paste 16 is stabilized, and the printed line pattern does not rub or break. Can be.
 最後に、スクリーン版2における開口部10の開口幅について説明する。開口部10の開口幅cとは、図16に示すように、樹脂6同士の間隔によって決まる開口部10の幅方向の長さのことである。開口幅cは、15μm以上100μm以下に設定してもよい。開口幅cを100μm以下に設定することで、ラインパターンの幅を小さくすることができる。これにより、ラインパターン自体が太くなって滲みの影響がさほど問題にならないという状況を回避することができる。一方、開口幅cを15μm以上に設定することで、樹脂6の内壁面の抵抗によってペーストの吐出性が悪化することを抑制することができる。これにより、滲み以外の問題として、擦れ、レベリング(高低差)、断線の問題が支配的になることを回避することができる。 Finally, the opening width of the opening 10 in the screen plate 2 will be described. The opening width c of the opening 10 is the length in the width direction of the opening 10 determined by the interval between the resins 6 as shown in FIG. The opening width c may be set to 15 μm or more and 100 μm or less. By setting the opening width c to 100 μm or less, the width of the line pattern can be reduced. As a result, it is possible to avoid a situation where the line pattern itself becomes thick and the influence of bleeding does not become a problem. On the other hand, by setting the opening width c to 15 μm or more, it is possible to suppress deterioration of the paste dischargeability due to the resistance of the inner wall surface of the resin 6. Thereby, it is possible to avoid that the problems of rubbing, leveling (level difference), and disconnection become dominant as problems other than bleeding.
 以上、上述の実施形態を挙げて本開示の発明を説明したが、本開示の発明は上述の実施形態に限定されず、特許請求の範囲の記載等に基づいて上述の実施形態に種々の変更を加えてもよい。例えば、実施形態では、ラインパターンとして太陽電池のフィンガー電極を形成する場合について説明したが、このような場合に限らない。任意の物体の上にペーストを塗布してラインパターンを印刷するものであれば、任意のラインパターン印刷方法およびそのためのスクリーン版に適用可能である。 The invention of the present disclosure has been described with reference to the above-described embodiment. However, the invention of the present disclosure is not limited to the above-described embodiment, and various modifications are made to the above-described embodiment based on the description of the scope of claims. May be added. For example, in the embodiment, the case where the finger electrode of the solar cell is formed as the line pattern has been described, but the present invention is not limited to such a case. As long as a line pattern is printed by applying a paste on an arbitrary object, it can be applied to an arbitrary line pattern printing method and a screen plate therefor.
 また実施形態では、スクリーン版2と被印刷基板12の成す平均角度を0.7度以上に制御する場合について説明したが、このような場合に限らない。当該平均角度は、様々な条件に応じてラインパターンの滲みが抑制できるような値に設定すればよい。 In the embodiment, the case where the average angle formed by the screen plate 2 and the printing substrate 12 is controlled to 0.7 degrees or more has been described. However, the present invention is not limited to such a case. The average angle may be set to a value that can suppress bleeding of the line pattern according to various conditions.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形および修正は明白である。そのような変形および修正は、添付した特許請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、各実施の形態における要素の組合せおよび順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。 Although the present disclosure has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of this disclosure according to the appended claims. In addition, combinations of elements and changes in the order in each embodiment can be realized without departing from the scope and spirit of the present disclosure.
 本開示の発明は、ラインパターン印刷方法及びラインパターン印刷用スクリーン版であれば適用可能である。 The invention of the present disclosure can be applied to a line pattern printing method and a screen pattern for line pattern printing.
 2017年3月17日に出願された日本国特許出願No.2017-052994号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。 Japanese patent application No. filed on March 17, 2017. The disclosures of the specification, drawings, and claims of 2017-052994 are hereby incorporated by reference in their entirety.
 2、2a、2b スクリーン版
 4 金属箔(ステンレス箔)
 4a リブ
 6 樹脂(開口形成部材)
 8 孔
10 開口部
12 被印刷基板
13 スキージ
14 金属フレーム(アルミニウム枠)
22a 上流端
22b 下流端
100 スクリーン版
102 樹脂
104 ワイヤメッシュ
106 交差部(ワイヤ交差点)
200 ノットレススクリーン
202 樹脂
204 ワイヤメッシュ
206 交差部(ワイヤ交差点)
C クリアランス
D 金属フレームの内径
a 開口部のピッチ
b 開口部の長さ
c 開口部の開口幅
2, 2a, 2b Screen plate 4 Metal foil (stainless steel foil)
4a Rib 6 Resin (opening forming member)
8 hole 10 opening 12 printed substrate 13 squeegee 14 metal frame (aluminum frame)
22a Upstream end 22b Downstream end 100 Screen plate 102 Resin 104 Wire mesh 106 Intersection (wire intersection)
200 knotless screen 202 resin 204 wire mesh 206 intersection (wire intersection)
C clearance D inner diameter a of metal frame a pitch of opening b length of opening c opening width of opening

Claims (8)

  1.  一方向に沿って多数の孔が形成された金属箔と、前記金属箔の裏面において前記一方向に交差する方向に間隔を空けて配置され、前記多数の孔の中央部を開放して前記金属箔とともに開口部を形成する部材とを有するスクリーン版を用いて、被印刷基板に線状のラインパターンを印刷する方法であって、
     前記スクリーン版の表面で前記一方向に沿ってスキージを移動させることにより、前記スクリーン版を前記被印刷基板に押し付けて前記開口部からペーストを吐出し、前記被印刷基板に線状のラインパターンを印刷し、
     前記印刷時において、前記スキージの移動方向下流側における前記スクリーン版と前記被印刷基板の成す平均角度を一定値以上に保つようにしたことを特徴とする、ラインパターン印刷方法。
    A metal foil in which a large number of holes are formed along one direction, and a back surface of the metal foil, the metal foil is disposed at intervals in a direction intersecting the one direction, and the central portion of the plurality of holes is opened to form the metal A method of printing a linear line pattern on a substrate to be printed using a screen plate having a member that forms an opening together with a foil,
    By moving the squeegee along the one direction on the surface of the screen plate, the screen plate is pressed against the substrate to be printed and the paste is discharged from the opening, and a linear line pattern is formed on the substrate to be printed. Print and
    A line pattern printing method, wherein an average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is maintained at a certain value or more during printing.
  2.  ワイヤメッシュと、前記ワイヤメッシュの裏面において間隔を空けて配置され、前記ワイヤメッシュとともに開口部を形成する部材とを有するスクリーン版を用いて、被印刷基板に線状のラインパターンを印刷する方法であって、
     前記ワイヤメッシュのバイアス角度は、ワイヤ同士が交差する交差部を前記開口部に露出しない角度に設定されており、
     前記スクリーン版の表面で前記開口部が形成される方向に沿ってスキージを移動させることにより、前記スクリーン版を前記被印刷基板に押し付けて前記開口部からペーストを吐出し、前記被印刷基板に線状のラインパターンを印刷し、
     前記印刷時において、前記スキージの移動方向下流側における前記スクリーン版と前記被印刷基板の成す平均角度を一定値以上に保つようにしたことを特徴とする、ラインパターン印刷方法。
    A method of printing a linear line pattern on a substrate to be printed, using a screen plate having a wire mesh and a member which is arranged at an interval on the back surface of the wire mesh and forms an opening together with the wire mesh. There,
    The bias angle of the wire mesh is set to an angle that does not expose the intersection where the wires intersect with each other in the opening,
    By moving a squeegee along the direction in which the opening is formed on the surface of the screen plate, the screen plate is pressed against the substrate to be printed to discharge the paste from the opening, and the line is applied to the substrate to be printed. Printed line pattern
    A line pattern printing method, wherein an average angle formed by the screen plate and the substrate to be printed on the downstream side in the moving direction of the squeegee is maintained at a certain value or more during printing.
  3.  前記平均角度は0.7度以上であることを特徴とする、請求項1又は2に記載のラインパターン印刷方法。 3. The line pattern printing method according to claim 1, wherein the average angle is 0.7 degrees or more.
  4.  前記スクリーン版を前記スキージの移動方向の上流側と下流側で固定するとともに、その距離を320mm以下に設定することを特徴とする、請求項1又は2に記載のラインパターン印刷方法。 3. The line pattern printing method according to claim 1, wherein the screen plate is fixed on the upstream side and the downstream side in the moving direction of the squeegee and the distance is set to 320 mm or less.
  5.  前記被印刷基板と前記スクリーン版の間隔を1.6mm以上に設定することを特徴とする、請求項1又は2に記載のラインパターン印刷方法。 3. The line pattern printing method according to claim 1, wherein an interval between the substrate to be printed and the screen plate is set to 1.6 mm or more.
  6.  前記ラインパターンを太陽電池のフィンガー電極として用いることを特徴とする、請求項1又は2に記載のラインパターン印刷方法。 3. The line pattern printing method according to claim 1, wherein the line pattern is used as a finger electrode of a solar cell.
  7.  一方向に沿って多数の孔が形成された金属箔と、前記金属箔の裏面において前記一方向に交差する方向に間隔を空けて配置され、前記多数の孔の中央部を開放して前記金属箔とともに開口部を形成する部材とを有し、被印刷基板に線状のラインパターンを印刷するためのスクリーン版であって、
     隣り合う前記開口部と前記開口部の間の前記金属箔のリブは、前記開口部が形成される方向沿いの単位長さ当たりの断面積が4000μm/mm以上であることを特徴とする、ラインパターン印刷用スクリーン版。
    A metal foil in which a large number of holes are formed along one direction, and a back surface of the metal foil, the metal foil is disposed at intervals in a direction intersecting the one direction, and the central portion of the plurality of holes is opened to form the metal A member for forming an opening together with the foil, and a screen plate for printing a linear line pattern on the substrate to be printed,
    The rib of the metal foil between the adjacent openings and the openings has a cross-sectional area per unit length along the direction in which the openings are formed of 4000 μm 2 / mm or more, Screen version for line pattern printing.
  8.  前記ラインパターンは、太陽電池のフィンガー電極であることを特徴とする、請求項7に記載のラインパターン印刷用スクリーン版。 The screen pattern for line pattern printing according to claim 7, wherein the line pattern is a finger electrode of a solar cell.
PCT/JP2017/031404 2017-03-17 2017-08-31 Line pattern printing method and screen plate for printing line pattern WO2018168008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-052994 2017-03-17
JP2017052994A JP2018154028A (en) 2017-03-17 2017-03-17 Line pattern printing method and screen printing plate for line pattern printing

Publications (1)

Publication Number Publication Date
WO2018168008A1 true WO2018168008A1 (en) 2018-09-20

Family

ID=63522883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031404 WO2018168008A1 (en) 2017-03-17 2017-08-31 Line pattern printing method and screen plate for printing line pattern

Country Status (3)

Country Link
JP (1) JP2018154028A (en)
TW (1) TW201834874A (en)
WO (1) WO2018168008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764728B (en) * 2021-05-25 2022-05-11 倉和股份有限公司 How to make a net-free mesh plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6439115B1 (en) * 2000-08-30 2002-08-27 Micron Technology, Inc. Uphill screen printing in the manufacturing of microelectronic components
JP2006128290A (en) * 2004-10-27 2006-05-18 Sharp Corp Solar cells
JP2008162197A (en) * 2006-12-28 2008-07-17 Murakami:Kk Screen mask and manufacturing method thereof
JP2014000740A (en) * 2012-06-19 2014-01-09 Kobelco Kaken:Kk Mesh member for screen printing and screen printing plate
GB2521344A (en) * 2013-10-27 2015-06-24 Asm Assembly Systems Switzerland Gmbh Printing screens, methods of fabricating the same and methods of screen printing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6439115B1 (en) * 2000-08-30 2002-08-27 Micron Technology, Inc. Uphill screen printing in the manufacturing of microelectronic components
JP2006128290A (en) * 2004-10-27 2006-05-18 Sharp Corp Solar cells
JP2008162197A (en) * 2006-12-28 2008-07-17 Murakami:Kk Screen mask and manufacturing method thereof
JP2014000740A (en) * 2012-06-19 2014-01-09 Kobelco Kaken:Kk Mesh member for screen printing and screen printing plate
GB2521344A (en) * 2013-10-27 2015-06-24 Asm Assembly Systems Switzerland Gmbh Printing screens, methods of fabricating the same and methods of screen printing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764728B (en) * 2021-05-25 2022-05-11 倉和股份有限公司 How to make a net-free mesh plate

Also Published As

Publication number Publication date
TW201834874A (en) 2018-10-01
JP2018154028A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP4917278B2 (en) Screen printing plate and screen printing device
KR101479825B1 (en) Mesh member for screen printing
KR101749435B1 (en) Metal plate, metal plate production method, and method for producing vapor deposition mask using metal plate
KR101632588B1 (en) Gravure printing plate and manufacturing method thereof, gravure printing machine, and manufacturing method for laminated ceramic electronic component
KR101420040B1 (en) Mesh member for screen printing
JP7210696B2 (en) Crystalline silicon solar cell screen printing plate for positive electrode hollow molding
WO2018168008A1 (en) Line pattern printing method and screen plate for printing line pattern
JP2015080880A (en) Gravure printing plate and production method thereof, gravure printing machine, and production method for laminated ceramic electronic component
JP4042801B2 (en) Gravure roll, gravure printing machine, and method of manufacturing multilayer ceramic electronic component
TW201809890A (en) Mesh member for screen printing and screen printed sheet
JP2017164979A (en) Printing plate
JP5584530B2 (en) Mesh material for screen printing
JP4012991B2 (en) Gravure roll, gravure printing machine, and method of manufacturing multilayer ceramic electronic component
TWM514399U (en) Printing steel plate structure of solar cell with adaptive positive silver electrode
TWI615287B (en) Solar cell positive silver electrode designable printing steel plate structure
JP2015058368A (en) Coating die and coating device having the same
JP2017222079A (en) Metal foil for screen printing, and screen printing plate including the same
KR101893306B1 (en) Screen printing plate for forming surface electrode of solar cell and manufacturing method thereof
TWI454386B (en) Screen plate and method for manufacturing the same
JP4225260B2 (en) Gravure roll, gravure printing machine, and method of manufacturing multilayer ceramic electronic component
JP4239926B2 (en) Gravure roll, gravure printing machine, and method of manufacturing multilayer ceramic electronic component
JP7660396B2 (en) Printing plate and printing method
US20150352878A1 (en) Printing steel plate having stress dispersion structure
JP7686509B2 (en) Metal mask for printing
TWI616347B (en) Printed steel plate structure for battery positive silver electrode printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901153

Country of ref document: EP

Kind code of ref document: A1