[go: up one dir, main page]

WO2018173364A1 - Circuit à correction de facteur de puissance sans pont - Google Patents

Circuit à correction de facteur de puissance sans pont Download PDF

Info

Publication number
WO2018173364A1
WO2018173364A1 PCT/JP2017/041704 JP2017041704W WO2018173364A1 WO 2018173364 A1 WO2018173364 A1 WO 2018173364A1 JP 2017041704 W JP2017041704 W JP 2017041704W WO 2018173364 A1 WO2018173364 A1 WO 2018173364A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
inductor
detection circuit
factor correction
input
Prior art date
Application number
PCT/JP2017/041704
Other languages
English (en)
Japanese (ja)
Inventor
小龍 江
大西 浩之
真吾 長岡
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2018173364A1 publication Critical patent/WO2018173364A1/fr

Links

Images

Definitions

  • the present invention relates to a bridgeless power factor correction (PFC) circuit without a rectifying bridge, and more particularly to simplification of a voltage / current sensor in a totem pole bridgeless PFC circuit.
  • PFC power factor correction
  • a PFC circuit is used to improve the power factor of input power and suppress harmonic current.
  • many rectifier bridges are provided, but since the loss of the bridge itself hinders high efficiency and miniaturization, bridgeless PFC circuits that do not have such rectifier bridges have also been proposed. (For example, refer to FIG. 10 of Patent Document 1 or Patent Document 2).
  • a switching element that is subject to high-frequency switching in the positive half cycle of the AC input and a switching element that is subject to high-frequency switching in the negative half cycle are connected to the inductor provided on the AC input side, respectively.
  • a totem pole type bridgeless power factor converter has also been proposed (see, for example, Patent Document 3).
  • an object of the present invention is to provide a bridge that can simplify a circuit, reduce the overall size, reduce costs, and the like without using expensive circuit components for voltage / current detection. It is to provide a power factor correction circuit.
  • a bridgeless power factor correction circuit accumulates energy from an AC input power source and converts it from a low voltage high current to a high voltage low current, and the boost inductor intermittently.
  • a switching element that performs a switching operation for accumulating energy, a rectifying element that prevents a backflow of current from the switching element, a smoothing capacitor that smoothes energy output from the boost inductor, and the boost inductor
  • An inductor current detection circuit that detects the inductor current by a current detection element inserted in a path of the flowing inductor current, an input voltage detection circuit that detects an input voltage using one side of the input power supply as a reference potential, and an output to a load Output voltage detection for detecting voltage using the one side of the input power supply as a reference potential
  • a control unit that controls the switching operation based on a path, an inductor current detection result by the inductor current detection circuit, an input voltage detection result by the input voltage detection circuit, and an output voltage detection result
  • the output voltage detection circuit may be composed of, for example, a resistor and a differential amplifier, but is not limited thereto.
  • a current detection element although resistance is mentioned, for example, it is not restricted to this.
  • One end of the current detection element is connected to the reference potential, and the inductor current detection circuit measures the voltage across the current detection element by measuring one side of the input power supply as a reference potential. The inductor current may be detected.
  • bridgeless power factor correction circuit is a totem pole bridgeless power factor correction circuit, but is not limited thereto.
  • the bridgeless power factor correction circuit having such a configuration, it is not necessary to use expensive circuit parts for voltage / current detection, and the circuit can be simplified, the entire size can be reduced, and the cost can be reduced. .
  • the bridgeless power factor correction circuit of the present invention it is not necessary to use expensive circuit parts for voltage / current detection, and the circuit can be simplified, the entire size can be reduced, and the cost can be reduced.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a totem pole / bridgeless PFC circuit 100 according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram illustrating a schematic configuration of an inductor current detection circuit 20.
  • FIG. 3 is a circuit diagram illustrating a schematic configuration of an output voltage detection circuit 30.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a totem pole / bridgeless PFC circuit 100 according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram illustrating a schematic configuration of an inductor current detection circuit 20.
  • FIG. 3 is a circuit diagram illustrating a schematic configuration of an output voltage detection circuit 30.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a totem pole bridgeless PFC circuit 100 according to an embodiment of the present invention.
  • a bridgeless PFC circuit 100 stores power energy from an AC input power source IP and converts it from a low voltage and high current to a high voltage and low current, and the boost inductor L is intermittently connected.
  • Switch Q1 and switch Q2 for performing a switching operation for accumulating power energy, rectifier element D1 and rectifier element D1 for preventing backflow of currents from these switches Q1 and Q2, and output from boost inductor L
  • Current smoothing capacitor C for smoothing the generated power energy
  • input voltage detection circuit 10 for detecting input voltage Vin using one side of input power supply IP as a reference potential
  • Inductor current that detects the inductor current by the voltage generated across the resistor 21 A detection circuit 20, and an output voltage detection circuit 30 for detecting the output voltage Vo to the output load OL one side of the input power IP as a reference potential.
  • the resistor 21 is an example of a current detection element, but such a current detection element is not limited to a resistance.
  • Examples of the switch Q1 and the switch Q2 include, but are not limited to, switching elements such as field effect transistors (FETs) and IGBTs.
  • FETs field effect transistors
  • IGBTs IGBTs
  • the switch Q1 and the switch Q2 have their respective switching operations (ON) so that the output voltage Vo becomes constant based on the detection results by the input voltage detection circuit 10, the inductor current detection circuit 20, and the output voltage detection circuit 30. / Off, timing, etc.) are controlled by a control unit (not shown).
  • the input voltage detection circuit 10 includes a resistor 11 and a resistor 12 connected in series. If a voltage obtained by dividing the input voltage Vin is detected, the input voltage Vin can be calculated based on the ratio of the resistor 11 and the resistor 12.
  • the output voltage detection circuit 30 includes resistors 31 to 34 and a differential amplifier 35, details of which will be described later.
  • the power supply of the differential amplifier 27 (details will be described later) and the differential amplifier 35 are common, and a voltage of ⁇ 15 V with a reference potential of 0 V is supplied.
  • FIG. 2 is a circuit diagram illustrating a schematic configuration of the inductor current detection circuit 20.
  • the configuration is not limited to this.
  • the inductor current detection circuit 20 includes resistors 22 to 25, a capacitor 26, and a differential amplifier 27 in addition to the resistor 21 for detecting the inductor current.
  • One end of the resistor 21 is connected to the inverting input of the differential amplifier 27 through the resistor 23 and is connected to the reference potential, and the other end of the resistor 21 is connected to the non-inverting input of the differential amplifier 27 through the resistor 24. It is connected.
  • the inverting input and output of the differential amplifier 27 are connected via a resistor 22, and a capacitor 26 is connected in parallel with the resistor 22.
  • the inductor current detection circuit 20 can detect the inductor current.
  • the bridgeless PFC circuit 100 is supplied with an input voltage Vin of 100 to 240 V from the input power source IP, and a current of several A to several tens of A flows through the inductor current detection circuit 20.
  • Vin 100 to 240 V
  • a current of several A to several tens of A flows through the inductor current detection circuit 20.
  • the voltage applied to both ends of the resistor 21 is about 75 mV at maximum.
  • the voltage of the inverting input of the differential amplifier 27 is the same as the reference potential, and the voltage of the non-inverting input is about 75 mV at the maximum, so that the input voltage of the differential amplifier 27 can be lowered.
  • the frequency of the current to be measured is related to the switching frequency of the circuit, but the frequency is high because the current shape is a triangular wave.
  • the switching frequency is 1 MHz, it is necessary to be able to measure up to about 5 MHz, assuming that the fifth harmonic is included.
  • FIG. 3 is a circuit diagram illustrating a schematic configuration of the output voltage detection circuit 30.
  • the resistor 31 and the resistor 32 are connected in series, and the connection point is connected to the non-inverting input of the differential amplifier 35.
  • One end of the resistor 31 (on the opposite side to the resistor 32) is connected to one side (see FIG. 1) of the output load OL, and one end of the resistor 32 (on the opposite side to the resistor 31) is the reference potential on the input power supply IP side. (See FIG. 1).
  • the resistor 33 and the resistor 34 are also connected in series, and the connection point is connected to the inverting input of the differential amplifier 35.
  • One end of the resistor 33 (on the side opposite to the resistor 34) is connected to the other side (see FIG. 1) of the output load OL, and one end of the resistor 34 (on the side opposite to the resistor 33) is the reference potential on the input power source IP side. (See FIG. 1).
  • the output voltage Vo can be detected by measuring the potential difference between both ends of the output load with the input power source IP side as the reference potential.
  • the resistance value ratio of the resistor 31 to the resistor 32 may be several tens of times, for example.
  • the resistance value ratio of the resistor 33 to the resistor 34 is the same.
  • the value of the resistor 31 and the resistor 33 is 493 k ⁇
  • the value of the resistor 32 and the resistor 34 is 10 k ⁇ .
  • the output voltage Vo to be measured by the output voltage detection circuit 30 is about 400V, but when viewed from the reference potential, the voltage on the switch Q1 side of the output load OL is about 500V, and the voltage on the switch Q2 side is about 100V. . Even in this case, the inverting input of the differential amplifier 35 is about 1V, and the non-inverting input is about 0.2V. Therefore, the input voltage of the differential amplifier 35 can be lowered.
  • the cut-off frequency only needs to correspond to about 20 Hz.
  • the present invention is suitable for, for example, an AC-DC converter and a power supply device.

Landscapes

  • Rectifiers (AREA)

Abstract

Cette invention concerne un circuit à correction de facteur de puissance sans pont (100), comprenant : une bobine d'élévation de tension (L) pour stocker de l'énergie à partir d'une alimentation électrique d'entrée (IP) et convertir un courant fort basse tension en un courant faible haute tension ; des commutateurs (Q1, Q2) pour effectuer une opération de commutation pour stocker de manière intermittente de l'énergie dans la bobine d'élévation de tension (L) ; des éléments redresseurs (D1, D1) pour empêcher des courants de circuler en sens inverse à partir des commutateurs respectifs (Q1, Q2) ; un condensateur de lissage de courant (C) pour lisser une sortie d'énergie de la bobine d'élévation de tension (L) ; un circuit de détection de tension d'entrée (10) pour détecter une tension d'entrée (Vin) en utilisant un premier côté de l'alimentation électrique d'entrée (IP) en tant que potentiel de référence ; un circuit de détection de courant de bobine (20) pour détecter un courant de bobine par une résistance (21) insérée dans un trajet du courant de la bobine ; et un circuit de détection de tension de sortie (30) pour détecter une tension de sortie (Vo) en utilisant le premier côté de l'alimentation électrique d'entrée (IP) en tant que potentiel de référence.
PCT/JP2017/041704 2017-03-21 2017-11-20 Circuit à correction de facteur de puissance sans pont WO2018173364A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054626A JP2018157727A (ja) 2017-03-21 2017-03-21 ブリッジレス力率改善回路
JP2017-054626 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173364A1 true WO2018173364A1 (fr) 2018-09-27

Family

ID=63586338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041704 WO2018173364A1 (fr) 2017-03-21 2017-11-20 Circuit à correction de facteur de puissance sans pont

Country Status (2)

Country Link
JP (1) JP2018157727A (fr)
WO (1) WO2018173364A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856116A (zh) * 2020-07-21 2020-10-30 广州金升阳科技有限公司 一种无桥pfc电流采样电路及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212749B (zh) * 2019-06-21 2022-03-04 海信(广东)空调有限公司 一种pfc模块
CN110165883B (zh) * 2019-06-21 2022-03-04 海信(广东)空调有限公司 一种无桥pfc电路及变频产品
JP7471948B2 (ja) * 2020-08-03 2024-04-22 東芝テック株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019637A (ja) * 2010-07-08 2012-01-26 Fujitsu Ltd 分圧力率改善回路、分圧力率改善装置および分圧力率改善方法
JP2016152655A (ja) * 2015-02-16 2016-08-22 東芝テック株式会社 電力変換装置
US9590494B1 (en) * 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019637A (ja) * 2010-07-08 2012-01-26 Fujitsu Ltd 分圧力率改善回路、分圧力率改善装置および分圧力率改善方法
US9590494B1 (en) * 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
JP2016152655A (ja) * 2015-02-16 2016-08-22 東芝テック株式会社 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856116A (zh) * 2020-07-21 2020-10-30 广州金升阳科技有限公司 一种无桥pfc电流采样电路及其应用

Also Published As

Publication number Publication date
JP2018157727A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
CN1753290B (zh) 功率因子校正电路
JP5182375B2 (ja) Pfcコンバータ
US7630221B2 (en) Bridgeless PFC circuit for CRM and controlling method thereof
US9742264B2 (en) Boost inductor demagnetization detection for bridgeless boost PFC converter operating in boundary-conduction mode
US20130188405A1 (en) Capacitor discharging circuit and power converter
WO2018173364A1 (fr) Circuit à correction de facteur de puissance sans pont
CN102694476B (zh) 应用在无桥式交换电路的开关控制电路以及控制方法
TWI508423B (zh) Power conversion device
KR100829121B1 (ko) 비씨엠모드로 동작하는 단일전력단 역률개선 회로
US20130176758A1 (en) Mosfet bridge rectifier
KR20170120592A (ko) 전원 제어용 반도체 장치
WO2016086897A1 (fr) Circuit et procédé de détection de passage par zéro de courant, et circuit et procédé de détection de tension de charge
US9923455B2 (en) Current-sensing and gain-switching circuit and method for using wide range of current
JP6607495B2 (ja) 電力変換装置
TWI408898B (zh) 用於同步整流控制之補償裝置及其方法
CN101958550A (zh) 具电流检测电路的无桥功率因子校正电路系统及其方法
JP2015503899A (ja) 交流を直流に変換する電気回路
US11258353B2 (en) Power converter
JP6022883B2 (ja) 電源装置
JP5912726B2 (ja) 同期整流型ブリッジ
KR20130084199A (ko) 단일 전력단 역률 개선 회로
JP2012175828A (ja) 昇圧コンバータの電流検出回路
JP5660729B2 (ja) 電力変換装置及びその制御方法
JP2020005333A (ja) スイッチング電源装置
US9606565B2 (en) Power supply with a switch converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902046

Country of ref document: EP

Kind code of ref document: A1