[go: up one dir, main page]

WO2018168810A1 - 血圧データ処理装置、血圧データ処理方法、およびプログラム - Google Patents

血圧データ処理装置、血圧データ処理方法、およびプログラム Download PDF

Info

Publication number
WO2018168810A1
WO2018168810A1 PCT/JP2018/009583 JP2018009583W WO2018168810A1 WO 2018168810 A1 WO2018168810 A1 WO 2018168810A1 JP 2018009583 W JP2018009583 W JP 2018009583W WO 2018168810 A1 WO2018168810 A1 WO 2018168810A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
peak
time
data processing
processing device
Prior art date
Application number
PCT/JP2018/009583
Other languages
English (en)
French (fr)
Inventor
綾子 小久保
洋貴 和田
中嶋 宏
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to DE112018001399.5T priority Critical patent/DE112018001399T5/de
Priority to CN201880017870.6A priority patent/CN110418603B/zh
Publication of WO2018168810A1 publication Critical patent/WO2018168810A1/ja
Priority to US16/561,347 priority patent/US20200008690A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/0826Detecting or evaluating apnoea events
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units

Definitions

  • the present invention relates to a technique for processing blood pressure data obtained in a blood pressure measuring device that measures a subject's blood pressure.
  • blood pressure surge In patients suffering from sleep apnea syndrome (SAS), it is known that blood pressure rapidly rises and then drops when respiration resumes after apnea. Hereinafter, such a rapid blood pressure fluctuation is referred to as “blood pressure surge” (or simply “surge”). Blood pressure information related to surges occurring in the patient (for example, statistics such as the number of occurrences of surges per unit time, blood pressure fluctuations, etc.) is considered useful for diagnosis and treatment of SAS.
  • ABPM Ambulatory Blood Pressure Monitoring
  • Japanese Patent Application Laid-Open Publication No. 2007-282668 discloses integration of blood pressure value data measured at a plurality of times using a conventional blood pressure measuring device for the purpose of capturing daily fluctuations and weekly fluctuations in blood pressure measurement values. Is described.
  • Japanese Unexamined Patent Publication No. 2012-239807 describes the evaluation of a subject's cardiovascular risk from the relationship between blood pressure measured in a hypoxic state and blood oxygen saturation, and is measured under hypoxia. It is described that the difference between the measured blood pressure and the blood pressure measured under non-hypoxia is obtained (a rise in blood pressure).
  • the present invention has been made paying attention to the above circumstances, and an object thereof is to provide a blood pressure data processing device, a blood pressure data processing method, and a program capable of detecting a blood pressure surge from time-series data of blood pressure values. It is to be.
  • the present invention adopts the following aspects.
  • the blood pressure data processing device sets a time series data of blood pressure values, sets one or more peak detection sections in the time series data, and systolic blood pressure for each peak detection section
  • a calculating unit that calculates a feature amount based on any one of diastolic blood pressure and pulse pressure, and a specifying unit that specifies at least one first peak from the feature amount for each peak detection section.
  • the first peak can be identified from the feature quantity based on any one of the systolic blood pressure, the diastolic blood pressure, and the pulse pressure for each peak detection section in the time series data of the blood pressure value. Therefore, a blood pressure surge can be detected as the first peak. If the time-series data is a blood pressure value in units of beats, a blood pressure surge can be detected with high accuracy. In addition, blood pressure surges that do not appear in a certain cycle and blood pressure surges having various patterns can be detected robustly.
  • the feature amount may be a maximum value of any one of the systolic blood pressure, the diastolic blood pressure, and the pulse pressure.
  • the feature amount is calculated by using the maximum value of any one of the systolic blood pressure, the diastolic blood pressure, and the pulse pressure in the peak detection section and the time point before the maximum value in the peak detection section. It may be a difference from any of the minimum values of systolic blood pressure, diastolic blood pressure, and pulse pressure. According to the third aspect, it is possible to detect a blood pressure surge in which the blood pressure value rapidly increases based on any variation amount of systolic blood pressure, diastolic blood pressure, or pulse pressure in the peak detection section.
  • the image processing apparatus may further include an extraction unit that extracts peak candidates for each of the peak detection sections by applying a determination criterion to the feature amount.
  • the peak candidate may include a time point when the maximum value satisfying the determination criterion is obtained, and the specifying unit is configured to determine the peak candidate based on a certain number or more of peak candidates at the same time point.
  • the first peak may be specified.
  • the blood pressure surge can be detected by integrating the peak candidates represented by the time point when the maximum value satisfying the determination criterion is obtained.
  • the specifying unit may narrow down the first peak by another feature amount based on at least one of a waveform shape, time information, and frequency information of the time series data. According to the sixth aspect, it is possible to prevent an increase in peak data and to appropriately detect a case that seems to be a surge.
  • the other feature amount may be a blood pressure surge rise time, fall time, area, or correlation coefficient.
  • the eighth aspect is the blood pressure data processing device according to the first to seventh aspects, further comprising a display unit for displaying the first peak together with the time series data.
  • the apparatus further includes a search unit that detects at least one second peak by searching for a maximum value of the time-series data at at least any time before and after the search range including the first peak. Good.
  • the ninth aspect by searching for the maximum value of the time-series data, it is possible to detect more peaks than when only the first peak is specified.
  • a display unit that displays the first peak and the second peak, and a display control unit that controls the display unit to distinguish and display the first peak and the second peak You may prepare.
  • the peak detection result generated by the user taking a relatively long time that is, the intention of confirming the relatively long blood pressure surge
  • the user detects the peak detailed detection result that is, It is possible to respond to both the intention to confirm the blood pressure surge that occurs before and after the long blood pressure surge and is detected by the search.
  • a technique capable of detecting a blood pressure surge from time series data of blood pressure values can be provided.
  • FIG. 1 is a block diagram showing a blood pressure data processing device according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the blood pressure measurement device shown in FIG.
  • FIG. 3 is a side view showing the blood pressure measurement unit shown in FIG.
  • FIG. 4 is a cross-sectional view showing the blood pressure measurement unit shown in FIG.
  • FIG. 5 is a plan view showing the blood pressure measurement unit shown in FIG.
  • FIG. 6 is a diagram showing a waveform of pressure measured by each pressure sensor shown in FIG.
  • FIG. 7 is a diagram illustrating an example of a sliding window.
  • FIG. 8 is a flowchart illustrating an example of a processing procedure for outputting the first peak data.
  • FIG. 9 is a diagram illustrating an example of spike noise removal.
  • FIG. 1 is a block diagram showing a blood pressure data processing device according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the blood pressure measurement device shown in FIG.
  • FIG. 3 is a side
  • FIG. 10 is a diagram illustrating an example of large fluctuation noise removal.
  • FIG. 11 is a flowchart showing in detail the iterative process shown in FIG.
  • FIG. 12 is a diagram illustrating a blood pressure surge detection result by the blood pressure data processing device according to the first embodiment.
  • FIG. 13 is a block diagram showing a blood pressure data processing device according to the second embodiment.
  • FIG. 14 is a flowchart illustrating an example of a processing procedure for outputting the second peak data.
  • FIG. 15A is a diagram illustrating a surge that occurs over a relatively short time.
  • FIG. 15B is a diagram illustrating an example of a surge that occurs over a relatively long time.
  • FIG. 16 is a diagram showing an example of surge detection omission.
  • FIG. 17A is a diagram illustrating a search for the maximum maximum value at a time point before the surge point.
  • FIG. 17B is a diagram illustrating a search for the maximum maximum value at a time point after the surge point.
  • FIG. 18 is a block diagram showing a blood pressure data processing device according to the third embodiment.
  • FIG. 19 is a diagram illustrating a display example by the visualization unit.
  • FIG. 20 is a diagram illustrating an example of a visualization file output from the visualization unit.
  • FIG. 21 is a block diagram illustrating a hardware configuration example of the blood pressure data processing device.
  • FIG. 1 schematically shows a blood pressure data processing device 10 according to a first embodiment of the present invention.
  • the blood pressure data processing device 10 processes time-series data 11 of blood pressure values obtained in a blood pressure measurement device 20 that measures a subject's blood pressure.
  • the blood pressure data processing apparatus 10 can be mounted on a computer such as a personal computer or a server, for example.
  • the blood pressure measurement device 20 is a wearable device worn on the wrist of the measurement subject, and measures the pressure pulse wave of the radial artery of the measurement subject by the tonometry method.
  • the tonometry method is a technique in which an artery is pressed from above the skin with an appropriate pressure to form a flat portion in the artery, and the pressure pulse is non-invasively measured by a pressure sensor in a state where the inside and outside of the artery are balanced. A method of measuring waves. According to the tonometry method, blood pressure values for each heartbeat can be obtained.
  • FIG. 2 schematically shows the blood pressure measurement device 20 according to the first embodiment.
  • the blood pressure measurement device 20 includes a blood pressure measurement unit 21, an acceleration sensor 24, a storage unit 25, an input unit 26, an output unit 27, and a control unit 28.
  • the control unit 28 controls each unit of the blood pressure measurement device 20.
  • the function of the control unit 28 can be realized by a processor such as a CPU (Central Processing Unit) executing a control program stored in a computer-readable storage medium such as a ROM (Read-Only Memory). .
  • a processor such as a CPU (Central Processing Unit) executing a control program stored in a computer-readable storage medium such as a ROM (Read-Only Memory).
  • the blood pressure measurement unit 21 measures the pressure pulse wave of the measurement subject and generates blood pressure data including the measurement result of the pressure pulse wave.
  • FIG. 3 is a side view showing a state in which the blood pressure measuring unit 21 is attached to the wrist Wr of the measurement subject by a belt (not shown), and
  • FIG. 4 is a cross-sectional view schematically showing the structure of the blood pressure measuring unit 21.
  • the blood pressure measurement unit 21 includes a sensor unit 22 and a pressing mechanism 23.
  • the sensor unit 22 is arranged so as to come into contact with a site where the radial artery RA is present (in this example, the wrist Wr).
  • the pressing mechanism 23 presses the sensor unit 22 against the wrist Wr.
  • FIG. 5 shows the surface of the sensor unit 22 on the side in contact with the wrist Wr.
  • the sensor unit 22 includes one or more (two in this example) pressure sensor arrays 221, and each of the pressure sensor arrays 221 has a plurality of (for example, 46) arranged along the direction B.
  • Pressure sensors 222 are arranged along the direction B.
  • the direction B is a direction that intersects the direction A in which the radial artery extends in a state where the blood pressure measurement device 20 is attached to the measurement subject.
  • a channel number is assigned to the pressure sensor 222.
  • the arrangement of the pressure sensor 222 is not limited to the example shown in FIG.
  • Each pressure sensor 222 measures pressure and generates pressure data.
  • a piezoelectric element that converts pressure into an electrical signal can be used as the pressure sensor.
  • the sampling frequency is, for example, 125 Hz.
  • a pressure waveform as shown in FIG. 6 is obtained as pressure data.
  • the measurement result of the pressure pulse wave is generated based on the pressure data output from one pressure sensor (active channel) 222 adaptively selected from the pressure sensors 222.
  • the maximum value in the waveform of the pressure pulse wave for one heartbeat corresponds to systolic blood pressure (SBP), and the minimum value in the waveform of the pressure pulse wave for one heartbeat is diastolic blood pressure (DBP; Diastolic Blood Pressure).
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • the blood pressure data can include pressure data output from each of the pressure sensors 222 along with the measurement result of the pressure pulse wave.
  • the measurement result of the pressure pulse wave may not be generated by the blood pressure measurement device 20 but may be generated by the blood pressure data processing device 10 based on the pressure data.
  • the pressing mechanism 23 includes, for example, an air bag and a pump that adjusts the internal pressure of the air bag.
  • the pressure sensor 222 is pressed against the wrist Wr by the expansion of the air bag.
  • the pressing mechanism 23 is not limited to a structure using an air bag, and may be realized by any structure capable of adjusting the force with which the pressure sensor 222 is pressed against the wrist Wr.
  • the acceleration sensor 24 detects acceleration acting on the blood pressure measurement device 20 and generates acceleration data.
  • the acceleration sensor 24 for example, a triaxial acceleration sensor can be used. The detection of acceleration is performed in parallel with the blood pressure measurement.
  • the storage unit 25 includes a computer-readable storage medium.
  • the storage unit 25 includes a ROM, a RAM (Random Access Memory), and an auxiliary storage device.
  • the ROM stores the control program described above.
  • the RAM is used as a work memory by the CPU.
  • the auxiliary storage device stores various data including blood pressure data generated by the blood pressure measurement unit 21 and acceleration data generated by the acceleration sensor 24.
  • the auxiliary storage device includes, for example, a flash memory.
  • the auxiliary storage device includes a storage medium built in the blood pressure measurement device 20, a removable medium such as a memory card, or both.
  • the input unit 26 receives an instruction from the subject.
  • the input unit 26 includes, for example, operation buttons and a touch panel.
  • the output unit 27 outputs information such as blood pressure measurement results.
  • the output unit 27 includes a display device such as a liquid crystal display device.
  • the blood pressure measurement device 20 having the above-described configuration outputs measurement data including blood pressure data and acceleration data.
  • the blood pressure data processing device 10 outputs the first peak data 18 related to the blood pressure surge by processing the time-series data 11 of the blood pressure value based on the measurement data acquired from the blood pressure measurement device 20.
  • the value of systolic blood pressure (SBP) is used as the time series data 11, but the present invention is not limited to this.
  • SBP systolic blood pressure
  • other values that can capture blood pressure surges may be used.
  • DBP diastolic blood pressure
  • PP Pulse Pressure
  • the blood pressure data processing device 10 applies a sliding window to the time-series data 11 of blood pressure values in units of beats, and identifies the peak of the blood pressure surge. Note that the time-series data 11 does not have to be blood pressure value data strictly in beat units.
  • sliding window is also referred to as “window frame”, but these terms are used interchangeably.
  • the peak of the blood pressure surge output from the blood pressure data processing apparatus 10 according to the first embodiment is referred to as “first peak”, and the blood pressure output from the blood pressure data processing apparatus 10 according to the second embodiment to be described later.
  • the surge peak is referred to as a “second peak”. Differences between the first peak and the second peak will be described in the second embodiment.
  • FIG. 7 shows an example of a sliding window applied to the time-series data 11 of blood pressure values.
  • the sliding window SW shown in the figure moves (slides) in beat units along the time axis.
  • the movement width on the time axis corresponds to, for example, one beat.
  • the sliding window SW has a certain window width Ws along the time axis.
  • the window width Ws corresponds to a length of 15 beats, for example.
  • the window width Ws corresponds to the length of the peak detection section when extracting a blood pressure value peak candidate for each moving sliding window SW.
  • FIG. 7 shows a waveform of the time-series data 11 of blood pressure values included in the sliding window SW at a certain time. Whether or not the portion of the time-series data 11 is a blood pressure surge is determined based on the characteristic value of the blood pressure value.
  • the feature amount is, for example, a point P (also referred to as a “maximum point”) that gives the maximum value of SBP in the sliding window SW, and a point B that gives the minimum value of SBP at a time earlier than the point P in the sliding window SW.
  • the difference F is also referred to as “minimum point”. Such a difference F corresponds to the variation amount of SBP in the sliding window SW. Note that the feature amount is not limited to the variation amount of the SBP.
  • a value that can be compared with the above-described difference F of SBP is used.
  • the criterion is 20 [mmHg].
  • the criterion value is not limited to this value.
  • the determination criterion may be 15 [mmHg].
  • the determination result may include not only the peak time but also the surge start time, surge end time, peak SBP, and other feature quantities.
  • the determination result for each sliding window SW is stored in the memory as a peak candidate for each peak detection section.
  • the determination results at each time point of the sliding window SW moving in the time axis direction, that is, the peak candidates for each peak detection section are integrated, and at least one first peak is specified. Specifically, if a certain number or more of peak candidates are obtained at the same time, the time is set as the time of the first peak. It is considered that each sliding window SW outputs the same peak around the peak.
  • the fixed number is “5”, for example.
  • this fixed number is referred to as “integrated beat”.
  • the integrated beat is not limited to 5, and is appropriately determined in consideration of peak detection accuracy and processing speed.
  • the above processing using the sliding window SW may be modified as follows.
  • the maximum point of SBP is set as a peak candidate.
  • the maximum point of SBP is used as a peak candidate as it is without performing the process of checking the fluctuation amount of SBP with the criterion.
  • the first peak is specified by integrating the SBP maximum points for each sliding window SW with the integrated beat number.
  • the blood pressure data processing device 10 includes a preprocessing unit 12, a peak detection interval setting unit 13, a feature amount calculation unit 14, a peak candidate extraction unit 15, a first peak identification unit 16, and a data output unit 17. Is provided. Note that when the SBP maximum point is used as it is as a peak candidate without matching with the criterion as in the above modification, the peak candidate extraction unit 15 can be omitted from the constituent elements. That is, the peak candidate is output from the feature amount calculation unit 14.
  • the blood pressure data processing device 10 holds time-series data 11 of blood pressure values based on the measurement data obtained in the blood pressure measurement device 20.
  • the time-series data 11 of blood pressure values may be provided from the blood pressure measurement device 20 to the blood pressure data processing device 10 by a removable medium.
  • the time series data 11 of the blood pressure value may be provided from the blood pressure measurement device 20 to the blood pressure data processing device 10 by communication (wired communication or wireless communication).
  • the pre-processing unit 12 performs pre-processing such as smoothing using moving average, noise removal, and high-frequency component removal using a low-pass filter on the time-series data 11 of blood pressure values acquired from the blood pressure measurement device 20.
  • the peak detection section setting unit 13 sets a peak detection section in the time series data 11 preprocessed by the preprocessing unit 12.
  • the feature amount calculation unit 14 calculates a feature amount based on one of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP) in the peak detection interval set by the peak detection interval setting unit 13. .
  • the feature amount calculation unit 14 calculates a difference F between a point P that gives the maximum value of SBP in the sliding window SW and a point B that gives the minimum value of SBP at a point in time before the point P in the sliding window SW. Calculated as a feature quantity.
  • the peak candidate extraction unit 15 extracts a peak candidate for each peak detection section by applying a determination criterion to the feature amount calculated by the feature amount calculation unit 14. It should be noted that the peak candidate extraction unit 15 may not perform any processing when the feature amount (variation amount) is not compared with the determination criterion as in the above modification.
  • the first peak specifying unit 16 specifies at least one first peak from the peak candidates. For example, if five or more peak candidates are obtained at the same time, the first peak specifying unit 16 sets the time as the first peak time.
  • the data output unit 17 outputs the first peak data 18 specified by the first peak specifying unit 16.
  • the first peak data 18 includes the time of the first peak and the blood pressure value of the first peak at that time (SBP value in the present embodiment).
  • FIG. 8 is a flowchart illustrating an example of a processing procedure for outputting the first peak data.
  • step S ⁇ b> 1 the preprocessing unit 12 performs preprocessing such as smoothing using moving average or the like on the time series data 11 of blood pressure values acquired from the blood pressure measurement device 20, noise removal, and high frequency component removal using a low-pass filter. Apply.
  • FIG. 9 shows an example of spike noise removal which is a kind of noise removal.
  • the blood pressure value time-series data 11 may include spike noise.
  • the height h s of the spike is large, the difference ds spike endpoint to remove small blood pressure value.
  • the blood pressure value satisfying h s ⁇ 13 [mmHg] and d s ⁇ 7 [mmHg] is removed from the time series data 11.
  • white circles indicate one-point spike noise that is a blood pressure value to be removed.
  • white circles indicate two-point spike noise that is a blood pressure value to be removed.
  • the data point from which the blood pressure value has been removed may be given an interpolation value calculated based on the blood pressure value of the data points before and after the data point.
  • FIG. 10 shows an example of large fluctuation noise removal.
  • the time-series data 11 of the blood pressure value may include noise that greatly changes the blood pressure value for some reason other than the blood pressure surge.
  • the large fluctuation noise removal when the difference h L between blood pressure values before and after the beat becomes a certain value or more, the blood pressure value is removed from the time series data 11.
  • a blood pressure value that satisfies the condition that the fluctuation amount is h L ⁇ 20 [mmHg] is removed from the time-series data 11 as large fluctuation noise.
  • white circles indicate removal targets when the blood pressure value tends to decrease
  • white circles indicate removal targets when the blood pressure value tends to increase.
  • the data point from which the blood pressure value has been removed may be given an interpolation value calculated based on the blood pressure value of the data points before and after the data point.
  • step S2 the time when the fluctuation amount in the window frame exceeds the determination criterion is held.
  • the feature amount calculation unit 14 calculates a feature amount based on one of systolic blood pressure, diastolic blood pressure, and pulse pressure in the peak detection interval set by the peak detection interval setting unit 13.
  • the peak candidate extraction unit 15 holds the time of the maximum point as a peak candidate when the feature amount exceeds the determination criterion (here, 20 [mmHg]).
  • the execution of step S2 is repeated while moving the window frame along the time axis.
  • the peak detection section setting unit 13 sets the peak detection section by shifting the position of the beat to the position of the next beat.
  • the processing in step S2 is repeated up to the position of the last beat in the time series data 11, and finally the window frame result data is output (step S3).
  • step S3 an iterative process for the window frame result data output in step S3 is executed.
  • step S4 if five or more peak candidates are obtained at the same time in the window frame result data, for example, the first peak specifying unit 16 holds the time as the time of the first peak.
  • step S4 is executed for all window frame result data. Finally, all the times (that is, the first peak) when the same time continues for the integrated beat or more are specified.
  • a surge determination is made in step S5.
  • the first peak detection result is narrowed down.
  • the first peak specifying unit 16 narrows down the first peak detection result by another feature amount based on at least one of the waveform shape, time information, and frequency information of the time series data 11.
  • Another feature amount includes the rise time, fall time, area, and correlation coefficient of the blood pressure surge.
  • the minimum point (surge start point) condition used when the feature amount calculation unit 14 calculates the feature amount (variation amount) may be strengthened.
  • the point at which the blood pressure value is stable may be set as the surge start point. In this case, it is possible to extract a case more likely to be a surge.
  • a correlation coefficient indicating an upward trend from the surge start point to the maximum point may be calculated, and the first peak detection result may be narrowed down based on the calculated correlation coefficient.
  • the relationship between the time from the surge start point to the maximum point and the SBP is calculated as a correlation coefficient, and when the correlation coefficient exceeds a predetermined threshold, the first peak is determined as a surge, and the correlation The first peak can be determined as non-surge when the number is below a predetermined threshold.
  • a surge determination may be performed using other obtained SBP or DBP feature quantities or feature quantities of pressure pulse waves (for example, data recorded in units of 125 Hz).
  • step S 6 the first peak data 18 is output from the data output unit 17 as a blood pressure surge detection result.
  • the process of determining the surge is performed by repeating the process of step S4 for integrating peak candidates at the same time.
  • surge may be determined by real-time processing in which these two repeated processes are executed almost simultaneously.
  • FIG. 11 is a flowchart showing in detail the iterative process shown in FIG. In step S21 to step S28, an iterative process for each window frame is executed.
  • This process shows step S2 of FIG. 8 in more detail.
  • a window frame that is, a peak detection section to be subjected to the current iterative process is set (step S21).
  • the length of the peak detection section is equal to 15 beats that is the width of the window frame.
  • the maximum point that gives the maximum value of SBP within the window frame to be processed is specified (step S22).
  • it is determined whether or not data exists at a time point before the maximum point in the peak detection section step S23. If it is determined that there is data at the time before the maximum point, the process proceeds to step S24, and if it is determined that there is no data, the process proceeds to step S29.
  • the minimum point calculation section is set in the current peak detection section (step S24), and the minimum point of the SBP in the section is specified (step S25). .
  • the amount of SBP fluctuation in the window frame to be processed is calculated (step S26).
  • the fluctuation amount is expressed by, for example, SBP (max_time) ⁇ SBP (min_time).
  • the variation amount of the SBP is the variation amount in the window frame that is the processing target in the time series data 11 of the blood pressure value.
  • step S27 it is determined whether or not the fluctuation amount calculated in step S26 exceeds 20 [mmHg], which is a criterion (step S27).
  • the process proceeds to step S28, and when the fluctuation amount does not exceed 20 [mmHg], the process proceeds to step S29.
  • step S28 the time of the SBP maximum point is stored in the memory as the first peak point candidate, and the process returns to step S21.
  • step S21 the window frame to be processed is updated, that is, the peak detection section is shifted to the next beat position, and the processes after step S22 are executed.
  • steps S23 to S27 are skipped.
  • the process from step S23 to step S26 may be performed until the fluctuation amount is calculated, and the determination criterion may be set to a convenient value 0 [mmHg] in step S27 to forcibly advance to step S28.
  • step S29 the time is set as missing. That is, it is determined that a candidate for the first peak point cannot be obtained, and the processing target window frame is updated to the next window frame.
  • the window frame result data includes the SBP value of the first peak point candidate and the time of the first peak point candidate.
  • step S31 to step S33 an iterative process is executed for each window frame result data.
  • This process shows step S4 shown in FIG. 8 in more detail.
  • it is determined whether or not the first peak point candidate at the same time continues for the integrated beat or more (step S31).
  • the integrated beat is 5 in this embodiment. If it is determined that the integrated beat continues, the first peak point candidate is set as the first peak point (step S32). If it is determined in step S31 that the first peak point candidate at the same time does not continue for the integrated beat or more, step S32 is skipped and the same processing is repeated for the next window frame result data.
  • the first peak point data is output (step S33).
  • the data of the first peak point is the first peak data 18 shown in FIG. 1, and includes the SBP value of the first peak point and the time of the first peak point.
  • FIG. 12 is a diagram illustrating a blood pressure surge detection result by the blood pressure data processing device 10 according to the first embodiment. This figure shows a case where a plurality of first peak points P1 to P7 detected by the blood pressure data processing device 10 according to the first embodiment are detected as blood pressure surges along with the waveform of the time series data 11 of blood pressure values. It is.
  • the blood pressure surge does not necessarily occur periodically, and there is a feature that the amount of blood pressure rises and the time during which the blood pressure rises are various. According to this embodiment, such a blood pressure surge can be detected.
  • the first peak of the blood pressure value can be specified by integrating a plurality of peak candidates that satisfy the determination criterion in the time series data 11 of the blood pressure value. Therefore, a blood pressure surge can be detected as the first peak. Further, according to the first embodiment, it is possible to detect a blood pressure surge with high accuracy based on the time-series data 11 of blood pressure values in units of beats, and to have a blood pressure surge that does not appear at a constant period and various patterns. A blood pressure surge can be detected robustly.
  • the feature amount used for surge detection is the difference between the maximum value of SBP in the peak detection interval and the minimum value of SBP before the maximum value in the peak detection interval, so that the SBP in the peak detection interval A blood pressure surge in which the blood pressure value rapidly increases can be detected based on the fluctuation amount of the maximum value.
  • FIG. 13 is a block diagram showing a blood pressure data processing device according to the second embodiment.
  • the blood pressure data processing device 10 according to the second embodiment is obtained by adding a search unit 30 to the components of the blood pressure data processing device 10 according to the first embodiment.
  • Search unit 30 includes a peak detection unit 31 before the first peak, a peak detection unit 32 after the first peak, a blood pressure surge determination unit 33, and a data output unit 34.
  • the search unit 30 searches the time-series data 11 representing the first peak for the second peak corresponding to the blood pressure surge. As a result of the search process, second peak data 35 is output.
  • the first peak data 18 is output from the time-series data 11 of blood pressure values. Specifically, a sliding window is used for the time-series data 11, the amount of SBP fluctuation is calculated for each window frame, this is checked against the blood pressure surge criterion, and the first peak candidate for each window frame is determined. By integrating a plurality of determination results including the first peak, the first peak is specified, and at least one first peak data 18 is output.
  • the search unit 30 searches for the maximum value of the blood pressure value data at least at any time before and after the search range including the first peak in the time series data 11 of the blood pressure value.
  • One second peak is configured to be detected. According to the second embodiment, it is possible to further detect more peaks compared to the case where only the first peak is specified by searching for the maximum value, It is possible to detect a blood pressure surge as a second peak at a time point before one peak or a second peak at a time point after the first peak.
  • FIG. 14 is a flowchart illustrating an example of a processing procedure for outputting the second peak data.
  • the search unit 30 acquires data 18 that is a detection result of the first peak.
  • the width of the window frame used for detecting the first peak is desirably set sufficiently large so that various types of surges can be detected.
  • a blood pressure surge occurs over a relatively short time T1 (eg, 10 seconds) as shown in FIG. 15A, or a blood pressure surge occurs over a relatively long time T2 (eg, 25 seconds) as shown in FIG. 15B. Since there are various surge patterns, it is difficult to define a template for detection.
  • Increasing the width of the window frame in order to detect a long blood pressure surge means that only one of the surges P1 and P2 as shown in FIG. 16 is detected in a relatively short time interval. Become.
  • the second peak can be detected by searching for the maximum value before and after the first peak.
  • the search unit 30 executes an iterative process L1 for each detection result of the first peak.
  • the search unit 30 sets a range in which the second peak is searched for the first peak to be processed in the current iterative process L1, that is, the surge detection point.
  • the peak detection unit 31 before the first peak executes the repetition process L2.
  • the maximum value is searched by going back to the start point of the search range set in step S101 from the surge detection point to be processed.
  • step S102 it is determined whether or not there is a maximum maximum value at a time before the surge point.
  • FIG. 17A shows a search for the maximum maximum value at a time point before the surge point.
  • step S104 the blood pressure surge determination unit 33 determines whether or not the difference between the local maximum value searched in step S102 and the local minimum value calculated in step S103 exceeds a threshold Th. If the threshold Th is exceeded, the blood pressure surge determination unit 33 holds the time of the maximum value as the surge time (second peak) (step S105). If the threshold Th is not exceeded, step S105 is skipped and the iterative process L2 is continued.
  • the peak detection unit 32 after the first peak executes the repetitive process L3.
  • the local maximum value is searched by proceeding along the time axis from the surge detection point to be processed to the end point of the search range set in step S101.
  • FIG. 17B shows a search for the maximum maximum at a time after the surge point.
  • the maximum value S2 after the surge point S1 is searched.
  • step S106 it is determined whether or not a minimum minimum value exists at a time point after the surge point. If there is no minimum minimum value, the process repeats L3. If it is determined in step S106 that the minimum minimum value exists, a maximum value at a time point after the minimum value is calculated in step S107.
  • step S108 the blood pressure surge determination unit 33 determines whether or not the difference between the maximum value searched in step S107 and the minimum value calculated in step S106 exceeds a threshold Th. When the threshold Th is exceeded, the blood pressure surge determination unit 33 holds the time of the maximum value as the surge time (second peak) (step S109). If the threshold Th is not exceeded, step S109 is skipped and the iterative process L3 is continued.
  • step S110 the data output unit 34 outputs the second peak data 35 as the surge time determined by the blood pressure surge determination unit 33. Therefore, the second peak data 35 is additionally output to the first peak data 18 (the detection result of step S100).
  • the second peak data 35 may include not only the peak time but also the surge start time, surge end time, peak SBP, and other feature quantities.
  • the second embodiment by searching for the maximum value, it is possible to further detect more peaks as compared with the case where only the first peak is specified.
  • FIG. 18 is a block diagram showing a blood pressure data processing device according to the third embodiment.
  • 3rd Embodiment adds the visualization part 41 which outputs the visualization file 40 which is the detection result of a blood pressure surge with respect to the structure of the blood-pressure data processing apparatus 10 which concerns on 2nd Embodiment.
  • the visualization unit 41 distinguishes and displays the blood pressure surge detected as the first peak in the time-series data 11 and the blood pressure surge detected as the second peak by the search unit 30 of the second embodiment.
  • the visualization unit 41 may be added to the configuration of the blood pressure data processing device 10 according to the first embodiment. Since the second peak is not detected in the first embodiment, the visualization unit 41 cannot perform the distinction display between the first peak and the second peak. However, in the normal display, the visualization unit 41 is detected as a blood pressure surge. The first peak is displayed on the time series data 11.
  • the visualization unit 41 of the third embodiment performs only the first peak detected as the blood pressure surge, only the second peak, or both the first peak and the second peak on the time series data 11. To display.
  • FIG. 19 shows an example of distinction display by the visualization unit 41.
  • blood pressure surges S1, S3, S4 are detected as the first peak
  • blood pressure surge S2 is detected as the second peak by the search process by the search unit 30.
  • the width of the window frame applied to the detection of the first peak is set large so that a long surge can be detected.
  • FIG. 20 shows an example of the visualization file 40 output from the visualization unit 41.
  • the visualization file 40 includes a surge No. as a column item. , A peak time, a start time, an end time, a peak SBP, and other feature quantities, and a column indicating whether or not it is detected by searching with a truth value (T (rue) / F (alse)) Contains items (detailed search). For example, if “T” is selected and filtered in the “detailed search” of the visualization file 40, only the surge detected by the search can be extracted.
  • the user who is an observer wants to confirm the detection result of the first peak that takes a relatively long time, that is, a relatively long blood pressure surge, and the user It is possible to respond to both the detailed detection result of the peak, that is, the intention to confirm the blood pressure surge that occurs before and after the long blood pressure surge and is detected as the second peak by the search.
  • the blood pressure surges S1 to S4 are displayed at the same time. However, display switching such as hiding the blood pressure surge S2 by the search process or conversely displaying only the blood pressure surge S2 is possible. It is good also as a structure.
  • the blood pressure data processing device 10 includes a CPU 191, a ROM 192, a RAM 193, an auxiliary storage device 194, an input device 195, an output device 196, and a transmitter / receiver 197, which are connected to each other via a bus system 198.
  • the above-described functions of the blood pressure data processing device 10 can be realized by the CPU 191 reading and executing a program stored in a computer-readable recording medium (ROM 192 and / or auxiliary storage device 194).
  • the RAM 193 is used as a work memory by the CPU 191.
  • the auxiliary storage device 194 includes, for example, a hard disk drive (HDD) or a solid state drive (SDD).
  • the auxiliary storage device 194 is used as a storage unit that stores the time-series data 11 shown in FIG.
  • the input device includes, for example, a keyboard, a mouse, and a microphone.
  • the output device includes, for example, a display device such as a liquid crystal display device and a speaker.
  • the transceiver 197 transmits and receives signals to and from other computers. For example, the transceiver 197 receives measurement data from the blood pressure measurement device 20.
  • the blood pressure data processing device is provided separately from the blood pressure measurement device. In other embodiments, some or all of the components of the blood pressure data processing device may be provided in the blood pressure measurement device.
  • the blood pressure measurement device is not limited to the blood pressure measurement device based on the tonometry method, and may be any type of blood pressure measurement device that can continuously measure blood pressure.
  • a pulse wave propagation time PTT; Pulse Transit Time
  • a blood pressure value for example, systolic blood pressure
  • An estimated blood pressure measurement device may be used.
  • a blood pressure measurement device that optically measures volume pulse waves may be used.
  • a blood pressure measuring device that measures blood pressure non-invasively using ultrasonic waves may be used.
  • the blood pressure measurement device 20 is not limited to a wearable device, and may be a stationary device that performs blood pressure measurement with the upper arm of the person to be measured placed on a fixed base.
  • the wearable blood pressure measurement device does not restrain the movement of the measurement subject, but the sensor unit 22 is likely to deviate from an arrangement suitable for measurement.
  • the peak detection section setting unit 13 may use acceleration data for setting the peak detection section in the time series data 11. For example, the process for detecting the body movement of the measurement subject may be performed based on the acceleration data, and the peak detection section setting unit 13 may exclude the time section in which the body movement is detected from the peak detection section.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • a processor A processor; Memory coupled to the processor; Comprising The processor is Obtain time-series data of blood pressure values, One or more peak detection sections are set in the time series data, and a feature amount based on any of systolic blood pressure, diastolic blood pressure, and pulse pressure is calculated for each peak detection section, Identifying at least one first peak from a feature value for each peak detection section; A blood pressure data processing device configured as described above.
  • a blood pressure data processing method comprising:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

血圧値の時系列データから血圧サージを検出すること 血圧値の時系列データを取得する取得部と、前記時系列データに1つ以上のピーク検出区間を設定し、当該ピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を算出する算出部と、前記ピーク検出区間ごとの特徴量から少なくとも1つの第1ピークを特定する特定部と、を備える。

Description

血圧データ処理装置、血圧データ処理方法、およびプログラム
 本発明は、被測定者の血圧を測定する血圧測定装置において得られた血圧データを処理する技術に関する。
 睡眠時無呼吸症候群(SAS;Sleep Apnea Syndrome)を罹患している患者においては、無呼吸後の呼吸再開時に血圧が急激に上昇し、その後に下降することが知られている。以下では、このような急激な血圧変動を「血圧サージ」(または単に「サージ」)と呼ぶ。患者に発生したサージに関連する血圧情報(例えば、単位時間当たりのサージの発生回数、血圧の変動量等の統計量)は、SASの診断や治療に役立つと考えられる。
 24時間自由行動下血圧測定(ABPM;Ambulatory Blood Pressure Monitoring)は、24時間にわたって血圧を測定するものであって、1時間当たりに数点の血圧値を測定するものである。このようなABPMでは、短時間に発生する血圧変動を捉えることができず、急激な血圧変動であるサージを検出することも困難である。
 日本国特開2007-282668号公報には、血圧測定値の日内変動や週内変動を捉えることを目的として、従来の血圧測定装置を用いて複数日時に測定された血圧値データを統合することが記載されている。
 日本国特開2012-239807号公報には、低酸素状態で測定される血圧と血中酸素飽和度との関係から被検者の心血管リスクを評価することについて記載され、低酸素下で測定された血圧と、非低酸素下で測定された血圧との差分を求めること(血圧の上昇量)について記載されている。
 しかしながら、血圧測定装置において得られた血圧値データからサージを検出する技術は確立していない。したがって、サージに関連する血圧情報を得るには、医師などの人による作業を必要とする。睡眠中の患者について得られる血圧値の時系列データ量は膨大である。例えば、一晩の睡眠時間を8時間として約3万拍の血圧値の時系列データが得られる。このような血圧データからサージを人手で探し出すのは困難である。
 本発明は、上記の事情に着目してなされたものであり、その目的は、血圧値の時系列データから血圧サージを検出することができる血圧データ処理装置、血圧データ処理方法、およびプログラムを提供することである。
 上記の目的を達成するために、本発明は、以下の態様を採用する。
 第1の態様では、血圧データ処理装置は、血圧値の時系列データを取得する取得部と、前記時系列データに1つ以上のピーク検出区間を設定し、当該ピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を算出する算出部と、前記ピーク検出区間ごとの特徴量から少なくとも1つの第1ピークを特定する特定部と、を備える。
 第1の態様によれば、血圧値の時系列データにおけるピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量から第1ピークを特定することができる。したがって、第1ピークとして血圧サージを検出することができる。前記時系列データを拍単位の血圧値とすれば、高精度に血圧サージを検出することができる。また、一定周期では現れない血圧サージや、様々なパタンをもつ血圧サージをロバストに検出することができる。
 第2の態様では、前記特徴量を、前記収縮期血圧、前記拡張期血圧、前記脈圧のいずれかの最大値としてもよい。
 第3の態様では、前記特徴量を、前記ピーク検出区間における前記収縮期血圧、拡張期血圧、脈圧のいずれかの最大値と、当該ピーク検出区間における当該最大値よりも前の時点の前記収縮期血圧、拡張期血圧、脈圧のいずれかの最小値との差としてもよい。第3の態様によれば、ピーク検出区間における収縮期血圧、拡張期血圧、脈圧のいずれかの変動量に基づいて、血圧値が急激に上昇する血圧サージを検出することができる。
 第4の態様では、前記特徴量に判定基準を適用することにより、前記ピーク検出区間ごとのピーク候補を抽出する抽出部をさらに備えてもよい。
 第5の態様において、前記ピーク候補は、前記判定基準を満たす前記最大値が得られた時点を含んでもよく、前記特定部は、同一時点における一定の数以上の前記ピーク候補に基づいて、前記第1ピークを特定してもよい。第5の態様によれば、判定基準を満たす前記最大値が得られた時点によって表されるピーク候補を統合することで血圧サージを検出することができる。
 第6の態様において、前記特定部は、前記時系列データの波形形状、時間情報、周波数情報の少なくとも1つに基づく別の特徴量によって前記第1ピークの絞り込みを行ってもよい。第6の態様によれば、ピークデータの増大を防ぐことができ、サージらしい事例を適切に検出することができる。
 第7の態様では、前記別の特徴量を、血圧サージの上昇時間、下降時間、面積、相関係数としてもよい。
 第8の態様は、第1乃至第7の態様の血圧データ処理装置において、前記時系列データとともに前記第1ピークを表示する表示部をさらに備えるようにしたものである。
 第9の態様では、前記第1ピークを含む探索範囲の前後少なくともいずれかの時点における前記時系列データの極大値を探索することにより、少なくとも1つの第2ピークを検出する探索部を備えてもよい。
 第9の態様によれば、前記時系列データの極大値の探索が行われることにより、第1ピークのみを特定する場合に比べて、より多くのピークを検出することが可能となる。また第5の態様によれば、第1ピークよりも前の時点の第2ピークや、第1ピークよりも後の時点の第2ピークとして血圧サージを検出することが可能になる。
 第10の態様では、前記第1ピークおよび前記第2ピークを表示する表示部と、前記第1ピークと前記第2ピークとを区別して表示するように前記表示部を制御する表示制御部とを備えてもよい。第10の態様によれば、ユーザが、比較的長い時間を要して発生したピークの検出結果、つまり比較的長い血圧サージを確認したい意図と、同ユーザが、ピークの詳細な検出結果、すなわち長い血圧サージの前後に発生し、上記探索によって検出された血圧サージを確認したい意図の両方に応えることが可能となる。
 本発明によれば、血圧値の時系列データから血圧サージを検出することができる技術を提供することができる。
図1は、第1の実施形態に係る血圧データ処理装置を示すブロック図である。 図2は、図1に示した血圧測定装置の一例を示すブロック図である。 図3は、図2に示した血圧測定部を示す側面図である。 図4は、図2に示した血圧測定部を示す断面図である。 図5は、図2に示した血圧測定部を示す平面図である。 図6は、図5に示した各圧力センサによって測定される圧力の波形を示す図である。 図7は、スライド窓の一例を示す図である。 図8は、第1ピークのデータを出力する処理手順の一例を示すフローチャートである。 図9は、スパイクノイズ除去の例を示す図である。 図10は、大変動ノイズ除去の例を示す図である。 図11は、図8に示した繰り返し処理を詳細に示すフローチャートである。 図12は、第1の実施形態に係る血圧データ処理装置による血圧サージの検出結果を示す図である。 図13は、第2の実施形態に係る血圧データ処理装置を示すブロック図である。 図14は、第2ピークのデータを出力する処理手順の一例を示したフローチャートである。 図15Aは、比較的短い時間をかけて発生するサージを示す図である。 図15Bは、比較的長い時間をかけて発生するサージの例を示す図である。 図16は、サージの検出漏れの例を示す図。 図17Aは、サージ点の前の時点における最大の極大値の探索を示す図である。 図17Bは、サージ点の後の時点における最大の極大値の探索を示す図である。 図18は、第3の実施形態に係る血圧データ処理装置を示すブロック図である。 図19は、可視化部による表示例を示す図である。 図20は、可視化部から出力される可視化ファイルの例を示す図である。 図21は、血圧データ処理装置のハードウェア構成例を示すブロック図である。
 以下、図面を参照しながら本発明の実施形態について説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る血圧データ処理装置10を概略的に示している。図1に示すように、血圧データ処理装置10は、被測定者の血圧を測定する血圧測定装置20において得られた血圧値の時系列データ11を処理するものである。血圧データ処理装置10は、例えば、パーソナルコンピュータまたはサーバなどのコンピュータ上に実装されることができる。
 まず、図2から図6を参照して血圧測定装置20について説明する。第1の実施形態では、血圧測定装置20は、被測定者の手首に装着されるウェアラブル装置であり、トノメトリ法により被測定者の橈骨動脈の圧脈波を測定する。ここで、トノメトリ法とは、皮膚の上から動脈を適切な圧力で押圧して動脈に扁平部を形成し、動脈内部と外部とのバランスがとれた状態で圧力センサにより非侵襲的に圧脈波を計測する方法をいう。トノメトリ法によれば、一心拍ごとの血圧値を得ることができる。
 図2は、第1の実施形態に係る血圧測定装置20を概略的に示している。図2に示すように、血圧測定装置20は、血圧測定部21、加速度センサ24、記憶部25、入力部26、出力部27、および制御部28を備える。制御部28は、血圧測定装置20の各部を制御する。制御部28の機能は、CPU(Central Processing Unit)などのプロセッサがROM(Read-Only Memory)などのコンピュータ読み取り可能な記憶媒体に記憶されている制御プログラムを実行することにより実現されることができる。
 血圧測定部21は、被測定者の圧脈波を測定し、圧脈波の測定結果を含む血圧データを生成する。図3は、血圧測定部21が図示しないベルトによって被測定者の手首Wrに装着された状態を示す側面図であり、図4は、血圧測定部21の構造を概略的に示す断面図である。図3および図4に示すように、血圧測定部21は、センサ部22および押圧機構23を備える。センサ部22は、橈骨動脈RAが内部に存在する部位(この例では手首Wr)に接触するように配置される。押圧機構23は、センサ部22を手首Wrに対して押圧する。
 図5は、センサ部22の手首Wrと接触する側の面を示している。図5に示すように、センサ部22は、1以上の(この例では2つの)圧力センサアレイ221を備え、圧力センサアレイ221の各々は、方向Bに沿って配列された複数の(例えば46個の)圧力センサ222を有する。方向Bは、血圧測定装置20が被測定者に装着された状態において橈骨動脈の伸びる方向Aと交差する方向である。圧力センサ222には、チャンネル番号が付与されている。圧力センサ222の配置は図5に示す例に限定されない。
 各圧力センサ222は、圧力を測定して圧力データを生成する。圧力センサとしては、圧力を電気信号に変換する圧電素子を用いることができる。サンプリング周波数は、例えば、125Hzである。図6に示すような圧力波形が圧力データとして得られる。圧脈波の測定結果は、圧力センサ222の中から適応的に選択された1つの圧力センサ(アクティブチャンネル)222から出力された圧力データに基づいて生成される。一心拍分の圧脈波の波形における最大値は収縮期血圧(SBP;Systolic Blood Pressure)に対応し、一心拍分の圧脈波の波形における最小値は拡張期血圧(DBP;Diastolic Blood Pressure)に対応する。血圧データは、圧脈波の測定結果とともに、圧力センサ222それぞれから出力される圧力データを含むことができる。なお、圧脈波の測定結果は、血圧測定装置20において生成されずに、血圧データ処理装置10によって圧力データに基づいて生成されてもよい。
 押圧機構23は、例えば、空気袋と空気袋の内圧を調整するポンプとを含む。ポンプが空気袋の内圧を高めるように制御部28によって駆動されると、空気袋の膨張により圧力センサ222が手首Wrに押し当てられる。なお、押圧機構23は、空気袋を用いた構造に限定されず、圧力センサ222を手首Wrに押し当てる力を調整できるいかなる構造により実現されてもよい。
 加速度センサ24は、血圧測定装置20に作用する加速度を検出して加速度データを生成する。加速度センサ24としては、例えば、三軸加速度センサを用いることができる。加速度の検出は、血圧測定と並行して実行される。
 記憶部25は、コンピュータ読み取り可能な記憶媒体を含む。例えば、記憶部25は、ROM、RAM(Random Access Memory)、および補助記憶装置を含む。ROMは、上述した制御プログラムを記憶する。RAMはCPUによってワークメモリとして使用される。補助記憶装置は、血圧測定部21によって生成された血圧データおよび加速度センサ24によって生成された加速度データを含む各種データを記憶する。補助記憶装置は、例えば、フラッシュメモリを含む。補助記憶装置は、血圧測定装置20に内蔵された記憶媒体、メモリーカードなどのリムーバブルメディア、またはこれら両方を含む。
 入力部26は、被測定者からの指示を受け付ける。入力部26は、例えば、操作ボタン、タッチパネルなどを含む。出力部27は、血圧測定結果などの情報を出力する。出力部27は、例えば、液晶表示装置などの表示装置を含む。
 上述した構成を有する血圧測定装置20は、血圧データと加速度データとを含む測定データを出力する。
 次に、本実施形態に係る血圧データ処理装置10による血圧サージ検出について説明する。
 第1の実施形態において、血圧データ処理装置10は、血圧測定装置20から取得した測定データに基づく血圧値の時系列データ11を処理することによって、血圧サージに関する第1ピークのデータ18を出力する。時系列データ11として本実施形態では収縮期血圧(SBP)の値を用いることとするが、これに限定されない。血圧値の時系列データ11として、血圧サージを捉えることが可能な他の値を用いてもよい。例えば拡張期血圧(DBP)や、脈圧(PP; Pulse Pressure)を用いてもよい。
 本実施形態に係る血圧データ処理装置10は、拍単位の血圧値の時系列データ11に対し、スライド窓(Sliding Window)を適用して血圧サージのピークを同定する。なお、時系列データ11は、厳密に拍単位の血圧値データである必要はない。また、以下の説明では「スライド窓」のことを「窓枠」とも称するが、これらの語は同じ意味で用いる。
 第1の実施形態に係る血圧データ処理装置10から出力される血圧サージのピークのことを「第1ピーク」と称し、後述する第2の実施形態に係る血圧データ処理装置10から出力される血圧サージのピークのことを「第2ピーク」と称する。第1ピークと第2ピークの相違点については第2の実施形態において説明する。
 図7は、血圧値の時系列データ11に適用されるスライド窓の一例を示している。同図に示すスライド窓SWは、時間軸に沿って拍単位で移動(滑走)する。その時間軸上の移動幅は、例えば1拍に相当する。またスライド窓SWは、時間軸に沿って一定の窓幅Wsを持つ。窓幅Wsは、例えば15拍の長さに相当する。窓幅Wsは、移動するスライド窓SWごとに血圧値のピーク候補を抽出するときの、ピーク検出区間の長さに対応する。図7は、ある時点のスライド窓SWに含まれる血圧値の時系列データ11の波形を示している。スライド窓SWに対し、その時系列データ11の部分が血圧サージであるか否かを、血圧値の特徴量に基づいて判定する。
 特徴量は、例えば、スライド窓SW内のSBPの最大値を与える点P(「最大点」とも称する)と、この点Pよりもスライド窓SWにおける前の時点においてSBPの最小値を与える点B(「最小点」とも称する)との差Fとする。このような差Fは、スライド窓SWにおけるSBPの変動量に相当する。なお、特徴量はSBPの変動量のみに限定されない。スライド窓SWについて特徴量が算出されると、この特徴量が判定基準を満たすかどうかが判定される。
 判定基準として、上述したSBPの差Fと比較可能な値が用いられる。例えば、判定基準は20[mmHg]である。判定基準値はこの値に限定されない。例えば判定基準を15[mmHg]としてもよい。判定基準を満たす場合、少なくとも点Pの時刻(すなわちサージのピーク時刻)を判定結果として保持する。判定結果は、ピーク時刻のみならず、サージの開始時刻、サージの終了時刻、ピーク時のSBP、その他特徴量を含んでもよい。
 各スライド窓SWについての判定結果は、ピーク検出区間ごとのピーク候補としてメモリに記憶される。時間軸方向に移動するスライド窓SWの各時点の判定結果、すなわちピーク検出区間ごとのピーク候補は統合され、少なくとも1つの第1ピークが特定される。具体的には、同一時刻において一定の数以上のピーク候補が得られているならば、その時刻を第1ピークの時刻とする。ピーク周辺において、各スライド窓SWは同一のピークを出力すると考えられる。
 ここで、一定の数は例えば「5」である。拍単位の時系列データを用い、スライド窓SWが1拍単位で移動する本実施形態において、この一定の数のことを「統合拍」と称する。なお、統合拍は5に限定されず、ピークの検出精度と処理速度を勘案して適宜定められる。
 なお、スライド窓SWを用いた上記の処理は、次のように変形してもよい。 
 例えば、SBPの最大点をピーク候補とする。この場合、スライド窓SWの滑走にともなう各処理において、SBPの変動量を判定基準と照合する処理を行うことなく、SBPの最大点をそのままピーク候補とする。最終的に、スライド窓SWごとのSBPの最大点を統合拍数で統合することにより、第1ピークを特定する。
 以下、第1の実施形態に係る血圧データ処理装置10の構成について説明する。
 図1に示すように、血圧データ処理装置10は、前処理部12、ピーク検出区間設定部13、特徴量算出部14、ピーク候補抽出部15、第1ピーク特定部16、およびデータ出力部17を備える。なお、上記変形例のように判定基準との照合を行わずSBPの最大点をそのままピーク候補とする場合には、ピーク候補抽出部15を構成要素から省くことができる。すなわち、特徴量算出部14からピーク候補が出力されることになる。
 血圧データ処理装置10は、血圧測定装置20において得られた測定データに基づく血圧値の時系列データ11を保持する。血圧値の時系列データ11は、リムーバブルメディアによって血圧測定装置20から血圧データ処理装置10へ提供されてもよい。あるいは、通信(有線通信または無線通信)によって血圧測定装置20から血圧データ処理装置10へ血圧値の時系列データ11が提供されてもよい。
 前処理部12は、血圧測定装置20から取得した血圧値の時系列データ11に移動平均などを用いた平滑化、ノイズ除去、ローパスフィルタを用いた高周波成分除去等の前処理を施す。
 ピーク検出区間設定部13は、前処理部12によって前処理が施された時系列データ11においてピーク検出区間を設定する。
 特徴量算出部14は、ピーク検出区間設定部13により設定されたピーク検出区間における収縮期血圧(SBP)、拡張期血圧(DBP)、脈圧(PP)のいずれかに基づく特徴量を算出する。特徴量算出部14は、例えば、スライド窓SW内のSBPの最大値を与える点Pと、この点Pよりもスライド窓SWにおける前の時点においてSBPの最小値を与える点Bとの差Fを特徴量として算出する。
 ピーク候補抽出部15は、特徴量算出部14によって算出された特徴量に判定基準を適用することにより、ピーク検出区間ごとのピーク候補を抽出する。なお、上記変形例のように特徴量(変動量)と判定基準との照合を行わない場合に、ピーク候補抽出部15が何も処理を行わないようにしてもよい。
 ピーク候補抽出部15によりピーク検出区間ごとのピーク候補が抽出されると、第1ピーク特定部16は、当該ピーク候補から少なくとも1つの第1ピークを特定する。第1ピーク特定部16は、同一時刻に例えば5以上のピーク候補が得られているならば、その時刻を第1ピークの時刻とする。
 データ出力部17は、第1ピーク特定部16によって特定された第1ピークのデータ18を出力する。第1ピークのデータ18は、第1ピークの時刻と、その時刻における第1ピークの血圧値(本実施形態ではSBPの値)を含む。
 次に、第1の実施形態に係る血圧データ処理装置10の動作について説明する。図8は、第1ピークのデータを出力する処理手順の一例を示したフローチャートである。
 ステップS1において、前処理部12は、血圧測定装置20から取得した血圧値の時系列データ11に移動平均などを用いた平滑化、ノイズ除去、ローパスフィルタを用いた高周波成分除去等の前処理を施す。
 図9に、ノイズ除去の一種であるスパイクノイズ除去の例を示す。血圧値の時系列データ11にはスパイクノイズが含まれることがある。スパイクノイズ除去では、スパイクの高さhが大きく、スパイク端点の差dsが小さい血圧値を除去する。例えば、h≧13[mmHg]でかつd≦7[mmHg]を満たす血圧値を時系列データ11から除去する。図9の左側の例において、白丸は除去対象の血圧値である1点スパイクノイズを示している。図9の右側の例において、白丸は除去対象の血圧値である2点スパイクノイズを示している。なお、図9に示したスパイクノイズの波形を上下反転したものをスパイクノイズとして除去対象としてもよい。血圧値が除去されたデータ点には、その前後のデータ点の血圧値に基づいて算出された補間値が与えられてもよい。
 図10に、大変動ノイズ除去の例を示す。血圧値の時系列データ11には、血圧サージ以外の何らかの理由により、血圧値が大きく変動するノイズが含まれることがある。大変動ノイズ除去では、拍の前後における血圧値の差hが一定値以上となる場合に、その血圧値を時系列データ11から除去する。例えば、変動量がh≧20[mmHg]の条件を満たす血圧値を大変動ノイズとして時系列データ11から除去する。図10の左側の例において、白丸は血圧値が下降傾向にある場合の除去対象を示しており、図10の右側の例において、白丸は血圧値が上昇傾向にある場合の除去対象を示している。血圧値が除去されたデータ点には、その前後のデータ点の血圧値に基づいて算出された補間値が与えられてもよい。
 次に、窓枠ごとの繰り返し処理が実行される。窓枠は、時間軸に沿って拍単位で移動する。ステップS2において、窓枠内の変動量が判定基準を超える時刻を保持する。具体的には、ピーク検出区間設定部13により設定されたピーク検出区間における収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を特徴量算出部14が算出する。ピーク候補抽出部15は、この特徴量が判定基準(ここでは20[mmHg])を超える場合に最大点の時刻をピーク候補として保持する。時間軸に沿って窓枠を移動しながら、ステップS2の実行が繰り返される。窓枠の移動(スライド)に伴い、ピーク検出区間設定部13は、拍の位置を次の拍の位置にずらすことによりピーク検出区間を設定する。時系列データ11において最後の拍の位置までステップS2の処理が繰り返され、最終的に窓枠結果データが出力される(ステップS3)。
 次に、第1ピークを特定するために、ステップS3によって出力された窓枠結果データを対象とする繰り返し処理が実行される。ステップS4において、第1ピーク特定部16は、窓枠結果データにおいて同一時刻に例えば5以上のピーク候補が得られているならば、その時刻を第1ピークの時刻として保持する。すべての窓枠結果データについてステップS4が実行される。最終的に、同一時刻が統合拍以上続くときのすべての時刻(すなわち第1ピーク)が特定される。
 次に、ステップS5においてサージ判定が行われる。ここでは、第1ピーク検出結果の絞り込みを行う。第1ピーク特定部16は、時系列データ11の波形形状、時間情報、周波数情報の少なくとも1つに基づく別の特徴量によって第1ピーク検出結果の絞り込みを行う。別の特徴量は、血圧サージの上昇時間、下降時間、面積、相関係数を含む。
 例えば近接する2つの第1ピークが検出されており、両者のSBPの値がほぼ同じである場合に、SBPが大きい方の第1ピークを採用し、他方の第1ピークを不採用とすることで絞り込みを行ってもよい。また、特徴量算出部14が特徴量(変動量)を算出する際に用いる最小点(サージ開始点)の条件を強めてもよい。具体的には、SBPの最小値に代えて、血圧値が安定している点をサージ開始点としてもよい。この場合、よりサージらしい事例を抽出することができる。さらに、サージ開始点から最大点までの上昇傾向を示す相関係数を算出し、算出した相関係数に基づいて第1ピーク検出結果の絞り込みを行ってもよい。具体的には、サージ開始点から最大点までの時間とSBPとの関係性を相関係数として算出し、相関係数が所定の閾値を超える場合に第1ピークをサージと判定し、相関係数が所定の閾値を下回る場合に第1ピークを非サージと判定することができる。このようなサージ判定は、その他得られるSBPやDBPの特徴量、圧脈波(例えば125Hz単位で記録されたデータ)の特徴量を用いて行われてもよい。
 そしてステップS6においては、血圧サージの検出結果として第1ピークのデータ18がデータ出力部17から出力される。
 なお、図8に示した処理は、窓枠内変動量を判定基準と照合するステップS2の繰り返し処理を行ったのち、同一時刻のピーク候補を統合するステップS4の繰り返し処理を行ってサージを判定するものとして説明したが(バッチ処理)、これら2つの繰り返し処理をほぼ同時に実行するリアルタイム処理によってサージを判定してもよい。
 図11は、図8に示した繰り返し処理を詳細に示すフローチャートである。ステップS21~ステップS28において、窓枠ごとの繰り返し処理が実行される。この処理は、図8のステップS2をより詳細に示したものである。まず、今回の繰り返し処理の対象となる窓枠、すなわちピーク検出区間が設定される(ステップS21)。本実施形態において、ピーク検出区間の長さは窓枠の幅である15拍に等しい。次に、血圧値の時系列データ11について、処理対象の窓枠内でSBPの最大値を与える最大点が特定される(ステップS22)。続いて、ピーク検出区間においてこの最大点よりも前の時点にデータが存在するか否かが判定される(ステップS23)。最大点前の時点のデータが存在すると判定されたならばステップS24に進み、存在しないと判定されたならばステップS29に進む。
 最大点前の時点のデータが存在する場合、今回の処理対象のピーク検出区間内に最小点の算出区間を設定し(ステップS24)、同区間内のSBPの最小点を特定する(ステップS25)。ステップS22において特定されたSBPの最大点と、ステップS25において特定されたSBPの最小点とに基づいて、処理対象の窓枠におけるSBPの変動量が算出される(ステップS26)。変動量は、例えばSBP(max_time)-SBP(min_time)で表される。このSBPの変動量は、血圧値の時系列データ11において処理対象である窓枠内の変動量である。
 次に、ステップS26において算出された変動量が判定基準である20[mmHg]を超えているかどうかを判定する(ステップS27)。変動量が20[mmHg]を超える場合にはステップS28に進み、変動量が20[mmHg]を超えていない場合にはステップS29に進む。ステップS28においてSBPの最大点の時刻を第1ピーク点候補としてメモリに保持したのち、ステップS21に戻る。ステップS21では、処理対象の窓枠を更新し、すなわちピーク検出区間を次の拍位置にずらし、ステップS22以降の処理を実行する。
 なお、上述した判定基準との照合を行わずSBPの最大点をそのままピーク候補とする変形例を採用する場合には、ステップS23~ステップS27をスキップする。もしくは、ステップS23~ステップS26により変動量の算出までを実行し、ステップS27において判定基準を便宜的な値0[mmHg]に設定することで強制的にステップS28に進んでもよい。
 ステップS29においては、時刻を欠損と設定する。つまり、第1ピーク点の候補は得られないと判定し、処理対象の窓枠を次の窓枠に更新する。
 最後の窓枠まで処理が完了したら、窓枠結果データを出力する(ステップS30)。窓枠結果データは、第1ピーク点候補のSBPの値と、当該第1ピーク点候補の時刻とを含む。
 続いて、ステップS31~ステップS33において、窓枠結果データごとの繰り返し処理が実行される。この処理は、図8に示したステップS4をより詳細に示したものである。ここでは、同一時刻の第1ピーク点候補が統合拍以上継続しているか否かが判定される(ステップS31)。統合拍は、本実施形態では5としている。統合拍以上継続していると判定されたならば、当該第1ピーク点候補を第1ピーク点とする(ステップS32)。ステップS31において、同一時刻の第1ピーク点候補が統合拍以上継続していないと判定されたならば、ステップS32をスキップし、次の窓枠結果データについて同様の処理を繰り返す。最後の窓枠結果データまで処理が完了すると、第1ピーク点データを出力する(ステップS33)。第1ピーク点のデータは、図1に示した第1ピークのデータ18のことであり、第1ピーク点のSBPの値と、当該第1ピーク点の時刻とを含む。
 図12は、第1の実施形態に係る血圧データ処理装置10による血圧サージの検出結果を示す図である。同図には、血圧値の時系列データ11の波形とともに第1の実施形態に係る血圧データ処理装置10によって検出された複数の第1ピーク点P1~P7が血圧サージとして検出された場合が示される。
 血圧サージは、必ずしも周期的に発生せず、血圧値の上昇量や上昇時間も様々であるという特徴があるが、本実施形態によれば、このような血圧サージを検出することができる。
 以上説明した第1の実施形態によれば、血圧値の時系列データ11において判定基準を満たす複数のピーク候補を統合して血圧値の第1ピークを特定することができる。したがって、第1ピークとして血圧サージを検出することができる。また第1の実施形態によれば、拍単位の血圧値の時系列データ11に基づいて、高精度に血圧サージを検出することができ、一定周期では現れない血圧サージや、様々なパタンをもつ血圧サージをロバストに検出することができる。サージ検出に用いる特徴量を、ピーク検出区間におけるSBPの最大値と、当該ピーク検出区間における当該最大値よりも前の時点のSBPの最小値との差とすることにより、ピーク検出区間におけるSBPの最大値の変動量に基づいて血圧値が急激に上昇する血圧サージを検出することができる。
 (第2の実施形態)
 図13は、第2の実施形態に係る血圧データ処理装置を示すブロック図である。第2の実施形態に係る血圧データ処理装置10は、第1の実施形態に係る血圧データ処理装置10の構成要素に探索部30を付加したものである。探索部30は、第1ピーク前のピーク検出部31と、第1ピーク後のピーク検出部32と、血圧サージ判定部33と、データ出力部34とを含む。
 探索部30は、第1ピークを表す時系列データ11に対し、血圧サージに相当する第2ピークの探索を行う。探索処理の結果、第2ピークのデータ35が出力される。
 第1の実施形態は、血圧値の時系列データ11から第1ピークのデータ18を出力するものであった。具体的には、時系列データ11に対してスライド窓を用い、窓枠ごとにSBPの変動量を算出してこれを血圧サージの判定基準と照合し、窓枠ごとの第1ピークの候補を含む複数の判定結果を統合することによって第1ピークを特定し、少なくとも1つの第1ピークのデータ18を出力するものであった。
 一方、第2の実施形態では、探索部30が血圧値の時系列データ11において第1ピークを含む探索範囲の前後少なくともいずれかの時点における血圧値データの極大値を探索することにより、少なくとも1つの第2ピークを検出するように構成されている。このような第2の実施形態によれば、極大値の探索が行われることにより、第1ピークのみを特定する場合に比べて、より多くのピークをさらに検出することが可能であって、第1ピークよりも前の時点の第2ピークや、第1ピークよりも後の時点の第2ピークとして血圧サージを検出することが可能になる。
 第2の実施形態に係る血圧データ処理装置10の動作について説明する。図14は、第2ピークのデータを出力する処理手順の一例を示したフローチャートである。
 ステップS100において、探索部30は第1ピークの検出結果であるデータ18を取得する。第1ピークの検出に用いる窓枠の幅は、様々なタイプのサージを検出することができるように十分に大きく設定することが望ましい。血圧サージは、図15Aに示すように比較的短い時間T1(例えば10秒)をかけて発生するものや、図15Bに示すように比較的長い時間T2(例えば25秒)をかけて発生するものがあり、サージのパタンは様々であることから、検出のためのテンプレートを定めることが困難である。長い血圧サージを検出するために窓枠の幅を大きくすることは、図16に示すようなサージP1、P2が比較的に短い時間間隔で発生している場合、一方のみが検出されることとなる。第2の実施形態は、第1ピークの検出に用いる窓枠の幅を十分に大きくしても、第1ピークの前後の極大値探索により第2ピークを検出することができる。
 次に、探索部30は、第1ピークの検出結果ごとの繰り返し処理L1を実行する。繰り返し処理L1において、まずステップS101において、探索部30は、今回の繰り返し処理L1における処理対象の第1ピークすなわちサージ検出点について、第2ピークを探索する範囲を設定する。次に、第1ピーク前のピーク検出部31は、繰り返し処理L2を実行する。ここでは、処理対象のサージ検出点から、ステップS101において設定された探索範囲の開始点まで遡ることで極大値を探索する。具体的には、まずステップS102において、サージ点の前の時点で最大の極大値が存在するか否かを判定する。図17Aに、サージ点の前の時点における最大の極大値の探索を示す。サージ点S1の前の極大値S2が探索される。最大の極大値が存在しない場合には、繰り返し処理L2を抜ける。ステップS102において最大の極大値が存在すると判定されたならば、ステップS103において当該極大値の前の時点における極小値を算出する。次に、ステップS104では、ステップS102において探索された極大値とステップS103において算出された極小値との差が閾値Thを超えるか否かを血圧サージ判定部33が判定する。閾値Thを超える場合には、血圧サージ判定部33は極大値の時刻をサージ時刻(第2ピーク)として保持する(ステップS105)。閾値Thを超えない場合には、ステップS105をスキップして繰り返し処理L2を継続する。
 繰り返し処理L2が完了すると、第1ピーク後のピーク検出部32が繰り返し処理L3を実行する。ここでは、処理対象のサージ検出点から、ステップS101において設定された探索範囲の終了点まで時間軸に沿って進むことで極大値を探索する。図17Bに、サージ点の後の時点における最大の極大値の探索を示す。サージ点S1の後の極大値S2が探索される。
 具体的には、まずステップS106において、サージ点の後の時点で最小の極小値が存在するか否かを判定する。最小の極小値が存在しない場合には、繰り返し処理L3を抜ける。ステップS106において最小の極小値が存在すると判定されたならば、ステップS107において当該極小値の後の時点における極大値を算出する。次に、ステップS108では、ステップS107において探索された極大値とステップS106において算出された極小値との差が閾値Thを超えるか否かを血圧サージ判定部33が判定する。閾値Thを超える場合には、血圧サージ判定部33は極大値の時刻をサージ時刻(第2ピーク)として保持する(ステップS109)。閾値Thを超えない場合には、ステップS109をスキップして繰り返し処理L3を継続する。
 ステップS110において、データ出力部34は、血圧サージ判定部33によって判定されたサージ時刻として第2ピークのデータ35を出力する。したがって、第2ピークのデータ35が第1ピークのデータ18(ステップS100の検出結果)に追加出力されることになる。なお、第2ピークのデータ35は、ピーク時刻のみならず、サージの開始時刻、サージの終了時刻、ピーク時のSBP、その他特徴量を含んでもよい。
 以上説明したように、第2の実施形態によれば、極大値の探索が行われることにより、第1ピークのみを特定する場合に比べて、より多くのピークをさらに検出することが可能であって、第1ピークよりも前の時点の第2ピークや、第1ピークよりも後の時点の第2ピークとして血圧サージを検出することが可能になる。言い換えると、窓枠の幅に対して短い時間間隔で続けて発生するサージを検出することが可能になる。
 (第3の実施形態)
 図18は、第3の実施形態に係る血圧データ処理装置を示すブロック図である。第3の実施形態は、第2の実施形態に係る血圧データ処理装置10の構成に対し、血圧サージの検出結果である可視化ファイル40を出力する可視化部41を追加したものである。可視化部41は、時系列データ11において第1ピークとして検出された血圧サージと、第2の実施形態の探索部30によって第2ピークとして検出された血圧サージとを区別して表示する。
 第1の実施形態に係る血圧データ処理装置10の構成に可視化部41を追加してもよい。第1の実施形態では第2ピークの検出を行わないので、可視化部41は第1ピークと第2ピークの区別表示を行い得ないが、通常表示において、可視化部41は血圧サージとして検出された第1ピークを時系列データ11上に表示する。
 通常表示に関して、第3の実施形態の可視化部41は、血圧サージとして検出された第1ピークのみ、第2ピークのみ、または第1ピークおよび第2ピークの両方を区別しないで時系列データ11上に表示する。
 図19は、可視化部41による区別表示の例を示している。血圧値の時系列データ11の波形表示において、血圧サージS1、S3、S4は第1ピークとして検出されたものであり、血圧サージS2は第2ピークとして探索部30による探索処理によって検出されたものであることが区別して表示される。第2の実施形態において説明したように、第1ピークの検出に適用される窓枠の幅は、長いサージを検出できるように大きく設定されたものである。
 図20は、可視化部41から出力される可視化ファイル40の例を示したものである。可視化ファイル40は、列項目として、サージNo.、ピーク時刻、開始時刻、終了時刻、ピークSBP、その他特徴量を含んでおり、探索によって検出されたものであるか否かを真偽値(T(rue)/F(alse))によって表す列項目(詳細探索)を含んでいる。例えば、可視化ファイル40の「詳細探索」において、「T」を選択してフィルタ処理すれば、探索によって検出されたサージだけを抽出することができる。
 このような第3の実施形態では、観察者であるユーザが、比較的長い時間を要して発生した第1ピークの検出結果、つまり比較的長い血圧サージを確認したい意図と、同ユーザが、ピークの詳細な検出結果、すなわち長い血圧サージの前後に発生し、上記探索によって第2ピークとして検出された血圧サージを確認したい意図の両方に応えることが可能となる。なお、図20の例は血圧サージS1~S4を同時に表示するものとしたが、探索処理による血圧サージS2を非表示としたり、逆に、血圧サージS2のみを表示させるなどの表示切替が可能な構成としてもよい。
 次に、図21を参照して血圧データ処理装置10のハードウェア構成例について説明する。
 血圧データ処理装置10は、CPU191、ROM192、RAM193、補助記憶装置194、入力装置195、出力装置196、および送受信器197を備え、これらがバスシステム198を介して互いに接続されている。血圧データ処理装置10の上述した機能は、CPU191がコンピュータ読み取り可能な記録媒体(ROM192および/または補助記憶装置194)に記憶されたプログラムを読み出し実行することにより実現されることができる。RAM193は、CPU191によってワークメモリとして使用される。補助記憶装置194は、例えば、ハードディスクドライブ(HDD)またはソリッドステートドライブ(SDD)を含む。補助記憶装置194は、図1等に示した時系列データ11を記憶する記憶部として使用される。入力装置は、例えば、キーボード、マウス、およびマイクロフォンを含む。出力装置は、例えば、液晶表示装置などの表示装置およびスピーカを含む。送受信器197は、他のコンピュータとの間で信号の送受信を行う。例えば、送受信器197は、血圧測定装置20から測定データを受信する。
 (他の実施形態)
 第1の実施形態では、血圧データ処理装置は血圧測定装置とは別に設けられている。他の実施形態では、血圧データ処理装置の構成要素の一部または全部が血圧測定装置に設けられていてもよい。
 血圧測定装置は、トノメトリ法による血圧測定装置に限らず、血圧を連続的に測定できる任意のタイプの血圧測定装置であってもよい。例えば、動脈を伝播する脈波の伝播時間である脈波伝播時間(PTT;Pulse Transit Time)を非侵襲的に測定し、測定した脈波伝播時間に基づいて血圧値(例えば収縮期血圧)を推定する血圧測定装置を用いてもよい。また、容積脈波を光学的に測定する血圧測定装置を用いてもよい。また、超音波を用いて非侵襲的に血圧を測定する血圧測定装置を用いてもよい。
 血圧測定装置20は、ウェアラブル装置に限らず、被測定者の上腕を固定台に載置した状態で血圧測定を行うような据え置き型装置であってもよい。ウェアラブルの血圧測定装置は被測定者の動きを拘束しないが、センサ部22が測定に適した配置から逸脱しやすい。
 ピーク検出区間設定部13は、時系列データ11におけるピーク検出区間の設定に加速度データを用いてもよい。例えば、加速度データに基づいて被測定者の体動を検出する処理を行い、ピーク検出区間設定部13は、体動が検出された時間区間をピーク検出区間から除外してもよい。
 本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 プロセッサと、
 プロセッサに結合されたメモリと、
 を具備し、
 前記プロセッサは、
 血圧値の時系列データを取得し、
 前記時系列データに1つ以上のピーク検出区間を設定し、当該ピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を算出し、
 前記ピーク検出区間ごとの特徴量から少なくとも1つの第1ピークを特定する、
 ように構成された、血圧データ処理装置。
 (付記2)
 少なくとも1つのプロセッサを用いて、血圧値の時系列データを取得することと、
 少なくとも1つのプロセッサを用いて、前記時系列データに1つ以上のピーク検出区間を設定し、当該ピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を算出することと、
 少なくとも1つのプロセッサを用いて、前記ピーク検出区間ごとの特徴量から少なくとも1つの第1ピークを特定することと、
 を具備する血圧データ処理方法。

Claims (12)

  1.  血圧値の時系列データを取得する取得部と、
     前記時系列データに1つ以上のピーク検出区間を設定し、当該ピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を算出する算出部と、
     前記ピーク検出区間ごとの特徴量から少なくとも1つの第1ピークを特定する特定部と、
     を具備する血圧データ処理装置。
  2.  前記特徴量は、前記収縮期血圧、前記拡張期血圧、前記脈圧のいずれかの最大値を含む、請求項1に記載の血圧データ処理装置。
  3.  前記特徴量は、前記ピーク検出区間における前記最大値と、当該ピーク検出区間における当該最大値よりも前の時点の前記収縮期血圧、前記拡張期血圧、前記脈圧のいずれかの最小値との差を含む、請求項2に記載の血圧データ処理装置。
  4.  前記特徴量に判定基準を適用することにより、前記ピーク検出区間ごとのピーク候補を抽出する抽出部をさらに具備する、請求項3に記載の血圧データ処理装置。
  5.  前記ピーク候補は、前記判定基準を満たす前記最大値が得られた時点を含み、
     前記特定部は、同一時点における一定の数以上の前記ピーク候補に基づいて、前記第1ピークを特定する請求項4に記載の血圧データ処理装置。
  6.  前記特定部は、前記時系列データの波形形状、時間情報、周波数情報の少なくとも1つに基づく別の特徴量によって前記第1ピークの絞り込みを行う、請求項1乃至5のいずれかに記載の血圧データ処理装置。
  7.  前記別の特徴量は、血圧サージの上昇時間、下降時間、面積、相関係数を含む、請求項6に記載の血圧データ処理装置。
  8.  前記時系列データとともに前記第1ピークを表示する表示部をさらに具備する、請求項1乃至7のいずれかに記載の血圧データ処理装置。
  9.  前記第1ピークを含む探索範囲の前後少なくともいずれかの時点における前記時系列データの極大値を探索することにより、少なくとも1つの第2ピークを検出する探索部をさらに具備する、請求項1乃至7のいずれかに記載の血圧データ処理装置。
  10.  前記時系列データとともに前記第1ピークおよび前記第2ピークを表示する表示部と、
     前記第1ピークと前記第2ピークとを区別して表示するように前記表示部を制御する表示制御部とをさらに具備する、請求項9に記載の血圧データ処理装置。
  11.  血圧値の時系列データを取得することと、
     前記時系列データに1つ以上のピーク検出区間を設定し、当該ピーク検出区間ごとの収縮期血圧、拡張期血圧、脈圧のいずれかに基づく特徴量を算出することと、
     前記ピーク検出区間ごとの特徴量から少なくとも1つの第1ピークを特定することと、
     を具備する血圧データ処理方法。
  12.  コンピュータを、請求項1乃至10のいずれか一項に記載の血圧データ処理装置として機能させるためのプログラム。
PCT/JP2018/009583 2017-03-14 2018-03-12 血圧データ処理装置、血圧データ処理方法、およびプログラム WO2018168810A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018001399.5T DE112018001399T5 (de) 2017-03-14 2018-03-12 Blutdruckdatenverarbeitungsvorrichtung, blutdruckdatenverarbeitungsverfahren und -programm
CN201880017870.6A CN110418603B (zh) 2017-03-14 2018-03-12 血压数据处理装置、血压数据处理方法以及程序
US16/561,347 US20200008690A1 (en) 2017-03-14 2019-09-05 Blood pressure data processing apparatus, blood pressure data processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-048946 2017-03-14
JP2017048946A JP6790936B2 (ja) 2017-03-14 2017-03-14 血圧データ処理装置、血圧データ処理方法、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/561,347 Continuation US20200008690A1 (en) 2017-03-14 2019-09-05 Blood pressure data processing apparatus, blood pressure data processing method, and program

Publications (1)

Publication Number Publication Date
WO2018168810A1 true WO2018168810A1 (ja) 2018-09-20

Family

ID=63523030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009583 WO2018168810A1 (ja) 2017-03-14 2018-03-12 血圧データ処理装置、血圧データ処理方法、およびプログラム

Country Status (5)

Country Link
US (1) US20200008690A1 (ja)
JP (1) JP6790936B2 (ja)
CN (1) CN110418603B (ja)
DE (1) DE112018001399T5 (ja)
WO (1) WO2018168810A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020130531A (ja) * 2019-02-18 2020-08-31 オムロンヘルスケア株式会社 血圧関連情報処理装置、血圧関連情報処理方法、およびプログラム
JP7253419B2 (ja) 2019-03-25 2023-04-06 オムロンヘルスケア株式会社 血圧関連情報表示装置、血圧関連情報表示方法、およびプログラム
JP7088153B2 (ja) * 2019-09-19 2022-06-21 カシオ計算機株式会社 Cap(周期性脳波活動)検出装置、cap(周期性脳波活動)検出方法及びプログラム
WO2022003969A1 (ja) * 2020-07-03 2022-01-06 三菱電機株式会社 データ処理装置及びデータ処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256998A (ja) * 1995-03-27 1996-10-08 Nippon Colin Co Ltd 生体情報監視装置
JP2004057362A (ja) * 2002-07-26 2004-02-26 Nippon Colin Co Ltd 血圧監視装置
JP2005218492A (ja) * 2004-02-03 2005-08-18 Omron Healthcare Co Ltd 電子血圧計
US20070156201A1 (en) * 2005-12-29 2007-07-05 Cvrx, Inc. Hypertension treatment device and method for mitigating rapid changes in blood pressure
JP2012239808A (ja) * 2011-05-24 2012-12-10 Omron Healthcare Co Ltd 血圧測定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406952A (en) * 1993-02-11 1995-04-18 Biosyss Corporation Blood pressure monitoring system
US7089927B2 (en) * 2002-10-23 2006-08-15 New York University System and method for guidance of anesthesia, analgesia and amnesia
JP2007282668A (ja) 2006-04-12 2007-11-01 Omron Healthcare Co Ltd 血圧計、血圧測定システムおよび測定データ処理プログラム
CN102293652B (zh) * 2010-06-23 2014-05-21 朝鲜大学校产学协力团 基于示波法测量动脉血压的个体识别装置及方法
US9314205B2 (en) * 2011-04-28 2016-04-19 Medtronic, Inc. Measurement of cardiac cycle length and pressure metrics from pulmonary arterial pressure
JP5693377B2 (ja) 2011-05-24 2015-04-01 オムロンヘルスケア株式会社 心血管リスク評価装置
TWI631930B (zh) * 2013-04-01 2018-08-11 美盛醫電股份有限公司 生理訊號感測裝置
CN103565427B (zh) * 2013-11-19 2016-09-28 深圳邦健生物医疗设备股份有限公司 准周期生理信号特征点的检测
US20170251927A1 (en) * 2014-08-27 2017-09-07 Nec Corporation Blood pressure determination device, blood pressure determination method, recording medium for recording blood pressure determination program, and blood pressure measurement device
KR101656740B1 (ko) * 2015-04-08 2016-09-12 고려대학교 산학협력단 동맥 혈압 파형의 특징점 검출 장치 및 방법
CN105962920B (zh) * 2016-04-20 2019-06-11 广州视源电子科技股份有限公司 血压脉率检测方法及其系统
TWI653029B (zh) * 2016-12-01 2019-03-11 深禾醫學科技股份有限公司 脈搏偵測模組及包含其的血壓隨測裝置
US10548487B2 (en) * 2017-04-24 2020-02-04 Monovo, LLC Wearable vital sign monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256998A (ja) * 1995-03-27 1996-10-08 Nippon Colin Co Ltd 生体情報監視装置
JP2004057362A (ja) * 2002-07-26 2004-02-26 Nippon Colin Co Ltd 血圧監視装置
JP2005218492A (ja) * 2004-02-03 2005-08-18 Omron Healthcare Co Ltd 電子血圧計
US20070156201A1 (en) * 2005-12-29 2007-07-05 Cvrx, Inc. Hypertension treatment device and method for mitigating rapid changes in blood pressure
JP2012239808A (ja) * 2011-05-24 2012-12-10 Omron Healthcare Co Ltd 血圧測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KARIO, K. ET AL.: "Morning Surge in Blood Pressure as a Predictor of Silent and Clinical Cerebrovascular Disease in Elderly Hypertensives", CIRCULATION, vol. 103, 3 March 2003 (2003-03-03), pages 1401 - 1406, XP055545912 *
KUWABARA, M. ET AL.: "Development of Triggered Nocturnal Blood Pressure Monitoring which Detects Nighttime Blood Pressure Surges in Sleep Apnea Syndrome", CURRENT HYPERTENSION REVIEWS, vol. 12, no. 1, December 2016 (2016-12-01), pages 27 - 31, XP055545909 *

Also Published As

Publication number Publication date
US20200008690A1 (en) 2020-01-09
CN110418603B (zh) 2022-06-10
JP2018149183A (ja) 2018-09-27
CN110418603A (zh) 2019-11-05
JP6790936B2 (ja) 2020-11-25
DE112018001399T5 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
JP6687263B2 (ja) 生体情報分析装置、システム、プログラム、及び、生体情報分析方法
JP4469746B2 (ja) 心拍計測装置及び心拍計測装置の作動方法
US7029448B2 (en) Electronic hemomanometer and blood pressure measuring method of electronic hemomanometer
JP6121177B2 (ja) ソースビデオ画像から動脈拍動経過時間を導出すること
JP5098721B2 (ja) 血圧測定装置、血圧導出プログラムおよび血圧導出方法
US20230056557A1 (en) System and method for pulse transmit time measurement from optical data
WO2018168810A1 (ja) 血圧データ処理装置、血圧データ処理方法、およびプログラム
JP2007007075A (ja) 血圧測定装置
EP2665410A1 (en) Physiological parameter monitoring with a mobile communication device
US10357164B2 (en) Method and device for non-invasive blood pressure measurement
JP6181576B2 (ja) 血行動態測定装置及び血行動態測定方法
US20250082212A1 (en) System and method for blood pressure estimate based on ptt from the face
US20120029366A1 (en) Blood pressure detection apparatus and blood pressure detection method
CN106999071A (zh) 脉波分析装置
JP6766710B2 (ja) 血圧測定装置、方法及びプログラム
US20200008691A1 (en) Blood pressure data processing apparatus, blood pressure data processing method, and program
JP5471297B2 (ja) 拍動検出装置及び拍動検出方法
JP2001333889A (ja) 血圧計
JP7087267B2 (ja) 血圧データ処理装置、血圧データ処理方法、およびプログラム
JP2009273716A (ja) 電子血圧計
WO2025042374A1 (en) Device for the diagnosis of obstructive sleep apnea
TWI575474B (zh) 人體器官之生理微震動感測系統及方法
JP2010051659A (ja) 血圧情報測定装置
HK1191533B (en) Physiological parameter monitoring with a mobile communication device
HK1191533A (en) Physiological parameter monitoring with a mobile communication device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766622

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18766622

Country of ref document: EP

Kind code of ref document: A1