WO2018173225A1 - Terminal device, base station device, wireless communication system and wireless communication method - Google Patents
Terminal device, base station device, wireless communication system and wireless communication method Download PDFInfo
- Publication number
- WO2018173225A1 WO2018173225A1 PCT/JP2017/011869 JP2017011869W WO2018173225A1 WO 2018173225 A1 WO2018173225 A1 WO 2018173225A1 JP 2017011869 W JP2017011869 W JP 2017011869W WO 2018173225 A1 WO2018173225 A1 WO 2018173225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- control information
- data
- coding rate
- modulation scheme
- Prior art date
Links
Images
Definitions
- the present invention relates to a terminal device, a base station device, a wireless communication system, and a wireless communication method.
- next generation for example, 5G (5th generation mobile communication)
- 4G (4th generation mobile communication) standard technology for example, Non-Patent Documents 1 to 11
- eMBB Enhanced Mobile BroadBand
- Massive MTC Machine Type Communications
- URLLC Ultra-Reliable
- URLLC aims to set the delay in the radio section of the user plane in the uplink and downlink to 0.5 milliseconds. This is a high requirement of less than 1/10 of LTE (Long Term Evolution) 4G wireless system. In URLLC, it is desired to satisfy the two requirements of ultra-high reliability and low delay as described above.
- LTE Long Term Evolution
- HARQ hybrid automatic repeat request
- the receiving apparatus requests the transmitting apparatus side to retransmit the data that could not be correctly decoded in the processing of the layer 1 protocol layer such as LTE.
- the transmission device transmits retransmission data corresponding to the original data retransmission request that could not be correctly decoded on the reception device side.
- data decoding is performed by combining data that could not be correctly decoded and retransmission data.
- HARQ can increase the reliability by setting a large number of retransmissions, but the delay increases as the number of retransmissions increases. For this reason, it is difficult to apply to data such as URLLC that requires low delay.
- Non-patent document 20 As a method for ensuring the reliability required for the next-generation communication standard, a repetition or open loop HARQ method in which the number of times data is repeatedly transmitted is determined in advance and the determined number of times of repeated transmission is executed is effective.
- the disclosed technology has been made in view of the above points, and an object thereof is to provide a terminal device, a base station device, a wireless communication system, and a wireless communication method capable of reducing an increase in overhead.
- a terminal device disclosed in the present application is a receiving unit that receives repeatedly transmitted data and control information indicating a modulation scheme and a coding rate of the data, and the control information received by the receiving unit. Based on the first decoding unit that decodes the resource, the resource size assigned to the control information decoded by the first decoding unit, and the modulation scheme and coding rate of the data indicated by the control information.
- An acquisition unit that acquires the number of repetitions transmitted repeatedly, and a second decoding unit that decodes data received by the reception unit based on the number of repetitions acquired by the acquisition unit.
- the terminal device According to one aspect of the terminal device, the base station device, the wireless communication system, and the wireless communication method disclosed in the present application, there is an effect that an increase in overhead can be reduced.
- FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to an embodiment.
- FIG. 2 is a block diagram showing a configuration of the base station apparatus according to one embodiment.
- FIG. 3 is a diagram for explaining determination of the aggregation level.
- FIG. 4 is a diagram illustrating a specific example of repeated transmission.
- FIG. 5 is a flowchart showing a transmission method according to an embodiment.
- FIG. 6 is a block diagram illustrating a configuration of a user terminal device according to an embodiment.
- FIG. 7 is a flowchart showing a reception method according to an embodiment.
- FIG. 8 is a diagram illustrating a specific example of the repetition count table.
- FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to an embodiment.
- the radio communication system illustrated in FIG. 1 includes a base station device 100 and a plurality of user terminal devices 200.
- the base station apparatus 100 transmits, for example, transmission data such as eMBB data and URLLC data and control channel information including downlink control information (DCI: Downlink Control Information) to the user terminal apparatus 200. At this time, base station apparatus 100 repeatedly transmits transmission data. Base station apparatus 100 determines the number of times data is repeatedly transmitted based on the size of resources allocated to DCI, the modulation scheme and coding rate of transmission data. The repeated transmission of transmission data by the base station apparatus 100 will be described in detail later.
- DCI Downlink Control Information
- User terminal apparatus 200 receives data such as eMBB data and URLLC data transmitted from base station apparatus 100, and information on the control channel including DCI. Then, the user terminal device 200 calculates the number of times data is repeatedly transmitted based on the size of the resource allocated to DCI, the modulation method and the coding rate of the received data. The user terminal device 200 decodes the repeatedly transmitted data according to the calculated repetition count. Decoding of received data by the user terminal device 200 will be described in detail later.
- FIG. 2 is a block diagram showing a configuration of base station apparatus 100 according to one embodiment.
- a base station apparatus 100 illustrated in FIG. 2 includes a processor 100a, a memory 100b, and a wireless transmission / reception unit 100c.
- the processor 100a includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or a DSP (Digital Signal Processor), and performs overall control of the base station apparatus 100 as a whole.
- the processor 100a includes an FFT (Fast Fourier Transform) unit 110, a CQI (Channel Quality Indicator) acquisition unit 120, an aggregation level (hereinafter abbreviated as “AGGR level”) determination unit 130, and transmission control.
- Unit 140 transmission data generation unit 150, control channel generation unit 160, multiplexing unit 170, and IFFT (Inverse Fast Fourier Transform) unit 180.
- the FFT unit 110 performs fast Fourier transform on the uplink signal received by the wireless transmission / reception unit 100c, and generates a frequency-domain signal that can acquire data for each of a plurality of subcarriers having different frequencies.
- the CQI acquisition unit 120 acquires CQI indicating the downlink channel quality from the frequency domain signal generated by the FFT unit 110. That is, the user terminal apparatus 200 measures, for example, SINR (Signal to Interference and Noise Ratio) of the downlink, and feeds back the CQI corresponding to the measurement result to the base station apparatus 100. Therefore, the CQI acquisition unit 120 acquires the CQI fed back from each user terminal device 200.
- SINR Signal to Interference and Noise Ratio
- the AGGR level determination unit 130 determines an aggregation level (AGGR level) indicating the size of a resource to be allocated to DCI based on the CQI. Specifically, the AGGR level determination unit 130 assigns a smaller size resource to the DCI as the downlink channel quality is better, and assigns a larger size resource to the DCI as the downlink channel quality is lower. That is, for example, when the AGGR level is represented by the number of CCEs (Control Channel Elements) assigned to the control channels, the AGGR level determination unit 130 assigns fewer CCEs to the DCI as the downlink channel quality is better. More CCEs are assigned to DCI as the downlink channel quality is poorer.
- AGGR level an aggregation level
- the AGGR level determination unit 130 determines the AGGR level so that the DCI received in the user terminal device 200 satisfies a predetermined error rate when determining the DCGR AGGR level. That is, for example, as shown in FIG. 3, the AGGR level for each user terminal apparatus 200 is determined according to the downlink SINR indicated by the CQI and the target error rate Er to be satisfied.
- the AGGR level 301 is selected in order to make the error rate less than the target error rate Er.
- the AGGR level 302 is selected.
- the AGGR level 303 is selected. Is done.
- FIG. 3 shows that the required SINR, which is the minimum SINR required when adopting the AGGR level 301, is S1.
- the required SINR when employing the AGGR level 302 is S2
- the required SINR when employing the AGGR level 303 is S3
- the required SINR when employing the AGGR level 304 is S4.
- the transmission control unit 140 selects MCS (Modulation Coding Scheme) of transmission data to be transmitted to the user terminal device 200 based on the CQI. That is, the transmission control unit 140 determines the transmission data modulation scheme and coding rate for each user terminal device 200 based on the CQI. Specifically, the transmission control unit 140 increases the modulation multi-value number and the coding rate as the downlink channel quality is better, and increases the coding rate as the downlink channel quality is worse. The modulation multi-level number is reduced and the coding rate is reduced.
- MCS Modulation Coding Scheme
- the transmission control unit 140 uses a modulation scheme having a large modulation multi-level number such as 256QAM (Quadrature Amplitude Modulation) or 64QAM, and reduces redundant bits for error correction. Then decide. Further, if the downlink channel quality is poor, the transmission control unit 140 uses a modulation scheme with a small modulation multi-level number such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying), and redundant bits. Decide to increase.
- BPSK Binary Phase Shift Keying
- QPSK Quadrature Phase Shift Keying
- the transmission control unit 140 selects an MCS corresponding to channel quality better than the channel quality indicated by the CQI. That is, the transmission control unit 140 selects a modulation scheme and coding rate corresponding to SINR better than the actual SINR. In other words, the transmission control unit 140 selects a modulation scheme having a larger modulation multi-value number than the modulation scheme corresponding to CQI, and selects a coding rate larger than the coding rate corresponding to CQI.
- transmission control section 140 determines the number of repeated data transmissions based on the difference between the required SINR of the data required by the selected MCS and the required SINR of the DCI required by the DCI AGGR level. Specifically, the transmission control unit 140 repeats the number of repetitions when the required SINR of the data required by the selected MCS is ⁇ d dB and the required SINR of the DCI required by the DCI AGGR level is ⁇ c dB.
- n is calculated by the following formula (1).
- ceil (x) is the smallest integer greater than x, and a is a predetermined coefficient (for example, 3 or 6).
- the required SINR ( ⁇ d ) of data required by the selected MCS is the minimum SINR that can satisfy a predetermined error rate when the transmission data modulation scheme and coding rate are used. .
- the transmission control unit 140 selects an MCS corresponding to channel quality better than the channel quality indicated by the CQI, the required SINR ( ⁇ d ) of the data is better than the actual SINR.
- the DCI required SINR ( ⁇ c ) required by the DCI AGGR level is the minimum SINR that can satisfy a predetermined error rate when the DCI AGGR level is adopted.
- the required SINR ( ⁇ c ) of DCI is an SINR that reflects the actual SINR.
- the transmission data generation unit 150 generates transmission data using the MCS determined by the transmission control unit 140. That is, transmission data generating section 150 encodes transmission information at the coding rate selected by transmission control section 140 and modulates it with the modulation scheme selected by transmission control section 140.
- the control channel generation unit 160 generates control channel information including DCI for notifying the user terminal apparatus 200 of the MCS determined by the transmission control unit 140. At this time, the control channel generation unit 160 generates DCI of the resource size of the AGGR level determined by the AGGR level determination unit 130. Therefore, the control channel generator 160 generates a DCI having a smaller resource size as the downlink channel quality is better, and generates a DCI having a larger resource size as the downlink channel quality is lower. In addition to the DCI, the control channel generation unit 160 may generate, for example, a reference signal used by the user terminal device 200 for measurement of downlink channel quality. However, the control channel generation unit 160 does not generate control information indicating the number of times transmission data is repeatedly transmitted.
- control information indicating the number of times transmission data is repeatedly transmitted is not generated, an increase in overhead can be reduced.
- the multiplexing unit 170 multiplexes the transmission data generated by the transmission data generation unit 150 and the control information generated by the control channel generation unit 160. Specifically, for example, multiplexing section 170 arranges control information including DCI in the control channel area for each subframe, and arranges transmission data in the data channel area. At this time, the multiplexing unit 170 repeatedly arranges transmission data for the number of repetitions determined by the transmission control unit 140. That is, for example, when the number of repetitions is 2, multiplexing section 170 arranges the same transmission data in the data channel region of two consecutive subframes.
- the multiplexing unit 170 may arrange DCI 411 in one control channel region 410 and arrange the same transmission data 421 and 422 in two data channel regions 420. .
- the DCI 411 indicates the MCS of the data 421 and 422 that are repeatedly arranged. For this reason, the modulation method and coding rate of the data 421 and 422 repeatedly arranged are not changed.
- the multiplexing unit 170 arranges DCIs 431 and 441 in the two control channel regions 410 and arranges the same transmission data 441 and 442 in the two data channel regions 420, respectively. Also good.
- DCI 431 indicates the MCS of data 441
- DCI 432 indicates the MCS of data 442.
- the modulation method and coding rate of the data 441 and 442 that are repeatedly arranged may be changed.
- it is desirable that the DCI and the transmission data corresponding to each other are arranged in the same or close frequency bands.
- the IFFT unit 180 performs inverse fast Fourier transform on the transmission data and control information multiplexed by the multiplexing unit 170 to generate a time-domain transmission signal.
- the memory 100b includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores various types of information when processing is executed by the processor 100a.
- a RAM Random Access Memory
- ROM Read Only Memory
- the wireless transmission / reception unit 100c performs wireless transmission processing such as D / A (Digital / Analog) conversion and up-conversion on the transmission signal generated by the IFFT unit 180. And the radio
- the user terminal device 200 that wirelessly communicates with the base station device 100 measures the SINR of the downlink, and feeds back the CQI corresponding to the measurement result to the base station device 100.
- the uplink signal including the CQI is received by the antenna of the base station apparatus 100 and is input to the processor 100a via the radio transmission / reception unit 100c. Then, the FFT unit 110 performs fast Fourier transform on the received signal, and the CQI acquisition unit 120 acquires the CQI included in the received signal (step S101).
- the CQI is notified to the AGGR level determining unit 130, and the AGGR level indicating the resource size assigned to the DCI is determined (step S102). Specifically, it is determined that the AGGR level of DCI is set to an AGGR level having a smaller resource size as the downlink channel quality is better, and the DCI AGGR level is set to the resource size as the downlink channel quality is lower. Is determined to be a large AGGR level.
- the AGGR level determined here reflects the actual channel quality of the downlink reported from the user terminal device 200.
- the CQI is also notified to the transmission control unit 140, and the MCS of the transmission data to be transmitted to the user terminal device 200 is determined (step S103). Specifically, it is determined that the better the downlink channel quality is, the larger the modulation level of the modulation scheme and the higher the coding rate. The worse the downlink channel quality, It is determined to reduce the modulation multi-level number and the coding rate.
- an MCS corresponding to a better channel quality than the actual downlink channel quality reported from the user terminal device 200 is selected. That is, a modulation scheme having a larger modulation multi-value number than the modulation scheme corresponding to CQI is selected, and a coding rate larger than the coding rate corresponding to CQI is selected. Therefore, the required SINR for using the selected MCS is higher than the required SINR for using the AGGR level described above. Note that either the determination of the AGGR level in step S102 or the determination of MCS in step S103 may be performed first or may be performed simultaneously.
- the transmission control unit 140 determines the number of repetitions for repeatedly transmitting the transmission data (step S104). Specifically, the number of repetitions is determined by the above equation (1) from the required SINR of the data for using the MCS and the required SINR of the DCI for using the AGGR level. The determined number of repetitions is notified to transmission data generation section 150 together with the determined MCS. Further, the determined AGGR level and MCS are also notified to the control channel generation unit 160.
- the control channel generation unit 160 generates DCI for notifying the transmission data MCS (step S105).
- the DCI is generated by assigning an AGGR level resource determined by the AGGR level determination unit 130 to the MCS information of the transmission data. Therefore, if the channel quality of the downlink is good, DCI having a small resource size is generated, and if the channel quality of the downlink is poor, DCI having a large resource size is generated.
- control information other than DCI may be generated by the control channel generation unit 160.
- control information indicating the number of repetitions of transmission data is not generated, and the number of repetitions is not notified to the user terminal device 200 with explicit control information. Thereby, even when transmission data is repeatedly transmitted, an increase in overhead due to control information indicating the number of repetitions is reduced.
- the transmission data generation unit 150 generates transmission data using the determined MCS (step S106). That is, transmission information is encoded with the determined coding rate, and the transmission information is modulated with the determined modulation scheme.
- transmission data using each MCS is generated from the same transmission information.
- either the determination of the number of repetitions in step S104 or the DCI generation in step S105 may be executed first or may be executed simultaneously.
- the determination of the number of repetitions in step S104 and the transmission data generation in step S106 may be executed first, and then the DCI generation in step S105 may be executed.
- control information including DCI and transmission data are multiplexed by the multiplexing unit 170 (step S107).
- control information including DCI is arranged in the control channel area of the subframe, and transmission data is arranged in the data channel area.
- the transmission data is repeatedly arranged by the number of repetitions. That is, the same transmission data is arranged in the data channel region of the same number of subframes as the number of repetitions.
- the MCS of these transmission data may be the same or different.
- DCI is arranged in the control channel region in each subframe.
- the transmission signal generated by multiplexing the control information and the transmission data is subjected to inverse fast Fourier transform by the IFFT unit 180 (step S108), and a time domain transmission signal is generated.
- This transmission signal is subjected to wireless transmission processing by the wireless transmission / reception unit 100c (step S109), and is transmitted to the user terminal device 200 via the antenna (step S110).
- base station apparatus 100 determines the number of repeated transmissions of transmission data from the required SINR of data corresponding to the MCS of the transmission data and the required SINR of DCI corresponding to the AGGR level of DCI, and repeatedly transmits the transmission data. To do. Moreover, the base station apparatus 100 does not generate control information indicating the number of repeated transmissions, and does not notify the number of repeated transmissions based on the control information. For this reason, an increase in overhead due to control information can be reduced.
- FIG. 6 is a block diagram illustrating a configuration of the user terminal device 200.
- the user terminal device 200 illustrated in FIG. 6 includes a wireless transmission / reception unit 200a, a processor 200b, and a memory 200c.
- the wireless transmission / reception unit 200a receives a signal via an antenna and performs wireless reception processing such as down-conversion and A / D conversion on the received signal. Then, the radio transmission / reception unit 200a outputs the received signal to the processor 200b. The radio transmission / reception unit 200a performs radio transmission processing such as D / A conversion and up-conversion on an uplink signal including CQI and transmits the signal via an antenna.
- the processor 200b includes, for example, a CPU, FPGA, DSP, or the like, and performs overall control of the entire user terminal device 200. Specifically, the processor 200b includes an FFT unit 210, a control channel decoding unit 220, an iterative number calculation unit 230, a reception data decoding unit 240, a CQI generation unit 250, and an IFFT unit 260.
- the FFT unit 210 performs a fast Fourier transform on the reception signal received by the wireless transmission / reception unit 200a to generate a frequency domain reception signal.
- the received signal includes transmission data addressed to the user terminal device 200 and control information including DCI.
- the control channel decoding unit 220 demodulates and decodes the DCI arranged in the control channel region of the received signal. At this time, the control channel decoding unit 220 blindly detects the DCGR AGGR level, and demodulates and decodes the DCI. That is, control channel decoding section 220 attempts to decode DCI for all resource sizes that may be assigned to DCI, and detects the DCI AGGR level of user terminal apparatus 200. Then, the control channel decoding unit 220 acquires MCS information of transmission data addressed to the user terminal apparatus 200 by decoding the detected AGGR level DCI.
- the repetition count calculation unit 230 calculates the number of repetitions of transmission data based on the MCS notified by DCI and the DCGR AGGR level. Specifically, the repetition count calculation unit 230 calculates the above formula (1) based on the difference between the required SINR of data required by the MCS notified by DCI and the required SINR of DCI required by the AGGR level of DCI. ) To calculate the number of repeated data transmissions. As described above, since the number of repetitions is calculated based on the MCS information notified by the DCI and the AGGR level of the DCI, the user terminal device 200 can be used without the control information that explicitly notifies the number of repetitions. The number of repetitions of transmission data can be grasped.
- the reception data decoding unit 240 demodulates and decodes the reception data arranged in the data channel region of the reception signal. At this time, the reception data decoding unit 240 uses the MCS information notified by the DCI and decodes the reception data repeated for the number of repetitions calculated by the repetition number calculation unit 230. That is, the reception data decoding unit 240 improves the decoding accuracy of the reception data by using the same data repeatedly transmitted.
- the CQI generating unit 250 measures the downlink SINR using a known reference signal included in the control channel region. Then, CQI generating section 250 generates a CQI for reporting the measured SINR to base station apparatus 100.
- the IFFT unit 260 performs inverse fast Fourier transform on the uplink signal including the CQI generated by the CQI generation unit 250 to generate a time domain signal.
- the signal including the control information and the transmission data transmitted from the base station apparatus 100 is received by the radio transmission / reception unit 200a via the antenna (step S201).
- the received signal is subjected to wireless reception processing by the wireless transmission / reception unit 200a (step S202) and input to the processor 200b.
- the received signal is fast Fourier transformed by the FFT unit 210 (step S203), and the DCI arranged in the control channel region of the received signal is demodulated and decoded by the control channel decoding unit 220 (step S204).
- the demodulation and decoding of DCI is performed by blind detection that attempts decoding for all resource sizes that may be assigned to DCI. That is, when the AGGR level of DCI is selected from 4 types of 2 CCEs, 4 CCEs, 8 CCEs, and 16 CCEs, for example, demodulation is performed for each of these 4 types of CCEs. And decryption is attempted. As a result, when DCI including MCS information of transmission data is obtained from the decoding results of any number of CCEs, the AGGR level of DCI is detected.
- Step S205 The MCS information indicated by the DCI and the AGGR level of the DCI are notified to the repetition number calculation unit 230, and the number of repetitions in which data is repeatedly transmitted is calculated based on the MCS notified by the DCI and the AGGR level of the DCI. That is, based on the difference between the required SINR of the data required by the MCS notified by the DCI and the required SINR of the DCI required by the DCI AGGR level, the number of repeated data transmissions is calculated by the above equation (1). Is done. Since the number of repetitions is calculated in this way, control information that explicitly notifies the number of repetitions is unnecessary, and an increase in overhead is reduced.
- the calculated repetition count is notified to the reception data decoding section 240, and the reception data decoding section 240 uses the MCS information notified by DCI and the repetition count to demodulate and decode the reception data (step S206). ). That is, demodulation corresponding to the modulation scheme notified by DCI is executed, and decoding corresponding to the coding rate notified by DCI is executed. And decoding accuracy can be improved by decoding repeatedly transmitted data.
- data is repeatedly transmitted based on the required SINR of data required by the MCS of transmission data and the required SINR of DCI required by the AGGR level of DCI. Determine the number of times. Since the user terminal apparatus calculates the number of repetitions based on the two required SINRs, it is possible to decode the repeatedly transmitted data without the control information that explicitly notifies the number of repetitions. As a result, an increase in overhead due to control information can be reduced.
- the number of repetitions of data transmission is calculated using equation (1).
- the number of repetitions may be determined by referring to a prestored table, for example. .
- a repetition count table that stores the number of repetitions of data transmission is referred to in association with the modulation multi-level number and coding rate of data and the AGGR level of DCI. good.
- the repetition count table shown in FIG. 8 for example, when the transmission data modulation scheme is BPSK (modulation multilevel number is 2), the coding rate is 1/9, and the AGGR level is two CCEs, the repetition count Is 0. For this reason, transmission data is transmitted only once and is not repeatedly transmitted. For example, even if the transmission data modulation scheme is BPSK (modulation multilevel number is 2) and the coding rate is 1/9, the number of repetitions is 1 when the AGGR level is 16 CCEs. . For this reason, the transmission data is transmitted once, then repeatedly transmitted once, and transmitted twice in total.
- BPSK modulation multilevel number is 2
- the coding rate is 1/9
- the AGGR level is two CCEs
- the number of repetitions increases as the DCGR AGGR level increases and the DCI required SINR decreases. This is equivalent to increasing the number of repetitions as the actual line quality is poor because the required SINR of DCI reflects the actual line quality reported by the CQI.
- the AGGR level of DCI is the same, the number of repetitions increases as the modulation multi-level number and coding rate of transmission data increase and the required SINR of data increases. This is equivalent to increasing the number of repetitions as the channel quality required by the MCS is better because the required SINR of the data is better than the actual channel quality reported by the CQI.
- the base station apparatus 100 and the user terminal apparatus 200 hold the same repetition count table. Then, the transmission control unit 140 of the base station apparatus 100 determines the number of repetitions of data transmission by referring to the repetition number table. Also, the repetition count calculation unit 230 of the user terminal device 200 acquires the repetition count of the received data by referring to the repetition count table. Thereby, the base station apparatus 100 and the user terminal apparatus 200 can determine the same repetition number, without transmitting / receiving the control information which explicitly notifies the repetition number. Therefore, an increase in overhead due to control information can be reduced.
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
A terminal device comprises: a reception unit that receives repeatedly transmitted data and control information indicating the modulation scheme and coding rate of the data; a first decoding unit that decodes the control information received by the reception unit; an acquisition unit that acquires the number of repetitions in which the data is repeatedly transmitted, on the basis of a resource size assigned to the control information decoded by the first decoding unit, and the modulation scheme and coding rate of the data indicated by the control information; and a second decoding unit that decodes the data received by the reception unit on the basis of the number of repetitions acquired by the acquisition unit.
Description
本発明は、端末装置、基地局装置、無線通信システム及び無線通信方法に関する。
The present invention relates to a terminal device, a base station device, a wireless communication system, and a wireless communication method.
現在のネットワークは、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。
In the current network, traffic from mobile terminals (smartphones and feature phones) occupies most of the network resources. In addition, the traffic used by mobile terminals tends to continue to expand.
一方で、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが求められている。そのため、次世代(例えば、5G(第5世代移動体通信))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、次世代通信規格については、非特許文献12~18の技術検討が進められている。
On the other hand, in response to the development of IoT (Internet of things) services (for example, monitoring systems for traffic systems, smart meters, devices, etc.), it is required to support services with various requirements. Therefore, in the next generation (for example, 5G (5th generation mobile communication)) communication standard, in addition to the 4G (4th generation mobile communication) standard technology (for example, Non-Patent Documents 1 to 11), an even higher There is a demand for a technology that realizes a data rate, a large capacity, and a low delay. Regarding next-generation communication standards, technical studies in Non-Patent Documents 12 to 18 are in progress.
上記で述べたように、多種多様なサービスに対応するために、次世代の通信規格(例えば、5G)では、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)、及びURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートが想定されている。
As described above, in order to support a wide variety of services, eMBB (Enhanced Mobile BroadBand), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable) in the next generation communication standards (for example, 5G) and support for many use cases classified as “Low Latency Communication”.
その中でも、URLLCは実現が最も困難なユースケースである。まず、無線区間でのエラーレートを10-5のオーダーにするという超高信頼性の要求がある。超高信頼性を実現する1つの方法として、使用リソース量を増やしてデータに冗長性を持たせる方法がある。しかし、無線リソースには限りがあるので、無制限に使用リソースを増やすことはできない。
Among them, URLLC is the most difficult use case to be realized. First, there is a requirement for ultra-high reliability that the error rate in the wireless section is on the order of 10 −5 . As one method for realizing ultra-high reliability, there is a method of increasing the amount of resources used and making data redundant. However, since the radio resources are limited, the use resources cannot be increased without limit.
低遅延に関しても、URLLCでは、上り回線及び下り回線におけるユーザプレーンの無線区間での遅延を0.5ミリ秒とすることが目標とされている。これは4G無線システムLTE(Long Term Evolution)の1/10未満という高い要求である。URLLCでは、上記のような超高信頼性と低遅延の2つの要求を同時に満たすことが望まれている。
Regarding low delay as well, URLLC aims to set the delay in the radio section of the user plane in the uplink and downlink to 0.5 milliseconds. This is a high requirement of less than 1/10 of LTE (Long Term Evolution) 4G wireless system. In URLLC, it is desired to satisfy the two requirements of ultra-high reliability and low delay as described above.
また、LTE(第4世代通信方式)等では、効率的なデータ伝送を実現するためにハイブリッド自動再送要求(HARQ:Hybrid Automatic repeat request)の技術が採用されている。HARQでは、受信装置は、例えばLTE等のレイヤ1プロトコル階層の処理において正しく復号できなかったデータについての再送を、送信装置側に要求する。送信装置側は、データの再送が要求されると、受信装置側において正しく復号できなかった元のデータの再送要求に対応する再送データを送信する。受信装置側では、正しく復号できなかったデータと、再送データとを組み合わせて、データの復号が行われる。
Moreover, in LTE (4th generation communication system) and the like, a hybrid automatic repeat request (HARQ) technology is adopted to realize efficient data transmission. In HARQ, the receiving apparatus requests the transmitting apparatus side to retransmit the data that could not be correctly decoded in the processing of the layer 1 protocol layer such as LTE. When retransmission of data is requested, the transmission device transmits retransmission data corresponding to the original data retransmission request that could not be correctly decoded on the reception device side. On the receiving device side, data decoding is performed by combining data that could not be correctly decoded and retransmission data.
HARQは、再送回数を大きく設定することで信頼度を上げることが可能だが、再送回数が多くなると遅延も大きくなる。そのため、例えばURLLCのような低遅延が要求されるデータに適用することが困難である。
HARQ can increase the reliability by setting a large number of retransmissions, but the delay increases as the number of retransmissions increases. For this reason, it is difficult to apply to data such as URLLC that requires low delay.
次世代の通信規格に対して要求される信頼度を確保する方法として、あらかじめデータを繰り返し送信する回数を決定し、決定した回数の繰り返し送信を実行するレペティションや開ループHARQの方法が有効であること報告されている(非特許文献20)。
As a method for ensuring the reliability required for the next-generation communication standard, a repetition or open loop HARQ method in which the number of times data is repeatedly transmitted is determined in advance and the determined number of times of repeated transmission is executed is effective. (Non-patent document 20).
ところで、これらのレペティションや開ループHARQでは、データ送信に適切な繰り返し送信回数を送信側から受信側へ通知される。そのため、データに付随する制御信号のオーバーヘッドが増加するという問題がある。
By the way, in these repetition and open loop HARQ, the number of repeated transmissions appropriate for data transmission is notified from the transmission side to the reception side. Therefore, there is a problem that the overhead of the control signal accompanying the data increases.
開示の技術は、かかる点に鑑みてなされたものであって、オーバーヘッドの増加を低減することができる端末装置、基地局装置、無線通信システム及び無線通信方法を提供することを目的とする。
The disclosed technology has been made in view of the above points, and an object thereof is to provide a terminal device, a base station device, a wireless communication system, and a wireless communication method capable of reducing an increase in overhead.
本願が開示する端末装置は、1つの態様において、繰り返して送信されたデータと当該データの変調方式及び符号化率を示す制御情報とを受信する受信部と、前記受信部によって受信された制御情報を復号する第1復号部と、前記第1復号部によって復号された制御情報に割り当てられたリソースサイズと、当該制御情報が示す前記データの変調方式及び符号化率とに基づいて、前記データが繰り返して送信された繰り返し回数を取得する取得部と、前記取得部によって取得された繰り返し回数に基づいて、前記受信部によって受信されたデータを復号する第2復号部とを有する。
In one aspect, a terminal device disclosed in the present application is a receiving unit that receives repeatedly transmitted data and control information indicating a modulation scheme and a coding rate of the data, and the control information received by the receiving unit. Based on the first decoding unit that decodes the resource, the resource size assigned to the control information decoded by the first decoding unit, and the modulation scheme and coding rate of the data indicated by the control information. An acquisition unit that acquires the number of repetitions transmitted repeatedly, and a second decoding unit that decodes data received by the reception unit based on the number of repetitions acquired by the acquisition unit.
本願が開示する端末装置、基地局装置、無線通信システム及び無線通信方法の1つの態様によれば、オーバーヘッドの増加を低減することができるという効果を奏する。
According to one aspect of the terminal device, the base station device, the wireless communication system, and the wireless communication method disclosed in the present application, there is an effect that an increase in overhead can be reduced.
以下、本願が開示する端末装置、基地局装置、無線通信システム及び無線通信方法の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、以下の実施の形態は、上記非特許文献に記載されたシステムに適用可能であるため、上記非特許文献の内容を引用によりここに含める。
Hereinafter, embodiments of a terminal device, a base station device, a wireless communication system, and a wireless communication method disclosed in the present application will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, since the following embodiment is applicable to the system described in the said nonpatent literature, the content of the said nonpatent literature is included here by reference.
図1は、一実施の形態に係る無線通信システムの構成を示す図である。図1に示す無線通信システムは、基地局装置100と複数のユーザ端末装置200とを有する。
FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to an embodiment. The radio communication system illustrated in FIG. 1 includes a base station device 100 and a plurality of user terminal devices 200.
基地局装置100は、例えばeMBBデータ及びURLLCデータなどの送信データと、下り回線の制御情報(DCI:Downlink Control Information)を含む制御チャネルの情報とをユーザ端末装置200へ送信する。このとき、基地局装置100は、送信データを繰り返し送信する。基地局装置100は、DCIに割り当てるリソースのサイズと送信データの変調方式及び符号化率とに基づいて、データを繰り返して送信する回数を決定する。基地局装置100による送信データの繰り返し送信については、後に詳述する。
The base station apparatus 100 transmits, for example, transmission data such as eMBB data and URLLC data and control channel information including downlink control information (DCI: Downlink Control Information) to the user terminal apparatus 200. At this time, base station apparatus 100 repeatedly transmits transmission data. Base station apparatus 100 determines the number of times data is repeatedly transmitted based on the size of resources allocated to DCI, the modulation scheme and coding rate of transmission data. The repeated transmission of transmission data by the base station apparatus 100 will be described in detail later.
ユーザ端末装置200は、基地局装置100から送信されるeMBBデータ及びURLLCデータなどのデータとDCIを含む制御チャネルの情報とを受信する。そして、ユーザ端末装置200は、DCIに割り当てられたリソースのサイズと受信データの変調方式及び符号化率とに基づいて、データが繰り返して送信された回数を算出する。ユーザ端末装置200は、算出された繰り返し回数に従って、繰り返し送信されたデータを復号する。ユーザ端末装置200による受信データの復号については、後に詳述する。
User terminal apparatus 200 receives data such as eMBB data and URLLC data transmitted from base station apparatus 100, and information on the control channel including DCI. Then, the user terminal device 200 calculates the number of times data is repeatedly transmitted based on the size of the resource allocated to DCI, the modulation method and the coding rate of the received data. The user terminal device 200 decodes the repeatedly transmitted data according to the calculated repetition count. Decoding of received data by the user terminal device 200 will be described in detail later.
図2は、一実施の形態に係る基地局装置100の構成を示すブロック図である。図2に示す基地局装置100は、プロセッサ100a、メモリ100b及び無線送受信部100cを有する。
FIG. 2 is a block diagram showing a configuration of base station apparatus 100 according to one embodiment. A base station apparatus 100 illustrated in FIG. 2 includes a processor 100a, a memory 100b, and a wireless transmission / reception unit 100c.
プロセッサ100aは、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、基地局装置100全体を統括制御する。具体的には、プロセッサ100aは、FFT(Fast Fourier Transform:高速フーリエ変換)部110、CQI(Channel Quality Indicator)取得部120、アグリゲーションレベル(以下「AGGRレベル」と略記する)決定部130、送信制御部140、送信データ生成部150、制御チャネル生成部160、多重部170及びIFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部180を有する。
The processor 100a includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or a DSP (Digital Signal Processor), and performs overall control of the base station apparatus 100 as a whole. Specifically, the processor 100a includes an FFT (Fast Fourier Transform) unit 110, a CQI (Channel Quality Indicator) acquisition unit 120, an aggregation level (hereinafter abbreviated as “AGGR level”) determination unit 130, and transmission control. Unit 140, transmission data generation unit 150, control channel generation unit 160, multiplexing unit 170, and IFFT (Inverse Fast Fourier Transform) unit 180.
FFT部110は、無線送受信部100cによって受信された上り回線の信号を高速フーリエ変換し、周波数が異なる複数のサブキャリアごとのデータを取得可能な周波数領域の信号を生成する。
The FFT unit 110 performs fast Fourier transform on the uplink signal received by the wireless transmission / reception unit 100c, and generates a frequency-domain signal that can acquire data for each of a plurality of subcarriers having different frequencies.
CQI取得部120は、FFT部110によって生成された周波数領域の信号から、下り回線の回線品質を示すCQIを取得する。すなわち、ユーザ端末装置200は、下り回線の例えばSINR(Signal to Interference and Noise Ratio:信号対干渉雑音比)を測定し、測定結果に対応するCQIを基地局装置100へフィードバックする。そこで、CQI取得部120は、各ユーザ端末装置200からフィードバックされたCQIを取得する。
The CQI acquisition unit 120 acquires CQI indicating the downlink channel quality from the frequency domain signal generated by the FFT unit 110. That is, the user terminal apparatus 200 measures, for example, SINR (Signal to Interference and Noise Ratio) of the downlink, and feeds back the CQI corresponding to the measurement result to the base station apparatus 100. Therefore, the CQI acquisition unit 120 acquires the CQI fed back from each user terminal device 200.
AGGRレベル決定部130は、DCIに割り当てるリソースのサイズを示すアグリゲーションレベル(AGGRレベル)をCQIに基づいて決定する。具体的には、AGGRレベル決定部130は、下り回線の回線品質が良好なほど小さいサイズのリソースをDCIに割り当て、下り回線の回線品質が不良なほど大きいサイズのリソースをDCIに割り当てる。すなわち、例えば制御チャネルに割り当てるCCE(Control Channel Element:制御チャネルエレメント)の数によってAGGRレベルが表される場合、AGGRレベル決定部130は、下り回線の回線品質が良好なほど少ないCCEをDCIに割り当て、下り回線の回線品質が不良なほど多くのCCEをDCIに割り当てる。
The AGGR level determination unit 130 determines an aggregation level (AGGR level) indicating the size of a resource to be allocated to DCI based on the CQI. Specifically, the AGGR level determination unit 130 assigns a smaller size resource to the DCI as the downlink channel quality is better, and assigns a larger size resource to the DCI as the downlink channel quality is lower. That is, for example, when the AGGR level is represented by the number of CCEs (Control Channel Elements) assigned to the control channels, the AGGR level determination unit 130 assigns fewer CCEs to the DCI as the downlink channel quality is better. More CCEs are assigned to DCI as the downlink channel quality is poorer.
AGGRレベル決定部130は、DCIのAGGRレベルを決定する際、ユーザ端末装置200において受信されるDCIが所定のエラーレートを満たすようにAGGRレベルを決定する。すなわち、例えば図3に示すように、CQIによって示される下り回線のSINRと満たすべき目標のエラーレートErとに応じて、ユーザ端末装置200ごとのAGGRレベルが決定される。
The AGGR level determination unit 130 determines the AGGR level so that the DCI received in the user terminal device 200 satisfies a predetermined error rate when determining the DCGR AGGR level. That is, for example, as shown in FIG. 3, the AGGR level for each user terminal apparatus 200 is determined according to the downlink SINR indicated by the CQI and the target error rate Er to be satisfied.
図3に示す例では、例えばSINRがS1からS2の範囲では、エラーレートを目標エラーレートEr未満とするために、AGGRレベル301が選択される。また、例えばSINRがS2からS3の範囲では、AGGRレベル302が選択され、例えばSINRがS3からS4の範囲では、AGGRレベル303が選択され、例えばSINRがS4以上の範囲では、AGGRレベル304が選択される。換言すれば、図3は、AGGRレベル301を採用する際に必要となる最小のSINRである所要SINRがS1であることを示している。同様に、AGGRレベル302を採用する際の所要SINRはS2であり、AGGRレベル303を採用する際の所要SINRはS3であり、AGGRレベル304を採用する際の所要SINRはS4である。
In the example shown in FIG. 3, for example, in the range of SINR from S1 to S2, the AGGR level 301 is selected in order to make the error rate less than the target error rate Er. For example, when the SINR is in the range of S2 to S3, the AGGR level 302 is selected. For example, when the SINR is in the range of S3 to S4, the AGGR level 303 is selected. Is done. In other words, FIG. 3 shows that the required SINR, which is the minimum SINR required when adopting the AGGR level 301, is S1. Similarly, the required SINR when employing the AGGR level 302 is S2, the required SINR when employing the AGGR level 303 is S3, and the required SINR when employing the AGGR level 304 is S4.
送信制御部140は、ユーザ端末装置200へ送信する送信データのMCS(Modulation Coding Scheme)をCQIに基づいて選択する。すなわち、送信制御部140は、ユーザ端末装置200ごとの送信データの変調方式及び符号化率をCQIに基づいて決定する。具体的には、送信制御部140は、下り回線の回線品質が良好なほど変調方式の変調多値数を大きくするとともに符号化率を大きくし、下り回線の回線品質が不良なほど変調方式の変調多値数を小さくするとともに符号化率を小さくする。したがって、送信制御部140は、下り回線の回線品質が良好であれば、例えば256QAM(Quadrature Amplitude Modulation)又は64QAMなどの変調多値数が大きい変調方式を用い、誤り訂正のための冗長ビットを少なくすると決定する。また、送信制御部140は、下り回線の回線品質が不良であれば、例えばBPSK(Binary Phase Shift Keying)又はQPSK(Quadrature Phase Shift Keying)などの変調多値数が小さい変調方式を用い、冗長ビットを多くすると決定する。
The transmission control unit 140 selects MCS (Modulation Coding Scheme) of transmission data to be transmitted to the user terminal device 200 based on the CQI. That is, the transmission control unit 140 determines the transmission data modulation scheme and coding rate for each user terminal device 200 based on the CQI. Specifically, the transmission control unit 140 increases the modulation multi-value number and the coding rate as the downlink channel quality is better, and increases the coding rate as the downlink channel quality is worse. The modulation multi-level number is reduced and the coding rate is reduced. Therefore, if the channel quality of the downlink is good, the transmission control unit 140 uses a modulation scheme having a large modulation multi-level number such as 256QAM (Quadrature Amplitude Modulation) or 64QAM, and reduces redundant bits for error correction. Then decide. Further, if the downlink channel quality is poor, the transmission control unit 140 uses a modulation scheme with a small modulation multi-level number such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying), and redundant bits. Decide to increase.
ただし、送信制御部140は、CQIによって示される回線品質よりも良好な回線品質に対応するMCSを選択する。すなわち、送信制御部140は、実際のSINRよりも良好なSINRに対応する変調方式及び符号化率を選択する。換言すれば、送信制御部140は、CQIに対応する変調方式よりも変調多値数が大きい変調方式を選択し、CQIに対応する符号化率よりも大きい符号化率を選択する。
However, the transmission control unit 140 selects an MCS corresponding to channel quality better than the channel quality indicated by the CQI. That is, the transmission control unit 140 selects a modulation scheme and coding rate corresponding to SINR better than the actual SINR. In other words, the transmission control unit 140 selects a modulation scheme having a larger modulation multi-value number than the modulation scheme corresponding to CQI, and selects a coding rate larger than the coding rate corresponding to CQI.
そして、送信制御部140は、選択したMCSが必要とするデータの所要SINRとDCIのAGGRレベルが必要とするDCIの所要SINRとの差分に基づいて、データの繰り返し送信の回数を決定する。具体的には、送信制御部140は、選択したMCSが必要とするデータの所要SINRをγddBとし、DCIのAGGRレベルが必要とするDCIの所要SINRをγcdBとした場合、繰り返し回数nを下記の式(1)によって算出する。
Then, transmission control section 140 determines the number of repeated data transmissions based on the difference between the required SINR of the data required by the selected MCS and the required SINR of the DCI required by the DCI AGGR level. Specifically, the transmission control unit 140 repeats the number of repetitions when the required SINR of the data required by the selected MCS is γ d dB and the required SINR of the DCI required by the DCI AGGR level is γ c dB. n is calculated by the following formula (1).
ただし、式(1)において、ceil(x)はxより大きい最小の整数を示し、aは所定の係数(例えば3又は6)である。また、選択したMCSが必要とするデータの所要SINR(γd)とは、送信データの変調方式及び符号化率を用いた場合に所定のエラーレートを満たすことができる最小のSINRのことである。上述したように、送信制御部140は、CQIによって示される回線品質よりも良好な回線品質に対応するMCSを選択するため、データの所要SINR(γd)は、実際のSINRよりも良好なSINRである。一方、DCIのAGGRレベルが必要とするDCIの所要SINR(γc)とは、DCIのAGGRレベルを採用する場合に所定のエラーレートを満たすことができる最小のSINRのことである。上述したように、AGGRレベル決定部130は、CQIによって示される回線品質に対応するAGGRレベルを選択するため、DCIの所要SINR(γc)は、実際のSINRを反映するSINRである。
In Equation (1), ceil (x) is the smallest integer greater than x, and a is a predetermined coefficient (for example, 3 or 6). The required SINR (γ d ) of data required by the selected MCS is the minimum SINR that can satisfy a predetermined error rate when the transmission data modulation scheme and coding rate are used. . As described above, since the transmission control unit 140 selects an MCS corresponding to channel quality better than the channel quality indicated by the CQI, the required SINR (γ d ) of the data is better than the actual SINR. It is. On the other hand, the DCI required SINR (γ c ) required by the DCI AGGR level is the minimum SINR that can satisfy a predetermined error rate when the DCI AGGR level is adopted. As described above, since the AGGR level determination unit 130 selects the AGGR level corresponding to the channel quality indicated by the CQI, the required SINR (γ c ) of DCI is an SINR that reflects the actual SINR.
したがって、上式(1)に示したように、データのMCSの所要SINR(γd)と実際のSINR(γc)との差が大きいほど、繰り返し回数nが大きくなる。そして、データを繰り返し送信することにより、実際よりも良好な回線品質に対応するMCSを用いてデータを送信しても、所定のエラーレートが満たされるようになる。
Therefore, as shown in the above equation (1), the larger the difference between the required SINR (γ d ) of the data MCS and the actual SINR (γ c ), the larger the number of repetitions n. By repeatedly transmitting data, a predetermined error rate is satisfied even when data is transmitted using MCS corresponding to better line quality than actual.
送信データ生成部150は、送信制御部140によって決定されたMCSを用いて送信データを生成する。すなわち、送信データ生成部150は、送信制御部140によって選択された符号化率で送信情報を符号化し、送信制御部140によって選択された変調方式で変調する。
The transmission data generation unit 150 generates transmission data using the MCS determined by the transmission control unit 140. That is, transmission data generating section 150 encodes transmission information at the coding rate selected by transmission control section 140 and modulates it with the modulation scheme selected by transmission control section 140.
制御チャネル生成部160は、送信制御部140によって決定されたMCSをユーザ端末装置200へ通知するためのDCIを含む制御チャネルの情報を生成する。このとき、制御チャネル生成部160は、AGGRレベル決定部130によって決定されたAGGRレベルのリソースサイズのDCIを生成する。したがって、制御チャネル生成部160は、下り回線の回線品質が良好なほど小さいリソースサイズのDCIを生成し、下り回線の回線品質が不良なほど大きいリソースサイズのDCIを生成する。なお、制御チャネル生成部160は、DCIの他にも、例えばユーザ端末装置200が下り回線の回線品質の測定に用いる参照信号を生成しても良い。ただし、制御チャネル生成部160は、送信データの繰り返し送信回数を示す制御情報は生成しない。これは、送信データの繰り返し送信回数は、送信データのMCSとDCIのAGGRレベルとから算出可能であり、明示的に制御情報としてユーザ端末装置200へ通知することが不要だからである。送信データの繰り返し送信回数を示す制御情報が生成されないため、オーバーヘッドの増加を低減することができる。
The control channel generation unit 160 generates control channel information including DCI for notifying the user terminal apparatus 200 of the MCS determined by the transmission control unit 140. At this time, the control channel generation unit 160 generates DCI of the resource size of the AGGR level determined by the AGGR level determination unit 130. Therefore, the control channel generator 160 generates a DCI having a smaller resource size as the downlink channel quality is better, and generates a DCI having a larger resource size as the downlink channel quality is lower. In addition to the DCI, the control channel generation unit 160 may generate, for example, a reference signal used by the user terminal device 200 for measurement of downlink channel quality. However, the control channel generation unit 160 does not generate control information indicating the number of times transmission data is repeatedly transmitted. This is because the number of repeated transmissions of transmission data can be calculated from the MCS of transmission data and the AGGR level of DCI, and it is not necessary to explicitly notify the user terminal device 200 as control information. Since control information indicating the number of times transmission data is repeatedly transmitted is not generated, an increase in overhead can be reduced.
多重部170は、送信データ生成部150によって生成された送信データと制御チャネル生成部160によって生成された制御情報とを多重する。具体的には、多重部170は、例えばサブフレームごとの制御チャネル領域にDCIを含む制御情報を配置し、データチャネル領域に送信データを配置する。このとき、多重部170は、送信制御部140によって決定された繰り返し回数だけ送信データを繰り返して配置する。すなわち、例えば繰り返し回数が2である場合には、多重部170は、2つの連続するサブフレームのデータチャネル領域に同一の送信データを配置する。
The multiplexing unit 170 multiplexes the transmission data generated by the transmission data generation unit 150 and the control information generated by the control channel generation unit 160. Specifically, for example, multiplexing section 170 arranges control information including DCI in the control channel area for each subframe, and arranges transmission data in the data channel area. At this time, the multiplexing unit 170 repeatedly arranges transmission data for the number of repetitions determined by the transmission control unit 140. That is, for example, when the number of repetitions is 2, multiplexing section 170 arranges the same transmission data in the data channel region of two consecutive subframes.
多重部170が送信データを繰り返して配置する方法には、以下の2通りがある。すなわち、例えば図4の上図に示すように、多重部170は、1つの制御チャネル領域410にDCI411を配置し、2つのデータチャネル領域420に同一の送信データ421、422を配置しても良い。この場合、DCI411は、繰り返して配置されるデータ421、422のMCSを示す。このため、繰り返して配置されるデータ421、422の変調方式及び符号化率は変更されない。
There are the following two methods for the multiplexing unit 170 to repeatedly arrange transmission data. That is, for example, as illustrated in the upper diagram of FIG. 4, the multiplexing unit 170 may arrange DCI 411 in one control channel region 410 and arrange the same transmission data 421 and 422 in two data channel regions 420. . In this case, the DCI 411 indicates the MCS of the data 421 and 422 that are repeatedly arranged. For this reason, the modulation method and coding rate of the data 421 and 422 repeatedly arranged are not changed.
一方、例えば図4の下図に示すように、多重部170は、2つの制御チャネル領域410にそれぞれDCI431、441を配置し、2つのデータチャネル領域420に同一の送信データ441、442を配置しても良い。この場合、DCI431は、データ441のMCSを示し、DCI432は、データ442のMCSを示す。このため、繰り返して配置されるデータ441、442の変調方式及び符号化率は変更されても良い。図4に示したいずれの送信データの配置においても、互いに対応するDCIと送信データとは、同一又は近接する周波数帯域に配置されるのが望ましい。
On the other hand, for example, as shown in the lower diagram of FIG. 4, the multiplexing unit 170 arranges DCIs 431 and 441 in the two control channel regions 410 and arranges the same transmission data 441 and 442 in the two data channel regions 420, respectively. Also good. In this case, DCI 431 indicates the MCS of data 441, and DCI 432 indicates the MCS of data 442. For this reason, the modulation method and coding rate of the data 441 and 442 that are repeatedly arranged may be changed. In any of the transmission data arrangements shown in FIG. 4, it is desirable that the DCI and the transmission data corresponding to each other are arranged in the same or close frequency bands.
IFFT部180は、多重部170によって多重された送信データ及び制御情報を逆高速フーリエ変換し、時間領域の送信信号を生成する。
The IFFT unit 180 performs inverse fast Fourier transform on the transmission data and control information multiplexed by the multiplexing unit 170 to generate a time-domain transmission signal.
メモリ100bは、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ100aによって処理が実行される際に、種々の情報を記憶する。
The memory 100b includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores various types of information when processing is executed by the processor 100a.
無線送受信部100cは、IFFT部180によって生成された送信信号に対して、例えばD/A(Digital/Analog)変換及びアップコンバートなどの無線送信処理を施す。そして、無線送受信部100cは、アンテナを介して送信信号を送信する。また、無線送受信部100cは、アンテナを介して受信した上り回線の信号に対して、例えばダウンコンバート及びA/D(Analog/Digital)変換などの無線受信処理を施す。
The wireless transmission / reception unit 100c performs wireless transmission processing such as D / A (Digital / Analog) conversion and up-conversion on the transmission signal generated by the IFFT unit 180. And the radio | wireless transmission / reception part 100c transmits a transmission signal via an antenna. Also, the radio transmission / reception unit 100c performs radio reception processing such as down-conversion and A / D (Analog / Digital) conversion on the uplink signal received via the antenna.
次いで、上記のように構成された基地局装置100による送信方法について、図5に示すフロー図を参照しながら説明する。
Next, a transmission method by the base station apparatus 100 configured as described above will be described with reference to the flowchart shown in FIG.
基地局装置100と無線通信するユーザ端末装置200は、下り回線のSINRを測定し、測定結果に対応するCQIを基地局装置100へフィードバックする。このCQIを含む上り回線の信号は、基地局装置100のアンテナによって受信され、無線送受信部100cを経由してプロセッサ100aへ入力される。そして、FFT部110によって、受信信号が高速フーリエ変換され、CQI取得部120によって、受信信号に含まれるCQIが取得される(ステップS101)。
The user terminal device 200 that wirelessly communicates with the base station device 100 measures the SINR of the downlink, and feeds back the CQI corresponding to the measurement result to the base station device 100. The uplink signal including the CQI is received by the antenna of the base station apparatus 100 and is input to the processor 100a via the radio transmission / reception unit 100c. Then, the FFT unit 110 performs fast Fourier transform on the received signal, and the CQI acquisition unit 120 acquires the CQI included in the received signal (step S101).
CQIは、AGGRレベル決定部130へ通知され、DCIに割り当てるリソースサイズを示すAGGRレベルが決定される(ステップS102)。具体的には、下り回線の回線品質が良好なほど、DCIのAGGRレベルをリソースサイズが小さいAGGRレベルとすることが決定され、下り回線の回線品質が不良なほど、DCIのAGGRレベルをリソースサイズが大きいAGGRレベルとすることが決定される。ここで決定されるAGGRレベルは、ユーザ端末装置200から報告される下り回線の実際の回線品質を反映する。
The CQI is notified to the AGGR level determining unit 130, and the AGGR level indicating the resource size assigned to the DCI is determined (step S102). Specifically, it is determined that the AGGR level of DCI is set to an AGGR level having a smaller resource size as the downlink channel quality is better, and the DCI AGGR level is set to the resource size as the downlink channel quality is lower. Is determined to be a large AGGR level. The AGGR level determined here reflects the actual channel quality of the downlink reported from the user terminal device 200.
また、CQIは、送信制御部140へも通知され、ユーザ端末装置200へ送信する送信データのMCSが決定される(ステップS103)。具体的には、下り回線の回線品質が良好なほど、変調方式の変調多値数を大きくするとともに符号化率を大きくすることが決定され、下り回線の回線品質が不良なほど、変調方式の変調多値数を小さくするとともに符号化率を小さくすることが決定される。
The CQI is also notified to the transmission control unit 140, and the MCS of the transmission data to be transmitted to the user terminal device 200 is determined (step S103). Specifically, it is determined that the better the downlink channel quality is, the larger the modulation level of the modulation scheme and the higher the coding rate. The worse the downlink channel quality, It is determined to reduce the modulation multi-level number and the coding rate.
ただし、MCSの決定に際しては、ユーザ端末装置200から報告される下り回線の実際の回線品質よりも良好な回線品質に対応するMCSが選択される。すなわち、CQIに対応する変調方式よりも変調多値数が大きい変調方式が選択され、CQIに対応する符号化率よりも大きい符号化率が選択される。したがって、選択されたMCSを用いるための所要SINRは、上述したAGGRレベルを用いるための所要SINRよりも高い。なお、ステップS102におけるAGGRレベルの決定と、ステップS103におけるMCSの決定とは、どちらが先に実行されても良く、同時に実行されても良い。
However, when determining the MCS, an MCS corresponding to a better channel quality than the actual downlink channel quality reported from the user terminal device 200 is selected. That is, a modulation scheme having a larger modulation multi-value number than the modulation scheme corresponding to CQI is selected, and a coding rate larger than the coding rate corresponding to CQI is selected. Therefore, the required SINR for using the selected MCS is higher than the required SINR for using the AGGR level described above. Note that either the determination of the AGGR level in step S102 or the determination of MCS in step S103 may be performed first or may be performed simultaneously.
AGGRレベル及びMCSが決定されると、送信制御部140によって、送信データを繰り返して送信する繰り返し回数が決定される(ステップS104)。具体的には、MCSを用いるためのデータの所要SINRとAGGRレベルを用いるためのDCIの所要SINRとから、上式(1)によって繰り返し回数が決定される。決定された繰り返し回数は、決定されたMCSとともに送信データ生成部150へ通知される。また、決定されたAGGRレベル及びMCSは、制御チャネル生成部160へも通知される。
When the AGGR level and MCS are determined, the transmission control unit 140 determines the number of repetitions for repeatedly transmitting the transmission data (step S104). Specifically, the number of repetitions is determined by the above equation (1) from the required SINR of the data for using the MCS and the required SINR of the DCI for using the AGGR level. The determined number of repetitions is notified to transmission data generation section 150 together with the determined MCS. Further, the determined AGGR level and MCS are also notified to the control channel generation unit 160.
そして、制御チャネル生成部160によって、送信データのMCSを通知するためのDCIが生成される(ステップS105)。DCIは、送信データのMCSの情報に対して、AGGRレベル決定部130によって決定されたAGGRレベルのリソースが割り当てられることにより生成される。したがって、下り回線の回線品質が良好であれば小さいリソースサイズのDCIが生成され、下り回線の回線品質が不良であれば大きいリソースサイズのDCIが生成される。
Then, the control channel generation unit 160 generates DCI for notifying the transmission data MCS (step S105). The DCI is generated by assigning an AGGR level resource determined by the AGGR level determination unit 130 to the MCS information of the transmission data. Therefore, if the channel quality of the downlink is good, DCI having a small resource size is generated, and if the channel quality of the downlink is poor, DCI having a large resource size is generated.
なお、制御チャネル生成部160によって、DCI以外の制御情報が生成されても良い。ただし、送信データが送信される繰り返し回数を示す制御情報は生成されず、繰り返し回数が明示的な制御情報でユーザ端末装置200へ通知されることがない。これにより、送信データが繰り返し送信される場合でも、繰り返し回数を示す制御情報によるオーバーヘッドの増加が低減される。
Note that control information other than DCI may be generated by the control channel generation unit 160. However, control information indicating the number of repetitions of transmission data is not generated, and the number of repetitions is not notified to the user terminal device 200 with explicit control information. Thereby, even when transmission data is repeatedly transmitted, an increase in overhead due to control information indicating the number of repetitions is reduced.
また、送信データ生成部150によって、決定されたMCSが用いられて送信データが生成される(ステップS106)。すなわち、決定された符号化率で送信情報が符号化され、決定された変調方式で送信情報が変調される。なお、繰り返し送信される送信データのMCSが繰り返しごとに変更される場合には、同一の送信情報から、それぞれのMCSを用いた送信データが生成される。また、ステップS104における繰り返し回数の決定と、ステップS105におけるDCI生成とは、どちらが先に実行されても良く、同時に実行されても良い。さらに、ステップS104における繰り返し回数の決定とステップS106における送信データ生成とが先に実行され、その後にステップS105におけるDCI生成が実行されても良い。
In addition, the transmission data generation unit 150 generates transmission data using the determined MCS (step S106). That is, transmission information is encoded with the determined coding rate, and the transmission information is modulated with the determined modulation scheme. When the MCS of transmission data that is repeatedly transmitted is changed for each repetition, transmission data using each MCS is generated from the same transmission information. Further, either the determination of the number of repetitions in step S104 or the DCI generation in step S105 may be executed first or may be executed simultaneously. Furthermore, the determination of the number of repetitions in step S104 and the transmission data generation in step S106 may be executed first, and then the DCI generation in step S105 may be executed.
DCIを含む制御情報と送信データとは、多重部170によって多重される(ステップS107)。具体的には、例えばサブフレームの制御チャネル領域にDCIを含む制御情報が配置され、データチャネル領域に送信データが配置される。このとき、送信データが繰り返し回数だけ繰り返して配置される。すなわち、繰り返し回数と同数のサブフレームのデータチャネル領域に同一の送信データが配置される。これらの送信データのMCSは、同一でも異なっていても良く、各サブフレームの送信データのMCSが異なる場合には、サブフレーム内の制御チャネル領域にそれぞれDCIが配置される。
The control information including DCI and transmission data are multiplexed by the multiplexing unit 170 (step S107). Specifically, for example, control information including DCI is arranged in the control channel area of the subframe, and transmission data is arranged in the data channel area. At this time, the transmission data is repeatedly arranged by the number of repetitions. That is, the same transmission data is arranged in the data channel region of the same number of subframes as the number of repetitions. The MCS of these transmission data may be the same or different. When the MCS of the transmission data in each subframe is different, DCI is arranged in the control channel region in each subframe.
制御情報及び送信データが多重されて生成された送信信号は、IFFT部180によって逆高速フーリエ変換され(ステップS108)、時間領域の送信信号が生成される。この送信信号は、無線送受信部100cによって無線送信処理が施され(ステップS109)、アンテナを介してユーザ端末装置200へ送信される(ステップS110)。
The transmission signal generated by multiplexing the control information and the transmission data is subjected to inverse fast Fourier transform by the IFFT unit 180 (step S108), and a time domain transmission signal is generated. This transmission signal is subjected to wireless transmission processing by the wireless transmission / reception unit 100c (step S109), and is transmitted to the user terminal device 200 via the antenna (step S110).
このように、基地局装置100は、送信データのMCSに対応するデータの所要SINRとDCIのAGGRレベルに対応するDCIの所要SINRとから送信データの繰り返し送信回数を決定し、送信データを繰り返し送信する。また、基地局装置100は、繰り返し送信回数を示す制御情報を生成せず、制御情報による繰り返し送信回数の通知をしない。このため、制御情報によるオーバーヘッドの増加を低減することができる。
In this way, base station apparatus 100 determines the number of repeated transmissions of transmission data from the required SINR of data corresponding to the MCS of the transmission data and the required SINR of DCI corresponding to the AGGR level of DCI, and repeatedly transmits the transmission data. To do. Moreover, the base station apparatus 100 does not generate control information indicating the number of repeated transmissions, and does not notify the number of repeated transmissions based on the control information. For this reason, an increase in overhead due to control information can be reduced.
次に、一実施の形態に係るユーザ端末装置200について説明する。図6は、ユーザ端末装置200の構成を示すブロック図である。図6に示すユーザ端末装置200は、無線送受信部200a、プロセッサ200b及びメモリ200cを有する。
Next, the user terminal device 200 according to an embodiment will be described. FIG. 6 is a block diagram illustrating a configuration of the user terminal device 200. The user terminal device 200 illustrated in FIG. 6 includes a wireless transmission / reception unit 200a, a processor 200b, and a memory 200c.
無線送受信部200aは、アンテナを介して信号を受信し、受信信号に対して、例えばダウンコンバート及びA/D変換などの無線受信処理を施す。そして、無線送受信部200aは、受信信号をプロセッサ200bへ出力する。また、無線送受信部200aは、CQIを含む上り回線の信号に対して、例えばD/A変換及びアップコンバートなどの無線送信処理を施し、アンテナを介して送信する。
The wireless transmission / reception unit 200a receives a signal via an antenna and performs wireless reception processing such as down-conversion and A / D conversion on the received signal. Then, the radio transmission / reception unit 200a outputs the received signal to the processor 200b. The radio transmission / reception unit 200a performs radio transmission processing such as D / A conversion and up-conversion on an uplink signal including CQI and transmits the signal via an antenna.
プロセッサ200bは、例えばCPU、FPGA又はDSPなどを備え、ユーザ端末装置200全体を統括制御する。具体的には、プロセッサ200bは、FFT部210、制御チャネル復号部220、繰り返し回数算出部230、受信データ復号部240、CQI生成部250及びIFFT部260を有する。
The processor 200b includes, for example, a CPU, FPGA, DSP, or the like, and performs overall control of the entire user terminal device 200. Specifically, the processor 200b includes an FFT unit 210, a control channel decoding unit 220, an iterative number calculation unit 230, a reception data decoding unit 240, a CQI generation unit 250, and an IFFT unit 260.
FFT部210は、無線送受信部200aによって受信された受信信号を高速フーリエ変換し、周波数領域の受信信号を生成する。受信信号には、ユーザ端末装置200宛ての送信データとDCIを含む制御情報とが含まれる。
The FFT unit 210 performs a fast Fourier transform on the reception signal received by the wireless transmission / reception unit 200a to generate a frequency domain reception signal. The received signal includes transmission data addressed to the user terminal device 200 and control information including DCI.
制御チャネル復号部220は、受信信号の制御チャネル領域に配置されたDCIを復調及び復号する。このとき、制御チャネル復号部220は、DCIのAGGRレベルをブラインド検出し、DCIを復調及び復号する。すなわち、制御チャネル復号部220は、DCIに割り当てられる可能性があるすべてのリソースサイズについてDCIの復号を試行し、ユーザ端末装置200のDCIのAGGRレベルを検出する。そして、制御チャネル復号部220は、検出したAGGRレベルのDCIを復号することにより、ユーザ端末装置200宛ての送信データのMCSの情報を取得する。
The control channel decoding unit 220 demodulates and decodes the DCI arranged in the control channel region of the received signal. At this time, the control channel decoding unit 220 blindly detects the DCGR AGGR level, and demodulates and decodes the DCI. That is, control channel decoding section 220 attempts to decode DCI for all resource sizes that may be assigned to DCI, and detects the DCI AGGR level of user terminal apparatus 200. Then, the control channel decoding unit 220 acquires MCS information of transmission data addressed to the user terminal apparatus 200 by decoding the detected AGGR level DCI.
繰り返し回数算出部230は、DCIによって通知されたMCSとDCIのAGGRレベルとに基づいて、送信データが送信された繰り返し回数を算出する。具体的には、繰り返し回数算出部230は、DCIによって通知されたMCSが必要とするデータの所要SINRとDCIのAGGRレベルが必要とするDCIの所要SINRとの差分に基づいて、上式(1)によりデータの繰り返し送信の回数を算出する。このように、DCIによって通知されたMCSの情報とDCIのAGGRレベルとに基づいて繰り返し回数が算出されるため、繰り返し回数を明示的に通知する制御情報がなくても、ユーザ端末装置200は、送信データが送信された繰り返し回数を把握することができる。
The repetition count calculation unit 230 calculates the number of repetitions of transmission data based on the MCS notified by DCI and the DCGR AGGR level. Specifically, the repetition count calculation unit 230 calculates the above formula (1) based on the difference between the required SINR of data required by the MCS notified by DCI and the required SINR of DCI required by the AGGR level of DCI. ) To calculate the number of repeated data transmissions. As described above, since the number of repetitions is calculated based on the MCS information notified by the DCI and the AGGR level of the DCI, the user terminal device 200 can be used without the control information that explicitly notifies the number of repetitions. The number of repetitions of transmission data can be grasped.
受信データ復号部240は、受信信号のデータチャネル領域に配置された受信データを復調及び復号する。このとき、受信データ復号部240は、DCIによって通知されたMCSの情報を用いるとともに、繰り返し回数算出部230によって算出された繰り返し回数だけ繰り返された受信データを復号する。すなわち、受信データ復号部240は、繰り返し送信された同一のデータを用いることにより、受信データの復号精度を向上する。
The reception data decoding unit 240 demodulates and decodes the reception data arranged in the data channel region of the reception signal. At this time, the reception data decoding unit 240 uses the MCS information notified by the DCI and decodes the reception data repeated for the number of repetitions calculated by the repetition number calculation unit 230. That is, the reception data decoding unit 240 improves the decoding accuracy of the reception data by using the same data repeatedly transmitted.
CQI生成部250は、制御チャネル領域に含まれる既知の参照信号を用いて、下り回線のSINRを測定する。そして、CQI生成部250は、測定されたSINRを基地局装置100へ報告するためのCQIを生成する。
The CQI generating unit 250 measures the downlink SINR using a known reference signal included in the control channel region. Then, CQI generating section 250 generates a CQI for reporting the measured SINR to base station apparatus 100.
IFFT部260は、CQI生成部250によって生成されたCQIを含む上り回線の信号を逆高速フーリエ変換し、時間領域の信号を生成する。
The IFFT unit 260 performs inverse fast Fourier transform on the uplink signal including the CQI generated by the CQI generation unit 250 to generate a time domain signal.
次いで、上記のように構成されたユーザ端末装置200による受信方法について、図7に示すフロー図を参照しながら説明する。
Next, a reception method by the user terminal device 200 configured as described above will be described with reference to the flowchart shown in FIG.
基地局装置100から送信された制御情報及び送信データを含む信号は、アンテナを介して無線送受信部200aによって受信される(ステップS201)。そして、受信信号は、無線送受信部200aによって無線受信処理が施され(ステップS202)、プロセッサ200bへ入力される。
The signal including the control information and the transmission data transmitted from the base station apparatus 100 is received by the radio transmission / reception unit 200a via the antenna (step S201). The received signal is subjected to wireless reception processing by the wireless transmission / reception unit 200a (step S202) and input to the processor 200b.
受信信号は、FFT部210によって高速フーリエ変換され(ステップS203)、制御チャネル復号部220によって、受信信号の制御チャネル領域に配置されたDCIが復調及び復号される(ステップS204)。DCIの復調及び復号は、DCIに割り当てられる可能性があるすべてのリソースサイズに対する復号を試行するブラインド検出によって実行される。すなわち、DCIのAGGRレベルが例えば2個のCCE、4個のCCE、8個のCCE及び16個のCCEの4通りから選択されている場合、これらの4通りのCCEの数それぞれに対して復調及び復号が試行される。この結果、いずれかの数のCCEの復号結果から送信データのMCSの情報を含むDCIが得られると、DCIのAGGRレベルが検出されたことになる。
The received signal is fast Fourier transformed by the FFT unit 210 (step S203), and the DCI arranged in the control channel region of the received signal is demodulated and decoded by the control channel decoding unit 220 (step S204). The demodulation and decoding of DCI is performed by blind detection that attempts decoding for all resource sizes that may be assigned to DCI. That is, when the AGGR level of DCI is selected from 4 types of 2 CCEs, 4 CCEs, 8 CCEs, and 16 CCEs, for example, demodulation is performed for each of these 4 types of CCEs. And decryption is attempted. As a result, when DCI including MCS information of transmission data is obtained from the decoding results of any number of CCEs, the AGGR level of DCI is detected.
DCIが示すMCSの情報とDCIのAGGRレベルとは、繰り返し回数算出部230へ通知され、DCIによって通知されたMCSとDCIのAGGRレベルとに基づいて、データが繰り返し送信された繰り返し回数が算出される(ステップS205)。すなわち、DCIによって通知されたMCSが必要とするデータの所要SINRとDCIのAGGRレベルが必要とするDCIの所要SINRとの差分に基づいて、上式(1)によりデータの繰り返し送信の回数が算出される。このように繰り返し回数が算出されるため、繰り返し回数を明示的に通知する制御情報は不要であり、オーバーヘッドの増加が低減される。
The MCS information indicated by the DCI and the AGGR level of the DCI are notified to the repetition number calculation unit 230, and the number of repetitions in which data is repeatedly transmitted is calculated based on the MCS notified by the DCI and the AGGR level of the DCI. (Step S205). That is, based on the difference between the required SINR of the data required by the MCS notified by the DCI and the required SINR of the DCI required by the DCI AGGR level, the number of repeated data transmissions is calculated by the above equation (1). Is done. Since the number of repetitions is calculated in this way, control information that explicitly notifies the number of repetitions is unnecessary, and an increase in overhead is reduced.
算出された繰り返し回数は、受信データ復号部240へ通知され、受信データ復号部240によって、DCIによって通知されたMCSの情報と繰り返し回数が用いられて、受信データが復調及び復号される(ステップS206)。すなわち、DCIによって通知された変調方式に対応する復調が実行されるとともに、DCIによって通知された符号化率に対応する復号が実行される。そして、繰り返し送信されたデータが復号されることにより、復号精度を向上することができる。
The calculated repetition count is notified to the reception data decoding section 240, and the reception data decoding section 240 uses the MCS information notified by DCI and the repetition count to demodulate and decode the reception data (step S206). ). That is, demodulation corresponding to the modulation scheme notified by DCI is executed, and decoding corresponding to the coding rate notified by DCI is executed. And decoding accuracy can be improved by decoding repeatedly transmitted data.
以上のように、本実施の形態によれば、送信データのMCSが必要とするデータの所要SINRとDCIのAGGRレベルが必要とするDCIの所要SINRとに基づいて、データが繰り返し送信される繰り返し回数を決定する。そして、ユーザ端末装置は、2つの所要SINRに基づいて、繰り返し回数を算出するため、繰り返し回数を明示的に通知する制御情報が無くても繰り返し送信されたデータの復号が可能となる。結果として、制御情報によるオーバーヘッドの増加を低減することができる。
As described above, according to the present embodiment, data is repeatedly transmitted based on the required SINR of data required by the MCS of transmission data and the required SINR of DCI required by the AGGR level of DCI. Determine the number of times. Since the user terminal apparatus calculates the number of repetitions based on the two required SINRs, it is possible to decode the repeatedly transmitted data without the control information that explicitly notifies the number of repetitions. As a result, an increase in overhead due to control information can be reduced.
なお、上記一実施の形態においては、式(1)を用いてデータ送信の繰り返し回数を算出するものとしたが、繰り返し回数は、例えばあらかじめ記憶されたテーブルを参照することにより決定されても良い。具体的には、例えば図8に示すように、データの変調多値数及び符号化率とDCIのAGGRレベルとに対応付けて、データ送信の繰り返し回数を記憶する繰り返し回数テーブルが参照されても良い。
In the above embodiment, the number of repetitions of data transmission is calculated using equation (1). However, the number of repetitions may be determined by referring to a prestored table, for example. . Specifically, for example, as shown in FIG. 8, a repetition count table that stores the number of repetitions of data transmission is referred to in association with the modulation multi-level number and coding rate of data and the AGGR level of DCI. good.
図8に示す繰り返し回数テーブルにおいて、例えば送信データの変調方式がBPSK(変調多値数が2)、符号化率が1/9、かつAGGRレベルが2個のCCEである場合には、繰り返し回数が0である。このため、送信データは1回だけ送信されて、繰り返し送信はされない。また、例えば送信データの変調方式がBPSK(変調多値数が2)、符号化率が1/9であっても、AGGRレベルが16個のCCEである場合には、繰り返し回数が1である。このため、送信データは1回送信された後、もう1回繰り返し送信され、合計2回送信される。
In the repetition count table shown in FIG. 8, for example, when the transmission data modulation scheme is BPSK (modulation multilevel number is 2), the coding rate is 1/9, and the AGGR level is two CCEs, the repetition count Is 0. For this reason, transmission data is transmitted only once and is not repeatedly transmitted. For example, even if the transmission data modulation scheme is BPSK (modulation multilevel number is 2) and the coding rate is 1/9, the number of repetitions is 1 when the AGGR level is 16 CCEs. . For this reason, the transmission data is transmitted once, then repeatedly transmitted once, and transmitted twice in total.
このように、送信データのMCSが同一であっても、DCIのAGGRレベルが大きくなってDCIの所要SINRが小さくなるほど、繰り返し回数は大きくなる。これは、DCIの所要SINRが、CQIによって報告される実際の回線品質を反映しているため、実際の回線品質が不良なほど繰り返し回数を大きくすることに相当する。反対に、DCIのAGGRレベルが同一であっても、送信データの変調多値数及び符号化率が大きくなってデータの所要SINRが大きくなるほど、繰り返し回数は大きくなる。これは、データの所要SINRが、CQIによって報告される実際の回線品質よりも良好な回線品質であるため、MCSが要求する回線品質が良好なほど繰り返し回数を大きくすることに相当する。
Thus, even if the MCS of the transmission data is the same, the number of repetitions increases as the DCGR AGGR level increases and the DCI required SINR decreases. This is equivalent to increasing the number of repetitions as the actual line quality is poor because the required SINR of DCI reflects the actual line quality reported by the CQI. On the contrary, even if the AGGR level of DCI is the same, the number of repetitions increases as the modulation multi-level number and coding rate of transmission data increase and the required SINR of data increases. This is equivalent to increasing the number of repetitions as the channel quality required by the MCS is better because the required SINR of the data is better than the actual channel quality reported by the CQI.
上記のような繰り返し回数テーブルを利用する場合には、基地局装置100及びユーザ端末装置200が同一の繰り返し回数テーブルを保持している。そして、基地局装置100の送信制御部140は、繰り返し回数テーブルを参照することにより、データ送信の繰り返し回数を決定する。また、ユーザ端末装置200の繰り返し回数算出部230は、繰り返し回数テーブルを参照することにより、受信データの繰り返し回数を取得する。これにより、繰り返し回数を明示的に通知する制御情報が送受信されることなく、基地局装置100とユーザ端末装置200が同一の繰り返し回数を決定することができる。したがって、制御情報によるオーバーヘッドの増加を低減することができる。
When using the repetition count table as described above, the base station apparatus 100 and the user terminal apparatus 200 hold the same repetition count table. Then, the transmission control unit 140 of the base station apparatus 100 determines the number of repetitions of data transmission by referring to the repetition number table. Also, the repetition count calculation unit 230 of the user terminal device 200 acquires the repetition count of the received data by referring to the repetition count table. Thereby, the base station apparatus 100 and the user terminal apparatus 200 can determine the same repetition number, without transmitting / receiving the control information which explicitly notifies the repetition number. Therefore, an increase in overhead due to control information can be reduced.
100a、200b プロセッサ
100b、200c メモリ
100c、200a 無線送受信部
110、210 FFT部
120 CQI取得部
130 AGGRレベル決定部
140 送信制御部
150 送信データ生成部
160 制御チャネル生成部
170 多重部
180、260 IFFT部
220 制御チャネル復号部
230 繰り返し回数算出部
240 受信データ復号部
250 CQI生成部 100a, 200b Processor 100b, 200c Memory 100c, 200a Radio transceiver 110, 210 FFT unit 120 CQI acquisition unit 130 AGGR level determination unit 140 Transmission control unit 150 Transmission data generation unit 160 Control channel generation unit 170 Multiplexing unit 180, 260 IFFT unit 220 Control Channel Decoding Unit 230 Repetition Count Calculation Unit 240 Received Data Decoding Unit 250 CQI Generation Unit
100b、200c メモリ
100c、200a 無線送受信部
110、210 FFT部
120 CQI取得部
130 AGGRレベル決定部
140 送信制御部
150 送信データ生成部
160 制御チャネル生成部
170 多重部
180、260 IFFT部
220 制御チャネル復号部
230 繰り返し回数算出部
240 受信データ復号部
250 CQI生成部 100a,
Claims (11)
- 繰り返して送信されたデータと当該データの変調方式及び符号化率を示す制御情報とを受信する受信部と、
前記受信部によって受信された制御情報を復号する第1復号部と、
前記第1復号部によって復号された制御情報に割り当てられたリソースサイズと、当該制御情報が示す前記データの変調方式及び符号化率とに基づいて、前記データが繰り返して送信された繰り返し回数を取得する取得部と、
前記取得部によって取得された繰り返し回数に基づいて、前記受信部によって受信されたデータを復号する第2復号部と
を有することを特徴とする端末装置。 A receiving unit for receiving repeatedly transmitted data and control information indicating a modulation scheme and a coding rate of the data;
A first decoding unit for decoding the control information received by the receiving unit;
Based on the resource size allocated to the control information decoded by the first decoding unit and the modulation scheme and coding rate of the data indicated by the control information, the number of repetitions of the data transmitted repeatedly is obtained. An acquisition unit to
A terminal device comprising: a second decoding unit configured to decode data received by the receiving unit based on the number of repetitions acquired by the acquiring unit. - 前記取得部は、
前記第1復号部によって復号された制御情報が示す変調方式及び符号化率が要求する第1の所要回線品質と、当該制御情報に割り当てられたリソースサイズが要求する第2の所要回線品質との差分から繰り返し回数を算出することを特徴とする請求項1記載の端末装置。 The acquisition unit
The first required channel quality required by the modulation scheme and coding rate indicated by the control information decoded by the first decoding unit, and the second required channel quality required by the resource size allocated to the control information The terminal device according to claim 1, wherein the number of repetitions is calculated from the difference. - 前記取得部は、
データの変調方式及び符号化率と制御情報のリソースサイズとに対応付けて繰り返し回数を記憶する繰り返し回数テーブルを参照し、前記第1復号部によって復号された制御情報が示す変調方式及び符号化率と、当該制御情報に割り当てられたリソースサイズとに対応する繰り返し回数を取得することを特徴とする請求項1記載の端末装置。 The acquisition unit
The modulation scheme and coding rate indicated by the control information decoded by the first decoding unit with reference to a repetition count table that stores the repetition count in association with the data modulation scheme and coding rate and the resource size of the control information The terminal device according to claim 1, further comprising: acquiring a repetition count corresponding to the resource size allocated to the control information. - 送信データを生成するための変調方式及び符号化率を選択する選択部と、
前記選択部によって選択された変調方式及び符号化率を示す制御情報を生成する生成部と、
前記選択部によって選択された変調方式及び符号化率と、前記生成部によって生成された制御情報に割り当てられたリソースサイズとに基づいて、前記送信データを繰り返して送信する繰り返し回数を決定する決定部と、
前記生成部によって生成された制御情報を送信するとともに、前記決定部によって決定された繰り返し回数だけ前記送信データを繰り返して送信する送信部と
を有することを特徴とする基地局装置。 A selection unit for selecting a modulation scheme and a coding rate for generating transmission data;
A generating unit that generates control information indicating the modulation scheme and coding rate selected by the selecting unit;
A determination unit that determines the number of repetitions for repeatedly transmitting the transmission data based on the modulation scheme and coding rate selected by the selection unit and the resource size assigned to the control information generated by the generation unit When,
And a transmission unit that transmits the control information generated by the generation unit and repeatedly transmits the transmission data by the number of repetitions determined by the determination unit. - 前記決定部は、
前記選択部によって選択された変調方式及び符号化率が要求する第1の所要回線品質と、前記生成部によって生成された制御情報に割り当てられたリソースサイズが要求する第2の所要回線品質との差分から繰り返し回数を算出することを特徴とする請求項4記載の基地局装置。 The determination unit is
The first required channel quality required by the modulation scheme and coding rate selected by the selection unit, and the second required channel quality required by the resource size allocated to the control information generated by the generation unit The base station apparatus according to claim 4, wherein the number of repetitions is calculated from the difference. - 前記決定部は、
データの変調方式及び符号化率と制御情報のリソースサイズとに対応付けて繰り返し回数を記憶する繰り返し回数テーブルを参照し、前記選択部によって選択された変調方式及び符号化率と、前記生成部によって生成された制御情報に割り当てられたリソースサイズとに対応する繰り返し回数を取得することを特徴とする請求項4記載の基地局装置。 The determination unit is
Refer to the repetition count table that stores the repetition count in association with the data modulation scheme and coding rate and the resource size of the control information, and the modulation scheme and coding rate selected by the selection unit, and the generation unit The base station apparatus according to claim 4, wherein the number of repetitions corresponding to the resource size assigned to the generated control information is acquired. - 前記送信データが伝送される回線の回線品質情報を取得する回線品質情報取得部をさらに有し、
前記選択部は、
前記回線品質情報取得部によって取得された回線品質情報が示す回線品質よりも良好な回線品質に対応する変調方式及び符号化率を選択することを特徴とする請求項4記載の基地局装置。 A line quality information acquisition unit for acquiring line quality information of a line through which the transmission data is transmitted;
The selection unit includes:
5. The base station apparatus according to claim 4, wherein a modulation scheme and a coding rate corresponding to channel quality better than the channel quality indicated by the channel quality information acquired by the channel quality information acquiring unit are selected. - 前記生成部は、
前記回線品質情報取得部によって取得された回線品質情報が示す回線品質に対応するリソースサイズを前記制御情報に割り当てることを特徴とする請求項7記載の基地局装置。 The generator is
8. The base station apparatus according to claim 7, wherein a resource size corresponding to the channel quality indicated by the channel quality information acquired by the channel quality information acquiring unit is allocated to the control information. - 前記送信部は、
前記生成部によって生成された制御情報と、前記決定部によって決定された繰り返し回数分の同一の送信データとを多重して送信信号を生成する多重部と、
前記多重部によって生成された送信信号を無線送信する無線送信部と
を有することを特徴とする請求項4記載の基地局装置。 The transmitter is
A multiplexing unit that multiplexes the control information generated by the generation unit and the same transmission data for the number of repetitions determined by the determination unit, and generates a transmission signal;
The base station apparatus according to claim 4, further comprising: a wireless transmission unit that wirelessly transmits a transmission signal generated by the multiplexing unit. - 基地局装置と端末装置とを有する無線通信システムであって、
前記基地局装置は、
送信データを生成するための変調方式及び符号化率を選択する選択部と、
前記選択部によって選択された変調方式及び符号化率を示す制御情報を生成する生成部と、
前記選択部によって選択された変調方式及び符号化率と、前記生成部によって生成された制御情報に割り当てられたリソースサイズとに基づいて、前記送信データを繰り返して送信する繰り返し回数を決定する決定部と、
前記生成部によって生成された制御情報を送信するとともに、前記決定部によって決定された繰り返し回数だけ前記送信データを繰り返して送信する送信部とを有し、
前記端末装置は、
前記送信部によって送信されたデータと当該データの変調方式及び符号化率を示す制御情報とを受信する受信部と、
前記受信部によって受信された制御情報を復号する第1復号部と、
前記第1復号部によって復号された制御情報に割り当てられたリソースサイズと、当該制御情報が示す前記データの変調方式及び符号化率とに基づいて、前記データが繰り返して送信された繰り返し回数を取得する取得部と、
前記取得部によって取得された繰り返し回数に基づいて、前記受信部によって受信されたデータを復号する第2復号部とを有する
ことを特徴とする無線通信システム。 A wireless communication system having a base station device and a terminal device,
The base station device
A selection unit for selecting a modulation scheme and a coding rate for generating transmission data;
A generating unit that generates control information indicating the modulation scheme and coding rate selected by the selecting unit;
A determination unit that determines the number of repetitions for repeatedly transmitting the transmission data based on the modulation scheme and coding rate selected by the selection unit and the resource size assigned to the control information generated by the generation unit When,
A transmission unit that transmits the control information generated by the generation unit and repeatedly transmits the transmission data by the number of repetitions determined by the determination unit;
The terminal device
A receiver that receives data transmitted by the transmitter and control information indicating a modulation scheme and a coding rate of the data;
A first decoding unit for decoding the control information received by the receiving unit;
Based on the resource size allocated to the control information decoded by the first decoding unit and the modulation scheme and coding rate of the data indicated by the control information, the number of repetitions of the data transmitted repeatedly is obtained. An acquisition unit to
A wireless communication system, comprising: a second decoding unit that decodes data received by the receiving unit based on the number of repetitions acquired by the acquiring unit. - 基地局装置と端末装置とを有する無線通信システムにおける無線通信方法であって、
前記基地局装置が、
送信データを生成するための変調方式及び符号化率を選択し、
選択された変調方式及び符号化率を示す制御情報を生成し、
選択された変調方式及び符号化率と、生成された制御情報に割り当てられたリソースサイズとに基づいて、前記送信データを繰り返して送信する繰り返し回数を決定し、
生成された制御情報を送信するとともに、決定された繰り返し回数だけ前記送信データを繰り返して送信し、
前記端末装置が、
前記基地局装置によって送信されたデータと当該データの変調方式及び符号化率を示す制御情報とを受信し、
受信された制御情報を復号し、
復号された制御情報に割り当てられたリソースサイズと、当該制御情報が示す前記データの変調方式及び符号化率とに基づいて、前記データが繰り返して送信された繰り返し回数を取得し、
取得された繰り返し回数に基づいて、受信されたデータを復号する
処理を有することを特徴とする無線通信方法。 A wireless communication method in a wireless communication system having a base station device and a terminal device,
The base station device
Select a modulation scheme and coding rate for generating transmission data,
Generating control information indicating the selected modulation scheme and coding rate;
Based on the selected modulation scheme and coding rate, and the resource size assigned to the generated control information, determine the number of repetitions to transmit the transmission data repeatedly,
While transmitting the generated control information, repeatedly transmitting the transmission data for the determined number of repetitions,
The terminal device is
Receives data transmitted by the base station apparatus and control information indicating the modulation scheme and coding rate of the data,
Decrypts the received control information,
Based on the resource size allocated to the decoded control information and the modulation scheme and coding rate of the data indicated by the control information, obtain the number of repetitions that the data was repeatedly transmitted,
A wireless communication method comprising: a process of decoding received data based on the obtained number of repetitions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/011869 WO2018173225A1 (en) | 2017-03-23 | 2017-03-23 | Terminal device, base station device, wireless communication system and wireless communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/011869 WO2018173225A1 (en) | 2017-03-23 | 2017-03-23 | Terminal device, base station device, wireless communication system and wireless communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173225A1 true WO2018173225A1 (en) | 2018-09-27 |
Family
ID=63586528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011869 WO2018173225A1 (en) | 2017-03-23 | 2017-03-23 | Terminal device, base station device, wireless communication system and wireless communication method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018173225A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009171288A (en) * | 2008-01-17 | 2009-07-30 | Fujitsu Ltd | Scheduling method and radio base station |
JP2014529275A (en) * | 2011-09-30 | 2014-10-30 | インターデイジタル パテント ホールディングス インコーポレイテッド | Method and apparatus for allocating resources for an extended physical hybrid automatic repeat request indicator channel |
WO2016163502A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communication method |
WO2016182052A1 (en) * | 2015-05-14 | 2016-11-17 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communication method |
-
2017
- 2017-03-23 WO PCT/JP2017/011869 patent/WO2018173225A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009171288A (en) * | 2008-01-17 | 2009-07-30 | Fujitsu Ltd | Scheduling method and radio base station |
JP2014529275A (en) * | 2011-09-30 | 2014-10-30 | インターデイジタル パテント ホールディングス インコーポレイテッド | Method and apparatus for allocating resources for an extended physical hybrid automatic repeat request indicator channel |
WO2016163502A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communication method |
WO2016182052A1 (en) * | 2015-05-14 | 2016-11-17 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communication method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11233598B2 (en) | Radio transmission device and method | |
ES2827218T3 (en) | Identification of modulation and coding schemes and channel quality indicators | |
WO2018230694A1 (en) | Base station device, terminal device, and communication method therefor | |
US10667270B2 (en) | 256 quadrature amplitude modulation user equipment category handling | |
US9401793B2 (en) | Method and apparatus for encoding uplink control information | |
JP2020515146A (en) | Method and node for determining transmission data block size | |
EP3925157B1 (en) | Method and apparatus for transmitting uplink channels in wireless communication system | |
US20180227897A1 (en) | Method and device for transmitting narrow band signal in wireless cellular communication system | |
CN114258650A (en) | Apparatus and method for managing soft buffers in a wireless communication system | |
TW200935855A (en) | Control and data multiplexing in communication systems | |
US20200323031A1 (en) | Base station apparatus, terminal apparatus, and communication method for these apparatuses | |
JP2010283698A (en) | Terminal apparatus and base station apparatus | |
CN112956267A (en) | Method and apparatus for radio resource allocation in a wireless communication system | |
CN101111048B (en) | Method for dynamic regulation of wireless resource block configuration based on offset | |
WO2021168777A1 (en) | Transport block size determination for multi-slot transmission | |
US10742379B2 (en) | Uplink control information handling for new radio | |
WO2018173225A1 (en) | Terminal device, base station device, wireless communication system and wireless communication method | |
KR102425579B1 (en) | Method and apparatus for controlling power and providing power information in wirelss communication system | |
WO2019178736A1 (en) | Control information reception and transmission methods and, apparatuses, and communication system | |
CN101383655B (en) | Wireless resource block offset selection method based feedback | |
KR20150124867A (en) | Apparatus and method for generating control information in wirelee communication systems | |
WO2018123058A1 (en) | Wireless communication device, wireless communication system, and wireless communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17902042 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17902042 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |