[go: up one dir, main page]

WO2018168292A1 - 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物 - Google Patents

有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物 Download PDF

Info

Publication number
WO2018168292A1
WO2018168292A1 PCT/JP2018/004784 JP2018004784W WO2018168292A1 WO 2018168292 A1 WO2018168292 A1 WO 2018168292A1 JP 2018004784 W JP2018004784 W JP 2018004784W WO 2018168292 A1 WO2018168292 A1 WO 2018168292A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
compound
organic
general formula
layer
Prior art date
Application number
PCT/JP2018/004784
Other languages
English (en)
French (fr)
Inventor
幸宏 牧島
植田 則子
康生 宮田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US16/477,742 priority Critical patent/US20200127210A1/en
Priority to JP2019505783A priority patent/JPWO2018168292A1/ja
Publication of WO2018168292A1 publication Critical patent/WO2018168292A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to an organic electroluminescence element material and compound with improved luminous efficiency, an organic electroluminescence element using the same, and a display device and an illumination apparatus including the organic electroluminescence element.
  • organic electroluminescence element (hereinafter, abbreviated as “organic EL element”) using organic electroluminescence is a technology that has already been put into practical use as a new light emitting system that enables planar light emission. .
  • organic EL elements have been applied to lighting devices as well as electronic displays, and their development is expected.
  • TTA triplet-triplet annihilation
  • TTF Triplet-Triplet Fusion
  • RISC reverse intersystem crossing from triplet excitons to singlet excitons
  • thermally activated delayed fluorescence or “thermal excitation”. It is referred to as “type delayed fluorescence.”
  • a fluorescent material using Thermally Activated Delayed Fluorescence hereinafter abbreviated as “TADF”) and the possibility of applying it to an organic EL element have been reported (for example, Patent Document 2).
  • TADF Thermally Activated Delayed Fluorescence
  • Patent Document 2 Non-patent document 1 and Non-patent document 2
  • the internal quantum efficiency of 100% which is theoretically equivalent to phosphorescence emission, is possible even in fluorescence emission by electric field excitation.
  • a method in which a compound having TADF property is contained as a third component (assist dopant) in a light emitting layer mainly containing a host compound and a light emitting compound is effective for high luminous efficiency.
  • a triplet excitons By generating 25% singlet excitons and 75% triplet excitons on the assist dopant by electric field excitation, the triplet excitons generate singlet excitons with reverse intersystem crossing (RISC). be able to.
  • RISC reverse intersystem crossing
  • the energy of the singlet exciton is transferred to the luminescent compound, and light can be emitted by the energy transferred from the luminescent compound. Therefore, theoretically, 100% exciton energy can be used to cause the luminescent compound to emit light, and high luminous efficiency is exhibited.
  • FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B are schematic diagrams showing energy diagrams of a compound that expresses a TADF phenomenon (TADF compound) and a general fluorescent compound.
  • TADF compound a compound that expresses a TADF phenomenon
  • 2CzPN 4,5-bis (carbazol-9-yl) -1,2-dicyanobenzene
  • HOMO is localized at the 1- and 2-position carbazolyl groups on the benzene ring.
  • LUMO is localized in the 4- and 5-position cyano groups. Therefore, it is possible to separate the HOMO and LUMO of 2CzPN as shown in Figure 1B, Delta] E ST express TADF phenomenon extremely small.
  • exciplex emission is known (for example, Non-Patent Document 4 reference.).
  • an exciplex can be formed in a thin film by co-evaporating an electron donating molecule and an electron withdrawing molecule.
  • the exciplex state, Delta] E ST is known to be minimal, as with TADF, by utilizing the exciton energy theoretically 100%, it is possible to EL light emission.
  • CT intramolecular charge transfer
  • the emission spectrum becomes a factor of increasing the wavelength, and thus there is a problem that it is difficult to control the emission wavelength.
  • the electron donating property or electron withdrawing property of each molecule is weakened to control the emission wavelength, the exciplex light emission is hindered. Therefore, it is desired to develop a new method for forming an exciplex that realizes high light emission efficiency while controlling the light emission wavelength.
  • the present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide an organic electroluminescent element material and a compound that can form a new exciplex capable of increasing the luminous efficiency. . Moreover, it is providing the organic electroluminescent element material and the organic electroluminescent element containing the said material, and a display apparatus and an illuminating device provided with the same.
  • the present inventor is represented by the general formula (1) capable of forming an exciplex with one kind of molecule within or between molecules.
  • the present inventors have found that the organic electroluminescence element material having a skeleton structure can increase the luminous efficiency, which is the object effect of the present invention, and have led to the present invention.
  • An organic electroluminescent element material comprising a compound having a skeleton structure represented by the following general formula (1).
  • D and A each represent a substituent.
  • X and Y each represent a carbon atom, a nitrogen atom, an oxygen atom or a silicon atom, which may have a hydrogen atom or a substituent, and at least one of X and Y is a carbon atom.
  • DH a configuration in which a connecting portion to the linker (XY) is replaced with a hydrogen atom
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • the substituent represented by D has a number of ring structures in the range of 3 to 15, and each of the ring structures may be bonded or condensed with each other.
  • the skeleton structure represented by the general formula (1) may further have one or a plurality of substituents, and a plurality of the substituents may be bonded to each other to form a ring structure.
  • One saturated ring containing X and Y as ring constituent atoms may be formed.
  • the ring structure of D in the general formula (1) is a 5-membered or 6-membered aromatic hydrocarbon ring or a heteroaromatic ring, and has three or more of the ring structures.
  • the substituent represented by A in the general formula (1) has a ring structure, the ring structure is a 5-membered or 6-membered aromatic hydrocarbon ring or heteroaromatic ring, and the ring structure is one
  • the substituent represented by D in the general formula (1) has a carbazole ring, an indolocarbazole ring, a diindolocarbazole ring, an acridan ring, or an indoloindole ring.
  • the organic electroluminescent element material as described in any one of 3 to 3.
  • the substituent represented by A in the general formula (1) is a pyridine ring, a pyrimidine ring, a triazine ring, a dibenzofuran ring, an azadibenzofuran ring, a diazadibenzofuran ring, a carboline ring, a diazacarbazole ring, or a cyano group, tri Item 5.
  • the organic electroluminescent element material according to any one of Items 1 to 4, which has a benzene ring containing at least one selected from a fluoromethyl group and a halogen atom.
  • X and Y in the said General formula (1) comprise the ethylene linker, The organic electroluminescent element material as described in any one of Claim 1 to 6 characterized by the above-mentioned.
  • the ring formed by bonding the substituents on X and Y to each other is a cyclohexyl ring, and the substituent represented by D and the substituent represented by A are respectively Item 7.
  • organic electroluminescence element material according to any one of items 1 to 8, wherein the organic electroluminescence element material is a light emitting material.
  • organic electroluminescence element material according to any one of items 1 to 8, wherein the organic electroluminescence element material is a charge transport material.
  • Item 11 The compound according to any one of Items 1 to 10, wherein the compound having a skeleton structure represented by the general formula (1) is a compound that forms an intramolecular or intermolecular exciplex. Organic electroluminescence element material.
  • a display device comprising the organic electroluminescence element according to any one of Items 12 to 15.
  • An illuminating device comprising the organic electroluminescent element according to any one of Items 12 to 15.
  • a compound having a skeleton structure represented by the following general formula (1) is a compound having a skeleton structure represented by the following general formula (1).
  • D and A each represent a substituent.
  • X and Y each represent a carbon atom, a nitrogen atom, an oxygen atom or a silicon atom, which may have a hydrogen atom or a substituent, and at least one of X and Y is a carbon atom.
  • DH a configuration in which a connecting portion to the linker (XY) is replaced with a hydrogen atom
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • the substituent represented by D has a number of ring structures in the range of 3 to 15, and each of the ring structures may be bonded or condensed with each other.
  • the skeleton structure represented by the general formula (1) may further have one or a plurality of substituents, and the plurality of the substituents may be bonded to each other to form a ring structure.
  • One saturated ring containing X and Y as ring constituent atoms may be formed.
  • the ring structure of D in the general formula (1) is a 5-membered or 6-membered aromatic hydrocarbon ring or heteroaromatic ring, and has three or more substituents represented by D, The compound according to Item 18.
  • the substituent represented by A in the general formula (1) is a 5-membered or 6-membered aromatic hydrocarbon ring or heteroaromatic ring, and has one or more substituents represented by A.
  • Item 18 The compound according to Item 18 or Item 19.
  • Paragraph 18 to Paragraph 2 wherein the substituent represented by D in the general formula (1) has a carbazole ring, an indolocarbazole ring, a diindolocarbazole ring, an acridan ring, or an indoloindole ring. 21. The compound according to any one of items up to 20.
  • the substituent represented by A in the general formula (1) is a pyridine ring, a pyrimidine ring, a triazine ring, a dibenzofuran ring, an azadibenzofuran ring, a diazadibenzofuran ring, a carboline ring, a diazacarbazole ring, or a cyano group, tri Item 21.
  • the ring formed by bonding the substituents on X and Y to each other is a cyclohexyl ring, and the substituent represented by D and the substituent represented by A are respectively 24.
  • the above-mentioned means of the present invention can provide an organic electroluminescent material and a compound that can increase the luminous efficiency.
  • an organic electroluminescence element to which the organic electroluminescence material is applied, and a display device and an illumination device including the organic electroluminescence element can be provided.
  • an exciplex (also referred to as an exciplex) is an exciplex AB n * formed by a chemical species A * in an excited electronic state and n chemical species B in a ground state.
  • a and B are the same species and a 1: 1 complex is referred to as an excimer.
  • the above exciplex including the excimer is referred to as an exciplex.
  • an exciplex what formed the above exciplexes with the partial structure in a molecule
  • the substituent surrounded by a frame represented by D is a substituent represented by D in the general formula (1)
  • the substituent surrounded by a frame represented by A is represented by the general formula It corresponds to the substituent represented by A in (1).
  • the compound E-22 exemplified above exhibits an effect by causing an exciplex between two molecules as shown below, and this is called an intermolecular exciplex.
  • the substituent surrounded by a frame represented by D is the substituent represented by D in the general formula (1)
  • the substituent surrounded by a frame represented by A is represented by the general formula It corresponds to the substituent represented by A in (1)
  • X and Y in general formula (1) are the constituent atoms (carbon atoms) of the cyclohexane ring.
  • the exemplified compound E-77 exhibits an effect by forming an exciplex within one molecule, and this is called intramolecular exciplex.
  • An organic EL element containing a compound having a skeleton structure represented by the general formula (1) defined in the present invention compared to an organic EL element containing a compound that forms a conventional intermolecular exciplex between two types of molecules, Since the number of materials of the light emitting layer can be reduced, it is possible to increase the functionality of the organic EL element (increase the light emission efficiency) by forming a uniform film and reduce the process cost in the vapor deposition process and the coating process.
  • the exciplex is formed by the interaction of two sites, so that the effect can be maximized when the mixing ratio is 1: 1, but a conventional mixed film of two types of molecules is formed. Therefore, it is difficult to form a film with a 1: 1 mixing ratio precisely due to process limitations.
  • a substituent represented by D (hereinafter referred to as “substituent D”, or
  • the mixture ratio of the “electron-donating group D” and the substituent represented by A (hereinafter also referred to as “substituent A” or “electron-withdrawing group A”) is completely 1: 1. Therefore, the effect of the exciplex can be utilized to the maximum, and the light emission efficiency of the organic EL element can be increased.
  • the organic EL device including the compound that forms an intermolecular or intramolecular exciplex according to the present invention is more effective in increasing the emission wavelength than the organic EL device that includes a compound that forms a conventional intermolecular exciplex. Can be suppressed.
  • the intramolecular or intermolecular exciplex according to the present invention is easily formed at a short distance in the molecule as described above, and therefore, a compound that forms an intermolecular exciplex from two types of molecules, which is a conventional technique.
  • a strong electron donating group D and an electron withdrawing group A are not required.
  • the organic EL device containing a compound that forms an intramolecular or intermolecular exciplex of the present invention has a longer emission wavelength than an organic EL device that contains a compound that forms a conventional intermolecular exciplex. Can be suppressed.
  • the substituent represented by D (electron-donating group D) and the substituent represented by A (electron-withdrawing group A) are represented by —XY—, for example, an ethylene group as a linker.
  • the structure of the substituent D which is an electron donating group or the substituent A which is an electron withdrawing group is usually a liquid or a solid if each group is a single molecule.
  • the molecular weight is too small, it is difficult to form a thin film using a vapor deposition method or the like, and there is a problem that the vapor deposition method cannot be applied to the formation of an organic electroluminescence element.
  • the substituent D, which is an electron donating group, or the substituent A, which is an electron withdrawing group, which has conventionally been impossible to produce an organic EL device is linked to each other to increase the molecular weight.
  • the thin film forming method can be applied, and a new organic EL device can be produced.
  • the organic EL device material of the present invention contains a compound that forms an intramolecular or intermolecular exciplex with one kind of molecule, that is, a compound having a skeleton structure represented by the general formula (1) according to the present invention. This is a technical feature common to the claimed invention.
  • the ring structure of D in the general formula (1) is a 5-membered or 6-membered aromatic hydrocarbon ring from the viewpoint that the effects intended by the present invention can be further expressed.
  • a heteroaromatic ring having three or more of the ring structures, the substituent represented by A in the general formula (1) has a ring structure, and the ring structure is a 5-membered or 6-membered aromatic It is preferable that it is an aromatic hydrocarbon ring or a heteroaromatic ring and has one or more of the above ring structures from the viewpoint of obtaining an intramolecular or intermolecular exciplex with better luminous efficiency.
  • the structure in which the substituent (electron-donating group D) represented by D in the general formula (1) has a carbazole ring, an indolocarbazole ring, a diindolocarbazole ring, an acridan ring, or an indoloindole ring. It is preferable that an intramolecular or intermolecular exciplex having more excellent luminous efficiency can be obtained.
  • the substituent represented by A in the general formula (1) is a pyridine ring, pyrimidine ring, triazine ring, dibenzofuran ring, azadibenzofuran ring, diazadibenzofuran ring, carboline ring,
  • a structure having a diazacarbazole ring or a benzene ring containing at least one selected from a cyano group, a trifluoromethyl group and a halogen atom It is preferable in that
  • the substituent (electron-withdrawing group A) represented by A in the general formula (1) has a structure having two or more heteroatoms in a molecule or a molecule having more excellent luminous efficiency. It is preferable in that an intermediate exciplex can be obtained.
  • X and Y in the general formula (1) constitute an ethylene linker because an intramolecular or intermolecular exciplex having more excellent luminous efficiency can be obtained.
  • the ring formed by bonding the substituents on X and Y to each other is a cyclohexyl ring, and the substituent represented by D and the substituent represented by A are each conjugated to the cyclohexyl ring.
  • the structure in which the addition is carried out by addition of a thin group is preferable in that an intramolecular or intermolecular exciplex having more excellent luminous efficiency can be obtained.
  • the organic electroluminescence element material is a light emitting material or a charge transport material.
  • the organic electroluminescence element material is a compound that forms an intramolecular or intermolecular exciplex with one kind of molecule because the objective effect of the present invention can be exhibited.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • Organic electroluminescence element material of the present invention is a compound having a structure represented by the general formula (1).
  • D and A each represent a substituent.
  • X and Y each represent a carbon atom, a nitrogen atom, an oxygen atom or a silicon atom, which may have a hydrogen atom or a substituent, and at least one of X and Y is a carbon atom.
  • the configuration in which the connecting portion of the substituent represented by D with the linker (XY) is replaced with a hydrogen atom is DH, and the linker (XY) in the substituent represented by A
  • the DH has a higher energy level of the highest occupied molecular orbital (HOMO) than the AH, where AH is a structure in which the connecting portion with the hydrogen atom is replaced with AH.
  • the AH is characterized in that the energy level of the lowest unoccupied molecular orbital (LUMO) is lower than that of DH.
  • D and A which are substituents in the compound having a skeleton structure represented by the general formula (1), can be in the same relationship as the above DH and AH. It is presumed that an intermolecular exciplex is likely to be formed.
  • the substituent represented by D is not particularly limited as long as the above energy level relationship is satisfied, but the substituent represented by D has a number of rings within the range of 3 to 15.
  • Each of the ring structures may be bonded or condensed to each other.
  • the ring structure which D has is a 5-membered or 6-membered aromatic hydrocarbon ring or a heteroaromatic ring, and it is a preferable form to have three or more of the ring structures.
  • the substituent represented by D preferably has one or two condensed rings. Further, an electron donating group is preferable.
  • Examples of the substituent represented by D include a diphenylamino group, a phenyl group substituted with a methoxy group, a pyrrole ring, an indole ring, a carbazole ring, an acridan ring, an indoloindole ring, a 9,10-dihydroacridine ring, 10,11-dihydrodibenzazepine, 5,10-dihydrodibenzoazacillin, phenoxazine ring, phenothiazine ring, dibenzofuran ring, dibenzothiophene ring, benzofurylindole ring, benzothienoindole ring, indolocarbazole ring, diindolocarbazole A ring, a benzofurylcarbazole ring, a benzothienocarbazole ring, a benzothienobenzothiophene ring,
  • the dibenzofuran ring is substituted with an electron donating substituent (for example, a carbazole group)
  • the dibenzofuran ring functions as an electron donating group D as a whole, but is substituted with an unsubstituted or electron withdrawing substituent. In this case, it functions as an electron withdrawing group A (substituent A).
  • the substituents D described above preferably has a carbazole ring, an indolocarbazole ring, a diindolocarbazole ring, an acridan ring, or an indoloindole ring.
  • the substituent represented by A is not particularly limited as long as the above energy level relationship is satisfied, but the substituent represented by A has a ring structure, and the ring structure Is a 5- or 6-membered aromatic hydrocarbon ring or heteroaromatic ring, preferably having one or more of the ring structures, and preferably having an electron-withdrawing group.
  • Examples of the substituent represented by A include a cyano group, a trifluoromethyl group, a halogen atom, an optionally substituted carbonyl group, an optionally substituted sulfonyl group, and an optionally substituted boryl group.
  • the same or different two or more substituents may be linked. Among the above substituents,
  • the substituent represented by A is a pyridine ring, pyrimidine ring, triazine ring, dibenzofuran ring, azadibenzofuran ring, diazadibenzofuran ring, carboline ring, diazacarbazole ring, or cyano group, trifluoromethyl group, and A benzene ring containing at least one selected from halogen atoms is preferred.
  • X and Y each represent a carbon atom, a nitrogen atom, an oxygen atom or a silicon atom, which may have a hydrogen atom or a substituent.
  • Examples of the linker formed by —XY— include —C—C—, —C—N—, —C—O—, —C—Si— and the like. More preferred is an ethylene linker (—CH 2 —CH 2 —).
  • one or two saturated rings containing X and Y as ring structure atoms may be formed.
  • One or two saturated rings containing X and Y as ring structure atoms are specifically cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring.
  • the ring formed by bonding substituents on X and Y to each other is a cyclohexyl ring
  • the substituent represented by D and the substituent represented by A are A structure in which a cyclohexyl ring is bonded by syn addition is preferable.
  • the molecular weight of the organic EL device material of the present invention is preferably in the range of 300 to 2000, and more preferably in the range of 400 to 900, from the viewpoint of enabling thin film formation.
  • the organic EL device material containing the compound having the skeleton structure represented by the general formula (1) of the present invention By using the organic EL device material containing the compound having the skeleton structure represented by the general formula (1) of the present invention, as described above, the intramolecular or intermolecular excitement is suppressed while suppressing the emission wavelength from becoming longer. Excitons composed of plexes can be formed. Accordingly, the organic EL element including the organic EL element material containing the compound having the skeleton structure represented by the general formula (1) of the present invention has a high emission efficiency without a long emission wavelength. Can be obtained.
  • a compound in which one is an electron donating group D represented by D and the other is an electron withdrawing group A represented by A forms an intramolecular or intermolecular exciplex.
  • an electron withdrawing group A and an electron donating group D interact to generate excitons.
  • the maximum emission wavelength of the emission spectrum of the measurement solution is longer than the maximum emission wavelength of the emission spectrum of the comparison solution. If the emission spectrum of the measurement solution is broader than the emission spectrum of the comparison solution, it is determined that the compound to be measured forms an intramolecular exciplex or intramolecular excimer. be able to.
  • membrane (henceforth abbreviated as a single film) is produced by a vapor deposition or application
  • the maximum emission wavelength of the emission spectrum of the single film is longer than the maximum emission wavelength of the emission spectrum of the measurement solution. If the emission spectrum of the single film is broader than the emission spectrum of the measurement solution, it can be determined that the compound to be measured forms an intermolecular exciplex.
  • these compounds have bipolar properties and can cope with various energy levels, they can be used not only as light emitting materials and host materials, but also as compounds suitable for hole transport materials and electron transport materials.
  • it since it can be used as a charge transport material, it is not limited to use in a light emitting layer, and the above-described hole injection layer, hole transport layer, electron blocking layer, hole blocking layer, electron transport layer, electron It can also be applied to an injection layer, an intermediate layer, and the like.
  • the compound having a skeleton structure represented by the general formula (1) of the present invention is characterized in that an intramolecular or intermolecular exciplex is formed by one kind of molecule, and an organic electroluminescence element (organic EL Device).
  • organic EL Device organic electroluminescence element
  • Luminescent material Phosphorescent compound
  • the rate constant is usually small. That is, since the transition is difficult to occur, the exciton lifetime is increased from millisecond to second order, and it is difficult to obtain desired light emission.
  • a rare metal such as iridium, palladium, or platinum, which is a rare metal.
  • the price of the metal itself is a major industrial issue.
  • a general fluorescent compound is not particularly required to be a heavy metal complex like a phosphorescent compound, and is composed of a combination of general elements such as carbon, oxygen, nitrogen, and hydrogen. It is an organic compound, and other non-metallic elements such as phosphorus, sulfur and silicon can be used, and typical metal complexes such as aluminum and zinc can also be used. It can be said.
  • Organic EL element >> The organic EL device of the present invention has a structure having at least a light emitting layer between an anode and a cathode, and at least one layer of the light emitting layer forms an intramolecular or intermolecular exciplex with one kind of molecule.
  • An organic EL element material containing a compound having a skeleton structure represented by the general formula (1) of the invention is contained.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer) / light emitting layer / (hole blocking layer) / electron transport layer / electron injection layer / cathode Preferably used.
  • the light emitting layer constituting the organic EL element of the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • an electron transport layer a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode
  • the electron transport layer used in the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, the electron transport layer may be composed of a plurality of layers.
  • the hole transport layer used in the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer may be composed of a plurality of layers.
  • the layer excluding the anode and the cathode is also referred to as “organic layer”, “organic functional layer”, or “organic functional layer group”.
  • the organic EL element of the present invention may be a so-called tandem structure element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • Examples of typical element configurations of the tandem structure include the following configurations.
  • Tandem structure anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
  • first light emitting unit, the second light emitting unit, and the third light emitting unit have the same structure.
  • a different configuration may be used.
  • the two light emitting units may have the same configuration, and the remaining one may have a different configuration.
  • the plurality of light emitting units may be directly laminated or may be laminated via an intermediate layer as exemplified above, and the intermediate layer generally includes an intermediate electrode, an intermediate conductive layer, a charge generation layer, Also known as an electron extraction layer, connection layer, or intermediate insulating layer, a known material configuration should be used as long as it has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer. Can do.
  • constituent materials used for forming the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, and GaN.
  • the present invention is not limited to these. .
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6107734, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393, JP-A 2006- No.
  • JP-A-2006-49396 JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-34966681, JP-A-3848564, JP-A-4213169 Publication, JP 2010-192719 , JP2009-076929, JP2008-078414, JP2007-059848, JP2003-272860, JP2003-045676, International Publication No. 2005/094130, etc.
  • the present invention is not limited to these.
  • the light emitting layer constituting the organic EL device of the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and emits light. May be within the layer of the light emitting layer or at the interface between the light emitting layer and the adjacent layer. If the light emitting layer applied to this invention satisfy
  • the total thickness of the light-emitting layers is not particularly limited, but it prevents the homogeneity of the layers to be formed, the application of unnecessary high voltage during light emission, and the stability of the emission color with respect to the drive current. In view of the above, it is preferable to adjust the total layer thickness within the range of 2 nm to 5 ⁇ m, more preferably within the range of 2 to 500 nm, and even more preferably within the range of 5 to 200 nm.
  • each light emitting layer forming the organic EL device of the present invention is preferably adjusted within the range of 2 nm to 1 ⁇ m, more preferably within the range of 2 to 200 nm, and even more preferably 3 Within the range of ⁇ 150 nm.
  • the light emitting layer forming the organic EL device of the present invention may be composed of one layer or a plurality of layers.
  • the compound having the skeleton structure represented by the general formula (1) of the present invention may be used alone or mixed with a host material, a fluorescent light emitting material, a phosphorescent light emitting material, etc. described later. May be used.
  • At least one layer of the light-emitting layer contains a light-emitting dopant (a light-emitting compound, a light-emitting dopant, or simply a dopant), and further a host compound (a matrix material, a light-emitting host compound, a host material, or simply a host). It is preferable to contain.
  • At least one layer of the light emitting layer contains a compound having a skeleton structure represented by the general formula (1) of the present invention and a host compound from the viewpoint of improving the light emission efficiency.
  • the light emission efficiency is improved. It is preferable in terms of improvement.
  • At least one of the light emitting layers contains a compound having a skeleton structure represented by the general formula (1) of the present invention, at least one of a fluorescent light emitting compound and a phosphorescent light emitting compound, and a host compound. It is preferable in terms of improving luminous efficiency.
  • the luminescent dopant As the luminescent dopant (hereinafter also referred to as “luminescent compound”), a fluorescent luminescent dopant (hereinafter also referred to as “fluorescent luminescent compound” or “fluorescent dopant”) and a phosphorescent dopant (hereinafter referred to as “luminescent compound”).
  • a “phosphorescent compound” or “phosphorescent dopant” is also preferably used.
  • the light-emitting layer has a skeleton structure represented by the general formula (1) of the present invention as a light-emitting compound or an assist dopant in the range of 0.1 to 50% by mass, particularly 1 It is preferably contained within a range of ⁇ 30% by mass.
  • the concentration of the light-emitting compound in the light-emitting layer can be arbitrarily determined based on the specific light-emitting compound used and the requirements of the device, and is uniform in the thickness direction of the light-emitting layer. It may be contained and may have any concentration distribution.
  • the luminescent compound used in the present invention may be used in combination of two or more kinds, a combination of phosphorescent compounds having different structures, a combination of fluorescent compounds having different structures, or a fluorescent property.
  • a compound and a phosphorescent compound may be used in combination. Thereby, arbitrary luminescent colors can be obtained.
  • the compound having the skeleton structure represented by the general formula (1) is Acts as an assist dopant.
  • the light emitting layer contains a compound having a skeleton structure represented by the general formula (1) of the present invention and a luminescent compound, and does not contain a host compound, the skeleton represented by the general formula (1).
  • a compound having a structure acts as a host compound.
  • the compound having the skeleton structure represented by the general formula (1) is used as the host compound and the luminescent compound. Works.
  • the mechanism for producing the effect is the same in any case, and the lowest excited singlet energy level and the lowest excited triplet energy level of the compound having the skeleton structure represented by the general formula (1) of the present invention are used.
  • the absolute value of the difference ( ⁇ E ST ) is minimal.
  • the light emitting layer contains three components of a compound having a skeleton structure represented by the general formula (1) of the present invention, a luminescent compound, and a host compound, it is represented by the general formula (1).
  • the lowest excited singlet energy level (S 1 ) and the lowest triplet excited energy level (T 1 ) of the compound having a skeleton structure are lower than the energy levels of S 1 and T 1 of the host compound, and the light emitting compound higher than the energy level of the S 1 and T 1 is preferred.
  • the skeleton structure represented by the general formula (1) is used. energy levels of S 1 and T 1 of the compound having the higher than the energy level of the S 1 and T 1 of the luminescent compound.
  • FIG. 3 and FIG. 4 show schematic diagrams in the case where the compound having the skeleton structure represented by the general formula (1) of the present invention acts as an assist dopant and a host compound, respectively.
  • FIG. 3 is a schematic diagram showing an example of an energy diagram when a compound having a skeleton structure represented by the general formula (1) functions as an assist dopant
  • FIG. 4 is represented by the general formula (1). It is the schematic diagram which showed an example of the energy diagram in case the compound which has a skeleton structure functions as a host compound.
  • the configuration shown in FIGS. 3 and 4 is an example, and the generation process of the triplet exciton generated on the compound having the skeleton structure represented by the general formula (1) of the present invention is not limited only to the electric field excitation. In addition, energy transfer and electron transfer from the light emitting layer interface or the peripheral layer interface are also included.
  • a fluorescent compound is used as a light-emitting material, but the present invention is not limited to this, and a phosphorescent compound may be used, or a fluorescent compound and a phosphorescent compound may be used. Both of the functional compounds may be used.
  • the light emitting layer is based on 100% by mass of the compound having the skeleton structure represented by the general formula (1). 0.1 to 50 with respect to 100% by mass of the compound having a skeleton structure represented by the general formula (1) containing 100% by mass or more of the host compound and containing the fluorescent compound or the phosphorescent compound. It is preferable to contain within the range of the mass%.
  • the light emitting layer is a skeleton represented by the general formula (1) using a fluorescent compound or a phosphorescent compound.
  • the content is preferably in the range of 0.1 to 50% by mass with respect to 100% by mass of the compound having a structure.
  • the emission spectrum of the compound having the skeleton structure represented by the general formula (1) and the luminescent compound It is preferable to have a region where the absorption spectrum overlaps.
  • the colors emitted from the organic EL device of the present invention and the compound used in the present invention are shown in FIG. 3.16 described on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985).
  • the color measured when the result measured with the spectral radiance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates is determined.
  • a configuration in which one or a plurality of light-emitting layers contains a plurality of light-emitting dopants having different emission colors and exhibits white light emission is also a preferred embodiment.
  • fluorescent dopant As the fluorescent light-emitting dopant (hereinafter, also referred to as “fluorescent dopant”), a compound having a skeleton structure represented by the general formula (1) of the present invention may be used, or for forming a light-emitting layer of an organic EL element. You may select and use suitably from the well-known fluorescent dopant used and the delayed fluorescent dopant.
  • fluorescent light-emitting dopants include, for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, Examples include arylamine derivatives, boron complexes, coumarin derivatives, pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, or rare earth complex compounds.
  • fluorescent light-emitting dopants using delayed fluorescence have been developed, and these may be used.
  • Specific examples of the fluorescent light-emitting dopant using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Unexamined Patent Publication No. 2011-213743, Japanese Unexamined Patent Publication No. 2010-93181, Japanese Patent No. 5366106, and the like.
  • the present invention is not limited to these.
  • Phosphorescent dopant A phosphorescent dopant (hereinafter also referred to as “phosphorescent dopant”) applicable to the present invention will be described.
  • the phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescent dopant used in the present invention has the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be achieved.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, the complex contains at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond.
  • the host compound that can be used in the present invention is a compound mainly responsible for charge injection and transport in the light-emitting layer, and the light emission itself is not substantially observed in the organic EL element.
  • the host compound is preferably a compound having a mass ratio of 20% by mass or more in the light emitting layer.
  • the host compounds may be used alone or in combination of two or more. Use of a plurality of types of host compounds is preferable in that charge transfer can be adjusted and the organic EL device can be highly efficient.
  • a compound having a skeleton structure represented by the general formula (1) of the present invention may be used, but other known host compounds may be used, and there is no particular limitation. From the viewpoint of reverse energy transfer, a compound having an excitation energy larger than the excitation singlet energy of the dopant is preferable, and a compound having an excitation triplet energy larger than the excitation triplet energy of the dopant is more preferable.
  • the host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. It is preferable not to move at the angstrom level.
  • the existence time of the triplet excited state of the light-emitting dopant is long.
  • the host compound itself has a high T 1 energy level, does not form a low T 1 state when the host compounds are associated with each other, does not form an exciplex between the light-emitting dopant and the host compound, Appropriate design of the molecular structure is necessary so that the host compound does not have a low T 1 , such as not forming an electromer by an electric field.
  • the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. It is.
  • Representative examples of host compounds that satisfy such requirements include those having a high T 1 energy level such as a carbazole skeleton, an azacarbazole skeleton, a dibenzofuran skeleton, a dibenzothiophene skeleton, or an azadibenzofuran skeleton.
  • the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the driving of the element.
  • Tg glass transition temperature
  • Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
  • the glass transition temperature (Tg) is a value obtained by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • the compound which has the skeleton structure represented by General formula (1) of this invention is also suitable to use the compound which has the skeleton structure represented by General formula (1) of this invention.
  • the compound having a skeleton structure represented by the general formula (1) of the present invention has a high T 1 and has a short emission wavelength (that is, a high energy level of T 1 and S 1 ). This is because it can be suitably used.
  • the electron transport layer as used in the present invention is composed of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer according to the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm. Within range.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode located at the counter electrode. It is known to cause. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer within the range of several nm to several ⁇ m.
  • the electron mobility of the electron transport layer is 1 ⁇ 10 ⁇ 5 cm 2 / Vs or more, particularly when the layer thickness is large. Is preferred.
  • electron transport material may have any of electron injection property or transport property and hole barrier property. Any one can be selected and used.
  • Typical electron transport materials include, for example, nitrogen-containing aromatic heterocyclic derivatives (for example, carbazole derivatives, azacarbazole derivatives (one in which one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine Derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazoles Derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (eg naphthalene derivatives, Spiral derivatives, trip
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (abbreviation: Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,5) 7-dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), and the like
  • Alq 8-quinolinol aluminum
  • Znq 8-quinolinol aluminum
  • a metal complex in which the central metal of the metal complex is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine, or a compound whose terminal is substituted with an alkyl group or a sulfonic acid group can also be preferably used as an electron transport material.
  • distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as an electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used. It can be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), and the like.
  • more preferable known electron transport materials include aromatic heterocyclic compounds containing at least one nitrogen atom and compounds containing a phosphorus atom.
  • aromatic heterocyclic compounds containing at least one nitrogen atom and compounds containing a phosphorus atom.
  • pyridine derivatives pyrimidine derivatives, pyrazine derivatives, triazine derivatives.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and preferably composed of a material having a function of transporting electrons and a small ability to transport holes, and transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved.
  • the above-described configuration of the electron transport layer can be used as a hole blocking layer as necessary.
  • the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the same materials described as the materials applicable to the electron transport layer are preferably used, and the materials used as the host compound are also used for the hole blocking layer. Preferably used.
  • the electron injection layer according to the present invention (hereinafter also referred to as “cathode buffer layer”) is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • cathode buffer layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • an electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, although it depends on the material used for formation. Further, it may be a non-uniform island-like layer (film) in which constituent materials exist discontinuously.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolinate (abbreviation: Liq), and the like can be given. Further, the above-described electron transport material can also be used.
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer in the organic EL device of the present invention is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably in the range of 5 to 500 nm, and further preferably in the range of 5 to 200 nm. Within range.
  • hole transport material The material used for the hole transport layer (hereinafter referred to as “hole transport material”) may have any function of hole injection or transport, or electron barrier. Any known hole transporting material can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive Polymers or oligomers (for example, PEDOT / PSS (poly3,4-ethylenedioxythiophene / polystyrenesulfonic acid), polymers Phosphorus
  • triarylamine derivative examples include benzidine type represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: ⁇ -NPD), 4,4 ′, 4 ′′ -Starburst type represented by tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), compounds having fluorene or anthracene in the triarylamine linking core .
  • benzidine type represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: ⁇ -NPD)
  • 4,4 ′, 4 ′′ -Starburst type represented by tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), compounds having fluorene or anthracene in
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the hole transport material the above-mentioned materials can be used, but in addition, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, an aromatic amine can be used as the main chain or A polymer material or an oligomer introduced into the side chain is preferably used.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and preferably composed of a material having a function of transporting holes and a small ability to transport electrons, and transporting holes.
  • the electron blocking layer by blocking electrons, the recombination probability of electrons and holes can be improved.
  • the above-described configuration of the hole transport layer can be applied as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer is preferably provided adjacent to the anode surface side of the light emitting layer.
  • the thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer is preferably the same as the material used for the hole transport layer, and the host compound is also preferably used for the electron blocking layer.
  • the hole injection layer according to the present invention (hereinafter also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance.
  • anode buffer layer is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance.
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples of materials used for the hole injection layer include: The same materials as those used for the hole transport layer described above can be used.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc.
  • metal oxides typified by vanadium oxide
  • amorphous Conductive polymers such as carbon, polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives are preferred.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • Each organic functional layer group constituting the organic EL element of the present invention may contain various additives as necessary.
  • halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca and Na, transition metal compounds, complexes and salts.
  • the addition amount of the additive can be arbitrarily determined depending on the intended function, but is generally preferably 1000 ppm or less, more preferably 500 ppm or less with respect to the total mass% of the contained layer. More preferably, it is 50 ppm or less.
  • each organic functional layer (Method for forming each organic functional layer) Forming method of each organic functional layer (for example, hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, intermediate layer, etc.) constituting the organic EL device of the present invention explain.
  • the method for forming the organic functional layer according to the present invention is not particularly limited, and a conventionally known thin film forming method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • a conventionally known thin film forming method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roller coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method having high roll-to-roll manufacturing suitability such as a die coating method, a roller coating method, an ink jet method and a spray coating method is preferable.
  • examples of the medium for dissolving or dispersing the organic EL material include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, dichlorobenzene, and the like Halogenated hydrocarbons, aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, dodecane, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide) ) And other organic solvents can be used.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate, dichlorobenzene, and the like
  • Halogenated hydrocarbons aromatic hydrocarbons such as toluene, xylene, mesitylene, cycl
  • a dispersion method it can be dispersed by a mechanical dispersion method such as ultrasonic dispersion, high shearing force dispersion or media dispersion.
  • the deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10. -2 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature -50 to 300 ° C, layer (film) thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm It is preferable to select as appropriate.
  • a method of consistently producing by vacuum evaporation from the hole injection layer to the cathode by one vacuum drawing is preferable, but different film formation methods such as taking out in the middle, for example, Alternatively, formation by a wet method may be performed.
  • the working environment at that time is preferably performed in a dry inert gas atmosphere.
  • an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (for example, 4 eV or more, preferably 4.5 eV or more) is used.
  • a high work function for example, 4 eV or more, preferably 4.5 eV or more
  • electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed by a thin film formation method such as vapor deposition or sputtering, and an electrode pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (100 ⁇ m or more) Degree), an electrode pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred.
  • the film thickness of the anode depends on the material, it is usually in the range of 10 nm to 1 ⁇ m, preferably in the range of 10 to 200 nm.
  • cathode As the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vacuum deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • a transparent or translucent cathode can be manufactured by forming the above metal on the cathode with a film thickness in the range of 1 to 20 nm and then forming a conductive transparent material mentioned in the description of the anode thereon. it can.
  • a double-sided light emitting organic EL element having transparency to the anode and the cathode can be produced.
  • the support substrate (hereinafter also referred to as “substrate” or “base material”) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and may be transparent. It may be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, Cellulose acetates such as cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polypheny Sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate
  • PET polyethylene
  • an inorganic film, an organic film, or a hybrid film of both may be formed as a barrier film, and the water vapor permeability (25 ⁇ 0) measured by a method according to JIS K 7129-1992. It is preferably a barrier film having a relative humidity (90 ⁇ 2)% RH) of 0.01 g / m 2 ⁇ 24 h or less, and further measured by a method according to JIS K 7126-1987.
  • a high barrier film having an oxygen permeability of 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / m 2 ⁇ 24 h or less is preferable.
  • any material may be used as long as it has a function of suppressing entry of components such as moisture and oxygen that cause deterioration of the organic EL element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is preferable.
  • the “CVD method” here refers to a chemical vapor deposition method (Chemical Vapor Deposition).
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1.0% or more, and more preferably 5.0% or more.
  • External extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons sent to the organic EL element ⁇ 100
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing As a sealing means used for formation of the sealing structure of the organic EL element of this invention, the method of adhere
  • a sealing member it should just be arrange
  • Examples of the sealing member include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less, and measured by a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • sealing adhesive examples include photocuring and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curable adhesives such as 2-cyanoacrylic acid esters. be able to.
  • thermosetting and chemical curing types such as an epoxy type can also be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can also be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can also be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened within the temperature range from room temperature to 80 degreeC is preferable.
  • a desiccant may be dispersed in the sealing adhesive.
  • coating of the adhesive agent for sealing to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • a method of forming an inorganic or organic layer as a sealing film by coating the organic functional layer group on the outside of the electrode facing the support substrate with the organic functional layer group interposed therebetween, and in contact with the support substrate can also be preferably applied.
  • the material for forming the sealing film may be any material having a function of suppressing the intrusion of elements such as moisture and oxygen that cause deterioration of the organic EL element.
  • silicon oxide, silicon dioxide, nitriding Silicon or the like can be used.
  • the sealing film it is preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials.
  • the method for forming these laminated films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a wet coating method, or the like can be used.
  • a gas phase and a liquid phase structure can be provided in the gap between the sealing member and the display area of the organic EL element.
  • inert gas such as nitrogen and argon, fluorocarbon, silicon oil and the like can be used.
  • An active liquid can be injected.
  • a vacuum can also be used.
  • the hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.
  • Metal halides e.g., calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
  • perchloric acids e.g., barium perchlorate
  • anhydrous salts are preferably used in sulfates, metal halides and perchloric acids
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic functional layer group interposed therebetween.
  • the sealing method is performed by the sealing film, the mechanical strength is not necessarily sufficient. Therefore, a method of providing such a protective film or a protective plate is preferable.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing member can be used. Therefore, it is preferable to use a polymer film.
  • An organic EL element emits light inside a light emitting layer having a higher refractive index than air (refractive index: in the range of 1.6 to 2.1), and about 15 to 20% of light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (transparent substrate-air interface) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the organic EL element. This is because the light undergoes total reflection with the transparent substrate, the light is guided through the transparent electrode and the light emitting layer, and as a result, the light escapes in the lateral direction of the organic EL element.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (see, for example, US Pat. No. 4,774,435), a substrate.
  • a method of improving efficiency by providing light condensing property for example, see JP-A-63-314795
  • a method of forming a reflection surface on the side surface of an organic EL element for example, JP-A-1-220394) No. 5
  • a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter see, for example, Japanese Patent Application Laid-Open No. 62-172691
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, more preferably 1.35 or less. Preferably there is.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method was generated from the light-emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • Bragg diffraction such as first-order diffraction or second-order diffraction.
  • light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating in any layer or medium (inside a transparent substrate or transparent electrode) It tries to take out light.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • a specific direction for example, an organic EL element can be obtained by combining, for example, a process of providing a microlens array-like structure on the light extraction side of a support substrate (substrate) or a so-called condensing sheet. By condensing in the front direction with respect to the light emitting surface, the luminance in a specific direction can be increased.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as an electronic device such as a display device, a display, and various light emitting devices.
  • a light emitting device for example, a lighting device (for example, household lighting, interior lighting, etc.), a backlight for a clock or a liquid crystal, a billboard advertisement, a traffic light, a light source of an optical storage medium, a light source of an electrophotographic copying machine, an optical communication processor
  • the present invention is not limited to this, but it can be effectively used particularly as a backlight of a liquid crystal display device and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the organic EL element may be patterned. The method can be used.
  • the display device including the organic EL element of the present invention may be monochromatic light emission or multicolor light emission.
  • a multicolor display device that emits multicolor light will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and pattern formation is performed on one surface using a vacuum deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like to form a light emitting region of each color Form.
  • the method is not limited, but preferred examples include a vacuum deposition method, an inkjet method, a spin coating method, and a printing method.
  • the configuration of the organic EL element provided in the display device is appropriately selected from the above-described configuration examples of the organic EL element.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • the multicolor display device When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying the voltage within the range of 2 to 40 V with the anode as + and the cathode as-. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, or various light emission sources.
  • a display device or a display full-color display is possible by using organic EL elements of three kinds of emission colors of blue light emission, red light emission, and green light emission.
  • Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • the display device or display may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light-emitting devices include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor light sources, etc.
  • the present invention is not limited to these.
  • FIG. 6 is a schematic perspective view showing an example of a display device including an organic EL element, and a display device represented by a member that displays image information by light emission of the organic EL element, for example, a display of a mobile phone or the like. An example is shown.
  • the display (1) mainly includes a display unit (A) having a plurality of pixels and a control for performing image scanning of the display unit (A) based on image information.
  • the control unit (B) is electrically connected to the display unit (A) and the wiring unit (C), and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside.
  • the pixels for each scanning line sequentially emit light according to the image data signal to scan the image, and display the image information on the display unit (A).
  • FIG. 7 is a schematic diagram showing an example of a configuration of a display device using an active matrix method.
  • the display unit (A) includes a wiring unit (C) including a plurality of scanning lines (5) and data lines (6) on a substrate (F), a plurality of pixels (3), and the like.
  • FIG. 7 shows a case where the emitted light (L) emitted from the pixel (3) is extracted in the white arrow direction (downward) on the substrate (F) side.
  • the plurality of scanning lines (5) and the plurality of data lines (6) of the wiring section (C) are each made of a conductive material, and the scanning lines (5) and the data lines (6) are orthogonal to each other in a grid pattern. (C) is formed and connected to a plurality of pixels (3) at orthogonal positions (however, a more detailed configuration such as a connection method is not shown in FIG. 7).
  • the pixel (3) When the scanning signal is applied from the scanning line (5), the pixel (3) receives the image data signal from the data line (6) and emits light according to the received image data.
  • a full color image can be displayed by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 8 is a schematic wiring diagram showing an example of the circuit of the light emitting pixel.
  • Each pixel (3) includes an organic EL element (10), a switching transistor (11), a driving transistor (12), a capacitor (13), and the like.
  • organic EL element (10) By using red (R), green (G), and blue (B) light emitting organic EL elements (10) as organic EL elements (10) in a plurality of pixels (3), these are juxtaposed on the same substrate. Full-color image display can be performed.
  • an image data signal is applied to the drain of the switching transistor (11) from the control unit (not shown) via the data line (6).
  • a scanning signal is applied from the control unit (not shown) to the gate of the switching transistor (11) via the scanning line (5), the driving of the switching transistor (11) is turned on, and the image applied to the drain is turned on.
  • the data signal is transmitted to the capacitor (13) and the gate of the driving transistor (12).
  • the capacitor (13) is charged according to the potential of the image data signal, and the drive of the drive transistor (12) is turned on.
  • the drive transistor (12) has a drain connected to the power line (7), a source connected to the electrode of the organic EL element (10), and a power line (in accordance with the potential of the image data signal applied to the gate). A current is supplied from 7) to the organic EL element (10).
  • the driving of the switching transistor (11) is turned off.
  • the capacitor (13) holds the potential of the charged image data signal, so that the driving of the driving transistor (12) is kept on, and the next Until the scanning signal is applied, the organic EL element (10) continues to emit light.
  • the driving transistor (12) is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element (10) emits light.
  • the organic EL element (10) emits light by providing a switching transistor (11) and a drive transistor (12) as active elements for each of the organic EL elements (10) of the plurality of pixels.
  • the light emission of each organic EL element (10) of 3) is controlled.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element (10) may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission amount on by a binary image data signal. , Off. Further, the potential of the capacitor (13) may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix system described above, but also a passive matrix system light emission drive in which the organic EL element (10) emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 9 is a schematic perspective view showing an example of the configuration of a passive matrix display device.
  • a plurality of scanning lines (5) and a plurality of image data lines (6) are provided in a lattice shape facing each other with the pixel (3) interposed therebetween.
  • the pixel (3) connected to the applied scanning line (5) emits light according to the image data signal.
  • the organic EL element of the present invention can be applied to a lighting device.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the drive method when used as a display device for moving image reproduction may be either a passive matrix method or an active matrix method.
  • the compound of the present invention can be applied to a lighting device including an organic EL element that emits substantially white light.
  • white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • the organic EL device forming method of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
  • the non-light-emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photo-curing adhesive (for example, Toagosei Co., Ltd.) is used as a sealing material around.
  • an epoxy photo-curing adhesive for example, Toagosei Co., Ltd.
  • the Lax Track LC0629B is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, and sealed.
  • a simple lighting device (300) can be formed.
  • FIG. 10 is a schematic perspective view of the lighting device (300).
  • the organic EL element of the present invention (organic EL element (10) in the lighting device) formed on the substrate (F) is a glass cover (102). ).
  • the glass cover (102) is sealed with a glove box (high purity nitrogen gas with a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element (10) in the lighting device into contact with the atmosphere. Under atmospheric conditions).
  • FIG. 11 is a schematic cross-sectional view of the lighting device (300), F is a substrate, 105 is a cathode, 106 is an organic functional layer group, and 107 is a glass substrate with a transparent electrode (anode).
  • the glass cover (102) is filled with nitrogen gas (108), and a water catching agent (109) is provided.
  • an illumination device with improved luminous efficiency can be obtained.
  • 1,2-bis- (4-bromophenyl) -cyclohex-1-ene, (1,5-cyclooctadiene) (pyridine) (tricyclohexylphosphine) -iridium (I) hexafluoro manufactured by Sigma-Aldrich Phosphate and dichloroethane were mixed and the reaction mixture was stirred in a hydrogen atmosphere (1 atm) for 8 hours at room temperature to give 1,2-bis- (4-bromophenyl) -cyclohexane.
  • exemplary compound E-77 precursor P 9H-carbazole-3,6-dicarbonitrile, palladium (II) acetate, tri-t-butylphosphine, sodium-t-butoxide, o- Xylene was mixed and heated and stirred at 130 ° C. for 6 hours to obtain a crude product of Exemplified Compound E-77. Thereafter, column chromatography, recrystallization, and sublimation purification were performed to obtain a high-purity product of Exemplary Compound E-77.
  • Table I shows the HOMO and LUMO values of substituents corresponding to DH and AH in the compound having the skeleton structure represented by the general formula (1) used in the examples.
  • Example 1 [Production of organic EL elements] (Preparation of organic EL device 1-1) ITO (indium tin oxide) is deposited to a thickness of 150 nm on a glass transparent substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm using a commercially available vacuum deposition apparatus, patterned, and transparent to ITO. An electrode (anode) was formed. The transparent substrate on which the ITO transparent electrode was formed was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. .
  • ITO indium tin oxide
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • each resistance heating boat containing Comparative Compound 1 as a host compound and GD-1 as a luminescent compound was energized and heated, and the above-described formation was performed at deposition rates of 0.1 nm / second and 0.010 nm / second, respectively.
  • Co-evaporation was performed on the hole transport layer to form a light emitting layer having a layer thickness of 40 nm.
  • HB-1 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm.
  • ET-1 was deposited on the first electron transport layer at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 45 nm.
  • lithium fluoride was vapor-deposited on the second electron transporting layer so as to have a film thickness of 0.5 nm, and then aluminum was vapor-deposited with a thickness of 100 nm to form a cathode, thereby producing an organic EL element 1-1.
  • the light emission luminance of the obtained organic EL device 1-1 was set to 100%, the relative light emission luminance of each organic EL device was determined, and this was set as the relative light emission efficiency, and displayed in Table II. The larger the value, the better the luminous efficiency.
  • the organic EL device of the present invention using the compound of the present invention having the structure represented by the general formula (1) as a host compound has a higher luminous efficiency than the comparative example. It turns out that it is excellent.
  • Example 2 [Production of organic EL elements] (Preparation of organic EL element 2-1) An ITO (indium tin oxide) film having a thickness of 150 nm is formed on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm using a commercially available vacuum deposition apparatus, and patterned to form an ITO transparent electrode (anode ) Was formed.
  • the transparent substrate on which the ITO transparent electrode was formed was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. .
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • TCTA tris (4-carbazoyl-9-ylphenyl) amine
  • H-233 was deposited on the first hole transport layer at a deposition rate of 0.1 nm / second to form a second hole transport layer having a layer thickness of 10 nm.
  • each resistance heating boat containing Comparative Compound 1 as a host compound and TBPe (2,5,8,11-tetra-tert-butylperylene) as a luminescent compound was energized and heated, and the deposition rate was Co-evaporation was performed on the hole transport layer at 0.1 nm / second and 0.010 nm / second to form a light emitting layer having a layer thickness of 20 nm.
  • H-232 was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 10 nm.
  • TBPi (1,3,5-tris (1-phenyl-1H-benzimidazol-2-yl) benzene
  • the second electron transport layer was formed.
  • lithium fluoride was vapor-deposited on the second electron transport layer so as to have a thickness of 0.5 nm, and then 100 nm of aluminum was vapor-deposited to form a cathode, thereby producing an organic EL element 2-1.
  • the light emission luminance of the obtained organic EL element 2-1 was set to 100%, the relative light emission luminance of each organic EL element was determined, and this was set as the relative light emission efficiency, which was displayed in Table III. The larger the value, the better the luminous efficiency.
  • the organic EL device of the present invention using the compound of the present invention having the skeleton structure represented by the general formula (1) as a host compound has a luminous efficiency compared to the comparative example. It turns out that it is excellent in.
  • Example 3 [Production of organic EL elements] (Preparation of organic EL element 3-1) An ITO (indium tin oxide) film having a thickness of 150 nm is formed on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm using a commercially available vacuum deposition apparatus, and patterned to form an ITO transparent electrode (anode ) Was formed.
  • the transparent substrate on which the ITO transparent electrode was formed was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. .
  • Each of the resistance heating boats in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • H-232 as a host compound and comparative compound 2 as a luminescent compound were co-deposited on the hole transport layer at a deposition rate of 0.1 nm / second so as to be 94% and 6% by volume, respectively.
  • a light emitting layer having a thickness of 30 nm was formed.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the non-light emitting surface side of the organic EL element is covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring is installed to produce an organic EL element 3-1. did.
  • the light emission luminance of the obtained organic EL element 3-1 was set to 100%, the relative light emission luminance of each organic EL element was obtained, and this was set as the relative light emission efficiency, and displayed in Table IV.
  • the organic EL device of the present invention using the compound of the present invention having the skeleton structure represented by the general formula (1) as a luminescent compound emits light compared to the comparative example. It turns out that it is excellent in efficiency.
  • Example 4 [Production of organic EL elements] (Preparation of organic EL element 4-1) Patterning was performed on a substrate (NA Techno Glass NA45) in which an ITO (indium tin oxide) film was formed to a thickness of 100 nm on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a substrate NA Techno Glass NA45
  • ITO indium tin oxide
  • polystyrene sulfonate PEDOT / PSS, Bayer, Baytron P Al 4083
  • a thin film was formed by spin coating under a condition of 30 seconds and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a layer thickness of 20 nm.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and each of the resistance heating boats in the vacuum vapor deposition apparatus was filled with a constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • ⁇ -NPD was deposited on the hole injection layer formed above at a deposition rate of 0.1 nm / second, and the hole thickness was 40 nm.
  • a transport layer was formed.
  • H-234 as the host compound and 2,5,8,11-tetra-t-butylperylene (TBPe) as the luminescent compound were deposited at a deposition rate of 0.1 nm so as to be 97% and 3% by volume, respectively.
  • TBPe 2,5,8,11-tetra-t-butylperylene
  • Second was co-evaporated on the hole transport layer to form a light emitting layer having a layer thickness of 30 nm.
  • TPBi (1,3,5-tris (N-phenylbenzimidazol-2-yl) was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 30 nm.
  • the non-light emitting surface side of the organic EL element is covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring is installed to produce an organic EL element 4-1. did.
  • organic EL element 4-2 Preparation of organic EL element 4-2
  • H-234 as a host compound
  • TBPe 2,5,8,11-tetra-t-butylperylene
  • An organic EL device 4-2 was produced in the same manner except that the light emitting layer was formed using the comparative compound 1 so that the respective ratios were 82%, 3%, and 15% by volume.
  • the light emission luminance of the obtained organic EL element 4-1 was set to 100%, the relative light emission luminance of each organic EL element was obtained, and this was set as the relative light emission efficiency, and displayed in Table V.
  • the organic EL device of the present invention using the compound of the present invention having the skeleton structure represented by the general formula (1) as the third component (assist dopant) of the light emitting layer is It can be seen that the luminous efficiency is superior to the comparative example.
  • the organic EL element material of the present invention is excellent in luminous efficiency, and the organic EL element to which the organic EL element material is applied is a display device such as a television, a personal computer, a mobile device, an AV device, a character broadcast display, and information in a car, Home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. Can be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明の目的は、高い発光効率を有する有機EL素子材料及び化合物と、それを用いた有機EL素子、表示装置及び照明装置を提供することである。 本発明の有機EL素子材料は、下記一般式(1)で表される骨格構造を有する化合物を含有する。 〔式中、D及びAはそれぞれ置換基を表す。X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表し、X及びYの少なくとも一つは炭素原子である。Dで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をD-H、前記Aで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をA-Hとしたとき、D-HはA-Hよりも最高被占分子軌道(HOMO)のエネルギー準位が高く、A-HはD-Hよりも最低空分子軌道(LUMO)のエネルギー準位が低い。〕

Description

有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
 本発明は、発光効率を高めた有機エレクトロルミネッセンス素子材料及び化合物、それを用いた有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を具備した表示装置及び照明装置に関する。
 有機材料のエレクトロルミネッセンス(electroluminescence)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略記する。)は、平面発光を可能とする新しい発光システムとして、既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、近年では照明装置にも適用され、その発展が期待されている。
 有機EL素子の発光方式には、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
 有機EL素子に電界を印加すると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層あるいはその界面において、正孔と電子が再結合して励起子を生じる。このとき一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。
 しかしながら、リン光発光方式において、実際に高い量子効率を得るためには、中心金属としてイリジウムや白金などの希少金属を含む錯体を用いる必要があり、将来的に希少金属の埋蔵量の枯渇や金属自体の価格の上昇等、産業上大きな障害となることが懸念される。
 一方で、蛍光発光方式においても発光効率を向上させるため、様々な開発がなされており、近年新たな動きが出てきた。
 例えば、特許文献1には、二つの三重項励起子の衝突により一重項励起子が生成する現象(Triplet-Triplet Annihilation:以下、適宜「TTA」と略記する。また、Triplet-Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術が開示されている。この技術により、蛍光発光材料の発光効率は従来の蛍光発光材料の2~3倍にまで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べると、高発光効率化の問題を有している。
 さらに近年では、三重項励起子から一重項励起子への逆項間交差(Reverse Intersystem Crossing:以下、「RISC」と略記する。)が生じる現象(「熱活性型遅延蛍光」、又は「熱励起型遅延蛍光」という。Thermally Activated Delayed Fluorescence:以下、「TADF」と略記する。)を利用した蛍光発光材料と、それを有機EL素子へ適用する可能性が報告されている(例えば、特許文献2、非特許文献1及び非特許文献2参照。)。このTADF現象による遅延蛍光を利用することにより、電界励起による蛍光発光においても、理論的にはリン光発光と同等の100%の内部量子効率が可能となる。
 このTADF現象を発現させるためには、室温又は有機EL素子中の発光層温度で、電界励起により生じた75%の三重項励起子から一重項励起子への逆項間交差(RISC)が生じる必要がある。さらに、逆項間交差により生じた一重項励起子が、直接励起により生じた25%の一重項励起子と同様に蛍光発光することにより、100%の内部量子効率が理論上可能となる。この逆項間交差を発現させるためには、最低励起一重項エネルギー準位(S)と最低三重項励起エネルギー準位(T)の差の絶対値(以下、「ΔEST」と称す。)が極めて小さいことが必須条件となる。
 さらに、主にホスト化合物と発光性化合物を含有する発光層に、TADF性を有する化合物を第三成分(アシストドーパント)として含有させる方法が、高発光効率発現に有効であることが知られている(例えば、非特許文献3参照。)。アシストドーパント上に25%の一重項励起子と75%の三重項励起子を電界励起により発生させることによって、三重項励起子は逆項間交差(RISC)を伴って一重項励起子を生成することができる。一重項励起子のエネルギーは、発光性化合物へエネルギー移動し、発光性化合物が移動してきたエネルギーにより発光することが可能となる。したがって、理論上100%の励起子エネルギーを利用して、発光性化合物を発光させることが可能となり、高発光効率が発現する。
 TADF現象を発現させるためには、分子内の最高被占分子軌道(HOMO)と最低空分子軌道(LUMO)を混在させず、それぞれを局在化してΔESTを極小化する必要がある。
 次に、TADF現象を発現させるための分子設計の一例を示す。
 図1A、図1B、図2A及び図2Bは、TADF現象を発現する化合物(TADF化合物)と一般的な蛍光発光性化合物のエネルギーダイヤグラム示した模式図である。例えば、図1Aに示す構造を有する2CzPN(4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene)では、ベンゼン環上の1位と2位のカルバゾリル基にHOMOが局在し、4位と5位のシアノ基にLUMOが局在している。そのため、図1Bで示すように2CzPNのHOMOとLUMOを分離することができ、ΔESTが極めて小さくなってTADF現象を発現する。一方、2CzPNの4位と5位のシアノ基をメチル基に置き換えた2CzXy(図2A及び図2B参照。)では、構造は類似しているが、2CzPNでみられるHOMOとLUMOの明確な分離ができないために、ΔESTを小さくすることはできず、TADF現象を発現するには至らない。
 HOMOとLUMOを分離するには、上述のように、強力な電子供与性基及び電子求引性基を用いてHOMOとLUMOの連結部に捻じれを加えることや、HOMOとLUMOの距離を離すなどの方法があるが、これらの方法は分子設計上の制約が大きい。そのため、高性能の有機EL素子の設計を行う上で、TADF材料において、HOMO準位、LUMO準位、発光波長、量子収率などを、所望の物性で分子設計を行うには問題が生じている。
 TADFの他に、ΔESTを極小化して高発光効率化する技術として、エキサイプレックス発光が知られている(例えば、非特許文献4参照。)。この方法によれば、電子供与性分子と電子求引性分子を共蒸着することにより、薄膜中でエキサイプレックスを形成することができる。エキサイプレックス状態では、ΔESTが極小であることが知られており、TADFと同様、理論上100%の励起子エネルギーを利用して、EL発光させることが可能である。分子間でエキサイプレックスを形成するためには、強力な電子供与性分子と電子求引性分子を用いる必要があるが、そのような構成をとった場合、強い分子内電荷移動(CT)性の励起状態を形成するため、発光スペクトルが大きく長波長化する要因となるため、発光波長の制御が困難であるという問題がある。逆に、発光波長を制御するためにそれぞれの分子の電子供与性又は電子求引性を弱めると、エキサイプレックス発光に支障をきたすことになる。そのため、発光波長の制御をしながら、高い発光効率を実現するエキサイプレックスを形成させる新たな方法の開発が望まれている。
国際公開第2010/134350号 特開2013-116975号公報
H.Uoyama,et al.,Nature,2012,492,234-238 Q.Zhang et al.,Nature,Photonics,2014,8,326-332 H.Nakanоtani,et al.,Nature Communicaion,2014,5,4016-4022. K.Goushi,et al.,Appl.Phys.Lett.2012,101,023306.
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光効率を高めることができる新たなエキサイプレックスを形成し得る有機エレクトロルミネッセンス素子材料及び化合物を提供することである。また、当該有機エレクトロルミネッセンス素子材料及び当該材料を含む有機エレクトロルミネッセンス素子と、それを具備した表示装置及び照明装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、分子内又は分子間でエキサイプレックスを一種類の分子で形成することのできる一般式(1)で表される骨格構造を有する有機エレクトロルミネッセンス素子材料により、本発明の目的効果である発光効率を高めることができることを見いだして本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.下記一般式(1)で表される骨格構造を有する化合物を含有することを特徴とする有機エレクトロルミネッセンス素子材料。
Figure JPOXMLDOC01-appb-C000003
〔式中、D及びAは、それぞれ置換基を表す。X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表し、X及びYの少なくとも一つは炭素原子である。
 前記Dで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をD-Hとし、前記Aで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をA-Hとしたとき、当該D-HはA-Hよりも最高被占分子軌道(HOMO)のエネルギー準位が高く、当該A-HはD-Hよりも最低空分子軌道(LUMO)のエネルギー準位が低い。
 前記Dで表される置換基は、3~15の範囲内の数の環構造を有し、前記環構造のそれぞれは、互いに結合又は縮合していてもよい。
 なお、一般式(1)で表される骨格構造は、更に、一つ又は複数の置換基を有してもよく、複数の当該置換基が互いに結合して環構造を形成してもよい。また、X及びYを環構成原子として含む一つの飽和環が形成されてもよい。〕
 2.前記一般式(1)におけるDが有する前記環構造は、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を三つ以上有することを特徴とする第1項に記載の有機エレクトロルミネッセンス素子材料。
 3.前記一般式(1)におけるAで表される置換基が環構造を有し、前記環構造が5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を一つ以上有することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子材料。
 4.前記一般式(1)におけるDで表される置換基が、カルバゾール環、インドロカルバゾール環、ジインドロカルバゾール環、アクリダン環、又はインドロインドール環を有することを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 5.前記一般式(1)におけるAで表される置換基が、ピリジン環、ピリミジン環、トリアジン環、ジベンゾフラン環、アザジベンゾフラン環、ジアザジベンゾフラン環、カルボリン環、ジアザカルバゾール環、又はシアノ基、トリフルオロメチル基及びハロゲン原子から選ばれる少なくとも一つを含むベンゼン環を有することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 6.前記一般式(1)におけるAで表される置換基が、二つ以上のヘテロ原子を有することを特徴とする第1項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 7.前記一般式(1)におけるX及びYが、エチレンリンカーを構成していることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 8.前記一般式(1)において、前記X及びY上の置換基が互いに結合して形成される環がシクロヘキシル環であり、前記Dで表される置換基及びAで表される置換基は、それぞれ前記シクロヘキシル環に対してシン付加で結合していることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 9.前記有機エレクトロルミネッセンス素子材料が、発光材料であることを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 10.前記有機エレクトロルミネッセンス素子材料が、電荷輸送材料であることを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 11.前記一般式(1)で表される骨格構造を有する化合物が、分子内又は分子間エキサイプレックスを形成する化合物であることを特徴とする第1項から第10項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 12.陽極と陰極と、前記陽極と前記陰極との間に発光層を有し、
 前記発光層の少なくとも1層が、第1項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料を含有することを特徴とする有機エレクトロルミネッセンス素子。
 13.前記発光層が、更に、ホスト化合物を含有することを特徴とする第12項に記載の有機エレクトロルミネッセンス素子。
 14.前記発光層が、更に、蛍光発光性化合物及びリン光発光性化合物の少なくとも一方を含有することを特徴とする第12項又は第13項に記載の有機エレクトロルミネッセンス素子。
 15.前記発光層が、更に、ホスト化合物と、蛍光発光性化合物及びリン光発光性化合物の少なくとも一方とを含有することを特徴とする第12項から第14項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 16.第12項から第15項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。
 17.第12項から第15項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。
 18.下記一般式(1)で表される骨格構造を有することを特徴とする化合物。
Figure JPOXMLDOC01-appb-C000004
〔式中、D及びAはそれぞれ置換基を表す。X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表し、X及びYの少なくとも一つは炭素原子である。
 前記Dで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をD-Hとし、前記Aで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をA-Hとしたとき、当該D-HはA-Hよりも最高被占分子軌道(HOMO)のエネルギー準位が高く、当該A-HはD-Hよりも最低空分子軌道(LUMO)のエネルギー準位が低い。
 前記Dで表される置換基は、3~15の範囲内の数の環構造を有し、前記環構造のそれぞれは、互いに結合又は縮合していてもよい。
 なお、一般式(1)で表される骨格構造は、更に、1つ又は複数の置換基を有してもよく、複数の当該置換基が互いに結合して環構造を形成してもよい。また、X及びYを環構成原子として含む一つの飽和環が形成されてもよい。〕
 19.前記一般式(1)におけるDが有する前記環構造は、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、Dで表される置換基を三つ以上有することを特徴とする第18項に記載の化合物。
 20.前記一般式(1)におけるAで表される置換基が、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、Aで表される置換基を一つ以上有することを特徴とする第18項又は第19項に記載の化合物。
 21.前記一般式(1)におけるDで表される置換基が、カルバゾール環、インドロカルバゾール環、ジインドロカルバゾール環、アクリダン環、又はインドロインドール環を有することを特徴とする第18項から第20項までのいずれか一項に記載の化合物。
 22.前記一般式(1)におけるAで表される置換基が、ピリジン環、ピリミジン環、トリアジン環、ジベンゾフラン環、アザジベンゾフラン環、ジアザジベンゾフラン環、カルボリン環、ジアザカルバゾール環、又はシアノ基、トリフルオロメチル基及びハロゲン原子から選ばれる少なくとも一つを含むベンゼン環を有することを特徴とする第18項から第21項までのいずれか一項に記載の化合物。
 23.前記一般式(1)におけるAで表される置換基が、二つ以上のヘテロ原子を有することを特徴とする第18項から第22項までのいずれか一項に記載の化合物。
 24.前記一般式(1)におけるX及びYが、エチレンリンカーを構成していることを特徴とする第18項から第23項までのいずれか一項に記載の化合物。
 25.前記一般式(1)において、前記X及びY上の置換基が互いに結合して形成される環がシクロヘキシル環であり、前記Dで表される置換基及びAで表される置換基は、それぞれ前記シクロヘキシル環に対してシン付加で結合していることを特徴とする第18項から第23項までのいずれか一項に記載の化合物。
 本発明の上記手段により、発光効率を高めることができる有機エレクトロルミネッセンス素材材料及び化合物を提供することができる。また、当該有機エレクトロルミネッセンス素材材料を適用した有機エレクトロルミネッセンス素子並びに当0該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することができる。
 はじめに、本発明でいう分子間エキサイプレックス及び分子内エキサイプレックスについて説明する。
 なお、一般に、エキサイプレックス(励起錯体ともいう。)とは、励起電子状態にある化学種Aが、基底状態にあるn個の化学種Bと形成する励起錯体AB をエキサイプレックスという。特に、A及びBが同一種で1:1錯体である場合をエキシマーという。
 本発明では、エキシマーを含めて、上記のような励起錯体をエキサイプレックスという。また、分子内の部分構造同士で上記のような励起錯体を形成したものを分子内エキサイプレックスといい、同一種分子間で形成された励起錯体を分子間エキサイプレックスという。
 〈分子間エキサイプレックス〉
 下記化合物は、分子間エキサイプレックスを発現する本発明に係る代表的な化合物(例示化合物E-22)である。
Figure JPOXMLDOC01-appb-C000005
 上記例示化合物E-22において、Dで示す枠で囲まれた置換基が、一般式(1)におけるDで表される置換基であり、Aで示す枠で囲まれた置換基が、一般式(1)におけるAで表される置換基にそれぞれ該当する。
 上記例示記化合物E-22では、下記に示すように2分子間でエキサイプレックスを起こすことによって効果を発現するものであり、これを分子間エキサイプレックスという。
Figure JPOXMLDOC01-appb-C000006
 〈分子内エキサイプレックス〉
 下記化合物は、分子内エキサイプレックスを発現する本発明に係る代表的な化合物(例示化合物E-77)である。
Figure JPOXMLDOC01-appb-C000007
 上記例示化合物E-77において、Dで示す枠で囲まれた置換基が、一般式(1)におけるDで表される置換基であり、Aで示す枠で囲まれた置換基が、一般式(1)におけるAで表される置換基にそれぞれ該当し、一般式(1)におけるX及びYが、シクロヘキサン環の構成原子(炭素原子)となっている。
 上記例示化合物E-77では、1分子内でエキサイプレックスを形成することによって効果を発現するものであり、これを分子内エキサイプレックスという。
 本発明の効果の発現機構・作用機構については全てが明確にはなっていないが、以下のように推察している。
 従来の分子間エキサイプレックスを2種類の分子間で形成する化合物を含む有機EL素子に対し、本発明で規定する一般式(1)で表される骨格構造を有する化合物を含む有機EL素子は、発光層の材料点数を減少させることができることから、均一な膜形成による有機EL素子の高機能化(発光効率の上昇)、及び蒸着プロセスや塗布プロセスでのプロセスコストの低減が可能となる。薄膜中において、エキサイプレックスは、二つの部位の相互作用によって形成されることから、その混合比が1:1であるときに効果を極大化できるが、従来の2種類の分子の混合膜を形成する上で、精密に1:1の混合比での膜形成を行うことはプロセスの制約上、困難である。これに対し、本発明の一般式(1)で表される骨格構造を有する化合物を用いることにより、例えば、エキサイプレックスを形成するDで表される置換基(以下、「置換基D」、又は「電子供与性基D」ともいう。)とAで表される置換基(以下、「置換基A」、又は「電子求引性基A」ともいう。)の混合比を1対1に完全に制御することができることから、エキサイプレックスの効果を最大限に活かすことができ、有機EL素子の発光効率を高めることができる。
 更に、本発明に係る分子間又は分子内エキサイプレックスを形成する化合物を含む有機EL素子は、従来の分子間エキサイプレックスを形成する化合物を含む有機EL素子よりも発光波長の長波長化を効果的に抑制することができる。
 これは、本発明に係る分子内又は分子間エキサイプレックスは、前述のとおり、分子内の近い距離で容易に形成されるので、従来技術である2種類の分子から分子間エキサイプレックスを形成する化合物を含む有機EL素子とは異なり、強力な電子供与性基Dと電子求引性基Aを必要としないことによる。その結果、本発明の分子内又は分子間エキサイプレックスを形成する化合物を含む有機EL素子は、従来の分子間エキサイプレックスを形成する化合物を含む有機EL素子と比べて、発光波長の長波長化を抑制することができる。
 また、本発明では、Dで表される置換基(電子供与性基D)、Aで表される置換基(電子求引性基A)を、-X-Y-、例えば、リンカーとしてエチレン基やシクロヘキシル基で連結するという新たな方法を用いることにより、分子内又は分子間エキサイプレックスを形成し、ΔESTを極小化することができる。さらに、本発明に係る分子内又は分子間エキサイプレックスは、電子供与性基である置換基Dと電子求引性基である置換基Aを分子内の近い距離に存在させることができるため、容易に形成されやすい。これらの結果、従来技術の分子間エキサイプレックスを形成する化合物よりも高発光で高い発光効率を達成することができたものと推察している。
 さらに、本発明では、電子供与性基である置換基Dや電子求引性基である置換基Aの構造は、通常、それぞれの基が単独の分子であれば、液体、又は固体であっても分子量が小さすぎるため、蒸着法等を用いた薄膜形成が困難となり、有機エレクトロルミネッセンス素子の形成に蒸着法を適用することができないという問題点がある。本発明では、従来は有機EL素子の作製が不可能であった電子供与性基である置換基Dや電子求引性基である置換基A同士を連結することにより高分子量化し、蒸着等の薄膜形成方法の適用を可能とし、新たな有機EL素子の作製を実現することができたものである。
HOMOとLUMOを分離したTADF化合物の一例である2CzPNの構造を示す図 図1Aに示すTADF化合物のエネルギーダイヤグラムの一例を示す模式図 HOMOとLUMOが明確に分離されていない一般的な蛍光発光性化合物の一例である2CzXyの構造を示す図 図2Aで示す一般的な蛍光発光性化合物のエネルギーダイヤグラムの一例を示す模式図 一般式(1)で表される骨格構造を有する化合物がアシストドーパントとして機能する場合のエネルギーダイヤグラムの一例を示した模式図 一般式(1)で表される骨格構造を有する化合物がホスト化合物として機能する場合のエネルギーダイヤグラムの一例を示した模式図 一般式(1)における置換基D及び置換基AのHOMO及びLUMOを説明するための概念図 有機EL素子を具備した表示装置の一例を示す概略斜視図 アクティブマトリクス方式による表示装置の構成の一例を示す概略斜視図 発光画素の回路の一例を示した概略配線図 パッシブマトリクス方式による表示装置の構成一例を示す概略斜視図 照明装置の構成の一例を示す概略斜視図 照明装置の構成の一例を示す概略断面図
 本発明の有機EL素子材料は、分子内又は分子間エキサイプレックスを1種類の分子で形成する化合物、すなわち、本発明に係る一般式(1)で表される骨格構造を有する化合物を含有する。これは、各請求項に係る発明に共通する技術的特徴である。
 本発明の有機EL素子材料においては、本発明の目的とする効果をより発現できる観点から、前記一般式(1)におけるDが有する前記環構造が、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を三つ以上有すること、前記一般式(1)におけるAで表される置換基が環構造を有し、前記環構造が5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を一つ以上有することが、より発光効率に優れた分子内又は分子間エキサイプレックスを得ることができる点で好ましい。
 また、前記一般式(1)におけるDで表される置換基(電子供与性基D)が、カルバゾール環、インドロカルバゾール環、ジインドロカルバゾール環、アクリダン環、又はインドロインドール環を有する構成であることが、より発光効率に優れた分子内又は分子間エキサイプレックスを得ることができる点で好ましい。
 また、前記一般式(1)におけるAで表される置換基(電子求引性基A)が、ピリジン環、ピリミジン環、トリアジン環、ジベンゾフラン環、アザジベンゾフラン環、ジアザジベンゾフラン環、カルボリン環、ジアザカルバゾール環、又はシアノ基、トリフルオロメチル基及びハロゲン原子から選ばれる少なくとも一つを含むベンゼン環を有する構成であることが、より発光効率に優れた分子内又は分子間エキサイプレックスを得ることができる点で好ましい。
 また、前記一般式(1)におけるAで表される置換基(電子求引性基A)が、二つ以上のヘテロ原子を有する構成であることが、より発光効率に優れた分子内又は分子間エキサイプレックスを得ることができる点で好ましい。
 また、前記一般式(1)におけるX及びYが、エチレンリンカーを構成していることが、より発光効率に優れた分子内又は分子間エキサイプレックスを得ることができる点で好ましい。
 また、前記X及びY上の置換基が互いに結合して形成される環がシクロヘキシル環であり、前記Dで表される置換基及びAで表される置換基が、それぞれ前記シクロヘキシル環に対してシン付加で結合している構成であることが、より発光効率に優れた分子内又は分子間エキサイプレックスを得ることができる点で好ましい。
 また、前記有機エレクトロルミネッセンス素子材料が、発光材料又は電荷輸送材料であることが好ましい形態である。
 また、有機エレクトロルミネッセンス素子材料が、分子内又は分子間エキサイプレックスを1種類の分子で形成する化合物であることが、本発明の目的効果をいかんなく発揮させることができる点で好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
 《有機エレクトロルミネッセンス素子材料》
 本発明の有機エレクトロルミネッセンス素子材料は、前記一般式(1)で表される構造を有する化合物である。
 前記一般式(1)において、D及びAは、それぞれ置換基を表す。X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表し、X及びYの少なくとも一つは炭素原子である。
 (置換基D、置換基AのHOMO、LUMO〕
 本発明に係る一般式(1)で表される構造を有する化合物では、X-Yで表されるリンカーに結合しているDで表される置換基(電子供与性基D)と、Aで表される置換基(電子求引性基A)が、下記の関係を満たすことを特徴とする。
 本発明においては、Dで表される置換基におけるリンカー(X-Y)との連結部を水素原子で置き換えた構成をD-Hとし、Aで表される置換基におけるリンカー(X-Y)との連結部を水素原子で置き換えた構成をA-Hとしたとき、図5で示すように、当該D-HはA-Hよりも最高被占分子軌道(HOMO)のエネルギー準位が高く、当該A-HはD-Hよりも最低空分子軌道(LUMO)のエネルギー準位が低いことを特徴とする。
 D-HとA-HのそれぞれのLUMO及びHOMOのエネルギー準位が、図5で示すような関係を有している場合は、D-HのHOMOとA-HのLUMOのエネルギー準位がお互いに近いため、エキサイプレックスを形成しやすいと考えられる。
 すなわち、一般式(1)で表される骨格構造を有する化合物における置換基であるDとAは、上記のD-HとA-Hと同様の関係になり得ることができることから、分子内又は分子間エキサイプレックスを形成しやすいと推測される。
 (Dで表される置換基)
 一般式(1)において、Dで表される置換基は、上記エネルギー準位の関係を満たせば特に制限はないが、Dで表される置換基は、3~15の範囲内の数の環構造を有し、前記環構造のそれぞれは、互いに結合又は縮合していてもよい。更には、Dが有する環構造は、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を三つ以上有することが好ましい形態である。また、Dで表される置換基は、一つ又は二つの縮合環を有することが好ましい。また、電子供与性基であることが好ましい。
 Dで表される置換基としては、例えば、ジフェニルアミノ基、メトキシ基で置換されたフェニル基、ピロール環、インドール環、カルバゾール環、アクリダン環、インドロインドール環、9,10-ジヒドロアクリジン環、10,11-ジヒドロジベンゾアゼピン、5,10-ジヒドロジベンゾアザシリン、フェノキサジン環、フェノチアジン環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾフリルインドール環、ベンゾチエノインドール環、インドロカルバゾール環、ジインドロカルバゾール環、ベンゾフリルカルバゾール環、ベンゾチエノカルバゾール環、ベンゾチエノベンゾチオフェン環、ベンゾカルバゾール環、又はジベンゾカルバゾール環等が挙げられる。なお、同一、又は異なる2以上の上記置換基が連結したものであってもよい。また、ジベンゾフラン環は、電子供与性の置換基(例えば、カルバゾール基)で置換された場合は、全体として電子供与性基Dとして機能するが、無置換又は電子求引性の置換基で置換された場合は、電子求引性基A(置換基A)として機能する。
 更に、一般式(1)において、上記で記載した置換基Dの中でも、カルバゾール環、インドロカルバゾール環、ジインドロカルバゾール環、アクリダン環、又はインドロインドール環を有することが好ましい。
 (Aで表される置換基)
 一般式(1)において、Aで表される置換基は、上記エネルギー準位の関係を満たせば、特に制限はないが、Aで表される置換基としては環構造を有し、前記環構造が5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を一つ以上有することが好ましく、また電子求引性基であることが好ましい形態である。
 Aで表される置換基としては、例えば、シアノ基、トリフルオロメチル基、ハロゲン原子、置換されていてもよいカルボニル基、置換されていてもよいスルホニル基、置換されていてもよいボリル基で置換されたベンゼン環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェンジオキシド環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、イソキノリン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、フェナントリジン環、フェナントロリン環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾシロール環、アザジベンゾフラン環、ジアザジベンゾフラン環、ジベンゾボロール環、ジベンゾホスホールオキシド環、カルボリン環などが挙げられる。なお、同一、又は異なる2以上の上記置換基を連結したものであってもよい。上記置換基の中でも、二つ以上のヘテロ原子を有する構成であることも好ましい。
 更には、Aで表される置換基が、ピリジン環、ピリミジン環、トリアジン環、ジベンゾフラン環、アザジベンゾフラン環、ジアザジベンゾフラン環、カルボリン環、ジアザカルバゾール環、又はシアノ基、トリフルオロメチル基及びハロゲン原子から選ばれる少なくとも一つを含むベンゼン環であることが好ましい。
 (X-Y構造:リンカー)
 一般式(1)において、X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表す。-X-Y-で形成されるリンカーとしては、-C-C-、-C-N-、-C-O-、-C-Si-等が挙げられる。更に好ましくは、エチレンリンカー(-CH-CH-)である。
 また、X及びYは、環構造原子として含む一つ又は二つの飽和環が形成されていてもよい。X及びYを環構造原子として含む一つ又は二つの飽和環は、具体的には、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環などが挙げられる。
 飽和環としては、特には、X及びY上の置換基が互いに結合して形成される環がシクロヘキシル環であり、前記Dで表される置換基及びAで表される置換基は、それぞれ前記シクロヘキシル環に対してシン付加で結合している構成であることが好ましい。
 以下に、本発明に係る一般式(1)で表される骨格構造を有する化合物の好ましい具体例を挙げるが、これらの化合物はさらに置換基を有していたり、構造異性体などが存在していたりする場合もあり、以下に例示する化合物にのみ限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明の有機EL素子材料の分子量は、薄膜形成を可能とする観点から、300~2000の範囲内であることが好ましく、400~900の範囲内であることがより好ましい。
 本発明の一般式(1)で表される骨格構造を有する化合物を含有する有機EL素子材料を用いることで、上述のとおり、発光波長の長波長化を抑制しながら、分子内又は分子間エキサイプレックスからなる励起子を形成することができる。それにより、これらの本発明の一般式(1)で表される骨格構造を有する化合物を含有する有機EL素子材料を含む有機EL素子は、発光波長が大きく長波長化することなく、高い発光効率を得ることができる。
 一般式(1)において、一方がDで表される電子供与性基Dで、他方がAで表される電子求引性基Aである化合物は、分子内又は分子間エキサイプレックスを形成する。そのような分子内又は分子間エキサイプレックスを形成する化合物は、電子求引性基Aと電子供与性基Dとが相互作用して励起子を生成する。
 本発明の一般式(1)で表される骨格構造を有する化合物が、分子内エキサイプレックスを形成するかどうかは、以下の方法で確認することができる。
 1)対象の化合物を、2-メチル-テトラヒドロフランに溶解し、1×10-5Mの測定用溶液を調製する。電子求引性基Aと電子供与性基Dの両方を有する一般式(1)で表される化合物では、当該電子求引性基Aからなる化合物と、当該電子供与性基Dと残部を有する化合物とを、2-メチル-テトラヒドロフランに溶解し、1×10-5Mの比較用溶液を調製する。
 2)測定用溶液と比較用溶液の発光スペクトルを、それぞれの極大吸収波長で励起して、測定する。
 3)測定用溶液の発光スペクトルと比較用溶液の発光スペクトルとを重ね合わせる。
 4)測定用溶液の発光スペクトルと比較用溶液の発光スペクトルが一致しない場合、具体的には、測定用溶液の発光スペクトルの最大発光波長が比較用溶液の発光スペクトルの最大発光波長よりも長波長側にシフトし、且つ測定用溶液の発光スペクトルが比較用溶液の発光スペクトルよりもブロードなスペクトルである場合、測定対象となる化合物が分子内エキサイプレックス又は分子内エキシマーを形成していると判断することができる。
 一方、本発明の一般式(1)で表される骨格構造を有する化合物が分子間エキサイプレックスを形成するかどうかは、以下の方法で確認することができる。
 1)上記化合物について、蒸着又は塗布プロセスで単層の膜(以下、単膜と略)を作製する。
 2)上述の対象の化合物を、2-メチル-テトラヒドロフランに溶解して調製した測定用溶液と単膜の発光スペクトルを、それぞれの極大吸収波長で励起して、測定する。
 3)測定用溶液の発光スペクトルと単膜の発光スペクトルとを重ね合わせる。
 4)測定用溶液の発光スペクトルと単膜の発光スペクトルが一致しない場合、具体的には、単膜の発光スペクトルの最大発光波長が測定用溶液の発光スペクトルの最大発光波長よりも長波長側にシフトし、且つ単膜の発光スペクトルが測定用溶液の発光スペクトルよりもブロードなスペクトルである場合、測定対象となる化合物が分子間エキサイプレックスを形成していると判断することができる。
 さらに、これらの化合物は、バイポーラー性を有し、様々なエネルギー準位に対応できることから、発光材料やホスト材料としても使用できるのみならず、正孔輸送材料、電子輸送材料にも適した化合物、即ち、電荷輸送材料として使用することができるため、発光層での使用に限定されず、上述の正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、電子注入層、中間層などに適用することもできる。
 〔一般式(1)で表される骨格構造を有する化合物の合成〕
 一般式(1)で表される骨格構造を有する化合物は、例えば、国際公開第2014/022008号に記載の方法、又は、同文献に記載の参照文献に記載されている方法を参照にして合成することができる。
 以下に、合成例の一例を示す。
 (例示化合物E-1の合成)
 以下に、X-Yとしてエチレンリンカー(-CH-CH-)を有する例示化合物E-1の合成フローを以下に示す。
Figure JPOXMLDOC01-appb-C000027
 (例示化合物E-77の合成)
 以下に、X-Yとしてシクロヘキシルリンカーを有する例示化合物E-77の合成フローを以下に示す。
Figure JPOXMLDOC01-appb-C000028
 《有機エレクトロルミネッセンス素子》
 本発明の一般式(1)で表される骨格構造を有する化合物は、分子内又は分子間エキサイプレックスを1種類の分子で形成することを特徴とするものであり、有機エレクトロルミネッセンス素子(有機EL素子)に適用することができる。具体的には、本発明に係る一般式(1)で表される骨格構造を有する化合物を、有機EL素子を構成する発光性材料、ホスト材料、アシストドーパント等の用途で使用することが、高発光性の有機EL素子を得ることができる観点から好ましい。
 〔発光材料〕
 (リン光発光性化合物)
 前述のとおり、リン光発光は、発光効率としては蛍光発光よりも理論的には3倍有利であるが、三重項励起状態から一重項基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常、その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることが困難である。
 ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。
 しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになるとその埋蔵量や金属自体の値段が産業上大きな問題となってくる。
 (蛍光発光性化合物)
 一方、一般的な蛍光発光性化合物は、リン光発光性化合物のような重金属錯体である必要性は特になく、炭素、酸素、窒素及び水素などの一般的な元素の組み合わせから構成される、いわゆる有機化合物であり、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用することができるなど、その多様性はほぼ無限といえる。
 ただし、従来の蛍光化合物では前記のように励起子の25%しか発光に適用できないために、リン光発光のような高効率発光は望めない。
 《有機EL素子》
 本発明の有機EL素子は、陽極と陰極の間に少なくとも発光層を有する構成であって、当該発光層の少なくとも1層が、分子内又は分子間エキサイプレックスを1種類の分子で形成する、本発明の一般式(1)で表される骨格構造を有する化合物を含有する有機EL素子材料を含有することを特徴とする。
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
 (1)陽極/発光層/陰極
 (2)陽極/発光層/電子輸送層/陰極
 (3)陽極/正孔輸送層/発光層/陰極
 (4)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
 (7)陽極/正孔注入層/正孔輸送層/(電子阻止層)/発光層/(正孔阻止層)/電子輸送層/電子注入層/陰極
 上記の中では(7)で示す構成が好ましく用いられる。
 本発明の有機EL素子を構成する発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
 必要に応じて、発光層と陰極との間に電子輸送層、正孔阻止層(正孔障壁層ともいう。)や電子注入層(陰極バッファー層ともいう。)を設けてもよく、また、発光層と陽極との間に正孔輸送層、電子阻止層(電子障壁層ともいう。)や正孔注入層(陽極バッファー層ともいう。)を設けてもよい。
 本発明に用いられる電子輸送層とは、電子を輸送する機能を有する層であり、広い意味では、電子注入層や正孔阻止層も電子輸送層に含まれる。また、電子輸送層は複数層で構成されていてもよい。
 本発明に用いられる正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、正孔輸送層は複数層で構成されていてもよい。
 上記の代表的な有機EL素子の構成において、陽極と陰極を除いた層を「有機層」、「有機機能層」、又は「有機機能層群」ともいう。
 〔タンデム構造〕
 本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数ユニット積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば、以下の構成を挙げることができる。
 タンデム構成=陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じ構成であっても、異なる構成であってもよい。また、二つの発光ユニットが同じ構成で、残る一つが異なる構成であってもよい。
 複数の発光ユニットは直接積層されていても、上記で例示したように、中間層を介して積層されていてもよく、当該中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層の形成に用いられる構成材料としては、例えば、ITO(インジウムスズ酸化物)、IZO(インジウム亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層複合膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層複合膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニットの好ましい構成としては、例えば、上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いた構成が挙げられるが、本発明はこれらに限定されない。
 タンデム型の有機EL素子の構成の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 〔有機EL素子の構成〕
 以下、本発明の有機EL素子を構成する各層の詳細について説明する。
 (発光層)
 本発明の有機EL素子を構成する発光層は、電極又は隣接層から注入される電子と正孔とが再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に適用する発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
 発光層の層厚の総和は、特に制限はないが、形成する層の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性を向上させる観点から、層厚の総和としては2nm~5μmの範囲内に調整することが好ましく、より好ましくは2~500nmの範囲内に調整され、更に好ましくは5~200nmの範囲内である。
 また、本発明の有機EL素子を形成する個々の発光層の層厚としては、2nm~1μmの範囲内に調整することが好ましく、より好ましくは2~200nmの範囲内であり、更に好ましくは3~150nmの範囲内である。
 本発明の有機EL素子を形成する発光層は、1層で構成されてもよいし、複数の層から構成されてもよい。本発明の一般式(1)で表される骨格構造を有する化合物を発光層に適用する場合、単独で用いてもよいし、後述のホスト材料、蛍光発光材料、リン光発光材料などと混合して用いてもよい。発光層の少なくとも1層が、発光ドーパント(発光性化合物、発光性ドーパント、単にドーパントともいう。)を含有し、さらにホスト化合物(マトリックス材料、発光ホスト化合物、ホスト材料、単にホストともいう。)を含有することが好ましい。本発明においては、発光層の少なくとも1層が、本発明の一般式(1)で表される骨格構造を有する化合物と、ホスト化合物とを含有すると、発光効率が向上する点から好ましい。発光層の少なくとも1層が、本発明の一般式(1)で表される骨格構造を有する化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類とを含有すると、発光効率が向上する点で好ましい。発光層の少なくとも1層が、本発明の一般式(1)で表される骨格構造を有する化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することが、発光効率が向上する点で好ましい。
 (1:発光ドーパント)
 発光ドーパント(以下、「発光性化合物」ともいう。)としては、蛍光発光性ドーパント(以下、「蛍光発光性化合物」又は「蛍光ドーパント」ともいう。)と、リン光発光性ドーパント(以下、「リン光発光性化合物」又は「リン光ドーパント」ともいう。)が好ましく用いられる。本発明においては、発光層が、本発明の一般式(1)で表される骨格構造を有する化合物を発光性化合物又はアシストドーパントとして、0.1~50質量%の範囲内、特には、1~30質量%の範囲内で含有することが好ましい。
 発光層中の発光性化合物の濃度については、使用される特定の発光性化合物及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、本発明で用いられる発光性化合物は、複数種を併用して用いてもよく、構造の異なるリン光発光性化合物同士の組み合わせ、構造の異なる蛍光発光性化合物同士の組み合わせや、蛍光発光性化合物とリン光発光性化合物とを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 本発明の一般式(1)で表される骨格構造を有する化合物とともに、発光性化合物と、ホスト化合物を発光層に含有する場合、当該一般式(1)で表される骨格構造を有する化合物はアシストドーパントとして作用する。一方、発光層が、本発明の一般式(1)で表される骨格構造を有する化合物と発光性化合物とを含有し、ホスト化合物を含有しない場合、当該一般式(1)で表される骨格構造を有する化合物はホスト化合物として作用する。発光層が、本発明の一般式(1)で表される骨格構造を有する化合物のみを含有する場合、当該一般式(1)で表される骨格構造を有する化合物はホスト化合物兼発光性化合物として作用する。
 効果が発現する機構としては、いずれの場合も同様であり、本発明の一般式(1)で表される骨格構造を有する化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEST)が極小である点にある。
 これにより、本発明の一般式(1)で表される骨格構造を有する化合物上に生成した理論上全ての励起子エネルギーを発光性化合物に蛍光共鳴エネルギー移動(FRET)することができ、高発光効率の発現を可能にする。
 したがって、発光層が、本発明の一般式(1)で表される骨格構造を有する化合物、発光性化合物及びホスト化合物の3成分を含有する場合は、当該有一般式(1)で表される骨格構造を有する化合物の最低励起一重項エネルギー準位(S)と最低三重項励起エネルギー準位(T)は、ホスト化合物のSとTのエネルギー準位よりも低く、発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。
 同様に、発光層が、本発明の一般式(1)で表される骨格構造を有する化合物と発光性化合物の2成分を含有する場合は、当該一般式(1)で表される骨格構造を有する化合物のSとTのエネルギー準位は、発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。
 図3及び図4に、本発明の一般式(1)で表される骨格構造を有する化合物がそれぞれアシストドーパント及びホスト化合物として作用する場合の模式図を示す。
 図3は、一般式(1)で表される骨格構造を有する化合物がアシストドーパントとして機能する場合のエネルギーダイヤグラムの一例を示した模式図であり、図4は、一般式(1)で表される骨格構造を有する化合物がホスト化合物として機能する場合のエネルギーダイヤグラムの一例を示した模式図である。
 図3及び図4に示す構成は一例であって、本発明の一般式(1)で表される骨格構造を有する化合物上に生成する三重項励起子の生成過程は電界励起のみに限定されず、発光層内又は周辺層界面からのエネルギー移動や電子移動等も含まれる。
 さらに、図3及び図4では、発光材料として蛍光発光性化合物を用いて示しているが、これに限定されず、リン光発光性化合物を用いてもよいし、蛍光発光性化合物とリン光発光性化合物の両者を用いてもよい。
 本発明の一般式(1)で表される骨格構造を有する化合物をアシストドーパントとして用いる場合、発光層は、当該一般式(1)で表される骨格構造を有する化合物の100質量%に対し、100質量%以上のホスト化合物を含有し、蛍光発光性化合物又はリン光発光性化合物を当該一般式(1)で表される骨格構造を有する化合物の100質量%に対して、0.1~50質量%の範囲内で含有していることが好ましい。
 本発明の一般式(1)で表される骨格構造を有する化合物をホスト化合物として用いる場合、発光層は、蛍光発光性化合物又はリン光発光性化合物を当該一般式(1)で表される骨格構造を有する化合物の100質量%に対して、0.1~50質量%の範囲内で含有することが好ましい。
 本発明の一般式(1)で表される骨格構造を有する化合物をアシストドーパント又はホスト化合物として用いる場合、当該一般式(1)で表される骨格構造を有する化合物の発光スペクトルと発光性化合物の吸収スペクトルとが重なる領域を有することが好ましい。
 本発明の有機EL素子や本発明に用いられる化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁に記載されている図3.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色により決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示す構成も好ましい態様である。
 白色を示す発光ドーパントの組み合わせについては、特に限定はないが、例えば、青と橙や、青と緑と赤の組合わせ等が挙げられる。
 本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
 〈1.1:蛍光発光性ドーパント〉
 蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう。)は、本発明の一般式(1)で表される骨格構造を有する化合物を用いてもよいし、有機EL素子の発光層の形成に使用される公知の蛍光ドーパントや遅延蛍光性ドーパントの中から適宜選択して用いてもよい。
 本発明に適用可能な公知の蛍光発光性ドーパントの具体例としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。また、近年では遅延蛍光を利用した蛍光発光性ドーパントも開発されており、これらを用いてもよい。遅延蛍光を利用した蛍光発光性ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報、特許5366106号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
 〈1.2:リン光発光性ドーパント〉
 本発明に適用可能なリン光発光性ドーパント(以下、「リン光ドーパント」ともいう。)について説明する。
 本発明に用いられるリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光発光性ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号、米国特許第7396598号、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしては、Irを中心金属として有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体である。
 (2:ホスト化合物)
 本発明に用いることができるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてはそれ自体の発光は実質的に観測されない。
 ホスト化合物は、発光層に含有される化合物のなかで、その層中での質量比が20質量%以上であることが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用してもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能となり、有機EL素子を高効率化することができる点で好ましい。
 以下に、本発明において好ましく用いることができるホスト化合物について述べる。
 ホスト化合物としては、本発明の一般式(1)で表される骨格構造を有する化合物を用いてもよいが、その他に公知のホスト化合物を用いてもよく、特に制限はない。逆エネルギー移動の観点から、ドーパントの励起一重項エネルギーより大きな励起エネルギーをもつ化合物が好ましく、さらにドーパントの励起三重項エネルギーより大きな励起三重項エネルギーをもつ化合物がより好ましい。
 ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト分子がオングストロームレベルで移動しないことが好ましい。
 また、特に併用する発光ドーパントが、エキサイプレックス発光を示す本発明の一般式(1)で表される骨格構造を有する化合物である場合には、発光ドーパントの三重項励起状態の存在時間が長いことから、ホスト化合物自体のTエネルギー準位が高いこと、さらにホスト化合物同士が会合した状態で低T状態を作らないこと、発光ドーパントとホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T化しないような分子構造の適切な設計が必要となる。
 このような要件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としては、カルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格など、高Tエネルギー準位を有するものが好ましく挙げられる。
 また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここでいうガラス転移温度(Tg)とは、DSC(DifferentialScanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値である。
 また、本発明に用いられるホスト化合物としては、本発明の一般式(1)で表される骨格構造を有する化合物を用いることも好適である。本発明の一般式(1)で表される骨格構造を有する化合物は、高いTを有しており、発光波長の短い(すなわちT及びSのエネルギー準位が高い)発光材料に対しても好適に用いることができるためである。
 本発明の有機EL素子に公知のホスト化合物を用いる場合、その具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第2003/0175553号明細書、米国特許公開第2006/0280965号明細書、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0017330号明細書、米国特許公開第2009/0030202号明細書、米国特許公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書、国際公開第2011/055933号、国際公開第2012/035853号、特開2015-38941号公報等である。例えば、特開2015-38941号公報の段落(0255)~(0293)に記載されている化合物H-1~H-230や、以下に示す化合物H-231~H-234が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 (電子輸送層)
 本発明でいう電子輸送層とは、電子を輸送する機能を有する材料から構成され、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明に係る電子輸送層の総層厚については、特に制限はないが、通常は2nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、さらに好ましくは5~200nmの範囲内である。
 また、有機EL素子においては、発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極とは対極に位置する電極によって反射されてから取り出される光が干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm~数μmの範囲内に適宜調整することにより、この干渉効果を効率的に利用することが可能となる。
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は1×10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、「電子輸送材料」という。)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 代表的な電子輸送材料としては、例えば、含窒素芳香族複素環誘導体(例えば、カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等。)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(例えば、ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等。)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されている化合物も、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができ、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載された構成が挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 本発明において、より好ましい公知の電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物や、リン原子を含む化合物が挙げられ、例えば、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体、アリールホスフィンオキサイド誘導体等が挙げられる。
 電子輸送材料は単独で用いてもよく、また複数種を併用してもよい。
 (正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ、正孔を輸送する能力が小さい材料から構成され、電子を輸送しつつ正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。
 また、前述の電子輸送層の構成を必要に応じて正孔阻止層として用いることができる。
 本発明の有機EL素子において、正孔阻止層は発光層の陰極側に隣接して設けられる構成であることが好ましい。
 本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
 正孔阻止層に用いられる材料としては、前述の電子輸送層に適用可能な材料として記載したのと同様の材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
 (電子注入層)
 本発明に係る電子注入層(以下、「陰極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のため、陰極と発光層との間に設けられる層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されている。
 本発明の有機EL素子において、電子注入層は必要に応じて設け、上記のごとく陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、形成に用いる素材にもよるが、その層厚は0.1~5nmの範囲内が好ましい。また、構成材料が不連続に存在する不均一な島状の層(膜)であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、8-ヒドロキシキノリネートリチウム(略称:Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用してもよい。
 (正孔輸送層)
 本発明の有機EL素子における正孔輸送層は、正孔を輸送する機能を有する材料から構成され、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明において、正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、より好ましくは5~500nmの範囲内であり、さらに好ましくは5~200nmの範囲内である。
 正孔輸送層に用いられる材料(以下、「正孔輸送材料」という。)は、正孔の注入性若しくは輸送性、又は電子の障壁性のいずれかの機能を有していればよく、従来公知の正孔輸送材料の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT/PSS(ポリ3,4-エチレンジオキチオフェン/ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(略称:α-NPD)に代表されるベンジジン型や、4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(略称:MTDATA)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載された化合物が挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、そのほかには、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号第2013/585981号明細書等を挙げることができる。
 正孔輸送材料は単独で用いてもよく、また複数種を併用してもよい。
 (電子阻止層)
 電子阻止層とは、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ、電子を輸送する能力が小さい材料から構成され、正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。
 また、前述した正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として適用することもできる。
 本発明の有機EL素子において、電子阻止層は、発光層の陽極面側に隣接して設けられることが好ましい。
 本発明において、電子阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料と同様のものが好ましく、また、前述のホスト化合物も電子阻止層に好ましく用いられる。
 (正孔注入層)
 本発明に係る正孔注入層(以下、「陽極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明の有機EL素子において、正孔注入層は必要に応じて設け、上記のごとく陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、前述の正孔輸送層に用いられる材料と同様のものが挙げられる。
 中でも、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 (有機EL素子の添加剤)
 本発明の有機EL素子を構成する各有機機能層群には、必要に応じて各種添加剤が含まれていてもよい。
 添加剤としては、例えば、臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 添加剤の添加量は、その目的とする機能により任意に決定することができるが、おおむね、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などに使用される添加剤に関しては、この限りではない。
 (各有機機能層の形成方法)
 本発明の有機EL素子を構成する各有機機能層(例えば、正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層、中間層等)の形成方法について説明する。
 本発明に係る有機機能層の形成方法は、特に制限はなく、従来公知の薄膜形成方法、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ローラーコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ローラーコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール製造適性の高い方法が好ましい。
 湿式法において、有機機能層形成用の塗布液を調製する際、有機EL材料を溶解又は分散する媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)等の有機溶媒を用いることができる。
 また、分散方法としては、超音波分散、高剪断力分散やメディア分散等の機械的分散方法により分散することができる。
 一方、成膜に真空蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃の範囲内、真空度1×10-6~1×10-2Paの範囲内、蒸着速度0.01~50nm/秒の範囲内、基板温度-50~300℃の範囲内、層(膜)厚0.1nm~5μm、好ましくは5~200nmの範囲内で適宜選ぶことが好ましい。
 本発明に係る有機機能層の形成方法としては、一回の真空引きで一貫して正孔注入層から陰極まで真空蒸着法で作製する方法が好ましいが、途中で取り出して異なる成膜法、例えば、湿式法による形成を行っても構わない。その際の作業環境としては、乾燥不活性ガス雰囲気下で行うことが好ましい。
 (陽極)
 本発明の有機EL素子を構成する陽極としては、仕事関数の大きい(例えば、4eV以上、好ましくは4.5eV以上。)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムスズ酸化物(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極は、これらの電極物質を蒸着やスパッタリング等の薄膜形成方法により形成させ、フォトリソグラフィー法で所望の形状の電極パターンを形成してもよく、又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介して電極パターンを形成してもよい。
 また、有機導電性化合物のように塗布可能な物質を用いる方法には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
 陽極の膜厚は材料にもよるが、通常10nm~1μmの範囲内であり、好ましくは10~200nmの範囲内で選ばれる。
 (陰極)
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を真空蒸着やスパッタリング等の方法により、薄膜形成して作製することができる。また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上する観点から好ましい。
 また、陰極に上記金属を1~20nmの範囲内の膜厚で作製した後、陽極の説明で挙げる導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができる。このような方法を適用することで陽極と陰極に透過性を有する両面発光型の有機EL素子を作製することができる。
 〔支持基板〕
 本発明の有機EL素子に用いることのできる支持基板(以下、「基板」、「基材」ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルム等を挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等により形成されているフィルムが挙げられる。
 樹脂フィルムの表面には、バリアー膜として無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリアー性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-5g/m・24h以下の高バリアー性フィルムであることが好ましい。
 バリアー膜を形成する材料としては、水分や酸素等、有機EL素子の劣化をもたらす成分の浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、バリアー膜の脆弱性を改良するために、これら無機層と有機材料からなる有機層により積層構造を形成することがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させる構成が好ましい。
 バリアー膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが好ましい。ここでいう「CVD法」とは、化学気相蒸着法(Chemical Vapor Deposition)をいう。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1.0%以上であることが好ましく、5.0%以上であることがより好ましい。
 ここでいう外部取り出し量子効率とは、下式で示すとおりである。
   外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
 〔封止〕
 本発明の有機EL素子の封止構造の形成に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを封止用接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 封止部材としては、例えば、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/m・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10-3g/m・24h以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 封止用接着剤としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型接着剤を挙げることができる。また、エポキシ系等の熱硬化及び化学硬化型(二液混合)を挙げることもできる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることもできる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることもできる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までの温度範囲内で接着硬化できるものが好ましい。また、前記封止用接着剤中に乾燥剤を分散させておいてもよい。封止部分への封止用接着剤の塗設は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機機能層群を挟み支持基板と対向する側の電極の外側に該電極と有機機能層群を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とする方法も好ましく適用することができる。この場合、当該封止膜を形成する材料としては、有機EL素子の劣化をもたらす水分や酸素等素子等の浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 さらに、当該封止膜の脆弱性を改良するために、これら無機層と有機材料からなる有機層との積層構造を持たせることが好ましい。これらの積層膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、湿式コーティング法等を用いることができる。
 また、封止部材と有機EL素子の表示領域との間隙に気相及び液相構造を設けることもでき、例えば、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することができる。また、真空とすることも可能である。
 また、気相あるいは液相内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 〔保護膜、保護板〕
 有機機能層群を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、有機EL素子の機械的強度を高める目的で、保護膜又は保護板を設けてもよい。特に、封止方式が前記封止膜により行われている場合には、その機械的強度は必ずしも十分であるとはいえないため、このような保護膜や保護板を設ける方法が好ましい。
 保護膜や保護板に使用することができる材料としては、前記封止部材に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 〔光取り出し向上技術〕
 有機EL素子は、空気よりも屈折率の高い発光層(屈折率:1.6~2.1の範囲内)の内部で発光し、当該発光層で発生した光のうち15~20%程度の光しか取り出せないことが一般的であるといわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を生じ、有機EL素子外部に取り出すことができないことや、透明電極や、発光層と透明基板との間で光が全反射を起こし、光が透明電極や発光層を導波し、結果として、光が有機EL素子の側面方向に逃げるためである。
 この光の取り出し効率を向上させる方法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書参照。)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報参照。)、有機EL素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報参照。)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報参照。)、基板と発光体の間に、基板よりも低い屈折率を有する平坦層を導入する方法(例えば、特開2001-202827号公報参照。)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報参照。)などが挙げられる。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低い屈折率を有する平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度で、耐久性に優れた有機EL素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は、一般には1.5~1.7の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましく、さらには1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面、又はいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が一次の回折や、二次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
 〔集光シート〕
 本発明の有機EL素子には、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ状の構造を設ける加工や、いわゆる集光シートと組み合わせることにより、特定方向、例えば、有機EL素子の発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとしてば、例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
 〔用途〕
 本発明の有機EL素子は、電子機器、例えば、表示装置、ディスプレイ、各種発光装置として用いることができる。
 発光装置として、例えば、照明装置(例えば、家庭用照明、車内照明等。)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、有機EL素子全層をパターニングしてもよく、有機EL素子の作製においては、従来公知の方法を用いることができる。
 《表示装置》
 本発明の有機EL素子を具備する表示装置は、単色発光でも多色発光でもよいが、ここでは多色発光する多色表示装置について説明する。
 多色表示装置の場合は、発光層形成時のみシャドーマスクを設け、一面に真空蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等を用いてパターン形成を行って各色の発光領域を形成する。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは真空蒸着法、インクジェット法、スピンコート法及び印刷法が挙げられる。
 表示装置に具備される有機EL素子の構成は、上記説明した有機EL素子の構成例の中から適宜選択される。
 また、有機EL素子の製造方法は、上述の本発明の有機EL素子の製造の一態様に示したとおりである。
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40Vの範囲内で印加することにより発光を観測することできる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に、交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青発光、赤発光及び緑発光の3種の発光色の有機EL素子を用いることによりフルカラー表示が可能となる。
 表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光装置としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図6は、有機EL素子を具備した表示装置の一例を示す概略斜視図であり、有機EL素子の発光により画像情報の表示を行う部材、例えば、携帯電話等のディスプレイ等に代表される表示装置の一例を示してある。
 図6に記載の表示装置(200)において、ディスプレイ(1)は、主には、複数の画素を有する表示部(A)と、画像情報に基づいて表示部(A)の画像走査を行う制御部(B)と、表示部(A)と制御部(B)とを電気的に接続する配線部(C)とを有する。
 制御部(B)は表示部(A)と配線部(C)を介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部(A)に表示する。
 図7は、アクティブマトリクス方式による表示装置の構成の一例を示す模式図である。
 図7において、表示部(A)は、基板(F)上に複数の走査線(5)及びデータ線(6)を含む配線部(C)と、複数の画素(3)等を有する。
 図7には、画素(3)で発光した発光光(L)が基板(F)側である白矢印方向(下方向)へ取り出されるケースを示している。
 配線部(C)の複数の走査線(5)及び複数のデータ線(6)はそれぞれ導電性材料から構成され、走査線(5)とデータ線(6)は格子状に直交して配線部(C)を形成し、直交する位置で複数の画素(3)に接続している(ただし、図7においては、接続方法等のより詳細な構成は図示していない)。
 画素(3)は、走査線(5)から走査信号が印加されると、データ線(6)から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー画像表示が可能となる。
 次に、画素の発光プロセスを説明する。
 図8は、発光画素の回路の一例を示した概略配線図である。
 それぞれの画素(3)は、有機EL素子(10)、スイッチングトランジスター(11)、駆動トランジスター(12)、コンデンサー(13)等を備えている。複数の画素(3)に有機EL素子(10)として、赤色(R)、緑色(G)及び青色(B)発光の有機EL素子(10)を用い、これらを同一基板上に並置することでフルカラーの画像表示を行うことができる。
 図8において、制御部(不図示)からデータ線(6)を介して、スイッチングトランジスター(11)のドレインに画像データ信号が印加される。そして、制御部(不図示)から走査線(5)を介してスイッチングトランジスター(11)のゲートに走査信号が印加されると、スイッチングトランジスター(11)の駆動がオンとなり、ドレインに印加された画像データ信号がコンデンサー(13)と駆動トランジスター(12)のゲートに伝達される。
 画像データ信号の伝達により、コンデンサー(13)が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター(12)の駆動がオンとなる。駆動トランジスター(12)は、ドレインが電源ライン(7)に接続され、ソースが有機EL素子(10)の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン(7)から有機EL素子(10)に電流が供給される。
 制御部(不図示)の順次走査により走査信号が次の走査線(5)に移ると、スイッチングトランジスター(11)の駆動がオフとなる。しかし、スイッチングトランジスター(11)の駆動がオフとなっても、コンデンサー(13)は充電された画像データ信号の電位を保持するので、駆動トランジスター(12)の駆動はオン状態が保たれて、次の走査信号の印加が行われるまでの間、有機EL素子(10)の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター(12)が駆動して有機EL素子(10)が発光する。
 すなわち、有機EL素子(10)の発光は、複数の画素それぞれの有機EL素子(10)に対して、アクティブ素子であるスイッチングトランジスター(11)と駆動トランジスター(12)を設けて、複数の画素(3)のそれぞれの有機EL素子(10)の発光の制御を行っている。このような発光方法を、アクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子(10)の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー(13)の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子(10)を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図9は、パッシブマトリクス方式による表示装置の構成一例を示す概略斜視図である。
 図9において、複数の走査線(5)と複数の画像データ線(6)が画素(3)を挟んで対向して格子状に設けられている。
 順次走査により走査線(5)の走査信号が印加されたとき、印加された走査線(5)に接続している画素(3)が画像データ信号に応じて発光する。
 パッシブマトリクス方式では、画素(3)にアクティブ素子が無く、製造コストの低減が計れる。
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置を得ることができる。
 《照明装置》
 本発明の有機EL素子は、照明装置に適用することができる。
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 また、本発明の化合物は、実質的に白色の発光を生じる有機EL素子を具備する照明装置に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が白色発光である。
 〔本発明の照明装置の一態様〕
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(例えば、東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図10及び図11に示すような照明装置(300)を形成することができる。
 図10は、照明装置(300)の概略斜視図であり、基板(F)上に形成されている本発明の有機EL素子(照明装置内の有機EL素子(10))は、ガラスカバー(102)で覆われている。なお、ガラスカバー(102)での封止作業は、照明装置内の有機EL素子(10)を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行う。
 図11は、照明装置(300)の概略断面図を示し、Fは基板、105は陰極、106は有機機能層群、107は透明電極(陽極)付きガラス基板を示す。なお、ガラスカバー(102)内には窒素ガス(108)が充填され、捕水剤(109)が設けられている。
 本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 《実施例で使用する化合物》
 はじめに、下記で示す実施例で使用する化合物の合成方法及びその構造について記載する。
 〔一般式(1)で表される骨格構造を有する化合物の合成〕
 (エチレンリンカータイプ化合物:例示化合物E-1の合成)
 非特許文献N.K.Garg,et al.,J.Am.Chem.Soc.,2004,126,9552-9553に記載の方法に従って、3-エチニル-9-フェニルカルバゾール、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン、東京化成社製のパラジウム/炭素(Pd10%)、テトラヒドロフランを混合して、反応混合物を水素雰囲気化(1気圧)で室温3時間撹拌することによって、例示化合物E-1の粗精製物を得た。その後、カラムクロマトグラフィー、再結晶、昇華精製を行って、例示化合物E-1の高純度品を取得した。
Figure JPOXMLDOC01-appb-C000030
 (その他のエチレンリンカータイプ化合物)
 上記例示化合物E-1の合成方法と同様にして、下記の各エチレンリンカータイプ化合物を合成した。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 (シクロヘキシルリンカータイプ化合物:例示化合物E-77の合成)
 非特許文献M.Linseis, et al.,J.Am.Chem.Soc.,2012,134,16671-16692に記載の方法に従って、1,2-ビス-(4-ブロモフェニル)-シクロヘキセ-1-エンを得た。次に、1,2-ビス-(4-ブロモフェニル)-シクロヘキセ-1-エン、シグマアルドリッチ製の(1,5-シクロオクタジエン)(ピリジン)(トリシクロヘキシルホスフィン)-イリジウム(I)ヘキサフルオロホスファート、ジクロロエタンを混合して、反応混合物を水素雰囲気化(1気圧)で室温8時間撹拌することによって、1,2-ビス-(4-ブロモフェニル)-シクロヘキサンを得た。次に、1,2-ビス-(4-ブロモフェニル)-シクロヘキサン、東京化成社製の9H-カルバゾール、酢酸パラジウム(II)、トリ-t-ブチルホスフィン、ナトリウム-t-ブトキシド、o-キシレンを混合して、130℃で6時間加熱撹拌することによって、例示化合物E-77前駆体Pを得た。
 次に、例示化合物E-77前駆体P、9H-カルバゾール-3,6-ジカルボニトリル、東京化成社製の酢酸パラジウム(II)、トリ-t-ブチルホスフィン、ナトリウム-t-ブトキシド、o-キシレンを混合して、130℃で6時間加熱撹拌することによって、例示化合物E-77の粗精製物を得た。その後、カラムクロマトグラフィー、再結晶、昇華精製を行って、例示化合物E-77の高純度品を取得した。
Figure JPOXMLDOC01-appb-C000033
 (その他のシクロヘキシルリンカータイプ化合物)
 上記例示化合物E-78の合成方法と同様にして、下記の各シクロヘキシルリンカータイプ化合物を合成した。
Figure JPOXMLDOC01-appb-C000034
 実施例で使用する一般式(1)で表される骨格構造を有する化合物におけるD-H、A-Hに相当する置換基のHOMO、LUMOの値を、表Iに示す。
Figure JPOXMLDOC01-appb-T000035
 〔比較化合物〕
Figure JPOXMLDOC01-appb-C000036
  〔有機EL素子の有機機能層形成材料〕
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 実施例1
 〔有機EL素子の作製〕
 (有機EL素子1-1の作製)
 50mm×50mm、厚さ0.7mmのガラス製の透明基板上に、市販の真空蒸着装置を用いてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行ってITO透明電極(陽極)を形成した。このITO透明電極を形成した透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。抵抗加熱ボートは、モリブデン製又はタングステン製を用いた。
 真空蒸着装置内を真空度として1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚が10nmの正孔注入層を形成した。
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で上記形成した正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
 次いで、ホスト化合物として比較化合物1と発光性化合物としてGD-1とがそれぞれ入った各抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で上記形成した正孔輸送層上に共蒸着し、層厚が40nmの発光層を形成した。
 次いで、HB-1を蒸着速度0.1nm/秒で発光層上に蒸着し、層厚が5nmの第一電子輸送層を形成した。
 さらに第一電子輸送層上に、ET―1を蒸着速度0.1nm/秒で蒸着し、層厚が45nmの第二電子輸送層を形成した。
 その後、フッ化リチウムを膜厚0.5nmになるように第二電子輸送層上に蒸着した後、アルミニウムを厚さ100nmで蒸着して陰極を形成し、有機EL素子1-1を作製した。
 (有機EL素子1-2~1-23の作製)
 上記有機EL素子1-1の作製において、発光層の形成に用いる発光性化合物及びホスト化合物を、表IIに記載の発光性化合物及びホスト化合物の組み合わせに変更した以外は同様にして、有機EL素子1-2~1-23を作製した。
 〔有機EL素子の評価〕
 (相対発光効率の測定)
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。
 次いで、得られた有機EL素子1-1の発光輝度を100%とし、各有機EL素子の相対発光輝度を求め、これを相対発光効率とし、表IIに表示した。数値が大きいほど、発光効率に優れていることを表す。
Figure JPOXMLDOC01-appb-T000039
 表IIに記載の結果より明らかなように、一般式(1)で表される構造を有する本発明の化合物をホスト化合物として用いた本発明の有機EL素子は、比較例に対し、発光効率に優れていることがわかる。
 実施例2
 〔有機EL素子の作製〕
 (有機EL素子2-1の作製)
 50mm×50mm、厚さ0.7mmのガラス基板上に、市販の真空蒸着装置を用いてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行ってITO透明電極(陽極)を形成した。このITO透明電極を形成した透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。抵抗加熱ボートは、モリブデン製又はタングステン製を用いた。
 真空蒸着装置内を真空度として1×10-4Paまで減圧した後、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚が10nmの正孔注入層を形成した。
 次いで、TCTA(トリス(4-カルバゾイル-9-イルフェニル)アミン)を蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚が20nmの第一正孔輸送層を形成した。
 さらに、H-233を蒸着速度0.1nm/秒で第一正孔輸送層上に蒸着し、層厚10nmの第二正孔輸送層を形成した。
 次いで、ホスト化合物として比較化合物1と、発光性化合物としてTBPe(2,5,8,11-テトラ-tert-ブチルペリレン)とがそれぞれ入った各抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚が20nmの発光層を形成した。
 次いで、H-232を蒸着速度0.1nm/秒で発光層上に蒸着し、層厚が10nmの第一電子輸送層を形成した。
 さらに第一電子輸送層上に、TBPi(1,3,5-トリス(1-フェニル-1H-ベンズイミダゾール-2-イル)ベンゼン)を蒸着速度0.1nm/秒で蒸着し、層厚が30mの第二電子輸送層を形成した。
 その後、フッ化リチウムを厚さが0.5nmとなるよう第二電子輸送層上に蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子2-1を作製した。
 (有機EL素子2-2~2-17の作製)
 上記有機EL素子2-1の作製において、発光層の形成に用いたホスト化合物である比較化合物1を、表IIIに記載の各ホスト化合物に変更した以外は同様にして、有機EL素子2-2~2-17を作製した。
 〔有機EL素子の評価〕
 (相対発光効率の測定)
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。
 次いで、得られた有機EL素子2-1の発光輝度を100%とし、各有機EL素子の相対発光輝度を求め、これを相対発光効率とし、表IIIに表示した。数値が大きいほど、発光効率に優れていることを表す。
Figure JPOXMLDOC01-appb-T000040
 表IIIに記載の結果より明らかなように、一般式(1)で表される骨格構造を有する本発明の化合物をホスト化合物として用いた本発明の有機EL素子は、比較例に対し、発光効率に優れていることがわかる。
 実施例3
 〔有機EL素子の作製〕
 (有機EL素子3-1の作製)
 50mm×50mm、厚さ0.7mmのガラス基板上に、市販の真空蒸着装置を用いてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行ってITO透明電極(陽極)を形成した。このITO透明電極を形成した透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。抵抗加熱ボートは、モリブデン製又はタングステン製を用いた。
 真空蒸着装置内の真空度として1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚が10nmの正孔注入層を形成した。
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で上記形成した正孔注入層上に蒸着し、層厚が40nmの正孔輸送層を形成した。
 次いで、ホスト化合物としてH-232、発光性化合物として比較化合物2を、それぞれ94%、6%の体積%になるように蒸着速度0.1nm/秒で正孔輸送層上に共蒸着し、層厚が30nmの発光層を形成した。
 その後、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を蒸着速度0.1nm/秒で発光層上に蒸着し、層厚が30nmの電子輸送層を形成した。
 さらに、フッ化リチウムを膜厚0.5nmで電子輸送層上に形成した後に、アルミニウムを層厚100nmで蒸着して陰極を形成した。
 上記有機EL素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3-1を作製した。
 (有機EL素子3-2~3-20の作製)
 上記有機EL素子3-1の作製において、発光層の形成に用いる発光性化合物の種類とホスト化合物の有無を、表IVに記載の構成に変更した以外は同様にして、有機EL素子3-2~3-20を作製した。
 〔有機EL素子の評価〕
 (相対発光効率の測定)
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。
 次いで、得られた有機EL素子3-1の発光輝度を100%とし、各有機EL素子の相対発光輝度を求め、これを相対発光効率とし、表IVに表示した。数値が大きいほど、発光効率に優れていることを表す。
Figure JPOXMLDOC01-appb-T000041
 表IVに記載の結果より明らかなように、一般式(1)で表される骨格構造を有する本発明の化合物を発光性化合物として用いた本発明の有機EL素子は、比較例に対し、発光効率に優れていることがわかる。
 実施例4
 〔有機EL素子の作製〕
 (有機EL素子4-1の作製)
 陽極として100mm×100mm×1.1mmのガラス基板上に、ITO(インジウムチンオキシド)を厚さ100nmで成膜した基板(NHテクノグラス社製NA45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚が20nmの正孔注入層を設けた。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置内の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。抵抗加熱ボートはモリブデン製またはタングステン製を用いた。
 真空蒸着装置内の真空度を1×10-4Paまで減圧した後、α-NPDを蒸着速度0.1nm/秒で上記形成した正孔注入層上に蒸着し、層厚が40nmの正孔輸送層を形成した。
 次いで、ホスト化合物としてH-234、発光性化合物として2,5,8,11-テトラ-t-ブチルペリレン(TBPe)を、それぞれ97%、3%の体積%になるように蒸着速度0.1nm/秒で正孔輸送層上に共蒸着し、層厚が30nmの発光層を形成した。
 その後、TPBi(1,3,5-トリス(N-フェニルベンゾイミダゾール-2-イル)を蒸着速度0.1nm/秒で発光層上に蒸着し、層厚が30nmの電子輸送層を形成した。
 さらに、フッ化ナトリウムを膜厚1nmで電子輸送層上に形成した後に、アルミニウムを層厚が100nmとなる条件で蒸着して陰極を形成した。
 上記有機EL素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子4-1を作製した。
 (有機EL素子4-2の作製)
 有機EL素子4-1の作製において、発光層の形成方法として、ホスト化合物としてH-234、発光性化合物として2,5,8,11-テトラ-t-ブチルペリレン(TBPe)、第三成分として比較化合物1を用い、それぞれの比率が82%、3%、15%の体積%となるようにして発光層を形成した以外は同様にして、有機EL素子4-2を作製した。
 (有機EL素子4-3~4-6の作製)
 上記有機EL素子4-2の作製において、第三成分を表Vに記載の化合物に変更した以外は同様して、有機EL素子4-3~4-6を作製した。
 〔有機EL素子の評価〕
 (相対発光効率の測定)
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。
 次いで、得られた有機EL素子4-1の発光輝度を100%とし、各有機EL素子の相対発光輝度を求め、これを相対発光効率とし、表Vに表示した。数値が大きいほど、発光効率に優れていることを表す。
Figure JPOXMLDOC01-appb-T000042
 表Vに記載の結果より明らかなように、一般式(1)で表される骨格構造を有する本発明の化合物を発光層の第三成分(アシストドーパント)として用いた本発明の有機EL素子は、比較例に対し、発光効率に優れていることがわかる。
 本発明の有機EL素子材料は発光効率に優れ、当該有機EL素子材料を適用した有機EL素子は、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報等の表示装置や、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等の各種照明装置に適用することができる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスター
 12 駆動トランジスター
 13 コンデンサー
 102 ガラスカバー
 105 陰極
 106 有機機能層群
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 200 表示装置
 300 照明装置
 A 表示部
 B 制御部
 C 配線部
 F 基板
 L 発光光

Claims (25)

  1.  下記一般式(1)で表される骨格構造を有する化合物を含有することを特徴とする有機エレクトロルミネッセンス素子材料。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、D及びAは、それぞれ置換基を表す。X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表し、X及びYの少なくとも一つは炭素原子である。
     前記Dで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をD-Hとし、前記Aで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をA-Hとしたとき、当該D-HはA-Hよりも最高被占分子軌道(HOMO)のエネルギー準位が高く、当該A-HはD-Hよりも最低空分子軌道(LUMO)のエネルギー準位が低い。
     前記Dで表される置換基は、3~15の範囲内の数の環構造を有し、前記環構造のそれぞれは、互いに結合又は縮合していてもよい。
     なお、一般式(1)で表される骨格構造は、更に、一つ又は複数の置換基を有してもよく、複数の当該置換基が互いに結合して環構造を形成してもよい。また、X及びYを環構成原子として含む一つの飽和環が形成されてもよい。〕
  2.  前記一般式(1)におけるDが有する前記環構造は、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を三つ以上有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子材料。
  3.  前記一般式(1)におけるAで表される置換基が環構造を有し、前記環構造が5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を一つ以上有することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子材料。
  4.  前記一般式(1)におけるDで表される置換基が、カルバゾール環、インドロカルバゾール環、ジインドロカルバゾール環、アクリダン環、又はインドロインドール環を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  5.  前記一般式(1)におけるAで表される置換基が、ピリジン環、ピリミジン環、トリアジン環、ジベンゾフラン環、アザジベンゾフラン環、ジアザジベンゾフラン環、カルボリン環、ジアザカルバゾール環、又はシアノ基、トリフルオロメチル基及びハロゲン原子から選ばれる少なくとも一つを含むベンゼン環を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  6.  前記一般式(1)におけるAで表される置換基が、二つ以上のヘテロ原子を有することを特徴とする請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  7.  前記一般式(1)におけるX及びYが、エチレンリンカーを構成していることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  8.  前記一般式(1)において、前記X及びY上の置換基が互いに結合して形成される環がシクロヘキシル環であり、前記Dで表される置換基及びAで表される置換基は、それぞれ前記シクロヘキシル環に対してシン付加で結合していることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  9.  前記有機エレクトロルミネッセンス素子材料が、発光材料であることを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  10.  前記有機エレクトロルミネッセンス素子材料が、電荷輸送材料であることを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  11.  前記一般式(1)で表される骨格構造を有する化合物が、分子内又は分子間エキサイプレックスを形成する化合物であることを特徴とする請求項1から請求項10までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  12.  陽極と陰極と、前記陽極と前記陰極との間に発光層を有し、
     前記発光層の少なくとも1層が、請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料を含有することを特徴とする有機エレクトロルミネッセンス素子。
  13.  前記発光層が、更に、ホスト化合物を含有することを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子。
  14.  前記発光層が、更に、蛍光発光性化合物及びリン光発光性化合物の少なくとも一方を含有することを特徴とする請求項12又は請求項13に記載の有機エレクトロルミネッセンス素子。
  15.  前記発光層が、更に、ホスト化合物と、蛍光発光性化合物及びリン光発光性化合物の少なくとも一方とを含有することを特徴とする請求項12から請求項14までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  16.  請求項12から請求項15までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。
  17.  請求項12から請求項15までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。
  18.  下記一般式(1)で表される骨格構造を有することを特徴とする化合物。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、D及びAはそれぞれ置換基を表す。X及びYは、それぞれ、水素原子又は置換基を有してもよい、炭素原子、窒素原子、酸素原子又はケイ素原子を表し、X及びYの少なくとも一つは炭素原子である。
     前記Dで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をD-Hとし、前記Aで表される置換基において、リンカー(X-Y)との連結部を水素原子で置き換えた構成をA-Hとしたとき、当該D-HはA-Hよりも最高被占分子軌道(HOMO)のエネルギー準位が高く、当該A-HはD-Hよりも最低空分子軌道(LUMO)のエネルギー準位が低い。
     前記Dで表される置換基は、3~15の範囲内の数の環構造を有し、前記環構造のそれぞれは、互いに結合又は縮合していてもよい。
     なお、一般式(1)で表される骨格構造は、更に、1つ又は複数の置換基を有してもよく、複数の当該置換基が互いに結合して環構造を形成してもよい。また、X及びYを環構成原子として含む一つの飽和環が形成されてもよい。〕
  19.  前記一般式(1)におけるDが有する前記環構造は、5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を三つ以上有することを特徴とする請求項18に記載の化合物。
  20.  前記一般式(1)におけるAで表される置換基が環構造を有し、前記環構造が5員若しくは6員の芳香族炭化水素環又は複素芳香族環であり、前記環構造を一つ以上有することを特徴とする請求項18又は請求項19に記載の化合物。
  21.  前記一般式(1)におけるDで表される置換基が、カルバゾール環、インドロカルバゾール環、ジインドロカルバゾール環、アクリダン環、又はインドロインドール環を有することを特徴とする請求項18から請求項20までのいずれか一項に記載の化合物。
  22.  前記一般式(1)におけるAで表される置換基が、ピリジン環、ピリミジン環、トリアジン環、ジベンゾフラン環、アザジベンゾフラン環、ジアザジベンゾフラン環、カルボリン環、ジアザカルバゾール環、又はシアノ基、トリフルオロメチル基及びハロゲン原子から選ばれる少なくとも一つを含むベンゼン環を有することを特徴とする請求項18から請求項21までのいずれか一項に記載の化合物。
  23.  前記一般式(1)におけるAで表される置換基が、二つ以上のヘテロ原子を有することを特徴とする請求項18から請求項22までのいずれか一項に記載の化合物。
  24.  前記一般式(1)におけるX及びYが、エチレンリンカーを構成していることを特徴とする請求項18から請求項23までのいずれか一項に記載の化合物。
  25.  前記一般式(1)において、前記X及びY上の置換基が互いに結合して形成される環がシクロヘキシル環であり、前記Dで表される置換基及びAで表される置換基は、それぞれ前記シクロヘキシル環に対してシン付加で結合していることを特徴とする請求項18から請求項23までのいずれか一項に記載の化合物。
PCT/JP2018/004784 2017-03-16 2018-02-13 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物 WO2018168292A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/477,742 US20200127210A1 (en) 2017-03-16 2018-02-13 Organic electroluminescent element material, organic electroluminescent element, display device, lighting device, and compound
JP2019505783A JPWO2018168292A1 (ja) 2017-03-16 2018-02-13 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050723 2017-03-16
JP2017050723 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168292A1 true WO2018168292A1 (ja) 2018-09-20

Family

ID=63523276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004784 WO2018168292A1 (ja) 2017-03-16 2018-02-13 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物

Country Status (3)

Country Link
US (1) US20200127210A1 (ja)
JP (1) JPWO2018168292A1 (ja)
WO (1) WO2018168292A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021185640A (ja) * 2016-05-20 2021-12-09 株式会社半導体エネルギー研究所 発光素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785858B (zh) * 2020-08-10 2023-12-01 京东方科技集团股份有限公司 发光显示器件及其制备方法、显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129672A1 (ja) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2017126370A1 (ja) * 2016-01-20 2017-07-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725296B (zh) * 2013-12-24 2019-11-29 北京鼎材科技有限公司 吲哚类衍生物及其在有机电致发光领域中的应用
CN107278335B (zh) * 2014-12-29 2020-06-30 圣安德鲁斯大学董事会 发光电化学电池和化合物
WO2019087003A1 (en) * 2017-11-02 2019-05-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129672A1 (ja) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2017126370A1 (ja) * 2016-01-20 2017-07-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MILIAN-MEDINA, B. ET AL.: "Computational design of low singlet-triplet gap all-organic molecules for OLED application", ORGANIC ELECTRONICS, vol. 13, 10 February 2012 (2012-02-10), pages 985 - 991, XP028856879 *
MOLANDER, G. ET AL.: "beta -Aminoethyltrifluoroborates: Efficient Aminoethylations via Suzuki-Miyaura Cross- Coupling", ORGANIC LETTERS, vol. 9, no. 2, 21 December 2006 (2006-12-21), pages 203 - 206, XP002665271 *
PIERONI, M. ET AL.: "Rational Design and Synthesis of Thioridazine Analogues as Enhancers of the Antituberculosis Therapy", JOURNAL OF MEDICINAL CHEMISTRY, vol. 58, 2015, pages 5842 - 5843, XP055609125 *
VIKRAMADITYA, T. ET AL.: "Computational study on thermally activated delayed fluorescence of donor-linker-acceptor network molecules", RSC ADVANCES, vol. 6, 2016, pages 37203 - 37211, XP055609122 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021185640A (ja) * 2016-05-20 2021-12-09 株式会社半導体エネルギー研究所 発光素子
JP7192067B2 (ja) 2016-05-20 2022-12-19 株式会社半導体エネルギー研究所 発光素子
US11991890B2 (en) 2016-05-20 2024-05-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device

Also Published As

Publication number Publication date
US20200127210A1 (en) 2020-04-23
JPWO2018168292A1 (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
JP6729589B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5880274B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6319319B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2017195669A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2018097153A1 (ja) 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
JP2017126606A (ja) 電子デバイス材料、有機エレクトロルミネッセンス素子、表示装置、及び、照明装置
JPWO2016017757A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物、発光性薄膜
WO2016017684A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2016181844A1 (ja) π共役系化合物、遅延蛍光体、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP2016036022A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、電荷移動性薄膜、表示装置及び照明装置
WO2018079459A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
JP6011542B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP7083247B2 (ja) 発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016056562A1 (ja) イリジウム錯体、有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016175068A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6873049B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016210728A (ja) π共役系化合物、有機エレクトロルミネッセンス素子材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016181773A1 (ja) π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5998989B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2015046452A1 (ja) イリジウム錯体、イリジウム錯体の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013114966A1 (ja) イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2018168292A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
JP6755261B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2018186101A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
WO2019176384A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766953

Country of ref document: EP

Kind code of ref document: A1