[go: up one dir, main page]

WO2018168970A1 - Hydraulic control device - Google Patents

Hydraulic control device Download PDF

Info

Publication number
WO2018168970A1
WO2018168970A1 PCT/JP2018/010088 JP2018010088W WO2018168970A1 WO 2018168970 A1 WO2018168970 A1 WO 2018168970A1 JP 2018010088 W JP2018010088 W JP 2018010088W WO 2018168970 A1 WO2018168970 A1 WO 2018168970A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pressure
valve
signal pressure
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/010088
Other languages
French (fr)
Japanese (ja)
Inventor
博之 九坪
怜士 興梠
雄一郎 梅本
朋也 岡本
一輝 柳原
一輝 小嶋
芳充 兵藤
土田 建一
智己 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Publication of WO2018168970A1 publication Critical patent/WO2018168970A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present disclosure relates to a hydraulic control that regulates oil supplied from at least one of a mechanical pump driven by power from a prime mover of a vehicle and an electric pump driven by electric power and supplies the pressure to an engagement element of a transmission. Relates to the device.
  • a first hydraulic circuit for supplying hydraulic oil to primary and secondary pulleys and clutches of a continuously variable transmission, and a second hydraulic pressure for supplying hydraulic oil to a torque converter and a lubrication unit (low pressure oil supply unit) A first hydraulic pressure when the engine pump is stopped and the hydraulic pump is supplied with hydraulic oil by stopping the operation of the engine due to idling stop; an engine pump driven by a circuit and an engine; an electric pump driven by a motor;
  • a hydraulic pump device including a stop valve that is closed so as to prohibit the outflow of hydraulic oil from a circuit to a second hydraulic circuit (see, for example, Patent Document 1).
  • the hydraulic oil from the electric pump when the hydraulic oil is supplied by the electric pump, the hydraulic oil from the electric pump is supplied only to the first hydraulic circuit by closing the stop valve. Thereby, the hydraulic oil from the electric pump is supplied with priority over the primary pulley, the secondary pulley, and the clutch.
  • the invention of the present disclosure suppresses the increase in size and cost of the electric pump, and when the oil is not supplied from the mechanical pump when the engine is stopped, the engagement element of the transmission and the low-pressure oil supply
  • the main purpose is to provide a hydraulic control device capable of ensuring a good supply amount of oil to both of the parts.
  • the hydraulic control device regulates oil from at least one of a mechanical pump driven by power from an engine of a vehicle and an electric pump driven by electric power to perform a plurality of engagements of the transmission.
  • a first oil passage connected to the mechanical pump and including a first check valve for restricting the inflow of oil to the mechanical pump side, and the first check passage connected to the electric pump and the first check valve A second oil passage connected to the first oil passage on the downstream side of the valve, a third oil passage branched from the second oil passage, and a joining portion of the first oil passage and the second oil passage
  • a fourth oil passage connecting the at least one engagement element, and the first oil passage between the mechanical pump and the first check valve, and from the mechanical pump
  • a regulator valve that regulates oil to generate an original pressure, a signal pressure output valve that outputs a signal pressure, and a low pressure oil supply unit of the transmission according to an output state of the signal pressure by the signal pressure output valve A first state allowing the supply of oil
  • the first state in which the supply of the oil supplied from the electric pump to the third oil passage to the low-pressure oil supply unit of the transmission is allowed according to the output state of the signal pressure by the signal pressure output valve.
  • the switching valve can be switched to form either one of the second state in which the supply of oil supplied from the electric pump to the low-pressure oil supply unit to the third oil passage is restricted.
  • the oil from the electric pump is not supplied to the low pressure oil supply unit, and the engine is connected to the engine via the second oil path and the fourth oil path. It can be supplied to an engagement element that is engaged at restart.
  • the oil for both the engagement element and the low-pressure oil supply unit of the transmission is suppressed when the oil is not supplied from the mechanical pump with the stop of the engine operation while suppressing the increase in size and cost of the electric pump. This makes it possible to ensure a good supply amount.
  • FIG. 3 is an operation table showing a relationship between each shift stage of the automatic transmission included in the power transmission device of FIG. 2 and operation states of clutches and brakes.
  • FIG. 2 is a time chart for explaining the operation of the hydraulic control device and the like when the engine is started in response to a start request to the vehicle after the operation of the engine is stopped with the stop of the vehicle in FIG. 1.
  • FIG. 2 is a time chart for explaining the operation of the hydraulic control device and the like when the engine is restarted after the operation of the engine is stopped in accordance with the stop of the vehicle or the inertial running of FIG. 1. It is a schematic block diagram which shows the other switching valve applicable to the hydraulic control apparatus shown in FIG.
  • FIG. 1 is a schematic configuration diagram of a vehicle 10 equipped with a power transmission device 20 including a hydraulic control device 70 of the present disclosure.
  • a vehicle 10 shown in the figure is a front-wheel drive vehicle having an engine 12 and a power transmission device 20 that transmits power from the engine 12 to left and right drive wheels (front wheels) DW.
  • the engine 12 is stopped, and the engine 12 is restarted in response to a start request to the vehicle 10 by the driver. It is possible to perform inertial running that stops the operation of the vehicle.
  • FIG. 1 is a schematic configuration diagram of a vehicle 10 equipped with a power transmission device 20 including a hydraulic control device 70 of the present disclosure.
  • a vehicle 10 shown in the figure is a front-wheel drive vehicle having an engine 12 and a power transmission device 20 that transmits power from the engine 12 to left and right drive wheels (front wheels) DW.
  • the engine 12 is stopped, and the engine 12 is restarted in response to a start request to the vehicle 10 by the driver. It is possible to perform iner
  • the vehicle 10 includes an engine electronic control unit (hereinafter referred to as “EG ECU”) 14 that controls the engine 12 and a brake electronic control unit (hereinafter referred to as “electronic control hydraulic brake unit”) that is not shown. , “Brake ECU”) 16 and a shift electronic control unit (hereinafter referred to as “TMECU”) 21 for controlling the power transmission device 20.
  • EG ECU engine electronic control unit
  • ECU brake electronic control unit
  • TMECU shift electronic control unit
  • the EGECU 14 is a microcomputer including a CPU (not shown), a crankshaft position sensor (not shown) that detects the rotational position of the crankshaft of the engine 12, and an accelerator pedal position sensor 92 that detects the amount of depression (operation amount) of the accelerator pedal 91.
  • signals from various sensors such as the vehicle speed sensor 99, signals from the brake ECU 16 and TMECU 21, and the like are input. Based on these signals, the EGECU 14 controls an electronically controlled throttle valve, fuel injection valve, spark plug, etc. (not shown).
  • the brake ECU 16 is also a microcomputer including a CPU (not shown).
  • Signals from various sensors such as a master cylinder pressure sensor 94 and a vehicle speed sensor 99 for detecting the master cylinder pressure corresponding to the depression amount of the brake pedal 93, and from the EGECU 14 and the like. Input signals. Based on these signals, the brake ECU 16 controls a brake actuator (hydraulic actuator) (not shown) and the like.
  • a brake actuator hydraulic actuator
  • the TMECU 21 is also a microcomputer including a CPU (not shown), and includes a shift position sensor 96 for detecting an operation position of the shift lever 95 for selecting a desired shift position from a plurality of shift positions, an accelerator pedal position sensor 92, a vehicle speed. Sensor 99, signals from various sensors such as an input rotation speed sensor for detecting the input rotation speed of the automatic transmission 25 (the rotation speed of the turbine runner 23b or the input shaft 26 of the automatic transmission 25), signals from the EGECU 14 and the brake ECU 16 Enter etc. The TMECU 21 controls the power transmission device 20 based on these signals.
  • the power transmission device 20 includes a transmission case 22, a starting device (fluid transmission device) 23 housed in the transmission case 22, and a mechanical oil pump 24 driven by power from the engine 12. , An electric oil pump 28 driven by electric power from a battery (not shown), an automatic transmission 25, a gear mechanism (gear train) 40, a differential gear (differential mechanism) 50, a hydraulic control device 70, and the like.
  • the transmission case 22 is fastened to the transaxle case 222 so as to be positioned between the housing 221 and the transaxle case 222 ( A front support 223 that is fixed) and a center support 224 that is fastened (fixed) to the transaxle case 222.
  • the housing 221, the transaxle case 222, and the center support 224 are formed of, for example, an aluminum alloy
  • the front support 223 is formed of a steel material (iron alloy) or an aluminum alloy.
  • the starting device 23 includes a front cover connected to the crankshaft of the engine 12 via a drive plate (not shown), an input-side pump impeller 23p having a pump shell that is tightly fixed to the front cover, and an automatic transmission 25.
  • a one-way clutch 23o that is supported by the shaft and restricts the rotation direction of the stator 23s to one direction is included.
  • Pump impeller 23p, turbine runner 23t, and stator 23s constitute a torque converter having a torque amplifying action.
  • the starting device 23 connects the front cover and the input shaft 26 of the automatic transmission 25 to each other and releases the connection between the front cover and the input shaft 26 of the automatic transmission 25.
  • a damper device 23d for damping the vibration In the present embodiment, the lock-up clutch 23c is configured as a multi-plate friction type hydraulic clutch having a plurality of friction engagement plates (friction plates and separator plates). However, the lockup clutch 23c may be a single plate friction type hydraulic clutch.
  • the starting device 23 may include a fluid coupling that does not include the stator 23s.
  • the mechanical oil pump 24 includes an external gear (inner rotor) 241 connected to the pump impeller 23p of the starting device 23 through a winding transmission mechanism 240, and an internal gear (outer rotor) 242 that meshes with the external gear.
  • a gear pump having a pump body and a pump cover (both not shown) that define a gear chamber (not shown) that accommodates the external gear 241 and the internal gear 242, and is separate from the input shaft 26 of the automatic transmission 25. Arranged on the axis.
  • the mechanical oil pump 24 is driven by the power from the engine 12 via the winding transmission mechanism 240 and is stored in a hydraulic oil reservoir (not shown) provided at the bottom of the transaxle case 222 ( ATF) is sucked and pumped to the hydraulic control device 70.
  • the winding transmission mechanism 240 is a drive sprocket that rotates integrally with the pump impeller 23p of the starting device 23, a driven sprocket that rotates integrally with the external gear of the mechanical oil pump 24, a drive sprocket, and a chain that is wound around the driven sprocket. Etc.
  • the electric oil pump 28 includes an electric motor (not shown) controlled by the TMECU 21 and an impeller rotated by the electric motor, and sucks the hydraulic oil stored in the hydraulic oil storage section of the transaxle case 222. To the hydraulic control device 70.
  • an electric oil pump 28 that can change the discharge flow rate and the discharge pressure by controlling the flow rate of the electric motor is employed.
  • the electric oil pump 28 may be capable of changing the discharge flow rate and the discharge pressure by the rotational speed control (duty control) of the electric motor.
  • the automatic transmission 25 is configured as an 8-speed transmission, and, as shown in FIG. 2, a double pinion type first planetary gear mechanism 30, a Ravigneaux type second planetary gear mechanism 35, and an input It includes four clutches C1, C2, C3 and C4 and two brakes B1 and B2 for changing the power transmission path from the side to the output side.
  • the first planetary gear mechanism 30 is engaged with a sun gear (fixed element) 31 that is an external gear and a ring gear 32 that is an internal gear arranged concentrically with the sun gear 31 and one of the gears is engaged with the sun gear 31.
  • the other has a planetary carrier 34 that holds a plurality of pairs of two pinion gears 33a and 33b meshing with the ring gear 32 so as to be rotatable (rotatable) and revolved.
  • the sun gear 31 of the first planetary gear mechanism 30 is non-rotatably connected (fixed) to the transmission case 22 via the front support 223, and the planetary carrier 34 of the first planetary gear mechanism 30 is
  • the input shaft 26 is connected so as to be integrally rotatable.
  • the first planetary gear mechanism 30 is used as a so-called reduction gear, decelerates the power transmitted to the planetary carrier 34 as an input element, and outputs it from the ring gear 32 as an output element.
  • the second planetary gear mechanism 35 includes a first sun gear 36a and a second sun gear 36b which are external gears, a ring gear 37 which is an internal gear disposed concentrically with the first and second sun gears 36a and 36b, A plurality of short pinion gears 38a meshing with one sun gear 36a, a plurality of long pinion gears 38b meshing with the second sun gear 36b and the plurality of short pinion gears 38a and meshing with the ring gear 37, a plurality of short pinion gears 38a and a plurality of long pinion gears 38b And a planetary carrier 39 that holds the magnet so as to be rotatable (rotatable) and revolved.
  • the ring gear 37 of the second planetary gear mechanism 35 functions as an output member of the automatic transmission 25, and the power transmitted from the input shaft 26 to the ring gear 37 is transmitted to the left and right via the gear mechanism 40, the differential gear 50 and the drive shaft 51. Is transmitted to the driving wheel.
  • the clutch C1 connects the ring gear 32 of the first planetary gear mechanism 30 and the first sun gear 36a of the second planetary gear mechanism 35 to each other and releases the connection between them.
  • the clutch C2 connects the input shaft 26 and the planetary carrier 39 of the second planetary gear mechanism 35 to each other and releases the connection between them.
  • the clutch C3 connects the ring gear 32 of the first planetary gear mechanism 30 and the second sun gear 36b of the second planetary gear mechanism 35 to each other and releases the connection therebetween.
  • the clutch C4 connects the planetary carrier 34 of the first planetary gear mechanism 30 and the second sun gear 36b of the second planetary gear mechanism 35 to each other and releases the connection therebetween.
  • the clutches C1, C2, C3, and C4 are engaged with pistons, a plurality of friction engagement plates (friction plates and separator plates), and engagement hydraulic pressure (hydraulic fluid) supplied from the hydraulic control device 70.
  • a multi-plate friction type hydraulic clutch including a centrifugal oil pressure cancel chamber supplied with hydraulic oil from the hydraulic control device 70 is employed.
  • the brake B1 fixes (connects) the second sun gear 36b of the second planetary gear mechanism 35 to the transmission case 22 in a non-rotatable manner and releases the second sun gear 36b from the transmission case 22.
  • the brake B2 fixes the planetary carrier 39 of the second planetary gear mechanism 35 to the transmission case 22 so as not to rotate, and releases the fixation of the planetary carrier 39 to the transmission case 22.
  • a multi-plate friction type hydraulic brake including a piston, a plurality of friction engagement plates (friction plates and separator plates), an engagement oil chamber to which hydraulic oil is supplied, and the like is employed. .
  • FIG. 3 shows an operation table showing the relationship between the respective shift stages of the automatic transmission 25 and the operation states of the clutches C1 to C4 and the brakes B1 and B2.
  • the automatic transmission 25 shifts the forward first speed to the eighth speed and the reverse first speed and the second speed by setting the clutches C1 to C4 and the brakes B1 and B2 to the states shown in the operation table of FIG. Provide a step. That is, each shift stage of the automatic transmission 25 is formed by engaging any two of the clutches C1 to C4 and the brakes B1 and B2.
  • At least one of the clutches C1 to C4 and the brakes B1 and B2 may be a meshing engagement element such as a dog clutch.
  • the gear mechanism 40 is fixed to a counter drive gear 41 connected to the ring gear 37 of the second planetary gear mechanism 35 of the automatic transmission 25 and a counter shaft 42 extending in parallel with the input shaft 26 of the automatic transmission 25.
  • a counter driven gear 43 that meshes with the counter drive gear 41, a drive pinion gear 44 formed (or fixed) on the counter shaft 42, and a diff ring gear 45 that meshes with the drive pinion gear 44 and is connected to the differential gear 50.
  • the counter drive gear 41 of the gear mechanism 40 is fixed to the transaxle case 222 via a plurality of bolts so as to be positioned between the first and second planetary gear mechanisms 30 and 35.
  • the support 224 is rotatably supported through a bearing.
  • FIG. 4 is a system diagram showing the hydraulic control device 70.
  • the hydraulic control device 70 is connected to the mechanical oil pump 24 and the electric oil pump 28 that can suck and discharge the hydraulic oil from the hydraulic oil reservoir of the transaxle case 222 via the strainer 60.
  • the hydraulic control device 70 generates the hydraulic pressure required by the starting device 23 and the automatic transmission 25, and also provides a low pressure oil supply unit (such as a lubrication target such as various bearings, a centrifugal hydraulic pressure cancellation chamber C1c of the clutches C1 to C4, and the like). Supply hydraulic oil to the lubricated part).
  • a low pressure oil supply unit such as a lubrication target such as various bearings, a centrifugal hydraulic pressure cancellation chamber C1c of the clutches C1 to C4, and the like. Supply hydraulic oil to the lubricated part).
  • the hydraulic control device 70 includes a valve body 700 having a plurality of oil passages L1 to L9 and the like, a primary regulator valve 71, a secondary regulator valve 72, a modulator valve 74, an oil cooler 75, and a linear solenoid valve SL1. , SLT, signal pressure output valve SR, switching valve 80 and the like.
  • the valve body 700 is attached to a side portion of the transaxle case 222 that constitutes the transmission case 22, for example.
  • An oil passage L1 (first oil passage) of the valve body 700 is connected to a discharge port of the mechanical oil pump 24, and a first check valve 77 is installed in the middle thereof.
  • the first check valve 77 allows the hydraulic oil to flow from the mechanical oil pump 24 side to the downstream side when the hydraulic pressure on the upstream side, that is, the mechanical oil pump 24 side is higher than the hydraulic pressure on the downstream side, and upstream.
  • the hydraulic pressure on the side is equal to or lower than the hydraulic pressure on the downstream side, the flow of hydraulic oil from the mechanical oil pump 24 side to the downstream side is blocked. That is, the first check valve 77 closes in response to a decrease in hydraulic pressure from the mechanical oil pump 24.
  • the oil passage L2 (second oil passage) of the valve body 700 has one end connected to the discharge port of the electric oil pump 28 and the other end connected to the oil passage L1 downstream of the first check valve 77.
  • the second check valve 78 is installed in the middle.
  • the second check valve 78 allows the hydraulic oil to flow from the electric oil pump 28 side to the downstream side when the oil pressure on the upstream side, that is, the electric oil pump 28 side is higher than that on the downstream side, that is, the oil passage L1.
  • the hydraulic pressure on the upstream side is equal to or lower than the hydraulic pressure on the downstream side, the flow of hydraulic oil from the electric oil pump 28 side to the downstream side is blocked.
  • the electric oil pump 28 when the electric oil pump 28 is operated in a state where the mechanical oil pump 24 is stopped along with the operation stop of the engine 12, the hydraulic pressure from the electric oil pump 28 enters the oil passage L1. It is supplied as the line pressure PL. Further, the oil passage L3 (third oil passage) of the valve body 700 is branched from the oil passage L2 between the electric oil pump 28 and the second check valve 78.
  • the primary regulator valve 71 is connected to the oil passage L1 between the mechanical oil pump 24 and the first check valve 77, and the hydraulic pressure from the linear solenoid valve SLT is used as a signal pressure from the mechanical oil pump 24.
  • the original pressure is generated by regulating the hydraulic oil.
  • the secondary regulator valve (second regulator valve) 72 uses the hydraulic pressure from the linear solenoid valve SLT as a signal pressure, and the hydraulic oil drained from the primary regulator valve 71 when the original pressure is generated (drain oil). Is adjusted to generate a secondary pressure (circulation pressure) Psec lower than the original pressure (line pressure PL).
  • the linear solenoid valve SLT is controlled by the TMECU 21 so as to adjust the hydraulic oil from the mechanical oil pump 24 side (for example, the modulator valve 74) and output a hydraulic pressure corresponding to the accelerator opening of the vehicle 10 or the opening of the throttle valve. Is done.
  • the TMECU 21 can control the linear solenoid valve SLT regardless of the accelerator opening degree of the vehicle 10, and the primary regulator valve 71 and the secondary regulator can be controlled by controlling the output pressure of the linear solenoid valve SLT.
  • the amount of drain oil of the valve 72 can be adjusted.
  • the modulator valve 74 has an input port connected to the oil passage L4 branched from the oil passage L1 on the downstream side of the first check valve 77, and supplies hydraulic oil (line pressure PL) from the oil passage L1.
  • the pressure is regulated (decompressed) to output a substantially constant modulator pressure Pmod.
  • the oil cooler 75 cools the hydraulic oil (drain oil) drained from the secondary regulator valve 72 as the secondary pressure Psec is generated.
  • the linear solenoid valve SL1 pressure regulating valve
  • the linear solenoid valve SL1 has an input port connected to the oil passage L1, and regulates hydraulic fluid (line pressure PL) from the oil passage L1 to the engagement oil chamber C1e of the clutch C1.
  • a hydraulic pressure engagement hydraulic pressure
  • the linear solenoid valve SL1 (the value of the current applied to the solenoid unit) is controlled by the TMECU 21.
  • the hydraulic control device 70 has a plurality of linear solenoid valves (not shown) corresponding to any one or two of the clutches C2, C3 and C4 and the brakes B1 and B2 of the automatic transmission 25.
  • the linear solenoid valve is also controlled by the TMECU 21.
  • the oil passage L1 is connected to an input port of a linear solenoid valve corresponding to, for example, the clutches C2 and C3 and the brake B2 among these linear solenoid valves (not shown).
  • the input port of the linear solenoid valve corresponding to the clutch C4 and the brake B1 is connected to the output port of the primary regulator valve 71 through an oil passage (not shown) formed in the valve body 700.
  • Signal pressure output valve SR is on-off solenoid valve, for example normally closed type that is controlled energized by TMECU21, the input port of the signal pressure output valve SR is a modulator valve via the oil passage L5, which is formed in the valve body 700 It communicates with 74 output ports.
  • the signal pressure output valve SR outputs the modulator pressure Pmod from the modulator valve 74 as the signal pressure Psr from the output port when energizing the solenoid unit.
  • the switching valve 80 urges the spool 800, a spool 800 that is movably disposed in the axial direction in the valve body 700, a partition member 801 that is fixed in the valve body 700 so as to be aligned with the spool 800 in the axial direction, and the spool 800. And a ball 805 as a valve body disposed in the partition member 801. Further, the switching valve 80 includes a first input port 80a, a second input port 80b, a first output port 80c, a second output port 80d, a signal pressure input port 80e, and first and second drain ports 80f. , 80 g.
  • the spool 800 has two lands 800x and 800y formed at intervals in the axial direction and a ball pressing portion 800z, and is arranged in the valve body 700 so that the ball pressing portion 800z is positioned on the partition member 801 side. Is done.
  • the partition member 801 has a ball chamber 801a formed so as to open on the spool 800 side.
  • the spring 802 is disposed between the land 800 y and the partition member 801 so as to surround the ball pressing portion 800 z of the spool 800, and biases the spool 800 upward in FIG. 4 so as to be separated from the partition member 801.
  • the ball 805 is disposed so as to be movable in the axial direction of the spool 800 in a ball chamber 801 a defined in the partition member 801.
  • the first input port 80a communicates with the space between the two lands 800x and 800y of the spool 800 and also communicates with the drain port of the secondary regulator valve 72 through an oil passage L6 formed in the valve body 700.
  • the hydraulic oil drained from the secondary regulator valve 72 as the secondary pressure Psec is generated is supplied to the first input port 80a via the oil passage L6.
  • the second input port 80 b is connected to the oil passage L 3 formed in the valve body 700 and communicates with the ball chamber 801 a of the partition member 801.
  • the hydraulic oil from the electric oil pump 28 is supplied to the second input port 80b via the oil passage L3 when the electric oil pump 28 is operated.
  • the first output port 80c has a substantially triangular cross-sectional shape that tapers from the partition member 801 side toward the spool 800 side, and the hydraulic oil of the oil cooler 75 is formed through an oil passage L7 formed in the valve body 700. Connect to the entrance.
  • the second output port 80d is connected to an oil passage L8 formed in the valve body 700 and communicates with the ball chamber 801a of the partition member 801. As shown in FIG. 4, the oil passage L8 has a check valve 79 in the middle, and the end of the oil passage L8 opposite to the second output port 80d is connected to the first output port 80c and the oil.
  • the oil passage L7 communicates with the cooler 75.
  • the check valve 79 moves from the second output port 80d side to the oil passage L7 side.
  • the flow of hydraulic oil is allowed, and the flow of hydraulic oil from the second output port 80d side to the oil path L7 side is blocked when the hydraulic pressure on the second output port 80d side is equal to or lower than the hydraulic pressure on the oil path L7 side.
  • the signal pressure input port 80e communicates with the output port of the signal pressure output valve SR via an oil passage L9 formed in the valve body 700.
  • the first drain port 80f has a substantially triangular cross-sectional shape that tapers from the spool 800 side toward the partition member 801 side, and can communicate with the space between the two lands 800x and 800y of the spool 800.
  • the second drain port 80g communicates with a spring chamber in which the spring 802 is disposed and can communicate with the ball chamber 801a of the partition member 801. Thereby, the hydraulic oil remaining in the ball chamber 801a can be returned from the second drain port 80g to the hydraulic oil reservoir through an oil passage (not shown) of the valve body 700.
  • the switching valve 80 is attached in such a manner that the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is not supplied to the signal pressure input port 80e, and the spool 800 is moved upward in FIG. It is the 1st state (state of the left half in the figure) urged so that it may separate from division member 801.
  • the first input port 80a and the first drain port 80f communicate with each other through the space between the two lands 800x and 800y of the spool 800.
  • the switching valve 80 is attached, the upper end of the first output port 80c in the drawing is slightly communicated with the space between the two lands 800x and 800y of the spool 800.
  • the drain oil from the secondary regulator valve 72 supplied to the oil passage L6 basically flows into the first drain port 80f, and the first drain port 80f.
  • the switching valve 80 forms the first state, a small part of the drain oil from the oil passage L6 flows into the oil passage L7 via the first output port 80c. As a result, it is possible to suppress the entry of foreign matter between the land 800y of the spool 800 and the first output port 80c.
  • the spool 800 is biased so as to be separated from the partition member 801 by the spring 802, so that the ball pressing portion 800 z of the spool 800 is moved to the partition member 801. Located in the vicinity of the opening of the ball chamber 801a, an axial interval is formed between the ball pressing portion 800z and the ball 805 in the ball chamber 801a. Accordingly, when the hydraulic oil is supplied from the electric oil pump 28 to the oil passage L3 when the switching valve 80 forms the first state, the ball is caused by the action of the hydraulic pressure supplied from the oil passage L3 to the second input port 80b. 805 is pressed by the valve seat portion on the upper side (the signal pressure input port 80e side) of the partition member 801 in the figure.
  • the second input port 80b of the switching valve 80 communicates with the second output port 80d via the ball chamber 801a, and the hydraulic oil from the oil passage L3 flows to the second input port 80b, the ball chamber 801a, and the second output. It becomes possible to flow into the oil passage L7 through the port 80d and the oil passage L8 (check valve 79).
  • the switching valve 80 forms the second state (the state on the right half in FIG. 4).
  • the switching valve 80 forms the second state, the communication between the first input port 80a and the first drain port 80f is blocked by the land 800x of the spool 800, and the first input port 80a The entire first output port 80c communicates with the space between the two lands 800x and 800y.
  • the spool 800 moves toward the partition member 801, so that the ball pressing portion 800z of the spool 800 contacts the ball 805 in the ball chamber 801a, The ball 805 is pressed against the valve seat portion below the partition member 801 in the drawing (on the second output port 80d side).
  • the area of the pressure receiving surface of the spool 800 that receives the signal pressure Psr (modulator pressure Pmod) supplied to the signal pressure input port 80e is a threshold at which the hydraulic pressure (discharge pressure) from the electric oil pump 28 is predetermined.
  • the ball 805 is basically separated by the ball pressing portion 800z of the spool 800. It remains pressed by the valve seat 801 in the lower part of the figure (the second output port 80d side).
  • the switching valve 80 forms the second state in response to the supply of the signal pressure Psr to the signal pressure input port 80e, the ball 805 causes the second input port 80b of the switching valve 80 and the second output.
  • the communication with the port 80d is cut off, and the hydraulic oil from the electric oil pump 28 can be supplied to the oil path L1 side without being supplied to the second output port 80d.
  • the threshold value for the hydraulic pressure (discharge pressure) from the electric oil pump 28 is subjected to experiments and analysis as an upper limit value of the discharge pressure that does not cause the electric oil pump 28 (magnet coupling) to step out. It has been established. Therefore, if the discharge pressure of the electric oil pump 28 increases more than necessary due to some factor and the hydraulic pressure from the electric oil pump 28 exceeds the above threshold, the ball is caused by the action of the hydraulic pressure supplied from the oil passage L3 to the second input port 80b. The sum of the thrust applied to 805 and the biasing force of the spring 802 overcomes the thrust applied to the spool 800 by the action of the signal pressure Psr supplied to the signal pressure input port 80e, and the switching valve 80 forms the first state.
  • the switching valve 80 can function as a relief valve to suppress the occurrence of step-out of the electric oil pump 28.
  • the engine 12 is restarted in response to a start request to the vehicle 10 after the operation of the engine 12 is stopped as the vehicle 10 stops due to the execution of the idle stop control.
  • the operation of the hydraulic control device 70 during operation will be described.
  • the “operation stop” of the engine 12 means that the engine 12 has been rotated at a lower speed and a sufficient amount of hydraulic oil is not being discharged from the mechanical oil pump 24. Including a state in which the operation is completely stopped.
  • the TMECU 21 releases the energization of the signal pressure output valve SR (maintains the release state) in response to the operation stop (engine stop command) of the engine 12. Then, the output of the signal pressure Psr is stopped and the electric oil pump 28 is operated. Thereby, the switching valve 80 forms the first state described above, and the hydraulic pressure from the electric oil pump 28 is supplied from the oil passage L2 to the oil passage L1 as the line pressure PL. In addition, since the switching valve 80 forms the first state, a part of the oil from the electric oil pump 28 is oil passage L3, the second input port 80b of the switching valve 80, the ball chamber 801a, and the second output port 80d.
  • the oil flows into the oil passage L7 via the oil passage L8 (check valve 79), and is further supplied to the low-pressure oil supply section including the centrifugal oil pressure cancellation chamber C1c of the clutch C1 via the oil cooler 75.
  • the centrifugal hydraulic pressure cancellation chamber of the clutch C1 is reduced. It is possible to suppress a shortage of the amount of hydraulic oil supplied to the low-pressure oil supply unit of the automatic transmission 25 including C1c.
  • the TMECU 21 is engaged when starting the vehicle 10 by restarting the engine 12 from the linear solenoid valve SL1.
  • the hydraulic pressure is such that the engagement oil chamber C1e can be filled with hydraulic oil without giving torque capacity to the clutch C1 (see FIG. 3) (the piston can be moved to eliminate the stroke).
  • the hydraulic pressure command value Psl1 * for the linear solenoid valve SL1 is set so as to be output. Further, during this time, the TMECU 21 controls the electric oil pump 28 so as to generate a hydraulic pressure corresponding to the hydraulic pressure command value Psl1 * for the linear solenoid valve SL1 and the amount of hydraulic oil supplied to the low pressure oil supply unit.
  • the vehicle 10 is stopped (after the engine 12 is stopped), when the driver of the vehicle 10 releases the brake pedal 93 and the accelerator pedal 91 is depressed, the vehicle 10 is requested to start. (Time t1 in FIG. 5), in response to the start request, the TMECU 21 energizes the signal pressure output valve SR and outputs the signal pressure Psr while operating the electric oil pump 28. As a result, the switching valve 80 forms the second state described above, so that the communication between the second input port 80b and the second output port 80d is cut off, and the electric oil pump 28 to the low-pressure oil supply unit of the automatic transmission 25 is disconnected. The supply of hydraulic oil is cut off.
  • the primary regulator valve 71 regulates the hydraulic oil from the mechanical oil pump 24.
  • the secondary regulator valve 72 generates a secondary pressure Psec lower than the primary pressure by regulating the drain oil of the primary regulator valve 71.
  • the original pressure generated by the primary regulator valve 71 does not flow downstream of the first check valve 77 until it becomes higher than the hydraulic pressure from the electric oil pump 28.
  • the drain oil of the secondary regulator valve 72 flows into the oil passage L7 from the oil passage L6 via the first input port 80a and the first output port 80c of the switching valve 80 that forms the second state, and further the oil cooler 75.
  • the hydraulic oil from the electric oil pump 28 is regulated by the linear solenoid valve SL1 and supplied to the engagement oil chamber C1e, and the drain oil of the secondary regulator valve 72 is supplied. Since the centrifugal hydraulic pressure cancellation chamber C1c can be supplied, it is possible to quickly engage the clutch C1 while suppressing the sudden engagement according to the start request. Further, at this time, it is not necessary to increase the discharge flow rate of the electric oil pump 28 in order to cover the supply amount of the hydraulic oil to the low pressure oil supply portion including the centrifugal hydraulic pressure cancel chamber C1c of the clutch C1, so that the electric oil pump 28 Can be reduced in size and cost.
  • the hydraulic control device 70 As a result, according to the hydraulic control device 70, the amount of hydraulic oil supplied to the low-pressure oil supply unit including the centrifugal hydraulic pressure cancellation chamber C1c of the clutch C1 is insufficient while reducing the size and cost of the electric oil pump 28. It becomes possible to suppress.
  • the second is applied until the sum of the thrust applied to the ball 805 and the urging force of the spring 802 overcomes the thrust applied to the spool 800 by the action of the signal pressure Psr.
  • the hydraulic oil from the electric oil pump 28 can be supplied to the linear solenoid valve SL1 and the like while the communication between the input port 80b and the second output port 80d is cut off. Therefore, as shown in FIG. 5, by increasing the discharge pressure (line pressure PL) of the electric oil pump 28, the brake B2 (FIG. 5) that is engaged with the clutch C1 when the engine 10 is restarted and the vehicle 10 is started.
  • the hydraulic oil (line pressure) PL from the electric oil pump 28 is regulated and supplied, and the brake B2 can be engaged.
  • the switching valve 80 can function as a relief valve to suppress the occurrence of step-out of the electric oil pump 28.
  • the switching valve 80 the output of the signal pressure Psr from the signal pressure output valve SR is stopped to form the first state and the signal pressure Psr from the signal pressure output valve SR to the signal pressure input port 80e. It is possible to form the second state by supplying.
  • the switching valve 80 forms the second state, the ball 805 can more reliably suppress the leakage of hydraulic oil between the second input port 80b and the second output port 80d. It is possible to further reduce the burden on the electric oil pump 28 by supplying the hydraulic oil from the oil pump 28 only to the clutch C1 side.
  • the linear solenoid valve SLT may be controlled regardless of the accelerator opening or the like so that the oil flow rate is sufficiently secured.
  • the electric oil pump 28 is stopped after the engine 12 is started, the flow rate of the drain oil of the secondary regulator valve 72 is sufficiently secured, and the hydraulic pressure from the electric oil pump 28 is the original pressure from the mechanical oil pump 24.
  • the discharge pressure of the electric oil pump 28 may be gradually reduced according to the original pressure generated by the primary regulator valve 71 so that it can be quickly replaced.
  • the first output port 80c slightly communicates with the space between the two lands 800x and 800y of the spool 800 when the first state is formed, but the present invention is not limited to this. That is, the switching valve 80 may be configured such that communication between the first input port 80a and the first output port 80c is blocked by the land 800y of the spool 800 when the first state is formed.
  • the hydraulic control device 70 and the TMECU 21 perform the above-described operation during inertial traveling of the vehicle 10. It may be configured as follows. That is, the TMECU 21 cancels the energization of the signal pressure output valve SR (maintains the release state) and stops the output of the signal pressure Psr according to the stop of the engine 12 (engine stop command) accompanying the execution of inertial running. At the same time, the electric oil pump 28 may be operated, and the signal pressure output valve SR may be energized to output the signal pressure Psr while the electric oil pump 28 is operated in response to a request to cancel inertial running.
  • the electric oil pump is operated, so that the clutches C1 ⁇ It is possible to suppress a shortage of the amount of hydraulic oil supplied to the low pressure oil supply section of the automatic transmission 25 including the C4 centrifugal hydraulic pressure cancellation chamber C1c and the like.
  • the hydraulic oil from the electric oil pump 28 is supplied to at least one of the engagement oil chambers C1e of the clutches C1 to C4 engaged when the engine 12 is restarted, and the secondary.
  • the drain oil of the regulator valve 72 is supplied to the centrifugal oil pressure cancel chamber C1c and the like, and at least one of the clutches C1 to C4 can be quickly engaged while suppressing sudden engagement.
  • FIG. 6 is a system diagram showing another hydraulic control device 70B of the present disclosure. Note that among the components of the hydraulic control device 70B, the same components as those of the hydraulic control device 70 described above are denoted by the same reference numerals, and redundant description is omitted.
  • the hydraulic control device 70B is also connected to the mechanical oil pump 24 and the electric oil pump 28, generates the hydraulic pressure required by the starting device 23 and the automatic transmission 25, and lubricates objects such as various bearings and the clutches C1 to C4.
  • the hydraulic oil is supplied to a low-pressure oil supply unit (lubricated part) such as the centrifugal hydraulic pressure cancellation chamber C1c.
  • an oil passage L1 (first oil passage) of the valve body 700B is connected to a discharge port of the mechanical oil pump 24, and a first check valve 77 is installed in the middle thereof.
  • the oil passage L2 (second oil passage) of the valve body 700B includes a second check valve 78 in the middle thereof.
  • One end of the oil passage L2 is connected to the discharge port of the electric oil pump 28, the other end is connected to the downstream side of the first check valve 77 of the oil passage L1, and the oil passage L3 branches from the oil passage L2.
  • the second check valve 78 serves to permit the flow of oil from the electric oil pump 28 side is higher than the hydraulic pressure in the hydraulic pressure merging portion J 12 side to the oil passage L40 side of the diversion unit J 23, branch portion blocking the flow of oil into the oil passage L40 side from the electric oil pump 28 side when the oil pressure in J 23 side is a hydraulic or less in the combined unit J 12 side.
  • the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the like while preventing the hydraulic oil from the mechanical oil pump 24 from being supplied to the low pressure oil supply unit via the oil passage L3 and the switching valve 80. Is possible.
  • the hydraulic control device 70B supplies an oil passage (secondary pressure) from the regulator valve (71) regulated by the secondary regulator valve 72 to the fluid chamber 230 of the starting device (torque converter) ( (Fifth oil passage) L51 and L52, second switching valve 85, check valve (third check valve) 86, for example, modulator pressure Pmod from modulator valve 74 is output as signal pressure when energizing the solenoid portion And an on / off solenoid valve SL output from the port.
  • the second switching valve 85 communicates between the oil passage L51 and the oil passage L52 and communicates between the oil passage L61 and the oil passage L62, the communication between the oil passage L51 and the oil passage L52, and the oil passage L61 and the oil.
  • a shut-off state in which communication with the path L62 is released can be formed, and either a communication state or a shut-off state is formed in the output state of the signal pressure from the on / off solenoid valve SL.
  • the check valve 86 includes a coil spring (not shown), and is installed on the oil passage L62 so as to be positioned between the second switching valve 85 and the oil cooler 75.
  • the check valve 86 restricts the flow of the working oil to the oil cooler 75 side by the biasing force of the coil spring in accordance with the pressure drop of the return oil from the fluid chamber 230.
  • the hydraulic oil that has flowed out of the drain port of the secondary regulator valve 72 is returned to the hydraulic oil reservoir through the strainer 60.
  • the hydraulic oil outlet of the oil cooler 75 communicates with the first input port 80a of the switching valve 80 via the oil passage L6, and an oil passage (not shown) formed in the valve body 700B.
  • the oil passage L7 connected to the first output port 80c of the switching valve 80 is, as shown in FIG. 6, the hydraulic oil of the low-pressure oil supply section that is the centrifugal hydraulic pressure cancellation chamber C1c of the clutch C1. It communicates with an oil passage that communicates with the inlet.
  • the engine 12 is restarted in response to the start request and the inertia travel release request after the operation of the engine 12 is stopped in accordance with the execution of the idle stop control and the inertia travel.
  • the operation of the hydraulic control device 70B at this time will be described.
  • the TMECU 21 In response to the operation stop (engine stop command), the energization to the signal pressure output valve SR is canceled (maintained in the release state) to stop the output of the signal pressure Psr and to operate the electric oil pump 28 (time in FIG. 7). t a ). Thereby, the switching valve 80 forms the first state described above, and the hydraulic pressure from the electric oil pump 28 is supplied from the oil passage L2 to the oil passage L1 as the line pressure PL.
  • the switching valve 80 forms the first state, a part of the oil from the electric oil pump 28 is supplied to the oil passages L2 and L3, the second input port 80b of the switching valve 80, the ball chamber 801a, and the second output.
  • the oil flows into the oil passage L7 via the port 80d and the oil passage L8 (check valve 79), and is supplied to the low-pressure oil supply section including the centrifugal oil pressure cancellation chamber C1c of the clutch C1.
  • the hydraulic oil from the electric oil pump 28 is supplied to the low-pressure oil via the oil passages L2 and L3, the switching valve 80 and the like. It becomes possible to supply to a supply part.
  • the TMECU 21 After the operation of the electric oil pump 28 starts, for example, when the vehicle speed of the vehicle 10 decreases to the first vehicle speed in response to the depression of the brake pedal 93 by the driver (time t b in FIG. 7), the TMECU 21 performs the signal pressure output valve SR. And the signal pressure Psr is output, and as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state. Further, the TMECU 21 is engaged with a brake B1 that is engaged when the second forward speed is formed in order to enable quick start at the second forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve corresponding to the brake B1 is controlled so as to be in a state immediately before the match.
  • the switching valve 80 forms the second state described above, so that the communication between the second input port 80b and the second output port 80d is cut off, and the hydraulic oil from the electric oil pump 28 is supplied to the automatic transmission 25.
  • the oil is supplied from the oil passage L2 to the engagement oil chamber of the brake B1 without being supplied to the low-pressure oil supply unit.
  • the TMECU 21 causes the signal pressure output valve SR to output the signal pressure Psr until a predetermined hydraulic pressure supply time has elapsed from the start of control of the linear solenoid valve of the brake B1 (start of supply of hydraulic oil from the electric oil pump 28). At the same time, the discharge flow rate of the electric oil pump 28 is increased. As a result, the hydraulic oil is rapidly filled into the engagement oil chamber of the brake B1.
  • a predetermined hydraulic pressure supply time from the start of control of the linear solenoid valve of the brake B1 has elapsed (time t c in FIG.
  • TMECU21 stops the output of the signal pressure Psr to release the energization of the signal pressure output valve SR, While fully opening the linear solenoid valve of the brake B1, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.
  • the hydraulic oil from the electric oil pump 28 is supplied to the brake B1 so that the hydraulic pressure in the engagement oil chamber is maintained, and the switching valve 80 forms the first state described above, whereby the oil passage It is also supplied to the low-pressure oil supply unit via L2, L3, the switching valve 80, and the like.
  • the TMECU 21 sets the signal pressure output valve SR. Energization is performed to output the signal pressure Psr, and the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state. Furthermore, the TMECU 21 is engaged with a brake B2 that is engaged when the first forward speed is established in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve corresponding to the brake B2 is controlled so as to be in a state immediately before the match.
  • the switching valve 80 forms the second state so that the communication between the second input port 80b and the second output port 80d is cut off, and the hydraulic oil from the electric oil pump 28 is used as the low-pressure oil of the automatic transmission 25. Without being supplied to the supply unit, the oil is supplied from the oil passage L2 to the engagement oil chamber of the brake B2. As hydraulic oil from the electric oil pump 28 is supplied to the brake B2, the hydraulic oil in the engagement oil chamber of the brake B1 is drained.
  • the TMECU 21 causes the signal pressure output valve SR to output the signal pressure Psr until a predetermined hydraulic pressure supply time has elapsed from the start of control of the linear solenoid valve of the brake B2 (start of supply of hydraulic oil from the electric oil pump 28). At the same time, the discharge flow rate of the electric oil pump 28 is increased. As a result, the hydraulic oil is rapidly filled into the engagement oil chamber of the brake B2.
  • the hydraulic pressure supply time has elapsed since the start of the control of the linear solenoid valve of the brake B2 (time t e in FIG.
  • the TMECU 21 stops energization of the signal pressure output valve SR and stops the output of the signal pressure Psr, While fully opening the linear solenoid valve of the brake B2, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.
  • the hydraulic oil from the electric oil pump 28 is supplied to the brake B2 so that the hydraulic pressure in the engagement oil chamber is maintained, and the switching valve 80 forms the above-described first state, whereby the oil passage It is also supplied to the low-pressure oil supply unit via L2, L3, the switching valve 80, and the like.
  • TMECU21 when the vehicle 10 is stopped in response to depression of the brake pedal 93 by the driver (time in FIG. 7 t f), TMECU21, together to output the signal pressure Psr by energizing the signal pressure output valve SR, the switching valve 80 Increases the discharge flow rate of the electric oil pump 28 compared to when the first state is formed. Further, the TMECU 21 is engaged with a clutch C1 that is engaged when the first forward speed is formed in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve SL1 corresponding to the clutch C1 is controlled so as to be in a state immediately before the combination.
  • the switching valve 80 forms the second state described above, so that the communication between the second input port 80b and the second output port 80d is cut off, and the hydraulic oil from the electric oil pump 28 is supplied to the automatic transmission 25.
  • the oil is supplied from the oil passage L2 to the engagement oil chamber C1e of the clutch C1 through the oil passage L40 without being supplied to the low-pressure oil supply section.
  • the TMECU 21 outputs the signal pressure Psr to the signal pressure output valve SR until a predetermined hydraulic pressure supply time elapses from the start of control of the linear solenoid valve SL1 of the clutch C1 (start of supply of hydraulic oil from the electric oil pump 28). And the discharge flow rate of the electric oil pump 28 is increased. As a result, the hydraulic oil is rapidly filled into the engagement oil chamber C1e of the clutch C1.
  • TMECU21 stops the output of the signal pressure Psr to release the energization of the signal pressure output valve SR, linear solenoid While fully opening the valve SL1, as shown in FIG.
  • the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.
  • the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the brake B2 so that the hydraulic pressure in the engagement oil chamber C1e and the like is maintained, and the switching valve 80 forms the first state described above.
  • the oil is supplied also to the low-pressure oil supply unit including the centrifugal oil pressure cancellation chamber C1c via the oil passages L2 and L3, the switching valve 80, and the like.
  • the switching valve 0 is switched to the first state when hydraulic oil is no longer supplied from the mechanical oil pump 24 when the engine 12 is stopped by the idle stop control.
  • the hydraulic oil from the electric oil pump 28 can be supplied to the low-pressure oil supply unit such as the centrifugal hydraulic pressure cancel chamber C1c through the switching valve 80.
  • the switching valve 80 by switching the switching valve 80 to the second state, the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the like that are engaged when the engine 12 is restarted without being supplied to the low pressure oil supply unit. Can do.
  • the hydraulic control device 70B starts supplying hydraulic oil from the electric oil pump 28 to the clutch C1 and the brake B1 that are engaged when the engine 12 is restarted.
  • the switching valve 80 forms the second state until the hydraulic pressure supply time has elapsed and the clutch C1 and the like are in a state immediately before engagement. Further, when the switching valve 80 forms the second state while the operation of the engine 12 is stopped by the idle stop control, the discharge flow rate of the electric oil pump 28 is higher than when the switching valve 80 forms the first state. Increased.
  • the TMECU 21 releases the energization of the signal pressure output valve SR (maintains the released state) and stops the output of the signal pressure Psr. And the electric oil pump 28 is operated (time t i in FIG. 7). As a result, even if the hydraulic oil is not supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped, the hydraulic oil from the electric oil pump 28 is supplied to the low pressure oil supply unit via the switching valve 80 or the like. Is possible.
  • the TMECU 21 controls the signal pressure so that the switching valve 80 forms the second state.
  • the output valve SR is energized to output the signal pressure Psr and, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state.
  • the TMECU 21 is engaged with a clutch C1 that is engaged when the fourth forward speed is established in order to enable quick start at the fourth forward speed when the accelerator pedal 91 is depressed by the driver.
  • the linear solenoid valve SL1 is controlled so as to be in a state immediately before the match.
  • the engagement oil chamber C1e of the clutch C1 is operated from the start of control of the linear solenoid valve SL1 of the clutch C1 (the start of supply of hydraulic oil from the electric oil pump 28) until a predetermined hydraulic pressure supply time elapses. Oil is rapidly filled.
  • the TMECU 21 releases the signal pressure output valve SR to stop the output of the signal pressure Psr, and the linear solenoid valve While SL1 is fully opened, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.
  • the TMECU 21 outputs a signal pressure so that the switching valve 80 forms the second state.
  • the valve SR is energized to output the signal pressure Psr, and the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state.
  • the TMECU 21 is engaged with a brake B2 that is engaged when the first forward speed is formed in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver.
  • the linear solenoid valve corresponding to the brake B2 is controlled so as to be in a state immediately before the match.
  • the hydraulic oil is supplied to the engagement oil chamber of the brake B2 from the start of control of the linear solenoid valve of the brake B2 (start of supply of hydraulic oil from the electric oil pump 28) until a predetermined hydraulic pressure supply time elapses.
  • the TMECU 21 stops energizing the signal pressure output valve SR and stops the output of the signal pressure Psr, While fully opening the linear solenoid valve of the brake B2, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.
  • the TMECU 21 When the driver requests the engine 12 to be restarted by depressing the accelerator pedal 91 (time t n in FIG. 7), the TMECU 21 outputs a signal pressure so that the switching valve 80 forms the second state.
  • the valve SR is energized to output the signal pressure Psr, and as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is increased as compared to when the switching valve 80 forms the first state.
  • the TMECU 21 is engaged with a clutch C1 that is engaged when the first forward speed is established in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver.
  • the linear solenoid valve SL1 is controlled so as to be in a state immediately before the match.
  • the hydraulic oil from the electric oil pump 28 is kept low until a predetermined hydraulic pressure supply time elapses from the start of control of the linear solenoid valve SL1 of the clutch C1 (start of supply of hydraulic oil from the electric oil pump 28).
  • the oil is not supplied to the oil supply section, that is, the centrifugal oil pressure cancel chamber C1c, and the engagement oil chamber C1e of the clutch C1 is rapidly filled with the hydraulic oil.
  • the hydraulic oil from the electric oil pump 28 can be supplied to the clutch C1 to be engaged in response to the restart of the engine 12 without being supplied to the low-pressure oil supply unit, and the clutch C1 can be engaged. .
  • TMECU21 stops the output of the signal pressure Psr to release the energization of the signal pressure output valve SR, the linear solenoid valve While SL1 is fully opened, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.
  • the TMECU 21 The operation of the electric oil pump 28 is stopped.
  • the switching valve 0 is switched to the first state when hydraulic oil is no longer supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped due to the inertial running.
  • the hydraulic oil from the electric oil pump 28 can be supplied to the low pressure oil supply unit such as the centrifugal oil pressure cancel chamber C1c via the switching valve 80.
  • the switching valve 80 by switching the switching valve 80 to the second state, the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the like that are engaged when the engine 12 is restarted without being supplied to the low pressure oil supply unit. Can do.
  • the hydraulic control device 70B starts supplying hydraulic oil from the electric oil pump 28 to the clutch C1 and the brake B1 that are engaged when the engine 12 is restarted.
  • the switching valve 80 forms the second state until the hydraulic pressure supply time elapses and the clutch C1 and the like are in a state immediately before engagement.
  • the discharge flow rate of the electric oil pump 28 is larger than when the switching valve 80 forms the first state. Is increased.
  • FIG. 8 is a schematic configuration diagram showing another switching valve 80B applicable to the hydraulic control device 70B in place of the switching valve 80 described above.
  • the first valve 81 has two lands 810x and 810y and is disposed in the valve body 700B so as to be movable in the axial direction, a first spring 812 for biasing the first spool 810, 1 input port 81a, 1st output port 81c, signal pressure input port 81e, and 1st and 2nd drain ports 81f and 81g are included.
  • the first input port 81a communicates with the space between the two lands 810x and 810y of the first spool 810 and communicates with the hydraulic oil outlet of the oil cooler 75 via an oil passage L6 formed in the valve body 700B.
  • the first output port 81c has a substantially triangular cross-sectional shape similar to that of the first output port 80c, and communicates with an oil passage L7 formed in the valve body 700B.
  • the signal pressure input port 81e communicates with the output port of the signal pressure output valve SR via an oil passage L9 formed in the valve body 700B.
  • the first drain port 81f has a substantially triangular cross-sectional shape similar to the first drain port 80f, and can communicate with the space between the two lands 810x and 810y of the first spool 810.
  • the second drain port 81g communicates with a spring chamber in which the first spring 812 is disposed.
  • the oil passage L6 connected to the first input port 81a and the oil passage L7 connected to the first output port 81c may be communicated with each other via an oil passage L10 in which an orifice is installed midway. .
  • the second valve 82 has two lands 820x and 820y and is disposed in the valve body 700B so as to be movable in the axial direction, a second spring 822 for biasing the second spool 820, A two-input port 82b, a second output port 82d, and a signal pressure input port 82e are included.
  • the second input port 82b is connected to an oil passage L3 formed in the valve body 700B.
  • the second input port 82b is connected to the electric oil pump 28 from the electric oil pump 28 via the oil passage L3 when the electric oil pump 28 is operated. Hydraulic oil is supplied.
  • a relief valve 88 is connected to the oil passage L3.
  • the relief valve 88 outputs the relief valve 88 when the hydraulic pressure from the mechanical oil pump 24 is below a predetermined value and the first check valve 77 is closed (when the mechanical oil pump 24 is stopped). A part of the flowing hydraulic oil is drained according to the input pressure to the relief valve 88 so that the pressure does not exceed the line pressure PL required when the clutch C1 and the brakes B1 and B2 are engaged. .
  • the second output port 82d is connected to the oil passage L8 formed in the valve body 700B, and the signal pressure input port 82e is output from the signal pressure output valve SR via the oil passage L9 formed in the valve body 700B. Communicate with the port.
  • the mounting state of the first valve 81 is that the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is not supplied to the signal pressure input port 81e, and the first spool 810 is moved upward by the first spring 812 in FIG. It is the 2nd state (state of the left half in a figure) energized.
  • the second valve 82 is attached in the state shown in FIG. 8 when the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is not supplied to the signal pressure input port 82e and the second spool 820 is moved by the second spring 822. It is the 2nd state (state of the left half in a figure) urged
  • the first input port 81a and the first drain port 81f communicate with each other via the space between the two lands 810x and 810y of the first spool 810, and the first The upper end of the output port 81c in the drawing slightly communicates with the space between the two lands 810x and 810y of the first spool 810. Further, in the mounted state (second state) of the second valve 82, the communication between the second input port 82b and the second output port 82d is restricted (blocked) by the land 820y of the second spool 820.
  • the first spool 810 resists the urging force of the first spring 812.
  • the first valve 81 moves downward in FIG. 8 to form the first state (the right half state in the figure).
  • the land 810x of the first spool 810 blocks communication between the first input port 81a and the first drain port 81f, and the first input port 81a
  • the entire first output port 81c communicates with the space between the two lands 810x and 810y of one spool 810.
  • the switching valve 80B as described above is applied to the hydraulic control device 70B, when the hydraulic oil is not supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped, the first and second valves 81, The hydraulic oil from the electric oil pump 28 is supplied by supplying the signal pressure Psr from the signal pressure output valve SR to the signal pressure input ports 81e and 82e of 82 and switching the first and second valves 81 and 82 to the first state. Can be supplied to the low-pressure oil supply unit via the oil passage L3, the second valve 82, and the like.
  • the hydraulic control device includes the mechanical pump (24) driven by power from the engine (12) of the vehicle (10) and the electric pump (28) driven by electric power.
  • a hydraulic control device (70B) that regulates oil from at least one of the oil and supplies it to at least one of a plurality of engagement elements (C1) of the transmission (25)
  • the mechanical pump (24) A first oil passage (L1) including a first check valve (77) that is connected and restricts the inflow of oil to the mechanical pump (24) side, and is connected to the electric pump (28). And a second oil passage (L2) connected to the first oil passage (L1) on the downstream side of the first check valve (77) and a third branch branched from the second oil passage (L2).
  • a second state that regulates the supply of oil supplied to the Those comprising a valve (80,80B).
  • the first state in which the supply of the oil supplied from the electric pump to the third oil passage to the low-pressure oil supply unit of the transmission is allowed according to the output state of the signal pressure by the signal pressure output valve.
  • the switching valve can be switched to form either one of the second state in which the supply of oil supplied from the electric pump to the low-pressure oil supply unit to the third oil passage is restricted.
  • the oil from the electric pump is not supplied to the low pressure oil supply unit, and the engine is connected to the engine via the second oil path and the fourth oil path. It can be supplied to an engagement element that is engaged at restart.
  • the oil for both the engagement element and the low-pressure oil supply unit of the transmission is suppressed when the oil is not supplied from the mechanical pump with the stop of the engine operation while suppressing the increase in size and cost of the electric pump. This makes it possible to ensure a good supply amount.
  • a branch (J 23 ) between the second oil passage (L2) and the third oil passage (L3) is provided between the electric pump (28) and the junction (J 12 ).
  • the merging portion between the (J 12) and said branch portion (J 23), the hydraulic pressure in the branch portion (J 23) the merging portion also good
  • the second oil passage (L2) (J 12 ) Side oil pressure is allowed to flow from the electric pump (28) side to the fourth oil passage (L4) side when the hydraulic pressure is higher than the oil pressure on the branch portion (J 23 ) side
  • J 12) second check valve for blocking the flow of oil into the fourth oil passage (L4) side from the electric pump (28) side (78) may be placed when it is a hydraulic or less in side.
  • the hydraulic control device (70B) includes a fifth oil passage (L51, L52) for supplying drain oil from the regulator valve (71) to the fluid chamber (230) of the fluid transmission device, and the fluid chamber.
  • a sixth oil passage (L61, L62) for supplying the return oil from (230) to the low-pressure oil supply section (C1c), and the pressure reduction of the return oil from the fluid chamber (230)
  • a third check valve (91) installed on the sixth oil passage (L62) may be further included so as to regulate the flow of oil to the low pressure oil supply section (C1c) side.
  • the third oil passage (L3) has an output pressure when the hydraulic pressure from the mechanical pump (24) is less than a predetermined value and the first check valve (77) is closed. A part of the oil flowing in is drained according to the input pressure so as not to exceed the original pressure (PL) required when the at least one engaging element (C1, B1, B2) is engaged. A relief valve (91) may be connected.
  • the switching valve (80B) includes a first input port (81a) to which drain oil from the regulator valve is supplied, and a first output port (81c) connected to the low-pressure oil supply unit (C1c).
  • the communication between the second input port (82b) and the second output port (82d) is restricted, and the second pressure is applied when the signal pressure (Psr) is supplied to the signal pressure input port (82e).
  • the first state is formed by supplying the signal pressure from the signal pressure output valve to the signal pressure input port, and the output of the signal pressure from the signal pressure output valve to the signal pressure input port is stopped. Two states can be formed.
  • the switching valve (80) includes a first input port (80a) to which the drain oil is supplied, a second input port (80b) connected to the third oil passage (L3), and the low-pressure oil.
  • the signal pressure (Psr) is not supplied to the pressure input port (80e) and the signal pressure input port (80e)
  • the first input port (80a) and the first output are biased by a spring (802).
  • the first input port is restricted against communication with the port (80c) and resists the biasing force of the spring (802) when the signal pressure (Psr) is supplied to the signal pressure input port (80e).
  • the second input port (80b) and the second output port (80d) are allowed to communicate with each other by the action of the hydraulic pressure supplied to the second input port (80b) and the signal pressure input port (80e).
  • the hydraulic control device (79) includes a check valve (79) for restricting the backflow of oil flowing out from the second output port (83d, 80d) to the second output port (83d, 80d). May be included.
  • the electric pump (28) may supply oil to the second oil passage (L2) in response to the stop of the operation of the engine (12) when the vehicle (10) stops, and the signal pressure
  • the output valve (SR) supplies the signal pressure (Psr) to the switching valve (80, 80B) in response to the operation stop of the engine (12) when the vehicle (10) stops, and the engine (12
  • the oil from the electric pump (28) is supplied to the engagement elements (C1, B1, B2) that are engaged when the engine (12) is restarted.
  • the supply of the signal pressure to 80, 80B) is stopped, and the supply of the signal pressure (Psr) to the switching valve (80, 80B) is stopped in response to the restart of the engine (12) in response to a start request. It may be.
  • the vehicle (10) may be capable of executing inertial traveling that stops the operation of the engine (12) during traveling, and the electric pump (28) performs inertial traveling of the vehicle (10).
  • Oil may be supplied to the second oil passage (L2) in response to the operation stop of the engine (12) for execution, and the signal pressure output valve (SR) is provided for the engine for inertial running.
  • the signal pressure (Psr) is supplied to the switching valve (80, 80B) in response to the operation stop of (12), and oil from the electric pump (28) is supplied to the engine during the operation stop of the engine (12).
  • the invention of the present disclosure can be used in the manufacturing industry of hydraulic control devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A hydraulic control device (70B) comprising: a first oil passage (L1) which is connected to a mechanical pump (24), and which comprises a first check valve (77) midway therealong; a second oil passage (L2) which is connected to an electric pump (28), and which is connected with the side of the first oil passage (L1) downstream of the first check valve (77); a third oil passage (L3) which branches from the second oil passage (L2); a regulator valve (71) which is connected to the first oil passage (L1) between the mechanical pump (24) and the first check valve (77); and a switch valve (80) that forms a first state in which the supply of oil, which has been supplied from the electric pump (28) to the third oil passage (L3), to a low-pressure oil supply unit of a transmission is permitted, and a second state in which the supply of oil, which has been supplied from the electric pump (28) to the third oil passage (L3), to the low-pressure oil supply unit is restricted.

Description

油圧制御装置Hydraulic control device

 本開示は、車両の原動機からの動力により駆動される機械式ポンプと、電力により駆動される電動ポンプとの少なくとも何れか一方からの油を調圧して変速機の係合要素に供給する油圧制御装置に関する。 The present disclosure relates to a hydraulic control that regulates oil supplied from at least one of a mechanical pump driven by power from a prime mover of a vehicle and an electric pump driven by electric power and supplies the pressure to an engagement element of a transmission. Relates to the device.

 従来、無段変速機のプライマリプーリおよびセカンダリプーリ並びにクラッチに作動油を供給するための第1油圧回路と、トルクコンバータおよび潤滑部(低圧油供給部)に作動油を供給するための第2油圧回路、エンジンにより駆動されるエンジンポンプと、モータにより駆動される電動ポンプと、アイドリングストップによるエンジンの運転停止によりエンジンポンプが停止して電動ポンプによる作動油の供給が行われる際に、第1油圧回路から第2油圧回路への作動油の流出を禁止すべく閉作動するストップ弁とを含む油圧ポンプ装置が知られている(例えば、特許文献1参照)。この油圧ポンプ装置では、電動ポンプにより作動油の供給が行われる際、ストップ弁が閉作動することで、電動ポンプからの作動油が第1油圧回路のみに供給される。これにより、電動ポンプからの作動油は、ライマリプーリおよびセカンダリプーリ並びにクラッチに優先して供給されることになる。 2. Description of the Related Art Conventionally, a first hydraulic circuit for supplying hydraulic oil to primary and secondary pulleys and clutches of a continuously variable transmission, and a second hydraulic pressure for supplying hydraulic oil to a torque converter and a lubrication unit (low pressure oil supply unit) A first hydraulic pressure when the engine pump is stopped and the hydraulic pump is supplied with hydraulic oil by stopping the operation of the engine due to idling stop; an engine pump driven by a circuit and an engine; an electric pump driven by a motor; There is known a hydraulic pump device including a stop valve that is closed so as to prohibit the outflow of hydraulic oil from a circuit to a second hydraulic circuit (see, for example, Patent Document 1). In this hydraulic pump device, when the hydraulic oil is supplied by the electric pump, the hydraulic oil from the electric pump is supplied only to the first hydraulic circuit by closing the stop valve. Thereby, the hydraulic oil from the electric pump is supplied with priority over the primary pulley, the secondary pulley, and the clutch.

特開2010-78088号公報JP 2010-78088 A

 上記特許文献1に記載された発明では、アイドリングストップによるエンジンの運転停止時にプライマリプーリおよびセカンダリプーリ並びにクラッチへの作動油の供給を優先することで、電動ポンプの大型化やコストアップを抑制している。しかしながら、特許文献1に記載の発明では、アイドリングストップによるエンジンの運転が停止されると、ストップ弁により第1油圧回路から第2油圧回路への作動油の流出が禁止されると共にエンジンポンプから作動油が吐出されなくなることから、トルクコンバータや潤滑部に作動油を供給し得なくなってしまう。 In the invention described in Patent Document 1, priority is given to the supply of hydraulic oil to the primary pulley and the secondary pulley and the clutch when the engine is stopped due to idling stop, thereby suppressing the increase in size and cost of the electric pump. Yes. However, in the invention described in Patent Document 1, when the engine operation is stopped due to idling stop, the stop valve prohibits the flow of hydraulic oil from the first hydraulic circuit to the second hydraulic circuit and operates from the engine pump. Since the oil is not discharged, the hydraulic oil cannot be supplied to the torque converter or the lubrication unit.

 そこで、本開示の発明は、電動ポンプの大型化やコストアップを抑制しつつ、エンジンの運転停止に伴って機械式ポンプから油が供給されなくなる際に、変速機の係合要素および低圧油供給部の双方に対する油の供給量を良好に確保することができる油圧制御装置の提供を主目的とする。 Therefore, the invention of the present disclosure suppresses the increase in size and cost of the electric pump, and when the oil is not supplied from the mechanical pump when the engine is stopped, the engagement element of the transmission and the low-pressure oil supply The main purpose is to provide a hydraulic control device capable of ensuring a good supply amount of oil to both of the parts.

 本開示の油圧制御装置は、車両のエンジンからの動力により駆動される機械式ポンプと、電力により駆動される電動ポンプとの少なくとも何れか一方からの油を調圧して変速機の複数の係合要素の少なくとも何れか1つに供給する油圧制御装置において、
 前記機械式ポンプに接続されると共に該機械式ポンプ側への油の流入を規制する第1逆止弁を中途に含む第1油路と、前記電動ポンプに接続されると共に前記第1逆止弁の下流側で前記第1油路に接続された第2油路と、前記第2油路から分岐された第3油路と、前記第1油路と前記第2油路との合流部と前記少なくとも何れか1つの係合要素とを結ぶ第4油路と、前記機械式ポンプと前記第1逆止弁との間で前記第1油路に接続されると共に該機械式ポンプからの油を調圧して元圧を生成するレギュレータバルブと、信号圧を出力する信号圧出力バルブと、前記信号圧出力バルブによる前記信号圧の出力状態に応じて、前記変速機の低圧油供給部に対する前記電動ポンプから前記第3油路に供給された油の供給を許容する第1状態と、前記低圧油供給部に対する前記電動ポンプから前記第3油路に供給された油の供給を規制する第2状態とを形成する切替バルブとを含むものである。
The hydraulic control device according to the present disclosure regulates oil from at least one of a mechanical pump driven by power from an engine of a vehicle and an electric pump driven by electric power to perform a plurality of engagements of the transmission. In a hydraulic control device that supplies at least one of the elements,
A first oil passage connected to the mechanical pump and including a first check valve for restricting the inflow of oil to the mechanical pump side, and the first check passage connected to the electric pump and the first check valve A second oil passage connected to the first oil passage on the downstream side of the valve, a third oil passage branched from the second oil passage, and a joining portion of the first oil passage and the second oil passage And a fourth oil passage connecting the at least one engagement element, and the first oil passage between the mechanical pump and the first check valve, and from the mechanical pump A regulator valve that regulates oil to generate an original pressure, a signal pressure output valve that outputs a signal pressure, and a low pressure oil supply unit of the transmission according to an output state of the signal pressure by the signal pressure output valve A first state allowing the supply of oil supplied from the electric pump to the third oil passage; It is intended to include a switching valve forming a second state for restricting the supply of oil supplied to the third oil passage from the electric pump for pressure oil supply.

 本開示の油圧制御装置では、信号圧出力バルブによる信号圧の出力状態に応じて、変速機の低圧油供給部に対する電動ポンプから第3油路に供給された油の供給を許容する第1状態と、低圧油供給部に対する電動ポンプから第3油路に供給された油の供給を規制する第2状態との何れか一方を形成するように切替バルブを切り替えることができる。これにより、エンジンの運転停止に伴って機械式ポンプから油が供給されなくなる際に、切替バルブを第1状態に切り替えることで電動ポンプからの油を第3油路および当該切替バルブを介して低圧油供給部に供給することが可能となる。また、エンジンの運転停止中に切替バルブを第2状態に切り替えることで、電動ポンプからの油を低圧油供給部に供給することなく、第2油路および第4油路を介して当該エンジンの再始動時に係合される係合要素に供給することができる。この結果、電動ポンプの大型化やコストアップを抑制しつつ、エンジンの運転停止に伴って機械式ポンプから油が供給されなくなる際に、変速機の係合要素および低圧油供給部の双方に対する油の供給量を良好に確保することが可能となる。 In the hydraulic control device according to the present disclosure, the first state in which the supply of the oil supplied from the electric pump to the third oil passage to the low-pressure oil supply unit of the transmission is allowed according to the output state of the signal pressure by the signal pressure output valve. The switching valve can be switched to form either one of the second state in which the supply of oil supplied from the electric pump to the low-pressure oil supply unit to the third oil passage is restricted. As a result, when oil is no longer supplied from the mechanical pump when the engine is stopped, the oil from the electric pump is reduced to low pressure via the third oil passage and the switching valve by switching the switching valve to the first state. It becomes possible to supply to the oil supply unit. In addition, by switching the switching valve to the second state while the engine is stopped, the oil from the electric pump is not supplied to the low pressure oil supply unit, and the engine is connected to the engine via the second oil path and the fourth oil path. It can be supplied to an engagement element that is engaged at restart. As a result, the oil for both the engagement element and the low-pressure oil supply unit of the transmission is suppressed when the oil is not supplied from the mechanical pump with the stop of the engine operation while suppressing the increase in size and cost of the electric pump. This makes it possible to ensure a good supply amount.

本開示の油圧制御装置を含む動力伝達装置を搭載した車両の概略構成図である。It is a schematic block diagram of the vehicle carrying the power transmission device containing the hydraulic control apparatus of this indication. 図1の車両に搭載された動力伝達装置を示す概略構成図である。It is a schematic block diagram which shows the power transmission device mounted in the vehicle of FIG. 図2の動力伝達装置に含まれる自動変速機の各変速段とクラッチおよびブレーキの作動状態との関係を示す作動表である。FIG. 3 is an operation table showing a relationship between each shift stage of the automatic transmission included in the power transmission device of FIG. 2 and operation states of clutches and brakes. 本開示の油圧制御装置を示す系統図である。It is a systematic diagram showing a hydraulic control device of this indication. 図1の車両の停車に伴ってエンジンの運転が停止されてから当該車両に対する発進要求に応じてエンジンが始動される際の油圧制御装置等の動作を説明するためのタイムチャートである。2 is a time chart for explaining the operation of the hydraulic control device and the like when the engine is started in response to a start request to the vehicle after the operation of the engine is stopped with the stop of the vehicle in FIG. 1. 本開示の他の油圧制御装置を示す系統図である。It is a systematic diagram showing other hydraulic control devices of this indication. 図1の車両の停車や惰性走行の実行に伴ってエンジンの運転が停止されてからエンジンが再始動される際の油圧制御装置等の動作を説明するためのタイムチャートである。2 is a time chart for explaining the operation of the hydraulic control device and the like when the engine is restarted after the operation of the engine is stopped in accordance with the stop of the vehicle or the inertial running of FIG. 1. 図6に示す油圧制御装置に適用可能な他の切替バルブを示す概略構成図である。It is a schematic block diagram which shows the other switching valve applicable to the hydraulic control apparatus shown in FIG.

 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。 Next, an embodiment for carrying out the invention of the present disclosure will be described with reference to the drawings.

 図1は、本開示の油圧制御装置70を含む動力伝達装置20を搭載した車両10の概略構成図である。同図に示す車両10は、エンジン12と、当該エンジン12からの動力を左右の駆動輪(前輪)DWに伝達する動力伝達装置20とを有する前輪駆動車両であり、停車に伴って通常エンジン12がアイドル運転される際等に当該エンジン12の運転を停止させると共に運転者による車両10に対する発進要求に応じてエンジン12を再始動させるアイドルストップ制御(自動停止始動制御)や、走行中にエンジン12の運転を停止させる惰性走行を実行可能なものである。また、車両10は、図1に示すように、エンジン12を制御するエンジン電子制御ユニット(以下、「EGECU」という)14と、図示しない電子制御式油圧ブレーキユニットを制御するブレーキ電子制御ユニット(以下、「ブレーキECU」という)16と、動力伝達装置20を制御する変速電子制御ユニット(以下、「TMECU」という)21とを含む。 FIG. 1 is a schematic configuration diagram of a vehicle 10 equipped with a power transmission device 20 including a hydraulic control device 70 of the present disclosure. A vehicle 10 shown in the figure is a front-wheel drive vehicle having an engine 12 and a power transmission device 20 that transmits power from the engine 12 to left and right drive wheels (front wheels) DW. When the vehicle is idling, the engine 12 is stopped, and the engine 12 is restarted in response to a start request to the vehicle 10 by the driver. It is possible to perform inertial running that stops the operation of the vehicle. In addition, as shown in FIG. 1, the vehicle 10 includes an engine electronic control unit (hereinafter referred to as “EG ECU”) 14 that controls the engine 12 and a brake electronic control unit (hereinafter referred to as “electronic control hydraulic brake unit”) that is not shown. , “Brake ECU”) 16 and a shift electronic control unit (hereinafter referred to as “TMECU”) 21 for controlling the power transmission device 20.

 EGECU14は、図示しないCPU等を含むマイクロコンピュータであり、エンジン12のクランクシャフトの回転位置を検出する図示しないクランクシャフトポジションセンサ、アクセルペダル91の踏み込み量(操作量)を検出するアクセルペダルポジションセンサ92、車速センサ99といった各種センサ等からの信号、ブレーキECU16やTMECU21からの信号等を入力する。EGECU14は、これらの信号に基づいて何れも図示しない電子制御式のスロットルバルブや燃料噴射弁および点火プラグ等を制御する。ブレーキECU16も図示しないCPU等を含むマイクロコンピュータであり、ブレーキペダル93の踏み込み量に応じたマスタシリンダ圧を検出するマスタシリンダ圧センサ94や車速センサ99といった各種センサ等からの信号、EGECU14等からの信号等を入力する。ブレーキECU16は、これらの信号に基づいて図示しないブレーキアクチュエータ(油圧アクチュエータ)等を制御する。 The EGECU 14 is a microcomputer including a CPU (not shown), a crankshaft position sensor (not shown) that detects the rotational position of the crankshaft of the engine 12, and an accelerator pedal position sensor 92 that detects the amount of depression (operation amount) of the accelerator pedal 91. In addition, signals from various sensors such as the vehicle speed sensor 99, signals from the brake ECU 16 and TMECU 21, and the like are input. Based on these signals, the EGECU 14 controls an electronically controlled throttle valve, fuel injection valve, spark plug, etc. (not shown). The brake ECU 16 is also a microcomputer including a CPU (not shown). Signals from various sensors such as a master cylinder pressure sensor 94 and a vehicle speed sensor 99 for detecting the master cylinder pressure corresponding to the depression amount of the brake pedal 93, and from the EGECU 14 and the like. Input signals. Based on these signals, the brake ECU 16 controls a brake actuator (hydraulic actuator) (not shown) and the like.

 TMECU21も図示しないCPU等を含むマイクロコンピュータであり、複数のシフトポジションの中から所望のシフトポジションを選択するためのシフトレバー95の操作位置を検出するシフトポジションセンサ96、アクセルペダルポジションセンサ92、車速センサ99、自動変速機25の入力回転数(タービンランナ23bまたは自動変速機25の入力軸26の回転数)を検出する入力回転数センサといった各種センサ等からの信号、EGECU14やブレーキECU16からの信号等を入力する。TMECU21は、これらの信号に基づいて動力伝達装置20を制御する。 The TMECU 21 is also a microcomputer including a CPU (not shown), and includes a shift position sensor 96 for detecting an operation position of the shift lever 95 for selecting a desired shift position from a plurality of shift positions, an accelerator pedal position sensor 92, a vehicle speed. Sensor 99, signals from various sensors such as an input rotation speed sensor for detecting the input rotation speed of the automatic transmission 25 (the rotation speed of the turbine runner 23b or the input shaft 26 of the automatic transmission 25), signals from the EGECU 14 and the brake ECU 16 Enter etc. The TMECU 21 controls the power transmission device 20 based on these signals.

 動力伝達装置20は、図2に示すように、トランスミッションケース22や、当該トランスミッションケース22内に収容された発進装置(流体伝動装置)23、エンジン12からの動力により駆動される機械式オイルポンプ24、図示しないバッテリからの電力により駆動される電動オイルポンプ28、自動変速機25、ギヤ機構(ギヤ列)40、デファレンシャルギヤ(差動機構)50、油圧制御装置70等を含む。 As shown in FIG. 2, the power transmission device 20 includes a transmission case 22, a starting device (fluid transmission device) 23 housed in the transmission case 22, and a mechanical oil pump 24 driven by power from the engine 12. , An electric oil pump 28 driven by electric power from a battery (not shown), an automatic transmission 25, a gear mechanism (gear train) 40, a differential gear (differential mechanism) 50, a hydraulic control device 70, and the like.

 トランスミッションケース22は、ハウジング221や、当該ハウジング221に締結(固定)されるトランスアクスルケース222に加えて、ハウジング221とトランスアクスルケース222との間に位置するように当該トランスアクスルケース222に締結(固定)されるフロントサポート223、およびトランスアクスルケース222に締結(固定)されるセンターサポート224を含む。本実施形態において、ハウジング221、トランスアクスルケース222、およびセンターサポート224は、例えばアルミニウム合金により形成され、フロントサポート223は、鋼材(鉄合金)またはアルミニウム合金により形成される。 In addition to the housing 221 and the transaxle case 222 fastened (fixed) to the housing 221, the transmission case 22 is fastened to the transaxle case 222 so as to be positioned between the housing 221 and the transaxle case 222 ( A front support 223 that is fixed) and a center support 224 that is fastened (fixed) to the transaxle case 222. In the present embodiment, the housing 221, the transaxle case 222, and the center support 224 are formed of, for example, an aluminum alloy, and the front support 223 is formed of a steel material (iron alloy) or an aluminum alloy.

 発進装置23は、図示しないドライブプレート等を介してエンジン12のクランクシャフトに連結されるフロントカバーや、当該フロントカバーに密に固定されるポンプシェルを有する入力側のポンプインペラ23p、自動変速機25の入力軸26に連結される出力側のタービンランナ23t、ポンプインペラ23pおよびタービンランナ23tの内側に配置されてタービンランナ23tからポンプインペラ23pへの作動油の流れを整流するステータ23s、図示しないステータシャフトより支持されると共にステータ23sの回転方向を一方向に制限するワンウェイクラッチ23o等を含む。ポンプインペラ23p、タービンランナ23tおよびステータ23sは、トルク増幅作用を有するトルクコンバータを構成する。 The starting device 23 includes a front cover connected to the crankshaft of the engine 12 via a drive plate (not shown), an input-side pump impeller 23p having a pump shell that is tightly fixed to the front cover, and an automatic transmission 25. An output-side turbine runner 23t coupled to the input shaft 26, a pump impeller 23p, and a stator 23s disposed inside the turbine runner 23t to rectify the flow of hydraulic oil from the turbine runner 23t to the pump impeller 23p, a stator (not shown) A one-way clutch 23o that is supported by the shaft and restricts the rotation direction of the stator 23s to one direction is included. Pump impeller 23p, turbine runner 23t, and stator 23s constitute a torque converter having a torque amplifying action.

 更に、発進装置23は、フロントカバーと自動変速機25の入力軸26とを互いに接続すると共に両者の接続を解除するロックアップクラッチ23cと、フロントカバーと自動変速機25の入力軸26との間で振動を減衰するダンパ装置23dとを含む。本実施形態において、ロックアップクラッチ23cは、複数の摩擦係合プレート(摩擦プレートおよびセパレータプレート)を有する多板摩擦式油圧クラッチとして構成される。ただし、ロックアップクラッチ23cは、単板摩擦式油圧クラッチであってもよい。また、発進装置23は、ステータ23sを有さない流体継手を含むものであってもよい。 Further, the starting device 23 connects the front cover and the input shaft 26 of the automatic transmission 25 to each other and releases the connection between the front cover and the input shaft 26 of the automatic transmission 25. And a damper device 23d for damping the vibration. In the present embodiment, the lock-up clutch 23c is configured as a multi-plate friction type hydraulic clutch having a plurality of friction engagement plates (friction plates and separator plates). However, the lockup clutch 23c may be a single plate friction type hydraulic clutch. The starting device 23 may include a fluid coupling that does not include the stator 23s.

 機械式オイルポンプ24は、巻掛け伝動機構240を介して発進装置23のポンプインペラ23pに連結される外歯ギヤ(インナーロータ)241、当該外歯ギヤに噛合する内歯ギヤ(アウターロータ)242、外歯ギヤ241および内歯ギヤ242を収容する図示しないギヤ室を画成するポンプボディおよびポンプカバー(何れも図示省略)等を有するギヤポンプであり、自動変速機25の入力軸26とは別軸上に配置される。機械式オイルポンプ24は、巻掛け伝動機構240を介してエンジン12からの動力により駆動され、トランスアクスルケース222の底部に設けられた作動油貯留部(図示省略)に貯留されている作動油(ATF)を吸引して油圧制御装置70へと圧送する。巻掛け伝動機構240は、発進装置23のポンプインペラ23pと一体に回転するドライブスプロケットや、機械式オイルポンプ24の外歯ギヤと一体に回転するドリブンスプロケット、ドライブスプロケットおよびドリブンスプロケットに巻掛けられるチェーン等を含む。 The mechanical oil pump 24 includes an external gear (inner rotor) 241 connected to the pump impeller 23p of the starting device 23 through a winding transmission mechanism 240, and an internal gear (outer rotor) 242 that meshes with the external gear. A gear pump having a pump body and a pump cover (both not shown) that define a gear chamber (not shown) that accommodates the external gear 241 and the internal gear 242, and is separate from the input shaft 26 of the automatic transmission 25. Arranged on the axis. The mechanical oil pump 24 is driven by the power from the engine 12 via the winding transmission mechanism 240 and is stored in a hydraulic oil reservoir (not shown) provided at the bottom of the transaxle case 222 ( ATF) is sucked and pumped to the hydraulic control device 70. The winding transmission mechanism 240 is a drive sprocket that rotates integrally with the pump impeller 23p of the starting device 23, a driven sprocket that rotates integrally with the external gear of the mechanical oil pump 24, a drive sprocket, and a chain that is wound around the driven sprocket. Etc.

 また、電動オイルポンプ28は、TMECU21により制御される図示しない電動モータおよび当該電動モータにより回転駆動されるインペラ等を含み、トランスアクスルケース222の作動油貯留部に貯留されている作動油を吸引して油圧制御装置70へと圧送する。本実施形態では、電動オイルポンプ28として、電動モータの流量制御により吐出流量および吐出圧を変更可能なものが採用されている。ただし、電動オイルポンプ28は、電動モータの回転数制御(デューティ制御)により吐出流量および吐出圧を変更可能なものであってもよい。 The electric oil pump 28 includes an electric motor (not shown) controlled by the TMECU 21 and an impeller rotated by the electric motor, and sucks the hydraulic oil stored in the hydraulic oil storage section of the transaxle case 222. To the hydraulic control device 70. In the present embodiment, an electric oil pump 28 that can change the discharge flow rate and the discharge pressure by controlling the flow rate of the electric motor is employed. However, the electric oil pump 28 may be capable of changing the discharge flow rate and the discharge pressure by the rotational speed control (duty control) of the electric motor.

 自動変速機25は、8段変速式の変速機として構成されており、図2に示すように、ダブルピニオン式の第1遊星歯車機構30と、ラビニヨ式の第2遊星歯車機構35と、入力側から出力側までの動力伝達経路を変更するための4つのクラッチC1,C2,C3およびC4、2つのブレーキB1およびB2とを含む。 The automatic transmission 25 is configured as an 8-speed transmission, and, as shown in FIG. 2, a double pinion type first planetary gear mechanism 30, a Ravigneaux type second planetary gear mechanism 35, and an input It includes four clutches C1, C2, C3 and C4 and two brakes B1 and B2 for changing the power transmission path from the side to the output side.

 第1遊星歯車機構30は、外歯歯車であるサンギヤ(固定要素)31と、このサンギヤ31と同心円上に配置される内歯歯車であるリングギヤ32と、互いに噛合すると共に一方がサンギヤ31に、他方がリングギヤ32に噛合する2つのピニオンギヤ33a,33bの組を自転自在(回転自在)かつ公転自在に複数保持するプラネタリキャリヤ34とを有する。図示するように、第1遊星歯車機構30のサンギヤ31は、フロントサポート223を介してトランスミッションケース22に対して回転不能に連結(固定)されており、第1遊星歯車機構30のプラネタリキャリヤ34は、入力軸26に一体回転可能に接続されている。また、第1遊星歯車機構30は、いわゆる減速ギヤとして用いられ、入力要素であるプラネタリキャリヤ34に伝達された動力を減速して出力要素であるリングギヤ32から出力する。 The first planetary gear mechanism 30 is engaged with a sun gear (fixed element) 31 that is an external gear and a ring gear 32 that is an internal gear arranged concentrically with the sun gear 31 and one of the gears is engaged with the sun gear 31. The other has a planetary carrier 34 that holds a plurality of pairs of two pinion gears 33a and 33b meshing with the ring gear 32 so as to be rotatable (rotatable) and revolved. As shown in the figure, the sun gear 31 of the first planetary gear mechanism 30 is non-rotatably connected (fixed) to the transmission case 22 via the front support 223, and the planetary carrier 34 of the first planetary gear mechanism 30 is The input shaft 26 is connected so as to be integrally rotatable. The first planetary gear mechanism 30 is used as a so-called reduction gear, decelerates the power transmitted to the planetary carrier 34 as an input element, and outputs it from the ring gear 32 as an output element.

 第2遊星歯車機構35は、外歯歯車である第1サンギヤ36aおよび第2サンギヤ36bと、第1および第2サンギヤ36a,36bと同心円上に配置される内歯歯車であるリングギヤ37と、第1サンギヤ36aに噛合する複数のショートピニオンギヤ38aと、第2サンギヤ36bおよび複数のショートピニオンギヤ38aに噛合すると共にリングギヤ37に噛合する複数のロングピニオンギヤ38bと、複数のショートピニオンギヤ38aおよび複数のロングピニオンギヤ38bを自転自在(回転自在)かつ公転自在に保持するプラネタリキャリヤ39とを有する。第2遊星歯車機構35のリングギヤ37は、自動変速機25の出力部材として機能し、入力軸26からリングギヤ37に伝達された動力は、ギヤ機構40、デファレンシャルギヤ50およびドライブシャフト51を介して左右の駆動輪に伝達される。 The second planetary gear mechanism 35 includes a first sun gear 36a and a second sun gear 36b which are external gears, a ring gear 37 which is an internal gear disposed concentrically with the first and second sun gears 36a and 36b, A plurality of short pinion gears 38a meshing with one sun gear 36a, a plurality of long pinion gears 38b meshing with the second sun gear 36b and the plurality of short pinion gears 38a and meshing with the ring gear 37, a plurality of short pinion gears 38a and a plurality of long pinion gears 38b And a planetary carrier 39 that holds the magnet so as to be rotatable (rotatable) and revolved. The ring gear 37 of the second planetary gear mechanism 35 functions as an output member of the automatic transmission 25, and the power transmitted from the input shaft 26 to the ring gear 37 is transmitted to the left and right via the gear mechanism 40, the differential gear 50 and the drive shaft 51. Is transmitted to the driving wheel.

 クラッチC1は、第1遊星歯車機構30のリングギヤ32と第2遊星歯車機構35の第1サンギヤ36aとを互いに接続すると共に両者の接続を解除するものである。クラッチC2は、入力軸26と第2遊星歯車機構35のプラネタリキャリヤ39とを互いに接続すると共に両者の接続を解除するものである。クラッチC3は、第1遊星歯車機構30のリングギヤ32と第2遊星歯車機構35の第2サンギヤ36bとを互いに接続すると共に両者の接続を解除するものである。クラッチC4は、第1遊星歯車機構30のプラネタリキャリヤ34と第2遊星歯車機構35の第2サンギヤ36bとを互いに接続すると共に両者の接続を解除するものである。本実施形態では、クラッチC1,C2,C3およびC4として、ピストン、複数の摩擦係合プレート(摩擦プレートおよびセパレータプレート)、油圧制御装置70からの係合油圧(作動油)が供給される係合油室、当該係合油室内で発生する遠心油圧をキャンセルするために油圧制御装置70からの作動油が供給される遠心油圧キャンセル室等を含む多板摩擦式油圧クラッチが採用される。 The clutch C1 connects the ring gear 32 of the first planetary gear mechanism 30 and the first sun gear 36a of the second planetary gear mechanism 35 to each other and releases the connection between them. The clutch C2 connects the input shaft 26 and the planetary carrier 39 of the second planetary gear mechanism 35 to each other and releases the connection between them. The clutch C3 connects the ring gear 32 of the first planetary gear mechanism 30 and the second sun gear 36b of the second planetary gear mechanism 35 to each other and releases the connection therebetween. The clutch C4 connects the planetary carrier 34 of the first planetary gear mechanism 30 and the second sun gear 36b of the second planetary gear mechanism 35 to each other and releases the connection therebetween. In this embodiment, the clutches C1, C2, C3, and C4 are engaged with pistons, a plurality of friction engagement plates (friction plates and separator plates), and engagement hydraulic pressure (hydraulic fluid) supplied from the hydraulic control device 70. In order to cancel the centrifugal oil pressure generated in the oil chamber and the engagement oil chamber, a multi-plate friction type hydraulic clutch including a centrifugal oil pressure cancel chamber supplied with hydraulic oil from the hydraulic control device 70 is employed.

 ブレーキB1は、第2遊星歯車機構35の第2サンギヤ36bをトランスミッションケース22に回転不能に固定(接続)すると共に第2サンギヤ36bのトランスミッションケース22に対する固定を解除するものである。ブレーキB2は、第2遊星歯車機構35のプラネタリキャリヤ39をトランスミッションケース22に回転不能に固定すると共にプラネタリキャリヤ39のトランスミッションケース22に対する固定を解除するものである。本実施形態では、ブレーキB1およびB2として、ピストン、複数の摩擦係合プレート(摩擦プレートおよびセパレータプレート)、作動油が供給される係合油室等を含む多板摩擦式油圧ブレーキが採用される。 The brake B1 fixes (connects) the second sun gear 36b of the second planetary gear mechanism 35 to the transmission case 22 in a non-rotatable manner and releases the second sun gear 36b from the transmission case 22. The brake B2 fixes the planetary carrier 39 of the second planetary gear mechanism 35 to the transmission case 22 so as not to rotate, and releases the fixation of the planetary carrier 39 to the transmission case 22. In the present embodiment, as the brakes B1 and B2, a multi-plate friction type hydraulic brake including a piston, a plurality of friction engagement plates (friction plates and separator plates), an engagement oil chamber to which hydraulic oil is supplied, and the like is employed. .

 これらのクラッチC1~C4、ブレーキB1およびB2は、油圧制御装置70による作動油の給排を受けて動作する。図3に、自動変速機25の各変速段とクラッチC1~C4、ブレーキB1およびB2の作動状態との関係を表した作動表を示す。自動変速機25は、クラッチC1~C4、ブレーキB1およびB2を図3の作動表に示す状態とすることで前進第1速~第8速の変速段と後進第1速および第2速の変速段とを提供する。すなわち、自動変速機25の各変速段は、クラッチC1~C4、ブレーキB1およびB2のうちの何れか2つの係合により形成される。また、アイドルストップ制御や惰性走行の実行により車両10の走行中にエンジン12の運転が停止される際には、車速等に応じた変速段に対応した2つのクラッチやブレーキの一方が解放されると共に他方が係合されてニュートラル状態が形成され、車両10の走行状態に応じて係合させるべきクラッチ等が変更されていく。なお、クラッチC1~C4、ブレーキB1およびB2の少なくとも何れかは、ドグクラッチといった噛み合い係合要素とされてもよい。 These clutches C1 to C4 and brakes B1 and B2 operate upon receiving and supplying hydraulic oil from the hydraulic control device 70. FIG. 3 shows an operation table showing the relationship between the respective shift stages of the automatic transmission 25 and the operation states of the clutches C1 to C4 and the brakes B1 and B2. The automatic transmission 25 shifts the forward first speed to the eighth speed and the reverse first speed and the second speed by setting the clutches C1 to C4 and the brakes B1 and B2 to the states shown in the operation table of FIG. Provide a step. That is, each shift stage of the automatic transmission 25 is formed by engaging any two of the clutches C1 to C4 and the brakes B1 and B2. Further, when the operation of the engine 12 is stopped while the vehicle 10 is traveling due to the execution of idle stop control or inertial traveling, one of the two clutches and brakes corresponding to the gear position corresponding to the vehicle speed or the like is released. At the same time, the other is engaged to form a neutral state, and the clutch to be engaged is changed according to the traveling state of the vehicle 10. Note that at least one of the clutches C1 to C4 and the brakes B1 and B2 may be a meshing engagement element such as a dog clutch.

 ギヤ機構40は、自動変速機25の第2遊星歯車機構35のリングギヤ37に連結されるカウンタドライブギヤ41と、自動変速機25の入力軸26と平行に延在するカウンタシャフト42に固定されると共にカウンタドライブギヤ41に噛合するカウンタドリブンギヤ43と、カウンタシャフト42に形成(あるいは固定)されたドライブピニオンギヤ44と、ドライブピニオンギヤ44に噛合すると共にデファレンシャルギヤ50に連結されたデフリングギヤ45とを有する。図2に示すように、ギヤ機構40のカウンタドライブギヤ41は、第1および第2遊星歯車機構30,35の間に位置するように複数のボルトを介してトランスアクスルケース222に固定されるセンターサポート224により軸受を介して回転自在に支持される。 The gear mechanism 40 is fixed to a counter drive gear 41 connected to the ring gear 37 of the second planetary gear mechanism 35 of the automatic transmission 25 and a counter shaft 42 extending in parallel with the input shaft 26 of the automatic transmission 25. A counter driven gear 43 that meshes with the counter drive gear 41, a drive pinion gear 44 formed (or fixed) on the counter shaft 42, and a diff ring gear 45 that meshes with the drive pinion gear 44 and is connected to the differential gear 50. As shown in FIG. 2, the counter drive gear 41 of the gear mechanism 40 is fixed to the transaxle case 222 via a plurality of bolts so as to be positioned between the first and second planetary gear mechanisms 30 and 35. The support 224 is rotatably supported through a bearing.

 図4は、油圧制御装置70を示す系統図である。油圧制御装置70は、それぞれトランスアクスルケース222の作動油貯留部からストレーナ60を介して作動油を吸引して吐出可能な上述の機械式オイルポンプ24および電動オイルポンプ28に接続される。そして、油圧制御装置70は、発進装置23や自動変速機25により要求される油圧を生成すると共に、各種軸受等の潤滑対象やクラッチC1~C4の遠心油圧キャンセル室C1c等といった低圧油供給部(被潤滑部)に作動油を供給する。図示するように、油圧制御装置70は、複数の油路L1~L9等が形成されたバルブボディ700や、プライマリレギュレータバルブ71、セカンダリレギュレータバルブ72、モジュレータバルブ74、オイルクーラ75、リニアソレノイドバルブSL1,SLT、信号圧出力バルブSR、切替バルブ80等を含む。 FIG. 4 is a system diagram showing the hydraulic control device 70. The hydraulic control device 70 is connected to the mechanical oil pump 24 and the electric oil pump 28 that can suck and discharge the hydraulic oil from the hydraulic oil reservoir of the transaxle case 222 via the strainer 60. The hydraulic control device 70 generates the hydraulic pressure required by the starting device 23 and the automatic transmission 25, and also provides a low pressure oil supply unit (such as a lubrication target such as various bearings, a centrifugal hydraulic pressure cancellation chamber C1c of the clutches C1 to C4, and the like). Supply hydraulic oil to the lubricated part). As shown in the figure, the hydraulic control device 70 includes a valve body 700 having a plurality of oil passages L1 to L9 and the like, a primary regulator valve 71, a secondary regulator valve 72, a modulator valve 74, an oil cooler 75, and a linear solenoid valve SL1. , SLT, signal pressure output valve SR, switching valve 80 and the like.

 バルブボディ700は、例えばトランスミッションケース22を構成するトランスアクスルケース222の側部に取り付けられる。バルブボディ700の油路L1(第1油路)は、機械式オイルポンプ24の吐出ポートに接続され、その中途には第1逆止弁77が設置されている。第1逆止弁77は、上流側すなわち機械式オイルポンプ24側における油圧が下流側における油圧よりも高いときに機械式オイルポンプ24側から下流側への作動油の流通を許容すると共に、上流側における油圧が下流側における油圧以下であるときに機械式オイルポンプ24側から下流側への作動油の流通を遮断する。すなわち、第1逆止弁77は、機械式オイルポンプ24からの油圧の低下に応じて閉鎖する。 The valve body 700 is attached to a side portion of the transaxle case 222 that constitutes the transmission case 22, for example. An oil passage L1 (first oil passage) of the valve body 700 is connected to a discharge port of the mechanical oil pump 24, and a first check valve 77 is installed in the middle thereof. The first check valve 77 allows the hydraulic oil to flow from the mechanical oil pump 24 side to the downstream side when the hydraulic pressure on the upstream side, that is, the mechanical oil pump 24 side is higher than the hydraulic pressure on the downstream side, and upstream. When the hydraulic pressure on the side is equal to or lower than the hydraulic pressure on the downstream side, the flow of hydraulic oil from the mechanical oil pump 24 side to the downstream side is blocked. That is, the first check valve 77 closes in response to a decrease in hydraulic pressure from the mechanical oil pump 24.

 また、バルブボディ700の油路L2(第2油路)は、一端が電動オイルポンプ28の吐出ポートに接続されると共に他端が上記第1逆止弁77の下流側で油路L1に接続されており、その中途には第2逆止弁78が設置されている。第2逆止弁78は、上流側すなわち電動オイルポンプ28側における油圧が下流側すなわち油路L1における油圧よりも高いときに電動オイルポンプ28側から下流側への作動油の流通を許容すると共に、上流側における油圧が下流側における油圧以下であるときに電動オイルポンプ28側から下流側への作動油の流通を遮断する。これにより、エンジン12の運転停止に伴って機械式オイルポンプ24が停止している状態で電動オイルポンプ28が作動させられている際には、当該電動オイルポンプ28からの油圧が油路L1にライン圧PLとして供給されることになる。更に、バルブボディ700の油路L3(第3油路)は、電動オイルポンプ28と第2逆止弁78との間で油路L2から分岐されている。 The oil passage L2 (second oil passage) of the valve body 700 has one end connected to the discharge port of the electric oil pump 28 and the other end connected to the oil passage L1 downstream of the first check valve 77. The second check valve 78 is installed in the middle. The second check valve 78 allows the hydraulic oil to flow from the electric oil pump 28 side to the downstream side when the oil pressure on the upstream side, that is, the electric oil pump 28 side is higher than that on the downstream side, that is, the oil passage L1. When the hydraulic pressure on the upstream side is equal to or lower than the hydraulic pressure on the downstream side, the flow of hydraulic oil from the electric oil pump 28 side to the downstream side is blocked. Thereby, when the electric oil pump 28 is operated in a state where the mechanical oil pump 24 is stopped along with the operation stop of the engine 12, the hydraulic pressure from the electric oil pump 28 enters the oil passage L1. It is supplied as the line pressure PL. Further, the oil passage L3 (third oil passage) of the valve body 700 is branched from the oil passage L2 between the electric oil pump 28 and the second check valve 78.

 プライマリレギュレータバルブ71は、機械式オイルポンプ24と第1逆止弁77との間で油路L1に接続されており、リニアソレノイドバルブSLTからの油圧を信号圧として用いて機械式オイルポンプ24からの作動油を調圧することにより元圧を生成する。これにより、電動オイルポンプ28が停止している状態でエンジン12により機械式オイルポンプ24が駆動されている際には、プライマリレギュレータバルブ71により調圧された元圧が油路L1にライン圧PLとして供給されることになる。また、セカンダリレギュレータバルブ(第2のレギュレータバルブ)72は、リニアソレノイドバルブSLTからの油圧を信号圧として用いて上記元圧の生成に伴ってプライマリレギュレータバルブ71からドレンされる作動油(ドレン油)を調圧することにより当該元圧(ライン圧PL)よりも低いセカンダリ圧(循環圧)Psecを生成する。 The primary regulator valve 71 is connected to the oil passage L1 between the mechanical oil pump 24 and the first check valve 77, and the hydraulic pressure from the linear solenoid valve SLT is used as a signal pressure from the mechanical oil pump 24. The original pressure is generated by regulating the hydraulic oil. Thus, when the mechanical oil pump 24 is driven by the engine 12 while the electric oil pump 28 is stopped, the original pressure regulated by the primary regulator valve 71 is supplied to the oil passage L1 by the line pressure PL. Will be supplied as Further, the secondary regulator valve (second regulator valve) 72 uses the hydraulic pressure from the linear solenoid valve SLT as a signal pressure, and the hydraulic oil drained from the primary regulator valve 71 when the original pressure is generated (drain oil). Is adjusted to generate a secondary pressure (circulation pressure) Psec lower than the original pressure (line pressure PL).

 リニアソレノイドバルブSLTは、機械式オイルポンプ24側(例えばモジュレータバルブ74)からの作動油を調圧して車両10のアクセル開度あるいはスロットルバルブの開度に応じた油圧を出力するようにTMECU21により制御される。本実施形態において、TMECU21は、車両10のアクセル開度等とは無関係にリニアソレノイドバルブSLTを制御可能であり、当該リニアソレノイドバルブSLTの出力圧を制御することで、プライマリレギュレータバルブ71およびセカンダリレギュレータバルブ72のドレン油の量を調整することができる。また、モジュレータバルブ74は、第1逆止弁77の下流側で油路L1から分岐された油路L4に接続される入力ポートを有し、油路L1からの作動油(ライン圧PL)を調圧(減圧)して略一定のモジュレータ圧Pmodを出力する。更に、オイルクーラ75は、セカンダリ圧Psecの生成に伴ってセカンダリレギュレータバルブ72からドレンされる作動油(ドレン油)を冷却する。 The linear solenoid valve SLT is controlled by the TMECU 21 so as to adjust the hydraulic oil from the mechanical oil pump 24 side (for example, the modulator valve 74) and output a hydraulic pressure corresponding to the accelerator opening of the vehicle 10 or the opening of the throttle valve. Is done. In the present embodiment, the TMECU 21 can control the linear solenoid valve SLT regardless of the accelerator opening degree of the vehicle 10, and the primary regulator valve 71 and the secondary regulator can be controlled by controlling the output pressure of the linear solenoid valve SLT. The amount of drain oil of the valve 72 can be adjusted. Further, the modulator valve 74 has an input port connected to the oil passage L4 branched from the oil passage L1 on the downstream side of the first check valve 77, and supplies hydraulic oil (line pressure PL) from the oil passage L1. The pressure is regulated (decompressed) to output a substantially constant modulator pressure Pmod. Furthermore, the oil cooler 75 cools the hydraulic oil (drain oil) drained from the secondary regulator valve 72 as the secondary pressure Psec is generated.

 リニアソレノイドバルブSL1(調圧バルブ)は、油路L1に接続される入力ポートを有し、油路L1からの作動油(ライン圧PL)を調圧してクラッチC1の係合油室C1eへの油圧(係合油圧)を生成する。また、リニアソレノイドバルブSL1(ソレノイド部に印加される電流の値)は、TMECU21により制御される。更に、油圧制御装置70は、自動変速機25のクラッチC2,C3およびC4並びにブレーキB1およびB2の何れか1つまたは2つに対応した図示しない複数のリニアソレノイドバルブを有しており、これらのリニアソレノイドバルブもTMECU21により制御される。本実施形態において、油路L1は、これらの図示しないリニアソレノイドバルブのうち、例えばクラッチC2,C3およびブレーキB2に対応したリニアソレノイドバルブの入力ポートに接続される。また、クラッチC4およびブレーキB1に対応したリニアソレノイドバルブの入力ポートは、バルブボディ700に形成された図示しない油路を介してプライマリレギュレータバルブ71の出力ポートに接続される。 The linear solenoid valve SL1 (pressure regulating valve) has an input port connected to the oil passage L1, and regulates hydraulic fluid (line pressure PL) from the oil passage L1 to the engagement oil chamber C1e of the clutch C1. A hydraulic pressure (engagement hydraulic pressure) is generated. Further, the linear solenoid valve SL1 (the value of the current applied to the solenoid unit) is controlled by the TMECU 21. Further, the hydraulic control device 70 has a plurality of linear solenoid valves (not shown) corresponding to any one or two of the clutches C2, C3 and C4 and the brakes B1 and B2 of the automatic transmission 25. The linear solenoid valve is also controlled by the TMECU 21. In the present embodiment, the oil passage L1 is connected to an input port of a linear solenoid valve corresponding to, for example, the clutches C2 and C3 and the brake B2 among these linear solenoid valves (not shown). The input port of the linear solenoid valve corresponding to the clutch C4 and the brake B1 is connected to the output port of the primary regulator valve 71 through an oil passage (not shown) formed in the valve body 700.

 信号圧出力バルブSRは、TMECU21により通電制御される例えば常閉式のオンオフソレノイドバルブであり、当該信号圧出力バルブSRの入力ポートは、バルブボディ700に形成された油路L5を介してモジュレータバルブ74の出力ポートに連通する。信号圧出力バルブSRは、ソレノイド部への通電時にモジュレータバルブ74からのモジュレータ圧Pmodを信号圧Psrとして出力ポートから出力する。 Signal pressure output valve SR is on-off solenoid valve, for example normally closed type that is controlled energized by TMECU21, the input port of the signal pressure output valve SR is a modulator valve via the oil passage L5, which is formed in the valve body 700 It communicates with 74 output ports. The signal pressure output valve SR outputs the modulator pressure Pmod from the modulator valve 74 as the signal pressure Psr from the output port when energizing the solenoid unit.

 切替バルブ80は、バルブボディ700内に軸方向に移動自在に配置されるスプール800と、スプール800と軸方向に並ぶようにバルブボディ700内に固定される区画部材801と、スプール800を付勢するスプリング802と、区画部材801内に配置される弁体としてのボール805とを含む。更に、切替バルブ80は、第1入力ポート80aと、第2入力ポート80bと、第1出力ポート80cと、第2出力ポート80dと、信号圧入力ポート80eと、第1および第2ドレンポート80f,80gとを有する。 The switching valve 80 urges the spool 800, a spool 800 that is movably disposed in the axial direction in the valve body 700, a partition member 801 that is fixed in the valve body 700 so as to be aligned with the spool 800 in the axial direction, and the spool 800. And a ball 805 as a valve body disposed in the partition member 801. Further, the switching valve 80 includes a first input port 80a, a second input port 80b, a first output port 80c, a second output port 80d, a signal pressure input port 80e, and first and second drain ports 80f. , 80 g.

 スプール800は、軸方向に間隔をおいて形成された2つのランド800x,800yとボール押圧部800zとを有し、ボール押圧部800zが区画部材801側に位置するようにバルブボディ700内に配置される。区画部材801は、スプール800側で開口するように形成されたボール室801aを有する。スプリング802は、スプール800のボール押圧部800zを包囲するようにランド800yと区画部材801との間に配置され、当該スプール800を区画部材801から離間するように図4における上方に付勢する。ボール805は、区画部材801内に画成されたボール室801a内にスプール800の軸方向に移動自在に配置される。 The spool 800 has two lands 800x and 800y formed at intervals in the axial direction and a ball pressing portion 800z, and is arranged in the valve body 700 so that the ball pressing portion 800z is positioned on the partition member 801 side. Is done. The partition member 801 has a ball chamber 801a formed so as to open on the spool 800 side. The spring 802 is disposed between the land 800 y and the partition member 801 so as to surround the ball pressing portion 800 z of the spool 800, and biases the spool 800 upward in FIG. 4 so as to be separated from the partition member 801. The ball 805 is disposed so as to be movable in the axial direction of the spool 800 in a ball chamber 801 a defined in the partition member 801.

 第1入力ポート80aは、スプール800の2つのランド800x,800y間の空間に連通すると共に、バルブボディ700に形成された油路L6を介してセカンダリレギュレータバルブ72のドレンポートに連通する。第1入力ポート80aには、セカンダリ圧Psecの生成に伴ってセカンダリレギュレータバルブ72からドレンされる作動油(ドレン油)が油路L6を介して供給される。第2入力ポート80bは、バルブボディ700に形成された上述の油路L3に接続されると共に区画部材801のボール室801aに連通する。第2入力ポート80bには、電動オイルポンプ28の作動時に油路L3を介して当該電動オイルポンプ28からの作動油が供給される。 The first input port 80a communicates with the space between the two lands 800x and 800y of the spool 800 and also communicates with the drain port of the secondary regulator valve 72 through an oil passage L6 formed in the valve body 700. The hydraulic oil drained from the secondary regulator valve 72 as the secondary pressure Psec is generated is supplied to the first input port 80a via the oil passage L6. The second input port 80 b is connected to the oil passage L 3 formed in the valve body 700 and communicates with the ball chamber 801 a of the partition member 801. The hydraulic oil from the electric oil pump 28 is supplied to the second input port 80b via the oil passage L3 when the electric oil pump 28 is operated.

 第1出力ポート80cは、区画部材801側からスプール800側に向かうにつれて先細になる略三角形状の断面形状を有し、バルブボディ700に形成された油路L7を介してオイルクーラ75の作動油入口に連通する。第2出力ポート80dは、バルブボディ700に形成された油路L8に接続されると共に区画部材801のボール室801aに連通する。図4に示すように、油路L8は、中途に逆止弁79を有しており、当該油路L8の第2出力ポート80dとは反対側の端部は、第1出力ポート80cとオイルクーラ75との間で油路L7に連通している。逆止弁79は、上流側すなわち第2出力ポート80d(電動オイルポンプ28)側における油圧が下流側すなわち油路L7における油圧よりも高いときに第2出力ポート80d側から油路L7側への作動油の流通を許容すると共に、第2出力ポート80d側における油圧が油路L7側における油圧以下であるときに第2出力ポート80d側から油路L7側への作動油の流通を遮断する。 The first output port 80c has a substantially triangular cross-sectional shape that tapers from the partition member 801 side toward the spool 800 side, and the hydraulic oil of the oil cooler 75 is formed through an oil passage L7 formed in the valve body 700. Connect to the entrance. The second output port 80d is connected to an oil passage L8 formed in the valve body 700 and communicates with the ball chamber 801a of the partition member 801. As shown in FIG. 4, the oil passage L8 has a check valve 79 in the middle, and the end of the oil passage L8 opposite to the second output port 80d is connected to the first output port 80c and the oil. The oil passage L7 communicates with the cooler 75. When the hydraulic pressure on the upstream side, that is, the second output port 80d (electric oil pump 28) side is higher than the hydraulic pressure on the downstream side, that is, the oil passage L7, the check valve 79 moves from the second output port 80d side to the oil passage L7 side. The flow of hydraulic oil is allowed, and the flow of hydraulic oil from the second output port 80d side to the oil path L7 side is blocked when the hydraulic pressure on the second output port 80d side is equal to or lower than the hydraulic pressure on the oil path L7 side.

 信号圧入力ポート80eは、バルブボディ700に形成された油路L9を介して信号圧出力バルブSRの出力ポートに連通する。第1ドレンポート80fは、スプール800側から区画部材801側に向かうにつれて先細になる略三角形状の断面形状を有し、スプール800の2つのランド800x,800y間の空間に連通可能である。第2ドレンポート80gは、スプリング802が配置されるスプリング室に連通すると共に区画部材801のボール室801aに連通可能である。これにより、ボール室801a内に残留した作動油を第2ドレンポート80gからバルブボディ700の図示しない油路等を介して作動油貯留部へと戻すことができる。 The signal pressure input port 80e communicates with the output port of the signal pressure output valve SR via an oil passage L9 formed in the valve body 700. The first drain port 80f has a substantially triangular cross-sectional shape that tapers from the spool 800 side toward the partition member 801 side, and can communicate with the space between the two lands 800x and 800y of the spool 800. The second drain port 80g communicates with a spring chamber in which the spring 802 is disposed and can communicate with the ball chamber 801a of the partition member 801. Thereby, the hydraulic oil remaining in the ball chamber 801a can be returned from the second drain port 80g to the hydraulic oil reservoir through an oil passage (not shown) of the valve body 700.

 本実施形態において、切替バルブ80の取付状態は、信号圧入力ポート80eに信号圧出力バルブSRからの信号圧Psr(モジュレータ圧Pmod)が供給されずにスプール800がスプリング802によって図4中上方すなわち区画部材801から離間するように付勢される第1状態(同図中左側半分の状態)である。切替バルブ80の取付状態(第1状態)では、スプール800の2つのランド800x,800y間の空間を介して第1入力ポート80aと第1ドレンポート80fとが連通する。また、切替バルブ80の取付状態では、第1出力ポート80cの図中上端がスプール800の2つのランド800x,800y間の空間に僅かに連通する。これにより、切替バルブ80が第1状態を形成する際、油路L6に供給されたセカンダリレギュレータバルブ72からのドレン油は、基本的に第1ドレンポート80fに流入し、当該第1ドレンポート80fからバルブボディ700の図示しない油路等を介して作動油貯留部へと戻される。また、切替バルブ80が第1状態を形成する際、油路L6からのドレン油のごく一部は、第1出力ポート80cを介して油路L7に流入する。これにより、スプール800のランド800yと第1出力ポート80cとの間等における異物の噛み込み等を抑制することが可能となる。 In the present embodiment, the switching valve 80 is attached in such a manner that the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is not supplied to the signal pressure input port 80e, and the spool 800 is moved upward in FIG. It is the 1st state (state of the left half in the figure) urged so that it may separate from division member 801. In the mounted state (first state) of the switching valve 80, the first input port 80a and the first drain port 80f communicate with each other through the space between the two lands 800x and 800y of the spool 800. When the switching valve 80 is attached, the upper end of the first output port 80c in the drawing is slightly communicated with the space between the two lands 800x and 800y of the spool 800. Thereby, when the switching valve 80 forms the first state, the drain oil from the secondary regulator valve 72 supplied to the oil passage L6 basically flows into the first drain port 80f, and the first drain port 80f. To the hydraulic oil reservoir through an oil passage (not shown) of the valve body 700. Further, when the switching valve 80 forms the first state, a small part of the drain oil from the oil passage L6 flows into the oil passage L7 via the first output port 80c. As a result, it is possible to suppress the entry of foreign matter between the land 800y of the spool 800 and the first output port 80c.

 また、切替バルブ80が第1状態を形成する際には、スプール800がスプリング802により区画部材801から離間するように付勢されることで、当該スプール800のボール押圧部800zが区画部材801のボール室801aの開口付近に位置し、ボール押圧部800zとボール室801a内のボール805との間には、軸方向の間隔が形成される。これにより、切替バルブ80が第1状態を形成する際に電動オイルポンプ28から油路L3に作動油が供給されると、油路L3から第2入力ポート80bに供給された油圧の作用によりボール805が区画部材801の図中上方(信号圧入力ポート80e側)の弁座部に押圧される。この結果、切替バルブ80の第2入力ポート80bがボール室801aを介して第2出力ポート80dに連通し、油路L3からの作動油は、第2入力ポート80b、ボール室801a、第2出力ポート80d、油路L8(逆止弁79)を介して油路L7に流入可能となる。 Further, when the switching valve 80 forms the first state, the spool 800 is biased so as to be separated from the partition member 801 by the spring 802, so that the ball pressing portion 800 z of the spool 800 is moved to the partition member 801. Located in the vicinity of the opening of the ball chamber 801a, an axial interval is formed between the ball pressing portion 800z and the ball 805 in the ball chamber 801a. Accordingly, when the hydraulic oil is supplied from the electric oil pump 28 to the oil passage L3 when the switching valve 80 forms the first state, the ball is caused by the action of the hydraulic pressure supplied from the oil passage L3 to the second input port 80b. 805 is pressed by the valve seat portion on the upper side (the signal pressure input port 80e side) of the partition member 801 in the figure. As a result, the second input port 80b of the switching valve 80 communicates with the second output port 80d via the ball chamber 801a, and the hydraulic oil from the oil passage L3 flows to the second input port 80b, the ball chamber 801a, and the second output. It becomes possible to flow into the oil passage L7 through the port 80d and the oil passage L8 (check valve 79).

 一方、信号圧入力ポート80eに信号圧出力バルブSRからの信号圧Psr(モジュレータ圧Pmod)が供給されると、スプール800がスプリング802の付勢力に抗して区画部材801に向けて移動し、切替バルブ80は、第2状態(図4中右側半分の状態)を形成する。切替バルブ80が第2状態を形成する際には、スプール800のランド800xにより第1入力ポート80aと第1ドレンポート80fとの連通が遮断されると共に、第1入力ポート80aがスプール800の2つのランド800x,800y間の空間を介して第1出力ポート80cの全体に連通する。これにより、切替バルブ80が第2状態を形成する際には、油路L6に供給されたセカンダリレギュレータバルブ72からのドレン油が第1出力ポート80cを介して油路L7に流入可能となる。 On the other hand, when the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is supplied to the signal pressure input port 80e, the spool 800 moves toward the partition member 801 against the biasing force of the spring 802, The switching valve 80 forms the second state (the state on the right half in FIG. 4). When the switching valve 80 forms the second state, the communication between the first input port 80a and the first drain port 80f is blocked by the land 800x of the spool 800, and the first input port 80a The entire first output port 80c communicates with the space between the two lands 800x and 800y. Thereby, when the switching valve 80 forms the second state, the drain oil from the secondary regulator valve 72 supplied to the oil passage L6 can flow into the oil passage L7 via the first output port 80c.

 更に、切替バルブ80が第2状態を形成する際には、スプール800が区画部材801に向けて移動することで、当該スプール800のボール押圧部800zがボール室801a内のボール805に当接し、当該ボール805を区画部材801の図中下方(第2出力ポート80d側)の弁座部に押圧する。本実施形態において、信号圧入力ポート80eに供給された信号圧Psr(モジュレータ圧Pmod)を受けるスプール800の受圧面の面積は、電動オイルポンプ28からの油圧(吐出圧)が予め定められた閾値未満である際に、信号圧Psrの作用によりスプール800に付与される推力がスプリング802の付勢力と油路L3から第2入力ポート80bに供給される油圧の作用によりボール805に付与される推力との和に打ち勝つように定められている。 Further, when the switching valve 80 forms the second state, the spool 800 moves toward the partition member 801, so that the ball pressing portion 800z of the spool 800 contacts the ball 805 in the ball chamber 801a, The ball 805 is pressed against the valve seat portion below the partition member 801 in the drawing (on the second output port 80d side). In the present embodiment, the area of the pressure receiving surface of the spool 800 that receives the signal pressure Psr (modulator pressure Pmod) supplied to the signal pressure input port 80e is a threshold at which the hydraulic pressure (discharge pressure) from the electric oil pump 28 is predetermined. The thrust applied to the spool 800 by the action of the signal pressure Psr when the pressure is less than the thrust applied to the ball 805 by the action of the urging force of the spring 802 and the hydraulic pressure supplied from the oil passage L3 to the second input port 80b. It is determined to overcome the harmony.

 これにより、切替バルブ80が第2状態を形成する際に電動オイルポンプ28から油路L3に作動油が供給されても、ボール805は、基本的に、スプール800のボール押圧部800zにより区画部材801の図中下方(第2出力ポート80d側)の弁座部に押圧されたままとなる。この結果、切替バルブ80が信号圧入力ポート80eへの信号圧Psrの供給に応じて第2状態を形成している際には、ボール805により切替バルブ80の第2入力ポート80bと第2出力ポート80dとの連通を遮断し、電動オイルポンプ28からの作動油を第2出力ポート80dに供給することなく、油路L1側に供給することが可能となる。 Thus, even when the hydraulic oil is supplied from the electric oil pump 28 to the oil passage L3 when the switching valve 80 forms the second state, the ball 805 is basically separated by the ball pressing portion 800z of the spool 800. It remains pressed by the valve seat 801 in the lower part of the figure (the second output port 80d side). As a result, when the switching valve 80 forms the second state in response to the supply of the signal pressure Psr to the signal pressure input port 80e, the ball 805 causes the second input port 80b of the switching valve 80 and the second output. The communication with the port 80d is cut off, and the hydraulic oil from the electric oil pump 28 can be supplied to the oil path L1 side without being supplied to the second output port 80d.

 また、本実施形態において、電動オイルポンプ28からの油圧(吐出圧)に対する上記閾値は、当該電動オイルポンプ28(マグネットカップリング)の脱調を生じさせない吐出圧の上限値として実験・解析を経て定められている。従って、何らかの要因により電動オイルポンプ28の吐出圧が必要以上に高まり、電動オイルポンプ28からの油圧が上記閾値以上になると、油路L3から第2入力ポート80bに供給された油圧の作用によりボール805に付与される推力とスプリング802の付勢力との和が信号圧入力ポート80eに供給された信号圧Psrの作用によりスプール800に付与される推力に打ち勝ち、切替バルブ80は第1状態を形成して第2入力ポート80bと第2出力ポート80dとの連通を許容する。これにより、電動オイルポンプ28の吐出圧が必要以上に高まった際に、切替バルブ80をリリーフバルブとして機能させて当該電動オイルポンプ28の脱調の発生を抑制することが可能となる。 In the present embodiment, the threshold value for the hydraulic pressure (discharge pressure) from the electric oil pump 28 is subjected to experiments and analysis as an upper limit value of the discharge pressure that does not cause the electric oil pump 28 (magnet coupling) to step out. It has been established. Therefore, if the discharge pressure of the electric oil pump 28 increases more than necessary due to some factor and the hydraulic pressure from the electric oil pump 28 exceeds the above threshold, the ball is caused by the action of the hydraulic pressure supplied from the oil passage L3 to the second input port 80b. The sum of the thrust applied to 805 and the biasing force of the spring 802 overcomes the thrust applied to the spool 800 by the action of the signal pressure Psr supplied to the signal pressure input port 80e, and the switching valve 80 forms the first state. Thus, communication between the second input port 80b and the second output port 80d is permitted. Thus, when the discharge pressure of the electric oil pump 28 increases more than necessary, the switching valve 80 can function as a relief valve to suppress the occurrence of step-out of the electric oil pump 28.

 次に、図4および図5を参照しながら、アイドルストップ制御の実行により車両10の停車に伴ってエンジン12の運転が停止されてから当該車両10に対する発進要求に応じてエンジン12が再始動される際の油圧制御装置70の動作について説明する。なお、以下の説明において、エンジン12の「運転停止」は、当該エンジン12の回転数が低下して機械式オイルポンプ24から充分な量の作動油が吐出されなくなっている状態と当該エンジン12の運転が完全に停止されている状態とを含むものとする。 Next, referring to FIG. 4 and FIG. 5, the engine 12 is restarted in response to a start request to the vehicle 10 after the operation of the engine 12 is stopped as the vehicle 10 stops due to the execution of the idle stop control. The operation of the hydraulic control device 70 during operation will be described. In the following description, the “operation stop” of the engine 12 means that the engine 12 has been rotated at a lower speed and a sufficient amount of hydraulic oil is not being discharged from the mechanical oil pump 24. Including a state in which the operation is completely stopped.

 車両10の停車に伴ってエンジン12の運転が停止される場合、TMECU21は、エンジン12の運転停止(エンジン停止指令)に応じて、信号圧出力バルブSRへの通電を解除(解除状態に維持)して信号圧Psrの出力を停止させると共に電動オイルポンプ28を作動させる。これにより、切替バルブ80は、上述の第1状態を形成し、電動オイルポンプ28からの油圧が油路L2から油路L1にライン圧PLとして供給される。また、切替バルブ80が第1状態を形成することで、電動オイルポンプ28からの油の一部は、油路L3、切替バルブ80の第2入力ポート80b、ボール室801a、第2出力ポート80d、油路L8(逆止弁79)を介して油路L7に流入し、更にオイルクーラ75を介してクラッチC1の遠心油圧キャンセル室C1cを含む低圧油供給部に供給される。これにより、エンジン12の運転停止に伴って機械式オイルポンプ24が停止し、元圧の生成に伴って発生するプライマリレギュレータバルブ71からのドレン油が減少しても、クラッチC1の遠心油圧キャンセル室C1cを含む自動変速機25の低圧油供給部に対する作動油の供給量が不足するのを抑制することができる。 When the operation of the engine 12 is stopped as the vehicle 10 stops, the TMECU 21 releases the energization of the signal pressure output valve SR (maintains the release state) in response to the operation stop (engine stop command) of the engine 12. Then, the output of the signal pressure Psr is stopped and the electric oil pump 28 is operated. Thereby, the switching valve 80 forms the first state described above, and the hydraulic pressure from the electric oil pump 28 is supplied from the oil passage L2 to the oil passage L1 as the line pressure PL. In addition, since the switching valve 80 forms the first state, a part of the oil from the electric oil pump 28 is oil passage L3, the second input port 80b of the switching valve 80, the ball chamber 801a, and the second output port 80d. Then, the oil flows into the oil passage L7 via the oil passage L8 (check valve 79), and is further supplied to the low-pressure oil supply section including the centrifugal oil pressure cancellation chamber C1c of the clutch C1 via the oil cooler 75. As a result, even if the mechanical oil pump 24 stops with the operation stop of the engine 12 and the drain oil from the primary regulator valve 71 generated with the generation of the original pressure decreases, the centrifugal hydraulic pressure cancellation chamber of the clutch C1 is reduced. It is possible to suppress a shortage of the amount of hydraulic oil supplied to the low-pressure oil supply unit of the automatic transmission 25 including C1c.

 このように切替バルブ80が第1状態を形成する状態で電動オイルポンプ28を作動させる間、TMECU21は、リニアソレノイドバルブSL1から、エンジン12を再始動させて車両10を発進させる際に係合されるクラッチC1(図3参照)にトルク容量をもたすことなく、係合油室C1eに作動油を満たすことができる程度(ピストンをストロークがなくなるように移動させることができる程度)の油圧が出力されるように当該リニアソレノイドバルブSL1に対する油圧指令値Psl1*を設定する。更に、この間、TMECU21は、リニアソレノイドバルブSL1に対する油圧指令値Psl1*と低圧油供給部への作動油の供給量に見合った油圧を発生するように電動オイルポンプ28を制御する。 While the electric oil pump 28 is operated in such a state that the switching valve 80 forms the first state in this way, the TMECU 21 is engaged when starting the vehicle 10 by restarting the engine 12 from the linear solenoid valve SL1. The hydraulic pressure is such that the engagement oil chamber C1e can be filled with hydraulic oil without giving torque capacity to the clutch C1 (see FIG. 3) (the piston can be moved to eliminate the stroke). The hydraulic pressure command value Psl1 * for the linear solenoid valve SL1 is set so as to be output. Further, during this time, the TMECU 21 controls the electric oil pump 28 so as to generate a hydraulic pressure corresponding to the hydraulic pressure command value Psl1 * for the linear solenoid valve SL1 and the amount of hydraulic oil supplied to the low pressure oil supply unit.

 また、車両10の停車後(エンジン12の運転停止後)に当該車両10の運転者によりブレーキペダル93の踏み込みが解除されると共にアクセルペダル91が踏み込まれることで車両10に対する発進要求がなされると(図5における時刻t1)、TMECU21は、当該発進要求に応じて、電動オイルポンプ28を作動させたまま、信号圧出力バルブSRに通電して信号圧Psrを出力させる。これにより、切替バルブ80が上述の第2状態を形成することで第2入力ポート80bと第2出力ポート80dとの連通が遮断され、自動変速機25の低圧油供給部に対する電動オイルポンプ28からの作動油の供給が遮断される。 Further, when the vehicle 10 is stopped (after the engine 12 is stopped), when the driver of the vehicle 10 releases the brake pedal 93 and the accelerator pedal 91 is depressed, the vehicle 10 is requested to start. (Time t1 in FIG. 5), in response to the start request, the TMECU 21 energizes the signal pressure output valve SR and outputs the signal pressure Psr while operating the electric oil pump 28. As a result, the switching valve 80 forms the second state described above, so that the communication between the second input port 80b and the second output port 80d is cut off, and the electric oil pump 28 to the low-pressure oil supply unit of the automatic transmission 25 is disconnected. The supply of hydraulic oil is cut off.

 更に、車両10に対する発進要求に応じてエンジン12が始動され、それに伴って機械式オイルポンプ24が作動油を吐出すると、プライマリレギュレータバルブ71は、機械式オイルポンプ24からの作動油を調圧することにより上述の元圧を生成し、セカンダリレギュレータバルブ72は、プライマリレギュレータバルブ71のドレン油を調圧することにより当該元圧よりも低いセカンダリ圧Psecを生成する。この際、プライマリレギュレータバルブ71により生成される元圧は、電動オイルポンプ28からの油圧よりも高くなるまで第1逆止弁77の下流側に流入することはない。そして、セカンダリレギュレータバルブ72のドレン油は、油路L6から第2状態を形成する切替バルブ80の第1入力ポート80aおよび第1出力ポート80cを介して油路L7に流入し、更にオイルクーラ75を介してクラッチC1の遠心油圧キャンセル室C1cを含む低圧油供給部に供給される。 Furthermore, when the engine 12 is started in response to a start request for the vehicle 10 and the mechanical oil pump 24 discharges hydraulic oil accordingly, the primary regulator valve 71 regulates the hydraulic oil from the mechanical oil pump 24. The secondary regulator valve 72 generates a secondary pressure Psec lower than the primary pressure by regulating the drain oil of the primary regulator valve 71. At this time, the original pressure generated by the primary regulator valve 71 does not flow downstream of the first check valve 77 until it becomes higher than the hydraulic pressure from the electric oil pump 28. The drain oil of the secondary regulator valve 72 flows into the oil passage L7 from the oil passage L6 via the first input port 80a and the first output port 80c of the switching valve 80 that forms the second state, and further the oil cooler 75. To the low pressure oil supply section including the centrifugal hydraulic pressure cancel chamber C1c of the clutch C1.

 これにより、エンジン12の運転停止後の発進要求に応じて、電動オイルポンプ28からの作動油をリニアソレノイドバルブSL1により調圧して係合油室C1eに供給すると共にセカンダリレギュレータバルブ72のドレン油を遠心油圧キャンセル室C1cに供給することができるので、発進要求に応じて急係合を抑制しつつ速やかにクラッチC1を係合させることが可能となる。また、この際、クラッチC1の遠心油圧キャンセル室C1cを含む低圧油供給部への作動油の供給量をまかなうために電動オイルポンプ28の吐出流量を増加させる必要がなくなることから、電動オイルポンプ28の小型化やコストダウンを図ることができる。この結果、油圧制御装置70によれば、電動オイルポンプ28の小型化やコストダウンを図りつつ、クラッチC1の遠心油圧キャンセル室C1cを含む低圧油供給部に対する作動油の供給量が不足するのを抑制可能となる。 As a result, in response to the start request after the operation of the engine 12 is stopped, the hydraulic oil from the electric oil pump 28 is regulated by the linear solenoid valve SL1 and supplied to the engagement oil chamber C1e, and the drain oil of the secondary regulator valve 72 is supplied. Since the centrifugal hydraulic pressure cancellation chamber C1c can be supplied, it is possible to quickly engage the clutch C1 while suppressing the sudden engagement according to the start request. Further, at this time, it is not necessary to increase the discharge flow rate of the electric oil pump 28 in order to cover the supply amount of the hydraulic oil to the low pressure oil supply portion including the centrifugal hydraulic pressure cancel chamber C1c of the clutch C1, so that the electric oil pump 28 Can be reduced in size and cost. As a result, according to the hydraulic control device 70, the amount of hydraulic oil supplied to the low-pressure oil supply unit including the centrifugal hydraulic pressure cancellation chamber C1c of the clutch C1 is insufficient while reducing the size and cost of the electric oil pump 28. It becomes possible to suppress.

 また、切替バルブ80を含む油圧制御装置70では、ボール805に付与される推力とスプリング802の付勢力との和が、信号圧Psrの作用によりスプール800に付与される推力に打ち勝つまで、第2入力ポート80bと第2出力ポート80dとの連通を遮断したまま電動オイルポンプ28からの作動油をリニアソレノイドバルブSL1等に供給することができる。従って、図5に示すように電動オイルポンプ28の吐出圧(ライン圧PL)を高めることで、エンジン12を再始動させて車両10を発進させる際にクラッチC1と共に係合されるブレーキB2(図3参照)にも電動オイルポンプ28からの作動油(ライン圧)PLを調圧して供給し、当該ブレーキB2を係合させることが可能となる。この際、何らかの要因により電動オイルポンプ28の吐出圧が必要以上に高まったとしても、切替バルブ80をリリーフバルブとして機能させて当該電動オイルポンプ28の脱調の発生を抑制することができる。 Further, in the hydraulic control device 70 including the switching valve 80, the second is applied until the sum of the thrust applied to the ball 805 and the urging force of the spring 802 overcomes the thrust applied to the spool 800 by the action of the signal pressure Psr. The hydraulic oil from the electric oil pump 28 can be supplied to the linear solenoid valve SL1 and the like while the communication between the input port 80b and the second output port 80d is cut off. Therefore, as shown in FIG. 5, by increasing the discharge pressure (line pressure PL) of the electric oil pump 28, the brake B2 (FIG. 5) that is engaged with the clutch C1 when the engine 10 is restarted and the vehicle 10 is started. 3), the hydraulic oil (line pressure) PL from the electric oil pump 28 is regulated and supplied, and the brake B2 can be engaged. At this time, even if the discharge pressure of the electric oil pump 28 increases more than necessary due to some factor, the switching valve 80 can function as a relief valve to suppress the occurrence of step-out of the electric oil pump 28.

 更に、上記切替バルブ80によれば、信号圧出力バルブSRからの信号圧Psrの出力を停止させることで上記第1状態を形成すると共に信号圧出力バルブSRから信号圧入力ポート80eに信号圧Psrを供給することで上記第2状態を形成することが可能となる。そして、切替バルブ80が第2状態を形成する際には、ボール805により第2入力ポート80bと第2出力ポート80dとの間の作動油の漏れをより確実に抑制することができるので、電動オイルポンプ28からの作動油をクラッチC1側にのみ供給されるようにして当該電動オイルポンプ28の負担をより軽減することが可能となる。 Further, according to the switching valve 80, the output of the signal pressure Psr from the signal pressure output valve SR is stopped to form the first state and the signal pressure Psr from the signal pressure output valve SR to the signal pressure input port 80e. It is possible to form the second state by supplying. When the switching valve 80 forms the second state, the ball 805 can more reliably suppress the leakage of hydraulic oil between the second input port 80b and the second output port 80d. It is possible to further reduce the burden on the electric oil pump 28 by supplying the hydraulic oil from the oil pump 28 only to the clutch C1 side.

 なお、エンジン12の始動後に電動オイルポンプ28から自動変速機25の低圧油供給部への作動油の供給が遮断される際には、当該低圧油供給部に供給されるセカンダリレギュレータバルブ72のドレン油の流量が充分に確保されるように、アクセル開度等とは無関係にリニアソレノイドバルブSLTが制御されてもよい。また、エンジン12の始動後に電動オイルポンプ28を停止させる際、セカンダリレギュレータバルブ72のドレン油の流量を充分に確保すると共に、電動オイルポンプ28からの油圧が機械式オイルポンプ24からの元圧で速やかに置き換えられるように、プライマリレギュレータバルブ71により生成される元圧に応じて電動オイルポンプ28の吐出圧を徐々に低下させてもよい。 When the supply of hydraulic oil from the electric oil pump 28 to the low pressure oil supply unit of the automatic transmission 25 is interrupted after the engine 12 is started, the drain of the secondary regulator valve 72 supplied to the low pressure oil supply unit. The linear solenoid valve SLT may be controlled regardless of the accelerator opening or the like so that the oil flow rate is sufficiently secured. Further, when the electric oil pump 28 is stopped after the engine 12 is started, the flow rate of the drain oil of the secondary regulator valve 72 is sufficiently secured, and the hydraulic pressure from the electric oil pump 28 is the original pressure from the mechanical oil pump 24. The discharge pressure of the electric oil pump 28 may be gradually reduced according to the original pressure generated by the primary regulator valve 71 so that it can be quickly replaced.

 更に、上記切替バルブ80では、第1状態の形成時に第1出力ポート80cがスプール800の2つのランド800x,800y間の空間に僅かに連通するが、これに限られるものではない。すなわち、当該切替バルブ80は、第1状態の形成時にスプール800のランド800yによって第1入力ポート80aと第1出力ポート80cとの連通が遮断されるように構成されてもよい。 Furthermore, in the switching valve 80, the first output port 80c slightly communicates with the space between the two lands 800x and 800y of the spool 800 when the first state is formed, but the present invention is not limited to this. That is, the switching valve 80 may be configured such that communication between the first input port 80a and the first output port 80c is blocked by the land 800y of the spool 800 when the first state is formed.

 また、上記車両10は、走行中にエンジン12の運転を停止させる惰性走行を実行可能なものであることから、油圧制御装置70やTMECU21は、車両10の惰性走行時に上述のような動作を行うように構成されてもよい。すなわち、TMECU21は、惰性走行の実行に伴うエンジン12の停止(エンジン停止指令)に応じて、信号圧出力バルブSRへの通電を解除(解除状態に維持)して信号圧Psrの出力を停止させると共に電動オイルポンプ28を作動させ、惰性走行の解除要求に応じて、電動オイルポンプ28を作動させたまま、信号圧出力バルブSRに通電して信号圧Psrを出力させるものであってもよい。 In addition, since the vehicle 10 can perform inertial traveling that stops the operation of the engine 12 during traveling, the hydraulic control device 70 and the TMECU 21 perform the above-described operation during inertial traveling of the vehicle 10. It may be configured as follows. That is, the TMECU 21 cancels the energization of the signal pressure output valve SR (maintains the release state) and stops the output of the signal pressure Psr according to the stop of the engine 12 (engine stop command) accompanying the execution of inertial running. At the same time, the electric oil pump 28 may be operated, and the signal pressure output valve SR may be energized to output the signal pressure Psr while the electric oil pump 28 is operated in response to a request to cancel inertial running.

 これにより、惰性走行のためのエンジン12の運転停止に伴って機械式オイルポンプ24が停止し、セカンダリレギュレータバルブ72のドレン油が減少しても、電動オイルポンプを作動させることで、クラッチC1~C4の遠心油圧キャンセル室C1c等を含む自動変速機25の低圧油供給部に対する作動油の供給量が不足するのを抑制することができる。また、惰性走行の解除要求に応じて、電動オイルポンプ28からの作動油をエンジン12の再始動に際して係合されるクラッチC1~C4の少なくとも何れかの係合油室C1e等に供給すると共にセカンダリレギュレータバルブ72のドレン油を遠心油圧キャンセル室C1c等に供給して、急係合を抑制しつつ速やかに当該クラッチC1~C4の少なくとも何れかを係合させることが可能となる。 As a result, even if the mechanical oil pump 24 is stopped along with the stop of the operation of the engine 12 for coasting, and the drain oil of the secondary regulator valve 72 is reduced, the electric oil pump is operated, so that the clutches C1˜ It is possible to suppress a shortage of the amount of hydraulic oil supplied to the low pressure oil supply section of the automatic transmission 25 including the C4 centrifugal hydraulic pressure cancellation chamber C1c and the like. Further, in response to a request to cancel inertial running, the hydraulic oil from the electric oil pump 28 is supplied to at least one of the engagement oil chambers C1e of the clutches C1 to C4 engaged when the engine 12 is restarted, and the secondary. The drain oil of the regulator valve 72 is supplied to the centrifugal oil pressure cancel chamber C1c and the like, and at least one of the clutches C1 to C4 can be quickly engaged while suppressing sudden engagement.

 図6は、本開示の他の油圧制御装置70Bを示す系統図である。なお、油圧制御装置70Bの構成要素のうち、上述の油圧制御装置70と同一の要素については同一の符号を付し、重複する説明を省略する。 FIG. 6 is a system diagram showing another hydraulic control device 70B of the present disclosure. Note that among the components of the hydraulic control device 70B, the same components as those of the hydraulic control device 70 described above are denoted by the same reference numerals, and redundant description is omitted.

 油圧制御装置70Bも、機械式オイルポンプ24および電動オイルポンプ28に接続され、発進装置23や自動変速機25により要求される油圧を生成すると共に、各種軸受等の潤滑対象やクラッチC1~C4の遠心油圧キャンセル室C1c等といった低圧油供給部(被潤滑部)に作動油を供給するものである。油圧制御装置70Bにおいて、バルブボディ700Bの油路L1(第1油路)は、機械式オイルポンプ24の吐出ポートに接続され、その中途には第1逆止弁77が設置されている。また、バルブボディ700Bの油路L2(第2油路)は、その中途に第2逆止弁78を含む。油路L2の一端は、電動オイルポンプ28の吐出ポートに接続され、その他端は、油路L1の第1逆止弁77の下流側に接続され、油路L2からは、油路L3が分岐されている。 The hydraulic control device 70B is also connected to the mechanical oil pump 24 and the electric oil pump 28, generates the hydraulic pressure required by the starting device 23 and the automatic transmission 25, and lubricates objects such as various bearings and the clutches C1 to C4. The hydraulic oil is supplied to a low-pressure oil supply unit (lubricated part) such as the centrifugal hydraulic pressure cancellation chamber C1c. In the hydraulic control device 70B, an oil passage L1 (first oil passage) of the valve body 700B is connected to a discharge port of the mechanical oil pump 24, and a first check valve 77 is installed in the middle thereof. The oil passage L2 (second oil passage) of the valve body 700B includes a second check valve 78 in the middle thereof. One end of the oil passage L2 is connected to the discharge port of the electric oil pump 28, the other end is connected to the downstream side of the first check valve 77 of the oil passage L1, and the oil passage L3 branches from the oil passage L2. Has been.

 更に、油路L1およびL2の合流部J12には、リニアソレノイドバルブSL1を含むと共にクラッチC1の係合油室C1eに接続された油路(第4油路)L40や、クラッチC2-C4、ブレーキB1,B2の係合油室に連通する油路が接続されている。図示するように、油路L2と油路L3との分岐部J23は、電動オイルポンプ28と、油路L1と油路L2との合流部J12との間に設けられ、油路L2の合流部J12と分岐部J23との間には、第2逆止弁78が設置されている。第2逆止弁78は、分岐部側J23における油圧が合流部J12側における油圧よりも高いときに電動オイルポンプ28側から油路L40側への油の流通を許容すると共に、分岐部J23側における油圧が合流部J12側における油圧以下であるときに電動オイルポンプ28側から油路L40側への油の流通を遮断する。これにより、機械式オイルポンプ24からの作動油が油路L3および切替バルブ80を介して低圧油供給部に供給されないようにしつつ、電動オイルポンプ28からの作動油をクラッチC1等に供給することが可能となる。 Further, the merging section J 12 of the oil passage L1 and L2, the oil passage connected to the engaging oil chamber C1e of the clutch C1 with including a linear solenoid valve SL1 (No. 4 oil passage) L40 and the clutch C2-C4, An oil passage communicating with the engagement oil chambers of the brakes B1 and B2 is connected. As illustrated, the branch portion J 23 between the oil passage L2 and the oil passage L3 includes an electric oil pump 28 is provided between the merging portion J 12 of the oil passage L1 and the oil passage L2, the oil passage L2 between the junction unit J 12 and the branch portion J 23, second check valve 78 is installed. The second check valve 78 serves to permit the flow of oil from the electric oil pump 28 side is higher than the hydraulic pressure in the hydraulic pressure merging portion J 12 side to the oil passage L40 side of the diversion unit J 23, branch portion blocking the flow of oil into the oil passage L40 side from the electric oil pump 28 side when the oil pressure in J 23 side is a hydraulic or less in the combined unit J 12 side. Thus, the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the like while preventing the hydraulic oil from the mechanical oil pump 24 from being supplied to the low pressure oil supply unit via the oil passage L3 and the switching valve 80. Is possible.

 加えて、油圧制御装置70Bは、セカンダリレギュレータバルブ72により調圧されたレギュレータバルブ(71)からのドレン油(セカンダリ圧)を発進装置(トルクコンバータ)の流体室230に供給するための油路(第5油路)L51およびL52と、第2切替バルブ85と、逆止弁(第3逆止弁)86と、例えばソレノイド部への通電時にモジュレータバルブ74からのモジュレータ圧Pmodを信号圧として出力ポートから出力するオンオフソレノイドバルブSLとを含む。第2切替バルブ85は、油路L51と油路L52とを連通させると共に油路L61と油路L62とを連通させる連通状態と、油路L51と油路L52との連通および油路L61と油路L62との連通を解除する遮断状態とを形成可能なものであり、オンオフソレノイドバルブSLからの信号圧の出力状態において、連通状態および遮断状態の何れか一方を形成する。また、逆止弁86は、図示しないコイルスプリングを含み、第2切替バルブ85とオイルクーラ75と間に位置するように油路L62上に設置されている。逆止弁86は、流体室230からの戻り油の圧力低下に応じてオイルクーラ75側への作動油の流通を当該コイルスプリングの付勢力により規制する。かかる構成により、これにより、エンジン12の運転、すなわち機械式オイルポンプ24の停止に伴ってプライマリレギュレータバルブ71からのドレン油が流体室230に供給されなくなっても、当該流体室230内に作動油を確保しておくことが可能となる。 In addition, the hydraulic control device 70B supplies an oil passage (secondary pressure) from the regulator valve (71) regulated by the secondary regulator valve 72 to the fluid chamber 230 of the starting device (torque converter) ( (Fifth oil passage) L51 and L52, second switching valve 85, check valve (third check valve) 86, for example, modulator pressure Pmod from modulator valve 74 is output as signal pressure when energizing the solenoid portion And an on / off solenoid valve SL output from the port. The second switching valve 85 communicates between the oil passage L51 and the oil passage L52 and communicates between the oil passage L61 and the oil passage L62, the communication between the oil passage L51 and the oil passage L52, and the oil passage L61 and the oil. A shut-off state in which communication with the path L62 is released can be formed, and either a communication state or a shut-off state is formed in the output state of the signal pressure from the on / off solenoid valve SL. The check valve 86 includes a coil spring (not shown), and is installed on the oil passage L62 so as to be positioned between the second switching valve 85 and the oil cooler 75. The check valve 86 restricts the flow of the working oil to the oil cooler 75 side by the biasing force of the coil spring in accordance with the pressure drop of the return oil from the fluid chamber 230. With this configuration, even if the drain oil from the primary regulator valve 71 is not supplied to the fluid chamber 230 due to the operation of the engine 12, that is, the mechanical oil pump 24 is stopped, the hydraulic fluid is put into the fluid chamber 230. Can be secured.

 また、油圧制御装置70Bにおいて、セカンダリレギュレータバルブ72のドレンポートを流出した作動油は、ストレーナ60を介して作動油貯留部に戻される。更に、油圧制御装置70Bにおいて、オイルクーラ75の作動油出口は、油路L6を介して、切替バルブ80の第1入力ポート80aに連通すると共に、バルブボディ700Bに形成された図示しない油路を介して、クラッチC1の遠心油圧キャンセル室C1cの作動油入口に連通する。また、油圧制御装置70Bにおいて、切替バルブ80の第1出力ポート80cに接続された油路L7は、図6に示すように、クラッチC1の遠心油圧キャンセル室C1cとった低圧油供給部の作動油入口に連通した油路に連通する。 Further, in the hydraulic control device 70B, the hydraulic oil that has flowed out of the drain port of the secondary regulator valve 72 is returned to the hydraulic oil reservoir through the strainer 60. Further, in the hydraulic control device 70B, the hydraulic oil outlet of the oil cooler 75 communicates with the first input port 80a of the switching valve 80 via the oil passage L6, and an oil passage (not shown) formed in the valve body 700B. Through the hydraulic oil inlet of the centrifugal oil pressure cancellation chamber C1c of the clutch C1. Further, in the hydraulic control device 70B, the oil passage L7 connected to the first output port 80c of the switching valve 80 is, as shown in FIG. 6, the hydraulic oil of the low-pressure oil supply section that is the centrifugal hydraulic pressure cancellation chamber C1c of the clutch C1. It communicates with an oil passage that communicates with the inlet.

 次に、図6および図7を参照しながら、アイドルストップ制御や惰性走行の実行に伴ってエンジン12の運転が停止されてから発進要求や惰性走行の解除要求に応じてエンジン12が再始動される際の油圧制御装置70Bの動作について説明する。 Next, referring to FIG. 6 and FIG. 7, the engine 12 is restarted in response to the start request and the inertia travel release request after the operation of the engine 12 is stopped in accordance with the execution of the idle stop control and the inertia travel. The operation of the hydraulic control device 70B at this time will be described.

 車両10の運転者によりアクセルペダル91の踏み込みが解除されると共にブレーキペダル93が踏み込まれ、アイドルストップ制御により車両10の停車に伴ってエンジン12の運転が停止される場合、TMECU21は、エンジン12の運転停止(エンジン停止指令)に応じて、信号圧出力バルブSRへの通電を解除(解除状態に維持)して信号圧Psrの出力を停止させると共に電動オイルポンプ28を作動させる(図7における時刻t)。これにより、切替バルブ80は、上述の第1状態を形成し、電動オイルポンプ28からの油圧が油路L2から油路L1にライン圧PLとして供給される。また、切替バルブ80が第1状態を形成することで、電動オイルポンプ28からの油の一部は、油路L2,L3、切替バルブ80の第2入力ポート80b、ボール室801a、第2出力ポート80d、油路L8(逆止弁79)を介して油路L7に流入し、クラッチC1の遠心油圧キャンセル室C1cを含む低圧油供給部に供給される。これにより、エンジン12の運転停止に伴って機械式オイルポンプ24から作動油が供給されなくなっても、電動オイルポンプ28からの作動油を油路L2,L3、切替バルブ80等を介して低圧油供給部に供給することが可能となる。 When the driver of the vehicle 10 releases the depression of the accelerator pedal 91 and the brake pedal 93 is depressed, and the operation of the engine 12 is stopped when the vehicle 10 is stopped by the idle stop control, the TMECU 21 In response to the operation stop (engine stop command), the energization to the signal pressure output valve SR is canceled (maintained in the release state) to stop the output of the signal pressure Psr and to operate the electric oil pump 28 (time in FIG. 7). t a ). Thereby, the switching valve 80 forms the first state described above, and the hydraulic pressure from the electric oil pump 28 is supplied from the oil passage L2 to the oil passage L1 as the line pressure PL. Further, since the switching valve 80 forms the first state, a part of the oil from the electric oil pump 28 is supplied to the oil passages L2 and L3, the second input port 80b of the switching valve 80, the ball chamber 801a, and the second output. The oil flows into the oil passage L7 via the port 80d and the oil passage L8 (check valve 79), and is supplied to the low-pressure oil supply section including the centrifugal oil pressure cancellation chamber C1c of the clutch C1. As a result, even if the hydraulic oil is not supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped, the hydraulic oil from the electric oil pump 28 is supplied to the low-pressure oil via the oil passages L2 and L3, the switching valve 80 and the like. It becomes possible to supply to a supply part.

 電動オイルポンプ28の作動開始後、運転者によるブレーキペダル93の踏み込みに応じて例えば車両10の車速が第1の車速まで低下すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRに通電して信号圧Psrを出力させると共に、図7に示すように、切替バルブ80が第1状態を形成する際に比べて電動オイルポンプ28の吐出流量を増加させる。更に、TMECU21は、運転者によりアクセルペダル91が踏み込まれた際に前進第2速段での速やかな発進を可能にするために、前進第2速段の形成時に係合されるブレーキB1が係合直前の状態となるように当該ブレーキB1に対応したリニアソレノイドバルブを制御する。これにより、切替バルブ80が上述の第2状態を形成することで第2入力ポート80bと第2出力ポート80dとの連通が遮断され、電動オイルポンプ28からの作動油は、自動変速機25の低圧油供給部に供給されることなく、油路L2からブレーキB1の係合油室に供給される。 After the operation of the electric oil pump 28 starts, for example, when the vehicle speed of the vehicle 10 decreases to the first vehicle speed in response to the depression of the brake pedal 93 by the driver (time t b in FIG. 7), the TMECU 21 performs the signal pressure output valve SR. And the signal pressure Psr is output, and as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state. Further, the TMECU 21 is engaged with a brake B1 that is engaged when the second forward speed is formed in order to enable quick start at the second forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve corresponding to the brake B1 is controlled so as to be in a state immediately before the match. As a result, the switching valve 80 forms the second state described above, so that the communication between the second input port 80b and the second output port 80d is cut off, and the hydraulic oil from the electric oil pump 28 is supplied to the automatic transmission 25. The oil is supplied from the oil passage L2 to the engagement oil chamber of the brake B1 without being supplied to the low-pressure oil supply unit.

 TMECU21は、ブレーキB1のリニアソレノイドバルブの制御開始(電動オイルポンプ28からの作動油の供給開始)から予め定められた油圧供給時間が経過するまで、信号圧出力バルブSRに信号圧Psrを出力させると共に、電動オイルポンプ28の吐出流量を増加させる。これにより、ブレーキB1の係合油室に作動油が急速充填される。ブレーキB1のリニアソレノイドバルブの制御開始から当該油圧供給時間が経過すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRへの通電を解除して信号圧Psrの出力を停止させ、ブレーキB1のリニアソレノイドバルブを全開にすると共に、図7に示すように、電動オイルポンプ28の吐出流量を切替バルブ80が第1状態を形成する際の値に戻す。これにより、電動オイルポンプ28からの作動油は、係合油室内の油圧が保持されるようにブレーキB1に供給されると共に、切替バルブ80が上述の第1状態を形成することで、油路L2,L3、切替バルブ80等を介して低圧油供給部にも供給されることになる。 The TMECU 21 causes the signal pressure output valve SR to output the signal pressure Psr until a predetermined hydraulic pressure supply time has elapsed from the start of control of the linear solenoid valve of the brake B1 (start of supply of hydraulic oil from the electric oil pump 28). At the same time, the discharge flow rate of the electric oil pump 28 is increased. As a result, the hydraulic oil is rapidly filled into the engagement oil chamber of the brake B1. When the hydraulic pressure supply time from the start of control of the linear solenoid valve of the brake B1 has elapsed (time t c in FIG. 7), TMECU21 stops the output of the signal pressure Psr to release the energization of the signal pressure output valve SR, While fully opening the linear solenoid valve of the brake B1, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state. As a result, the hydraulic oil from the electric oil pump 28 is supplied to the brake B1 so that the hydraulic pressure in the engagement oil chamber is maintained, and the switching valve 80 forms the first state described above, whereby the oil passage It is also supplied to the low-pressure oil supply unit via L2, L3, the switching valve 80, and the like.

 また、運転者によるブレーキペダル93の踏み込みに応じて車両10の車速が第2の車速(<第1の車速)まで低下すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRに通電して信号圧Psrを出力させると共に、切替バルブ80が第1状態を形成する際に比べて電動オイルポンプ28の吐出流量を増加させる。更に、TMECU21は、運転者によりアクセルペダル91が踏み込まれた際に前進第1速段での速やかな発進を可能にするために、前進第1速段の形成時に係合されるブレーキB2が係合直前の状態となるように当該ブレーキB2に対応したリニアソレノイドバルブを制御する。これにより、切替バルブ80が第2状態を形成することで第2入力ポート80bと第2出力ポート80dとの連通が遮断され、電動オイルポンプ28からの作動油は、自動変速機25の低圧油供給部に供給されることなく、油路L2からブレーキB2の係合油室に供給される。なお、電動オイルポンプ28からの作動油がブレーキB2に供給されるのに伴い、ブレーキB1の係合油室内の作動油はドレンされる。 Further, when the vehicle speed of the vehicle 10 decreases to the second vehicle speed (<first vehicle speed) according to the depression of the brake pedal 93 by the driver (time t d in FIG. 7), the TMECU 21 sets the signal pressure output valve SR. Energization is performed to output the signal pressure Psr, and the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state. Furthermore, the TMECU 21 is engaged with a brake B2 that is engaged when the first forward speed is established in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve corresponding to the brake B2 is controlled so as to be in a state immediately before the match. As a result, the switching valve 80 forms the second state so that the communication between the second input port 80b and the second output port 80d is cut off, and the hydraulic oil from the electric oil pump 28 is used as the low-pressure oil of the automatic transmission 25. Without being supplied to the supply unit, the oil is supplied from the oil passage L2 to the engagement oil chamber of the brake B2. As hydraulic oil from the electric oil pump 28 is supplied to the brake B2, the hydraulic oil in the engagement oil chamber of the brake B1 is drained.

 TMECU21は、ブレーキB2のリニアソレノイドバルブの制御開始(電動オイルポンプ28からの作動油の供給開始)から予め定められた油圧供給時間が経過するまで、信号圧出力バルブSRに信号圧Psrを出力させると共に、電動オイルポンプ28の吐出流量を増加させる。これにより、ブレーキB2の係合油室に作動油が急速充填される。ブレーキB2のリニアソレノイドバルブの制御開始から当該油圧供給時間が経過すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRへの通電を解除して信号圧Psrの出力を停止させ、ブレーキB2のリニアソレノイドバルブを全開にすると共に、図7に示すように、電動オイルポンプ28の吐出流量を切替バルブ80が第1状態を形成する際の値に戻す。これにより、電動オイルポンプ28からの作動油は、係合油室内の油圧が保持されるようにブレーキB2に供給されると共に、切替バルブ80が上述の第1状態を形成することで、油路L2,L3、切替バルブ80等を介して低圧油供給部にも供給されることになる。 The TMECU 21 causes the signal pressure output valve SR to output the signal pressure Psr until a predetermined hydraulic pressure supply time has elapsed from the start of control of the linear solenoid valve of the brake B2 (start of supply of hydraulic oil from the electric oil pump 28). At the same time, the discharge flow rate of the electric oil pump 28 is increased. As a result, the hydraulic oil is rapidly filled into the engagement oil chamber of the brake B2. When the hydraulic pressure supply time has elapsed since the start of the control of the linear solenoid valve of the brake B2 (time t e in FIG. 7), the TMECU 21 stops energization of the signal pressure output valve SR and stops the output of the signal pressure Psr, While fully opening the linear solenoid valve of the brake B2, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state. Thereby, the hydraulic oil from the electric oil pump 28 is supplied to the brake B2 so that the hydraulic pressure in the engagement oil chamber is maintained, and the switching valve 80 forms the above-described first state, whereby the oil passage It is also supplied to the low-pressure oil supply unit via L2, L3, the switching valve 80, and the like.

 更に、運転者によるブレーキペダル93の踏み込みに応じて車両10が停車すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRに通電して信号圧Psrを出力させると共に、切替バルブ80が第1状態を形成する際に比べて電動オイルポンプ28の吐出流量を増加させる。また、TMECU21は、運転者によりアクセルペダル91が踏み込まれた際に前進第1速段での速やかな発進を可能にするために、前進第1速段の形成時に係合されるクラッチC1が係合直前の状態となるように当該クラッチC1に対応したリニアソレノイドバルブSL1を制御する。これにより、切替バルブ80が上述の第2状態を形成することで第2入力ポート80bと第2出力ポート80dとの連通が遮断され、電動オイルポンプ28からの作動油は、自動変速機25の低圧油供給部に供給されることなく、油路L2から油路L40を介してクラッチC1の係合油室C1eに供給される。 Further, when the vehicle 10 is stopped in response to depression of the brake pedal 93 by the driver (time in FIG. 7 t f), TMECU21, together to output the signal pressure Psr by energizing the signal pressure output valve SR, the switching valve 80 Increases the discharge flow rate of the electric oil pump 28 compared to when the first state is formed. Further, the TMECU 21 is engaged with a clutch C1 that is engaged when the first forward speed is formed in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve SL1 corresponding to the clutch C1 is controlled so as to be in a state immediately before the combination. As a result, the switching valve 80 forms the second state described above, so that the communication between the second input port 80b and the second output port 80d is cut off, and the hydraulic oil from the electric oil pump 28 is supplied to the automatic transmission 25. The oil is supplied from the oil passage L2 to the engagement oil chamber C1e of the clutch C1 through the oil passage L40 without being supplied to the low-pressure oil supply section.

 TMECU21は、クラッチC1のリニアソレノイドバルブSL1の制御開始(電動オイルポンプ28からの作動油の供給開始)から予め定められた油圧供給時間が経過するまで、信号圧出力バルブSRに信号圧Psrを出力させると共に、電動オイルポンプ28の吐出流量を増加させる。これにより、クラッチC1の係合油室C1eに作動油が急速充填される。リニアソレノイドバルブSL1の制御開始から当該油圧供給時間が経過すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRへの通電を解除して信号圧Psrの出力を停止させ、リニアソレノイドバルブSL1を全開にすると共に、図7に示すように、電動オイルポンプ28の吐出流量を切替バルブ80が第1状態を形成する際の値に戻す。これにより、電動オイルポンプ28からの作動油は、係合油室C1e等内の油圧が保持されるようにクラッチC1およびブレーキB2に供給されると共に、切替バルブ80が上述の第1状態を形成することで、油路L2,L3、切替バルブ80等を介して遠心油圧キャンセル室C1cを含む低圧油供給部にも供給されることになる。 The TMECU 21 outputs the signal pressure Psr to the signal pressure output valve SR until a predetermined hydraulic pressure supply time elapses from the start of control of the linear solenoid valve SL1 of the clutch C1 (start of supply of hydraulic oil from the electric oil pump 28). And the discharge flow rate of the electric oil pump 28 is increased. As a result, the hydraulic oil is rapidly filled into the engagement oil chamber C1e of the clutch C1. When the hydraulic pressure supply time has elapsed since the start of control of the linear solenoid valve SL1 (time t g in FIG. 7), TMECU21 stops the output of the signal pressure Psr to release the energization of the signal pressure output valve SR, linear solenoid While fully opening the valve SL1, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state. Thereby, the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the brake B2 so that the hydraulic pressure in the engagement oil chamber C1e and the like is maintained, and the switching valve 80 forms the first state described above. As a result, the oil is supplied also to the low-pressure oil supply unit including the centrifugal oil pressure cancellation chamber C1c via the oil passages L2 and L3, the switching valve 80, and the like.

 上述のように、油圧制御装置70Bによれば、アイドルストップ制御によるエンジン12の運転停止に伴って機械式オイルポンプ24から作動油が供給されなくなる際に、切替バルブ0を第1状態に切り替えることで、電動オイルポンプ28からの作動油を当該切替バルブ80を介して遠心油圧キャンセル室C1c等の低圧油供給部に供給することが可能となる。また、切替バルブ80を第2状態に切り替えることで、電動オイルポンプ28からの作動油を低圧油供給部に供給することなく、エンジン12の再始動時に係合されるクラッチC1等に供給することができる。 As described above, according to the hydraulic control device 70B, the switching valve 0 is switched to the first state when hydraulic oil is no longer supplied from the mechanical oil pump 24 when the engine 12 is stopped by the idle stop control. Thus, the hydraulic oil from the electric oil pump 28 can be supplied to the low-pressure oil supply unit such as the centrifugal hydraulic pressure cancel chamber C1c through the switching valve 80. Further, by switching the switching valve 80 to the second state, the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the like that are engaged when the engine 12 is restarted without being supplied to the low pressure oil supply unit. Can do.

 この結果、電動オイルポンプ28の小型化やコストダウンを図りつつ、エンジン12の運転停止に伴って機械式オイルポンプ24から作動油が供給されなくなる際に、自動変速機25のクラッチC1等や低圧油供給部の双方に対する作動油の供給量を良好に確保することが可能となる。そして、車両10の停車後に運転者によりブレーキペダル93の踏み込みが解除されると共にアクセルペダル91が踏み込まれることで車両10に対する発進要求がなされた際に(図7における時刻t)、機械式オイルポンプ24による油圧が高まるまで、電動オイルポンプ28からの作動油をリニアソレノイドバルブSL1から係合油室C1eに供給すると共に切替バルブ80を介して遠心油圧キャンセル室C1cに供給することで、発進要求に応じて急係合を抑制しつつ速やかにクラッチC1を係合させることが可能となる。 As a result, when the hydraulic oil is not supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped while reducing the size and cost of the electric oil pump 28, the clutch C1 of the automatic transmission 25, etc. It is possible to ensure a good supply amount of hydraulic oil to both of the oil supply units. Then, after the vehicle 10 is stopped, when the driver releases the brake pedal 93 and the accelerator pedal 91 is depressed to make a start request to the vehicle 10 (time t h in FIG. 7), the mechanical oil The hydraulic oil from the electric oil pump 28 is supplied from the linear solenoid valve SL1 to the engagement oil chamber C1e and supplied to the centrifugal hydraulic pressure cancellation chamber C1c via the switching valve 80 until the hydraulic pressure by the pump 24 increases, thereby requesting a start. Accordingly, the clutch C1 can be quickly engaged while suppressing sudden engagement.

 また、アイドルストップ制御によるエンジン12の運転停止中、油圧制御装置70Bでは、当該エンジン12の再始動時に係合されるクラッチC1やブレーキB1等への電動オイルポンプ28からの作動油の供給開始から油圧供給時間が経過してクラッチC1等が係合直前の状態になるまで、切替バルブ80が第2状態を形成する。更に、アイドルストップ制御によるエンジン12の運転停止中に切替バルブ80が第2状態を形成する際には、当該切替バルブ80が第1状態を形成する場合に比べて電動オイルポンプ28の吐出流量が増加させられる。これにより、アイドルストップ制御によるエンジン12の運転停止中に、再始動時に係合されるクラッチC1等に多くの油を速やかに供給しておいて、エンジン12の再始動に応じて当該クラッチC1等を速やかに係合させると共に、電動オイルポンプ28から低圧油供給部に作動油が供給されなくなる時間をより短縮化することが可能となる。 In addition, when the operation of the engine 12 is stopped by the idle stop control, the hydraulic control device 70B starts supplying hydraulic oil from the electric oil pump 28 to the clutch C1 and the brake B1 that are engaged when the engine 12 is restarted. The switching valve 80 forms the second state until the hydraulic pressure supply time has elapsed and the clutch C1 and the like are in a state immediately before engagement. Further, when the switching valve 80 forms the second state while the operation of the engine 12 is stopped by the idle stop control, the discharge flow rate of the electric oil pump 28 is higher than when the switching valve 80 forms the first state. Increased. As a result, while the engine 12 is stopped by the idle stop control, a large amount of oil is quickly supplied to the clutch C1 and the like that are engaged at the time of restart, and the clutch C1 and the like according to the restart of the engine 12 Can be quickly engaged, and the time during which hydraulic oil is not supplied from the electric oil pump 28 to the low-pressure oil supply unit can be further shortened.

 一方、車両10の惰性走行の実行に伴うエンジン12のエンジン停止指令が発せられると、TMECU21は、信号圧出力バルブSRへの通電を解除(解除状態に維持)して信号圧Psrの出力を停止させると共に電動オイルポンプ28を作動させる(図7における時刻t)。これにより、エンジン12の運転停止に伴って機械式オイルポンプ24から作動油が供給されなくなっても、電動オイルポンプ28からの作動油を切替バルブ80等を介して低圧油供給部に供給することが可能となる。 On the other hand, when an engine stop command for the engine 12 is issued in accordance with the inertial running of the vehicle 10, the TMECU 21 releases the energization of the signal pressure output valve SR (maintains the released state) and stops the output of the signal pressure Psr. And the electric oil pump 28 is operated (time t i in FIG. 7). As a result, even if the hydraulic oil is not supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped, the hydraulic oil from the electric oil pump 28 is supplied to the low pressure oil supply unit via the switching valve 80 or the like. Is possible.

 また、電動オイルポンプ28の作動開始後に、車両10の車速が第1の惰行速度まで低下すると(図7における時刻t)、TMECU21は、切替バルブ80が第2状態を形成するように信号圧出力バルブSRに通電して信号圧Psrを出力させると共に、図7に示すように、切替バルブ80が第1状態を形成する際に比べて電動オイルポンプ28の吐出流量を増加させる。更に、TMECU21は、運転者によりアクセルペダル91が踏み込まれた際に前進第4速段での速やかな発進を可能にするために、前進第4速段の形成時に係合されるクラッチC1が係合直前の状態となるようにリニアソレノイドバルブSL1を制御する。これにより、クラッチC1のリニアソレノイドバルブSL1の制御開始(電動オイルポンプ28からの作動油の供給開始)から予め定められた油圧供給時間が経過するまでに、クラッチC1の係合油室C1eに作動油が急速充填される。リニアソレノイドバルブSL1の制御開始から油圧供給時間が経過すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRへの通電を解除して信号圧Psrの出力を停止させ、リニアソレノイドバルブSL1を全開にすると共に、図7に示すように、電動オイルポンプ28の吐出流量を切替バルブ80が第1状態を形成する際の値に戻す。 Further, after the operation of the electric oil pump 28 is started, when the vehicle speed of the vehicle 10 decreases to the first coasting speed (time t j in FIG. 7), the TMECU 21 controls the signal pressure so that the switching valve 80 forms the second state. The output valve SR is energized to output the signal pressure Psr and, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state. Further, the TMECU 21 is engaged with a clutch C1 that is engaged when the fourth forward speed is established in order to enable quick start at the fourth forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve SL1 is controlled so as to be in a state immediately before the match. As a result, the engagement oil chamber C1e of the clutch C1 is operated from the start of control of the linear solenoid valve SL1 of the clutch C1 (the start of supply of hydraulic oil from the electric oil pump 28) until a predetermined hydraulic pressure supply time elapses. Oil is rapidly filled. When the hydraulic pressure supply time has elapsed from the start of control of the linear solenoid valve SL1 (time t k in FIG. 7), the TMECU 21 releases the signal pressure output valve SR to stop the output of the signal pressure Psr, and the linear solenoid valve While SL1 is fully opened, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.

 更に、車両10の車速が第2の惰行速度(<第1の惰行速度)まで低下すると(図7における時刻t)、TMECU21は、切替バルブ80が第2状態を形成するように信号圧出力バルブSRに通電して信号圧Psrを出力させると共に、切替バルブ80が第1状態を形成する際に比べて電動オイルポンプ28の吐出流量を増加させる。また、TMECU21は、運転者によりアクセルペダル91が踏み込まれた際に前進第1速段での速やかな発進を可能にするために、前進第1速段の形成時に係合されるブレーキB2が係合直前の状態となるように当該ブレーキB2に対応したリニアソレノイドバルブを制御する。これにより、ブレーキB2のリニアソレノイドバルブの制御開始(電動オイルポンプ28からの作動油の供給開始)から予め定められた油圧供給時間が経過するまでに、ブレーキB2の係合油室に作動油が急速充填される。ブレーキB2のリニアソレノイドバルブの制御開始から当該油圧供給時間が経過すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRへの通電を解除して信号圧Psrの出力を停止させ、ブレーキB2のリニアソレノイドバルブを全開にすると共に、図7に示すように、電動オイルポンプ28の吐出流量を切替バルブ80が第1状態を形成する際の値に戻す。 Further, when the vehicle speed of the vehicle 10 decreases to the second coasting speed (<first coasting speed) (time t 1 in FIG. 7), the TMECU 21 outputs a signal pressure so that the switching valve 80 forms the second state. The valve SR is energized to output the signal pressure Psr, and the discharge flow rate of the electric oil pump 28 is increased compared to when the switching valve 80 forms the first state. Further, the TMECU 21 is engaged with a brake B2 that is engaged when the first forward speed is formed in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve corresponding to the brake B2 is controlled so as to be in a state immediately before the match. As a result, the hydraulic oil is supplied to the engagement oil chamber of the brake B2 from the start of control of the linear solenoid valve of the brake B2 (start of supply of hydraulic oil from the electric oil pump 28) until a predetermined hydraulic pressure supply time elapses. Quick filling. When the hydraulic pressure supply time elapses from the start of the control of the linear solenoid valve of the brake B2 (time t m in FIG. 7), the TMECU 21 stops energizing the signal pressure output valve SR and stops the output of the signal pressure Psr, While fully opening the linear solenoid valve of the brake B2, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state.

 そして、運転者によりアクセルペダル91が踏み込まれることによりエンジン12の再始動要求がなされると(図7における時刻t)、TMECU21は、切替バルブ80が第2状態を形成するように信号圧出力バルブSRに通電して信号圧Psrを出力させると共に、図7に示すように、切替バルブ80が第1状態を形成する際に比べて電動オイルポンプ28の吐出流量を増加させる。更に、TMECU21は、運転者によりアクセルペダル91が踏み込まれた際に前進第1速段での速やかな発進を可能にするために、前進第1速段の形成時に係合されるクラッチC1が係合直前の状態となるようにリニアソレノイドバルブSL1を制御する。これにより、クラッチC1のリニアソレノイドバルブSL1の制御開始(電動オイルポンプ28からの作動油の供給開始)から予め定められた油圧供給時間が経過するまでに、電動オイルポンプ28からの作動油が低圧油供給部すなわち遠心油圧キャンセル室C1cに供給されず、クラッチC1の係合油室C1eに作動油が急速充填される。これにより、電動オイルポンプ28からの作動油を低圧油供給部に供給することなく、エンジン12の再始動に応じて係合されるクラッチC1に供給して当該クラッチC1を係合させることができる。 When the driver requests the engine 12 to be restarted by depressing the accelerator pedal 91 (time t n in FIG. 7), the TMECU 21 outputs a signal pressure so that the switching valve 80 forms the second state. The valve SR is energized to output the signal pressure Psr, and as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is increased as compared to when the switching valve 80 forms the first state. Further, the TMECU 21 is engaged with a clutch C1 that is engaged when the first forward speed is established in order to enable quick start at the first forward speed when the accelerator pedal 91 is depressed by the driver. The linear solenoid valve SL1 is controlled so as to be in a state immediately before the match. As a result, the hydraulic oil from the electric oil pump 28 is kept low until a predetermined hydraulic pressure supply time elapses from the start of control of the linear solenoid valve SL1 of the clutch C1 (start of supply of hydraulic oil from the electric oil pump 28). The oil is not supplied to the oil supply section, that is, the centrifugal oil pressure cancel chamber C1c, and the engagement oil chamber C1e of the clutch C1 is rapidly filled with the hydraulic oil. Thus, the hydraulic oil from the electric oil pump 28 can be supplied to the clutch C1 to be engaged in response to the restart of the engine 12 without being supplied to the low-pressure oil supply unit, and the clutch C1 can be engaged. .

 リニアソレノイドバルブSL1の制御開始から油圧供給時間が経過すると(図7における時刻t)、TMECU21は、信号圧出力バルブSRへの通電を解除して信号圧Psrの出力を停止させ、リニアソレノイドバルブSL1を全開にすると共に、図7に示すように、電動オイルポンプ28の吐出流量を切替バルブ80が第1状態を形成する際の値に戻す。そして、エンジン12が再始動されて当該エンジン12の回転数が機械式オイルポンプ24から充分な量の作動油が吐出される所定回転数まで上昇すると(図7における時刻t)、TMECU21は、電動オイルポンプ28の作動を停止させる。 When the hydraulic pressure supply time has elapsed from the start of control of the linear solenoid valve SL1 (time t o in FIG. 7), TMECU21 stops the output of the signal pressure Psr to release the energization of the signal pressure output valve SR, the linear solenoid valve While SL1 is fully opened, as shown in FIG. 7, the discharge flow rate of the electric oil pump 28 is returned to the value when the switching valve 80 forms the first state. When the engine 12 is restarted and the rotational speed of the engine 12 increases to a predetermined rotational speed at which a sufficient amount of hydraulic oil is discharged from the mechanical oil pump 24 (time t p in FIG. 7), the TMECU 21 The operation of the electric oil pump 28 is stopped.

 上述のように、油圧制御装置70Bによれば、惰性走行の実行によるエンジン12の運転停止に伴って機械式オイルポンプ24から作動油が供給されなくなる際に、切替バルブ0を第1状態に切り替えることで、電動オイルポンプ28からの作動油を当該切替バルブ80を介して遠心油圧キャンセル室C1c等の低圧油供給部に供給することが可能となる。また、切替バルブ80を第2状態に切り替えることで、電動オイルポンプ28からの作動油を低圧油供給部に供給することなく、エンジン12の再始動時に係合されるクラッチC1等に供給することができる。そして、運転者によりアクセルペダル91が踏み込まれることで車両10に対する発進要求や加速要求がなされた際に、機械式オイルポンプ24による油圧が高まるまで、電動オイルポンプ28からの作動油をリニアソレノイドバルブSL1から係合油室C1eに供給すると共に切替バルブ80を介して遠心油圧キャンセル室C1cに供給することで、発進要求に応じて急係合を抑制しつつ速やかにクラッチC1を係合させることが可能となる。 As described above, according to the hydraulic control device 70B, the switching valve 0 is switched to the first state when hydraulic oil is no longer supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped due to the inertial running. Thus, the hydraulic oil from the electric oil pump 28 can be supplied to the low pressure oil supply unit such as the centrifugal oil pressure cancel chamber C1c via the switching valve 80. Further, by switching the switching valve 80 to the second state, the hydraulic oil from the electric oil pump 28 is supplied to the clutch C1 and the like that are engaged when the engine 12 is restarted without being supplied to the low pressure oil supply unit. Can do. When the driver depresses the accelerator pedal 91 to request the vehicle 10 to start or accelerate, the hydraulic oil from the electric oil pump 28 is supplied to the linear solenoid valve until the hydraulic pressure by the mechanical oil pump 24 increases. By supplying from SL1 to the engagement oil chamber C1e and to the centrifugal hydraulic pressure cancellation chamber C1c via the switching valve 80, it is possible to quickly engage the clutch C1 while suppressing sudden engagement according to the start request. It becomes possible.

 また、惰性走行の実行によるエンジン12の運転停止中、油圧制御装置70Bでは、当該エンジン12の再始動時に係合されるクラッチC1やブレーキB1等への電動オイルポンプ28からの作動油の供給開始から油圧供給時間が経過してクラッチC1等が係合直前の状態になるまで、切替バルブ80が第2状態を形成する。更に、惰性走行の実行によるエンジン12の運転停止中に切替バルブ80が第2状態を形成する際には、当該切替バルブ80が第1状態を形成する場合に比べて電動オイルポンプ28の吐出流量が増加させられる。これにより、惰性走行の実行によるエンジン12の運転停止中に、再始動時に係合されるクラッチC1等に多くの油を速やかに供給しておいて、エンジン12の再始動に応じて当該クラッチC1等を速やかに係合させると共に、電動オイルポンプ28から低圧油供給部に作動油が供給されなくなる時間をより短縮化することが可能となる。なお、TMECU21により図7の時刻tから時刻tまでに実行される処理は、アイドルストップ制御によりエンジン12の運転が停止された後に当該エンジン12の再始動要求がなされた際に実行されてもよい。 In addition, while the engine 12 is stopped due to the inertia running, the hydraulic control device 70B starts supplying hydraulic oil from the electric oil pump 28 to the clutch C1 and the brake B1 that are engaged when the engine 12 is restarted. The switching valve 80 forms the second state until the hydraulic pressure supply time elapses and the clutch C1 and the like are in a state immediately before engagement. Furthermore, when the switching valve 80 forms the second state while the engine 12 is stopped due to the inertial running, the discharge flow rate of the electric oil pump 28 is larger than when the switching valve 80 forms the first state. Is increased. As a result, while the engine 12 is stopped due to the inertial running, a large amount of oil is quickly supplied to the clutch C1 and the like that are engaged at the time of restart, and the clutch C1 according to the restart of the engine 12 Etc. can be quickly engaged, and the time during which hydraulic oil is not supplied from the electric oil pump 28 to the low-pressure oil supply unit can be further shortened. The processing to be executed from the time t n in FIG. 7 by TMECU21 to time t p is the idling stop control is executed when the restart request of the engine 12 after the operation of the engine 12 is stopped it is made Also good.

 図8は、上述の切替バルブ80に代えて油圧制御装置70Bに適用可能な他の切替バルブ80Bを示す概略構成図である。 FIG. 8 is a schematic configuration diagram showing another switching valve 80B applicable to the hydraulic control device 70B in place of the switching valve 80 described above.

 図8に示す切替バルブ80Bは、第1バルブ81および第2バルブ82により構成される。第1バルブ81は、2つのランド810x,810yを有すると共にバルブボディ700B内に軸方向に移動自在に配置される第1スプール810と、第1スプール810を付勢する第1スプリング812と、第1入力ポート81aと、第1出力ポート81cと、信号圧入力ポート81eと、第1および第2ドレンポート81f,81gとを含む。第1入力ポート81aは、第1スプール810の2つのランド810x,810y間の空間に連通すると共に、バルブボディ700Bに形成された油路L6を介してオイルクーラ75の作動油出口に連通する。第1出力ポート81cは、上記第1出力ポート80cと同様の略三角形状の断面形状を有し、バルブボディ700Bに形成された油路L7に連通する。信号圧入力ポート81eは、バルブボディ700Bに形成された油路L9を介して信号圧出力バルブSRの出力ポートに連通する。第1ドレンポート81fは、上記第1ドレンポート80fと同様の略三角形状の断面形状を有し、第1スプール810の2つのランド810x,810y間の空間に連通可能である。第2ドレンポート81gは、第1スプリング812が配置されるスプリング室に連通する。なお、第1入力ポート81aに接続される油路L6と、第1出力ポート81cに接続される油路L7とを、中途にオリフィスが設置される油路L10を介して互いに連通させてもよい。 8 includes a first valve 81 and a second valve 82. The switching valve 80B shown in FIG. The first valve 81 has two lands 810x and 810y and is disposed in the valve body 700B so as to be movable in the axial direction, a first spring 812 for biasing the first spool 810, 1 input port 81a, 1st output port 81c, signal pressure input port 81e, and 1st and 2nd drain ports 81f and 81g are included. The first input port 81a communicates with the space between the two lands 810x and 810y of the first spool 810 and communicates with the hydraulic oil outlet of the oil cooler 75 via an oil passage L6 formed in the valve body 700B. The first output port 81c has a substantially triangular cross-sectional shape similar to that of the first output port 80c, and communicates with an oil passage L7 formed in the valve body 700B. The signal pressure input port 81e communicates with the output port of the signal pressure output valve SR via an oil passage L9 formed in the valve body 700B. The first drain port 81f has a substantially triangular cross-sectional shape similar to the first drain port 80f, and can communicate with the space between the two lands 810x and 810y of the first spool 810. The second drain port 81g communicates with a spring chamber in which the first spring 812 is disposed. The oil passage L6 connected to the first input port 81a and the oil passage L7 connected to the first output port 81c may be communicated with each other via an oil passage L10 in which an orifice is installed midway. .

 第2バルブ82は、2つのランド820x,820yを有すると共にバルブボディ700B内に軸方向に移動自在に配置される第2スプール820と、第2スプール820を付勢する第2スプリング822と、第2入力ポート82bと、第2出力ポート82dと、信号圧入力ポート82eとを含む。第2入力ポート82bは、バルブボディ700Bに形成された油路L3に接続され、当該第2入力ポート82bには、電動オイルポンプ28の作動時に油路L3を介して当該電動オイルポンプ28からの作動油が供給される。図8に示すように、油路L3には、リリーフ弁88が接続されている。リリーフ弁88は、機械式オイルポンプ24からの油圧が所定値以下であって第1逆止弁77が閉鎖している際(機械式オイルポンプ24の停止時)に、当該リリーフ弁88の出力圧がクラッチC1やブレーキB1,B2を係合させる際に要求されるライン圧PLを超えないように、流入した作動油の一部をリリーフ弁88への入力圧に応じてドレンするものである。これにより、電動オイルポンプ28の吐出圧が必要以上に高まった際に、クラッチC1等の急係合や低圧油供給部への油の過供給、当該電動オイルポンプ28の脱調の発生等を抑制することが可能となる。そして、第2出力ポート82dは、バルブボディ700Bに形成された油路L8に接続され、信号圧入力ポート82eは、バルブボディ700Bに形成された油路L9を介して信号圧出力バルブSRの出力ポートに連通する。 The second valve 82 has two lands 820x and 820y and is disposed in the valve body 700B so as to be movable in the axial direction, a second spring 822 for biasing the second spool 820, A two-input port 82b, a second output port 82d, and a signal pressure input port 82e are included. The second input port 82b is connected to an oil passage L3 formed in the valve body 700B. The second input port 82b is connected to the electric oil pump 28 from the electric oil pump 28 via the oil passage L3 when the electric oil pump 28 is operated. Hydraulic oil is supplied. As shown in FIG. 8, a relief valve 88 is connected to the oil passage L3. The relief valve 88 outputs the relief valve 88 when the hydraulic pressure from the mechanical oil pump 24 is below a predetermined value and the first check valve 77 is closed (when the mechanical oil pump 24 is stopped). A part of the flowing hydraulic oil is drained according to the input pressure to the relief valve 88 so that the pressure does not exceed the line pressure PL required when the clutch C1 and the brakes B1 and B2 are engaged. . As a result, when the discharge pressure of the electric oil pump 28 increases more than necessary, sudden engagement of the clutch C1, etc., excessive supply of oil to the low pressure oil supply unit, occurrence of out-of-step of the electric oil pump 28, etc. It becomes possible to suppress. The second output port 82d is connected to the oil passage L8 formed in the valve body 700B, and the signal pressure input port 82e is output from the signal pressure output valve SR via the oil passage L9 formed in the valve body 700B. Communicate with the port.

 第1バルブ81の取付状態は、信号圧入力ポート81eに信号圧出力バルブSRからの信号圧Psr(モジュレータ圧Pmod)が供給されずに第1スプール810が第1スプリング812によって図8中上方に付勢される第2状態(図中左側半分の状態)である。また、第2バルブ82の取付状態は、信号圧入力ポート82eに信号圧出力バルブSRからの信号圧Psr(モジュレータ圧Pmod)が供給されずに第2スプール820が第2スプリング822によって図8中上方に付勢される第2状態(図中左側半分の状態)である。第1バルブ81の取付状態(第2状態)では、第1スプール810の2つのランド810x,810y間の空間を介して第1入力ポート81aと第1ドレンポート81fとが連通すると共に、第1出力ポート81cの図中上端が第1スプール810の2つのランド810x,810y間の空間に僅かに連通する。また、第2バルブ82の取付状態(第2状態)では、第2スプール820のランド820yにより第2入力ポート82bと第2出力ポート82dとの連通が規制(遮断)される。 The mounting state of the first valve 81 is that the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is not supplied to the signal pressure input port 81e, and the first spool 810 is moved upward by the first spring 812 in FIG. It is the 2nd state (state of the left half in a figure) energized. In addition, the second valve 82 is attached in the state shown in FIG. 8 when the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is not supplied to the signal pressure input port 82e and the second spool 820 is moved by the second spring 822. It is the 2nd state (state of the left half in a figure) urged | biased upwards. In the mounted state (second state) of the first valve 81, the first input port 81a and the first drain port 81f communicate with each other via the space between the two lands 810x and 810y of the first spool 810, and the first The upper end of the output port 81c in the drawing slightly communicates with the space between the two lands 810x and 810y of the first spool 810. Further, in the mounted state (second state) of the second valve 82, the communication between the second input port 82b and the second output port 82d is restricted (blocked) by the land 820y of the second spool 820.

 一方、第1バルブ81の信号圧入力ポート81eに信号圧出力バルブSRからの信号圧Psr(モジュレータ圧Pmod)が供給されると、第1スプール810が第1スプリング812の付勢力に抗して図8中下方に移動し、第1バルブ81は、第1状態(図中右側半分の状態)を形成する。第1バルブ81が第2状態を形成する際には、第1スプール810のランド810xにより第1入力ポート81aと第1ドレンポート81fとの連通が遮断されると共に、第1入力ポート81aが第1スプール810の2つのランド810x,810y間の空間を介して第1出力ポート81cの全体に連通する。これにより、第1バルブ81が第2状態を形成する際には、油路L6に供給されたオイルクーラ75からの作動油は、第1出力ポート81cを介して油路L7に流入可能となる。 On the other hand, when the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is supplied to the signal pressure input port 81 e of the first valve 81, the first spool 810 resists the urging force of the first spring 812. The first valve 81 moves downward in FIG. 8 to form the first state (the right half state in the figure). When the first valve 81 forms the second state, the land 810x of the first spool 810 blocks communication between the first input port 81a and the first drain port 81f, and the first input port 81a The entire first output port 81c communicates with the space between the two lands 810x and 810y of one spool 810. Thereby, when the first valve 81 forms the second state, the hydraulic oil supplied from the oil cooler 75 to the oil passage L6 can flow into the oil passage L7 via the first output port 81c. .

 また、第2バルブ82の信号圧入力ポート82eに信号圧出力バルブSRからの信号圧Psr(モジュレータ圧Pmod)が供給されると、第2スプール820が第2スプリング822の付勢力に抗して図8中下方に移動し、第2バルブ82は、第1状態(図中右側半分の状態)を形成する。第2バルブ82が第2状態を形成する際には、第2入力ポート82bが第2スプール820の2つのランド820x,820y間の空間を介して第2出力ポート82dに連通する。これにより、第2バルブ82が第1状態を形成する際には、油路L3に供給された電動オイルポンプ28からの作動油は、第2出力ポート82dを介して油路L8に流入可能となる。 When the signal pressure Psr (modulator pressure Pmod) from the signal pressure output valve SR is supplied to the signal pressure input port 82 e of the second valve 82, the second spool 820 resists the urging force of the second spring 822. 8 moves downward, and the second valve 82 forms the first state (the right half state in the figure). When the second valve 82 forms the second state, the second input port 82b communicates with the second output port 82d through the space between the two lands 820x and 820y of the second spool 820. As a result, when the second valve 82 forms the first state, hydraulic oil from the electric oil pump 28 supplied to the oil passage L3 can flow into the oil passage L8 via the second output port 82d. Become.

 上述のような切替バルブ80Bを油圧制御装置70Bに適用した場合には、エンジン12の運転停止に伴って機械式オイルポンプ24から作動油が供給されなくなる際に、第1および第2バルブ81,82の信号圧入力ポート81e,82eに信号圧出力バルブSRからの信号圧Psrを供給して第1および第2バルブ81,82を第1状態に切り替えることで、電動オイルポンプ28からの作動油を油路L3や第2バルブ82等を介して低圧油供給部に供給することが可能となる。また、エンジン12の運転停止中に信号圧出力バルブSRからの信号圧Psrの出力を停止させて第1および第2バルブ81,82を第2状態に切り替えることで、電動オイルポンプ28からの作動油を低圧油供給部に供給することなく、油路L2から油路L40を介してエンジン12の再始動時に係合されるクラッチC1等に供給することができる。 When the switching valve 80B as described above is applied to the hydraulic control device 70B, when the hydraulic oil is not supplied from the mechanical oil pump 24 when the operation of the engine 12 is stopped, the first and second valves 81, The hydraulic oil from the electric oil pump 28 is supplied by supplying the signal pressure Psr from the signal pressure output valve SR to the signal pressure input ports 81e and 82e of 82 and switching the first and second valves 81 and 82 to the first state. Can be supplied to the low-pressure oil supply unit via the oil passage L3, the second valve 82, and the like. Further, when the operation of the engine 12 is stopped, the output of the signal pressure Psr from the signal pressure output valve SR is stopped and the first and second valves 81 and 82 are switched to the second state, whereby the operation from the electric oil pump 28 is performed. Without supplying oil to the low pressure oil supply unit, oil can be supplied from the oil passage L2 to the clutch C1 and the like that are engaged when the engine 12 is restarted via the oil passage L40.

 以上説明したように、本開示の油圧制御装置は、車両(10)のエンジン(12)からの動力により駆動される機械式ポンプ(24)と、電力により駆動される電動ポンプ(28)との少なくとも何れか一方からの油を調圧して変速機(25)の複数の係合要素の少なくとも何れか1つ(C1)に供給する油圧制御装置(70B)において、 前記機械式ポンプ(24)に接続されると共に該機械式ポンプ(24)側への油の流入を規制する第1逆止弁(77)を中途に含む第1油路(L1)と、前記電動ポンプ(28)に接続されると共に前記第1逆止弁(77)の下流側で前記第1油路(L1)に接続された第2油路(L2)と、前記第2油路(L2)から分岐された第3油路(L3)と、前記第1油路(L1)と前記第2油路(L2)との合流部(J12)と前記少なくとも何れか1つの係合要素(C1)とを結ぶ第4油路(L40)と、前記機械式ポンプ(24)と前記第1逆止弁(77)との間で前記第1油路(L1)に接続されると共に該機械式ポンプ(2)からの油を調圧して元圧を生成するレギュレータバルブ(71)と、信号圧(Psr)を出力する信号圧出力バルブ(SR)と、前記信号圧出力バルブ(SR)による前記信号圧(Psr)の出力状態に応じて、前記変速機(25)の低圧油供給部(C1c)対する前記電動ポンプ(28)から前記第3油路(L3)に供給された油の供給を許容する第1状態と、前記低圧油供給部(C1c)に対する前記電動ポンプ(28)から前記第3油路(L3)に供給された油の供給を規制する第2状態とを形成する切替バルブ(80,80B)とを備えるものである。 As described above, the hydraulic control device according to the present disclosure includes the mechanical pump (24) driven by power from the engine (12) of the vehicle (10) and the electric pump (28) driven by electric power. In a hydraulic control device (70B) that regulates oil from at least one of the oil and supplies it to at least one of a plurality of engagement elements (C1) of the transmission (25), the mechanical pump (24) A first oil passage (L1) including a first check valve (77) that is connected and restricts the inflow of oil to the mechanical pump (24) side, and is connected to the electric pump (28). And a second oil passage (L2) connected to the first oil passage (L1) on the downstream side of the first check valve (77) and a third branch branched from the second oil passage (L2). An oil passage (L3), the first oil passage (L1), and the second oil passage (L2), A fourth oil passage (L40) connecting the merging portion (J 12 ) and at least one of the engagement elements (C1), the mechanical pump (24), and the first check valve (77) And a regulator valve (71) that is connected to the first oil passage (L1) and regulates the oil from the mechanical pump (2) to generate an original pressure, and outputs a signal pressure (Psr) The electric pump (SR) and the electric pump for the low pressure oil supply part (C1c) of the transmission (25) according to the output state of the signal pressure (Psr) by the signal pressure output valve (SR) 28) from the electric pump (28) to the third oil passage (L3) for the first state allowing the supply of oil supplied to the third oil passage (L3) from the low pressure oil supply section (C1c). A second state that regulates the supply of oil supplied to the Those comprising a valve (80,80B).

 本開示の油圧制御装置では、信号圧出力バルブによる信号圧の出力状態に応じて、変速機の低圧油供給部に対する電動ポンプから第3油路に供給された油の供給を許容する第1状態と、低圧油供給部に対する電動ポンプから第3油路に供給された油の供給を規制する第2状態との何れか一方を形成するように切替バルブを切り替えることができる。これにより、エンジンの運転停止に伴って機械式ポンプから油が供給されなくなる際に、切替バルブを第1状態に切り替えることで電動ポンプからの油を第3油路および当該切替バルブを介して低圧油供給部に供給することが可能となる。また、エンジンの運転停止中に切替バルブを第2状態に切り替えることで、電動ポンプからの油を低圧油供給部に供給することなく、第2油路および第4油路を介して当該エンジンの再始動時に係合される係合要素に供給することができる。この結果、電動ポンプの大型化やコストアップを抑制しつつ、エンジンの運転停止に伴って機械式ポンプから油が供給されなくなる際に、変速機の係合要素および低圧油供給部の双方に対する油の供給量を良好に確保することが可能となる。 In the hydraulic control device according to the present disclosure, the first state in which the supply of the oil supplied from the electric pump to the third oil passage to the low-pressure oil supply unit of the transmission is allowed according to the output state of the signal pressure by the signal pressure output valve. The switching valve can be switched to form either one of the second state in which the supply of oil supplied from the electric pump to the low-pressure oil supply unit to the third oil passage is restricted. As a result, when oil is no longer supplied from the mechanical pump when the engine is stopped, the oil from the electric pump is reduced to low pressure via the third oil passage and the switching valve by switching the switching valve to the first state. It becomes possible to supply to the oil supply unit. In addition, by switching the switching valve to the second state while the engine is stopped, the oil from the electric pump is not supplied to the low pressure oil supply unit, and the engine is connected to the engine via the second oil path and the fourth oil path. It can be supplied to an engagement element that is engaged at restart. As a result, the oil for both the engagement element and the low-pressure oil supply unit of the transmission is suppressed when the oil is not supplied from the mechanical pump with the stop of the engine operation while suppressing the increase in size and cost of the electric pump. This makes it possible to ensure a good supply amount.

 また、前記第2油路(L2)と前記第3油路(L3)との分岐部(J23)は、前記電動ポンプ(28)と前記合流部(J12)との間に設けられてもよく、前記第2油路(L2)の前記合流部(J12)と前記分岐部(J23)との間には、前記分岐部側(J23)における油圧が前記合流部(J12)側における油圧よりも高いときに電動ポンプ(28)側から前記第4油路(L4)側への油の流通を許容すると共に、前記分岐部(J23)側における油圧が前記合流部(J12)側における油圧以下であるときに電動ポンプ(28)側から前記第4油路(L4)側への油の流通を遮断する第2逆止弁(78)が設置されてもよい。これにより、機械式ポンプからの油が第3油路および切替バルブを介して低圧油供給部に供給されないようにしつつ、電動ポンプからの油を係合要素に供給することが可能となる。 A branch (J 23 ) between the second oil passage (L2) and the third oil passage (L3) is provided between the electric pump (28) and the junction (J 12 ). the merging portion between the (J 12) and said branch portion (J 23), the hydraulic pressure in the branch portion (J 23) the merging portion also good, the second oil passage (L2) (J 12 ) Side oil pressure is allowed to flow from the electric pump (28) side to the fourth oil passage (L4) side when the hydraulic pressure is higher than the oil pressure on the branch portion (J 23 ) side, J 12) second check valve for blocking the flow of oil into the fourth oil passage (L4) side from the electric pump (28) side (78) may be placed when it is a hydraulic or less in side. Thereby, it is possible to supply oil from the electric pump to the engagement element while preventing oil from the mechanical pump from being supplied to the low-pressure oil supply unit via the third oil passage and the switching valve.

 更に、前記油圧制御装置(70B)は、前記レギュレータバルブ(71)からのドレン油を流体伝動装置の流体室(230)に供給するための第5油路(L51,L52)と、前記流体室(230)からの戻り油を前記低圧油供給部(C1c)へ供給するための第6油路(L61,L62)と、前記流体室(230)からの前記戻り油の圧力低下に応じて前記低圧油供給部(C1c)側への油の流通を規制するように前記第6油路(L62)上に設置された第3逆止弁(91)とを更に含んでもよい。これにより、エンジンの運転、すなわち機械式ポンプの停止に伴ってレギュレータバルブからのドレン油が流体伝動装置の流体室に供給されなくなっても、当該流体室内に油を確保しておくことが可能となる。 Further, the hydraulic control device (70B) includes a fifth oil passage (L51, L52) for supplying drain oil from the regulator valve (71) to the fluid chamber (230) of the fluid transmission device, and the fluid chamber. A sixth oil passage (L61, L62) for supplying the return oil from (230) to the low-pressure oil supply section (C1c), and the pressure reduction of the return oil from the fluid chamber (230) A third check valve (91) installed on the sixth oil passage (L62) may be further included so as to regulate the flow of oil to the low pressure oil supply section (C1c) side. As a result, even if the drain oil from the regulator valve is not supplied to the fluid chamber of the fluid transmission device due to the operation of the engine, that is, the mechanical pump is stopped, the oil can be secured in the fluid chamber. Become.

 また、前記第3油路(L3)には、前記機械式ポンプ(24)からの油圧が所定値以下であって前記第1逆止弁(77)が閉鎖している際に、出力圧が前記少なくとも何れか1つの係合要素(C1,B1,B2)を係合させる際に要求される前記元圧(PL)を超えないように、流入した油の一部を入力圧に応じてドレンするリリーフ弁(91)が接続されてもよい。これにより、電動ポンプの吐出圧が必要以上に高まった際に、係合要素の急係合や低圧油供給部への油の過供給、当該電動ポンプの脱調の発生等を抑制することが可能となる。 The third oil passage (L3) has an output pressure when the hydraulic pressure from the mechanical pump (24) is less than a predetermined value and the first check valve (77) is closed. A part of the oil flowing in is drained according to the input pressure so as not to exceed the original pressure (PL) required when the at least one engaging element (C1, B1, B2) is engaged. A relief valve (91) may be connected. As a result, when the discharge pressure of the electric pump increases more than necessary, it is possible to suppress sudden engagement of engagement elements, excessive supply of oil to the low-pressure oil supply unit, occurrence of step-out of the electric pump, etc. It becomes possible.

 更に、前記切替バルブ(80B)は、前記レギュレータバルブからのドレン油が供給される第1入力ポート(81a)と、前記低圧油供給部(C1c)に接続される第1出力ポート(81c)と、前記信号圧(Psr)が供給される第1信号圧入力ポート(81e)と、前記信号圧入力ポート(81e)に前記信号圧(Psr)が供給されないときに第1スプリング(812)により付勢されて前記第1入力ポート(81a)と前記第1出力ポート(81c))との連通を規制すると共に、前記信号圧入力ポート(81e)に前記信号圧(Psr)が供給されるときに前記第1スプリング(812)の付勢力に抗して前記第1入力ポート(81a)と前記第1出力ポート(81c)との連通を許容する第1スプール(810)とを含む第1バルブ(81)と、前記第3油路(L3)に接続される第2入力ポート(82b)と、前記低圧油供給部(C1c)に接続される第2出力ポート(82d))と、前記信号圧(Psr)が供給される第2信号圧入力ポート(82e)と、前記信号圧入力ポート(82e)に前記信号圧(Psr)が供給されないときに第2スプリング(822)により付勢されて前記第2入力ポート(82b)と前記第2出力ポート(82d)との連通を規制すると共に、前記信号圧入力ポート(82e)に前記信号圧(Psr)が供給されるときに前記第2スプリング(822)の付勢力に抗して前記第2入力ポート(82b)と前記第2出力ポート(83d)との連通を許容する第2スプール(820)とを含む第2バルブ(82)とを含むものであってもよい。これにより、信号圧出力バルブから信号圧入力ポートに信号圧を供給することで上記第1状態を形成すると共に信号圧出力バルブから信号圧入力ポートへの信号圧の出力を停止させることで上記第2状態を形成することが可能となる。 Furthermore, the switching valve (80B) includes a first input port (81a) to which drain oil from the regulator valve is supplied, and a first output port (81c) connected to the low-pressure oil supply unit (C1c). A first signal pressure input port (81e) to which the signal pressure (Psr) is supplied and a first spring (812) when the signal pressure (Psr) is not supplied to the signal pressure input port (81e). When the communication between the first input port (81a) and the first output port (81c) is restricted and the signal pressure (Psr) is supplied to the signal pressure input port (81e). A first spool (810) that allows communication between the first input port (81a) and the first output port (81c) against a biasing force of the first spring (812); Lube (81), a second input port (82b) connected to the third oil passage (L3), a second output port (82d) connected to the low-pressure oil supply section (C1c), The second signal pressure input port (82e) to which the signal pressure (Psr) is supplied, and when the signal pressure (Psr) is not supplied to the signal pressure input port (82e), it is biased by the second spring (822). The communication between the second input port (82b) and the second output port (82d) is restricted, and the second pressure is applied when the signal pressure (Psr) is supplied to the signal pressure input port (82e). A second valve (82) including a second spool (820) that allows communication between the second input port (82b) and the second output port (83d) against the biasing force of the spring (822); Including Good. Thus, the first state is formed by supplying the signal pressure from the signal pressure output valve to the signal pressure input port, and the output of the signal pressure from the signal pressure output valve to the signal pressure input port is stopped. Two states can be formed.

 また、前記切替バルブ(80)は、前記ドレン油が供給される第1入力ポート(80a)と、前記第3油路(L3)に接続される第2入力ポート(80b)と、前記低圧油供給部(C1c)に接続される第1出力ポート(80c)と、前記低圧油供給部(C1c)に接続される第2出力ポート(80d)と、前記信号圧(Psr)が供給される信号圧入力ポート(80e)と、前記信号圧入力ポート(80e)に前記信号圧(Psr)が供給されないときにスプリング(802)により付勢されて前記第1入力ポート(80a)と前記第1出力ポート(80c)との連通を規制すると共に、前記信号圧入力ポート(80e)に前記信号圧(Psr)が供給されるときに前記スプリング(802)の付勢力に抗して前記第1入力ポート(80a)と前記第1出力ポート(80c)との連通を許容するスプール(800)と、前記信号圧入力ポート(80e)に前記信号圧(Psr)が供給されないときに前記第3油路(L3)から前記第2入力ポート(80b)に供給された油圧の作用により前記第2入力ポート(80b)と前記第2出力ポート(80d)との連通を許容すると共に、前記信号圧入力ポート(80e)に前記信号圧(Psr)が供給されるときに前記スプール(800)により押圧されて前記第2入力ポート(80b)と前記第2出力ポート(80d)との連通を遮断するボール(805)とを含むものであってもよい。 The switching valve (80) includes a first input port (80a) to which the drain oil is supplied, a second input port (80b) connected to the third oil passage (L3), and the low-pressure oil. A first output port (80c) connected to the supply unit (C1c), a second output port (80d) connected to the low-pressure oil supply unit (C1c), and a signal supplied with the signal pressure (Psr) When the signal pressure (Psr) is not supplied to the pressure input port (80e) and the signal pressure input port (80e), the first input port (80a) and the first output are biased by a spring (802). The first input port is restricted against communication with the port (80c) and resists the biasing force of the spring (802) when the signal pressure (Psr) is supplied to the signal pressure input port (80e). (80 ) And the first output port (80c), and the third oil passage (L3) when the signal pressure (Psr) is not supplied to the signal pressure input port (80e). The second input port (80b) and the second output port (80d) are allowed to communicate with each other by the action of the hydraulic pressure supplied to the second input port (80b) and the signal pressure input port (80e). A ball (805) that is pressed by the spool (800) when the signal pressure (Psr) is supplied to the second input port (80b) and blocks the communication between the second output port (80d). May be included.

 更に、前記油圧制御装置(79)は、前記第2出力ポート(83d,80d)から流出した油の該第2出力ポート(83d,80d)側への逆流を規制する逆止弁(79)を含んでもよい。 Further, the hydraulic control device (79) includes a check valve (79) for restricting the backflow of oil flowing out from the second output port (83d, 80d) to the second output port (83d, 80d). May be included.

 更に、前記電動ポンプ(28)は、前記車両(10)の停車に伴う前記エンジン(12)の運転停止に応じて前記第2油路(L2)に油を供給してもよく、前記信号圧出力バルブ(SR)は、前記車両(10)の停車に伴う前記エンジン(12)の運転停止に応じて前記切替バルブ(80,80B)に前記信号圧(Psr)を供給し、前記エンジン(12)の運転停止中、前記電動ポンプ(28)からの油を前記エンジン(12)の再始動時に係合される前記係合要素(C1,B1,B2)に供給する際に、前記切替バルブ(80,80B)に対する前記信号圧の供給を停止し、発進要求に伴う前記エンジン(12)の再始動に応じて前記切替バルブ(80,80B)に対する前記信号圧(Psr)の供給を停止するものであってもよい。これにより、車両の停車に応じたエンジンの運転停止に伴って機械式ポンプから油が供給されなくなった際に、低圧油供給部に対する油の供給量を良好に確保しつつ、エンジンの再始動時に係合される係合要素に油を供給することが可能となる。 Further, the electric pump (28) may supply oil to the second oil passage (L2) in response to the stop of the operation of the engine (12) when the vehicle (10) stops, and the signal pressure The output valve (SR) supplies the signal pressure (Psr) to the switching valve (80, 80B) in response to the operation stop of the engine (12) when the vehicle (10) stops, and the engine (12 When the oil from the electric pump (28) is supplied to the engagement elements (C1, B1, B2) that are engaged when the engine (12) is restarted. The supply of the signal pressure to 80, 80B) is stopped, and the supply of the signal pressure (Psr) to the switching valve (80, 80B) is stopped in response to the restart of the engine (12) in response to a start request. It may be. As a result, when oil is no longer supplied from the mechanical pump when the engine is stopped according to the stoppage of the vehicle, the amount of oil supplied to the low-pressure oil supply unit is ensured while the engine is restarted. Oil can be supplied to the engaging elements to be engaged.

 また、前記車両(10)は、走行中に前記エンジン(12)の運転を停止させる惰性走行を実行可能であってもよく、前記電動ポンプ(28)は、前記車両(10)の惰性走行を実行するための前記エンジン(12)の運転停止に応じて前記第2油路(L2)に油を供給してもよく、前記信号圧出力バルブ(SR)は、前記惰性走行のための前記エンジン(12)の運転停止に応じて前記切替バルブ(80,80B)に前記信号圧(Psr)を供給し、前記エンジン(12)の運転停止中、前記電動ポンプ(28)からの油を前記エンジン(12)の再始動時に係合される前記係合要素(C1,B1,B2)に供給する際に、前記切替バルブ(80,80B)に対する前記信号圧(Psr)の供給を停止し、前記惰性走行の解除要求に伴う前記エンジン(12)の再始動に応じて前記切替バルブ(80,80B)に対する前記信号圧(Psr)の供給を停止するものであってもよい。これにより、惰性走行の実行に応じたエンジンの運転停止に伴って機械式ポンプから油が供給されなくなった際に、低圧油供給部に対する油の供給量を良好に確保しつつ、エンジンの再始動時に係合される係合要素に油を供給することが可能となる。 In addition, the vehicle (10) may be capable of executing inertial traveling that stops the operation of the engine (12) during traveling, and the electric pump (28) performs inertial traveling of the vehicle (10). Oil may be supplied to the second oil passage (L2) in response to the operation stop of the engine (12) for execution, and the signal pressure output valve (SR) is provided for the engine for inertial running. The signal pressure (Psr) is supplied to the switching valve (80, 80B) in response to the operation stop of (12), and oil from the electric pump (28) is supplied to the engine during the operation stop of the engine (12). (12) When supplying to the engagement elements (C1, B1, B2) engaged at the time of restart, the supply of the signal pressure (Psr) to the switching valve (80, 80B) is stopped, Accompanying the request to cancel inertial running The supply of the signal pressure to the switching valve (80,80B) serial in response to restart of the engine (12) (Psr) may be configured to stop. As a result, when oil is no longer supplied from the mechanical pump due to engine shutdown in response to inertial running, restarting the engine while ensuring good oil supply to the low-pressure oil supply unit It is possible to supply oil to the engaging elements that are sometimes engaged.

 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。 And the invention of this indication is not limited to the said embodiment at all, and it cannot be overemphasized that various changes can be made within the range of the extension of this indication. Furthermore, the above-described embodiment is merely a specific form of the invention described in the Summary of Invention column, and does not limit the elements of the invention described in the Summary of Invention column.

 本開示の発明は、油圧制御装置の製造産業等において利用可能である。 The invention of the present disclosure can be used in the manufacturing industry of hydraulic control devices.

Claims (9)

 車両のエンジンからの動力により駆動される機械式ポンプと、電力により駆動される電動ポンプとの少なくとも何れか一方からの油を調圧して変速機の複数の係合要素の少なくとも何れか1つに供給する油圧制御装置において、
 前記機械式ポンプに接続されると共に該機械式ポンプ側への油の流入を規制する第1逆止弁を中途に含む第1油路と、
 前記電動ポンプに接続されると共に前記第1逆止弁の下流側で前記第1油路に接続された第2油路と、
 前記第2油路から分岐された第3油路と、
 前記第1油路と前記第2油路との合流部と前記少なくとも何れか1つの係合要素とを結ぶ第4油路と、
 前記機械式ポンプと前記第1逆止弁との間で前記第1油路に接続されると共に該機械式ポンプからの油を調圧して元圧を生成するレギュレータバルブと、
 信号圧を出力する信号圧出力バルブと、
 前記信号圧出力バルブによる前記信号圧の出力状態に応じて、前記変速機の低圧油供給部に対する前記電動ポンプから前記第3油路に供給された油の供給を許容する第1状態と、前記低圧油供給部に対する前記電動ポンプから前記第3油路に供給された油の供給を規制する第2状態とを形成する切替バルブと、
 を備える油圧制御装置。
Pressure is adjusted from at least one of a mechanical pump driven by power from a vehicle engine and an electric pump driven by electric power to at least one of a plurality of engagement elements of the transmission. In the hydraulic control device to supply,
A first oil passage that is connected to the mechanical pump and includes a first check valve in the middle thereof that restricts the inflow of oil to the mechanical pump;
A second oil passage connected to the electric pump and connected to the first oil passage on the downstream side of the first check valve;
A third oil passage branched from the second oil passage;
A fourth oil passage connecting the joining portion of the first oil passage and the second oil passage and the at least one engagement element;
A regulator valve that is connected to the first oil passage between the mechanical pump and the first check valve and that regulates oil from the mechanical pump to generate an original pressure;
A signal pressure output valve that outputs a signal pressure; and
A first state that allows the supply of oil supplied from the electric pump to the third oil passage to the low-pressure oil supply part of the transmission according to the output state of the signal pressure by the signal pressure output valve; A switching valve that forms a second state that restricts the supply of oil supplied from the electric pump to the third oil passage to the low-pressure oil supply unit;
A hydraulic control device comprising:
 請求項1に記載の油圧制御装置において、
 前記第2油路と前記第3油路との分岐部は、前記電動ポンプと前記合流部との間に設けられ、
 前記第2油路の前記合流部と前記分岐部との間には、前記分岐部側における油圧が前記合流部側における油圧よりも高いときに電動ポンプ側から前記第4油路側への油の流通を許容すると共に、前記分岐部側における油圧が前記合流部側における油圧以下であるときに電動ポンプ側から前記第4油路側への油の流通を遮断する第2逆止弁が設置されている油圧制御装置。
The hydraulic control device according to claim 1,
A branch portion between the second oil passage and the third oil passage is provided between the electric pump and the merging portion,
Between the merging portion and the branching portion of the second oil passage, when the oil pressure on the branching portion side is higher than the oil pressure on the merging portion side, the oil from the electric pump side to the fourth oil passage side A second check valve is provided that allows the flow and blocks the flow of oil from the electric pump side to the fourth oil passage side when the hydraulic pressure at the branching portion side is equal to or lower than the hydraulic pressure at the merging portion side. Hydraulic control device.
 請求項1または2に記載の油圧制御装置において、
 前記レギュレータバルブからのドレン油を流体伝動装置の流体室に供給するための第5油路と、
 前記流体室からの戻り油を前記低圧油供給部へ供給するための第6油路と、
 前記流体室からの前記戻り油の圧力低下に応じて前記低圧油供給部側への油の流通を規制するように前記第6油路上に設置された第3逆止弁と
 を更に備える油圧制御装置。
In the hydraulic control device according to claim 1 or 2,
A fifth oil passage for supplying drain oil from the regulator valve to a fluid chamber of a fluid transmission device;
A sixth oil passage for supplying the return oil from the fluid chamber to the low-pressure oil supply unit;
A hydraulic control further comprising: a third check valve installed on the sixth oil passage so as to restrict the flow of oil to the low-pressure oil supply unit in response to a pressure drop of the return oil from the fluid chamber. apparatus.
 請求項1から3の何れか一項に記載の油圧制御装置において、
 前記第3油路には、前記機械式ポンプからの油圧が所定値以下であって前記第1逆止弁が閉鎖している際に、出力圧が前記少なくとも何れか1つの係合要素を係合させる際に要求される前記元圧を超えないように、流入した油の一部を入力圧に応じてドレンするリリーフ弁が接続されている油圧制御装置。
In the hydraulic control device according to any one of claims 1 to 3,
When the hydraulic pressure from the mechanical pump is not more than a predetermined value and the first check valve is closed, the output pressure is applied to the third oil passage at least one of the engagement elements. A hydraulic control device to which a relief valve for draining a part of the inflowed oil according to the input pressure is connected so as not to exceed the original pressure required when combining.
 請求項1から4の何れか一項に記載の油圧制御装置において、
 前記切替バルブは、
 前記レギュレータバルブからのドレン油が供給される第1入力ポートと、前記低圧油供給部に接続される第1出力ポートと、前記信号圧が供給される第1信号圧入力ポートと、前記信号圧入力ポートに前記信号圧が供給されないときに第1スプリングにより付勢されて前記第1入力ポートと前記第1出力ポートとの連通を規制すると共に、前記信号圧入力ポートに前記信号圧が供給されるときに前記第1スプリングの付勢力に抗して前記第1入力ポートと前記第1出力ポートとの連通を許容する第1スプールとを含む第1バルブと、
 前記第3油路に接続される第2入力ポートと、前記低圧油供給部に接続される第2出力ポートと、前記信号圧が供給される第2信号圧入力ポートと、前記信号圧入力ポートに前記信号圧が供給されないときに第1スプリングにより付勢されて前記第2入力ポートと前記第2出力ポートとの連通を規制すると共に、前記信号圧入力ポートに前記信号圧が供給されるときに前記第2スプリングの付勢力に抗して前記第2入力ポートと前記第2出力ポートとの連通を許容する第2スプールとを含む第2バルブとを含む油圧制御装置。
In the hydraulic control device according to any one of claims 1 to 4,
The switching valve is
A first input port to which drain oil from the regulator valve is supplied; a first output port connected to the low pressure oil supply unit; a first signal pressure input port to which the signal pressure is supplied; and the signal pressure. When the signal pressure is not supplied to the input port, it is urged by a first spring to restrict the communication between the first input port and the first output port, and the signal pressure is supplied to the signal pressure input port. A first valve that includes a first spool that permits communication between the first input port and the first output port against an urging force of the first spring when
A second input port connected to the third oil passage; a second output port connected to the low pressure oil supply; a second signal pressure input port to which the signal pressure is supplied; and the signal pressure input port. When the signal pressure is not supplied to the first pressure spring, the first spring is biased to restrict the communication between the second input port and the second output port, and the signal pressure is supplied to the signal pressure input port. And a second valve including a second spool that allows communication between the second input port and the second output port against an urging force of the second spring.
 請求項1から4の何れか一項に記載の油圧制御装置において、
 前記切替バルブは、
 前記ドレン油が供給される第1入力ポートと、
 前記第3油路に接続される第2入力ポートと、
 前記低圧油供給部に接続される第1出力ポートと、
 前記低圧油供給部に接続される第2出力ポートと、
 前記信号圧が供給される信号圧入力ポートと、
 前記信号圧入力ポートに前記信号圧が供給されないときにスプリングにより付勢されて前記第1入力ポートと前記第1出力ポートとの連通を規制すると共に、前記信号圧入力ポートに前記信号圧が供給されるときに前記スプリングの付勢力に抗して前記第1入力ポートと前記第1出力ポートとの連通を許容するスプールと、
 前記信号圧入力ポートに前記信号圧が供給されないときに前記第3油路から前記第2入力ポートに供給された油圧の作用により前記第2入力ポートと前記第2出力ポートとの連通を許容すると共に、前記信号圧入力ポートに前記信号圧が供給されるときに前記スプールにより押圧されて前記第2入力ポートと前記第2出力ポートとの連通を遮断するボールと、
 を含む油圧制御装置。
In the hydraulic control device according to any one of claims 1 to 4,
The switching valve is
A first input port to which the drain oil is supplied;
A second input port connected to the third oil passage;
A first output port connected to the low-pressure oil supply unit;
A second output port connected to the low-pressure oil supply unit;
A signal pressure input port to which the signal pressure is supplied;
When the signal pressure is not supplied to the signal pressure input port, it is biased by a spring to restrict communication between the first input port and the first output port, and the signal pressure is supplied to the signal pressure input port. A spool that allows communication between the first input port and the first output port against the biasing force of the spring when
When the signal pressure is not supplied to the signal pressure input port, the communication between the second input port and the second output port is allowed by the action of the hydraulic pressure supplied from the third oil passage to the second input port. And a ball that is pressed by the spool when the signal pressure is supplied to the signal pressure input port and blocks communication between the second input port and the second output port;
Including hydraulic control device.
 請求項5または6に記載の油圧制御装置において、
 前記第2出力ポートから流出した油の該第2出力ポート側への逆流を規制する逆止弁を含む油圧制御装置。
The hydraulic control device according to claim 5 or 6,
A hydraulic control device including a check valve that restricts the backflow of oil flowing out from the second output port toward the second output port.
 請求項5に記載の油圧制御装置において、
 前記電動ポンプは、前記車両の停車に伴う前記エンジンの運転停止に応じて前記第2油路に油を供給し、
 前記信号圧出力バルブは、前記車両の停車に伴う前記エンジンの運転停止に応じて前記切替バルブに前記信号圧を供給し、前記エンジンの運転停止中、前記電動ポンプからの油を前記エンジンの再始動時に係合される前記係合要素に供給する際に、前記切替バルブに対する前記信号圧の供給を停止し、発進要求に伴う前記エンジンの再始動に応じて前記切替バルブに対する前記信号圧の供給を停止する油圧制御装置。
The hydraulic control device according to claim 5,
The electric pump supplies oil to the second oil passage in response to a stop of operation of the engine when the vehicle stops.
The signal pressure output valve supplies the signal pressure to the switching valve in response to the stoppage of the engine when the vehicle stops, and the oil from the electric pump is supplied to the engine when the engine is stopped. The supply of the signal pressure to the switching valve is stopped when supplying to the engaging element that is engaged at the time of start, and the signal pressure is supplied to the switching valve in response to restart of the engine accompanying a start request Hydraulic control device to stop.
 請求項5または7に記載の油圧制御装置において、
 前記車両は、走行中に前記エンジンの運転を停止させる惰性走行を実行可能であり、
 前記電動ポンプは、前記車両の惰性走行を実行するための前記エンジンの運転停止に応じて前記第2油路に油を供給し、
 前記信号圧出力バルブは、前記惰性走行のための前記エンジンの運転停止に応じて前記切替バルブに前記信号圧を供給し、前記エンジンの運転停止中、前記電動ポンプからの油を前記エンジンの再始動時に係合される前記係合要素に供給する際に、前記切替バルブに対する前記信号圧の供給を停止し、前記惰性走行の解除要求に伴う前記エンジンの再始動に応じて前記切替バルブに対する前記信号圧の供給を停止する油圧制御装置。
In the hydraulic control device according to claim 5 or 7,
The vehicle is capable of performing inertial traveling to stop the operation of the engine during traveling,
The electric pump supplies oil to the second oil passage in response to the operation stop of the engine for performing inertial running of the vehicle,
The signal pressure output valve supplies the signal pressure to the switching valve in response to the operation stop of the engine for the inertia traveling, and the oil from the electric pump is supplied to the engine when the engine is stopped. When supplying to the engaging element that is engaged at the time of starting, the supply of the signal pressure to the switching valve is stopped, and the switching valve according to the restart of the engine in response to the inertial travel release request Hydraulic control device that stops the supply of signal pressure.
PCT/JP2018/010088 2017-03-14 2018-03-14 Hydraulic control device Ceased WO2018168970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017048325 2017-03-14
JP2017-048325 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168970A1 true WO2018168970A1 (en) 2018-09-20

Family

ID=63522273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010088 Ceased WO2018168970A1 (en) 2017-03-14 2018-03-14 Hydraulic control device

Country Status (1)

Country Link
WO (1) WO2018168970A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090659A (en) * 2003-09-18 2005-04-07 Denso Corp Driving-force transmission system
JP2015197148A (en) * 2014-03-31 2015-11-09 アイシン・エィ・ダブリュ株式会社 Hydraulic control device of driving device for vehicle
JP2016056872A (en) * 2014-09-09 2016-04-21 株式会社デンソー Hydraulic control device
JP2016148365A (en) * 2015-02-10 2016-08-18 株式会社デンソー Hydraulic control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090659A (en) * 2003-09-18 2005-04-07 Denso Corp Driving-force transmission system
JP2015197148A (en) * 2014-03-31 2015-11-09 アイシン・エィ・ダブリュ株式会社 Hydraulic control device of driving device for vehicle
JP2016056872A (en) * 2014-09-09 2016-04-21 株式会社デンソー Hydraulic control device
JP2016148365A (en) * 2015-02-10 2016-08-18 株式会社デンソー Hydraulic control device

Similar Documents

Publication Publication Date Title
JP5195449B2 (en) Power transmission device and vehicle equipped with the same
JP6107930B2 (en) Vehicle hydraulic control device
JP5177123B2 (en) Power transmission device
JP5195471B2 (en) Power transmission device and vehicle equipped with the same
WO2012002055A1 (en) Hydraulic control device
JP5556712B2 (en) Hydraulic control device
JPH0788898B2 (en) Hydraulic servo pressure regulator for automatic transmission
JP5545252B2 (en) Hydraulic control device
JP2019158049A (en) Hydraulic control device and its control method
JP5668870B2 (en) Hydraulic control device
JP5904043B2 (en) Hydraulic control device
WO2014156944A1 (en) Hydraulic control device
WO2018168970A1 (en) Hydraulic control device
JP5233693B2 (en) Power transmission device and vehicle equipped with the same
JP5515974B2 (en) Hydraulic control device
WO2016147954A1 (en) Pressure accumulation device
JP5910760B2 (en) Hydraulic control device
JP7750053B2 (en) Hydraulic control device
JP2013174259A (en) Hydraulic control device of automatic transmission
JP5163483B2 (en) Power transmission device and vehicle equipped with the same
JP2022158862A (en) hydraulic controller
JP5515973B2 (en) Power transmission device
JP2011214616A (en) Hydraulic control device
JP2021148285A (en) Hydraulic control device
JP2017141943A (en) Hydraulic control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP