WO2018168630A1 - Wireless base station - Google Patents
Wireless base station Download PDFInfo
- Publication number
- WO2018168630A1 WO2018168630A1 PCT/JP2018/008937 JP2018008937W WO2018168630A1 WO 2018168630 A1 WO2018168630 A1 WO 2018168630A1 JP 2018008937 W JP2018008937 W JP 2018008937W WO 2018168630 A1 WO2018168630 A1 WO 2018168630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- base station
- terminal
- positioning
- transmission
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
- G01S3/28—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived simultaneously from receiving antennas or antenna systems having differently-oriented directivity characteristics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/12—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present invention relates to a radio base station.
- LTE Long Term Evolution
- FRA Full Radio Access
- 5G Fifth Generation mobile mobile communication system
- 5G + 5G plus
- New-RAT Radio Access Technology
- a large number of antenna elements for example, 100 elements or more are used in a high frequency band (for example, 5 GHz or more) in order to further increase the speed of signal transmission and reduce interference. It has been studied to perform BF (beam forming) using a massive MIMO (Multiple Input Input Multiple Output) technique.
- BF beam forming
- MIMO Multiple Input Input Multiple Output
- a beam formed by Massive MIMO technology is directed in the direction in which the reception quality at the user terminal (hereinafter simply referred to as “terminal”) is highest.
- GNSS Global Navigation Satellite System
- GLONASS Global Navigation Satellite System
- Galileo a method using a positioning signal from a GNSS (Global Navigation Satellite System) satellite (not shown) is known (for example, see Patent Document 1).
- GNSS Global Navigation Satellite System
- GPS Global Positioning System
- GLONASS Global Navigation Satellite System
- Galileo Galileo
- the direction in which the terminal exists can be estimated in the beam control process of the Massive MIMO technology. Furthermore, since the narrower beam can be formed using a large number of antenna elements as the frequency becomes higher, the estimation accuracy is improved. Therefore, the affinity between MassiveMa MIMO technology and terminal positioning is considered high.
- the beam having the highest received power is selected from the beam candidates of the base station, and the center direction of the selected beam is estimated as the direction of the terminal (azimuth / elevation angle) with respect to the base station.
- the estimation accuracy is lowered. If the beam width is narrowed, the estimation accuracy can be improved, but the number of beam candidates increases, so the overhead for beam search increases.
- One embodiment of the present invention provides a new configuration that can improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
- a radio base station is a radio base station that communicates with a user terminal using beam transmission and beam reception, and uses a beam having the highest reception quality among beam candidates for data transmission.
- a beam selection unit that selects as a transmission beam, and a parameter acquisition unit that acquires a parameter related to the reception quality of a signal transmitted using each of the positioning beams including a plurality of beams including the transmission beam;
- a positioning unit that estimates the direction of the user terminal using the parameters of each positioning beam.
- a new configuration that can improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
- FIG. 3 is a block diagram illustrating a configuration example of a base station according to Embodiment 1.
- FIG. 3 is a block diagram illustrating a configuration example of a terminal according to Embodiment 1.
- FIG. 6 is a sequence diagram showing operations of a base station and a terminal according to Embodiment 1.
- FIG. It is a figure which shows an example of the propagation path condition between the base station which concerns on Embodiment 1, and a terminal.
- 6 is a sequence diagram showing operations of a base station and a terminal according to Embodiment 2.
- FIG. It is a figure which shows an example of the propagation path condition between the base station which concerns on Embodiment 2, and a terminal.
- It is a figure which shows an example of the hardware constitutions of the base station and terminal which concern on this invention.
- RSS Received Signal Strength
- RSRQ Reference Signal Received Quality
- RSSI Received Signal Strength Indicator
- path loss path loss
- SINR Signal Loss
- TOA Time Of Arrival
- the arrival time is the time from the signal transmission time of the base station to the signal reception time of the terminal.
- TDOA Time
- RSS can also be used for terminal distance estimation.
- the radio communication system includes at least base station 10 shown in FIG. 1 and terminal 20 shown in FIG.
- the terminal 20 is connected to the base station 10.
- the base station 10 transmits a DL (Down Link) signal to the terminal 20.
- the DL signal includes, for example, a DL data signal (eg, PDSCH (Physical Downlink Shared Channel)) and a DL control signal (eg, PDCCH (Physical Downlink Control Channel)) for demodulating and decoding the DL data signal. It is.
- a DL data signal eg, PDSCH (Physical Downlink Shared Channel)
- a DL control signal eg, PDCCH (Physical Downlink Control Channel)
- the base station 10 performs BF and estimates the direction of the terminal 20 relative to the base station 10 based on the RSS in the terminal 20 of the signal transmitted from each positioning beam of the base station 10. explain.
- FIG. 1 is a diagram illustrating a configuration example of a base station 10 according to the present embodiment.
- 1 includes a discovery signal generation unit 101, a beam number determination unit 102, a PRS generation unit 103, a data signal generation unit 104, a precoding unit 105, a weight selection unit 106, a transmission beam A forming unit 107, a communication unit 108, an antenna 109, a reception beam forming unit 151, a feedback signal processing unit 152, a beam selection unit 153, a positioning unit 154, a post coding unit 155, and a data signal processing unit 156 And the structure including is taken.
- a configuration unit for transmitting / receiving an OFDM (Orthogonal Frequency Division Multiplexing) signal in the base station 10 for example, an IFFT (Inverse Fast Fourier Transform) processing unit, a CP (Cyclic Prefix) addition unit, a CP removal unit) , FFT (Fast Fourier Transform) processing unit) and the like are omitted.
- OFDM Orthogonal Frequency Division Multiplexing
- the discovery signal generation unit 101 generates the same number of discovery signals as the number M (M is a plurality) of BF weight candidates.
- the discovery signal is a reference signal used to determine a beam (BF weight).
- Discovery signal generation section 101 outputs the generated discovery signal to transmission beamforming section 107.
- the beam number determination unit 102 determines k as a basis of the number of positioning beams (2k + 1) used in the positioning process (k is a natural number).
- the beam number determination unit 102 notifies the PRS generation unit 103 and the weight selection unit 106 of the determined number of positioning beams (2k + 1). A specific example of the criterion for determining k will be described later.
- the PRS generation unit 103 generates (2k + 1) PRSs based on the notification from the beam number determination unit 102.
- PRS is a reference signal used for positioning.
- the PRS generation unit 103 outputs the generated PRS to the transmission beamforming unit 107.
- the data signal generation unit 104 performs encoding processing and modulation processing on L (L is an integer equal to or less than M) stream data for the terminal 20, and generates a data signal (downlink signal).
- the data signal generation unit 104 outputs the generated data signal to the precoding unit 105. 1 shows only the data signal generation unit 104 for one terminal 20 (i-th terminal 20), the base station 10 has a data signal generation unit 104 for each of a plurality of terminals 20. Shall.
- the precoding unit 105 multiplies the L data signals output from the data signal generation unit 104 by a precoding matrix for each subcarrier to generate M data signals after precoding. Precoding section 105 outputs the generated M data signals to transmission beamforming section 107.
- the weight selection unit 106 selects a BF weight that forms a transmission beam (index #m (m is an integer from 1 to M, see FIG. 4)) selected by the beam selection unit 153 during data transmission. Then, the data is output to the transmission beam forming unit 107 and the reception beam forming unit 151.
- the weight selection unit 106 determines the index from (# m ⁇ k) to (#) around the transmission beam #m selected by the beam selection unit 153 based on the notification from the beam number determination unit 102 during positioning.
- Each BF weight forming each of the plurality of positioning beams up to m + k) is selected and output to the transmission beam forming unit 107 and the reception beam forming unit 151.
- the transmission beamforming unit 107 multiplies the discovery signal output from the discovery signal generation unit 101 by a BF weight candidate before starting data transmission. Transmit beamforming section 107 outputs a discovery signal after multiplication by BF weight candidates to communication section 108.
- the transmission beamforming unit 107 multiplies the data signal output from the precoding unit 105 by the BF weight output from the weight selection unit 106 during data transmission. Transmit beamforming section 107 outputs the data signal multiplied by the BF weight to communication section 108.
- the transmission beamforming unit 107 multiplies each BF weight selected by the weight selection unit 106 by the PRS output from the PRS generation unit 103 during positioning. Transmit beamforming section 107 outputs the PRS after multiplying each BF weight to communication section 108.
- Communication units 108-1 to 108-M are provided corresponding to M antennas 109 (antenna elements), respectively.
- Each communication unit 108 performs transmission processing such as D / A conversion and up-conversion on the signal output from the transmission beamforming unit 107 to generate a radio frequency transmission signal.
- Each communication unit 108 transmits the generated radio frequency transmission signal to the terminal 20 from each of the M antennas 109.
- M beam candidates are formed by transmitting a signal obtained by multiplying each of the BF weight candidates from the M antennas 109 (see FIG. 4).
- each communication unit 108 performs reception processing such as down-conversion and A / D conversion on the signal transmitted from the terminal 20 and received by each of the M antennas 109.
- Each communication unit 108 outputs a data signal and a feedback signal obtained by performing the reception process to the reception beam forming unit 151.
- the reception beamforming unit 151 multiplies the feedback signal output from each communication unit 108 by a BF weight candidate before starting data reception.
- Reception beamforming section 151 outputs the feedback signal after being multiplied by the BF weight candidate to feedback signal processing section 152.
- reception beamforming unit 151 multiplies the data signal output from each communication unit 108 by the BF weight output from the weight selection unit 106 at the time of data reception.
- Reception beamforming section 151 outputs the data signal after being multiplied by the BF weight to postcoding section 155.
- reception beamforming unit 151 multiplies the data signal output from each communication unit 108 by the BF weight output from the weight selection unit 106 during positioning.
- Reception beamforming section 151 outputs the feedback signal after multiplication by the BF weight to feedback signal processing section 152.
- the feedback signal processing unit 152 performs demodulation processing and decoding processing on the feedback signal output from the reception beam forming unit 151, and the RSS of the discovery signal in each beam candidate measured by the terminal 20 and for each positioning Extract RSS and TOA of PRS in the beam.
- the feedback signal processing unit 152 outputs the RSS of the discovery signal in each extracted beam candidate to the beam selection unit 153. Further, the feedback signal processing unit 152 outputs the RSS and TOA of the PRS in each extracted positioning beam to the positioning unit 154.
- the beam selection unit 153 selects a transmission beam based on the RSS of the discovery signal in each beam candidate. Specifically, the beam selection unit 153 selects the beam having the highest RSS as the transmission beam. The beam selection unit 153 outputs the index #m of the selected transmission beam to the weight selection unit 106.
- the positioning unit 154 outputs the RSS and TOA of the PRS in each positioning beam measured by the terminal 20 and the RSS and TOA of the feedback signal from the terminal 20 received in each positioning beam output from the feedback signal processing unit 152. And the positioning (position estimation) of the terminal 20 is performed based on the beam angle of each positioning beam. A specific example of the positioning method in the positioning unit 154 will be described later.
- the post-coding unit 155 performs post-coding on the data signal output from the reception beamforming unit 151 using the post-coding matrix.
- the post coding unit 155 outputs the post-coded data signal to the data signal processing unit 156.
- the data signal processing unit 156 performs demodulation processing and decoding processing on the data signal output from the post-coding unit 155 to obtain L stream data from the i-th terminal 20.
- FIG. 2 is a block diagram illustrating a configuration example of the terminal 20 according to the first embodiment. 2 includes an antenna 201, a communication unit 202, a reception quality measurement unit 203, an arrival time calculation unit 204, a post coding unit 205, a data signal processing unit 206, a feedback signal generation unit 251, The data signal generation unit 252 and the precoding unit 253 are included.
- FIG. 2 shows the configuration of the i-th terminal 20 as an example.
- description of components for example, IFFT processing unit, CP adding unit, CP removing unit, FFT processing unit for transmitting / receiving the OFDM signal in the terminal 20 is omitted.
- Communication units 202-1 to 202-N are provided corresponding to N antennas 201 (N is an integer of 2 or more), respectively.
- Each communication unit 202 performs reception processing such as down-conversion and A / D conversion on the reception signal received via the antenna 201.
- Each communication unit 202 outputs the discovery signal obtained by performing the reception process to the reception quality measurement unit 203, and outputs the PRS obtained by performing the reception process to the reception quality measurement unit 203 and the arrival time calculation unit 204.
- the data signal is output to the post coding unit 205.
- each communication unit 202 performs transmission processing such as D / A conversion and up-conversion on the feedback signal output from the feedback signal generation unit 251 or the data signal output from the precoding unit 253 to perform radio frequency transmission.
- the transmission signal is generated.
- Each communication unit 202 transmits the generated radio frequency transmission signal from each of the N antennas 201 to the base station 10.
- the reception quality measurement unit 203 uses the discovery signal output from the communication unit 202 to measure the RSS of each of M beam candidates. Also, the reception quality measurement unit 203 uses the PRS output from the communication unit 202 to measure RSS of each (2k + 1) positioning beams. The reception quality measurement unit 203 outputs the RSS of the discovery signal in each measured beam candidate and the RSS of the PRS in each positioning beam to the feedback signal generation unit 251.
- the arrival time calculation unit 204 calculates the TOA of each (2k + 1) positioning beams using the PRS output from the communication unit 202.
- the arrival time calculation unit 204 outputs the calculated PRS TOA for each positioning beam to the feedback signal generation unit 251.
- the post coding unit 205 performs post coding on the data signal output from the communication unit 202 using the post coding matrix, and outputs the post-coded data signal to the data signal processing unit 206.
- the data signal processing unit 206 performs demodulation processing and decoding processing on the data signal output from the post coding unit 205 to obtain L stream data for the i-th terminal 20.
- the feedback signal generation unit 251 performs an encoding process and a modulation process on the RSS output from the reception quality measurement unit 203 and the TOA and TDOA output from the arrival time calculation unit 204 to generate a feedback signal.
- the feedback signal generation unit 251 outputs the generated feedback signal to the communication unit 202.
- the data signal generation unit 252 performs encoding processing and modulation processing on L (L is an integer equal to or less than M) stream data for the base station 10 to generate a data signal (uplink signal).
- the data signal generation unit 104 outputs the generated data signal to the precoding unit 253.
- the precoding unit 253 multiplies the L data signals output from the data signal generation unit 252 by a precoding matrix for each subcarrier to generate M data signals after precoding.
- the precoding unit 253 outputs the generated M data signals to the communication unit 202.
- the number-of-beams determination unit 102 adaptively depends on the situation of the base station 10 (geographic relationship between the base station 10 and the terminal 20, the moving speed of the terminal 20, the beam width, etc., which the base station 10 grasps or estimates) k can be determined. For example, the beam number determination unit 102 determines k according to the distance between the base station 10 and the terminal 20 so that k decreases as the distance decreases. Note that the base station 10 can estimate the distance between the base station 10 and the terminal 20 based on the feedback from the terminal 20 or the received power of the signal received by the base station 10.
- the beam number determination unit 102 determines k according to the moving speed of the terminal 20 so that k decreases as the moving speed decreases.
- the base station 10 can estimate the moving speed of the terminal 20 from the feedback from the terminal 20 or the past position estimation result.
- the beam number determination unit 102 determines k according to the beam width of the base station 10 so that k becomes smaller as the beam width becomes wider.
- the positioning unit 154 calculates the ratio of the RSS of the beam (beam # m ⁇ 1 and beam # m + 1) adjacent to the transmission beam #m (the beam having the highest RSS).
- the positioning unit 154 sets the direction of the terminal 20 to a value obtained by adding the correction angle ⁇ c to the center direction angle ⁇ m of the beam #m.
- the positioning unit 154 estimates the direction of the terminal 20 as an angle of ⁇ m ⁇ / 3.
- the positioning unit 154 calculates the distance d between the base station 10 and the terminal 20 by multiplying the arrival time TTOA by the speed of light c. Alternatively, the positioning unit 154 may back-calculate the distance d from the propagation loss equation.
- the base station 10 can estimate the position of the terminal 20 by estimating the direction and distance of the terminal 20.
- the positioning unit 154 may estimate the position where the received power is closest in the corrected direction as the position of the terminal 20 using the received power map prepared in advance.
- FIG. 3 is a sequence diagram showing operations of base station 10 and terminal 20 according to the present embodiment.
- FIG. 4 is a figure which shows an example of the propagation path condition between the base station 10 and the terminal 20 which concerns on this Embodiment.
- the base station 10 transmits a discovery signal to the terminal 20 (ST101).
- Each discovery signal is multiplied by a BF weight candidate.
- the discovery signal transmitted for each beam candidate (BF weight candidate) is not precoded and is transmitted toward all the antennas 201 of the terminal 20.
- the terminal 20 measures the RSS of each beam candidate using the discovery signal (ST102). Then, terminal 20 transmits a feedback signal including RSS of each beam candidate to base station 10 (ST103).
- the base station 10 selects a transmission beam based on the RSS of each beam candidate (ST104). Furthermore, the base station 10 determines a transmission beam and a beam around the transmission beam as positioning beams (ST105). In the example of FIG. 4, since the discovery signal transmitted with the beam #m has the highest RSS, the base station 10 selects the beam #m as a transmission beam. Also, the base station 10 determines beam # m ⁇ 2, beam # m ⁇ 1, beam #m, beam # m + 1, and beam # m + 2 as positioning beams. As a result, the beam around the beam #m closest to the direction in which the terminal 20 exists is used for positioning.
- base station 10 transmits a PRS to terminal 20 using a positioning beam (ST106).
- the PRS is not precoded and is transmitted toward all the antennas 201 of the terminal 20.
- the terminal 20 measures the RSS of each positioning beam using the PRS transmitted by the positioning beam (ST107) and calculates the TOA (ST108). Then, terminal 20 transmits a feedback signal including RSS and TOA of each positioning beam to base station 10 (ST109).
- the base station 10 estimates the direction of the terminal 20 based on the RSS of the PRS in each positioning beam, and performs a positioning process (position estimation) for estimating the distance to the terminal 20 based on the TOA (ST110). .
- the positioning process may be performed in the terminal 20 without performing the feedback of ST109.
- a plurality of base stations 10 may perform positioning processing using a plurality of information acquired by feedback signals from the terminals 20.
- the beam having the highest reception quality at the terminal 20 is selected as a transmission beam, and the transmission beam and a plurality of beams around the transmission beam are determined as positioning beams. Based on the RSS in the PRS terminal 20 transmitted and transmitted using each of the positioning beams, the direction in which the center direction of the transmission beam is corrected is estimated as the direction of the terminal 20.
- the direction of the terminal 20 can be estimated with high accuracy. Therefore, according to the present embodiment, it is possible to improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
- PRS is used as a positioning reference signal.
- the present invention is not limited to this, and a signal other than PRS may be used as a positioning reference signal.
- the first embodiment has been described above.
- the base station 10 performs BF and estimates the direction of the terminal 20 relative to the base station 10 based on the RSS in each positioning beam of the base station 10 of the signal transmitted from the terminal 20. explain.
- the configuration example of the base station 10 of the second embodiment is the same as that shown in FIG.
- the configuration example of the terminal 20 of the second embodiment is the same as that shown in FIG.
- PRS transmission / reception is not required.
- FIG. 5 is a sequence diagram showing operations of base station 10 and terminal 20 according to the present embodiment.
- FIG. 6 is a figure which shows an example of the propagation path condition between the base station 10 and the terminal 20 which concerns on this Embodiment.
- the base station 10 After determining the positioning beam (ST105), the base station 10 receives the UL (uplink) signal from the terminal 20 using the positioning beam (ST201).
- the UL signal an SRS (Sounding Reference Signal) or a signal transmitted from the other terminal 20 to the base station 10 is used.
- the base station 10 measures the RSS of each positioning beam using the UL signal received using the positioning beam (ST202), and calculates the TOA (ST203).
- a positioning process (position estimation) is performed in which the direction of the terminal 20 is estimated based on the RSS of the UL signal in each positioning beam, and the distance to the terminal 20 is estimated based on the TOA (ST204).
- a plurality of base stations 10 may perform the positioning process using the acquired plurality of information.
- the beam having the highest reception quality at the terminal 20 is selected as a transmission beam, and the transmission beam and a plurality of beams around the transmission beam are determined as positioning beams. Then, the direction in which the center direction of the transmission beam is corrected is estimated as the direction of the terminal 20 based on the RSS of the UL signal received using each of the positioning beams.
- the direction of the terminal 20 can be estimated with high accuracy. Therefore, according to the present embodiment, it is possible to improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
- the embodiment 2 has been described above.
- the present invention is not limited to this, and other parameters such as RSRP, RSRQ, RSSI, path loss, SINR, and the like are used. It may be used.
- the terminal direction may be estimated using a plurality of these parameters.
- the present invention is not limited to this, and other parameters such as TDOA and RSS may be used.
- the terminal direction may be estimated using a plurality of these parameters.
- each of the plurality of base stations 10 may estimate the direction of the terminal 20 by the AOD corresponding to the positioning beam. Thereby, the positioning of the terminal 20 can be performed with high accuracy.
- each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
- a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
- FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
- the base station 10 and the terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
- processor 1001 may be implemented by one or more chips.
- Each function in the base station 10 and the terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004 or memory This is realized by controlling data reading and / or writing in the storage 1003 and the storage 1003.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- feedback signal processing section 152 may be realized by the processor 1001.
- the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 101 of the base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
- the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
- the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
- the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
- the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- the storage 1003 may be referred to as an auxiliary storage device.
- the above-described storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server, or other suitable medium.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- a network device a network controller, a network card, a communication module, or the like.
- the communication units 108 and 202 and the antennas 109 and 201 described above may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
- the base station 10 and the terminal 20 include hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), and field programmable gate array (FPGA). And a part or all of each functional block may be realized by the hardware.
- the processor 1001 may be implemented by at least one of these hardware.
- information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
- RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
- Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- SUPER 3G IMT-Advanced
- 4G 5G
- FRA Full Radio Access
- W-CDMA Wideband
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB User Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX
- IEEE 802.20 UWB (Ultra-WideBand
- the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
- the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
- various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
- MME Mobility Management Entity
- S-GW Serving Gateway
- Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
- Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
- the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
- software, instructions, etc. may be transmitted / received via a transmission medium.
- software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- DSL digital subscriber line
- wireless technology such as infrared, wireless and microwave.
- Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
- data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
- the channel and / or symbol may be a signal.
- the signal may be a message.
- the component carrier (CC) may be called a carrier frequency, a cell, or the like.
- radio resource may be indicated by an index.
- a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
- the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
- a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
- a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
- determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
- determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
- determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
- connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
- the coupling or connection between the elements may be physical, logical, or a combination thereof.
- the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
- electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
- the correction RS may be referred to as TRS (Tracking ⁇ RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
- the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
- the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- the radio frame may be composed of one or a plurality of frames in the time domain.
- One or more frames in the time domain may be referred to as subframes, time units, etc.
- a subframe may further be composed of one or more slots in the time domain.
- the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
- OFDM Orthogonal-Frequency-Division-Multiplexing
- SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
- the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
- the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
- the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
- one subframe may be called a TTI
- a plurality of consecutive subframes may be called a TTI
- one slot may be called a TTI
- the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included.
- One TTI and one subframe may each be composed of one or a plurality of resource units.
- the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband.
- the resource unit may be composed of one or a plurality of REs.
- 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
- the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block
- the number of carriers can be variously changed.
- notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
- One embodiment of the present invention is useful for a mobile communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The purpose of this invention is to improve the estimation accuracy of the direction of a terminal without increasing the number of beam candidates. In a wireless base station (10), a beam selection unit (153) selects, as a transmission beam used in data transmission, the beam candidate having the highest reception quality. A feedback signal processing unit (152) acquires RSS of PRS transmitted from a user terminal, using each of a plurality of positioning beams which include transmission beams. A positioning unit (154) estimates, as the direction of a user terminal, the direction obtained by correcting the direction of the center of a transmission beam using the RSS of each of the measurement beams.
Description
本発明は、無線基地局に関する。
The present invention relates to a radio base station.
UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。
In the UMTS (Universal Mobile Telecommunication System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and low delay. In addition, a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE. LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is what is called.
将来の無線通信システム(例えば、5G)では、信号伝送の更なる高速化及び干渉低減を図るために、高周波数帯(例えば、5GHz以上)において多数のアンテナ素子(例えば、100素子以上)を用いる大規模(Massive)MIMO(Multiple Input Multiple Output)技術を用いてBF(ビームフォーミング)を行うことが検討されている。
In future wireless communication systems (for example, 5G), a large number of antenna elements (for example, 100 elements or more) are used in a high frequency band (for example, 5 GHz or more) in order to further increase the speed of signal transmission and reduce interference. It has been studied to perform BF (beam forming) using a massive MIMO (Multiple Input Input Multiple Output) technique.
無線基地局(以下、単に「基地局」という)において、Massive MIMO技術により形成されるビームは、ユーザ端末(以下、単に「端末」という)における受信品質が最も高い方向に向けられる。
In a radio base station (hereinafter simply referred to as “base station”), a beam formed by Massive MIMO technology is directed in the direction in which the reception quality at the user terminal (hereinafter simply referred to as “terminal”) is highest.
また、近年、無線技術を用いたアプリケーションとして、端末の位置情報を用いたサービスが注目されている。そのため、将来的には現在よりも高精度に測位が可能な技術が求められている。
In recent years, services using terminal location information have attracted attention as applications using wireless technology. Therefore, in the future, a technology capable of positioning with higher accuracy than at present is required.
端末等の装置の測位方法として、GNSS(Global Navigation Satellite System)の衛星(図示せず)からの測位信号を利用する方法が知られている(例えば、特許文献1参照)。なお、GNSSとは、GPS(Global Positioning System)、GLONASS、Galileo等の民間航空航法に使用可能な性能(精度・信頼性)を持つ衛星航法システムの総称である。
As a positioning method for a device such as a terminal, a method using a positioning signal from a GNSS (Global Navigation Satellite System) satellite (not shown) is known (for example, see Patent Document 1). GNSS is a general term for satellite navigation systems having performance (accuracy and reliability) that can be used for civil aeronautical navigation such as GPS (Global Positioning System), GLONASS, and Galileo.
Massive MIMO技術により形成されるビームは、端末が存在する方向に向けられるので、Massive MIMO技術のビーム制御の過程の中で端末が存在する方向を推定することができる。さらに、高周波数帯になるほど多数のアンテナ素子を用いてより細いビームを形成することができるため、上記推定精度も高まる。よって、Massive MIMO技術と端末測位との親和性は高いと考えられる。
Since the beam formed by the Massive MIMO technology is directed in the direction in which the terminal exists, the direction in which the terminal exists can be estimated in the beam control process of the Massive MIMO technology. Furthermore, since the narrower beam can be formed using a large number of antenna elements as the frequency becomes higher, the estimation accuracy is improved. Therefore, the affinity between MassiveMa MIMO technology and terminal positioning is considered high.
従来は、基地局のビーム候補の中において受信電力が最も高いビームを選択し、選択ビームの中心方向を、基地局に対する端末の方向(方位角/仰角)として推定している。
Conventionally, the beam having the highest received power is selected from the beam candidates of the base station, and the center direction of the selected beam is estimated as the direction of the terminal (azimuth / elevation angle) with respect to the base station.
しかしながら、従来の端末方向の推定方法では、端末が、選択ビームの中心方向と、選択ビームに隣接するビームの中心方向との間に存在する場合には推定精度が低くなってしまう。ビーム幅を狭くすれば、推定精度を高めることができるものの、ビーム候補数が増加してしまうため、ビーム探索に係るオーバーヘッドが増加してしまう。
However, in the conventional terminal direction estimation method, when the terminal exists between the center direction of the selected beam and the center direction of the beam adjacent to the selected beam, the estimation accuracy is lowered. If the beam width is narrowed, the estimation accuracy can be improved, but the number of beam candidates increases, so the overhead for beam search increases.
本発明の一態様は、ビーム候補数が増加させることなく、端末方向の推定精度を高めることができる新たな構成を提供する。
One embodiment of the present invention provides a new configuration that can improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
本発明の一態様に係る無線基地局は、ビーム送信及びビーム受信を用いてユーザ端末と通信を行う無線基地局であって、ビーム候補の中において受信品質が最も高いビームを、データ伝送に用いる伝送用ビームとして選択するビーム選択部と、前記伝送用ビームを含む複数のビームから構成される測位用ビームのそれぞれを用いて伝送された信号の受信品質に関係するパラメータを取得するパラメータ取得部と、前記各測位用ビームのパラメータを用いて前記ユーザ端末の方向を推定する測位部と、を具備する。
A radio base station according to an aspect of the present invention is a radio base station that communicates with a user terminal using beam transmission and beam reception, and uses a beam having the highest reception quality among beam candidates for data transmission. A beam selection unit that selects as a transmission beam, and a parameter acquisition unit that acquires a parameter related to the reception quality of a signal transmitted using each of the positioning beams including a plurality of beams including the transmission beam; And a positioning unit that estimates the direction of the user terminal using the parameters of each positioning beam.
本発明の一態様によれば、ビーム候補数が増加させることなく、端末方向の推定精度を高めることができる新たな構成を提供する。
According to one aspect of the present invention, there is provided a new configuration that can improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
以下、本発明の各実施の形態について、図面を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本実施の形態では、端末方向の推定に使用するパラメータとしてRSS(Received Signal Strength:受信電力)を用いる。なお、他の端末方向の推定に使用可能なパラメータとして、例えば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)、パスロス(伝搬損失)、SINR(Signal to Interference plus Noise Ratio)等が挙げられる。
In this embodiment, RSS (Received Signal Strength) is used as a parameter used for estimating the terminal direction. Parameters that can be used for estimation of other terminal directions include, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator), path loss (propagation loss), SINR (Signal Loss). to Interference plus Noise Ratio).
また、本実施の形態では、基地局から端末までの距離の推定に使用するパラメータとしてTOA(Time Of Arrival:到来時間)を用いる。到来時間とは、基地局の信号送信時刻から端末の信号受信時刻までの時間である。なお、他の端末距離の推定に使用可能なパラメータとして、TDOA(Time Difference Of Arrival)等が挙げられる。また、端末距離の推定にRSSを用いることもできる。
Further, in this embodiment, TOA (Time Of Arrival) is used as a parameter used for estimating the distance from the base station to the terminal. The arrival time is the time from the signal transmission time of the base station to the signal reception time of the terminal. In addition, TDOA (Time | difference | of | Arrival) etc. are mentioned as a parameter which can be used for estimation of another terminal distance. Moreover, RSS can also be used for terminal distance estimation.
[実施の形態1]
実施の形態1に係る無線通信システムは、少なくとも、図1に示す基地局10および図2に示す端末20を備える。端末20は、基地局10に接続している。基地局10は、端末20に対して、DL(Down Link)信号を送信する。DL信号には、例えば、DLデータ信号(例えば、PDSCH(Physical Downlink Shared Channel))と、DLデータ信号を復調および復号するためのDL制御信号(例えば、PDCCH(Physical Downlink Control Channel))とが含まれている。 [Embodiment 1]
The radio communication system according toEmbodiment 1 includes at least base station 10 shown in FIG. 1 and terminal 20 shown in FIG. The terminal 20 is connected to the base station 10. The base station 10 transmits a DL (Down Link) signal to the terminal 20. The DL signal includes, for example, a DL data signal (eg, PDSCH (Physical Downlink Shared Channel)) and a DL control signal (eg, PDCCH (Physical Downlink Control Channel)) for demodulating and decoding the DL data signal. It is.
実施の形態1に係る無線通信システムは、少なくとも、図1に示す基地局10および図2に示す端末20を備える。端末20は、基地局10に接続している。基地局10は、端末20に対して、DL(Down Link)信号を送信する。DL信号には、例えば、DLデータ信号(例えば、PDSCH(Physical Downlink Shared Channel))と、DLデータ信号を復調および復号するためのDL制御信号(例えば、PDCCH(Physical Downlink Control Channel))とが含まれている。 [Embodiment 1]
The radio communication system according to
実施の形態1では、基地局10がBFを行い、基地局10の各測位用ビームから送信された信号の、端末20におけるRSSに基づいて、基地局10に対する端末20の方向を推定する場合について説明する。
In the first embodiment, the base station 10 performs BF and estimates the direction of the terminal 20 relative to the base station 10 based on the RSS in the terminal 20 of the signal transmitted from each positioning beam of the base station 10. explain.
<基地局の構成>
図1は、本実施の形態に係る基地局10の構成例を示す図である。図1に示す基地局10は、ディスカバリ信号生成部101と、ビーム数決定部102と、PRS生成部103と、データ信号生成部104と、プリコーディング部105と、ウェイト選択部106と、送信ビームフォーミング部107と、通信部108と、アンテナ109と、受信ビームフォーミング部151と、フィードバック信号処理部152と、ビーム選択部153と、測位部154と、ポストコーディング部155と、データ信号処理部156と、を含む構成を採る。 <Base station configuration>
FIG. 1 is a diagram illustrating a configuration example of abase station 10 according to the present embodiment. 1 includes a discovery signal generation unit 101, a beam number determination unit 102, a PRS generation unit 103, a data signal generation unit 104, a precoding unit 105, a weight selection unit 106, a transmission beam A forming unit 107, a communication unit 108, an antenna 109, a reception beam forming unit 151, a feedback signal processing unit 152, a beam selection unit 153, a positioning unit 154, a post coding unit 155, and a data signal processing unit 156 And the structure including is taken.
図1は、本実施の形態に係る基地局10の構成例を示す図である。図1に示す基地局10は、ディスカバリ信号生成部101と、ビーム数決定部102と、PRS生成部103と、データ信号生成部104と、プリコーディング部105と、ウェイト選択部106と、送信ビームフォーミング部107と、通信部108と、アンテナ109と、受信ビームフォーミング部151と、フィードバック信号処理部152と、ビーム選択部153と、測位部154と、ポストコーディング部155と、データ信号処理部156と、を含む構成を採る。 <Base station configuration>
FIG. 1 is a diagram illustrating a configuration example of a
なお、図1では、基地局10におけるOFDM(Orthogonal Frequency Division Multiplexing)信号を送信/受信するための構成部(例えば、IFFT(Inverse Fast Fourier Transform)処理部、CP(Cyclic Prefix)付加部、CP除去部、FFT(Fast Fourier Transform)処理部)等の記載を省略している。
In FIG. 1, a configuration unit for transmitting / receiving an OFDM (Orthogonal Frequency Division Multiplexing) signal in the base station 10 (for example, an IFFT (Inverse Fast Fourier Transform) processing unit, a CP (Cyclic Prefix) addition unit, a CP removal unit) , FFT (Fast Fourier Transform) processing unit) and the like are omitted.
ディスカバリ信号生成部101は、BFウェイトの候補数M(Mは複数)と同数のディスカバリ信号を生成する。ディスカバリ信号は、ビーム(BFウェイト)を決定するために使用される参照信号である。ディスカバリ信号生成部101は、生成したディスカバリ信号を送信ビームフォーミング部107に出力する。
The discovery signal generation unit 101 generates the same number of discovery signals as the number M (M is a plurality) of BF weight candidates. The discovery signal is a reference signal used to determine a beam (BF weight). Discovery signal generation section 101 outputs the generated discovery signal to transmission beamforming section 107.
ビーム数決定部102は、測位処理に用いられる測位用ビームの数(2k+1)の基になるkを決定する(kは自然数)。ビーム数決定部102は、決定した測位用ビームの数(2k+1)をPRS生成部103およびウェイト選択部106に通知する。なお、kの決定基準の具体例については後述する。
The beam number determination unit 102 determines k as a basis of the number of positioning beams (2k + 1) used in the positioning process (k is a natural number). The beam number determination unit 102 notifies the PRS generation unit 103 and the weight selection unit 106 of the determined number of positioning beams (2k + 1). A specific example of the criterion for determining k will be described later.
PRS生成部103は、ビーム数決定部102の通知に基づいて、(2k+1)個のPRSを生成する。PRSは、測位に使用される参照信号である。PRS生成部103は、生成したPRSを送信ビームフォーミング部107に出力する。
The PRS generation unit 103 generates (2k + 1) PRSs based on the notification from the beam number determination unit 102. PRS is a reference signal used for positioning. The PRS generation unit 103 outputs the generated PRS to the transmission beamforming unit 107.
データ信号生成部104は、端末20向けのL個(LはM以下の整数)のストリームのデータに対して符号化処理及び変調処理を行い、データ信号(下りリンク信号)を生成する。データ信号生成部104は、生成したデータ信号をプリコーディング部105に出力する。なお、図1では、1つの端末20(第i番の端末20)に対するデータ信号生成部104のみを示しているが、基地局10は、複数の端末20にそれぞれ対するデータ信号生成部104を有するものとする。
The data signal generation unit 104 performs encoding processing and modulation processing on L (L is an integer equal to or less than M) stream data for the terminal 20, and generates a data signal (downlink signal). The data signal generation unit 104 outputs the generated data signal to the precoding unit 105. 1 shows only the data signal generation unit 104 for one terminal 20 (i-th terminal 20), the base station 10 has a data signal generation unit 104 for each of a plurality of terminals 20. Shall.
プリコーディング部105は、データ信号生成部104から出力されたL個のデータ信号に対してプリコーディング行列をサブキャリア毎に乗算し、プリコーディング後のM個のデータ信号を生成する。プリコーディング部105は、生成したM個のデータ信号を送信ビームフォーミング部107に出力する。
The precoding unit 105 multiplies the L data signals output from the data signal generation unit 104 by a precoding matrix for each subcarrier to generate M data signals after precoding. Precoding section 105 outputs the generated M data signals to transmission beamforming section 107.
ウェイト選択部106は、データ送信時において、ビーム選択部153が選択した伝送用ビーム(インデックス#m(mは1からMまでのいずれかの整数、図4参照))を形成するBFウェイトを選択し、送信ビームフォーミング部107及び受信ビームフォーミング部151に出力する。
The weight selection unit 106 selects a BF weight that forms a transmission beam (index #m (m is an integer from 1 to M, see FIG. 4)) selected by the beam selection unit 153 during data transmission. Then, the data is output to the transmission beam forming unit 107 and the reception beam forming unit 151.
また、ウェイト選択部106は、測位時において、ビーム数決定部102の通知に基づいて、ビーム選択部153が選択した伝送用ビーム#mを中心として、インデックスが(#m-k)から(#m+k)までの複数の測位用ビームのそれぞれを形成する各BFウェイトを選択し、送信ビームフォーミング部107及び受信ビームフォーミング部151に出力する。
In addition, the weight selection unit 106 determines the index from (# m−k) to (#) around the transmission beam #m selected by the beam selection unit 153 based on the notification from the beam number determination unit 102 during positioning. Each BF weight forming each of the plurality of positioning beams up to m + k) is selected and output to the transmission beam forming unit 107 and the reception beam forming unit 151.
送信ビームフォーミング部107は、データ送信開始前において、ディスカバリ信号生成部101から出力されたディスカバリ信号に対して、BFウェイトの候補をそれぞれ乗算する。送信ビームフォーミング部107は、BFウェイト候補を乗算した後のディスカバリ信号を通信部108に出力する。
The transmission beamforming unit 107 multiplies the discovery signal output from the discovery signal generation unit 101 by a BF weight candidate before starting data transmission. Transmit beamforming section 107 outputs a discovery signal after multiplication by BF weight candidates to communication section 108.
また、送信ビームフォーミング部107は、データ送信時において、プリコーディング部105から出力されたデータ信号に対して、ウェイト選択部106から出力されたBFウェイトを乗算する。送信ビームフォーミング部107は、BFウェイトを乗算した後のデータ信号を通信部108に出力する。
Also, the transmission beamforming unit 107 multiplies the data signal output from the precoding unit 105 by the BF weight output from the weight selection unit 106 during data transmission. Transmit beamforming section 107 outputs the data signal multiplied by the BF weight to communication section 108.
また、送信ビームフォーミング部107は、測位時において、PRS生成部103から出力されたPRSに対して、ウェイト選択部106が選択した各BFウェイトをそれぞれ乗算する。送信ビームフォーミング部107は、各BFウェイトを乗算した後のPRSを通信部108に出力する。
Also, the transmission beamforming unit 107 multiplies each BF weight selected by the weight selection unit 106 by the PRS output from the PRS generation unit 103 during positioning. Transmit beamforming section 107 outputs the PRS after multiplying each BF weight to communication section 108.
通信部108-1~108-Mは、M個のアンテナ109(アンテナ素子)にそれぞれ対応して備えられる。各通信部108は、送信ビームフォーミング部107から出力された信号に対して、D/A変換、アップコンバート等の送信処理を行って無線周波数の送信信号を生成する。各通信部108は、生成した無線周波数の送信信号を、M個のアンテナ109のそれぞれから端末20に向けて送信する。なお、M個のアンテナ109から、BFウェイト候補のそれぞれを乗算した信号を送信することにより、M個のビーム候補が形成される(図4参照)。
Communication units 108-1 to 108-M are provided corresponding to M antennas 109 (antenna elements), respectively. Each communication unit 108 performs transmission processing such as D / A conversion and up-conversion on the signal output from the transmission beamforming unit 107 to generate a radio frequency transmission signal. Each communication unit 108 transmits the generated radio frequency transmission signal to the terminal 20 from each of the M antennas 109. Note that M beam candidates are formed by transmitting a signal obtained by multiplying each of the BF weight candidates from the M antennas 109 (see FIG. 4).
また、各通信部108は、端末20から送信され、M個のアンテナ109のそれぞれに受信された信号に対して、ダウンコンバート、A/D変換等の受信処理を行う。各通信部108は、受信処理を行って得られたデータ信号及びフィードバック信号を受信ビームフォーミング部151に出力する。
Further, each communication unit 108 performs reception processing such as down-conversion and A / D conversion on the signal transmitted from the terminal 20 and received by each of the M antennas 109. Each communication unit 108 outputs a data signal and a feedback signal obtained by performing the reception process to the reception beam forming unit 151.
受信ビームフォーミング部151は、データ受信開始前において、各通信部108から出力されたフィードバック信号に対して、BFウェイトの候補をそれぞれ乗算する。受信ビームフォーミング部151は、BFウェイト候補を乗算した後のフィードバック信号をフィードバック信号処理部152に出力する。
The reception beamforming unit 151 multiplies the feedback signal output from each communication unit 108 by a BF weight candidate before starting data reception. Reception beamforming section 151 outputs the feedback signal after being multiplied by the BF weight candidate to feedback signal processing section 152.
また、受信ビームフォーミング部151は、データ受信時において、各通信部108から出力されたデータ信号に対して、ウェイト選択部106から出力されたBFウェイトを乗算する。受信ビームフォーミング部151は、BFウェイトを乗算した後のデータ信号をポストコーディング部155に出力する。
Also, the reception beamforming unit 151 multiplies the data signal output from each communication unit 108 by the BF weight output from the weight selection unit 106 at the time of data reception. Reception beamforming section 151 outputs the data signal after being multiplied by the BF weight to postcoding section 155.
また、受信ビームフォーミング部151は、測位時において、各通信部108から出力されたデータ信号に対して、ウェイト選択部106から出力されたBFウェイトを乗算する。受信ビームフォーミング部151は、BFウェイトを乗算した後のフィードバック信号をフィードバック信号処理部152に出力する。
Also, the reception beamforming unit 151 multiplies the data signal output from each communication unit 108 by the BF weight output from the weight selection unit 106 during positioning. Reception beamforming section 151 outputs the feedback signal after multiplication by the BF weight to feedback signal processing section 152.
フィードバック信号処理部152は、受信ビームフォーミング部151から出力されたフィードバック信号に対して復調処理及び復号処理を行い、端末20において測定された、各ビーム候補におけるディスカバリ信号のRSS、及び、各測位用ビームにおけるPRSのRSS、TOAを抽出する。フィードバック信号処理部152は、抽出した各ビーム候補におけるディスカバリ信号のRSSをビーム選択部153に出力する。また、フィードバック信号処理部152は、抽出した各測位用ビームにおけるPRSのRSS、TOAを測位部154に出力する。
The feedback signal processing unit 152 performs demodulation processing and decoding processing on the feedback signal output from the reception beam forming unit 151, and the RSS of the discovery signal in each beam candidate measured by the terminal 20 and for each positioning Extract RSS and TOA of PRS in the beam. The feedback signal processing unit 152 outputs the RSS of the discovery signal in each extracted beam candidate to the beam selection unit 153. Further, the feedback signal processing unit 152 outputs the RSS and TOA of the PRS in each extracted positioning beam to the positioning unit 154.
ビーム選択部153は、各ビーム候補におけるディスカバリ信号のRSSに基づいて伝送用ビームを選択する。具体的には、ビーム選択部153は、RSSが最も高いビームを伝送用ビームとして選択する。ビーム選択部153は、選択した伝送用ビームのインデックス#mをウェイト選択部106に出力する。
The beam selection unit 153 selects a transmission beam based on the RSS of the discovery signal in each beam candidate. Specifically, the beam selection unit 153 selects the beam having the highest RSS as the transmission beam. The beam selection unit 153 outputs the index #m of the selected transmission beam to the weight selection unit 106.
測位部154は、フィードバック信号処理部152から出力された、端末20において測定された各測位用ビームにおけるPRSのRSS、TOA、各測位用ビームにおいて受信された端末20からのフィードバック信号のRSS、TOA、及び、各測位用ビームのビーム角に基づいて、端末20の測位(位置推定)を行う。なお、測位部154における測位方法の具体例については後述する。
The positioning unit 154 outputs the RSS and TOA of the PRS in each positioning beam measured by the terminal 20 and the RSS and TOA of the feedback signal from the terminal 20 received in each positioning beam output from the feedback signal processing unit 152. And the positioning (position estimation) of the terminal 20 is performed based on the beam angle of each positioning beam. A specific example of the positioning method in the positioning unit 154 will be described later.
ポストコーディング部155は、ポストコーディング行列を用いて、受信ビームフォーミング部151から出力されたデータ信号に対してポストコーディングを行う。ポストコーディング部155は、ポストコーディング後のデータ信号をデータ信号処理部156に出力する。
The post-coding unit 155 performs post-coding on the data signal output from the reception beamforming unit 151 using the post-coding matrix. The post coding unit 155 outputs the post-coded data signal to the data signal processing unit 156.
データ信号処理部156は、ポストコーディング部155から出力されたデータ信号に対して復調処理及び復号処理を行い、第i番の端末20からのL個のストリームのデータを得る。
The data signal processing unit 156 performs demodulation processing and decoding processing on the data signal output from the post-coding unit 155 to obtain L stream data from the i-th terminal 20.
<端末の構成>
図2は、実施の形態1に係る端末20の構成例を示すブロック図である。図2に示す端末20は、アンテナ201と、通信部202と、受信品質測定部203と、到来時間算出部204と、ポストコーディング部205と、データ信号処理部206と、フィードバック信号生成部251と、データ信号生成部252と、プリコーディング部253と、を含む構成を採る。 <Terminal configuration>
FIG. 2 is a block diagram illustrating a configuration example of the terminal 20 according to the first embodiment. 2 includes anantenna 201, a communication unit 202, a reception quality measurement unit 203, an arrival time calculation unit 204, a post coding unit 205, a data signal processing unit 206, a feedback signal generation unit 251, The data signal generation unit 252 and the precoding unit 253 are included.
図2は、実施の形態1に係る端末20の構成例を示すブロック図である。図2に示す端末20は、アンテナ201と、通信部202と、受信品質測定部203と、到来時間算出部204と、ポストコーディング部205と、データ信号処理部206と、フィードバック信号生成部251と、データ信号生成部252と、プリコーディング部253と、を含む構成を採る。 <Terminal configuration>
FIG. 2 is a block diagram illustrating a configuration example of the terminal 20 according to the first embodiment. 2 includes an
なお、図2は、第i番の端末20の構成を一例として示す。また、図2では、端末20におけるOFDM信号を送信/受信するための構成部(例えば、IFFT処理部、CP付加部、CP除去部、FFT処理部)等の記載を省略している。
Note that FIG. 2 shows the configuration of the i-th terminal 20 as an example. In FIG. 2, description of components (for example, IFFT processing unit, CP adding unit, CP removing unit, FFT processing unit) for transmitting / receiving the OFDM signal in the terminal 20 is omitted.
通信部202-1~202-Nは、N個(Nは2以上の整数)のアンテナ201にそれぞれ対応して備えられる。各通信部202は、アンテナ201を介して受信した受信信号に対して、ダウンコンバート、A/D変換等の受信処理を行う。各通信部202は、受信処理を行って得られたディスカバリ信号を受信品質測定部203に出力し、受信処理を行って得られたPRSを受信品質測定部203及び到来時間算出部204に出力し、データ信号をポストコーディング部205へ出力する。
Communication units 202-1 to 202-N are provided corresponding to N antennas 201 (N is an integer of 2 or more), respectively. Each communication unit 202 performs reception processing such as down-conversion and A / D conversion on the reception signal received via the antenna 201. Each communication unit 202 outputs the discovery signal obtained by performing the reception process to the reception quality measurement unit 203, and outputs the PRS obtained by performing the reception process to the reception quality measurement unit 203 and the arrival time calculation unit 204. The data signal is output to the post coding unit 205.
また、各通信部202は、フィードバック信号生成部251から出力されたフィードバック信号あるいはプリコーディング部253から出力されたデータ信号に対して、D/A変換、アップコンバート等の送信処理を行って無線周波数の送信信号を生成する。各通信部202は、生成した無線周波数の送信信号を、N個のアンテナ201のそれぞれから基地局10に向けて送信する。
In addition, each communication unit 202 performs transmission processing such as D / A conversion and up-conversion on the feedback signal output from the feedback signal generation unit 251 or the data signal output from the precoding unit 253 to perform radio frequency transmission. The transmission signal is generated. Each communication unit 202 transmits the generated radio frequency transmission signal from each of the N antennas 201 to the base station 10.
受信品質測定部203は、通信部202から出力されたディスカバリ信号を用いて、M個の各ビーム候補のRSSを測定する。また、受信品質測定部203は、通信部202から出力されたPRSを用いて、(2k+1)個の各測位用ビームのRSSを測定する。受信品質測定部203は、測定した各ビーム候補におけるディスカバリ信号のRSS、及び、各測位用ビームにおけるPRSのRSSをフィードバック信号生成部251に出力する。
The reception quality measurement unit 203 uses the discovery signal output from the communication unit 202 to measure the RSS of each of M beam candidates. Also, the reception quality measurement unit 203 uses the PRS output from the communication unit 202 to measure RSS of each (2k + 1) positioning beams. The reception quality measurement unit 203 outputs the RSS of the discovery signal in each measured beam candidate and the RSS of the PRS in each positioning beam to the feedback signal generation unit 251.
到来時間算出部204は、通信部202から出力されたPRSを用いて、(2k+1)個の各測位用ビームのTOAを算出する。到来時間算出部204は、算出した各測位用ビームにおけるPRSのTOAをフィードバック信号生成部251に出力する。
The arrival time calculation unit 204 calculates the TOA of each (2k + 1) positioning beams using the PRS output from the communication unit 202. The arrival time calculation unit 204 outputs the calculated PRS TOA for each positioning beam to the feedback signal generation unit 251.
ポストコーディング部205は、ポストコーディング行列を用いて、通信部202から出力されたデータ信号に対してポストコーディングを行い、ポストコーディング後のデータ信号をデータ信号処理部206に出力する。
The post coding unit 205 performs post coding on the data signal output from the communication unit 202 using the post coding matrix, and outputs the post-coded data signal to the data signal processing unit 206.
データ信号処理部206は、ポストコーディング部205から出力されたデータ信号に対して復調処理及び復号処理を行い、第i番の端末20に対するL個のストリームのデータを得る。
The data signal processing unit 206 performs demodulation processing and decoding processing on the data signal output from the post coding unit 205 to obtain L stream data for the i-th terminal 20.
フィードバック信号生成部251は、受信品質測定部203から出力されたRSS、及び、到来時間算出部204から出力されたTOA、TDOAに対して符号化処理及び変調処理を行い、フィードバック信号を生成する。フィードバック信号生成部251は、生成したフィードバック信号を通信部202に出力する。
The feedback signal generation unit 251 performs an encoding process and a modulation process on the RSS output from the reception quality measurement unit 203 and the TOA and TDOA output from the arrival time calculation unit 204 to generate a feedback signal. The feedback signal generation unit 251 outputs the generated feedback signal to the communication unit 202.
データ信号生成部252は、基地局10向けのL個(LはM以下の整数)のストリームのデータに対して符号化処理及び変調処理を行い、データ信号(上りリンク信号)を生成する。データ信号生成部104は、生成したデータ信号をプリコーディング部253に出力する。
The data signal generation unit 252 performs encoding processing and modulation processing on L (L is an integer equal to or less than M) stream data for the base station 10 to generate a data signal (uplink signal). The data signal generation unit 104 outputs the generated data signal to the precoding unit 253.
プリコーディング部253は、データ信号生成部252から出力されたL個のデータ信号に対してプリコーディング行列をサブキャリア毎に乗算し、プリコーディング後のM個のデータ信号を生成する。プリコーディング部253は、生成したM個のデータ信号を通信部202に出力する。
The precoding unit 253 multiplies the L data signals output from the data signal generation unit 252 by a precoding matrix for each subcarrier to generate M data signals after precoding. The precoding unit 253 outputs the generated M data signals to the communication unit 202.
<kの決定方法の具体例>
次に、kの決定方法の具体例について説明する。 <Specific example of k determination method>
Next, a specific example of a method for determining k will be described.
次に、kの決定方法の具体例について説明する。 <Specific example of k determination method>
Next, a specific example of a method for determining k will be described.
ビーム数決定部102は、基地局10の状況(基地局10が把握又は推定する、基地局10と端末20との地理的関係、端末20の移動速度、ビーム幅等)に応じて適応的にkを決定できる。例えば、ビーム数決定部102は、基地局10と端末20との距離に応じて、距離が近いほどkが小さくなるように、kを決定する。なお、基地局10は、端末20からのフィードバック、または、基地局10が受信した信号の受信電力に基づいて基地局10と端末20との距離を推定できる。
The number-of-beams determination unit 102 adaptively depends on the situation of the base station 10 (geographic relationship between the base station 10 and the terminal 20, the moving speed of the terminal 20, the beam width, etc., which the base station 10 grasps or estimates) k can be determined. For example, the beam number determination unit 102 determines k according to the distance between the base station 10 and the terminal 20 so that k decreases as the distance decreases. Note that the base station 10 can estimate the distance between the base station 10 and the terminal 20 based on the feedback from the terminal 20 or the received power of the signal received by the base station 10.
また、ビーム数決定部102は、端末20の移動速度に応じて、移動速度が低いほどkが小さくなるように、kを決定する。なお、基地局10は、端末20からのフィードバック、または、過去の位置推定結果から端末20の移動速度を推定できる。
Also, the beam number determination unit 102 determines k according to the moving speed of the terminal 20 so that k decreases as the moving speed decreases. In addition, the base station 10 can estimate the moving speed of the terminal 20 from the feedback from the terminal 20 or the past position estimation result.
ビーム数決定部102は、基地局10のビーム幅に応じて、ビーム幅が広いほどkが小さくなるように、kを決定する。
The beam number determination unit 102 determines k according to the beam width of the base station 10 so that k becomes smaller as the beam width becomes wider.
<測位方法の具体例>
次に、本実施の形態の測位方法の具体例について説明する。なお、以下の例では、説明の簡単のために、k=1とする。 <Specific example of positioning method>
Next, a specific example of the positioning method of the present embodiment will be described. In the following example, k = 1 is set for simplicity of explanation.
次に、本実施の形態の測位方法の具体例について説明する。なお、以下の例では、説明の簡単のために、k=1とする。 <Specific example of positioning method>
Next, a specific example of the positioning method of the present embodiment will be described. In the following example, k = 1 is set for simplicity of explanation.
まず、測位部154による、端末20の方向の推定方法について説明する。
First, a method for estimating the direction of the terminal 20 by the positioning unit 154 will be described.
測位部154は、まず、伝送用ビーム#m(RSSが最も高いビーム)の両隣のビーム(ビーム#m-1及びビーム#m+1)のRSSの比率を計算する。
First, the positioning unit 154 calculates the ratio of the RSS of the beam (beam # m−1 and beam # m + 1) adjacent to the transmission beam #m (the beam having the highest RSS).
次に、測位部154は、RSSの比率に基づいて補正角を算出する。ビーム#mの中心方向とビーム#m-1の中心方向との為す角を-Δθ、ビーム#mの中心方向とビーム#m+1の中心方向との為す角を+Δθとすると、ビーム#m-1のRSSであるPm-1とビーム#m+1のRSSであるPm+1との比が、Pm-1:Pm+1=p:qの場合、測位部154は、以下の式(1)を用いて、補正角θcを算出する。
θc=(-p+q)×Δθ/(p+q) ・・・(1) Next, thepositioning unit 154 calculates a correction angle based on the RSS ratio. If the angle between the center direction of the beam #m and the center direction of the beam # m−1 is −Δθ, and the angle between the center direction of the beam #m and the center direction of the beam # m + 1 is + Δθ, the beam # m−1 the ratio of P m + 1 is the RSS of P m-1 and the beam # m + 1 is the RSS is, P m-1: P m + 1 = p: for q, the positioning unit 154, using the following equation (1) Thus, the correction angle θc is calculated.
θc = (− p + q) × Δθ / (p + q) (1)
θc=(-p+q)×Δθ/(p+q) ・・・(1) Next, the
θc = (− p + q) × Δθ / (p + q) (1)
そして、測位部154は、端末20の方向を、ビーム#mの中心方向角θmから補正角θcを加えた値とする。
Then, the positioning unit 154 sets the direction of the terminal 20 to a value obtained by adding the correction angle θc to the center direction angle θm of the beam #m.
例えば、Pm-1:Pm+1=2:1の場合、θc=-Δθ/3となる。この場合、測位部154は、端末20の方向を、θm-Δθ/3の角度と推定する。
For example, when P m−1 : P m + 1 = 2: 1, θc = −Δθ / 3. In this case, the positioning unit 154 estimates the direction of the terminal 20 as an angle of θm−Δθ / 3.
次に、測位部154による、端末20の距離の推定方法について説明する。
Next, a method for estimating the distance of the terminal 20 by the positioning unit 154 will be described.
測位部154は、基地局10と端末20との距離dを、到来時間TTOAに光速cを乗算することにより算出する。あるいは、測位部154は、伝播損失式から距離dを逆算しても良い。
The positioning unit 154 calculates the distance d between the base station 10 and the terminal 20 by multiplying the arrival time TTOA by the speed of light c. Alternatively, the positioning unit 154 may back-calculate the distance d from the propagation loss equation.
このように、基地局10は、端末20の方向と距離を推定することにより、端末20の位置を推定できる。
Thus, the base station 10 can estimate the position of the terminal 20 by estimating the direction and distance of the terminal 20.
なお、上記は測位方法の一例であって、本実施の形態では補正角θcの算出方法および測位方法には限定は無い。例えば、測位部154が、事前に準備された受信電力マップを用い、補正した方向において受信電力が最も近い位置を端末20の位置と推定しても良い。
Note that the above is an example of the positioning method, and in the present embodiment, there is no limitation on the calculation method and the positioning method of the correction angle θc. For example, the positioning unit 154 may estimate the position where the received power is closest in the corrected direction as the position of the terminal 20 using the received power map prepared in advance.
<基地局及び端末の動作>
次に、本実施の形態の基地局10及び端末20の動作について図3、図4を用いて詳細に説明する。図3は、本実施の形態に係る基地局10及び端末20の動作を示すシーケンス図である。また、図4は、本実施の形態に係る基地局10と端末20との間の伝搬路状況の一例を示す図である。なお、図4では、k=2の場合を示している。 <Operation of base station and terminal>
Next, operations ofbase station 10 and terminal 20 of the present embodiment will be described in detail with reference to FIGS. FIG. 3 is a sequence diagram showing operations of base station 10 and terminal 20 according to the present embodiment. Moreover, FIG. 4 is a figure which shows an example of the propagation path condition between the base station 10 and the terminal 20 which concerns on this Embodiment. FIG. 4 shows a case where k = 2.
次に、本実施の形態の基地局10及び端末20の動作について図3、図4を用いて詳細に説明する。図3は、本実施の形態に係る基地局10及び端末20の動作を示すシーケンス図である。また、図4は、本実施の形態に係る基地局10と端末20との間の伝搬路状況の一例を示す図である。なお、図4では、k=2の場合を示している。 <Operation of base station and terminal>
Next, operations of
まず、基地局10は、ディスカバリ信号を端末20へ送信する(ST101)。ディスカバリ信号には、BFウェイトの候補がそれぞれ乗算されている。また、ビーム候補(BFウェイトの候補)毎に送信されるディスカバリ信号は、プリコーディングされず、端末20の全てのアンテナ201に向けて送信される。
First, the base station 10 transmits a discovery signal to the terminal 20 (ST101). Each discovery signal is multiplied by a BF weight candidate. In addition, the discovery signal transmitted for each beam candidate (BF weight candidate) is not precoded and is transmitted toward all the antennas 201 of the terminal 20.
次に、端末20は、ディスカバリ信号を用いて、各ビーム候補のRSSを測定する(ST102)。そして、端末20は、各ビーム候補のRSSを含むフィードバック信号を基地局10に送信する(ST103)。
Next, the terminal 20 measures the RSS of each beam candidate using the discovery signal (ST102). Then, terminal 20 transmits a feedback signal including RSS of each beam candidate to base station 10 (ST103).
次に、基地局10は、各ビーム候補のRSSに基づいて伝送用ビームを選択する(ST104)。さらに、基地局10は、伝送用ビーム及び伝送用ビーム周辺のビームを測位用ビームとして決定する(ST105)。図4の例では、ビーム#mで送信されたディスカバリ信号のRSSが最も高いので、基地局10は、ビーム#mを伝送用ビームとして選択する。また、基地局10は、ビーム#m-2、ビーム#m-1、ビーム#m、ビーム#m+1、ビーム#m+2を測位用ビームとして決定する。この結果、端末20が存在する方向に最も近いビーム#mの周辺のビームが測位用に使用されることになる。
Next, the base station 10 selects a transmission beam based on the RSS of each beam candidate (ST104). Furthermore, the base station 10 determines a transmission beam and a beam around the transmission beam as positioning beams (ST105). In the example of FIG. 4, since the discovery signal transmitted with the beam #m has the highest RSS, the base station 10 selects the beam #m as a transmission beam. Also, the base station 10 determines beam # m−2, beam # m−1, beam #m, beam # m + 1, and beam # m + 2 as positioning beams. As a result, the beam around the beam #m closest to the direction in which the terminal 20 exists is used for positioning.
次に、基地局10は、測位用ビームを用いてPRSを端末20へ送信する(ST106)。PRSは、プリコーディングされず、端末20の全てのアンテナ201に向けて送信される。
Next, base station 10 transmits a PRS to terminal 20 using a positioning beam (ST106). The PRS is not precoded and is transmitted toward all the antennas 201 of the terminal 20.
次に、端末20は、測位用ビームにより送信されたPRSを用いて、各測位用ビームのRSSを測定し(ST107)、TOAを算出する(ST108)。そして、端末20は、各測位用ビームのRSS、TOAを含むフィードバック信号を基地局10に送信する(ST109)。
Next, the terminal 20 measures the RSS of each positioning beam using the PRS transmitted by the positioning beam (ST107) and calculates the TOA (ST108). Then, terminal 20 transmits a feedback signal including RSS and TOA of each positioning beam to base station 10 (ST109).
次に、基地局10は、各測位用ビームにおけるPRSのRSSに基づいて端末20の方向を推定し、TOAに基づいて端末20までの距離を推定する測位処理(位置推定)を行う(ST110)。
Next, the base station 10 estimates the direction of the terminal 20 based on the RSS of the PRS in each positioning beam, and performs a positioning process (position estimation) for estimating the distance to the terminal 20 based on the TOA (ST110). .
なお、本実施の形態では、ST109のフィードバックを行わず、端末20において、測位処理を行っても良い。また、複数の基地局10が、端末20からのフィードバック信号により取得した、複数の情報を用いて測位処理を行ってもよい。
In the present embodiment, the positioning process may be performed in the terminal 20 without performing the feedback of ST109. In addition, a plurality of base stations 10 may perform positioning processing using a plurality of information acquired by feedback signals from the terminals 20.
<本実施の形態の効果>
このように、本実施の形態では、端末20における受信品質が最も高いビームを伝送用ビームとして選択するとともに、伝送用ビームおよび伝送用ビーム周辺の複数のビームを測位用ビームとして決定する。そして、測位用ビームのそれぞれを用いて送信送されたPRSの端末20におけるRSSに基づいて、伝送用ビームの中心方向を補正した方向を、端末20の方向と推定する。 <Effects of the present embodiment>
Thus, in the present embodiment, the beam having the highest reception quality at the terminal 20 is selected as a transmission beam, and the transmission beam and a plurality of beams around the transmission beam are determined as positioning beams. Based on the RSS in thePRS terminal 20 transmitted and transmitted using each of the positioning beams, the direction in which the center direction of the transmission beam is corrected is estimated as the direction of the terminal 20.
このように、本実施の形態では、端末20における受信品質が最も高いビームを伝送用ビームとして選択するとともに、伝送用ビームおよび伝送用ビーム周辺の複数のビームを測位用ビームとして決定する。そして、測位用ビームのそれぞれを用いて送信送されたPRSの端末20におけるRSSに基づいて、伝送用ビームの中心方向を補正した方向を、端末20の方向と推定する。 <Effects of the present embodiment>
Thus, in the present embodiment, the beam having the highest reception quality at the terminal 20 is selected as a transmission beam, and the transmission beam and a plurality of beams around the transmission beam are determined as positioning beams. Based on the RSS in the
この結果、端末20が、伝送用ビームの中心方向と、伝送用ビームに隣接するビームの中心方向との間に存在する場合でも、端末20の方向を高い精度にて推定できる。したがって、本実施の形態によれば、ビーム候補数が増加させることなく、端末方向の推定精度を高めることができる。
As a result, even when the terminal 20 exists between the center direction of the transmission beam and the center direction of the beam adjacent to the transmission beam, the direction of the terminal 20 can be estimated with high accuracy. Therefore, according to the present embodiment, it is possible to improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
なお、本実施の形態では、測位用の参照信号としてPRSを用いる場合について説明したが、本発明はこれに限られず、測位用の参照信号としてPRS以外の信号を用いても良い。
In this embodiment, the case where PRS is used as a positioning reference signal has been described. However, the present invention is not limited to this, and a signal other than PRS may be used as a positioning reference signal.
以上、実施の形態1について説明した。
The first embodiment has been described above.
[実施の形態2]
実施の形態2では、基地局10がBFを行い、端末20から送信された信号の、基地局10の各測位用ビームにおけるRSSに基づいて、基地局10に対する端末20の方向を推定する場合について説明する。 [Embodiment 2]
In the second embodiment, thebase station 10 performs BF and estimates the direction of the terminal 20 relative to the base station 10 based on the RSS in each positioning beam of the base station 10 of the signal transmitted from the terminal 20. explain.
実施の形態2では、基地局10がBFを行い、端末20から送信された信号の、基地局10の各測位用ビームにおけるRSSに基づいて、基地局10に対する端末20の方向を推定する場合について説明する。 [Embodiment 2]
In the second embodiment, the
なお、実施の形態2の基地局10の構成例は図1に示したものと同一である。また、実施の形態2の端末20の構成例は図2に示したものと同一である。ただし、実施の形態2では、PRSの送受信が不要となる。
Note that the configuration example of the base station 10 of the second embodiment is the same as that shown in FIG. The configuration example of the terminal 20 of the second embodiment is the same as that shown in FIG. However, in the second embodiment, PRS transmission / reception is not required.
<基地局及び端末の動作>
次に、本実施の形態の基地局10及び端末20の動作について図5、図6を用いて詳細に説明する。図5は、本実施の形態に係る基地局10及び端末20の動作を示すシーケンス図である。また、図6は、本実施の形態に係る基地局10と端末20との間の伝搬路状況の一例を示す図である。なお、図6では、k=2の場合を示している。 <Operation of base station and terminal>
Next, operations of thebase station 10 and the terminal 20 according to the present embodiment will be described in detail with reference to FIGS. FIG. 5 is a sequence diagram showing operations of base station 10 and terminal 20 according to the present embodiment. Moreover, FIG. 6 is a figure which shows an example of the propagation path condition between the base station 10 and the terminal 20 which concerns on this Embodiment. FIG. 6 shows a case where k = 2.
次に、本実施の形態の基地局10及び端末20の動作について図5、図6を用いて詳細に説明する。図5は、本実施の形態に係る基地局10及び端末20の動作を示すシーケンス図である。また、図6は、本実施の形態に係る基地局10と端末20との間の伝搬路状況の一例を示す図である。なお、図6では、k=2の場合を示している。 <Operation of base station and terminal>
Next, operations of the
なお、図5において、図3と共通するステップには、図3と同一符号を付して説明を省略する。
In FIG. 5, the same steps as those in FIG. 3 are denoted by the same reference numerals as those in FIG.
基地局10は、測位用ビームを決定した後(ST105)、測位用ビームを用いて、端末20からのUL(上りリンク)信号を受信する(ST201)。ここで、UL信号として、SRS(Sounding Reference Signal)、あるいは、その他の端末20から基地局10に送信される信号が用いられる。
After determining the positioning beam (ST105), the base station 10 receives the UL (uplink) signal from the terminal 20 using the positioning beam (ST201). Here, as the UL signal, an SRS (Sounding Reference Signal) or a signal transmitted from the other terminal 20 to the base station 10 is used.
そして、基地局10は、測位用ビームを用いて受信したUL信号を用いて、各測位用ビームのRSSを測定し(ST202)、TOAを算出する(ST203)。
The base station 10 measures the RSS of each positioning beam using the UL signal received using the positioning beam (ST202), and calculates the TOA (ST203).
そして、各測位用ビームにおけるUL信号のRSSに基づいて端末20の方向を推定し、TOAに基づいて端末20までの距離を推定する測位処理(位置推定)を行う(ST204)。なお、複数の基地局10が、取得した複数の情報を用いて測位処理を行ってもよい。
Then, a positioning process (position estimation) is performed in which the direction of the terminal 20 is estimated based on the RSS of the UL signal in each positioning beam, and the distance to the terminal 20 is estimated based on the TOA (ST204). A plurality of base stations 10 may perform the positioning process using the acquired plurality of information.
<本実施の形態の効果>
このように、本実施の形態では、端末20における受信品質が最も高いビームを伝送用ビームとして選択するとともに、伝送用ビームおよび伝送用ビーム周辺の複数のビームを測位用ビームとして決定する。そして、測位用ビームのそれぞれを用いて受信されたUL信号のRSSに基づいて、伝送用ビームの中心方向を補正した方向を、端末20の方向と推定する。 <Effects of the present embodiment>
Thus, in the present embodiment, the beam having the highest reception quality at the terminal 20 is selected as a transmission beam, and the transmission beam and a plurality of beams around the transmission beam are determined as positioning beams. Then, the direction in which the center direction of the transmission beam is corrected is estimated as the direction of the terminal 20 based on the RSS of the UL signal received using each of the positioning beams.
このように、本実施の形態では、端末20における受信品質が最も高いビームを伝送用ビームとして選択するとともに、伝送用ビームおよび伝送用ビーム周辺の複数のビームを測位用ビームとして決定する。そして、測位用ビームのそれぞれを用いて受信されたUL信号のRSSに基づいて、伝送用ビームの中心方向を補正した方向を、端末20の方向と推定する。 <Effects of the present embodiment>
Thus, in the present embodiment, the beam having the highest reception quality at the terminal 20 is selected as a transmission beam, and the transmission beam and a plurality of beams around the transmission beam are determined as positioning beams. Then, the direction in which the center direction of the transmission beam is corrected is estimated as the direction of the terminal 20 based on the RSS of the UL signal received using each of the positioning beams.
この結果、端末20が、伝送用ビームの中心方向と、伝送用ビームに隣接するビームの中心方向との間に存在する場合でも、端末20の方向を高い精度にて推定できる。したがって、本実施の形態によれば、ビーム候補数が増加させることなく、端末方向の推定精度を高めることができる。
As a result, even when the terminal 20 exists between the center direction of the transmission beam and the center direction of the beam adjacent to the transmission beam, the direction of the terminal 20 can be estimated with high accuracy. Therefore, according to the present embodiment, it is possible to improve the estimation accuracy of the terminal direction without increasing the number of beam candidates.
以上、実施の形態2について説明した。
The embodiment 2 has been described above.
なお、上記各実施の形態では、端末方向の推定に使用するパラメータとしてRSSを用いる場合について説明したが、本発明はこれに限られず、RSRP、RSRQ、RSSI、パスロス、SINR等、他のパラメータを用いても良い。また、本発明では、これらのパラメータの複数を用いて端末方向を推定しても良い。
In each of the above embodiments, the case where RSS is used as a parameter used for estimating the terminal direction has been described. However, the present invention is not limited to this, and other parameters such as RSRP, RSRQ, RSSI, path loss, SINR, and the like are used. It may be used. In the present invention, the terminal direction may be estimated using a plurality of these parameters.
また、各実施の形態では、端末距離の推定に使用するパラメータとしてTOAを用いる場合について説明したが、本発明はこれに限られず、TDOA、RSS等、他のパラメータを用いても良い。また、本発明では、これらのパラメータの複数を用いて端末方向を推定しても良い。
In each embodiment, the case where TOA is used as a parameter used for estimating the terminal distance has been described. However, the present invention is not limited to this, and other parameters such as TDOA and RSS may be used. In the present invention, the terminal direction may be estimated using a plurality of these parameters.
また、各実施の形態では、基地局10側で測位を行う場合、複数の基地局10のそれぞれが、測位用ビームに対応したAODにより端末20の方向を推定しても良い。これにより、端末20の測位を高精度に行うことができる。
Further, in each embodiment, when positioning is performed on the base station 10 side, each of the plurality of base stations 10 may estimate the direction of the terminal 20 by the AOD corresponding to the positioning beam. Thereby, the positioning of the terminal 20 can be performed with high accuracy.
(ハードウェア構成)
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。 (Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。 (Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention. FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention. The base station 10 and the terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or in another manner. Note that the processor 1001 may be implemented by one or more chips.
基地局10及び端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
Each function in the base station 10 and the terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004 or memory This is realized by controlling data reading and / or writing in the storage 1003 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のディスカバリ信号生成部101、ビーム数決定部102、PRS生成部103、データ信号生成部104、252、プリコーディング部105、253、ウェイト選択部106、送信ビームフォーミング部107、受信ビームフォーミング部151、フィードバック信号処理部152、ビーム選択部153、測位部154、ポストコーディング部155、205、データ信号処理部156、206、受信品質測定部203、到来時間算出部204、フィードバック信号生成部251などは、プロセッサ1001で実現されてもよい。
The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the discovery signal generation unit 101, the beam number determination unit 102, the PRS generation unit 103, the data signal generation units 104 and 252, the precoding units 105 and 253, the weight selection unit 106, the transmission beam forming unit 107, and the reception beam forming described above. 151, feedback signal processing section 152, beam selection section 153, positioning section 154, post coding sections 155 and 205, data signal processing sections 156 and 206, reception quality measurement section 203, arrival time calculation section 204, feedback signal generation section 251 Etc. may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局10の制御部101は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 101 of the base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。また、上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
The storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. Further, the above-described storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server, or other suitable medium.
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の通信部108、202、アンテナ109、201などは、通信装置1004で実現されてもよい。
The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the communication units 108 and 202 and the antennas 109 and 201 described above may be realized by the communication device 1004.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
The base station 10 and the terminal 20 include hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), and field programmable gate array (FPGA). And a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
(情報の通知、シグナリング)
また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 (Information notification, signaling)
The notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 (Information notification, signaling)
The notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
(適応システム)
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 (Adaptive system)
Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 (Adaptive system)
Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
(処理手順等)
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 (Processing procedure etc.)
As long as there is no contradiction, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 (Processing procedure etc.)
As long as there is no contradiction, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
(基地局の操作)
本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 (Operation of base station)
The specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway). In the above, the case where there is one network node other than the base station is illustrated, but a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 (Operation of base station)
The specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway). In the above, the case where there is one network node other than the base station is illustrated, but a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
(入出力の方向)
情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。 (I / O direction)
Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。 (I / O direction)
Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
(入出力された情報等の扱い)
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。 (Handling of input / output information, etc.)
Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。 (Handling of input / output information, etc.)
Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
(判定方法)
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 (Judgment method)
The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 (Judgment method)
The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
(ソフトウェア)
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 (software)
Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 (software)
Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
(情報、信号)
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 (Information, signal)
Information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 (Information, signal)
Information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal. The signal may be a message. Further, the component carrier (CC) may be called a carrier frequency, a cell, or the like.
(「システム」、「ネットワーク」)
本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。 ("System", "Network")
As used herein, the terms “system” and “network” are used interchangeably.
本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。 ("System", "Network")
As used herein, the terms “system” and “network” are used interchangeably.
(パラメータ、チャネルの名称)
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。 (Parameter, channel name)
In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。 (Parameter, channel name)
In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
The names used for the above parameters are not limited in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements (eg, TPC, etc.) can be identified by any suitable name, the various names assigned to these various channels and information elements are However, it is not limited.
(基地局)
基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 (base station)
A base station (radio base station) can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services. The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 (base station)
A base station (radio base station) can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services. The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
(端末)
ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。 (Terminal)
A user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。 (Terminal)
A user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
(用語の意味、解釈)
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 (Meaning and interpretation of terms)
As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 (Meaning and interpretation of terms)
As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
The terms “connected”, “coupled”, or any variation thereof, means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements. The coupling or connection between the elements may be physical, logical, or a combination thereof. As used herein, the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples By using electromagnetic energy, such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。
The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard. Further, the correction RS may be referred to as TRS (Tracking 、 RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS. Further, the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
The “unit” in the configuration of each device described above may be replaced with “means”, “circuit”, “device”, and the like.
「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
As long as “including”, “comprising”, and variations thereof are used in the specification or claims, these terms are inclusive of the term “comprising”. Intended to be Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
The radio frame may be composed of one or a plurality of frames in the time domain. One or more frames in the time domain may be referred to as subframes, time units, etc. A subframe may further be composed of one or more slots in the time domain. The slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
The radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
For example, in the LTE system, the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station. The minimum time unit of scheduling may be called TTI (Transmission Time Interval).
例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。
For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot may be called a TTI.
リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
The resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource unit, one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included. One TTI and one subframe may each be composed of one or a plurality of resource units. The resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband. Further, the resource unit may be composed of one or a plurality of REs. For example, 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block The number of carriers can be variously changed.
本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
Throughout this disclosure, if articles are added by translation, for example, a, an, and the in English, these articles must be clearly not otherwise indicated by context, Including multiple things.
(態様のバリエーション等)
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 (Aspect variations, etc.)
Each aspect / embodiment described in this specification may be used independently, may be used in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 (Aspect variations, etc.)
Each aspect / embodiment described in this specification may be used independently, may be used in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
本特許出願は、2017年3月17日に出願した日本国特許出願第2017-053166号に基づきその優先権を主張するものであり、日本国特許出願第2017-053166号の全内容を本願に援用する。
This patent application claims priority from Japanese Patent Application No. 2017-053166 filed on Mar. 17, 2017. The entire contents of Japanese Patent Application No. 2017-053166 are incorporated herein by reference. Incorporate.
本発明の一態様は、移動通信システムに有用である。
One embodiment of the present invention is useful for a mobile communication system.
10 無線基地局
101 ディスカバリ信号生成部
102 ビーム数決定部
103 PRS生成部
104、252 データ信号生成部
105、253 プリコーディング部
106 ウェイト選択部
107 送信ビームフォーミング部
151 受信ビームフォーミング部
152 フィードバック信号処理部
153 ビーム選択部
154 測位部
155、205 ポストコーディング部
156、206 データ信号処理部
20 ユーザ端末
203 受信品質測定部
204 到来時間算出部
251 フィードバック信号生成部 DESCRIPTION OFSYMBOLS 10 Radio base station 101 Discovery signal generation part 102 Beam number determination part 103 PRS generation part 104,252 Data signal generation part 105,253 Precoding part 106 Weight selection part 107 Transmission beam forming part 151 Reception beam forming part 152 Feedback signal processing part 153 Beam selection unit 154 Positioning unit 155, 205 Post coding unit 156, 206 Data signal processing unit 20 User terminal 203 Reception quality measuring unit 204 Arrival time calculating unit 251 Feedback signal generating unit
101 ディスカバリ信号生成部
102 ビーム数決定部
103 PRS生成部
104、252 データ信号生成部
105、253 プリコーディング部
106 ウェイト選択部
107 送信ビームフォーミング部
151 受信ビームフォーミング部
152 フィードバック信号処理部
153 ビーム選択部
154 測位部
155、205 ポストコーディング部
156、206 データ信号処理部
20 ユーザ端末
203 受信品質測定部
204 到来時間算出部
251 フィードバック信号生成部 DESCRIPTION OF
Claims (4)
- ビーム送信及びビーム受信を用いてユーザ端末と通信を行う無線基地局であって、
ビーム候補の中において受信品質が最も高いビームを、データ伝送に用いる伝送用ビームとして選択するビーム選択部と、
前記伝送用ビームを含む複数のビームから構成される測位用ビームのそれぞれを用いて伝送された信号の受信品質に関係するパラメータを取得するパラメータ取得部と、
前記各測位用ビームのパラメータを用いて前記ユーザ端末の方向を推定する測位部と、
を具備する無線基地局。 A radio base station that communicates with a user terminal using beam transmission and beam reception,
A beam selection unit that selects a beam having the highest reception quality among the beam candidates as a transmission beam used for data transmission;
A parameter acquisition unit for acquiring a parameter related to the reception quality of a signal transmitted using each of the positioning beams composed of a plurality of beams including the transmission beam;
A positioning unit that estimates the direction of the user terminal using the parameters of each positioning beam;
A wireless base station. - 前記測位部は、前記伝送用ビーム以外の前記測位用ビームにおける前記パラメータに基づいて補正角を算出し、前記伝送用ビームの中心方向を前記補正角で補正した方向を、前記ユーザ端末の方向として推定する、
請求項1に記載の無線基地局。 The positioning unit calculates a correction angle based on the parameters in the positioning beam other than the transmission beam, and a direction obtained by correcting the center direction of the transmission beam with the correction angle is defined as the direction of the user terminal. presume,
The radio base station according to claim 1. - 前記測位部は、前記伝送用ビームに隣接する2つの前記測位用ビームにおける受信電力の比率に基づいて前記補正角を算出する、
請求項2に記載の無線基地局。 The positioning unit calculates the correction angle based on a ratio of received power in the two positioning beams adjacent to the transmission beam;
The radio base station according to claim 2. - 前記無線基地局の状況に応じて、前記測位用ビームの数を適応的に設定するビーム数決定部をさらに具備する、
請求項1または2に記載の無線基地局。 A beam number determining unit that adaptively sets the number of positioning beams according to the state of the radio base station;
The radio base station according to claim 1 or 2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-053166 | 2017-03-17 | ||
JP2017053166 | 2017-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168630A1 true WO2018168630A1 (en) | 2018-09-20 |
Family
ID=63522921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008937 WO2018168630A1 (en) | 2017-03-17 | 2018-03-08 | Wireless base station |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018168630A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020065894A1 (en) * | 2018-09-27 | 2020-04-02 | 三菱電機株式会社 | Base station, terminal device and positioning method |
FR3096216A1 (en) * | 2019-06-28 | 2020-11-20 | Orange | Method and device for locating a terminal connected to a network |
CN112771947A (en) * | 2018-09-27 | 2021-05-07 | 索尼公司 | On-demand positioning in wireless communication systems |
CN115342775A (en) * | 2021-05-12 | 2022-11-15 | 中国移动通信集团设计院有限公司 | Method, device and equipment for predicting cell azimuth angle and computer storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002135032A (en) * | 2000-10-25 | 2002-05-10 | Nec Corp | Transmission antenna directivity control device and method therefor |
JP2011050043A (en) * | 2009-07-21 | 2011-03-10 | Nortel Networks Ltd | Method and apparatus for estimating location of wireless station using multi beam transmission |
JP2015530018A (en) * | 2012-07-31 | 2015-10-08 | サムスン エレクトロニクス カンパニー リミテッド | Communication method and apparatus using beamforming in wireless communication system |
WO2016013608A1 (en) * | 2014-07-25 | 2016-01-28 | 株式会社Nttドコモ | Radio transmission station and radio communication network |
-
2018
- 2018-03-08 WO PCT/JP2018/008937 patent/WO2018168630A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002135032A (en) * | 2000-10-25 | 2002-05-10 | Nec Corp | Transmission antenna directivity control device and method therefor |
JP2011050043A (en) * | 2009-07-21 | 2011-03-10 | Nortel Networks Ltd | Method and apparatus for estimating location of wireless station using multi beam transmission |
JP2015530018A (en) * | 2012-07-31 | 2015-10-08 | サムスン エレクトロニクス カンパニー リミテッド | Communication method and apparatus using beamforming in wireless communication system |
WO2016013608A1 (en) * | 2014-07-25 | 2016-01-28 | 株式会社Nttドコモ | Radio transmission station and radio communication network |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020065894A1 (en) * | 2018-09-27 | 2020-04-02 | 三菱電機株式会社 | Base station, terminal device and positioning method |
WO2020066103A1 (en) * | 2018-09-27 | 2020-04-02 | 三菱電機株式会社 | Base station, terminal device, positioning method and wireless communication system |
CN112771947A (en) * | 2018-09-27 | 2021-05-07 | 索尼公司 | On-demand positioning in wireless communication systems |
CN112771946A (en) * | 2018-09-27 | 2021-05-07 | 三菱电机株式会社 | Base station, terminal device, positioning method, and wireless communication system |
JPWO2020066103A1 (en) * | 2018-09-27 | 2021-09-02 | 三菱電機株式会社 | Base stations, terminal equipment, positioning methods, and wireless communication systems |
EP3860241A4 (en) * | 2018-09-27 | 2022-06-01 | Mitsubishi Electric Corporation | BASE STATION, TERMINAL DEVICE, POSITIONING METHOD AND WIRELESS COMMUNICATION SYSTEM |
JP7323543B2 (en) | 2018-09-27 | 2023-08-08 | 三菱電機株式会社 | BASE STATION, TERMINAL DEVICE, POSITIONING METHOD, AND WIRELESS COMMUNICATION SYSTEM |
EP4350391A3 (en) * | 2018-09-27 | 2024-06-12 | Mitsubishi Electric Corporation | Base station, terminal device, positioning method and wireless communication system |
CN112771947B (en) * | 2018-09-27 | 2024-11-19 | 索尼公司 | Method and wireless electronic device for obtaining location information of user equipment |
FR3096216A1 (en) * | 2019-06-28 | 2020-11-20 | Orange | Method and device for locating a terminal connected to a network |
CN115342775A (en) * | 2021-05-12 | 2022-11-15 | 中国移动通信集团设计院有限公司 | Method, device and equipment for predicting cell azimuth angle and computer storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7124882B2 (en) | Method, base station and terminal device for reference signal configuration | |
WO2018168670A1 (en) | User terminal and positioning method | |
US10897297B2 (en) | Transmission and reception apparatus | |
US12284019B2 (en) | Beam management | |
US11128353B2 (en) | Radio base station | |
WO2020006769A1 (en) | Method, device and computer readable medium for beam information based positioning | |
WO2018168630A1 (en) | Wireless base station | |
JP6441970B2 (en) | User terminal and wireless communication method | |
WO2016129725A1 (en) | Method and devices for hybrid scanning in wireless access system supporting millimeter waves | |
WO2018020900A1 (en) | Terminal device, base station, method, and recording medium | |
US11184844B2 (en) | User terminal and cell selection method | |
EP3817441A1 (en) | User terminal | |
WO2018128034A1 (en) | User device, base station, and demodulation reference signal transmission method | |
US11736956B2 (en) | Base station | |
WO2018168996A1 (en) | User terminal | |
JP7109883B2 (en) | Radio base station and radio communication method | |
WO2019182134A1 (en) | Base station and transmission method | |
US20200205117A1 (en) | Position calculation device, wireless base station, position calculation method, and positioning control method | |
JPWO2018025928A1 (en) | User terminal and wireless communication method | |
JP2018148315A (en) | Wireless terminal, transmission power control method, and wireless base station | |
WO2023168624A1 (en) | Mechanism for disruptive signal discovery | |
WO2018168994A1 (en) | User terminal and positioning system | |
JP7390283B2 (en) | Base station and transmission method by base station | |
EP3678424A1 (en) | User equipment, base station and wireless communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767912 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767912 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |