WO2018169065A1 - 細胞構造体の製造方法 - Google Patents
細胞構造体の製造方法 Download PDFInfo
- Publication number
- WO2018169065A1 WO2018169065A1 PCT/JP2018/010535 JP2018010535W WO2018169065A1 WO 2018169065 A1 WO2018169065 A1 WO 2018169065A1 JP 2018010535 W JP2018010535 W JP 2018010535W WO 2018169065 A1 WO2018169065 A1 WO 2018169065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biocompatible polymer
- cells
- polymer block
- cell
- cell structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/08—Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/78—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/32—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0062—General methods for three-dimensional culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/54—Collagen; Gelatin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
- C12N2535/10—Patterned coating
Definitions
- the present invention relates to a method for producing a cell structure, comprising a biocompatible polymer block and cells, wherein a plurality of biocompatible polymer blocks are disposed in gaps between the plurality of cells.
- Regenerative medicine is being put to practical use to regenerate living tissues and organs that have fallen into dysfunction or dysfunction.
- Regenerative medicine is a new medicine that regenerates the same form and function as the original tissue using the three factors of cells, scaffolding, and growth factors from living tissues that cannot be recovered only by the natural healing ability of the living body.
- Technology In recent years, treatment using cells is gradually being realized. For example, cultured epidermis using autologous cells, cartilage treatment using autologous chondrocytes, bone regeneration treatment using mesenchymal stem cells, cardiomyocyte sheet treatment using myoblasts, corneal regeneration treatment using corneal epithelial sheets, and Examples include nerve regeneration treatment.
- Patent Document 1 describes a cell structure including a polymer block having biocompatibility and cells, and a plurality of the polymer blocks arranged in the gaps between the plurality of cells.
- nutrients can be delivered from the outside to the inside of the cell structure.
- the cell structure has a sufficient thickness, and the cells are uniformly present in the structure.
- high cell survival activity has been demonstrated using a polymer block made of recombinant gelatin or a natural gelatin material.
- Patent Document 2 includes a polymer block having biocompatibility and at least one kind of cell, and a plurality of the polymer blocks are arranged in a gap between the plurality of cells. Cell structures have been described.
- Patent Document 3 includes a biocompatible polymer block that does not contain glutaraldehyde and at least one kind of cell, and a plurality of biocompatible polymer blocks are arranged in a gap between a plurality of cells.
- a cell structure for cell transplantation wherein the tap density of the biocompatible polymer block is 10 mg / cm 3 or more and 500 mg / cm 3 or less, or the square root of the cross-sectional area in the two-dimensional cross-sectional image of the polymer block ⁇
- a cell structure for cell transplantation having a perimeter value of 0.01 or more and 0.13 or less is described.
- Patent Documents 1 to 3 described above a cell structure including a polymer block having bioaffinity and a cell, wherein a plurality of the polymer blocks are arranged in a gap between the plurality of cells, A small-scale manufacturing method is described in which one is manufactured in one well.
- Patent Document 4 a plurality of depressions forming a compartment in which a culture object is cultured are formed on the surface of the culture substrate, and the culture substrate surface between the depressions adjacent to each other is a non-flat surface.
- a culture substrate characterized by the above is described, and spheroid culture using the culture substrate is described.
- a culture surface in which a plurality of depressions that form a compartment in which a culture of sputum is cultured is formed, a container body having the culture surface on the bottom surface, and placed on top of the plurality of depressions.
- a permeable lid that closes the opening of the dent, and the culture surface has a non-flat surface at the top between the dents adjacent to each other, and the permeable lid is in the culture solution in the container body.
- the cell structures When used for the repair / regeneration of biological tissue, it may be desired to simultaneously produce, for example, 1,000 or more cell structures in large quantities.
- a method for culturing a large amount of cell mass a method in which the cell mass is suspended in a medium and stirred is known.
- the suspension agitation culture method is used for the production of the cell structure, (1) the formation efficiency of the cell structure is poor (that is, the polymer block and the cell existing individually without forming the cell structure. (2) The ratio of the polymer block to cells of the cell structure obtained is different for each cell structure, and (3) the individual size of the cell structure is different. It became clear by examination of the present inventors.
- the cell structures When cell structures are used for repair and regeneration of living tissue, in order to obtain an excellent therapeutic effect, the cell structures must be uniform (for example, the ratio, shape or size of the polymer block to cells is uniform). It is desirable to be.
- An object of the present invention is to provide a cell structure comprising a biocompatible polymer block and a cell, wherein a plurality of the biocompatible polymer blocks are disposed in gaps between the plurality of cells. It is to provide a method that can be produced uniformly and in large quantities.
- the present inventors have found that the first culture container having a culture surface having a plurality of depressions and a side wall portion standing on the outer periphery of the culture surface is biocompatible.
- a cell structure is formed by adding a mixture of a functional polymer block, cells and liquid medium and allowing to stand, and then the cell structure is stirred and cultured in a second culture vessel equipped with stirring means.
- a biocompatible polymer block, a cell and a liquid medium are placed in a first culture container having a culture surface on which a plurality of depressions are formed and a side wall portion standing on the outer periphery of the culture surface. Adding the mixture such that the liquid level of the mixture exceeds the culture surface;
- B) The first culture vessel in the step (A) is allowed to stand, and the biocompatible polymer block and the cells are contained in the recess, and a plurality of the above-described cells are provided in the gaps between the plurality of cells.
- a method for producing a cell structure comprising:
- the first culture vessel is allowed to stand until the free biocompatible polymer block is 30% by mass or less of the total biocompatible polymer block.
- a method for producing the described cell structure (3) The first culture vessel is allowed to stand in step (B) for a time such that the ratio of the number of cell structures produced after step (C) to the number of depressions is 70% or more.
- the depth of the depression is 2 to 100 times the size of the biocompatible polymer block, and the diameter of the depression is 2 to 100 times the size of the bioaffinity polymer block.
- (7) The method for producing a cell structure according to any one of (1) to (6), wherein the time for allowing the first culture vessel to stand is 2 to 24 hours.
- A represents any amino acid or amino acid sequence
- B represents any amino acid or amino acid sequence
- n Xs independently represent any of the amino acids
- n Ys each independently represent an amino acid.
- N represents an integer of 3 to 100
- m represents an integer of 2 to 10.
- the n Gly-XY may be the same or different.
- Gelatin is A peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1; A peptide having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 and having biocompatibility; or 80% or more of the amino acid sequence described in SEQ ID NO: 1 A peptide having an amino acid sequence having the following sequence identity and having biocompatibility; The method for producing a cell structure according to (9) or (10), wherein
- a cell comprising a biocompatible polymer block and a cell, wherein a plurality of the biocompatible polymer blocks are disposed in gaps between the plurality of cells.
- the structure can be manufactured uniformly and in large quantities in a short time.
- FIG. 1 is a perspective view of a first culture vessel.
- FIG. 2 is a cross-sectional view of a first example of the first culture vessel (the upper surface of the region between the depressions, that is, the uppermost part of the depressions is non-flat).
- FIG. 2 (a) shows an example without a cell adhesion inhibitor layer
- FIG. 2 (b) shows an example with a cell adhesion inhibitor layer.
- FIG. 3 is a cross-sectional view of a second example of the first culture vessel (the upper surface of the region between the depressions, that is, the uppermost part of the depressions is flat).
- FIG. 3 (a) shows an example without a cell adhesion inhibitor layer
- FIG. 3 (b) shows an example with a cell adhesion inhibitor layer.
- FIG. 1 is a perspective view of a first culture vessel.
- FIG. 2 is a cross-sectional view of a first example of the first culture vessel (the upper surface of the region between the depressions, that is, the upper
- FIG. 4 is a partially enlarged view of FIG.
- FIG. 5 is a partially enlarged view of FIG.
- FIG. 6 shows laser beam irradiation spots.
- FIG. 7 shows a liquid temperature profile under condition A of the example.
- FIG. 8 shows a liquid temperature profile under condition B of the example.
- FIG. 9 shows a liquid temperature profile under condition C of the example.
- FIG. 10 shows the manufacturing process and results of Example 1.
- FIG. 11 shows the manufacturing process and results of Example 2.
- FIG. 12 shows the manufacturing process and results of Comparative Example 1.
- FIG. 13 shows the manufacturing process and results of Comparative Example 2.
- FIG. 14 shows the manufacturing process and results of Comparative Example 3.
- the method for producing a cell structure comprises: (A) A mixture of a biocompatible polymer block, a cell and a liquid medium is mixed in a first culture container having a culture surface in which a plurality of depressions are formed and a side wall portion standing on the outer periphery of the culture surface. Adding so that the liquid level of the cell exceeds the culture surface; (B) The first culture vessel in the step (A) is allowed to stand, and the biocompatible polymer block and the cells are included in the recess, and a plurality of biocompatible polymers are provided in the gaps between the plurality of cells. A step of forming a cell structure in which the block is disposed; and (C) the contents of the first culture vessel obtained in step (B) are stirred and cultured in a second culture vessel equipped with stirring means. Process; including.
- a biocompatible polymer block, a cell and a liquid medium are provided in a first culture container having a culture surface in which a plurality of depressions are formed and a side wall portion standing on the outer periphery of the culture surface. Is added so that the liquid level of the mixture exceeds the culture surface, and in one step, the biocompatible polymer block, the cells and the liquid medium are placed in all the depressions of the first culture vessel. Can be added. Thereby, according to the method of this invention, a cell structure can be manufactured in a short time.
- a cell structure in which a plurality of biocompatible polymer blocks are disposed in a gap between a plurality of cells in the depression of the first culture container, the biocompatible polymer block and cells being included.
- the contents of the first culture vessel are stirred and cultured in a second culture vessel equipped with stirring means.
- the cell structure obtained after the step of stirring and culturing is uniform in, for example, at least one of the ratio, shape and size between the polymer block having bioaffinity and the cells. Note that “at least one of the ratio, shape and size is uniform” does not mean only when at least one of the ratio, shape and size is completely the same, but will be described later. It means that at least one or more of the above ratios, shapes and sizes are uniform as compared with the case where a cell structure is produced under the conditions shown in Comparative Examples 1 to 3.
- cell culture is agitated and cultured, so that sufficient nutrition and oxygen can be delivered to cells in the cell structure while preventing fusion and collapse of the cell structures.
- a cell structure having excellent properties can be produced.
- the cell structure is formed on the upper surface between the depressions on the culture surface.
- the macromolecular block and cells that do not form the cell structure are incorporated into the cell structure to form a larger cell structure. Can do.
- the adhesion between the polymer block contained in the cell structure and the cells is strengthened by the physical force by stirring.
- the mixture of the biocompatible polymer block, the cells and the liquid medium is added to the first culture container so that the liquid level of the mixture exceeds the culture surface, and the cells
- the first culture container used in the present invention is a culture container having a culture surface in which a plurality of depressions are formed and a side wall portion standing on the outer periphery of the culture surface.
- the example of the 1st culture container used by this invention is demonstrated with reference to FIGS.
- the culture container has a container body 10 and a lid 12.
- the container body 10 has a disk-shaped bottom plate portion 14 and an annular side wall portion 16.
- the bottom plate portion 14 may be made of a synthetic resin material such as polystyrene or glass, for example.
- the bottom plate portion 14 can be manufactured, for example, by injection molding using a synthetic resin material.
- the shape of the container may be a shape other than a disk shape or a square shape.
- the side wall portion 16 stands from the outer peripheral edge of the bottom plate portion 14.
- the diameter of the bottom plate portion 14 can be, for example, 30 mm to 500 mm
- the thickness of the bottom plate portion 14 can be, for example, 0.5 mm to 10 mm
- the height of the side wall portion 16 can be, for example, 20 mm to 100 mm.
- the lid 12 is formed in a shape corresponding to the opening above the container body 10.
- the lid 12 can be used by covering the container body 10 in order to maintain a cell culture environment.
- a plurality of depressions 20 are formed in the well formation region 24 on the upper surface of the bottom plate portion 14 (that is, a region where a compartment in which the culture object is cultured is formed). ing.
- the inner surface of the recess 20 is a smooth concave surface.
- the depression 20 forms a compartment (well) in which the culture object is cultured.
- the cell adhesion inhibitor layer 30 is provided.
- the culture surface 26 means a surface including the uppermost part of the well formation region 24 (see FIGS. 2 to 5).
- the depth of the recess is not particularly limited, but is preferably 2 to 100 times the size of the biocompatible polymer block, more preferably 2 to 10 times the size of the biocompatible polymer block. More preferably, it is 3 to 10 times the size of the biocompatible polymer block.
- the depth of the recess is not particularly limited, but is preferably 10 to 2000 ⁇ m, more preferably 20 to 1000 ⁇ m, still more preferably 30 to 700 ⁇ m, still more preferably 50 to 500 ⁇ m, and most preferably 100 to 400 ⁇ m.
- the diameter of the recess is not particularly limited, but is preferably 2 to 100 times the size of the biocompatible polymer block, more preferably 3 to 50 times the size of the biocompatible polymer block, More preferably, it is 5 to 10 times the size of the biocompatible polymer block.
- the diameter of the recess is not particularly limited, but is preferably 10 to 2000 ⁇ m, more preferably 50 to 1500 ⁇ m, still more preferably 100 to 1500 ⁇ m, still more preferably 200 to 1000 ⁇ m, and most preferably 400. ⁇ 1000 ⁇ m. It is preferable that the depth and the diameter of the dent are in the above ranges from the viewpoint of obtaining a cell structure excellent in strength and shape maintenance performance in relation to the cell size.
- all the hollow parts of a culture container do not need to have said depth and diameter, and at least one hollow part is said depth and diameter. It may have.
- the depth of the recess means the height between the lowermost part and the uppermost part of the recess.
- the diameter of the hollow portion means a length connecting the uppermost points of the hollow portion.
- the uppermost part of a hollow part is selected so that the length which tied the point of the uppermost part of the hollow part may become the shortest.
- the shape of the depression may be uniform or non-uniform, but is preferably uniform.
- the depth and the diameter of the recess are preferably uniform, and the depth and the diameter of all the recesses are preferably substantially the same.
- the depression 20 can be formed, for example, by irradiating the well formation region 24 with laser light. As shown in FIG. 6, laser irradiation is performed by irradiating the upper surface of the bottom plate portion 14 installed on the xy plane with laser light in the z-axis direction.
- laser light is irradiated at regular intervals (for example, 800 ⁇ m) to form a plurality of depressions 20 aligned in the x axis direction.
- the laser beam is irradiated at regular intervals (for example, 800 ⁇ m) while the irradiation unit is scanned in the negative direction of the x-axis.
- a plurality of depressions 20 arranged in the x-axis direction are formed.
- the irradiation unit is scanned by a certain distance (for example, 400 ⁇ m) in the y-axis direction. By repeating this, a plurality of depressions 20 regularly arranged on the upper surface of the bottom plate part 14 are formed.
- the center coordinate (x, y) of the irradiation spot A is the origin (0, 0)
- the center of the irradiation spot B close to the irradiation spot A is (0.8, 0)
- the center of the irradiation spot C is (0.4, 0.4)
- the center of the irradiation spot D is ( ⁇ 0.4, 0.4).
- a CO 2 laser is used as the laser light source, and the laser beam can be irradiated with pulses at an output of 10 W and an irradiation speed of 6100 mm / min, but is not particularly limited.
- the opening shape of the hollow portion 20 is flattened into a substantially elliptical shape. The flatness of the opening shape is considered to be caused by the direction in which the synthetic resin material is poured into the mold when the container body 10 is molded.
- the distance between the adjacent depressions 20, the diameter / depth of the depressions 20, and the width of the culture substrate surface between the depressions 20 adjacent to each other ⁇ Height can be adjusted.
- the well forming region 24 can also be manufactured by injection molding a synthetic resin material using a mold having a convex portion forming a plurality of hollow portions 20 and a concave portion forming a region between the hollow portions. .
- the plurality of depressions 20 and the area between the depressions are formed simultaneously with the formation of the well formation region 24.
- the area of the depression is preferably 70% or more, more preferably 80% or more, further preferably 90% or more, and most preferably 100% with respect to the total area of the culture surface. preferable. It is preferable from the viewpoint of the effect of the present invention that the ratio of the area of the recesses is in the above range.
- the area of the dent means the area when the dent is observed in two dimensions when the dent is observed from above, and means the area defined by the diameter of the dent described above in this specification. To do. As shown in FIG. 2 or FIG. 4, when there is no flat part on the culture surface, the area of the depression is 100% with respect to the total area of the culture surface.
- the two depressions 20 adjacent to each other are formed via a region between the depressions.
- the surface of the culture substrate between the recesses 20 adjacent to each other may be flat or non-flat, but is preferably non-flat.
- the culture surface and the surface of the depression are preferably treated for suppressing cell adhesion.
- the treatment for suppressing cell adhesion include coating with a cell adhesion inhibitor (see FIG. 2 (b) and FIG. 3 (b)).
- the cell adhesion inhibitor plays a role of inhibiting cells from adhering to the upper surface of the bottom plate portion 14, particularly the inner surface of the recess portion 20.
- the cell adhesion inhibitor for example, phospholipid polymer, MPC (2-methacryloyloxyethyl phosphorylcholine), polyhydroxyethyl methacrylate, polyethylene glycol or the like is used.
- Bioaffinity polymer block (2-1) Bioaffinity polymer Bioaffinity refers to significant adverse reactions such as long-term and chronic inflammatory reactions when in contact with the living body. Does not provoke.
- the biocompatible polymer used in the present invention is not particularly limited as to whether or not it is degraded in vivo as long as it has affinity for the living body, but is preferably a biodegradable polymer.
- Specific examples of non-biodegradable materials include polytetrafluoroethylene (PTFE), polyurethane, polypropylene, polyester, vinyl chloride, polycarbonate, acrylic, stainless steel, titanium, silicone, and MPC (2-methacryloyloxyethyl phosphorylcholine). Can be mentioned.
- biodegradable materials include naturally occurring peptides, polypeptides such as recombinant peptides or chemically synthesized peptides (eg, gelatin described below), polylactic acid, polyglycolic acid, and lactic acid / glycolic acid copolymers. (PLGA), hyaluronic acid, glycosaminoglycan, proteoglycan, chondroitin, cellulose, agarose, carboxymethylcellulose, chitin, and chitosan.
- a recombinant peptide is particularly preferable.
- biocompatible polymers may be devised to enhance cell adhesion.
- cell adhesion substrate fibronectin, vitronectin, laminin
- cell adhesion sequence expressed in one letter of amino acid, RGD sequence, LDV sequence, REDV sequence, YIGSR sequence, PDSGR sequence, RYVVLPR, Sequence, LGTIPG sequence, RNIAEIIKDI sequence, IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence
- a method such as “hydrophilic treatment” can be used.
- polypeptide including recombinant peptide or chemically synthesized peptide is not particularly limited as long as it has biocompatibility.
- gelatin, collagen, elastin, fibronectin, pronectin, laminin, tenascin, fibrin, fibroin, enteractin, thrombosis Spongein and retronectin are preferred, and gelatin, collagen and atelocollagen are most preferred.
- the gelatin for use in the present invention is preferably natural gelatin, recombinant gelatin or chemically synthesized gelatin, and more preferably recombinant gelatin.
- natural gelatin means gelatin made from naturally derived collagen.
- a chemically synthesized peptide or chemically synthesized gelatin means an artificially synthesized peptide or gelatin.
- the peptide such as gelatin may be synthesized by solid phase synthesis or liquid phase synthesis, but is preferably solid phase synthesis.
- Solid-phase synthesis of peptides is known to those skilled in the art. For example, Fmoc group synthesis method using Fmoc group (Fluorenyl-Methoxy-Carbonyl group) as amino group protection, and Boc group (tert-Butyl group) as amino group protection Boc group synthesis method using Oxy Carbonyl group).
- the preferred embodiment of the chemically synthesized gelatin can be applied to the contents described in (2-3) gelatin described later in this specification. Gelatin, particularly recombinant gelatin, will be described later in this specification.
- the hydrophilicity value “1 / IOB” value of the biocompatible polymer used in the present invention is preferably from 0 to 1.0. More preferably, it is 0 to 0.6, and still more preferably 0 to 0.4.
- IOB is an index of hydrophilicity / hydrophobicity based on an organic conceptual diagram representing the polarity / non-polarity of an organic compound proposed by Satoshi Fujita. Details thereof can be found in, for example, “Pharmaceutical Bulletin”, vol.2, 2, pp .163-173 (1954), “Area of Chemistry” vol.11, 10, pp.719-725 (1957), “Fragrance Journal”, vol.50, pp.79-82 (1981), etc. Yes.
- methane (CH 4 ) is the source of all organic compounds, and all other compounds are all methane derivatives, with certain numbers set for the number of carbon atoms, substituents, transformations, rings, etc. Then, the score is added to obtain an organic value (OV) and an inorganic value (IV), and these values are plotted on a diagram with the organic value on the X axis and the inorganic value on the Y axis. It is going.
- the IOB in the organic conceptual diagram refers to the ratio of the inorganic value (IV) to the organic value (OV) in the organic conceptual diagram, that is, “inorganic value (IV) / organic value (OV)”.
- hydrophilicity / hydrophobicity is represented by a “1 / IOB” value obtained by taking the reciprocal of IOB. The smaller the “1 / IOB” value (closer to 0), the more hydrophilic it is.
- the hydrophilicity is high and the water absorption is high, so that it effectively acts to retain nutrient components.
- the hydrophilicity / hydrophobicity index represented by the Grand average of hydropathicity (GRAVY) value is preferably 0.3 or less, preferably minus 9.0 or more, More preferably, it is 0.0 or less and minus 7.0 or more.
- Grand average of hydropathicity (GRAVY) values are based on Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins MR, Appel RD, Bairoch A .; Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005) .pp.
- the biocompatible polymer used in the present invention may be cross-linked or non-cross-linked, but is preferably cross-linked.
- a cross-linked biocompatible polymer it is possible to obtain an effect of preventing instantaneous degradation when cultured in a medium or transplanted to a living body.
- crosslinking methods include thermal crosslinking, crosslinking with aldehydes (eg, formaldehyde, glutaraldehyde, etc.), crosslinking with condensing agents (carbodiimide, cyanamide, etc.), enzyme crosslinking, photocrosslinking, UV crosslinking, hydrophobic interaction, Hydrogen bonding, ionic interaction, and the like are known, and the above-described crosslinking method can also be used in the present invention.
- the crosslinking method used in the present invention is more preferably thermal crosslinking, ultraviolet crosslinking, or enzyme crosslinking, and particularly preferably thermal crosslinking.
- the enzyme When performing cross-linking with an enzyme, the enzyme is not particularly limited as long as it has a cross-linking action between polymer materials.
- trans-glutaminase and laccase most preferably trans-glutaminase can be used for cross-linking.
- a specific example of a protein that is enzymatically cross-linked with transglutaminase is not particularly limited as long as it has a lysine residue and a glutamine residue.
- the transglutaminase may be derived from a mammal or a microorganism. Specifically, transglutaminase derived from a mammal sold as an Ajinomoto Co., Ltd.
- Human-derived blood coagulation factors Factor XIIIa, Haematologic Technologies, Inc.
- Factor XIIIa Haematologic Technologies, Inc.
- guinea pig liver-derived transglutaminase goat-derived transglutaminase
- rabbit-derived transglutaminase from Oriental Yeast Kogyo Co., Ltd. Etc.
- the reaction temperature at the time of performing crosslinking is not particularly limited as long as crosslinking is possible, but is preferably ⁇ 100 ° C. to 500 ° C., more preferably 0 ° C. to 300 ° C., and still more preferably. It is 50 ° C to 300 ° C, more preferably 100 ° C to 250 ° C, and further preferably 120 ° C to 200 ° C.
- gelatin As the biocompatible polymer, gelatin is preferable.
- the gelatin may be natural gelatin, recombinant gelatin, or chemically synthesized gelatin.
- the recombinant gelatin referred to in the present invention means a polypeptide or protein-like substance having an amino acid sequence similar to gelatin produced by a gene recombination technique.
- the gelatin that can be used in the present invention preferably has a repeating sequence represented by Gly-XY that is characteristic of collagen (X and Y each independently represents any of amino acids).
- the plurality of Gly-XY may be the same or different.
- two or more cell adhesion signals are contained in one molecule.
- gelatin used in the present invention gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen can be used.
- EP1014176, US Pat. No. 6,992,172, International Publication WO2004 / 85473, International Publication WO2008 / 103041, and the like can be used, but are not limited thereto.
- Preferred as the gelatin used in the present invention is the gelatin of the following embodiment.
- Recombinant gelatin has excellent biocompatibility due to the inherent performance of natural gelatin, and is not naturally derived, so there is no concern about bovine spongiform encephalopathy (BSE) and excellent non-infectivity. Recombinant gelatin is more uniform than natural gelatin and its sequence is determined, so that strength and degradability can be precisely designed with less blur due to crosslinking or the like.
- BSE bovine spongiform encephalopathy
- the molecular weight of gelatin is not particularly limited, but is preferably 2000 or more and 100000 or less (2 kDa or more and 100 kDa or less), more preferably 2500 or more and 95000 or less (2.5 kDa or more and 95 kDa or less), and further preferably 5000 or more and 90000 or less. (5 kDa or more and 90 kDa or less), and most preferably 10000 or more and 90000 or less (10 kDa or more and 90 kDa or less).
- Gelatin preferably has a repeating sequence represented by Gly-XY, which is characteristic of collagen.
- the plurality of Gly-XY may be the same or different.
- Gly-XY Gly represents glycine
- X and Y represent any amino acid (preferably any amino acid other than glycine).
- the sequence represented by Gly-XY, which is characteristic of collagen, is a very specific partial structure in the amino acid composition and sequence of gelatin / collagen compared to other proteins. In this part, glycine accounts for about one third of the whole, and in the amino acid sequence, it is one in three repeats.
- Glycine is the simplest amino acid, has few constraints on the arrangement of molecular chains, and greatly contributes to the regeneration of the helix structure upon gelation.
- the amino acids represented by X and Y are rich in imino acids (proline, oxyproline), and preferably account for 10% to 45% of the total.
- imino acids proline, oxyproline
- 80% or more of the amino acid sequence of gelatin, more preferably 95% or more, and most preferably 99% or more of the amino acids are Gly-XY repeating structures.
- polar amino acids are charged and uncharged at 1: 1.
- the polar amino acid specifically refers to cysteine, aspartic acid, glutamic acid, histidine, lysine, asparagine, glutamine, serine, threonine, tyrosine and arginine, and among these polar uncharged amino acids are cysteine, asparagine, glutamine, serine. Refers to threonine and tyrosine.
- the proportion of polar amino acids is 10 to 40%, preferably 20 to 30%, of all the constituent amino acids.
- the proportion of uncharged amino acids in the polar amino acid is preferably 5% or more and less than 20%, preferably less than 10%.
- any one amino acid among serine, threonine, asparagine, tyrosine and cysteine preferably two or more amino acids are not included in the sequence.
- the minimum amino acid sequence that acts as a cell adhesion signal in a polypeptide is known (for example, “Pathophysiology”, Vol. 9, No. 7 (1990), page 527, published by Nagai Publishing Co., Ltd.).
- the gelatin used in the present invention preferably has two or more of these cell adhesion signals in one molecule.
- Specific sequences include RGD sequences, LDV sequences, REDV sequences, YIGSR sequences, PDSGR sequences, RYVVLPR sequences, LGITIPG sequences, RNIAEIIKDI sequences, which are expressed in one-letter amino acid notation in that many types of cells adhere.
- IKVAV sequences IKVAV sequences, LRE sequences, DGEA sequences, and HAV sequences are preferred. More preferred are RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence and HAV sequence, and particularly preferred is RGD sequence. Of the RGD sequences, an ERGD sequence is preferred.
- gelatin having a cell adhesion signal the amount of cell substrate produced can be improved. For example, in the case of cartilage differentiation using mesenchymal stem cells as cells, production of glycosaminoglycan (GAG) can be improved.
- GAG glycosaminoglycan
- the number of amino acids between RGD is not uniform between 0 and 100, preferably between 25 and 60.
- the content of the minimum amino acid sequence is preferably 3 to 50, more preferably 4 to 30, and particularly preferably 5 to 20 per protein molecule from the viewpoint of cell adhesion / proliferation. Most preferably, it is 12.
- the ratio of the RGD motif to the total number of amino acids is preferably at least 0.4%. Where gelatin contains 350 or more amino acids, it is preferred that each stretch of 350 amino acids contains at least one RGD motif.
- the ratio of RGD motif to the total number of amino acids is more preferably at least 0.6%, more preferably at least 0.8%, more preferably at least 1.0%, more preferably at least 1.2%. And most preferably at least 1.5%.
- the number of RGD motifs in the peptide is preferably at least 4, more preferably at least 6, more preferably at least 8, more preferably 12 or more and 16 or less per 250 amino acids.
- a ratio of 0.4% of the RGD motif corresponds to at least one RGD sequence per 250 amino acids.
- a gelatin of 251 amino acids must contain at least two RGD sequences in order to meet at least 0.4% characteristics.
- the gelatin in the present invention comprises at least 2 RGD sequences per 250 amino acids, more preferably comprises at least 3 RGD sequences per 250 amino acids, more preferably at least 4 RGD per 250 amino acids. Contains an array. Further embodiments of gelatin in the present invention include at least 4 RGD motifs, preferably at least 6, more preferably at least 8, and even more preferably 12 or more and 16 or less.
- Gelatin may be partially hydrolyzed.
- the gelatin used in the present invention is represented by the formula 1: A-[(Gly-XY) n ] m -B.
- n Xs independently represents any of amino acids
- n Ys independently represents any of amino acids.
- m is preferably an integer of 2 to 10, more preferably an integer of 3 to 5.
- n is preferably an integer of 3 to 100, more preferably an integer of 15 to 70, and most preferably an integer of 50 to 65.
- A represents any amino acid or amino acid sequence
- B represents any amino acid or amino acid sequence.
- the n Gly-XY may be the same or different.
- the gelatin used in the present invention has the formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly (wherein 63 Xs independently represent any of amino acids) 63 Y's each independently represents any amino acid, wherein 63 Gly-XY may be the same or different.
- the naturally occurring collagen referred to here may be any naturally occurring collagen, but is preferably type I, type II, type III, type IV, or type V collagen. More preferred is type I, type II, or type III collagen.
- the collagen origin is preferably human, bovine, porcine, mouse or rat, more preferably human.
- the isoelectric point of gelatin used in the present invention is preferably 5 to 10, more preferably 6 to 10, and still more preferably 7 to 9.5.
- the isoelectric point of gelatin was measured according to an isoelectric focusing method (see Maxey, CR (1976; Phitogr. Gelatin 2, Editor Cox, PJ Academic, London, Engl.). It can be carried out by measuring the pH after passing the gelatin solution through a mixed crystal column of cation and anion exchange resin.
- the gelatin is not deaminated.
- the gelatin has no telopeptide.
- gelatin is a substantially pure polypeptide prepared with a nucleic acid encoding an amino acid sequence.
- gelatin used in the present invention (1) a peptide comprising the amino acid sequence set forth in SEQ ID NO: 1; (2) a peptide having a bioaffinity consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1, or (3) described in SEQ ID NO: 1
- amino acid sequence in which one or several amino acids are deleted, substituted or added is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Means, particularly preferably 1 to 3.
- the recombinant gelatin used in the present invention can be produced by a genetic recombination technique known to those skilled in the art. For example, in EP1014176A2, US Pat. No. 6,992,172, International Publication WO2004 / 85473, International Publication WO2008 / 103041, etc. It can be produced according to the method described. Specifically, a gene encoding the amino acid sequence of a predetermined recombinant gelatin is obtained, and this is incorporated into an expression vector to produce a recombinant expression vector, which is introduced into an appropriate host to produce a transformant. . Recombinant gelatin is produced by culturing the obtained transformant in an appropriate medium. Thus, the gelatin used in the present invention can be prepared by recovering the recombinant gelatin produced from the culture.
- the block (lumps) made of the above-described biocompatible polymer is used.
- the shape of the biocompatible polymer block in the present invention is not particularly limited. For example, amorphous, spherical, particulate (granule), powder, porous, fiber, spindle, flat and sheet, preferably amorphous, spherical, particulate (granule), powder And porous.
- An indeterminate shape indicates that the surface shape is not uniform, for example, an object having irregularities such as rocks.
- illustration of said shape is not different, respectively, For example, it may become an indefinite form as an example of the subordinate concept of a particulate form (granule).
- the shape of the biocompatible polymer block in the present invention is not particularly limited as described above, but the tap density is preferably 10 mg / cm 3 or more and 500 mg / cm 3 or less, more preferably 20 mg / cm 3. It is 400 mg / cm 3 or less, more preferably 40 mg / cm 3 or more and 220 mg / cm 3 or less, and particularly preferably 50 mg / cm 3 or more and 150 mg / cm 3 or less.
- the tap density is a value that indicates how many blocks can be densely packed in a certain volume. It can be seen that the smaller the value, the more densely packed, that is, the more complicated the block structure.
- the tap density of the biocompatible polymer block represents the complexity of the surface structure of the biocompatible polymer block and the amount of voids formed when the biocompatible polymer block is collected as an aggregate. it is conceivable that. The smaller the tap density, the more voids between the biocompatible polymer blocks and the larger the cell engraftment area.
- a biocompatible polymer block can appropriately exist between cells, and when a cell structure is formed, nutrients can be delivered to the inside of the structure. It is considered that it is preferable to be within the range.
- the tap density as used in this specification can be measured as follows.
- a container hereinafter referred to as a cap
- a funnel is attached to the cap and the block is poured from the funnel so that the block accumulates in the cap.
- tap the cap part 200 times on a hard place such as a desk, remove the funnel and clean with a spatula.
- the mass is measured with the cap fully filled.
- the degree of crosslinking of the biocompatible polymer block in the present invention is not particularly limited, but is preferably 2 or more, more preferably 2 or more and 30 or less, still more preferably 4 or more and 25 or less, and particularly preferably 4 It is 22 or less.
- the method for measuring the degree of cross-linking of the biocompatible polymer block is not particularly limited.
- the TNBS (2,4,6-trinitrobenzene sulfonic acid) method described in Examples below will be used.
- Forma 2 (As-Ab) / 14600 ⁇ V / w (Formula 2) shows the amount of lysine (molar equivalent) per 1 g of the biocompatible polymer block.
- Ab is the blank absorbance
- V is the amount of the reaction solution (g)
- w is the biocompatible polymer block mass (mg).
- the water absorption rate of the biocompatible polymer block in the present invention is not particularly limited, but is preferably 300% or more, more preferably 400% or more, further preferably 500% or more, particularly preferably 700% or more, and most preferably 800. % Or more.
- the upper limit of water absorption is not particularly limited, but is generally 4000% or less, or 2000% or less.
- the method for measuring the water absorption rate of the biocompatible polymer block is not particularly limited, and for example, it can be measured by the method described in Examples below. Specifically, a biocompatible polymer block of about 15 mg is filled in a 3 cm ⁇ 3 cm nylon mesh bag at 25 ° C., swollen in ion exchange water for 2 hours, and then air-dried for 10 minutes. In this stage, the mass is measured, and the water absorption rate can be obtained according to (Equation 4).
- the size of one biocompatible polymer block in the present invention is not particularly limited, but is preferably 1 ⁇ m or more and 700 ⁇ m or less, more preferably 10 ⁇ m or more and 700 ⁇ m or less, further preferably 10 ⁇ m or more and 300 ⁇ m or less, Preferably they are 20 micrometers or more and 200 micrometers or less, More preferably, they are 20 micrometers or more and 150 micrometers or less, Especially preferably, they are 53 micrometers or more and 106 micrometers or less.
- the size of one biocompatible polymer block does not mean that the average value of the sizes of a plurality of biocompatible polymer blocks is in the above range. It means the size of each biocompatible polymer block obtained by sieving the block.
- the size of one block can be defined by the size of the sieve used to separate the blocks.
- a block remaining on the sieve when the passed block is passed through a 106 ⁇ m sieve after passing through a 180 ⁇ m sieve can be a block having a size of 106 to 180 ⁇ m.
- the block remaining on the sieve when the block passed through the sieve of 106 ⁇ m and the passed block is passed through the sieve of 53 ⁇ m can be a block having a size of 53 to 106 ⁇ m.
- a block remaining on the sieve when the passed block is passed through a sieve of 53 ⁇ m and passed through a sieve of 25 ⁇ m can be made a block having a size of 25 to 53 ⁇ m.
- the method for producing the bioaffinity polymer block is not particularly limited.
- the solid material containing the bioaffinity polymer porous material of the bioaffinity polymer
- the biocompatible polymer block can be obtained by pulverizing the material and the like using a pulverizer (such as a new power mill).
- a solid (eg, a porous body) containing a biocompatible polymer can be obtained, for example, by lyophilizing an aqueous solution containing a biocompatible polymer.
- an amorphous biocompatible polymer block having a nonuniform surface shape can be produced by pulverizing a solid containing a biocompatible polymer.
- A The difference between the temperature of the highest liquid temperature in the solution and the temperature of the lowest liquid temperature in the solution is 2.5 ° C. or less, and Cooling the biocompatible polymer solution to an unfrozen state at a temperature below the melting point of the solvent, (B) a method comprising freezing the solution of the biocompatible polymer obtained in step (a), and (c) lyophilizing the frozen biocompatible polymer obtained in step (b).
- B a method comprising freezing the solution of the biocompatible polymer obtained in step (a), and (c) lyophilizing the frozen biocompatible polymer obtained in step (b).
- the difference between the highest temperature in the solution and the lowest temperature in the solution is 2.5 ° C. or less ( (Preferably 2.3 ° C. or less, more preferably 2.1 ° C. or less), that is, by reducing the temperature difference, the variation in the size of the porous pores obtained is reduced.
- the lower limit of the difference between the temperature of the highest liquid temperature in the solution and the temperature of the lowest liquid temperature in the solution is not particularly limited, and may be 0 ° C. or higher, for example, 0.1 ° C. or higher. 0.5 degreeC or more, 0.8 degreeC or more, or 0.9 degreeC or more may be sufficient.
- the cooling in the step (a) is preferably performed, for example, via a material having a lower thermal conductivity than water (preferably, Teflon (registered trademark)), and the portion having the highest liquid temperature in the solution is on the cooling side.
- a material having a lower thermal conductivity than water preferably, Teflon (registered trademark)
- Teflon registered trademark
- the difference between the temperature of the highest liquid temperature in the solution and the temperature of the lowest liquid temperature in the solution immediately before the generation of heat of solidification is 2.5 ° C. or less, More preferably, it is 2.3 degrees C or less, More preferably, it is 2.1 degrees C or less.
- the “temperature difference immediately before the generation of solidification heat” means a temperature difference when the temperature difference becomes the largest between 1 second and 10 seconds before the generation of solidification heat.
- the temperature of the lowest liquid temperature in the solution is a solvent melting point of ⁇ 5 ° C. or lower, more preferably a solvent melting point of ⁇ 5 ° C. or lower and a solvent melting point of ⁇ 20 ° C. or higher. More preferably, the solvent melting point is ⁇ 6 ° C. or lower and the solvent melting point is ⁇ 16 ° C. or higher.
- the solvent having a solvent melting point is a solvent for a biocompatible polymer solution.
- step (b) the biocompatible polymer solution obtained in step (a) is frozen.
- the cooling temperature for freezing in the step (b) is not particularly limited and depends on the equipment to be cooled, but preferably from 3 ° C. from the temperature of the lowest liquid temperature in the solution.
- the temperature is 30 ° C lower, more preferably 5 ° C to 25 ° C lower, still more preferably 10 ° C to 20 ° C lower.
- step (c) the frozen biocompatible polymer obtained in step (b) is lyophilized.
- Freeze-drying can be performed by a conventional method.
- freeze-drying can be performed by vacuum drying at a temperature lower than the melting point of the solvent and further vacuum drying at room temperature (20 ° C.).
- the biocompatible polymer block can be produced by pulverizing the porous body obtained in the step (c).
- any cell can be used as long as it can perform cell transplantation, which is the purpose of the cell structure of the present invention, and the type thereof is not particularly limited. Further, one type of cell may be used, or a plurality of types of cells may be used in combination.
- the cells to be used are preferably animal cells, more preferably vertebrate cells, and particularly preferably human cells. Vertebrate-derived cells (particularly human-derived cells) may be any of universal cells, somatic stem cells, progenitor cells, or mature cells. For example, embryonic stem (ES) cells, reproductive stem (GS) cells, or induced pluripotent stem (iPS) cells can be used as the universal cells.
- ES embryonic stem
- GS reproductive stem
- iPS induced pluripotent stem
- somatic stem cells for example, mesenchymal stem cells (MSC), hematopoietic stem cells, amniotic cells, umbilical cord blood cells, bone marrow-derived cells, myocardial stem cells, adipose-derived stem cells, or neural stem cells can be used.
- MSC mesenchymal stem cells
- progenitor cells and mature cells include skin, dermis, epidermis, muscle, heart muscle, nerve, bone, cartilage, endothelium, brain, epithelium, heart, kidney, liver, pancreas, spleen, oral cavity, cornea, bone marrow, umbilical cord Cells derived from blood, amniotic membrane, or hair can be used.
- human-derived cells examples include ES cells, iPS cells, MSCs, chondrocytes, osteoblasts, osteoprogenitor cells, mesenchymal cells, myoblasts, cardiomyocytes, cardioblasts, neurons, hepatocytes, Beta cells, fibroblasts, corneal endothelial cells, vascular endothelial cells, corneal epithelial cells, amniotic cells, umbilical cord blood cells, bone marrow derived cells, or hematopoietic stem cells can be used.
- the origin of the cell may be either an autologous cell or an allogeneic cell.
- myocardial cells in heart diseases such as severe heart failure and severe myocardial infarction, myocardial cells, smooth muscle cells, fibroblasts, skeletal muscle-derived cells (especially satellite cells), bone marrow cells (especially myocardial cells) can be preferably used.
- transplanted cells can be appropriately selected in other organs. For example, transplantation of neural progenitor cells or cells that can differentiate into nerve cells to cerebral ischemia / cerebral infarction, vascular endothelial cells or cells that can differentiate into vascular endothelial cells to myocardial infarction / skeletal muscle ischemia Examples include transplantation.
- cells used for cell transplantation for diabetic organ damage can be mentioned.
- cells for cell transplantation treatment that have been variously studied for diseases such as kidney, pancreas, peripheral nerves, eyes, and blood circulation disorders of the extremities. That is, attempts have been made to transplant insulin-secreting cells into the pancreas whose insulin secreting ability has been reduced, transplantation of bone marrow-derived cells for limb circulation disorders, and such cells can be used.
- vascular cells can also be used.
- the vascular cell means a cell related to angiogenesis, and is a cell constituting blood vessels and blood, and a progenitor cell and a somatic stem cell that can differentiate into the cell.
- vascular cells include cells that do not naturally differentiate into cells that constitute blood vessels and blood, such as universal cells such as ES cells, GS cells, or iPS cells, and mesenchymal stem cells (MSC). I can't.
- the vascular system cell is preferably a cell constituting a blood vessel.
- specific examples of cells constituting blood vessels include vascular endothelial cells and vascular smooth muscle cells.
- Vascular endothelial cells may be either venous endothelial cells or arterial endothelial cells.
- Vascular endothelial progenitor cells can be used as progenitor cells for vascular endothelial cells.
- Vascular endothelial cells and vascular endothelial progenitor cells are preferred.
- As cells constituting blood blood cells can be used, white blood cells such as lymphocytes and neutrophils, monocytes, and hematopoietic stem cells which are stem cells thereof can be used.
- the non-vascular cell means a cell other than the above-mentioned vascular cell.
- ES cells iPS cells, mesenchymal stem cells (MSC), myocardial stem cells, cardiomyocytes, fibroblasts, myoblasts, chondrocytes, myoblasts, hepatocytes or nerve cells
- MSC mesenchymal stem cells
- myocardial stem cells cardiomyocytes
- fibroblasts fibroblasts
- myoblasts myoblasts
- chondrocytes myoblasts
- hepatocytes or nerve cells can be used.
- MSC mesenchymal stem cells
- chondrocyte, myoblast, myocardial stem cell, cardiomyocyte, hepatocyte or iPS cell can be used.
- cardiac stem cell cardiac muscle cell or myoblast.
- the culture surface has a plurality of depressions and a side wall portion standing on the outer periphery of the culture surface.
- a mixture of the biocompatible polymer block, cells and liquid medium is added to the first culture container so that the liquid level of the mixture exceeds the culture surface.
- the type of the liquid medium is not particularly limited and can be appropriately selected according to the type of cells to be used.
- a growth medium or a differentiation medium may be used.
- the growth medium include, but are not particularly limited to, DMEM (Dulbecco's Modified Eagle Medium) + 10% FBS (fetal bovine serum), Takara Bio: MSCGM BulletKit (trademark), Lonza: EGM-2 + ECFC serum supplement.
- the differentiation medium include Takara Bio: Mesenchymal Stem Cell Chondrogenic Differentiation Medium: Mesenchymal Stem Cell Chondrogenic Differentiation Medium, Takara Bio: Mesenchymal Stem Cell Osteoblast Differentiation Medium: Mesenchymal Stem Cell Osteogenic Differentiation Medium, and the like. There is no particular limitation.
- step (B) of the method for producing a cell structure of the present invention the first culture vessel of step (A) is allowed to stand, and the hollow portion contains a biocompatible polymer block and cells.
- a cell structure in which a plurality of biocompatible polymer blocks are arranged in the gaps between the cells is formed.
- the released biocompatible polymer block is 30% by mass or less (more preferably 10% by mass or less, more preferably 5% by mass or less) of the total biocompatible polymer block,
- the first culture vessel can be allowed to stand until it is most preferably 0% by mass).
- the free biocompatible polymer block is 0% by mass of the total biocompatible polymer block is a state where there is no free biocompatible polymer block.
- the first culture vessel is allowed to stand in step (B) for a time such that the ratio of the number of cell structures manufactured after step (C) to the number of depressions is 70% or more. .
- the time for allowing the first culture vessel to stand is preferably 2 to 24 hours, more preferably 3 to 16 hours.
- the biocompatible polymer block and the cell are sufficiently adhered, and the biocompatible polymer block and the cell are separated when subjected to the stirring culture process. This can be suppressed, and a cell structure can be efficiently formed.
- the standing time is set to 24 hours or less, the cell structures can be prevented from fusing with each other, and a large number of uniform cell structures can be obtained.
- Step (B) can be carried out in a CO 2 incubator as desired, and can be carried out generally at 30 to 45 ° C., preferably 35 ° C. to 40 ° C. (for example, 37 ° C.).
- step (C) of the method for producing a cell structure of the present invention the contents of the first culture container obtained in step (B) are stirred and cultured in a second culture container equipped with stirring means.
- the contents of the first culture container include a liquid medium, a cell structure, a biocompatible polymer block that does not form a cell structure, and cells that do not form a cell structure.
- the operation of transferring the contents of the first culture vessel obtained in the step (B) to the second culture vessel equipped with a stirring means is not particularly limited, but can be performed by a conventional method, for example, using a pipette Then, the contents of the first culture container can be transferred to the second culture container equipped with stirring means.
- the second culture container is a container for stirring culture, and is equipped with stirring means.
- stirring means a stirring blade, a stirrer, or a means for rotating or vibrating the container itself can be used.
- a commercially available culture vessel for example, a brand name 30 mL single use bioreactor (Able BWV-S03A) or the like) can also be used.
- the medium used in the stirring culture in step (C) can be the same medium as the liquid medium described in step (A).
- the medium used in the stirring culture in step (C) may be the same medium as the liquid medium used in step (A) or a different medium, but is preferably the same medium.
- the medium used in the step (C) is the same medium as the liquid medium used in the step (A)
- the step (C) the medium may be replaced with a new medium and then stirred and cultured.
- the time for stirring and culturing the contents of the first culture vessel in the step (C) is preferably 12 hours to 93 hours, and more preferably 18 hours to 48 hours.
- the cell structure produced by the method of the present invention includes a biocompatible polymer block and cells.
- a biocompatible polymer block and cells using a biocompatible polymer block and cells, a plurality of biocompatible polymer blocks are three-dimensionally arranged in a gap between a plurality of cells. This enables nutrient delivery from the outside to the inside of the cell structure.
- the cell structure may be referred to as a mosaic cell mass (a mosaic cell mass).
- a plurality of biocompatible polymer blocks are arranged in a gap between a plurality of cells.
- a “gap between cells” is configured. It is not necessary that the space is closed by the cells to be closed, as long as it is sandwiched between the cells. Note that there is no need for a gap between all cells, and there may be a place where the cells are in contact with each other.
- the gap distance between the cells via the biocompatible polymer block that is, the gap distance when selecting a cell and a cell that is present at the shortest distance from the cell is not particularly limited.
- the size is preferably the size of the polymer block, and the preferred distance is also within the preferred size range of the biocompatible polymer block.
- the biocompatible polymer block is sandwiched between cells, but there is no need for cells between all the biocompatible polymer blocks, and the biocompatible polymer blocks are in contact with each other. There may be.
- the distance between the biocompatible polymer blocks via the cells that is, the distance when the biocompatible polymer block and the biocompatible polymer block existing at the shortest distance from the biocompatible polymer block are selected are particularly Although not limited, it is preferably the size of a cell mass when one to several cells are used, for example, 10 ⁇ m or more and 1000 ⁇ m or less, preferably 10 ⁇ m or more and 500 ⁇ m or less. More preferably, it is 10 ⁇ m or more and 200 ⁇ m or less.
- the ratio of the cell and the biocompatible polymer block in the cell structure is not particularly limited, but preferably the ratio of the biocompatible polymer block per cell is preferably 0.0000001 ⁇ g or more and 1 ⁇ g or less, Preferably it is 0.000001 microgram or more and 0.1 microgram or less, More preferably, it is 0.00001 microgram or more and 0.01 microgram or less, Most preferably, it is 0.00002 microgram or more and 0.006 microgram or less.
- the ratio of the cells to the biocompatible polymer block within the above range, the cells can be present more uniformly.
- the component in the biocompatible polymer block is not particularly limited, and examples include components contained in the liquid medium.
- the thickness or diameter of the cell structure to be produced is preferably 10 ⁇ m or more and 1 cm or less, more preferably 10 ⁇ m or more and 2000 ⁇ m or less, still more preferably 15 ⁇ m or more and 1500 ⁇ m or less, and most preferably 20 ⁇ m or more and 1300 ⁇ m or less.
- regions composed of biocompatible polymer blocks and regions composed of cells are arranged in a mosaic pattern.
- the “thickness or diameter of the cell structure” in the present specification indicates the following.
- the length of the line segment that divides the cell structure so that the distance from the outside of the cell structure becomes the shortest in a straight line passing through the point A is shown. Minute A.
- a point A having the longest line segment A is selected in the cell structure, and the length of the line segment A at that time is defined as the “thickness or diameter of the cell structure”.
- the cell structure produced by the production method of the present invention can be used for cell transplantation.
- the sheet-like cell structure of the present invention can be used for the purpose of cell transplantation at a disease site such as heart disease such as severe heart failure or severe myocardial infarction, or cerebral ischemia / cerebral infarction. It can also be used for diseases such as diabetic kidneys, pancreas, liver, peripheral nerves, eyes, and limb circulation disorders.
- a disease site such as heart disease such as severe heart failure or severe myocardial infarction, or cerebral ischemia / cerebral infarction. It can also be used for diseases such as diabetic kidneys, pancreas, liver, peripheral nerves, eyes, and limb circulation disorders.
- an incision, an endoscope, or the like can be used as an implantation method.
- CBE3 Recombinant peptide (recombinant gelatin)
- the following CBE3 was prepared as a recombinant peptide (recombinant gelatin) (described in International Publication No. WO2008 / 103041).
- CBE3 Molecular weight: 51.6 kD Structure: GAP [(GXY) 63 ] 3
- the amino acid sequence of CBE3 does not include serine, threonine, asparagine, tyrosine and cysteine.
- CBE3 has an ERGD sequence.
- GAP GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP) 3 GAP (GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP) 3 GAP (GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKG
- PTFE thickness / cylindrical container A cylindrical cup-shaped container made of polytetrafluoroethylene (PTFE) having a bottom surface thickness of 3 mm, a diameter of 51 mm, a side surface thickness of 8 mm, and a height of 25 mm was prepared.
- PTFE polytetrafluoroethylene
- the cylindrical cup has a curved surface as a side surface, the side surface is closed with 8 mm PTFE, and the bottom surface (flat plate shape) is also closed with 3 mm PTFE.
- the upper surface has an open shape. Therefore, the inner diameter of the cylindrical cup is 43 mm.
- this container is referred to as a PTFE thick / cylindrical container.
- a cylindrical cup-shaped container made of aluminum (aluminum) having a thickness of 1 mm and a diameter of 47 mm was prepared.
- the cylindrical cup has a curved surface as a side surface, the side surface is closed with 1 mm aluminum, and the bottom surface (flat plate shape) is also closed with 1 mm aluminum.
- the upper surface has an open shape.
- Teflon registered trademark
- the inner diameter of the cylindrical cup is 45 mm.
- a 2.2 mm glass plate is bonded to the bottom of the container in addition to aluminum.
- this container is referred to as an aluminum glass plate / cylindrical container.
- the CBE3 aqueous solution was poured into a PTFE thick / cylindrical container, an aluminum glass plate / cylindrical container, and the CBE3 aqueous solution was cooled from the bottom using a cooling shelf in a vacuum freeze dryer (TF5-85ATNNN: Takara Seisakusho).
- TF5-85ATNNN Takara Seisakusho
- the combination of the container, the final concentration of the CBE3 aqueous solution, the amount of liquid, and the shelf temperature was prepared as described below.
- Condition A PTFE thick cylindrical container, final concentration of CBE3 aqueous solution 4% by mass, amount of aqueous solution 4mL.
- the frozen product is then dried for 24 hours at -20 ° C after returning the shelf temperature to -20 ° C.
- the shelf temperature is increased to 20 ° C with vacuum drying continued. Then, vacuum drying was further performed at 20 ° C. for 48 hours until the degree of vacuum was sufficiently reduced (1.9 ⁇ 10 5 Pa), and then the product was taken out from the vacuum freeze dryer. Thereby, a porous body was obtained.
- Condition B Aluminum / glass plate / cylindrical container, final concentration of CBE3 aqueous solution 4% by mass, amount of aqueous solution 4mL. Set the shelf temperature to -10 ° C, cool to -10 ° C for 1 hour, then -20 ° C for 2 hours, further -40 ° C for 3 hours, and finally freeze at -50 ° C for 1 hour It was. The frozen product is then dried for 24 hours at -20 ° C after returning the shelf temperature to -20 ° C. After 24 hours, the shelf temperature is increased to 20 ° C with vacuum drying continued. Then, vacuum drying was further performed at 20 ° C. for 48 hours until the degree of vacuum was sufficiently reduced (1.9 ⁇ 10 5 Pa), and then the product was taken out from the vacuum freeze dryer. Thereby, a porous body was obtained.
- Condition C PTFE thick / cylindrical container, final concentration of 4 mass% of CBE3 aqueous solution, 10 mL of aqueous solution.
- Set the shelf temperature to -10 ° C cool to -10 ° C for 1 hour, then -20 ° C for 2 hours, further -40 ° C for 3 hours, and finally freeze at -50 ° C for 1 hour It was.
- the frozen product is then dried for 24 hours at -20 ° C after returning the shelf temperature to -20 ° C.
- the shelf temperature is increased to 20 ° C with vacuum drying continued.
- vacuum drying was further performed at 20 ° C. for 48 hours until the degree of vacuum was sufficiently reduced (1.9 ⁇ 10 5 Pa), and then the product was taken out from the vacuum freeze dryer. Thereby, a porous body was obtained.
- condition A, condition B, and condition C the liquid temperature falls below 0 ° C., which is the melting point, in the shelf temperature ⁇ 10 ° C. setting section (before lowering to ⁇ 20 ° C.), and in this state It can be seen that freezing has not occurred (unfrozen / supercooled).
- the temperature difference between the cooling surface liquid temperature and the non-cooling surface liquid temperature was 2.5 ° C. or less.
- “temperature difference” means “non-cooling surface liquid temperature” ⁇ “cooling surface liquid temperature”.
- the term “temperature difference immediately before” as used in the present invention refers to the highest temperature among the temperature differences that can be detected between 1 second and 20 seconds before the event (solidification heat generation, etc.). Yes.
- the porous body-derived block of Condition A that has been crosslinked for 48 hours is referred to as E
- the porous body-derived block of Condition B that has been crosslinked for 48 hours is referred to as F.
- E and F are small temperature difference blocks made from a porous material produced by a freezing process with a small temperature difference.
- the difference in the crosslinking time did not affect the performance in the evaluation of the present application, those that were crosslinked for 48 hours were used as representatives.
- E and F there was no difference in performance.
- the biocompatible polymer block obtained in Reference Example 3 is also referred to as “petal block”.
- biocompatible polymer blocks prepared under Condition A, size 53 to 106 ⁇ m, and crosslinking time 48 hours were used.
- the tap density is a value indicating how many blocks can be densely packed in a certain volume. The smaller the value, the less densely packed, that is, the block density It can be said that the structure is complicated.
- the tap density was measured as follows. First, a funnel having a cap (diameter 6 mm, length 21.8 mm cylindrical shape: capacity 0.616 cm 3 ) was prepared, and the mass of the cap alone was measured. After that, a cap was attached to the funnel, and the block was poured from the funnel so that the block accumulated in the cap.
- the cap part was struck 200 times on a hard place such as a desk, the funnel was removed, and it was rubbed with a spatula. The mass was measured with the cap fully filled. The mass of only the block was calculated from the difference from the mass of only the cap, and the tap density was determined by dividing by the volume of the cap. As a result, the tap density of the biocompatible polymer block of Reference Example 3 was 98 mg / cm 3 .
- the cross-linking degree of the biocompatible polymer block of Reference Example 3 was 4.2.
- Example 1 Production of a large number of cell structures (mosaic cell clusters) (multiwell dish container + agitation culture process) Human bone marrow-derived mesenchymal stem cells (hMSC) are suspended in a growth medium (Takara Bio: MSCGM BulletKit (trademark)), and the biocompatible polymer block (53-106 ⁇ m) prepared in Reference Example 3 is added thereto, EZSPHERE (registered trademark) dish, which is a 90 mm dish that is non-cell-adherent, with hMSC (1.2 ⁇ 10 8 cells) and biocompatible polymer block (25 mg) suspended in a 23 mL medium.
- EZSPHERE registered trademark
- Type 903 (spheroid well diameter 800 ⁇ m, spheroid well depth 300 ⁇ m, number of spheroid wells to about 6,000 wells.
- the bottom surface is a culture surface having a recess, and has a side outer wall portion standing on the periphery of the culture surface. AGC Sowed in technograss). At this time, a mixture of biocompatible polymer block, cells and liquid medium was added to the 90 mm dish beyond the culture surface.
- the 90 mm dish was allowed to stand at 37 ° C. for 5 hours in a CO 2 incubator (at this point, there was no free biocompatible polymer block). Then, all the contents were transferred to a 30 mL single-use bioreactor (Able BWV-S03A) (second culture vessel equipped with stirring means) with a pipette, left to stand for 10 minutes, and the supernatant was removed and fresh. The medium was changed to 30 mL, and stirring culture was performed at a rotation speed of 70 rpm for 24 hours. As a result, we succeeded in producing about 6,000 uniform cell structures at the same time without fusing or disrupting the cell structures. The manufacturing process and results are shown in FIG. As a result of measuring 1169 cell structures, the minimum value was 23.89 ⁇ m, the maximum value was 909.40 ⁇ m, the average value was 419.51 ⁇ m, and the standard deviation was 625.81 ⁇ m.
- Example 2 Production of a large number of cell structures (mosaic cell clumps) (multiwell dish container + agitation culture process) Human bone marrow-derived mesenchymal stem cells (hMSC) are suspended in a growth medium (Takara Bio: MSCGM BulletKit (trademark)), and the biocompatible polymer block (53-106 ⁇ m) prepared in Reference Example 3 is added thereto, EZSPHERE (registered trademark) dish, which is a 90 mm dish that is non-cell-adherent, with hMSC (1.2 ⁇ 10 8 cells) and biocompatible polymer block (25 mg) suspended in a 23 mL medium.
- EZSPHERE registered trademark
- Type 903 (spheroid well diameter 800 ⁇ m, spheroid well depth 300 ⁇ m, number of spheroid wells to about 6,000 wells.
- the bottom surface is a culture surface having a recess, and has a side outer wall portion standing on the periphery of the culture surface. AGC Sowed in technograss). At this time, a mixture of biocompatible polymer block, cells and liquid medium was added to the 90 mm dish beyond the culture surface.
- the 90 mm dish was allowed to stand at 37 ° C. for 23 hours in a CO 2 incubator (at this point, there was no free biocompatible polymer block). Then, all the contents were transferred to a 30 mL single-use bioreactor (Able BWV-S03A) (second culture vessel equipped with stirring means) with a pipette, left to stand for 10 minutes, and the supernatant was removed and fresh. The medium was changed to 30 mL, and stirring culture was performed at a rotation speed of 50 rpm for 21 hours. As a result, we succeeded in producing about 6,000 uniform cell structures at the same time without fusing or disrupting the cell structures. The manufacturing process and results are shown in FIG. As a result of measuring 317 cell structures, the minimum value was 23.89 ⁇ m, the maximum value was 953.95 ⁇ m, the average value was 415.56 ⁇ m, and the standard deviation was 498.80 ⁇ m.
- Type 903 (spheroid well diameter 800 ⁇ m, spheroid well depth 300 ⁇ m, number of spheroid wells to about 6,000 wells.
- the bottom surface is a culture surface having a recess, and has a side outer wall portion standing on the periphery of the culture surface. AGC Sowed in technograss). At this time, a mixture of biocompatible polymer block, cells and liquid medium was added to the 90 mm dish beyond the culture surface.
- Type 903 (spheroid well diameter 800 ⁇ m, spheroid well depth 300 ⁇ m, number of spheroid wells to about 6,000 wells.
- the bottom surface is a culture surface having a recess, and has a side outer wall portion standing on the periphery of the culture surface. AGC Sowed in technograss). At this time, a mixture of biocompatible polymer block, cells and liquid medium was added to the 90 mm dish beyond the culture surface.
- FIG. 14 shows the result of stirring culture for 48 hours.
- the size of the obtained cell structure was evaluated. 70% or more is the same size (same size means that it is within ⁇ 50% of the median size), A is greater than 40% and less than 70% is B, 40% or less In some cases, C was designated. That is, A is superior in size uniformity, B is inferior to A, and C is further inferior to B.
- Table 1 The evaluation results are shown in Table 1.
- Comparative Example 3 a multi-well was not used, and fusion avoidance was not measurable on the evaluation index. As shown in Table 1, the production methods of Examples 1 and 2 were excellent in fusion avoidance and size uniformity.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Analytical Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Rheumatology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
(1) (A)窪み部が複数形成された培養面および上記培養面の外周縁に立設される側壁部を有する第一の培養容器に、生体親和性高分子ブロック、細胞および液体培地の混合物を、上記混合物の液面が上記培養面を超えるように添加する工程;
(B)工程(A)の第一の培養容器を静置して、上記窪み部において、上記生体親和性高分子ブロックおよび上記細胞を含み、複数個の上記細胞間の隙間に複数個の上記生体親和性高分子ブロックが配置されている細胞構造体を形成する工程;および
(C)工程(B)で得た上記第一の培養容器の内容物を、撹拌手段を備えた第二の培養容器において、撹拌培養する工程;
を含む、細胞構造体の製造方法。
(3) 窪み部の個数に対する工程(C)後に製造された細胞構造体の個数の比率が70%以上となるような時間だけ、工程(B)において第一の培養容器を静置する、(1)または(2)に記載の細胞構造体の製造方法。
(4) 上記生体親和性高分子ブロックの大きさが、1μm~700μmである、(1)から(3)のいずれか一に記載の細胞構造体の製造方法。
(5) 培養面および窪み部の表面が、細胞接着抑制のための処理がなされている、(1)から(4)のいずれか一に記載の細胞構造体の製造方法。
(7) 第一の培養容器を静置する時間が、2時間~24時間である、(1)から(6)のいずれか一に記載の細胞構造体の製造方法。
(8) 工程(C)における第一の培養容器の内容物を撹拌培養する時間が、12時間~93時間である、(1)から(7)のいずれか一に記載の細胞構造体の製造方法。
(10) ゼラチンが、下記式で示される、(9)に記載の細胞構造体の製造方法。
式:A-[(Gly-X-Y)n]m-B
式中、Aは任意のアミノ酸またはアミノ酸配列を示し、Bは任意のアミノ酸またはアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3~100の整数を示し、mは2~10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。
(11) ゼラチンが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、(9)または(10)に記載の細胞構造体の製造方法。
本発明による細胞構造体の製造方法は、
(A)窪み部が複数形成された培養面および培養面の外周縁に立設される側壁部を有する第一の培養容器に、生体親和性高分子ブロック、細胞および液体培地の混合物を、混合物の液面が培養面を超えるように添加する工程;
(B)工程(A)の第一の培養容器を静置して、窪み部において、生体親和性高分子ブロックおよび細胞を含み、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックが配置されている細胞構造体を形成する工程;および
(C)工程(B)で得た第一の培養容器の内容物を、撹拌手段を備えた第二の培養容器において、撹拌培養する工程;
を含む。
本発明で用いる第一の培養容器は、窪み部が複数形成された培養面および上記培養面の外周縁に立設される側壁部を有する培養容器である。
本発明で用いる第一の培養容器の例を、図1から図6を参照して説明する。
容器本体10は、円板状の底板部14および環状の側壁部16を有している。底板部14は、例えばポリスチレンなどの合成樹脂材、またはガラスから構成されていてもよい。底板部14は、例えば、合成樹脂材料を用いた射出成形により製造することができる。
図2(a)および図3(a)に示す例においては、細胞接着抑制剤層が存在しない。図2(b)および図3(b)に示す例においては、細胞接着抑制剤層30が、設けられている。
窪み部の深さは、特に限定されないが、好ましくは10~2000μmであり、より好ましくは20~1000μmであり、さらに好ましくは30~700μmであり、さらに好ましくは50~500μmであり、最も好ましくは100~400μmである。
窪み部の口径は、特に限定されないが、好ましくは10~2000μmであり、より好ましくは50~1500μmであり、さらに好ましくは100~1500μmであり、さらに好ましくは200~1000μmであり、最も好ましくは400~1000μmである。
窪み部の深さおよび口径を上記の範囲とすることは、細胞の大きさとの関係において、強度および形状維持性能に優れた細胞構造体を得るという観点から好ましい。
なお、窪み部が、上記の深さおよび口径を有する場合、培養容器の全ての窪み部が、上記の深さおよび口径を有する必要はなく、少なくとも一部の窪み部が上記の深さおよび口径を有するものであってもよい。
なお、照射スポットの形状は、円形であるのに対して、窪み部20の開口形状は、略楕円形に偏平している。この開口形状の偏平は、容器本体10の成形時において金型に合成樹脂材を流し込む方向に起因するものと考えられる。
底板部14の上面にレーザ光が照射されると、底板部14を構成する合成樹脂材が溶解して、窪み部20が形成される。
窪み部の面積とは、窪み部を上方から観察した場合に窪み部を二次元で捉えたときの面積を意味し、本明細書中上記した窪み部の口径で規定される領域の面積を意味する。図2または図4に示すように、培養面上に平坦部が存在しない場合には、窪み部の面積が、培養面の全面積に対して100%になる。
(2-1)生体性親和性高分子
生体性親和性とは、生体に接触した際に、長期的かつ慢性的な炎症反応などのような顕著な有害反応を惹起しないことを意味する。本発明で用いる生体親和性高分子は、生体に親和性を有するものであれば、生体内で分解されるか否かは特に限定されないが、生分解性高分子であることが好ましい。非生分解性材料として具体的には、ポリテトラフルオロエチレン(PTFE)、ポリウレタン、ポリプロピレン、ポリエステル、塩化ビニル、ポリカーボネート、アクリル、ステンレス、チタン、シリコーン、およびMPC(2-メタクリロイルオキシエチルホスホリルコリン)などが挙げられる。生分解性材料としては、具体的には、天然由来のペプチド、リコンビナントペプチドまたは化学合成ペプチドなどのポリペプチド(例えば、以下に説明するゼラチン等)、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー(PLGA)、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、およびキトサンなどが挙げられる。上記の中でも、リコンビナントペプチドが特に好ましい。これら生体親和性高分子には細胞接着性を高める工夫がなされていてもよい。具体的には、「基材表面に対する細胞接着基質(フィブロネクチン、ビトロネクチン、ラミニン)や細胞接着配列(アミノ酸一文字表記で現わされる、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、およびHAV配列)ペプチドによるコーティング」、「基材表面のアミノ化、カチオン化」、または「基材表面のプラズマ処理、コロナ放電による親水性処理」といった方法を使用できる。
ゼラチン、特にリコンビナントゼラチンについては、本明細書中後記する。
本発明で用いる高分子のGRAVY値を上記範囲とすることにより、親水性が高く、かつ、吸水性が高くなることから、栄養成分の保持に有効に作用する。
本発明で用いる生体親和性高分子は、架橋されているものでもよいし、架橋されていないものでもよいが、架橋されているものが好ましい。架橋されている生体親和性高分子を使用することにより、培地中で培養する際および生体に移植した際に瞬時に分解してしまうことを防ぐという効果が得られる。一般的な架橋方法としては、熱架橋、アルデヒド類(例えば、ホルムアルデヒド、グルタルアルデヒドなど)による架橋、縮合剤(カルボジイミド、シアナミドなど)による架橋、酵素架橋、光架橋、紫外線架橋、疎水性相互作用、水素結合、イオン性相互作用などが知られており、本発明においても上記の架橋方法を使用することができる。本発明で使用する架橋方法としては、さらに好ましくは熱架橋、紫外線架橋、または酵素架橋であり、特に好ましくは熱架橋である。
生体親和性高分子としては、ゼラチンが好ましい。ゼラチンとしては、天然ゼラチン、リコンビナントゼラチン、または化学合成ゼラチンの何れでもよい。
本発明で言うリコンビナントゼラチンとは、遺伝子組み換え技術により作られたゼラチン類似のアミノ酸配列を有するポリペプチドもしくは蛋白様物質を意味する。本発明で用いることができるゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列(XおよびYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有するものが好ましい。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。好ましくは、細胞接着シグナルが一分子中に2配列以上含まれている。本発明で用いるゼラチンとしては、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有するゼラチンを用いることができる。例えばEP1014176、US特許6992172号、国際公開WO2004/85473、国際公開WO2008/103041等に記載のものを用いることができるが、これらに限定されるものではない。本発明で用いるゼラチンとして好ましいものは、以下の態様のゼラチンである。
この最小アミノ酸配列の含有量は、細胞接着・増殖性の観点から、タンパク質1分子中3~50個が好ましく、さらに好ましくは4~30個、特に好ましくは5~20個である。最も好ましくは12個である。
好ましくは、ゼラチンはテロペプタイドを有さない。
好ましくは、ゼラチンは、アミノ酸配列をコードする核酸により調製された実質的に純粋なポリペプチドである。
(1)配列番号1に記載のアミノ酸配列からなるペプチド;
(2)配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
(3)配列番号1に記載のアミノ酸配列と80%以上(さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上)の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである
本発明では、上記した生体親和性高分子からなるブロック(塊)を使用する。
本発明における生体親和性高分子ブロックの形状は特に限定されるものではない。例えば、不定形、球状、粒子状(顆粒)、粉状、多孔質状、繊維状、紡錘状、扁平状およびシート状であり、好ましくは、不定形、球状、粒子状(顆粒)、粉状および多孔質状である。不定形とは、表面形状が均一でないもののことを示し、例えば、岩のような凹凸を有する物を示す。なお、上記の形状の例示はそれぞれ別個のものではなく、例えば、粒子状(顆粒)の下位概念の一例として不定形となる場合もある。
(式2)は、生体親和性高分子ブロック1g当たりのリジン量(モル等量)を示す。
(式中、Asはサンプル吸光度、Abはブランク吸光度、Vは反応液量(g)、wは生体親和性高分子ブロック質量(mg)を示す。)
(式3)は、1分子あたりの架橋数を示す。
吸水率=(w2-w1-w0)/w0
(式中、w0は、吸水前の材料の質量、w1は吸水後の空袋の質量、w2は吸水後の材料を含む袋全体の質量を示す。)
生体親和性高分子ブロックの製造方法は、特に限定されないが、例えば、生体親和性高分子を含有する固形物(生体親和性高分子の多孔質体など)を、粉砕機(ニューパワーミルなど)を用いて粉砕することにより、生体親和性高分子ブロックを得ることができる。生体親和性高分子を含有する固形物(多孔質体など)は、例えば、生体親和性高分子を含有する水溶液を凍結乾燥して得ることができる。
(a)溶液内で最も液温の高い部分の温度と溶液内で最も液温の低い部分の温度との差が2.5℃以下であり、かつ、溶液内で最も液温の高い部分の温度が溶媒の融点以下で、生体親和性高分子の溶液を、未凍結状態に冷却する工程、
(b)工程(a)で得られた生体親和性高分子の溶液を凍結する工程、および
(c)工程(b)で得られた凍結した生体親和性高分子を凍結乾燥する工程
を含む方法を挙げることができる。
本発明で用いる細胞は、本発明の細胞構造体の目的である、細胞移植を行えるものであれば任意の細胞を使用することができ、その種類は特に限定されない。また、使用する細胞は1種でもよいし、複数種の細胞を組合せて用いてもよい。また、使用する細胞として、好ましくは、動物細胞であり、より好ましくは脊椎動物由来細胞、特に好ましくはヒト由来細胞である。脊椎動物由来細胞(特に、ヒト由来細胞)の種類は、万能細胞、体性幹細胞、前駆細胞、または成熟細胞の何れでもよい。万能細胞としては、例えば、胚性幹(ES)細胞、生殖幹(GS)細胞、または人工多能性幹(iPS)細胞を使用することができる。体性幹細胞としては、例えば、間葉系幹細胞(MSC)、造血幹細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞、心筋幹細胞、脂肪由来幹細胞、または神経幹細胞を使用することができる。前駆細胞および成熟細胞としては、例えば、皮膚、真皮、表皮、筋肉、心筋、神経、骨、軟骨、内皮、脳、上皮、心臓、腎臓、肝臓、膵臓、脾臓、口腔内、角膜、骨髄、臍帯血、羊膜、または毛に由来する細胞を使用することができる。ヒト由来細胞としては、例えば、ES細胞、iPS細胞、MSC、軟骨細胞、骨芽細胞、骨芽前駆細胞、間充織細胞、筋芽細胞、心筋細胞、心筋芽細胞、神経細胞、肝細胞、ベータ細胞、線維芽細胞、角膜内皮細胞、血管内皮細胞、角膜上皮細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞、または造血幹細胞を使用することができる。また、細胞の由来は、自家細胞または他家細胞の何れでも構わない。
本発明の細胞構造体の製造方法の工程(A)においては、窪み部が複数形成された培養面および培養面の外周縁に立設される側壁部を有する第一の培養容器に、生体親和性高分子ブロック、細胞および液体培地の混合物を、上記混合物の液面が培養面を超えるように添加する。
増殖培地としては、DMEM(Dulbecco's Modified Eagle Medium)+10%FBS(fetal bovine serum)、タカラバイオ:MSCGM BulletKit(商標)、Lonza:EGM-2+ECFC serum supplementなどを挙げることができるが、特に限定されない。
分化培地としては、タカラバイオ:間葉系幹細胞軟骨細胞分化培地:Mesenchymal Stem Cell Chondrogenic Differentiation Medium、タカラバイオ:間葉系幹細胞骨芽細胞分化培地:Mesenchymal Stem Cell Osteogenic Differentiation Mediumなどを挙げることができるが、特に限定されない。
第一の培養容器の内容物としては、液体培地、細胞構造体、細胞構造体を形成していない生体親和性高分子ブロック、および細胞構造体を形成していない細胞が含まれる。
工程(B)で得た第一の培養容器の内容物を、撹拌手段を備えた第二の培養容器に移す作業は、特に限定されないが、常法により行うことができ、例えば、ピペットを用いて第一の培養容器の内容物を、撹拌手段を備えた第二の培養容器に移すことができる。
また、撹拌培養における撹拌速度は、20~200rpmが好ましく、60~90rpmがより好ましい。rpmは、回毎分 (revolutions per minute)であり、1rpm=1min-1である。
本発明の方法で製造される細胞構造体は、生体親和性高分子ブロックと細胞とを含む。本発明においては、生体親和性高分子ブロックと細胞とを用いて、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックをモザイク状に3次元的に配置させる。これにより、外部から細胞構造体の内部への栄養送達が可能となる。本明細書において、細胞構造体は、モザイク細胞塊(モザイク状になっている細胞塊)と称する場合もある。
本発明の製造方法により製造される細胞構造体は、細胞移植のために使用することができる。具体的には、本発明のシート状細胞構造体は、例えば、重症心不全、重度心筋梗塞等の心臓疾患、脳虚血・脳梗塞といった疾患部位に細胞移植の目的で使用できる。また、糖尿病性の腎臓、膵臓、肝臓、末梢神経、眼、四肢の血行障害などの疾患に対しても用いることができる。
移植方法としては、切開、内視鏡といったものが使用可能である。
リコンビナントペプチド(リコンビナントゼラチン)として以下のCBE3を用意した(国際公開WO2008/103041号公報に記載)。
CBE3:
分子量:51.6kD
構造: GAP[(GXY)63]3G
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。CBE3のアミノ酸配列には、セリン、スレオニン、アスパラギン、チロシンおよびシステインは含まれていない。CBE3はERGD配列を有している。
等電点:9.34
GRAVY値:-0.682
1/IOB値:0.323
アミノ酸配列(配列表の配列番号1)(国際公開WO2008/103041号公報の配列番号3と同じ。但し末尾のXは「P」に修正)
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
[PTFE厚・円筒形容器]
底面厚さ3mm、直径51mm、側面厚さ8mm、高さ25mmのポリテトラフルオロエチレン(PTFE)製円筒カップ状容器を用意した。円筒カップは曲面を側面としたとき、側面は8mmのPTFEで閉鎖されており、底面(平板の円形状)も3mmのPTFEで閉鎖されている。一方、上面は開放された形をしている。よって、円筒カップの内径は43mmになっている。以後、この容器のことをPTFE厚・円筒形容器と呼称する。
厚さ1mm、直径47mmのアルミ(アルミニウム)製円筒カップ状容器を用意した。円筒カップは曲面を側面としたとき、側面は1mmのアルミで閉鎖されており、底面(平板の円形状)も1mmのアルミで閉鎖されている。一方、上面は開放された形をしている。また、側面の内部にのみ、肉厚1mmのテフロン(登録商標)を均一に敷き詰め、結果として円筒カップの内径は45mmになっている。また、この容器の底面にはアルミの外に2.2mmの硝子板を接合した状態にしておく。以後、この容器のことをアルミ硝子板・円筒形容器と呼称する。
PTFE厚・円筒形容器、アルミ硝子板・円筒形容器、にCBE3水溶液を流し込み、真空凍結乾燥機(TF5-85ATNNN:宝製作所)内で冷却棚板を用いて底面からCBE3水溶液を冷却した。この際の容器、CBE3水溶液の最終濃度、液量、および棚板温度の設定の組み合わせは、以下に記載の通りで用意した。
PTFE厚・円筒形容器、CBE3水溶液の最終濃度4質量%、水溶液量4mL。棚板温度の設定は、-10℃になるまで冷却し、-10℃で1時間、その後-20℃で2時間、さらに-40℃で3時間、最後に-50℃で1時間凍結を行った。本凍結品はその後、棚板温度を-20℃設定に戻してから-20℃で24時間の真空乾燥を行い、24時間後にそのまま真空乾燥を続けた状態で棚板温度を20℃へ上昇させ、十分に真空度が下がる(1.9×105Pa)まで、さらに20℃で48時間の真空乾燥を実施した後に、真空凍結乾燥機から取り出した。それによって多孔質体を得た。
アルミ・硝子板・円筒形容器、CBE3水溶液の最終濃度4質量%、水溶液量4mL。棚板温度の設定は、-10℃になるまで冷却し、-10℃で1時間、その後-20℃で2時間、さらに-40℃で3時間、最後に-50℃で1時間凍結を行った。本凍結品はその後、棚板温度を-20℃設定に戻してから-20℃で24時間の真空乾燥を行い、24時間後にそのまま真空乾燥を続けた状態で棚板温度を20℃へ上昇させ、十分に真空度が下がる(1.9×105Pa)まで、さらに20℃で48時間の真空乾燥を実施した後に、真空凍結乾燥機から取り出した。それによって多孔質体を得た。
PTFE厚・円筒形容器、CBE3水溶液の最終濃度4質量%、水溶液量10mL。棚板温度の設定は、-10℃になるまで冷却し、-10℃で1時間、その後-20℃で2時間、さらに-40℃で3時間、最後に-50℃で1時間凍結を行った。本凍結品はその後、棚板温度を-20℃設定に戻してから-20℃で24時間の真空乾燥を行い、24時間後にそのまま真空乾燥を続けた状態で棚板温度を20℃へ上昇させ、十分に真空度が下がる(1.9×105Pa)まで、さらに20℃で48時間の真空乾燥を実施した後に、真空凍結乾燥機から取り出した。それによって多孔質体を得た。
条件A~条件Cのそれぞれについて、溶液内で冷却側から最も遠い場所の液温(非冷却面液温)として容器内の円中心部の水表面液温を、また、溶液内で冷却側に最も近い液温(冷却面液温)として容器内の底部の液温を測定した。
その結果、それぞれの温度とその温度差のプロファイルは図7~図9の通りとなった。
非冷却面液温が融点(0℃)になった時の温度差:1.1℃
-10℃から-20℃へ下げる直前の温度差:0.2℃
凝固熱発生直前の温度差:1.1℃
非冷却面液温が融点(0℃)になった時の温度差:1.0℃
-10℃から-20℃へ下げる直前の温度差:0.1℃
凝固熱発生直前の温度差:0.9℃
非冷却面液温が融点(0℃)になった時の温度差:1.8℃
-10℃から-20℃へ下げる直前の温度差:1.1℃
凝固熱発生直前の温度差:2.1℃
参考例2で得られた条件Aおよび条件BのCBE3多孔質体をニューパワーミル(大阪ケミカル、ニューパワーミルPM-2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25~53μm、53~106μm、106~180μmの未架橋ブロックを得た。その後、減圧下160℃で熱架橋(架橋時間は8時間、16時間、24時間、48時間、72時間、96時間の6種類を実施した)を施して、生体親和性高分子ブロック(CBE3ブロック)を得た。
タップ密度は、ある体積にどれくらいのブロックを密に充填できるかを表す値であり、値が小さいほど、密に充填できない、すなわちブロックの構造が複雑であると言える。タップ密度は、以下のように測定した。まず、ロートの先にキャップ(直径6mm、長さ21.8mmの円筒状:容量0.616cm3)が付いたものを用意し、キャップのみの質量を測定した。その後、ロートにキャップを付け、ブロックがキャップに溜まるようにロートから流し込んだ。十分量のブロックを入れた後、キャップ部分を200回、机などの硬いところにたたきつけ、ロートをはずし、スパチュラですりきりにした。このキャップにすりきり一杯入った状態で質量を測定した。キャップのみの質量との差からブロックのみの質量を算出し、キャップの体積で割ることで、タップ密度を求めた。
その結果、参考例3の生体親和性高分子ブロックのタップ密度は98mg/cm3であった。
参考例3で架橋したブロックの架橋度(1分子当たりの架橋数)を算出した。測定はTNBS(2,4,6-トリニトロベンゼンスルホン酸)法を用いた。
<サンプル調製>
ガラスバイアルに、サンプル(約10mg)、4%NaHCO3水溶液(1mL)および1質量%のTNBS水溶液(2mL)を添加し、混合物を37℃で3時間振とうさせた。その後、37質量%塩酸(10mL)および純水(5mL)を加えた後、混合物を37℃で16時間以上静置し、サンプルとした。
ガラスバイアルに、サンプル(約10mg)、4質量%NaHCO3水溶液(1mL)および1質量%TNBS水溶液(2mL)を添加し、直後に37質量%塩酸(3mL)を加え、混合物を37℃で3時間振とうした。その後、37質量%塩酸(7mL)および純水(5mL)を加えた後、混合物を37℃で16時間以上静置し、ブランクとした。
純水で10倍希釈したサンプル、および、ブランクの吸光度(345nm)を測定し、以下の(式2)、および(式3)から架橋度(1分子当たりの架橋数)を算出した。
(式2)は、リコンビナントペプチド1g当たりのリジン量(モル等量)を示す。
(式中、Asはサンプル吸光度、Abはブランク吸光度、Vは反応液量(g)、wはリコンビナントペプチド質量(mg)を示す。)
(式3)は、1分子あたりの架橋数を示す。
参考例3で作製した生体親和性高分子ブロックの吸水率を算出した。
25℃において、3cm×3cmのナイロンメッシュ製の袋の中に、生体親和性高分子ブロック約15mgを充填し、2時間イオン交換水中で膨潤させた後、10分風乾させた。それぞれの段階において質量を測定し、(式4)に従って、吸水率を求めた。
吸水率=(w2-w1-w0)/w0
(式中、w0は、吸水前の材料の質量、w1は吸水後の空袋の質量、w2は吸水後の材料を含む袋全体の質量を示す。)
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKit(商標))に懸濁し、そこに参考例3で作製した生体親和性高分子ブロック(53-106μm)を加えて、最終的にhMSC(1.2×108cells)と生体親和性高分子ブロック(25mg)が23mLの培地に懸濁された状態で、細胞非接着性の90mmディッシュであるEZSPHERE(登録商標)ディッシュType903(スフェロイドウェル口径800μm、スフェロイドウェル深さ300μm、スフェロイドウェル数~約6,000ウェル。底面が窪み部を有する培養面であり、培養面の周縁に立設される側外壁部を有する。AGCテクノグラス製)に播種した。この際、90mmディッシュには、生体親和性高分子ブロック、細胞および液体培地の混合物を培養面を超えて添加した。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKit(商標))に懸濁し、そこに参考例3で作製した生体親和性高分子ブロック(53-106μm)を加えて、最終的にhMSC(1.2×108cells)と生体親和性高分子ブロック(25mg)が23mLの培地に懸濁された状態で、細胞非接着性の90mmディッシュであるEZSPHERE(登録商標)ディッシュType903(スフェロイドウェル口径800μm、スフェロイドウェル深さ300μm、スフェロイドウェル数~約6,000ウェル。底面が窪み部を有する培養面であり、培養面の周縁に立設される側外壁部を有する。AGCテクノグラス製)に播種した。この際、90mmディッシュには、生体親和性高分子ブロック、細胞および液体培地の混合物を培養面を超えて添加した。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKit(商標))に懸濁し、そこに参考例3で作製した生体親和性高分子ブロック(53-106μm)を加えて、最終的にhMSC(1.2×108cells)と生体親和性高分子ブロック(25mg)が23mLの培地に懸濁された状態で、細胞非接着性の90mmディッシュであるEZSPHERE(登録商標)ディッシュType903(スフェロイドウェル口径800μm、スフェロイドウェル深さ300μm、スフェロイドウェル数~約6,000ウェル。底面が窪み部を有する培養面であり、培養面の周縁に立設される側外壁部を有する。AGCテクノグラス製)に播種した。この際、90mmディッシュには、生体親和性高分子ブロック、細胞および液体培地の混合物を培養面を超えて添加した。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKit(商標))に懸濁し、そこに参考例3で作製した生体親和性高分子ブロック(53-106μm)を加えて、最終的にhMSC(1.2×108cells)と生体親和性高分子ブロック(25mg)が23mLの培地に懸濁された状態で、細胞非接着性の90mmディッシュであるEZSPHERE(登録商標)ディッシュType903(スフェロイドウェル口径800μm、スフェロイドウェル深さ300μm、スフェロイドウェル数~約6,000ウェル。底面が窪み部を有する培養面であり、培養面の周縁に立設される側外壁部を有する。AGCテクノグラス製)に播種した。この際、90mmディッシュには、生体親和性高分子ブロック、細胞および液体培地の混合物を培養面を超えて添加した。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ:MSCGM BulletKit(商標))に懸濁し、そこに参考例3で作製した生体親和性高分子ブロック(53-106μm)を加えて、最終的にhMSC(1.2×108cells)と生体親和性高分子ブロック(25mg)が30mLの培地に懸濁された状態で、商品名30mLシングルユースバイオリアクター(エイブル社BWV-S03A)(撹拌手段を備えた培養容器)に入れて、回転速度55rpmで24時間または48時間撹拌培養を実施した。結果、不均一な細胞構造体(例えば、形状および大きさが不均一な細胞構造体または生体親和性高分子ブロックを含まず、細胞のみからなる細胞塊)が数十個存在するだけで、実施例1および2のような均一な細胞構造体を大量個数得ることはできなかった(図14)。なお、図14は、48時間撹拌培養した結果を示す。
実施例1および2ならびに比較例1、2および3で得られた細胞構造体について、細胞構造体の均一性を、融合回避性およびサイズ均一性の指標を用いて評価した。
融合回避性は、マルチウェルの個数に対する製造された細胞構造体の数の比率が70%以下の場合をB、70%より高く100%までの場合をAとした。即ち、融合回避性はAの方がBより優れている。評価の結果を表1に示す。
表1に示す通り、実施例1および2の製造方法は、融合回避性およびサイズ均一性に優れていた。
12 蓋
14 底板部
16 側壁部
20 窪み部
24 ウェル形成領域
26 培養面
30 細胞接着抑制剤層
A 照射スポット
B 照射スポット
C 照射スポット
D 照射スポット
Claims (11)
- (A)窪み部が複数形成された培養面および前記培養面の外周縁に立設される側壁部を有する第一の培養容器に、生体親和性高分子ブロック、細胞および液体培地の混合物を、前記混合物の液面が前記培養面を超えるように添加する工程;
(B)工程(A)の第一の培養容器を静置して、前記窪み部において、前記生体親和性高分子ブロックおよび前記細胞を含み、複数個の前記細胞間の隙間に複数個の前記生体親和性高分子ブロックが配置されている細胞構造体を形成する工程;および
(C)工程(B)で得た前記第一の培養容器の内容物を、撹拌手段を備えた第二の培養容器において、撹拌培養する工程;
を含む、細胞構造体の製造方法。 - 工程(B)において、遊離している生体親和性高分子ブロックが全生体親和性高分子ブロックの30質量%以下になるまで、第一の培養容器を静置する、請求項1に記載の細胞構造体の製造方法。
- 窪み部の個数に対する工程(C)後に製造された細胞構造体の個数の比率が70%以上となるような時間だけ、工程(B)において第一の培養容器を静置する、請求項1または2に記載の細胞構造体の製造方法。
- 前記生体親和性高分子ブロックの大きさが、1μm~700μmである、請求項1から3のいずれか一項に記載の細胞構造体の製造方法。
- 培養面および窪み部の表面が、細胞接着抑制のための処理がなされている、請求項1から4のいずれか一項に記載の細胞構造体の製造方法。
- 窪み部の深さが前記生体親和性高分子ブロックの大きさの2~100倍であり、窪み部の口径が前記生体親和性高分子ブロックの大きさの2~100倍である、請求項1から5のいずれか一項に記載の細胞構造体の製造方法。
- 第一の培養容器を静置する時間が、2時間~24時間である、請求項1から6のいずれか一項に記載の細胞構造体の製造方法。
- 工程(C)における第一の培養容器の内容物を撹拌培養する時間が、12時間~93時間である、請求項1から7のいずれか一項に記載の細胞構造体の製造方法。
- 生体親和性高分子が、ゼラチンである、請求項1から8のいずれか一項に記載の細胞構造体の製造方法。
- ゼラチンが、下記式で示される、請求項9に記載の細胞構造体の製造方法。
式:A-[(Gly-X-Y)n]m-B
式中、Aは任意のアミノ酸またはアミノ酸配列を示し、Bは任意のアミノ酸またはアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3~100の整数を示し、mは2~10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。 - ゼラチンが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、請求項9または10に記載の細胞構造体の製造方法。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019506310A JP6964313B2 (ja) | 2017-03-17 | 2018-03-16 | 細胞構造体の製造方法 |
| EP18767668.9A EP3597731B1 (en) | 2017-03-17 | 2018-03-16 | Method for producing cell structures |
| US16/573,126 US20200032183A1 (en) | 2017-03-17 | 2019-09-17 | Method of manufacturing cell structure |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017052953 | 2017-03-17 | ||
| JP2017-052953 | 2017-03-17 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/573,126 Continuation US20200032183A1 (en) | 2017-03-17 | 2019-09-17 | Method of manufacturing cell structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018169065A1 true WO2018169065A1 (ja) | 2018-09-20 |
Family
ID=63522468
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/010535 Ceased WO2018169065A1 (ja) | 2017-03-17 | 2018-03-16 | 細胞構造体の製造方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20200032183A1 (ja) |
| EP (1) | EP3597731B1 (ja) |
| JP (1) | JP6964313B2 (ja) |
| WO (1) | WO2018169065A1 (ja) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4005597A4 (en) * | 2019-07-26 | 2022-11-30 | FUJIFILM Corporation | BIOGRAFT MATERIAL |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1014176A2 (en) | 1998-12-23 | 2000-06-28 | Fuji Photo Film B.V. | Silver halide emulsions containing recombinant gelatin-like proteins |
| WO2004085473A2 (en) | 2003-03-28 | 2004-10-07 | Fuji Photo Film B.V. | Rgd-enriched gelatine-like proteins with enhanced cell binding |
| US6992172B1 (en) | 1999-11-12 | 2006-01-31 | Fibrogen, Inc. | Recombinant gelatins |
| WO2008103041A1 (en) | 2007-02-21 | 2008-08-28 | Fujifilm Manufacturing Europe B.V. | Recombinant gelatins |
| WO2011108517A1 (ja) | 2010-03-01 | 2011-09-09 | 富士フイルム株式会社 | 生体親和性を有する高分子ブロックと細胞からなる細胞構造体 |
| WO2012036011A1 (ja) | 2010-09-14 | 2012-03-22 | 旭硝子株式会社 | 培養基材 |
| JP2014012114A (ja) | 2011-08-31 | 2014-01-23 | Fujifilm Corp | 細胞移植用細胞構造体および細胞移植用細胞集合体 |
| WO2014133081A1 (ja) | 2013-02-27 | 2014-09-04 | 富士フイルム株式会社 | 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 |
| JP2015073520A (ja) | 2013-10-11 | 2015-04-20 | Agcテクノグラス株式会社 | 細胞培養容器 |
| JP2018010535A (ja) | 2016-07-14 | 2018-01-18 | シャープ株式会社 | 固定カメラ、サーバ、道路情報更新システム、および情報処理プログラム |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015194494A1 (ja) * | 2014-06-16 | 2015-12-23 | 富士フイルム株式会社 | 脳損傷治療用細胞構造体、その製造方法、及び脳損傷治療剤 |
| EP3358003B1 (en) * | 2015-09-30 | 2019-05-01 | FUJIFILM Corporation | Method for producing sheet-like cell structure and sheet-like cell structure |
| JP6714699B2 (ja) * | 2016-06-20 | 2020-06-24 | 富士フイルム株式会社 | トロフィックファクタ放出剤および炎症疾患処置剤 |
| JP6903295B2 (ja) * | 2017-06-30 | 2021-07-14 | 富士フイルム株式会社 | ライソゾーム病処置剤 |
-
2018
- 2018-03-16 JP JP2019506310A patent/JP6964313B2/ja active Active
- 2018-03-16 EP EP18767668.9A patent/EP3597731B1/en active Active
- 2018-03-16 WO PCT/JP2018/010535 patent/WO2018169065A1/ja not_active Ceased
-
2019
- 2019-09-17 US US16/573,126 patent/US20200032183A1/en not_active Abandoned
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1014176A2 (en) | 1998-12-23 | 2000-06-28 | Fuji Photo Film B.V. | Silver halide emulsions containing recombinant gelatin-like proteins |
| US6992172B1 (en) | 1999-11-12 | 2006-01-31 | Fibrogen, Inc. | Recombinant gelatins |
| WO2004085473A2 (en) | 2003-03-28 | 2004-10-07 | Fuji Photo Film B.V. | Rgd-enriched gelatine-like proteins with enhanced cell binding |
| WO2008103041A1 (en) | 2007-02-21 | 2008-08-28 | Fujifilm Manufacturing Europe B.V. | Recombinant gelatins |
| WO2011108517A1 (ja) | 2010-03-01 | 2011-09-09 | 富士フイルム株式会社 | 生体親和性を有する高分子ブロックと細胞からなる細胞構造体 |
| WO2012036011A1 (ja) | 2010-09-14 | 2012-03-22 | 旭硝子株式会社 | 培養基材 |
| JP2014012114A (ja) | 2011-08-31 | 2014-01-23 | Fujifilm Corp | 細胞移植用細胞構造体および細胞移植用細胞集合体 |
| WO2014133081A1 (ja) | 2013-02-27 | 2014-09-04 | 富士フイルム株式会社 | 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 |
| JP2015073520A (ja) | 2013-10-11 | 2015-04-20 | Agcテクノグラス株式会社 | 細胞培養容器 |
| JP2018010535A (ja) | 2016-07-14 | 2018-01-18 | シャープ株式会社 | 固定カメラ、サーバ、道路情報更新システム、および情報処理プログラム |
Non-Patent Citations (8)
| Title |
|---|
| "Pathophysiology", vol. 9, 1990, NAGAI SHOTEN CO., LTD., pages: 527 |
| AREA OF CHEMISTRY, vol. 11, no. 10, 1957, pages 719 - 725 |
| FRAGRANCE JOURNAL, vol. 50, 1981, pages 79 - 82 |
| GASTEIGER E.GATTIKER A.HOOGLAND C.IVANYI I.APPEAL R.D.BAIROCH A.: "ExPASy: the proteomics server for in-depth protein knowledge and analysis", NUCLEIC ACIDS RES., vol. 31, 2003, pages 3784 - 3788, XP055595893, doi:10.1093/nar/gkg563 |
| GASTEIGER E.HOOGLAND C.GATTIKER A.DUVAUD S.WILKINS M.R.APPEL R.D.BAIROCH A.: "The Proteomics Protocols Handbook", 2005, HUMANA PRESS, article "Protein Identification and Analysis Tools on the ExPASy Server", pages: 571 - 607 |
| MAXEY, C. R.: "Phitogr. Gelatin", vol. 2, 1976, ACADEMIC |
| PHARMACEUTICAL BULLETIN, vol. 2, no. 2, 1954, pages 163 - 173 |
| YOSHIO KOUDA: "New Edition Organic Conceptual Diagram -Foundation and Application", 2008, SANKYO SHUPPAN CO., LTD. |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4005597A4 (en) * | 2019-07-26 | 2022-11-30 | FUJIFILM Corporation | BIOGRAFT MATERIAL |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3597731A1 (en) | 2020-01-22 |
| JP6964313B2 (ja) | 2021-11-10 |
| EP3597731B1 (en) | 2022-06-29 |
| JPWO2018169065A1 (ja) | 2020-01-16 |
| US20200032183A1 (en) | 2020-01-30 |
| EP3597731A4 (en) | 2020-02-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6130903B2 (ja) | 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 | |
| JP5762399B2 (ja) | 生体親和性を有する高分子ブロックと細胞からなる細胞構造体 | |
| JP6145511B2 (ja) | 生体親和性高分子多孔質体の製造方法、生体親和性高分子多孔質体、生体親和性高分子ブロック並びに細胞構造体 | |
| US11027044B2 (en) | Method for producing sheet-like cell structure and sheet-like cell structure | |
| JP6330039B2 (ja) | 細胞構造体及び細胞構造体の製造方法 | |
| JP7360672B2 (ja) | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 | |
| JP6865265B2 (ja) | 細胞塊または細胞構造体の包埋剤、細胞塊または細胞構造体含有組成物およびキット | |
| JP6586160B2 (ja) | 軟骨再生材料 | |
| US10898612B2 (en) | Cell structure and method for producing cell structure | |
| JP6964313B2 (ja) | 細胞構造体の製造方法 | |
| JP6903295B2 (ja) | ライソゾーム病処置剤 | |
| JP2016136848A (ja) | 薬剤の評価方法及び薬剤スクリーニング方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767668 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019506310 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2018767668 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2018767668 Country of ref document: EP Effective date: 20191017 |