[go: up one dir, main page]

WO2018171647A1 - 一种资源配置方法及其装置 - Google Patents

一种资源配置方法及其装置 Download PDF

Info

Publication number
WO2018171647A1
WO2018171647A1 PCT/CN2018/079911 CN2018079911W WO2018171647A1 WO 2018171647 A1 WO2018171647 A1 WO 2018171647A1 CN 2018079911 W CN2018079911 W CN 2018079911W WO 2018171647 A1 WO2018171647 A1 WO 2018171647A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
network device
beams
indication information
receiving
Prior art date
Application number
PCT/CN2018/079911
Other languages
English (en)
French (fr)
Inventor
施弘哲
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710788369.7A external-priority patent/CN108633068B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3044493A priority Critical patent/CA3044493C/en
Priority to JP2019534916A priority patent/JP6991221B2/ja
Priority to BR112019011295A priority patent/BR112019011295A2/pt
Priority to EP18771942.2A priority patent/EP3537809A4/en
Priority to CN201880020563.3A priority patent/CN110809900A/zh
Publication of WO2018171647A1 publication Critical patent/WO2018171647A1/zh
Priority to US16/399,771 priority patent/US11064492B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a resource configuration method and apparatus therefor.
  • Beamforming is a signal preprocessing technique based on an antenna array. Beamforming produces a directional beam by adjusting the weighting coefficients of each element in the antenna array, so that a significant array gain can be obtained.
  • NR New Radio
  • the antenna array introduces beamforming more to obtain gain.
  • the data channel, control channel, synchronization signal, and broadcast signal can all be transmitted through the beam. Therefore, Beam Management (BM) is more important in NR.
  • FIG. 1 is a schematic diagram of various stages of the current NR downlink beam management.
  • beam management is mainly divided into three phases: P-1, P-2 and P-3.
  • the P-1 phase is a phase in which the system establishes an initial beam pairing relationship (BPL), that is, a BPL between the transmitting beam of the base station and the receiving beam of the user equipment (User Equipment, UE).
  • BPL initial beam pairing relationship
  • UE User Equipment
  • the P-2 phase and the P-3 phase are stages based on triggering to further filter the transmit beam of the base station and the receive beam of the UE, respectively.
  • the base station configures Channel State Information-Reference Signals (CSI-RS) resources, and the UE measures and evaluates the beam quality according to the CSI-RS.
  • CSI-RS Channel State Information-Reference Signals
  • the UE In order to obtain the best beam pairing, it is necessary to patrol the transmitting beam of the base station and the receiving beam of the UE. If the beam scanning of the transmitting beam of the base station is periodic, the UE can patrol and report the number of the receiving beams one by one according to the predetermined period, in other words, the base station does not need to know the number of receiving beams of the UE in the scenario, because Its resource configuration is periodic. However, if the transmit beam scan of the base station is aperiodic, the configuration of the CSI-RS resources of the base station has a certain blindness without knowing the available receive beams of the UE.
  • the base station can perform beam scanning round robin in a frequently triggered manner without knowing the available receive beams of the UE, but this may result in additional signaling and reporting overhead; or the maximum reception of the base station according to a certain protocol.
  • the number of beams is configured, which may cause waste of wireless resources.
  • the technical problem to be solved by the embodiments of the present invention is to provide a resource configuration method and a device thereof, which are configured to configure a beam management reference signal resource in a targeted manner, which can save signaling and reporting overhead, or save radio resources.
  • the embodiment of the present invention provides a resource configuration method, including: determining, by a user equipment, the number of available receiving beams of the user equipment, and transmitting, by the network device, a receiving beam quantity indication information, where the receiving beam quantity indication information indication The number of available receive beams of the user equipment; the network device receives the indication of the number of receive beams sent by the user equipment, and performs beam management according to the number of available receive beams of the user equipment and the number of transmit beams of the network equipment The configuration of the reference signal resource.
  • the user equipment can report the number of available receiving beams to the network device, so that the network device can accurately know the number of receiving beams of the user equipment, and can save signaling and reporting overhead, or save radio resources.
  • the user equipment sends the receiving beam quantity indication information to the network device by using uplink control information, that is, the receiving beam quantity indication information is carried in the network device.
  • uplink control information that is, the receiving beam quantity indication information is carried in the network device.
  • the system has established an initial communication link for beam-based control information and data.
  • the user equipment sends the received beam quantity indication information to the network device by using a physical random access channel PRACH message, that is, the receiving beam quantity indication for the network device
  • PRACH message that is, the receiving beam quantity indication for the network device
  • the information is carried in the PRACH message.
  • the PRACH message is a radio resource control RRC connection request message or a random access preamble message with information load capability.
  • the user equipment when receiving the user capability query request message sent by the network device, the user equipment sends the received beam quantity indication information to the network device by using a user capability query response message, that is, For the network device, the receiving beam quantity indication information is carried in the user capability query response message.
  • the beam management reference signal is used by the user equipment to perform measurement of beam quality, and the beam management reference signal includes a channel state information reference signal CSI-RS.
  • the network device performs beam management reference signal resource configuration according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the process is: the network device determines the required number of the CSI-RS resources according to the number of available receive beams of the user equipment and the number of transmit beams of the network device, and performs according to the quantity of the CSI-RS resources.
  • the configuration of the CSI-RS resource may perform at least one configuration, corresponding to performing at least one beam scan.
  • the available receive beam of the user equipment is associated with a transmit beam.
  • the number of receiving beams of the user equipment is related to the number of transmitting beams, that is, the number of receiving beams and the number of transmitting beams have a certain correlation, which may be equal, or may be determined according to the number of receiving beams.
  • the number of beams or the number of receive beams is determined according to the number of transmit beams.
  • the embodiment of the present invention provides a method for configuring a report, where the user equipment determines the number of available receive beams of the user equipment, and sends a receive beam quantity indication information to the network device, where the receive beam quantity indication information indicates The number of available receiving beams of the user equipment; the network device receiving the indication of the number of received beams sent by the user equipment, and performing beam according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network equipment Measure the configuration of the reported parameters.
  • the beam measurement reporting parameter may include a reporting period, and the network device configures the reporting period according to the number of receiving beams of the user equipment and the number of transmitting beams of the network device, which can reduce the number of reporting by the user equipment, and can reasonably utilize the uplink resource.
  • the available receive beam of the user equipment is associated with a transmit beam.
  • the number of available receiving beams of the user equipment is related to the number of transmitting beams, that is, the number of receiving beams and the number of transmitting beams have a certain correlation, which may be equal, or may be determined according to the number of receiving beams.
  • the number of transmit beams or the number of receive beams is determined according to the number of transmit beams.
  • an embodiment of the present invention provides a user equipment, where the user equipment has a function of implementing user equipment behavior in the method of the first aspect and the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the user equipment includes a determining unit and a sending unit, the determining unit is configured to determine an available receiving beam quantity of the user equipment, and the sending unit is configured to send the number of receiving beams to the network device. Instructing information, the receiving beam quantity indication information indicating the number of available receiving beams of the user equipment, the receiving beam quantity indication information being used by the network device according to the available receiving beam quantity of the user equipment and the network equipment The number of transmit beams is used to configure the resources of the beam management reference signal.
  • the user equipment includes a processor and a transceiver, the processor is configured to determine an available receive beam quantity of the user equipment, and the transceiver is configured to send a receive beam quantity indication to the network device.
  • Information the receiving beam quantity indication information indicating the number of available receiving beams of the user equipment, the receiving beam quantity indication information being used by the network device according to the available receiving beam quantity of the user equipment and the sending of the network equipment The number of beams performs resource configuration of the beam management reference signal.
  • the principle and the beneficial effects of the user equipment can be found in the first aspect, the method in the second aspect, and the beneficial effects.
  • the implementation of the user equipment can refer to the first aspect, The implementation of the method described in the two aspects will not be repeated.
  • an embodiment of the present invention provides a network device, where the network device has a function of implementing network device behavior in the method in the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a receiving unit and a configuration unit, where the receiving unit is configured to receive the receiving beam quantity indication information sent by the user equipment, where the receiving beam quantity indication information indicates the user equipment The number of available receive beams; the configuration unit is configured to perform beam management reference signal resources according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the network device includes a processor and a transceiver, where the transceiver is configured to receive, by a user equipment, a received beam quantity indication information, where the received beam quantity indication information indicates the user equipment The number of available receive beams; the processor is configured to perform beam management reference signal resources according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the principle and the beneficial effects of the network device for solving the problem can be referred to the method and the beneficial effects of the first aspect.
  • the implementation of the network device refer to the implementation of the method in the first aspect. The repetitions are not repeated here.
  • the network device also has the functionality to implement the behavior of the network device in the method of the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a receiving unit and a configuration unit, where the receiving unit is configured to receive the receiving beam quantity indication information sent by the user equipment, where the receiving beam quantity indication information indicates the user equipment The number of available receive beams; the configuration unit is configured to perform beam measurement reporting parameters according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the network device includes a processor and a transceiver, where the transceiver is configured to receive, by a user equipment, a received beam quantity indication information, where the received beam quantity indication information indicates the user equipment The number of available receive beams; the processor is configured to perform beam measurement reporting parameters according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the principle and the beneficial effects of the network device to solve the problem can be seen in the method and the beneficial effects of the second aspect.
  • the implementation of the network device refer to the implementation of the method in the second aspect. The repetitions are not repeated here.
  • an embodiment of the present invention provides a resource configuration method, including: a network device sending, to the user equipment, a receiving beam quantity indication information, where the receiving beam quantity indication information indicates the user equipment specified by the network device A maximum number of allowed receive beams that can be used for beam scanning, configuring beam management reference signal resources according to the maximum number of allowed receive beams and the number of transmit beams of the network device; the user equipment receiving the Receive beam quantity indication information, and select a receive beam according to the maximum allowable receive beam number.
  • the number of the maximum allowed receive beams that can be used for the beam scan pairing of the restricted user equipment by the network device is sent to the user equipment, which can save signaling and reporting overhead, or save radio resources.
  • the network device sends the receiving beam quantity indication information to the user equipment by using RRC signaling, that is, the receiving beam quantity indication information is carried in the user equipment.
  • RRC signaling that is, the receiving beam quantity indication information is carried in the user equipment.
  • the network device may further send the received beam quantity indication information to the user equipment by using other layer 3 signaling.
  • the network device sends the receiving beam quantity indication information to the user equipment by using media access control signaling, that is, the receiving beam quantity indication information for the user equipment. It is carried in the medium access control signaling.
  • the network device may further send the received beam quantity indication information to the user equipment by using other layer 2 signaling.
  • the network device sends the receiving beam quantity indication information to the user equipment by using downlink control information, that is, the receiving beam quantity indication information is carried in the user equipment. In the downlink control information.
  • the network device may further send the received beam quantity indication information to the user equipment by using other first layer signaling.
  • the beam management reference signal is used by the user equipment to perform measurement of beam quality, and the beam management reference signal includes a channel state information reference signal CSI-RS.
  • the process of configuring, by the network device, the beam management reference signal resource according to the maximum allowed receive beam number and the number of transmit beams of the network device is :
  • the network device configures the quantity of the CSI-RS resources according to the number of available receiving beams reported by the user equipment.
  • the number of measurement repetitions of the corresponding CSI-RS resource set is configured.
  • the network device may perform at least one configuration, corresponding to performing at least one beam scan.
  • the process for the user equipment to select a receiving beam according to the maximum allowed number of receiving beams is: the user equipment acquires an available receiving beam quantity of the user equipment; if the user equipment is available If the number of receiving beams is greater than the maximum number of allowed receiving beams, the user equipment selects the same number of receiving beams as the maximum allowed receiving beam from the available receiving beams of the user equipment; if the user equipment is available for receiving The number of beams is less than or equal to the maximum allowed number of receive beams, and the user equipment selects available receive beams of all the user equipments.
  • an embodiment of the present invention provides another user equipment, where the user equipment has a function of implementing user equipment behavior in the method in the fifth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the user equipment includes a receiving unit and a selecting unit, where the receiving unit is configured to receive the receiving beam quantity indication information sent by the network device, where the receiving beam quantity indication information indicates the network device specification
  • the user equipment may be used for a maximum number of allowed receiving beams for beam scanning pairing; the selecting unit is configured to select a receiving beam according to the maximum allowed number of receiving beams.
  • the user equipment includes a processor and a transceiver, where the transceiver is configured to receive a receiving beam quantity indication information sent by a network device, where the receiving beam quantity indication information indicates the network device specification
  • the user equipment may be used for a maximum number of allowed receive beams for beam scan pairing; the processor is configured to select a receive beam according to the maximum allowable receive beam number.
  • the principle and the beneficial effects of the user equipment can be found in the method and the beneficial effects of the fifth aspect.
  • the implementation of the user equipment can refer to the implementation of the method in the fifth aspect. The repetitions are not repeated here.
  • an embodiment of the present invention provides a network device, where the network device has a function of implementing network device behavior in the method in the fifth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a sending unit and a configuration unit, where the sending unit is configured to send, to the user equipment, receive beam quantity indication information, where the receive beam quantity indication information indicates the network device specified
  • the user equipment may be used for a beam scanning pairing maximum allowed receiving beam quantity, the receiving beam quantity indication information is used by the user equipment to select a receiving beam according to the maximum allowed receiving beam quantity; the configuration unit is configured to use the The configuration of the beam management reference signal resource is performed by the maximum allowable number of receive beams and the number of transmit beams of the network device.
  • the network device includes a processor and a transceiver, where the transceiver is configured to send, to the user equipment, receive beam quantity indication information, where the receive beam quantity indication information indicates the network device Determining, by the user equipment, a maximum allowable number of receive beams that can be used for beam scan pairing, the receive beam quantity indication information is used by the user equipment to select a receive beam according to the maximum allowed receive beam number; the processor is further configured to: The configuration of the beam management reference signal resource is performed according to the maximum allowed receive beam number and the number of transmit beams of the network device.
  • the principle and the beneficial effects of the network device to solve the problem can be referred to the method and the beneficial effects of the fifth aspect.
  • the implementation of the network device refer to the implementation of the method in the fifth aspect. The repetitions are not repeated here.
  • an embodiment of the present invention provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform user equipment side according to the first aspect or the second aspect or the fifth aspect. method.
  • an embodiment of the present invention provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform the network device side as described in the first aspect or the second aspect or the fifth aspect method.
  • the user equipment reports the number of available receiving beams to the network device or the number of maximum allowed receiving beams of the user equipment that is bound by the network device, and implements the targeted configuration of the beam management reference signal resources of the network device. Can save signaling and reporting overhead, or save wireless resources.
  • 1 is a schematic diagram of various stages of the current NR downlink beam management
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a resource configuration method according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of reporting the received beam quantity indication information according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing another example of reporting the received beam quantity indication information according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another resource configuration method according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram showing an example of sending a receiving beam quantity indication information according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a logical structure of a network device according to an embodiment of the present invention.
  • FIG. 8b is a schematic diagram of another logical structure of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a logical structure of a user equipment according to an embodiment of the present invention.
  • FIG. 9b is a schematic diagram of another logical structure of a user equipment according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an entity structure of a network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the physical structure of a user equipment according to an embodiment of the present invention.
  • the embodiment of the present invention can be applied to a wireless communication system.
  • the wireless communication system is generally composed of a cell.
  • Each cell includes a base station (BS), and the base station provides communication services to multiple user equipments, where the base station is connected to the core network device. as shown in picture 2.
  • the base station includes a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU and the RRU can be placed in different places, for example, the RRU is pulled away, placed in an open area from high traffic, and the BBU is placed in the central computer room.
  • BBUs and RRUs can also be placed in the same room.
  • the BBU and RRU can also be different parts under one rack.
  • the wireless communication system mentioned in the embodiments of the present invention includes, but is not limited to, a Narrow Band-Internet of Things (NB-IoT), and a Global System for Mobile Communications (GSM) system.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • NR NR system
  • future mobile communication systems future mobile communication systems.
  • the base station is a device deployed in a radio access network to provide a wireless communication function for a user equipment.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, Transmission Reception Point (TRP), and the like.
  • TRP Transmission Reception Point
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B (NB).
  • NB Node B
  • the above-mentioned devices for providing wireless communication functions to user equipment are collectively referred to as network devices.
  • the user equipment involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the user equipment may also be referred to as a mobile station (MS), a terminal (Terminal), and may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, Personal Digital Assistant (PDA) computers, tablet computers, wireless modems, handsets, laptop computers, Machine Type Communication (MTC) terminals, and the like.
  • MS mobile station
  • Terminal Terminal
  • PDA Personal Digital Assistant
  • MTC Machine Type Communication
  • the existing NR downlink beam management is divided into three phases: P-1, P-2, and P-3.
  • the UE may select one or more transmit beams by measurement to form a beam pair with one or more receive beams.
  • Each beam pair consists of one transmit beam and one receive beam, the transmit beam can come from one or more TRPs, and the receive beam comes from the target UE.
  • the UE may update the transmit beam in one or more beam pairs according to the measurement result.
  • the transmit beam can still come from one or more TRPs, but is typically smaller than the candidate range of the P-1 phase.
  • the UE may update the receive beams in one or more beam pairs according to the measurement results.
  • the receive beam still comes from the target user itself.
  • P-2 and P-3 can be considered as a subset of P-1 in the process.
  • the P-1 phase is a phase in which the system establishes an initial BPL, that is, establishes a BPL between a TRP transmission beam and a UE receiving beam.
  • the beam scanning of the TRP transmission beam may be periodic or may be Semi-persistent.
  • the P-2 phase and the P-3 phase are respectively stages for further screening the TRP transmission beam and the UE reception beam.
  • the beam scanning of the TRP transmission beam may be semi-persistent or aperiodic. It should be noted that the nonperiodic mentioned in the embodiment of the present invention is semi-persistent or aperiodic.
  • the beam scanning of the above-mentioned three-stage TRP transmission beam may be aperiodic, which causes the configuration of the CSI-RS resources of the base station to be blind.
  • the current possible solution has the overhead of adding additional signaling and reporting or wasting radio resources. Defects.
  • the embodiments of the present invention provide a resource configuration method and a device thereof, which can be configured to specifically configure a beam management reference signal resource, and specifically can configure a CSI-RS resource in a targeted manner, which can save signaling and Report overhead or save on wireless resources.
  • the number of available receive beams in the embodiment of the present invention is only used as a descriptive term to describe a value that the receiving side selects to report in one or more values allowed by the protocol.
  • the selection of the value may be determined by the receiving side, and the specific selection criteria or conditions are not limited in the embodiment of the present invention.
  • the number of available receive beams can be understood as the number of receive beams that the UE needs to scan in a round-robin manner at a certain stage. For example, the maximum capability of the UE can support the round scan of 8 receive beams. In a certain stage, the number of available receive beams can be 8, but in the next stage, the UE can judge based on some prior information and consider that only round scan 4 is required.
  • the number of available receive beams is 4, and the UE reports two different available receive beams in the two different phases. Therefore, the number of available receive beams can be equal or not equal to the maximum capability of the UE at a certain stage, but a value that the UE can make judgments and adjustments for different phases, different requirements, and different prior information.
  • the number of available receive beams in the embodiments of the present invention is also not the only term expression, and may be described in other terminology in future standards, such as the number of beam scan resource repetitions, beam scan assist coefficients, and the like.
  • the term described in the term can be understood as that, when the UE receives the beam to participate in the beam scanning, the base station can report the beam scanning resource accurately by reporting a value, or the reporting period of the beam scanning result is performed.
  • Configuration For example, in the semi-persistent scan type, the base station can configure the duration of the scan according to the value reported by the UE; for example, in the aperiodic scan type, the base station can configure the number of triggers for scanning according to the value reported by the UE; for example, the base station can According to the value reported by the UE, the corresponding CSI-RS resource is calculated and configured according to the number of the to-be-scanned transmit beams of the base station; the base station can configure the number of CSI-RS resources according to the value reported by the UE (that is, the number of receive beams), Configuring a number of CSI-RS resource sets in the corresponding CSI-RS resource set (the CSI-RS resource set includes one or more CSI-RS resources); for example,
  • the number of available receive beams is associated with the number of CSI-RS resources.
  • the number of CSI-RS resources is greater than or equal to the number of available receive beams.
  • the number of measurement repetitions of the CSI-RS resource set is greater than or equal to the number of available receive beams.
  • the base station may calculate and configure a corresponding scan result reporting period according to the value reported by the UE, combined with the number of transmit beams to be scanned by the base station. It should be understood that the terms consistent with the above should be considered as the scope of protection of the embodiments of the present invention.
  • the available receive beams of the UE may be associated with the transmit beam.
  • the number of receive beams of the UE may be associated with the number of transmit beams, and the implementation manner may include, but is not limited to, one of the following manners. Or multiple:
  • the number of receive beams to be scanned of the UE may be considered to be equal to the number of transmit beams
  • the number of rated receiving beams of the UE and the number of rated transmitting beams may be considered to be equal;
  • the UE device may set a proportional relationship or a difference between the number of the rated receiving beams of the UE and the number of the rated transmitting beams, and the proportional relationship or the difference may be reported by the UE capability;
  • the UE device may set the ratio of the half-power bandwidth (HPBW) of the receiving beam of the UE to the HPBW of the transmitting beam in the factory configuration, and the proportional relationship may be reported by the UE capability;
  • HPBW half-power bandwidth
  • the number of receiving beams of the UE may be obtained by estimating the number of transmitting beams, and the base station may configure a CSI-RS resource or a CSI reporting period according to the estimated number of receiving beams to be scanned obtained.
  • FIG. 3 is a schematic flowchart of a resource configuration method according to an embodiment of the present invention.
  • the embodiment shown in FIG. 3 receives an interaction between a network device and a user equipment, and the method includes but is not limited to the following steps. :
  • Step S101 The user equipment determines the number of available receiving beams of the user equipment.
  • the application scenario includes a non-periodic beam scanning or a periodic beam scanning occurring in a scenario after the communication link between the base station and the UE has established control information and data (P-1 phase has been established), and the aperiodic beam scanning or the periodic beam scanning occurs in the scenario.
  • the scenario before the base station and the UE have not established a communication link for controlling information and data (the P-1 phase has not been established yet), and the UE completes the scenario of the cell search. If the UE's own capabilities are weak and what is the application scenario at this time, it may only have one omnidirectional beam for reception.
  • the UE can play 8 beams in different directions, this is only a manifestation of its own capabilities.
  • the UE can narrow down the range of available available receive beams according to the prior information obtained in the previous cell search process.
  • 8 beams may cover 360°.
  • the UE has a priori information on the access beam when the cell accesses, and the received beam of the subsequent data transmission may search within a limited range of angles. .
  • the UE uses the receive beam 3 when the cell accesses, and can search for a receive beam at a certain angle from the receive beam 3, and then determine the available receive beam number of the UE according to the searched receive beam.
  • the UE has multiple antenna ports, and all or part of the antenna ports can be independently beam-shaped.
  • all or part of the antenna ports respectively correspond to different RF channels, and the RF channels may be located differently.
  • the number of available receiving beams corresponding to the antenna ports that can be independently beam-shaped may be the same or may be inconsistent.
  • the receiving beams corresponding to the different antenna ports may be scanned simultaneously or sequentially. It is also possible to use other achievable scanning methods.
  • the UE can determine the maximum number of receive beams that these antenna ports must receive through the round robin, and use them as the number of available receive beams of the UE.
  • the UE has two antenna ports that can be independently beam-shaped.
  • the antenna port 1 corresponds to four available receive beams, and the antenna port corresponds to three available receive beams.
  • the receive beams corresponding to the two antenna ports are simultaneously scanned, then the UE can It is determined that the maximum number of receiving beams that the two antenna ports must receive through the round robin is four, and 4 is used as the number of available receiving beams of the UE.
  • the user equipment may determine the maximum number of supportable receive beams indicated by the receive beam capability of the user equipment as the user equipment.
  • the receiving beam capability indicates that the UE can support the maximum number of receiving beams, and the receiving beam capabilities of different UEs are different.
  • the maximum number of receive beams that the user equipment can support is the number of available receive beams of the user equipment.
  • the user capability query request message may be a UE capability query command, which is used to query various capabilities of the UE, including the existing five capabilities and the receive beam capability, and the five capabilities include the Evolved Universal Terrestrial.
  • the user capability query request message is sent by the network device to the user equipment when the user equipment completes the cell search.
  • the user equipment may determine the number of available receive beams of the user equipment according to the a priori information.
  • the method for determining the number of available receive beams of the user equipment according to the a priori information is not limited herein.
  • the method may be determined according to a receive beam at a certain angle from an access beam when the cell is accessed.
  • the user equipment may determine the receive beam used in the cell search as an available receive beam, thereby determining the number of available receive beams of the user equipment, and there may be only one at this time.
  • the receive beam is available.
  • Step S102 The user equipment sends the receiving beam quantity indication information to the network device, where the receiving beam quantity indication information indicates the number of available receiving beams of the user equipment;
  • the receiving beam quantity indication information may indicate the number of available receiving beams of the user equipment by using N bits, and may indicate 2N specific numbers or 2N kinds of quantity intervals, and specific values of N may be determined according to specific conditions.
  • the maximum number of available receive beams that the UE is allowed to report is bound by the protocol, that is, it can be limited by the specific value of N and the specific manner of the indication.
  • the receiving beam quantity indication information indicates the specific number of available receiving beams of the user equipment by using 2 bits, which can be seen in the following table:
  • the receiving beam quantity indication information is “10”, indicating that the number of available receiving beams of the user equipment is three. At this time, the maximum number of available receive beams that the UE is allowed to report is 4.
  • the receiving beam quantity indication information indicates the quantity interval of the number of available receiving beams of the user equipment by using 2 bits, which can be seen in the following table:
  • the number of receive beams indicates that the number of available receive beams is [3, 4], and the number of receive beams is three or four.
  • the receiving beam quantity indication information is “11”, indicating the number interval [5, 8], that is, the number of available receiving beams is 5 or 6 or 7 or 8. At this time, the maximum number of available receive beams that the UE is allowed to report is 8.
  • the user equipment sends the received beam quantity indication information to the network device by using Uplink Control Information (UCI), that is, the received beam quantity indication information is carried in the UCI.
  • UCI Uplink Control Information
  • the UCI further includes other information, such as a Channel Quality Indicator (CQI), a Rank Indication (RI), and a Precoding Matrix Indicator (PMI).
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • the system has established a communication link of initial beam-based control information and data, and the user equipment sends the UCI to the network device, as shown in FIG. 4
  • the illustrated example of the received beam number indication information the UE sends the UCI to the NB, and the receiving beam number indication information carried by the UCI is “10”. If the specific number is indicated, the number of available receiving beams of the UE is three; The number interval indicates that the number of available receive beams of the UE is three or four.
  • the network device triggers the user equipment to send the UCI to the network device by using a non-periodic triggering manner, and the aperiodic triggering mode may be triggered by Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the UCI may carry beam-related reporting, and the beam correlation report may carry the received beam quantity indication information.
  • the receiving beam quantity indication information may also be carried in the UCI independently of the beam correlation report, for example, the receiving beam quantity indication information may be indicated by M bits in a predefined UCI format, or by other forms. Instructions.
  • the transport channel of the UCI may be a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), or other functions defined by the future communication system. Upstream channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the user equipment sends the received beam quantity indication information, that is, the received beam quantity indication information, to the network device by using a physical random access channel (PRACH) message. It is carried in the PRACH message.
  • the PRACH message may be a Radio Resource Control (RRC) connection request message, that is, message 3 in a random access procedure, or may be a random access preamble message with a payload capability, that is,
  • RRC Radio Resource Control
  • the message 1 in the random access process is different from the message 1 of the LTE system.
  • the message 1 here has information load capability and can carry information. It can be understood that if the message 1 does not have the information load capability, the receiving beam quantity indication information may be carried in the message 3; if the message 1 has the information load capability, the receiving beam quantity indication may be carried in the message 1 information.
  • the system has not established an initial communication link of beam-based control information and data, and the user equipment cannot send the receiving beam to the network device through the UCI.
  • Quantity indication information The user equipment sends the received beam quantity indication information to the network device by using the PRACH message in a cell acquisition process. For example, an example of the reported receiving beam quantity indication information shown in FIG. In the process of cell acquisition, the PRACH message is sent to the NB, and the number of received beams indicated by the PRACH message is “00”, indicating that the number of available receive beams of the UE is one.
  • the user equipment may determine, as the user capability query request message sent by the network device, the maximum number of supportable receive beams indicated by the receive beam capability of the user equipment.
  • the number of available receiving beams of the user equipment is sent by the user capability query response message to the network device, that is, the receiving beam quantity indication information is carried in the user capability query response message.
  • the user capability query response message further includes existing five capabilities.
  • Step S103 The network device receives the received beam quantity indication information sent by the user equipment
  • the network device receives the received beam quantity indication information according to the carrier that receives the beam quantity indication information.
  • the receiving beam quantity indication information is received by the UCI sent by the user equipment.
  • the number of receiving beams is received by message 1 or message 3 sent by the user equipment. Instructions.
  • the received beam quantity indication information is received by the user capability query response message sent by the user equipment.
  • Step S104 The network device performs configuration of a beam management reference signal resource according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the network device may be configured according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the network device may perform configuration of a beam management reference signal resource according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the network device may perform configuration of a beam measurement reporting parameter according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network device.
  • the network device may further perform other beam scanning related configurations than the foregoing two configurations according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network device.
  • the network device can perform beam management reference signal resource configuration according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network device.
  • the configuration at this time can be applied to resource configuration in a scenario of non-periodic beam scanning.
  • the beam management reference signal is used by the user equipment to measure the beam quality, and may be a CSI-RS, or may be another reference signal used by the UE to measure the beam quality.
  • the beam management reference signal is exemplified by a CSI-RS, and the network device determines, according to the number of available receive beams of the user equipment and the number of transmit beams of the network device, the number of required CSI-RS resources, and according to the The number of CSI-RS resources is used to configure the CSI-RS resources.
  • the number of transmit beams of the network device may be the number of available transmit beams for the user equipment. It is assumed that the number of available receiving beams of the user equipment is two, and the number of transmitting beams of the network equipment is four, and the number of required CSI-RS resources is eight without considering multiplexing.
  • the network device configures time-frequency positions and ports of the eight CSI-RS resources; when considering multiplexing, determines the number of required CSI-RS resources according to the multiplexing manner, and determines the number of CSI-RS resources for these CSI-RS resources. Configure the multiplexing mode, time-frequency location, and port.
  • the network device may be configured according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network device, and may also be available according to the user equipment. The number of receive beams, the number of transmit beams of the network device, and other parameters are configured.
  • the network device can be configured one or more times.
  • the receiving beam indication information in FIG. 4 is “10”, indicating that the number of available receiving beams is three, and the network device continuously triggers three times of transmitting beam scanning, correspondingly performing three times of configuration; the network device may also Trigger a transmit beam scan and configure it accordingly.
  • the receiving beam indication information in FIG. 5 is “00”, indicating that the number of available receiving beams is one, and the network device only triggers one transmission beam scanning, and performs configuration once.
  • the beam management reference signal is an example of a CSI-RS, where the network device sends configuration information of the CSI-RS resource to the user equipment after the configuration is completed, so that the user equipment is configured according to the The configuration information acquires the CSI-RS to perform beam quality measurement.
  • the network device may preset a threshold of the number of available receiving beams of the UE, and the specific value is not limited.
  • the threshold of the number of available receiving beams is 8. If the number of available receive beams indicated by the received beam quantity indication information is less than the available receive beam number threshold, the network device may perform beam management according to the indicated number of available receive beams and the number of transmit beams of the network device.
  • the configuration of the reference signal resource for example, the number of available receive beams indicated is four, and the number of available receive beams is eight, and the network device performs CSI based on the four available receive beams and the number of transmit beams of the network device. Configuration of RS resources.
  • the network device may perform according to the available receive beam number threshold and the number of transmit beams of the network device.
  • the configuration of the beam management reference signal resource for example, the number of available receive beams indicated is 32, and the number of available receive beams is 8.
  • the network device can use 8 available receive beams and the number of transmit beams of the network device.
  • Performing configuration of a CSI-RS resource; or the network device may perform beam management reference signal resource configuration according to the number of available receive beams smaller than the available receive beam number threshold and the number of transmit beams of the network device,
  • the specific value of the number of available receive beams with a small number of available receive beams is selected by the network device. For example, the number of available receive beams indicated is 32, and the number of available receive beams is 8.
  • the network device can be based on 4 CSI-R can be performed by using the receive beam and the number of transmit beams of the network device Configuration of S resources.
  • the maximum value of the number of available receive beams indicated by the received beam quantity indication information is bound by a protocol, and the base station may further limit the number of receive beams by setting a threshold.
  • the thresholds set by the respective base stations may be the same or different, and are not limited herein.
  • the network device can be configured to perform beam measurement reporting parameters according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network device.
  • the configuration at this time can be applied to the reporting configuration in the scenario of periodic beam scanning.
  • the base station configures the parameters reported by the beam measurement through high-level signaling.
  • the base station may configure the UE to perform beam measurement result reporting after each receiving beam scans the transmitting beam, which may occupy too much. Upstream resources.
  • the embodiment of the present invention provides that the base station performs the configuration of the beam measurement reporting parameters according to the number of the received beams and the number of the transmitted beams, and can avoid occupying excessive uplink resources.
  • the beam measurement reporting parameter may be based on a CSI-RS measurement reporting parameter, or may be a measurement reporting parameter based on other measurement reference signals.
  • the beam measurement reporting parameters may include a reporting period, a beam measurement result type (CSI-RS resource index (CRI), a reference signal receiving power (RSRP), etc.).
  • the network device performs CSI-RS resource configuration according to the number of its transmitted beams, and performs repeated scanning according to a predetermined period.
  • the network device may configure a reporting period according to the number of its transmit beams and the number of available receive beams of the UE.
  • the reporting period may be configured to report the UE after the complete round scan is completed.
  • the base station has 4 transmit beams, and the UE has 2 available receive beams.
  • the base station When the base station configures the reporting period, the base station indicates that the UE is After all the paired scans of the transmit beam and the receive beam are completed, for example, after 8 times of paired scan, the beam measurement result is reported once, so that unnecessary reporting can be avoided, and the uplink resource can be reasonably utilized.
  • the reporting period may also be configured to report the UE once every predetermined period. For example, the base station has four transmit beams, the UE has two receive beams, and the paired scan of the four transmit beams and the receive beam 1 is performed. After that, the beam measurement result is reported once, and then the paired scan of the four transmit beams and the receive beam 2 is performed, and then the beam measurement result is reported again.
  • the network device may preset a threshold of the number of available receiving beams of the UE, and the specific value is not limited.
  • the threshold of the number of available receiving beams is 8. If the number of available receive beams indicated by the received beam quantity indication information is smaller than the available receive beam number threshold, the network device may perform a reporting period according to the indicated number of available receive beams and the number of transmit beams of the network device. Configuration. If the number of available receive beams indicated by the received beam quantity indication information is greater than or equal to the available receive beam number threshold, the network device may perform according to the available receive beam number threshold and the number of transmit beams of the network device. The configuration of the reporting period.
  • the maximum value of the number of available receive beams indicated by the received beam quantity indication information is bound by a protocol, and the base station may further limit the number of receive beams by setting a threshold.
  • the thresholds set by the respective base stations may be the same or different, and are not limited herein.
  • the number of available receive beams is reported to the network device by the user equipment, so that the network device configures the beam management reference signal resources according to the number of available receive beams and the number of transmit beams, and specifically performs CSI-RS resources.
  • the configuration of the network device can accurately know the number of receiving beams, so that the beam-related information can be reported after the complete beam scanning pairing, which saves signaling and reporting overhead; or is compared with a certain protocol.
  • the maximum number of receive beams is configured to save wireless resources.
  • FIG. 6 is a schematic flowchart of another resource configuration method according to an embodiment of the present invention.
  • the embodiment shown in FIG. 6 receives an interaction between a network device and a user equipment, and the method includes but is not limited to the following. step:
  • Step S201 The network device sends the receiving beam quantity indication information to the user equipment, where the receiving beam quantity indication information indicates the maximum allowable receiving beam quantity that the user equipment can use for the beam scanning pairing specified by the network equipment;
  • the network device when the network device triggers beam scanning for a certain UE, it may affect data communication scheduling of other UEs. Therefore, the network device may specify that a specific UE can be used for beam scanning pairing according to information such as current service and scenario. The maximum number of allowed receive beams. The network device may also specify, by other methods, the maximum number of allowed receive beams that the user equipment may use for beam scanning pairing.
  • the network device sends the receiving beam quantity indication information to the user equipment, where the receiving beam quantity indication information indicates the maximum allowed receiving beam quantity, so that the user equipment selects a receiving beam according to the maximum allowed receiving beam quantity.
  • the receiving beam quantity indication information may indicate the maximum allowable receiving beam number by using N bits, and may indicate 2N specific numbers or 2N kinds of quantity intervals, and specific values of N may be determined according to specific conditions.
  • the receiving beam quantity indication information indicates the specific quantity of the maximum allowed receiving beam quantity by using 2 bits, which can be seen in the following table:
  • the receiving beam quantity indication information is “10”, indicating that the number of maximum allowed receiving beams that the user equipment can specify for the beam scanning pairing is three.
  • the receiving beam quantity indication information indicates the quantity interval of the maximum allowed receiving beam quantity by using 2 bits, which can be seen in the following table:
  • the receiving beam quantity indication information is “10”, indicating that the number of maximum allowed receiving beams that the user equipment specifies for the beam scanning pairing is four.
  • the receiving beam quantity indication information is “11”, indicating the quantity interval [5, 8], the minimum value is 5, and the maximum value is 8. In this case, the minimum value may be not concerned, and only the maximum value is concerned.
  • the network device After the network device establishes the initial communication link of the beam-based control information and the data, the network device sends the received beam quantity indication information to the user equipment, as shown in the example of the receiving beam quantity indication information shown in FIG.
  • the NB sends the receiving beam quantity indication information “10” to the UE, and if the specific quantity is indicated, the UE is notified, the network device specifies that the UE only allows only three receiving beams to perform beam scanning pairing; if the number interval is indicated, Notifying the UE, the network device specifies that the UE allows only four receive beams to perform beam scan pairing.
  • the network device sends the received beam quantity indication information to the user equipment by using RRC signaling, that is, the received beam quantity indication information is carried in the RRC signaling.
  • the RRC signaling belongs to Layer 3 signaling, which is typically some control message.
  • the transmission period or control period of the L3 signaling is usually long, and is suitable for transmitting information that does not change frequently.
  • L3 signaling is usually used to carry some configuration information.
  • the receiving beam quantity indication information may also be sent through other layer 3 signaling other than RRC signaling.
  • the network device sends the receiving beam quantity indication information to the user equipment by means of media access control (MAC) signaling, that is, the receiving beam quantity indication information carries In the MAC signaling.
  • MAC media access control
  • the MAC signaling belongs to Layer 2 signaling, which can typically be carried by, for example, but not limited to, a frame header of a Layer 2 frame.
  • the foregoing frame header may also carry information such as, but not limited to, a source address and a destination address.
  • the second layer of frames usually also contains the frame body.
  • L2 signaling may also be carried by the frame body of the second layer frame.
  • a typical example of Layer 2 signaling is the signaling carried in the Frame Control field in the frame header of the MAC frame in the 802.11 series of standards, or the MAC Control Entity (MAC) defined in some protocols.
  • the second layer frame can usually be carried in the data portion of the physical layer frame.
  • the MAC signaling may be a Media Access Control-Control Element (MAC-CE), and the received beam quantity indication information may also pass other Layer 2 signaling other than the MAC signaling. send.
  • MAC-CE Media Access Control-Control Element
  • the network device sends the received beam quantity indication information to the user equipment by using downlink control information, that is, the received beam quantity indication information is carried in the downlink control information.
  • the downlink control information may be referred to as physical layer signaling, also referred to as Layer 1, L1 signaling, which may typically be carried by a control portion in a physical layer frame.
  • the receiving beam quantity indication information may also be sent by using other layer 1 signaling other than the downlink control information.
  • Step S202 The network device performs configuration of a beam management reference signal resource according to the maximum allowed receive beam number and the number of transmit beams of the network device.
  • step S202 in the embodiment shown in FIG. 6 is similar to step S104 in the embodiment shown in FIG. 3, except that step S202 is the maximum allowable number of received beams, and step S104 is the number of available receive beams.
  • step S201 is not limited to the first step S201, and the step S202 can be performed simultaneously, that is, the receiving beam quantity indication information is sent to the user equipment while the resource configuration is being performed.
  • Step S202 may also be performed first, and then step S201 is performed.
  • Step S203 The user equipment receives the received beam quantity indication information sent by the network device.
  • the user equipment receives the received beam quantity indication information by using the carrier that receives the beam quantity indication information.
  • the user equipment receives the received beam quantity indication information by using the RRC signaling or other Layer 3 signaling.
  • the receiving device receives the received beam quantity indication information by using the MAC signaling or other Layer 2 signaling.
  • the receiving device receives the received beam quantity indication information by using the downlink control information or other first layer signaling.
  • Step S204 The user equipment selects a receive beam according to the maximum allowed number of receive beams
  • the user equipment acquires the number of available receiving beams of the user equipment, and if the number of available receiving beams of the user equipment is greater than the maximum allowed receiving beam quantity, selecting and selecting from available receiving beams of the user equipment
  • the maximum number of receiving beams is the same as the number of receiving beams, for example, the maximum number of available receiving beams is four, and the number of available receiving beams of the user equipment is five, and four out of five available receiving beams are selected.
  • the receiving beam is specifically limited, and only four receiving beams are selected.
  • the user equipment selects available receiving beams of all the user equipments, for example, the maximum allowed receiving beam quantity of the user equipment is Four, the number of available receiving beams of the user equipment is three, then all three available receiving beams are selected.
  • the network device may cause waste of some radio resources when performing resource configuration, for example, maximum allowable receiving of the user equipment.
  • the number of the beams is four, and the network device performs resource configuration according to the four receiving beams.
  • the number of available receiving beams of the user equipment is three, and some receiving beam resources may be wasted.
  • the received number of received beam indication information may cause waste of some radio resources, but the primary beam may be triggered after the complete beam scanning pairing.
  • the reporting of related information saves signaling and reporting overhead; or it is less wasteful than configuring the maximum number of receiving beams according to a certain protocol.
  • the user equipment After selecting the receive beam, the user equipment performs beam scan pairing with the transmit beam of the network device according to the selected receive beam. For example, if the number of the maximum allowable receive beams is four, and the number of available receive beams of the user equipment is five, the four receive beams selected from the five available receive beams are transmitted with the transmit beams of the network device. Beam scanning pairing; the maximum number of available receiving beams of the user equipment is four, and the number of available receiving beams of the user equipment is three, then all three available receiving beams are transmitted with the transmitting beam of the network equipment. Beam scan pairing.
  • the beam management reference signal takes the CSI-RS as an example.
  • the user equipment may receive configuration information of the CSI-RS resource sent by the network device by using a beam pairing relationship, and according to the The configuration information acquires the CSI-RS and performs beam quality measurement.
  • the network device limits the maximum number of allowed receive beams that the user equipment can use for beam scanning pairing, and implements the beam management reference signal resource by the network device according to the maximum allowed number of received beams and the number of transmit beams.
  • the configuration of the CSI-RS resource can be configured to trigger the reporting of the beam-related information after the complete beam scanning is paired, which saves the signaling and reporting overhead, or the maximum receiving according to a certain protocol.
  • the number of beams is configured to save wireless resources.
  • the user equipment notifies the network device of the number of available receive beams.
  • the network device limits the maximum allowed receive beam number of the user equipment, and both embodiments are The purpose of saving signaling and reporting overhead, or saving radio resources can be achieved, and which embodiment is implemented depends on the specific situation.
  • the protocol may define a threshold Y, which may be used as a default value of the number of available receiving beams of the UE during beam scanning, and the specific value of the threshold is not limited.
  • the threshold is fixed for all UEs, as is known.
  • the base station performs scan-related configuration (for example, CSI-RS resource configuration, reporting period configuration, etc.) according to the number of its transmitted beams and Y. If the number of available receive beams of the UE is greater than or equal to Y, the UE may select at most Y available receive beams from the actual available receive beams for beam scanning.
  • the base station may also select a threshold Y′ smaller than Y, and inform the UE of the selected Y′, so that the UE may be from the time when the number of actually available receiving beams is greater than or equal to Y′. Beam scanning is performed by selecting at most Y' available receive beams among the actual available receive beams.
  • the UE may not feed back the number of actual available receive beams of the UE to the base station because the protocol has defined the default value of the base station configuration resource or the reporting period.
  • FIG. 8a is a schematic diagram of a logical structure of a network device according to an embodiment of the present invention.
  • the network device 301 shown in FIG. 8a includes a receiving unit 3011 and a configuration unit 3012.
  • the receiving unit 3011 is configured to receive the receiving beam quantity indication information sent by the user equipment, where the receiving beam quantity indication information indicates the available receiving beam quantity of the user equipment;
  • the configuration unit 3012 is configured to perform beam management reference signal resource configuration according to the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the receiving unit 3011 is configured to implement step S103 in the embodiment shown in FIG. 3; the configuration unit 3012 is configured to implement step S104 in the embodiment shown in FIG.
  • the receiving unit 3011 is configured to receive, by the user equipment, the receiving beam quantity indication information, where the receiving beam quantity indication information indicates the available receiving beam quantity of the user equipment;
  • the configuration unit 3012 is configured to perform configuration of a beam measurement reporting parameter according to the number of available receiving beams of the user equipment and the number of transmitting beams of the network device.
  • FIG. 8b is a schematic diagram of another logical structure of a network device according to an embodiment of the present invention.
  • the network device 301 shown in FIG. 8b includes a transmitting unit 3013 and a configuration unit 3014.
  • the sending unit 3013 is configured to send, to the user equipment, the receiving beam quantity indication information, where the receiving beam quantity indication information indicates the maximum allowable receiving beam quantity that the user equipment can use for the beam scanning pairing specified by the network device, the receiving beam The quantity indication information is used by the user equipment to select a receive beam according to the maximum allowed receive beam number;
  • the configuration unit 3014 is configured to perform beam management reference signal resource configuration according to the maximum allowed receive beam number and the number of transmit beams of the network device.
  • the sending unit 3013 is configured to implement step S201 in the embodiment shown in FIG. 6; the configuration unit is configured to implement step S202 in the embodiment shown in FIG. 6.
  • FIG. 9a is a schematic diagram of a logical structure of a user equipment according to an embodiment of the present invention.
  • the user equipment 401 shown in FIG. 9a includes a determining unit 4011 and a transmitting unit 4012.
  • a determining unit 4011 configured to determine a quantity of available receiving beams of the user equipment
  • the sending unit 4012 is configured to send, to the network device, the receiving beam quantity indication information, where the receiving beam quantity indication information indicates an available receiving beam quantity of the user equipment, where the receiving beam quantity indication information is used by the network device according to the
  • the resource configuration of the beam management reference signal is performed by the number of available receive beams of the user equipment and the number of transmit beams of the network device.
  • the determining unit 4011 is configured to implement step S101 in the embodiment shown in FIG. 3; the sending unit 4012 is configured to implement step S102 in the embodiment shown in FIG.
  • FIG. 9b is a schematic diagram of another logical structure of a user equipment according to an embodiment of the present invention.
  • the user equipment 401 shown in FIG. 9b includes a receiving unit 4013 and a selecting unit 4014.
  • the receiving unit 4013 is configured to receive, by the network device, the receiving beam quantity indication information, where the receiving beam quantity indication information indicates the maximum allowable receiving beam quantity that the user equipment can use for the beam scanning pairing specified by the network device;
  • the selecting unit 4014 is configured to select a receive beam according to the maximum allowed number of receive beams.
  • the receiving unit 4013 is configured to implement step S203 in the embodiment shown in FIG. 6; the selecting unit 4014 is configured to implement step S204 in the embodiment shown in FIG. 6.
  • the network device shown in FIG. 8a is combined with the user device shown in FIG. 9a to implement the embodiment shown in FIG. 3.
  • the network device shown in FIG. 8b is combined with the user device shown in FIG. 9b to implement FIG. 6.
  • the receiving unit 3011, the sending unit 3013 can be a transceiver
  • the configuration unit 3012, and the configuration unit 3014 can be a processor
  • the physical structure of the network device can be seen in the network device shown in FIG. 10, and the network device 302 shown in FIG. A processor 3021 and a transceiver 3022 are included.
  • the schematic diagram of the physical structure shown in FIG. 10 does not limit the embodiment of the present invention. In practical applications, the network device may further include other components, such as a memory.
  • the processor 3021 may be a controller, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (ASIC). ), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the invention.
  • Processor 3021 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transceiver 3022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the user equipment.
  • the sending unit 4012, the receiving unit 4013 can be a transceiver, the determining unit 4011, and the selecting unit 4014 can be a processor, the physical structure of the user equipment can be seen in the user equipment shown in FIG. 11, and the user equipment 402 shown in FIG. A processor 4021 and a transceiver 4022 are included. It should be noted that the physical structure diagram shown in FIG. 11 does not constitute a limitation on the embodiment of the present invention. In practical applications, the user equipment may further include other components, such as a memory, an input device, and the like.
  • the processor 4021 can be a controller, a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the invention.
  • the processor 4021 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transceiver 4022 can be a communication module, a transceiver circuit, and is used for transmitting data, signaling, and the like between the user equipment and the network device, and is also used for transmitting information between the user equipment and other user equipment.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD (Digital Video Disk)), or a semiconductor medium (such as a Solid State Disk (SSD)). Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD (Digital Video Disk)
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种资源配置方法及其装置,其中方法包括:用户设备确定所述用户设备的可用接收波束数量,向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述网络设备接收所述用户设备发送的所述接收波束数量指示信息,根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。采用本发明实施例,实现了有针对性地对波束管理参考信号资源进行配置,能够节省信令和上报开销,或节省无线资源。

Description

一种资源配置方法及其装置
本申请要求于2017年3月23日提交中国专利局、申请号为201710177805.7、申请名称为“一种资源配置方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;要求于2017年6月15日提交中国专利局、申请号为201710452685.7、申请名称为“一种资源配置方法及其装置”的中国专利申请的优先权,其部分内容通过引用结合在本申请中;要求于2017年9月1日提交中国专利局、申请号为201710788369.7、申请名称为“一种资源配置方法及其装置”的中国专利申请的优先权,其部分内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种资源配置方法及其装置。
背景技术
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。在新无线(New Radio,NR)中,为了在高频场景下对抗路径损耗,天线阵列更多地会引入波束赋形来获得增益。数据信道、控制信道、同步信号、广播信号都可以通过波束进行发送,因此,波束管理(Beam Management,BM)在NR中显得较为重要。
请参见图1,是现有的NR中下行波束管理各阶段的示意图。如图1所示,波束管理主要分为三个阶段:P-1,P-2和P-3。其中,P-1阶段是系统建立初始波束配对关系(Beam pair link,BPL)的阶段,即建立基站的发送波束与用户设备(User Equipment,UE)的接收波束之间的BPL。经过P-1阶段之后,基站与UE之间初始的基于波束的控制信息和数据的通信链路已建立。P-2阶段和P-3阶段是基于触发,分别对基站的发送波束和UE的接收波束进一步筛选的阶段。
在下行波束配对的过程中,基站配置信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS)资源,UE根据CSI-RS测量、评估波束质量。为了获得最佳的波束配对,需要将基站的发送波束和UE的接收波束轮巡一遍。若基站的发送波束的波束扫描是周期性的,则UE无论有多少个接收波束,都可以按照预定周期自行逐一轮巡测量并上报,换言之,该场景下基站无需获知UE的接收波束数量,因为其资源配置是周期性的。但是若基站的发送波束扫描是非周期性的,在不知晓UE的可用接收波束的情况下,基站的CSI-RS资源的配置具有一定的盲目性。
目前,基站在不知晓UE的可用接收波束的情况下,可以采用频繁触发的方式进行波束扫描的轮巡,但这样会导致额外的信令和上报开销;或基站按照某个协议约定的最大接收波束数量进行配置,这样则可能造成无线资源的浪费。
发明内容
本发明实施例所要解决的技术问题在于,提供一种资源配置方法及其装置,实现了有针对性地对波束管理参考信号资源进行配置,能够节省信令和上报开销,或节省无线资源。
第一方面,本发明实施例提供了一种资源配置方法,包括:用户设备确定所述用户设备的可用接收波束数量,向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述网络设备接收所述用户设备发送的所述接收波束数量指示信息,根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。由用户设备将其可用接收波束数量上报至网络设备,以便网络设备可以准确地知道用户设备的接收波束数量进行配置,能够节省信令和上报开销,或节省无线资源。
在一种可能实现的方式中,所述用户设备通过上行控制信息向所述网络设备发送所述接收波束数量指示信息,即对所述网络设备而言,所述接收波束数量指示信息携带在所述上行控制信息中。此时,系统已经建立了初始的基于波束的控制信息和数据的通信链路。
在一种可能实现的方式中,所述用户设备通过物理随机接入信道PRACH消息向所述网络设备发送所述接收波束数量指示信息,即对所述网络设备而言,所述接收波束数量指示信息携带在所述PRACH消息中。此时,系统还未建立初始的基于波束的控制信息和数据的通信链路。
在一种可能实现的方式中,所述PRACH消息为无线资源控制RRC连接请求消息或具有信息负载能力的随机接入前导消息。
在一种可能实现的方式中,所述用户设备在接收到所述网络设备发送的用户能力查询请求消息时,通过用户能力查询响应消息向所述网络设备发送所述接收波束数量指示信息,即对所述网络设备而言,所述接收波束数量指示信息携带在所述用户能力查询响应消息中。
在一种可能实现的方式中,所述波束管理参考信号用于所述用户设备进行波束质量的测量,所述波束管理参考信号包括信道状态信息参考信号CSI-RS。
在一种可能实现的方式中,以所述CSI-RS为例,所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置的过程为:所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量确定所需的所述CSI-RS资源的数量,根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。所述网络设备可进行至少一次配置,对应进行至少一次波束扫描。
在一种可能实现的方式中,所述用户设备的可用接收波束与发送波束关联。
在一种可能实现的方式中,所述用户设备的接收波束数量与发送波束数量关联,即接收波束数量与发送波束数量之间具有一定的关联性,可以相等,也可以根据接收波束数量确定发送波束数量或根据发送波束数量确定接收波束数量。
第二方面,本发明实施例提供一种上报配置方法,其特征在于,用户设备确定所述用户设备的可用接收波束数量,向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述网络设备接收所述用户设备发送的所述接收波束数量指示信息,根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束测量上报参数的配置。其中,波束测量上报参数可以包括上报周期,网络设备根据用户设备的接收波束数量和网络设备的发送波束数量对上报周期进行配置,可以减少用户设备的上报次数,可以合理利用上行资源。
在一种可能实现的方式中,所述用户设备的可用接收波束与发送波束关联。
在一种可能实现的方式中,所述用户设备的可用接收波束数量与发送波束数量关联,即接收波束数量与发送波束数量之间具有一定的关联性,可以相等,也可以根据接收波束数量确定发送波束数量或根据发送波束数量确定接收波束数量。
第三方面,本发明实施例提供了一种用户设备,所述用户设备具有实现第一方面、第二方面所述方法中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述用户设备包括确定单元和发送单元,所述确定单元用于确定所述用户设备的可用接收波束数量;所述发送单元用于向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量,所述接收波束数量指示信息用于所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号的资源配置。
在另一种可能实现的方式中,所述用户设备包括处理器和收发器,所述处理器用于确定所述用户设备的可用接收波束数量;所述收发器用于向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量,所述接收波束数量指示信息用于所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号的资源配置。
基于同一发明构思,所述用户设备解决问题的原理以及有益效果可以参见第一方面、第二方面所述的方法以及所带来的有益效果,所述用户设备的实施可以参见第一方面、第二方面所述方法的实施,重复之处不再赘述。
第四方面,本发明实施例提供了一种网络设备,所述网络设备具有实现第一方面所述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述网络设备包括接收单元和配置单元,所述接收单元用于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述配置单元用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
在另一种可能实现的方式中,所述网络设备包括处理器和收发器,所述收发器用于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述处理器用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
基于同一发明构思,所述网络设备解决问题的原理以及有益效果可以参见第一方面所述的方法以及所带来的有益效果,所述网络设备的实施可以参见第一方面所述方法的实施,重复之处不再赘述。
所述网络设备还具有实现第二方面所述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述网络设备包括接收单元和配置单元,所述接收单元用 于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述配置单元用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束测量上报参数的配置。
在另一种可能实现的方式中,所述网络设备包括处理器和收发器,所述收发器用于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;所述处理器用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束测量上报参数的配置。
基于同一发明构思,所述网络设备解决问题的原理以及有益效果可以参见第二方面所述的方法以及所带来的有益效果,所述网络设备的实施可以参见第二方面所述方法的实施,重复之处不再赘述。
第五方面,本发明实施例提供了一种资源配置方法,包括:网络设备向所述用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描的最大允许接收波束数量,根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置;所述用户设备接收所述网络设备发送的所述接收波束数量指示信息,根据所述最大允许接收波束数量选择接收波束。由网络设备将约束的用户设备的可用于波束扫描配对的最大允许接收波束数量下发至用户设备,能够节省信令和上报开销,或节省无线资源。
在一种可能实现的方式中,所述网络设备通过RRC信令向所述用户设备发送所述接收波束数量指示信息,即对所述用户设备而言,所述接收波束数量指示信息携带在所述RRC信令中。所述网络设备还可通过其它第三层信令向所述用户设备发送所述接收波束数量指示信息。
在一种可能实现的方式中,所述网络设备通过媒体接入控制信令向所述用户设备发送所述接收波束数量指示信息,即对所述用户设备而言,所述接收波束数量指示信息携带在所述媒体接入控制信令中。所述网络设备还可通过其它第二层信令向所述用户设备发送所述接收波束数量指示信息。
在一种可能实现的方式中,所述网络设备通过下行控制信息向所述用户设备发送所述接收波束数量指示信息,即对所述用户设备而言,所述接收波束数量指示信息携带在所述下行控制信息中。所述网络设备还可通过其它第一层信令向所述用户设备发送所述接收波束数量指示信息。
在一种可能实现的方式中,所述波束管理参考信号用于所述用户设备进行波束质量的测量,所述波束管理参考信号包括信道状态信息参考信号CSI-RS。
在一种可能实现的方式中,以所述CSI-RS为例,所述网络设备根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置的过程为:
所述网络设备根据所述最大允许接收波束数量和所述网络设备的发送波束数量确定所需的所述CSI-RS资源的数量,根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。
具体的,所述网络设备根据用户设备上报的可用接收波束数量,配置所述CSI-RS资源的数量。
一种实现方式中,配置相应的CSI-RS资源集中CSI-RS资源的数量;所述CSI-RS资 源集包括一个或多个CSI-RS资源;
另一种实现方式中,配置相应的CSI-RS资源集的测量重复次数。
所述网络设备可进行至少一次配置,对应进行至少一次波束扫描。
在一种可能实现的方式中,所述用户设备根据所述最大允许接收波束数量选择接收波束的过程为:所述用户设备获取所述用户设备的可用接收波束数量;若所述用户设备的可用接收波束数量大于所述最大允许接收波束数量,则所述用户设备从所述用户设备的可用接收波束中选择与所述最大允许接收波束数量相同数量的接收波束;若所述用户设备的可用接收波束数量小于或等于所述最大允许接收波束数量,则所述用户设备选择所有所述用户设备的可用接收波束。
第六方面,本发明实施例提供另一种用户设备,所述用户设备具有实现第五方面所述方法中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述用户设备包括接收单元和选择单元,所述接收单元用于接收网络设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量;所述选择单元用于根据所述最大允许接收波束数量选择接收波束。
在另一种可能实现的方式中,所述用户设备包括处理器和收发器,所述收发器用于接收网络设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量;所述处理器用于根据所述最大允许接收波束数量选择接收波束。
基于同一发明构思,所述用户设备解决问题的原理以及有益效果可以参见第五方面所述的方法以及所带来的有益效果,所述用户设备的实施可以参见第五方面所述方法的实施,重复之处不再赘述。
第七方面,本发明实施例提供了一种网络设备,所述网络设备具有实现第五方面所述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述网络设备包括发送单元和配置单元,所述发送单元用于向用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量,所述接收波束数量指示信息用于所述用户设备根据所述最大允许接收波束数量选择接收波束;所述配置单元用于根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
在另一种可能实现的方式中,所述网络设备包括处理器和收发器,所述收发器用于向所述用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量,所述接收波束数量指示信息用于所述用户设备根据所述最大允许接收波束数量选择接收波束;所述处理器还用 于根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
基于同一发明构思,所述网络设备解决问题的原理以及有益效果可以参见第五方面所述的方法以及所带来的有益效果,所述网络设备的实施可以参见第五方面所述方法的实施,重复之处不再赘述。
第八方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或第二方面或第五方面所述的用户设备侧的方法。
第九方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或第二方面或第五方面所述的网络设备侧的方法。
通过实施本发明实施例,通过用户设备向网络设备上报可用接收波束数量或由网络设备约束并下发用户设备的最大允许接收波束数量,实现网络设备有针对性地波束管理参考信号资源进行配置,能够节省信令和上报开销,或节省无线资源。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是现有的NR中下行波束管理各阶段的示意图;
图2是本发明实施例的应用场景示意图;
图3是本发明实施例提供的一种资源配置方法的流程示意图;
图4是本发明实施例提供的一种上报接收波束数量指示信息的示例图;
图5是本发明实施例提供的另一种上报接收波束数量指示信息的示例图;
图6是本发明实施例提供的另一种资源配置方法的流程示意图;
图7是本发明实施例提供的一种接收波束数量指示信息下发的示例图;
图8a是本发明实施例提供的网络设备的一种逻辑结构示意图;
图8b是本发明实施例提供的网络设备的另一种逻辑结构示意图;
图9a是本发明实施例提供的用户设备的一种逻辑结构示意图;
图9b是本发明实施例提供的用户设备的另一种逻辑结构示意图;
图10是本发明实施例提供的网络设备的实体结构示意图;
图11是本发明实施例提供的用户设备的实体结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本发明实施例可以应用于无线通信系统,无线通信系统通常由小区组成,每个小区包含一个基站(Base Station,BS),基站向多个用户设备提供通信服务,其中基站连接到核心网设备,如图2所示。其中基站包含基带单元(Baseband Unit,BBU)和远端射频单元(Remote Radio Unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于离高话务量的开阔区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
需要说明的是,本发明实施例提及的无线通信系统包括但不限于:窄带物联网系统 (Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、NR系统以及未来移动通信系统。
本发明实施例中,所述基站是一种部署在无线接入网中用以为用户设备提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点,传输接收点(Transmission Reception Point,TRP)等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd Generation,3G)系统中,称为节点B(Node B,NB)等。为方便描述,本发明所有实施例中,上述为用户设备提供无线通信功能的装置统称为网络设备。
本发明实施例中所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述用户设备也可以称为移动台(Mobile Station,MS)、终端(Terminal),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。为方便描述,本发明所有实施例中,上面提到的设备统称为用户设备。
下面将对现有的NR中下行波束管理各阶段做简单介绍。现有的NR中上行波束管理各阶段在本发明实施例中不做介绍。
一般而言,现有的NR中下行波束管理分为P-1、P-2和P-3三个阶段。
在P-1阶段,UE可以通过测量选择一个或多个发送波束,与一个或多个接收波束组成波束对(beam pair)。每一个波束对由一个发送波束和一个接收波束组成,发送波束可以来自于一个或多个TRP,接收波束则来自于目标UE。
在P-2阶段,UE可以根据测量结果对一个或多个波束对中的发送波束进行更新。发送波束仍然可以来自于一个或多个TRP,但通常比P-1阶段的候选范围要小。
在P-3阶段,UE可以根据测量结果对一个或多个波束对中的接收波束进行更新。接收波束仍然来自于目标用户本身。
此外,P-2和P-3在流程上可以认为是P-1的子集。
结合图1,P-1阶段是系统建立初始BPL的阶段,即建立TRP发送波束与UE接收波束之间的BPL,该阶段TRP发送波束的波束扫描可能是周期性的(periodic),也可能是半持续性的(semi-persistent)。P-2阶段和P-3阶段分别是对TRP发送波束和UE接收波束进一步筛选的阶段,这两个阶段TRP发送波束的波束扫描可能是semi-persistent,也可能是不定期的(aperiodic)。需要说明的是,本发明实施例中提到的非周期性的(nonperiodic)为semi-persistent或aperiodic。
上述三个阶段TRP发送波束的波束扫描有可能是非周期性的,导致基站的CSI-RS资 源的配置具有一定的盲目性,目前可能的解决方案具有增加额外信令和上报的开销或浪费无线资源的缺陷。鉴于此,本发明实施例提供一种资源配置方法及其装置,可以有针对性地对波束管理参考信号资源进行配置,具体可以有针对性地对CSI-RS资源进行配置,能够节省信令和上报开销,或节省无线资源。
本发明实施例中的可用接收波束数量仅作为一个描述性用词,描述接收侧在协议允许的一个或多个数值中选择上报的一个数值。该数值的选择可由接收侧自主判断,其具体选择标准或条件在本发明实施例中不作限定。可用接收波束数量可以理解为UE确定的在某个阶段需要通过轮巡方式扫描的接收波束的数量。例如,UE最大能力可支持8个接收波束的轮巡扫描,在某一个阶段,可用接收波束数量可以是8,但在下一个阶段,UE可以基于一些先验信息判断,认为只需轮巡扫描4个接收波束,此时可用接收波束数量便是4,在上述两个不同的阶段,UE上报两个不同的可用接收波束数量。因此,可用接收波束数量可以等同或者不等同于某个阶段的UE最大能力,而是UE可以针对不同的阶段、不同的需求、不同的先验信息做出判断和调整的一个数值。本发明实施例中的可用接收波束数量也并非是唯一的术语表达形式,未来标准中可能以其他的术语表达形式描述,例如,波束扫描资源重复次数,波束扫描辅助系数等等。从技术层面,该术语所描述的内容可以理解为,当UE接收波束参与波束扫描的场景下,通过上报一个数值,便于基站准确地对波束扫描资源进行配置,或对波束扫描结果的上报周期进行配置。例如,在semi-persistent扫描类型下,基站可根据UE上报的数值配置扫描的持续时间;再例如,在aperiodic扫描类型下,基站可根据UE上报的数值配置扫描的触发次数;再例如,基站可根据UE上报的数值,结合基站的待扫描发送波束数量,计算并配置相应的CSI-RS资源;基站可根据UE上报的数值(即可用接收波束数量),配置CSI-RS资源的数量,具体的,配置相应的CSI-RS资源集中CSI-RS资源的数量(所述CSI-RS资源集包括一个或多个CSI-RS资源);再例如,基站可根据UE上报的数值(即可用接收波束数量),配置CSI-RS资源的数量,具体的,配置相应的CSI-RS资源集的测量重复次数;
其中,所述可用接收波束数量与CSI-RS资源的数量相关联,一种实现方式中,CSI-RS资源的数量大于等于可用接收波束数量。CSI-RS资源集的测量重复次数大于等于可用接收波束数量。
再例如,基站可根据UE上报的数值,结合基站的待扫描发送波束数量,计算并配置相应的扫描结果上报周期。应理解,符合上述内容的术语应视为本发明实施例的保护范围。
特别的,在一些实现方式中,UE的可用接收波束可以与发送波束关联,进一步的,UE的接收波束数量可以与发送波束数量关联,所述实现方式可以包括但不限于以下方式中的一种或多种:
例如当UE的收发波束之间存在波束互易性时,可以认为UE的待扫描接收波束数量与发送波束数量相等;
例如当UE的接收和发送射频参数完全一致时,可以认为该UE的额定接收波束数量和额定发送波束数量相等;
例如UE设备在出厂配置中,可能设定UE的额定接收波束数量相比于额定发送波束数量的比例关系或差值,该比例关系或差值可能通过UE能力上报;
例如UE设备在出厂配置中,可能设定UE的接收波束的半功率点波束宽度(Half-power bandwidth,HPBW)相比于发送波束的HPBW的比例关系,该比例关系可能通过UE能力上报;
在以上的一种或多种实现方式中,UE的接收波束数量可以通过发送波束数量推算获得,基站可以根据推算获得的待扫描接收波束数量配置CSI-RS资源或CSI上报周期。
下面将结合附图3-附图7对本发明实施例提供的资源配置方法进行介绍。
请参见图3,图3是本发明实施例提供的一种资源配置方法的流程示意图,图3所示的实施例从网络设备与用户设备交互的角度进行接收,该方法包括但不限于如下步骤:
步骤S101:用户设备确定所述用户设备的可用接收波束数量;
具体地,UE的可用接收波束数量一方面受限于自身的能力,另一方面也受应用场景的影响。应用场景包括非周期波束扫描或周期性波束扫描发生在基站与UE已建立控制信息和数据的通信链路之后的场景(P-1阶段已建立),非周期波束扫描或周期性波束扫描发生在基站与UE还没建立控制信息和数据的通信链路之前的场景(P-1阶段还未建立),UE完成小区搜索的场景。假如UE自身能力较弱,此时是何种应用场景,它都可能只有一个全向的波束用于接收。假如UE可以打出8个不同方向的波束,但这只是一种自身能力的体现,实际应用中,UE可以根据之前小区搜索过程中所获得的先验信息,缩小其搜索可用接收波束的范围。示例性地,8个波束可能覆盖了360°,而实际应用中,UE在小区接入时对接入波束有了先验信息,之后的数据传输的接收波束可能会在有限的角度范围内搜索。例如,UE在小区接入时使用接收波束3,可搜索与接收波束3相距一定角度的接收波束,进而根据搜索到的接收波束确定UE的可用接收波束数量。
另一种可能的应用场景为,UE有多个天线端口,其中全部或部分天线端口可以独立波束赋形,例如,全部或部分天线端口分别对应不同的射频通道,而这些射频通道可能位于不同的天线面板上。在该应用场景中,所述可以独立波束赋形的天线端口所对应的可用接收波束数量可能一致,也可能不一致,其中,这些不同天线端口所对应的接收波束可能同时扫描,也可能顺序扫描,还可能使用其他可实现的扫描方式。此时,UE可确定这些天线端口必须通过轮巡接收的最大接收波束数量,将其作为UE的可用接收波束数量。例如,UE有两个可以独立波束赋形的天线端口,天线端口1对应4个可用接收波束,天线端口对应3个可用接收波束,这两个天线端口所对应的接收波束同时扫描,那么UE可确定这两个天线端口必须通过轮巡接收的最大接收波束数量为4个,将4作为UE的可用接收波束数量。
在所述用户设备接收到网络设备发送的用户能力查询请求消息的情况下,所述用户设备可将所述用户设备的接收波束能力所指示的可支持接收波束的最大数量确定为所述用户设备的可用接收波束数量。其中,接收波束能力指示UE可支持接收波束的最大数量,不同UE的接收波束能力有所差别。所述用户设备可支持接收波束的最大数量为所述用户设备的可用接收波束数量。所述用户能力查询请求消息可以为UE能力查询命令,用于查询UE的各项能力,包括现有的五项能力和接收波束能力,五项能力包括演进型通用地面无线接入(Evolved Universal Terrestrial Radio Access,EUTRA)能力、通用地面无线接入(Universal Terrestrial Radio Access,UTRA)能力、通用无线接入网电路交换(General Radio Access  Network Circuit Switch,GRAN-CS)能力、通用无线接入网分组交换(General Radio Access Network Packet Switch,GRAN-PS)能力、CDMA2000-1x无线传输技术(Radio Transmission Technology,RTT)能力。所述用户能力查询请求消息为所述用户设备在完成小区搜索时,由所述网络设备向所述用户设备发送。
在所述用户设备通过小区搜索获取到先验信息的情况下,所述用户设备可根据先验信息确定所述用户设备的可用接收波束数量。所述用户设备根据先验信息确定所述用户设备的可用接收波束数量的方法在此不作限定,例如,可根据与小区接入时的接入波束相距一定角度的接收波束来确定。
在所述用户设备没有任何先验信息的情况下,所述用户设备可将小区搜索时所使用接收波束确定为可用接收波束,从而确定所述用户设备的可用接收波束数量,此时可能只有一个可用接收波束。
步骤S102:所述用户设备向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;
具体地,在确定所述用户设备的可用接收波束数量后,向所述网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量。所述接收波束数量指示信息可采用N比特对所述用户设备的可用接收波束数量进行指示,可以指示2N种具体数量或2N种数量区间,N的具体数值视具体情况而定。特别需要说明的是,UE允许上报的可用接收波束的最大数量受协议约束,即可以由N的具体数值和指示的具体方式共同限制。
示例性地,所述接收波束数量指示信息采用2比特对所述用户设备的可用接收波束数量的具体数量进行指示,可参见下表:
Signaling #of Rx Beams
00 1(Beam)
01 2(Beams)
10 3(Beams)
11 4(Beams)
例如,所述接收波束数量指示信息为“10”,指示所述用户设备的可用接收波束数量为3个。此时,UE允许上报的可用接收波束的最大数量为4。
示例性地,所述接收波束数量指示信息采用2比特对所述用户设备的可用接收波束数量的数量区间进行指示,可参见下表:
Signaling #of Rx Beams
00 1(Beam)
01 2(Beams)
10 4(Beams)
11 8(Beams)
例如,所述接收波束数量指示信息为“10”,指示所述用户设备的可用接收波束数量的数量区间为[3,4],即可用接收波束数量为3个或4个。再例如,所述接收波束数量指示信息为“11”,指示数量区间[5,8],即可用接收波束数量为5个或6个或7个或8个。此时, UE允许上报的可用接收波束的最大数量为8。
在一种可能实现的方式中,所述用户设备通过上行控制信息(Uplink Control Information,UCI)向所述网络设备发送所述接收波束数量指示信息,即所述接收波束数量指示信息携带在所述UCI中。可选地,所述UCI还包括其它信息,例如信道质量指示(Channel Quality Indicator,CQI)、秩指示(Rank Indication,RI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)等信息。
可以认为的是,在该种可能实现的方式中,系统已经建立了初始的基于波束的控制信息和数据的通信链路,所述用户设备向所述网络设备发送所述UCI,可参见图4所示的上报接收波束数量指示信息示例图,UE向NB发送UCI,UCI携带的接收波束数量指示信息为“10”,若指示具体数量,则指示UE的可用接收波束数量为3个;若指示数量区间,则指示UE的可用接收波束数量为3个或4个。可选地,所述网络设备通过非周期触发方式触发所述用户设备向所述网络设备发送所述UCI,非周期触发方式可以由下行控制信息(Downlink Control Information,DCI)触发。所述UCI可携带波束相关报告(beam-related reporting),所述波束相关报告可携带所述接收波束数量指示信息。所述接收波束数量指示信息也可独立于所述波束相关报告携带在所述UCI中,例如所述接收波束数量指示信息可通过某一个预定义的UCI格式中的M比特指示,或通过其他形式指示。所述UCI的传输信道可为物理上行共享信道(Physical Uplink Shared Channel,PUSCH),也可为物理上行控制信道(Physical Uplink Control Channel,PUCCH),还可以为未来通信系统定义的其他具有相同功能的上行信道。
在一种可能实现的方式中,所述用户设备通过物理随机接入信道(Physical Random Access Channel,PRACH)消息向所述网络设备发送所述接收波束数量指示信息,即所述接收波束数量指示信息携带在所述PRACH消息中。其中,所述PRACH消息可以为无线资源控制(Radio Resource Control,RRC)连接请求消息,即随机接入过程中的message 3;也可以为具有信息负载(payload)能力的随机接入前导消息,即随机接入过程中的message 1,与LTE系统的message 1不同的是,这里的message 1具有信息负载能力,能够携带信息。可以理解的是,若message 1不具有信息负载能力,则可以在message 3中携带所述接收波束数量指示信息;若message 1具有信息负载能力,则可以在message 1中携带所述接收波束数量指示信息。
可以认为的是,该种可能实现的方式中,系统还未建立初始的基于波束的控制信息和数据的通信链路,所述用户设备不能通过所述UCI向所述网络设备发送所述接收波束数量指示信息。所述用户设备在小区搜索(cell acquisition)过程中,通过所述PRACH消息向所述网络设备发送所述接收波束数量指示信息,可参见图5所示的上报接收波束数量指示信息示例图,UE在小区搜索(cell acquisition)过程中,向NB发送PRACH消息,PRACH消息携带的接收波束数量指示信息为“00”,指示UE的可用接收波束数量为1个。
在一种可能实现的方式中,所述用户设备在接收到网络设备发送的用户能力查询请求消息时,可将所述用户设备的接收波束能力所指示的可支持接收波束的最大数量确定为所述用户设备的可用接收波束数量,通过用户能力查询响应消息向所述网络设备发送接收波束数量指示信息,即所述接收波束数量指示信息携带在所述用户能力查询响应消息中。可 选地,所述用户能力查询响应消息还包括现有的五项能力。
步骤S103:所述网络设备接收所述用户设备发送的所述接收波束数量指示信息;
具体地,所述网络设备根据所述接收波束数量指示信息的载体来接收所述接收波束数量指示信息。
在一种可能实现的方式中,在系统已经建立了初始的基于波束的控制信息和数据的通信链路的情况下,通过所述用户设备发送的所述UCI来接收所述接收波束数量指示信息。
在一种可能实现的方式中,在系统还未建立初始的基于波束的控制信息和数据的通信链路的情况下,通过所述用户设备发送的message 1或message 3来接收所述接收波束数量指示信息。
在一种可能实现的方式中,在发送所述用户能力查询请求消息的情况下,通过所述用户设备发送的所述用户能力查询响应消息来接收所述接收波束数量指示信息。
步骤S104,所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置;
具体地,所述网络设备可根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行配置。在一种可能实现的方式中,所述网络设备可根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。在一种可能实现的方式中,所述网络设备可根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束测量上报参数的配置。所述网络设备还可以根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行除上述两种配置之外的其他波束扫描相关的配置。
下面将对上述两种配置进行介绍,首先介绍所述网络设备可根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。此时的配置可以应用于非周期性波束扫描的场景下的资源配置。
其中,所述波束管理参考信号用于所述用户设备测量波束质量,可以为CSI-RS,也可以为其它用于UE测量波束质量的参考信号。
所述波束管理参考信号以CSI-RS为例,所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量确定所需的CSI-RS资源的数量,并根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。其中,所述网络设备的发送波束数量可为针对所述用户设备的可用发送波束数量。假设所述用户设备的可用接收波束数量为2个,所述网络设备的发送波束数量为4个,在不考虑复用的情况下,所需的CSI-RS资源的数量为8个,所述网络设备对这8个CSI-RS资源的时频位置、端口等进行配置;在考虑复用的情况下,根据复用方式确定所需CSI-RS资源的数量,并对这些CSI-RS资源的复用方式、时频位置、端口等进行配置。所述网络设备在对CSI-RS资源进行配置的过程中,除根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行配置外,还可以根据根据所述用户设备的可用接收波束数量、所述网络设备的发送波束数量和其他参数进行配置。
可选地,所述网络设备可进行一次或多次配置。例如,图4中所述接收波束指示信息为“10”,指示可用接收波束数量为3个,所述网络设备连续触发3次发送波束扫描,对应地进行3次配置;所述网络设备也可触发一次发送波束扫描,对应地进行一次配置。再例 如,图5中所述接收波束指示信息为“00”,指示可用接收波束数量为1个,所述网络设备只触发一次发送波束扫描,对应地进行一次配置。
可选地,所述波束管理参考信号以CSI-RS为例,所述网络设备在完成配置后,向所述用户设备发送所述CSI-RS资源的配置信息,以便所述用户设备根据所述配置信息获取所述CSI-RS进行波束质量的测量。
作为一个可选的实施例,所述网络设备可以预设UE的可用接收波束数量阈值,具体数值不作限定,例如可用接收波束数量阈值为8个。若所述接收波束数量指示信息所指示的可用接收波束数量小于所述可用接收波束数量阈值,则所述网络设备可根据所指示的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置,例如,所指示的可用接收波束数量为4个,可用接收波束数量阈值为8个,所述网络设备根据4个可用接收波束和所述网络设备的发送波束数量进行CSI-RS资源的配置。若所述接收波束数量指示信息所指示的可用接收波束数量大于或等于所述可用接收波束数量阈值,则所述网络设备可根据所述可用接收波束数量阈值和所述网络设备的发送波束数量进行波束管理参考信号资源的配置,例如,所指示的可用接收波束数量为32个,可用接收波束数量阈值为8个,所述网络设备可根据8个可用接收波束和所述网络设备的发送波束数量进行CSI-RS资源的配置;或所述网络设备可根据比所述可用接收波束数量阈值小的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置,比所述可用接收波束数量阈值小的可用接收波束数量的具体数值由所述网络设备选取,例如所指示的可用接收波束数量为32个,可用接收波束数量阈值为8个,所述网络设备可根据4个可用接收波束和所述网络设备的发送波束数量进行CSI-RS资源的配置。
需要说明的是,上述可选的实施例中,接收波束数量指示信息所指示的可用接收波束数量的最大值受协议约束,基站可通过设置阈值,进一步对接收波束数量进行限定。各个基站设置的阈值可能相同,也可能不相同,在此不作限定。
其次介绍所述网络设备可根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束测量上报参数的配置。此时的配置可以应用于周期性波束扫描的场景下的上报配置。
目前,从波束测量上报的角度分析,基站会通过高层信令配置波束测量上报的各项参数。在周期性波束扫描的场景下,基站在没有获知UE的接收波束数量的情况下,可能默认配置UE在每个接收波束扫描完发送波束之后,进行波束测量结果上报,这样可能会占用过多的上行资源。鉴于此,本发明实施例提出基站根据接收波束数量和发送波束数量进行波束测量上报参数的配置,可以避免占用过多的上行资源。
其中,所述波束测量上报参数可以基于CSI-RS的测量上报参数,也可以是基于其他测量参考信号的测量上报参数。所述波束测量上报参数可以包括上报周期、波束测量结果类型(CSI-RS资源指示(CSI-RS resource index,CRI)、参考信号接收功率(Reference Signal Receiving Power,RSRP)等)等。
在周期性波束扫描的场景下,所述网络设备会根据其发送波束数量进行CSI-RS资源的配置,并按照一个预定的周期进行重复扫描。此时所述网络设备可以根据其发送波束数量和UE的可用接收波束数量配置上报周期。可选地,上报周期可以配置为UE在完整的轮巡 扫描完成之后,进行上报,例如,基站有4个发送波束,UE有2个可用接收波束,基站在配置上报周期的时,指示UE在完成所有的发送波束与接收波束的配对扫描之后,例如8次配对扫描之后,集中上报一次波束测量结果,这样可以避免不必要的上报,可以合理利用上行资源。可选地,上报周期还可以配置为UE每个预定的周期都上报一次,例如,基站有4个发送波束,UE有2个接收波束,在执行完4个发送波束与接收波束1的配对扫描之后,先上报一次波束测量结果,再执行4个发送波束与接收波束2的配对扫描之后,再上报一次波束测量结果。
作为一个可选的实施例,所述网络设备可以预设UE的可用接收波束数量阈值,具体数值不作限定,例如可用接收波束数量阈值为8个。若所述接收波束数量指示信息所指示的可用接收波束数量小于所述可用接收波束数量阈值,则所述网络设备可根据所指示的可用接收波束数量和所述网络设备的发送波束数量进行上报周期的配置。若所述接收波束数量指示信息所指示的可用接收波束数量大于或等于所述可用接收波束数量阈值,则所述网络设备可根据所述可用接收波束数量阈值和所述网络设备的发送波束数量进行上报周期的配置。
需要说明的是,上述可选的实施例中,接收波束数量指示信息所指示的可用接收波束数量的最大值受协议约束,基站可通过设置阈值,进一步对接收波束数量进行限定。各个基站设置的阈值可能相同,也可能不相同,在此不作限定。
在图3所示的实施例中,通过用户设备向网络设备上报可用接收波束数量,以便网络设备根据可用接收波束数量和发送波束数量进行波束管理参考信号资源的配置,具体可进行CSI-RS资源的配置,由于网络设备可以准确地知道接收波束数量,因此可以在完整的波束扫描配对之后,才触发一次波束相关信息的上报,节省了信令和上报开销;亦或者相比按照某个协议约定的最大接收波束数量进行配置,可以节省无线资源。
请参见图6,图6是本发明实施例提供的另一种资源配置方法的流程示意图,图6所示的实施例从网络设备与用户设备交互的角度进行接收,该方法包括但不限于如下步骤:
步骤S201:网络设备向用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量;
具体地,所述网络设备为某一UE触发波束扫描的时候,会影响到其它UE的数据通信调度,因此所述网络设备可以根据当前业务和场景等信息,规定特定UE可用于波束扫描配对的最大允许接收波束数量。所述网络设备还可通过其它方法来规定所述用户设备可用于波束扫描配对的最大允许接收波束数量。
所述网络设备向所述用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述最大允许接收波束数量,以便所述用户设备根据所述最大允许接收波束数量来选择接收波束。所述接收波束数量指示信息可采用N比特对所述最大允许接收波束数量进行指示,可以指示2N种具体数量或2N种数量区间,N的具体数值视具体情况而定。
示例性地,所述接收波束数量指示信息采用2比特对所述最大允许接收波束数量的具体数量进行指示,可参见下表:
Signaling #of Rx Beams
00 1(Beam)
01 2(Beams)
10 3(Beams)
11 4(Beams)
例如,所述接收波束数量指示信息为“10”,指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量为3个。
示例性地,所述接收波束数量指示信息采用2比特对所述最大允许接收波束数量的数量区间进行指示,可参见下表:
Signaling #of Rx Beams
00 1(Beam)
01 2(Beams)
10 4(Beams)
11 8(Beams)
例如,所述接收波束数量指示信息为“10”,指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量为4个。再例如,所述接收波束数量指示信息为“11”,指示数量区间[5,8],最小值为5,最大值为8,此时可不关注最小值,只关注最大值。
所述网络设备在建立初始的基于波束的控制信息和数据的通信链路之后,向所述用户设备发送所述接收波束数量指示信息,可参见图7所示的接收波束数量指示信息下发示例图,NB向UE发送接收波束数量指示信息“10”,若指示具体数量,则通知该UE,所述网络设备规定该UE最大只允许3个接收波束进行波束扫描配对;若指示数量区间,则通知该UE,所述网络设备规定该UE最大只允许4个接收波束进行波束扫描配对。
在一种可能实现的方式中,所述网络设备通过RRC信令向所述用户设备发送所述接收波束数量指示信息,即所述接收波束数量指示信息携带在所述RRC信令中。所述RRC信令属于第三层(Layer 3)信令,其通常是一些控制消息。L3信令的发送周期或者控制周期通常较长,适用于发送一些不会频繁发生变化的信息,例如,在现有的一些通信标准中,L3信令通常用于承载一些配置信息。所述接收波束数量指示信息也可以通过RRC信令之外的其他第三层信令发送。
在一种可能实现的方式中,所述网络设备通过媒体接入控制(Media Access Control,MAC)信令向所述用户设备发送所述接收波束数量指示信息,即所述接收波束数量指示信息携带在所述MAC信令中。所述MAC信令属于第二层(Layer 2)信令,其通常可以由,例如但不限于,第二层帧的帧头来承载。上述帧头中还可能携带,例如但不限于,源地址和目的地址等信息。除帧头外,第二层帧通常还包含帧体。在一些情况下,L2信令也可以由第二层帧的帧体来承载。第二层信令的典型例子是802.11系列标准中MAC帧的帧头中的帧控制(Frame Control)字段中携带的信令,或者一些协议中定义的MAC控制实体(Control Entity,MAC)。第二层帧通常可以携带在物理层帧的数据部分。所述MAC信令可以为媒体接入控制控制元素(Media Access Control-Control Element,MAC-CE),所述接收波束数量指示信息也可以通过所述MAC信令之外的其他第二层信令发送。
在一种可能实现的方式中,所述网络设备通过下行控制信息向所述用户设备发送所述接收波束数量指示信息,即所述接收波束数量指示信息携带在所述下行控制信息中。所述下行控制信息可称为物理层信令,也称为第一层(Layer 1,L1)信令,其通常可以由物理层帧中的控制部分来承载。所述接收波束数量指示信息也可以通过所述下行控制信息之外的其他第一层信令发送。
步骤S202:所述网络设备根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置;
图6所示实施例中的步骤S202的实现过程与图3所示实施例中步骤S104的类似,不同之处在于,步骤S202是最大允许接收波束数量,步骤S104是可用接收波束数量。
需要说明的是,步骤S201与步骤S202执行的先后顺序不限定于先步骤S201,再步骤S202,可同时执行,即在进行资源配置的同时向所述用户设备发送所述接收波束数量指示信息,也可先执行步骤S202,再执行步骤S201。
步骤S203:所述用户设备接收所述网络设备发送的所述接收波束数量指示信息;
具体地,所述用户设备通过所述接收波束数量指示信息的载体来接收所述接收波束数量指示信息。
在一种可能实现的方式中,所述用户设备通过所述RRC信令或其它第三层信令来接收所述接收波束数量指示信息。
在一种可能实现的方式中,所述通过设备通过所述MAC信令或其它第二层信令来接收所述接收波束数量指示信息。
在一种可能实现的方式中,所述通过设备通过所述下行控制信息或其它第一层信令来接收所述接收波束数量指示信息。
步骤S204:所述用户设备根据所述最大允许接收波束数量选择接收波束;
具体地,所述用户设备获取所述用户设备的可用接收波束数量,若所述用户设备的可用接收波束数量大于所述最大允许接收波束数量,则从所述用户设备的可用接收波束中选择与所述最大允许接收波束数量相同数量的接收波束,例如,所述最大允许接收波束数量为4个,所述用户设备的可用接收波束数量为5个,则从5个可用接收波束中选择4个接收波束,具体地选择方法在此不作限定,只需选择4个接收波束即可。若所述用户设备的可用接收波束数量小于或等于所述最大允许接收波束数量,则所述用户设备选择所有所述用户设备的可用接收波束,例如,所述用户设备的最大允许接收波束数量为4个,所述用户设备的可用接收波束数量为3个,则将3个可用接收波束全选。
对于所述用户设备的可用接收波束数量小于所述最大允许接收波束数量的情况,所述网络设备在进行资源配置时,可能会造成一些无线资源的浪费,例如,所述用户设备的最大允许接收波束数量为4个,所述网络设备根据4个接收波束进行资源配置,但是所述用户设备的可用接收波束数量为3个,可能会浪费一些接收波束资源。
虽然通过所述网络设备来约束所述用户设备的接收波束数量,下发的所述接收波束数量指示信息可能会造成一些无线资源的浪费,但是可以在完整的波束扫描配对之后,才触发一次波束相关信息的上报,节省了信令和上报开销;亦或者比按照某个协议约定的最大接收波束数量进行配置浪费的无线资源少。
在选择接收波束之后,所述用户设备根据选择的接收波束与所述网络设备的发送波束进行波束扫描配对。例如,所述最大允许接收波束数量为4个,所述用户设备的可用接收波束数量为5个,则将从5个可用接收波束中选择的4个接收波束与所述网络设备的发送波束进行波束扫描配对;所述用户设备的最大允许接收波束数量为4个,所述用户设备的可用接收波束数量为3个,则将全选的3个可用接收波束与所述网络设备的发送波束进行波束扫描配对。
所述波束管理参考信号以CSI-RS为例,在完成波束扫描配对后,所述用户设备可通过波束配对关系接收所述网络设备发送的所述CSI-RS资源的配置信息,并根据所述配置信息获取所述CSI-RS,并进行波束质量的测量。
在图6所示的实施例中,通过网络设备对用户设备可用于波束扫描配对的最大允许接收波束数量进行约束,实现网络设备根据最大允许接收波束数量和发送波束数量进行波束管理参考信号资源的配置,具体可实现CSI-RS资源的配置,可以在完整的波束扫描配对之后,才触发一次波束相关信息的上报,节省了信令和上报开销;亦或者相比按照某个协议约定的最大接收波束数量进行配置,可以节省无线资源。
需要说明的是,图3所示的实施例,由用户设备通知网络设备可用接收波束数量,图6所示的实施例,由网络设备约束用户设备的最大允许接收波束数量,两个实施例都可以达到节省信令和上报开销,或节省无线资源的目的,具体实施哪个实施例视具体情况而定。
作为一个可选的实施例,协议可以定义一个阈值Y,该阈值可以作为波束扫描时UE的可用接收波束数量的默认值,该阈值具体数值不作限定。对于所有的基站,所有的UE而言,该阈值是固定的,可知的。基站默认根据其发送波束数量和Y进行扫描相关的配置(例如CSI-RS资源配置、上报周期配置等)。若UE的实际可用接收波束数量大于或等于Y,则UE可以从实际可用接收波束中至多选择Y个可用接收波束进行波束扫描,例如,UE的实际可用接收波束数量为4个,而Y=2,则UE从4个实际可用接收波束中至多选择2个可用接收波束进行波束扫描。若UE的实际可用接收波束数量小于Y,则UE可以根据其实际可用接收波束数量进行波束扫描。
可选地,虽然协议定义了阈值Y,基站也可以选用比Y小的阈值Y’,并将选用的Y’告知UE,以便UE在其实际可用接收波束数量大于或等于Y’时,可以从实际可用接收波束中至多选择Y’个可用接收波束进行波束扫描。
需要说明的是,上述可选的实施例中,由于协议已经定义了基站配置资源或上报周期的默认值,因此UE可以不向基站反馈UE的实际可用接收波束数量。
请参见图8a,图8a是本发明实施例提供的网络设备的一种逻辑结构示意图。图8a所示的网络设备301包括接收单元3011和配置单元3012。
在一种可能实现的方式中,接收单元3011,用于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;
配置单元3012,用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
需要说明的是,接收单元3011用于实现图3所示实施例中的步骤S103;配置单元3012用于实现图3所示实施例中的步骤S104。
在另一种可能实现的方式中,接收单元3011,用于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;
配置单元3012,用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束测量上报参数的配置。
请参见图8b,图8b是本发明实施例提供的网络设备的另一种逻辑结构示意图。图8b所示的网络设备301包括发送单元3013和配置单元3014。
发送单元3013,用于向用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量,所述接收波束数量指示信息用于所述用户设备根据所述最大允许接收波束数量选择接收波束;
配置单元3014,用于根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
需要说明的是,发送单元3013用于实现图6所示实施例中的步骤S201;配置单元用于实现图6所示实施例中的步骤S202。
请参见图9a,图9a是本发明实施例提供的用户设备的一种逻辑结构示意图。图9a所示的用户设备401包括确定单元4011和发送单元4012。
确定单元4011,用于确定所述用户设备的可用接收波束数量;
发送单元4012,用于向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量,所述接收波束数量指示信息用于所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号的资源配置。
需要说明的是,确定单元4011用于实现图3所示实施例中的步骤S101;发送单元4012用于实现图3所示实施例中的步骤S102。
请参见图9b,图9b是本发明实施例提供的用户设备的另一种逻辑结构示意图。图9b所示的用户设备401包括接收单元4013和选择单元4014。
接收单元4013,用于接收网络设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量;
选择单元4014,用于根据所述最大允许接收波束数量选择接收波束。
需要说明的是,接收单元4013用于实现图6所示实施例中的步骤S203;选择单元4014用于实现图6所示实施例中的步骤S204。
图8a所示的网络设备与图9a所示的用户设备结合在一起,实现图3所示的实施例;图8b所示的网络设备与图9b所示的用户设备结合在一起,实现图6所示的实施例。
当接收单元3011、发送单元3013可以是收发器,配置单元3012、配置单元3014可以是处理器时,网络设备的实体结构示意图可参见图10所示的网络设备,图10所示的网络设备302包括处理器3021和收发器3022。需要说明的是,图10所示的实体结构示意图并 不构成对本发明实施例的限定,实际应用中,网络设备可能还包括其它部件,例如存储器等。
其中,处理器3021可以是可以是控制器,中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器3021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器3022可以是通信模块、收发电路,用于实现网络设备与用户设备之间的数据、信令等信息的传输。
当发送单元4012、接收单元4013可以是收发器,确定单元4011、选择单元4014可以是处理器时,用户设备的实体结构示意图可参见图11所示的用户设备,图11所示的用户设备402包括处理器4021和收发器4022。需要说明的是,图11所示的实体结构示意图并不构成对本发明实施例的限定,实际应用中,用户设备可能还包括其它部件,例如存储器、输入设备等。
其中,处理器4021可以是可以是控制器,CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器4021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器4022可以是通信模块、收发电路,用于实现用户设备与网络设备之间的数据、信令等信息的传输,还用于实现用户设备与其它用户设备之间的信息的传输。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subsciber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD(Digital Video Disk,数字视频光盘))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD)等。

Claims (46)

  1. 一种资源配置方法,其特征在于,包括:
    网络设备接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;
    所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
  2. 如权利要求1所述的方法,其特征在于,所述接收波束数量指示信息携带在上行控制信息中。
  3. 如权利要求1所述的方法,其特征在于,所述接收波束数量指示信息携带在物理随机接入信道PRACH消息中。
  4. 如权利要求3所述的方法,其特征在于,所述PRACH消息为无线资源控制RRC连接请求消息或具有信息负载能力的随机接入前导消息。
  5. 如权利要求1所述的方法,其特征在于,所述接收波束数量指示信息携带在用户能力查询响应消息中,所述用户能力查询响应消息为所述用户设备在接收到所述网络设备发送的用户能力查询请求消息时,向所述网络设备发送的消息。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述波束管理参考信号包括信道状态信息参考信号CSI-RS;
    所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置,包括:
    所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量确定所需的所述CSI-RS资源的数量;
    所述网络设备根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。
  7. 一种资源配置方法,其特征在于,包括:
    用户设备确定所述用户设备的可用接收波束数量;
    所述用户设备向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量,所述接收波束数量指示信息用于所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号的资源配置。
  8. 如权利要求7所述的方法,其特征在于,所述用户设备向网络设备发送接收波束数量指示信息,包括:
    所述用户设备通过上行控制信息向网络设备发送接收波束数量指示信息。
  9. 如权利要求7所述的方法,其特征在于,所述用户设备向网络设备发送接收波束数量指示信息,包括:
    所述用户设备通过PRACH消息向网络设备发送接收波束数量指示信息。
  10. 如权利要求9所述的方法,其特征在于,所述PRACH消息为RRC连接请求消息或具有信息负载能力的随机接入前导消息。
  11. 如权利要求7所述的方法,其特征在于,所述用户设备向网络设备发送接收波束 数量指示信息,包括:
    所述用户设备在接收到网络设备发送的用户能力查询请求消息时,通过用户能力查询响应消息向所述网络设备发送接收波束数量指示信息。
  12. 一种资源配置方法,其特征在于,包括:
    网络设备向用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量,所述接收波束数量指示信息用于所述用户设备根据所述最大允许接收波束数量选择接收波束;
    所述网络设备根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
  13. 如权利要求12所述的方法,其特征在于,所述网络设备向所述用户设备发送接收波束数量指示信息,包括:
    所述网络设备通过RRC信令向所述用户设备发送接收波束数量指示信息。
  14. 如权利要求12所述的方法,其特征在于,所述网络设备向所述用户设备发送接收波束数量指示信息,包括:
    所述网络设备通过媒体接入控制信令向所述用户设备发送接收波束数量指示信息。
  15. 如权利要求12所述的方法,其特征在于,所述网络设备向所述用户设备发送接收波束数量指示信息,包括:
    所述网络设备通过下行控制信息向所述用户设备发送接收波束数量指示信息。
  16. 如权利要求12-15任一项所述的方法,其特征在于,所述波束管理参考信号包括CSI-RS;
    所述网络设备根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置,包括:
    所述网络设备根据所述最大允许接收波束数量和所述网络设备的发送波束数量确定所需的所述CSI-RS资源的数量;
    所述网络设备根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。
  17. 一种资源配置方法,其特征在于,包括:
    用户设备接收网络设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量;
    所述用户设备根据所述最大允许接收波束数量选择接收波束。
  18. 如权利要求17所述的方法,其特征在于,所述用户设备根据所述最大允许接收波束数量选择接收波束,包括:
    所述用户设备获取所述用户设备的可用接收波束数量;
    若所述用户设备的可用接收波束数量大于所述最大允许接收波束数量,则所述用户设备从所述用户设备的可用接收波束中选择与所述最大允许接收波束数量相同数量的接收波束;
    若所述用户设备的可用接收波束数量小于或等于所述最大允许接收波束数量,则所述用户设备选择所有所述用户设备的可用接收波束。
  19. 如权利要求17或18所述的方法,其特征在于,所述接收波束数量指示信息携带 在RRC信令中。
  20. 如权利要求17或18所述的方法,其特征在于,所述接收波束数量指示信息携带在媒体接入控制信令中。
  21. 如权利要求17或18所述的方法,其特征在于,所述接收波束数量指示信息携带在下行控制信息中。
  22. 一种网络设备,其特征在于,包括处理器和收发器,
    所述收发器,用于接收用户设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量;
    所述处理器,用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
  23. 如权利要求22所述的网络设备,其特征在于,所述接收波束数量指示信息携带在上行控制信息中。
  24. 如权利要求22所述的网络设备,其特征在于,所述接收波束数量指示信息携带在物理随机接入信道PRACH消息中。
  25. 如权利要求24所述的网络设备,其特征在于,所述PRACH消息为无线资源控制RRC连接请求消息或具有信息负载能力的随机接入前导消息。
  26. 如权利要求22所述的网络设备,其特征在于,所述接收波束数量指示信息携带在用户能力查询响应消息中,所述用户能力查询响应消息为所述用户设备在接收到所述网络设备发送的用户能力查询请求消息时,向所述网络设备发送的消息。
  27. 如权利要求22-26任一项所述的网络设备,其特征在于,所述波束管理参考信号包括信道状态信息参考信号CSI-RS;
    所述处理器具体用于根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量确定所需的所述CSI-RS资源的数量;根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。
  28. 一种用户设备,其特征在于,包括处理器和收发器,
    所述处理器,用于确定所述用户设备的可用接收波束数量;
    所述收发器,用于向网络设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述用户设备的可用接收波束数量,所述接收波束数量指示信息用于所述网络设备根据所述用户设备的可用接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号的资源配置。
  29. 如权利要求28所述的用户设备,其特征在于,所述收发器具体用于通过上行控制信息向网络设备发送接收波束数量指示信息。
  30. 如权利要求28所述的用户设备,其特征在于,所述收发器具体用于通过PRACH消息向网络设备发送接收波束数量指示信息。
  31. 如权利要求30所述的用户设备,其特征在于,所述PRACH消息为RRC连接请求消息或具有信息负载能力的随机接入前导消息。
  32. 如权利要求28所述的用户设备,其特征在于,所述收发器具体用于在接收到网络设备发送的用户能力查询请求消息时,通过用户能力查询响应消息向所述网络设备发送接 收波束数量指示信息。
  33. 一种网络设备,其特征在于,包括处理器和收发器,
    所述收发器,用于向用户设备发送接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量,所述接收波束数量指示信息用于所述用户设备根据所述最大允许接收波束数量选择接收波束;
    所述处理器,用于根据所述最大允许接收波束数量和所述网络设备的发送波束数量进行波束管理参考信号资源的配置。
  34. 如权利要求33所述的网络设备,其特征在于,所述收发器具体用于通过RRC信令向所述用户设备发送接收波束数量指示信息。
  35. 如权利要求33所述的网络设备,其特征在于,所述收发器具体用于通过媒体接入控制信令向所述用户设备发送接收波束数量指示信息。
  36. 如权利要求33所述的网络设备,其特征在于,所述收发器具体用于通过下行控制信息向所述用户设备发送接收波束数量指示信息。
  37. 如权利要求33-36任一项所述的网络设备,其特征在于,所述波束管理参考信号包括CSI-RS;
    所述处理器具体用于根据所述最大允许接收波束数量和所述网络设备的发送波束数量确定所需的所述CSI-RS资源的数量;根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置。
  38. 一种用户设备,其特征在于,包括处理器和收发器,
    所述收发器,用于接收网络设备发送的接收波束数量指示信息,所述接收波束数量指示信息指示所述网络设备规定的所述用户设备可用于波束扫描配对的最大允许接收波束数量;
    所述处理器,用于根据所述最大允许接收波束数量选择接收波束。
  39. 如权利要求38所述的用户设备,其特征在于,所述处理器具体用于获取所述用户设备的可用接收波束数量;若所述用户设备的可用接收波束数量大于所述最大允许接收波束数量,则从所述用户设备的可用接收波束中选择与所述最大允许接收波束数量相同数量的接收波束;若所述用户设备的可用接收波束数量小于或等于所述最大允许接收波束数量,则选择所有所述用户设备的可用接收波束。
  40. 如权利要求38或39所述的用户设备,其特征在于,所述接收波束数量指示信息携带在RRC信令中。
  41. 如权利要求38或39所述的用户设备,其特征在于,所述接收波束数量指示信息携带在媒体接入控制信令中。
  42. 如权利要求38或39所述的用户设备,其特征在于,所述接收波束数量指示信息携带在下行控制信息中。
  43. 如权利要求7或17所述的方法或权利要求28或38所述的用户设备,其特征在于,所述用户设备的可用接收波束与发送波束关联。
  44. 如权利要求43所述的方法或用户设备,其特征在于,所述用户设备的可用接收波 束数量与发送波束数量关联。
  45. 如权利要求6或16所述的方法,或权利要求27或37所述的网络设备,其特征在于,网络设备根据所述CSI-RS资源的数量进行所述CSI-RS资源的配置,包括:
    所述网络设备根据用户设备上报的可用接收波束数量,配置所述CSI-RS资源的数量。
  46. 如权利要求45所述的方法或网络设备,其特征在于,,所述网络设备根据用户设备上报的可用接收波束数量,配置所述CSI-RS资源的数量,包括:
    配置相应的CSI-RS资源集中CSI-RS资源的数量;所述CSI-RS资源集包括一个或多个CSI-RS资源;
    或者,配置相应的CSI-RS资源集的测量重复次数。
PCT/CN2018/079911 2017-03-23 2018-03-21 一种资源配置方法及其装置 WO2018171647A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3044493A CA3044493C (en) 2017-03-23 2018-03-21 Resource configuration method and apparatus
JP2019534916A JP6991221B2 (ja) 2017-03-23 2018-03-21 リソース構成方法および装置
BR112019011295A BR112019011295A2 (pt) 2017-03-23 2018-03-21 método de configuração de recurso e aparelho, equipamento de usuário, dispositivo de rede e armazenamento legível por computador
EP18771942.2A EP3537809A4 (en) 2017-03-23 2018-03-21 RESOURCE ALLOCATION METHOD AND APPARATUS THEREOF
CN201880020563.3A CN110809900A (zh) 2017-03-23 2018-03-21 一种资源配置方法及其装置
US16/399,771 US11064492B2 (en) 2017-03-23 2019-04-30 Resource configuration method and apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710177805.7 2017-03-23
CN201710177805 2017-03-23
CN201710452685 2017-06-15
CN201710452685.7 2017-06-15
CN201710788369.7 2017-09-01
CN201710788369.7A CN108633068B (zh) 2017-03-23 2017-09-01 一种资源配置方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/399,771 Continuation US11064492B2 (en) 2017-03-23 2019-04-30 Resource configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018171647A1 true WO2018171647A1 (zh) 2018-09-27

Family

ID=63584988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079911 WO2018171647A1 (zh) 2017-03-23 2018-03-21 一种资源配置方法及其装置

Country Status (1)

Country Link
WO (1) WO2018171647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022520830A (ja) * 2019-02-15 2022-04-01 華為技術有限公司 通信方法およびデバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100272077A1 (en) * 2009-04-24 2010-10-28 Futurewei Technologies, Inc. System and Method for Communications using Time-Frequency Space Enabled Coordinated Beam Switching
CN104956606A (zh) * 2013-01-25 2015-09-30 交互数字专利控股公司 用于垂直波束成形的方法和设备
CN105103261A (zh) * 2013-02-27 2015-11-25 三星电子株式会社 在波束形成的大规模mimo系统中的信道探测的方法和装置
CN105453629A (zh) * 2013-08-05 2016-03-30 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置
CN106160821A (zh) * 2015-03-31 2016-11-23 电信科学技术研究院 一种信道状态信息反馈、获取方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100272077A1 (en) * 2009-04-24 2010-10-28 Futurewei Technologies, Inc. System and Method for Communications using Time-Frequency Space Enabled Coordinated Beam Switching
CN104956606A (zh) * 2013-01-25 2015-09-30 交互数字专利控股公司 用于垂直波束成形的方法和设备
CN105103261A (zh) * 2013-02-27 2015-11-25 三星电子株式会社 在波束形成的大规模mimo系统中的信道探测的方法和装置
CN105453629A (zh) * 2013-08-05 2016-03-30 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置
CN106160821A (zh) * 2015-03-31 2016-11-23 电信科学技术研究院 一种信道状态信息反馈、获取方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537809A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022520830A (ja) * 2019-02-15 2022-04-01 華為技術有限公司 通信方法およびデバイス
JP7391099B2 (ja) 2019-02-15 2023-12-04 華為技術有限公司 通信方法およびデバイス
US12003986B2 (en) 2019-02-15 2024-06-04 Huawei Technologies Co., Ltd. Communication method and device

Similar Documents

Publication Publication Date Title
CN109890079B (zh) 一种资源配置方法及其装置
US20200099432A1 (en) Methods and Apparatus Relating to Channel State Information Reporting in a Wireless Communication Network
US11974235B2 (en) Methods of type 1 UL gap activation and deactivation in FR2
US12144052B2 (en) Methods of type 1 UL gap triggering in FR2
WO2023130211A1 (en) Reference power headroom reports and pathloss measurement for a unified transmission control indicator (tci) framework
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20240022942A1 (en) Measurement parameter determination method, electronic device and storage medium
US20220053484A1 (en) Wireless communication method, terminal apparatus, and network apparatus
US20220201626A1 (en) Information reporting method and apparatus, and user equipment
EP4501008A1 (en) Transmission configuration indicator update for time domain beam prediction
CN111526534B (zh) 通信方法和装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2018171647A1 (zh) 一种资源配置方法及其装置
TWI815083B (zh) 空間關係切換方法與使用者設備
WO2024113124A1 (zh) 一种传输信息的方法、装置、设备及可读存储介质
WO2023078429A1 (zh) Srs传输功率确定方法、设备、装置及存储介质
WO2024031311A1 (en) Effective early measurement for reporting during connection setup
WO2024060210A1 (en) Configuration for gap for musim capable ue
WO2023077354A1 (en) Signaling for user equipment to demand msg3 repetition
CN119631332A (zh) 一种无线通信方法及装置、设备、存储介质
WO2025048853A1 (en) Improved beam reporting for wireless communications networks
WO2018202104A1 (zh) 一种波束管理方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771942

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3044493

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018771942

Country of ref document: EP

Effective date: 20190605

ENP Entry into the national phase

Ref document number: 2019534916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019011295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190531