WO2018173590A1 - 磁気センサユニット及びそれを用いた磁界方向検出方法 - Google Patents
磁気センサユニット及びそれを用いた磁界方向検出方法 Download PDFInfo
- Publication number
- WO2018173590A1 WO2018173590A1 PCT/JP2018/005903 JP2018005903W WO2018173590A1 WO 2018173590 A1 WO2018173590 A1 WO 2018173590A1 JP 2018005903 W JP2018005903 W JP 2018005903W WO 2018173590 A1 WO2018173590 A1 WO 2018173590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- magnetoresistive elements
- magnetoresistive
- magnetoresistive element
- sensor unit
- Prior art date
Links
Images
Definitions
- the present invention relates to a magnetic sensor unit and a magnetic field direction detection method using the same.
- a magnetic encoder is known as a device for detecting the rotational position of a rotor of a motor.
- a magnetic sensor used in this magnetic encoder has a plurality of magnetoresistive elements which are arranged along at least two different directions and are magnetized by an external magnetic field. In the magnetic sensor, a change in the magnetic field direction of the external magnetic field is detected using the plurality of magnetoresistive elements.
- the offset value is corrected using an amount of deviation from an ideal state in the output signal output from the magnetic sensor. .
- the error of the output signal of the magnetic sensor includes a magnetic error.
- This magnetic error is greatly influenced by the uniaxial magnetic anisotropy of the magnetoresistive element of the magnetic sensor. Further, the uniaxial magnetic anisotropy of the magnetoresistive element greatly affects the error of the output signal of the magnetic sensor.
- the uniaxial magnetic anisotropy of the magnetoresistive element affects the magnetization direction of the magnetoresistive element that is magnetized by an external magnetic field. Therefore, since the resistance value of the magnetoresistive element changes, an output signal different from the actual output signal is output from the magnetoresistive element. Then, the magnetic sensor cannot detect the change in the magnetic field direction of the external magnetic field with high accuracy.
- Patent Document 1 a method of correcting the output signal of the magnetic sensor using an offset value is conceivable.
- it is necessary to obtain and set the offset value at the time of factory shipment of the magnetic encoder.
- the offset value is different for each magnetic sensor, it is necessary to obtain and set the offset value for each magnetic sensor.
- An object of the present invention is to provide a magnetic sensor unit capable of accurately detecting a magnetic field direction of an external magnetic field in consideration of the influence of the uniaxial magnetic anisotropy without using a correction value for each magnetic sensor, and a magnetic field direction using the magnetic sensor unit It is to provide a detection method.
- a magnetic sensor unit includes a plurality of magnetoresistive elements that are arranged along at least two different directions and are magnetized by an external magnetic field, and a power source that applies a voltage to the plurality of magnetoresistive elements.
- a voltage detection unit that detects a voltage at both ends of each magnetoresistive element when a voltage is applied to the plurality of magnetoresistive elements by the power supply unit, and a voltage detected by the voltage detection unit,
- An arithmetic unit that obtains the magnetic field direction of the external magnetic field using the strength of the anisotropic magnetic field of each of the magnetoresistive elements.
- the arithmetic unit is configured to determine the direction of the magnetic field of the external magnetic field and the magnetization direction of the magnetoresistive elements determined by the uniaxial magnetic anisotropy of the magnetoresistive elements, and the voltage detected by the voltage detector and the magnetoresistive elements.
- a magnetization direction calculation unit that calculates using the resistance value of the element, and a magnetic field direction calculation unit that calculates the magnetic field direction of the external magnetic field using the magnetization direction and the strength of the anisotropic magnetic field.
- a magnetic field direction detection method using a magnetic sensor unit includes a plurality of magnetoresistive elements arranged along at least two different directions and magnetized by an external magnetic field, and the plurality of magnetoresistive elements.
- a magnetic field direction detection method using a magnetic sensor unit including a power supply unit that applies a voltage to the power supply unit.
- the magnetic field direction detection method uses the voltage detection step of detecting each voltage at both ends of the plurality of magnetoresistive elements, the voltage detected in the voltage detection step, and the resistance value of each magnetoresistive element, A magnetization direction calculating step for obtaining a magnetization direction of a plurality of magnetoresistive elements, a magnetic field of the external magnetic field using the magnetization direction calculated in the magnetization direction calculating step and the strength of the anisotropic magnetic field of each magnetoresistive element And a magnetic field direction calculating step for obtaining the direction.
- the influence of the external magnetic field is considered in consideration of the influence of the uniaxial magnetic anisotropy without using a correction value for each magnetic sensor.
- the magnetic field direction can be detected with high accuracy.
- FIG. 1 is a diagram schematically illustrating a configuration of a magnetic sensor unit according to the embodiment.
- FIG. 2 is a diagram schematically showing a state in which the magnetic sensor is arranged with respect to the external magnetic field.
- FIG. 3 is a circuit diagram of a circuit constituted by magnetoresistive elements.
- FIG. 4 is a diagram showing the relationship between the magnetic field direction of the external magnetic field and the magnetization direction of the magnetoresistive element when the uniaxial magnetic anisotropy of the magnetoresistive element is in the X-axis direction.
- FIG. 1 is a diagram schematically illustrating a configuration of a magnetic sensor unit according to the embodiment.
- FIG. 2 is a diagram schematically showing a state in which the magnetic sensor is arranged with respect to the external magnetic field.
- FIG. 3 is a circuit diagram of a circuit constituted by magnetoresistive elements.
- FIG. 4 is a diagram showing the relationship between the magnetic field direction of the external magnetic field and the magnetization direction of the magnetoresist
- FIG. 5 is a diagram showing the relationship between the magnetic field direction of the external magnetic field and the magnetization direction of the magnetoresistive element when the uniaxial magnetic anisotropy of the magnetoresistive element is in the Y-axis direction.
- FIG. 6 is a diagram showing the relationship between the strength of the external magnetic field and the magnetization of the magnetoresistive element.
- FIG. 7 is a flowchart showing the operation of the magnetic sensor unit.
- FIG. 8 is a view corresponding to FIG. 1 of a magnetic sensor unit according to another embodiment.
- FIG. 9 is a diagram corresponding to FIG. 3 of a circuit configured by magnetoresistive elements of a magnetic sensor unit according to another embodiment.
- the direction of the magnetic field means the direction of the magnetic field generated from the N pole toward the S pole, and hereinafter, the direction of the magnetic field is also simply referred to as the magnetic field direction.
- the magnetization direction means a direction in which the magnetoresistive element is magnetized by an external magnetic field. Specifically, the magnetization direction means the direction of the magnetic field from the north pole to the south pole in the magnetized magnetoresistive element.
- FIG. 1 is a diagram schematically showing a configuration of a magnetic sensor unit 1 according to an embodiment of the present invention.
- the magnetic sensor unit 1 includes a magnetic sensor 10 that can detect a change in an external magnetic field by a plurality of magnetoresistive elements 11 to 18.
- the magnetic sensor 10 is disposed to face the magnet 2 that generates a magnetic field (external magnetic field), for example, and detects a change in the direction of the magnetic field generated by the magnet 2.
- an arrow indicated by a broken line indicates a magnetic field generated by the magnet 2.
- the magnetic sensor 10 capable of detecting a change in the magnetic field direction of the external magnetic field is used, for example, in a rotary encoder that detects the rotational position of the rotor of the motor.
- the magnetic sensor unit 1 includes a magnetic sensor 10, a power supply unit 20, a voltage detection unit 30, and a calculation unit 40.
- the magnetic sensor 10 has a plurality of magnetoresistive elements 11-18. That is, the magnetic sensor unit 1 has a plurality of magnetoresistive elements 11 to 18.
- the magnetoresistive elements 11 to 18 are made of a ferromagnetic thin film metal such as NiFe. Therefore, the magnetoresistive elements 11 to 18 are magnetized by the external magnetic field.
- the plurality of magnetoresistive elements 11 to 18 are disposed on a substrate (not shown), for example.
- the plan view means a case where the surface (plane) of the substrate is viewed from the normal direction with respect to the surface.
- the arrangement of the plurality of magnetoresistive elements 11 to 18 on the substrate is schematically shown in plan view. *
- the plurality of magnetoresistive elements 11 to 18 include four pairs of magnetoresistive elements arranged in the same direction in plan view. That is, the magnetic sensor unit 1 of the present embodiment has eight magnetoresistive elements 11 to 18.
- the eight magnetoresistive elements 11 to 18 are a pair of the first magnetoresistive element 11 and the eighth magnetoresistive element 18 aligned in the same direction and the pair of second magnetoresistive elements 12 and the seventh aligned in the same direction in plan view.
- the magnetoresistive element 17 includes a pair of third and sixth magnetoresistive elements 13 and 16 arranged in the same direction, and a pair of fourth and fifth magnetoresistive elements 14 and 15 arranged in the same direction.
- the white arrows in the magnetoresistive elements 11 to 18 in FIG. 1 mean the direction of uniaxial magnetic anisotropy of the magnetoresistive elements 11 to 18. *
- the pair of fourth magnetoresistive elements 14 and fifth magnetoresistive elements 15 are arranged along different directions in plan view. That is, the direction in which the pair of first magnetoresistive elements 11 and the eighth magnetoresistive element 18 are arranged, the direction in which the pair of second magnetoresistive elements 12 and the seventh magnetoresistive element 17 are arranged, and the pair of third magnetoresistive elements 13.
- the direction in which the sixth magnetoresistive elements 16 are arranged and the direction in which the pair of fourth magnetoresistive elements 14 and the fifth magnetoresistive elements 15 are arranged are different directions in plan view.
- the interval in each direction described above is 45 degrees in plan view.
- the direction in which the pair of first magnetoresistive element 11 and the eighth magnetoresistive element 18 are aligned and the direction in which the pair of third magnetoresistive element 13 and the sixth magnetoresistive element 16 are aligned are 45 in plan view. Varies.
- the direction in which the pair of third magnetoresistive element 13 and the sixth magnetoresistive element 16 are arranged and the direction in which the pair of second magnetoresistive element 12 and the seventh magnetoresistive element 17 are arranged differ by 45 degrees in plan view.
- the direction in which the pair of second magnetoresistive elements 12 and the seventh magnetoresistive element 17 are arranged and the direction in which the pair of fourth magnetoresistive elements 14 and the fifth magnetoresistive element 15 are arranged differ by 45 degrees in plan view.
- the direction in which the pair of fourth magnetoresistive elements 14 and the fifth magnetoresistive element 15 are arranged and the direction in which the pair of first magnetoresistive elements 11 and the eighth magnetoresistive element 18 are arranged differ by 45 degrees in plan view.
- the direction in which the pair of first magnetoresistive elements 11 and the eighth magnetoresistive element 18 are arranged and the direction in which the pair of second magnetoresistive elements 12 and the seventh magnetoresistive element 17 are arranged differ by 90 degrees in plan view.
- the direction in which the pair of third magnetoresistive elements 13 and the sixth magnetoresistive element 16 are arranged and the direction in which the pair of fourth magnetoresistive elements 14 and the fifth magnetoresistive element 15 are arranged differ by 90 degrees in plan view. That is, the plurality of magnetoresistive elements 11 to 18 include magnetoresistive elements arranged along two directions orthogonal to each other in plan view. *
- two magnetoresistive elements 11 to 18 two magnetoresistive elements arranged along two different directions in plan view are electrically connected in series. Specifically, of the first magnetoresistive element 11 to the eighth magnetoresistive element 18, two magnetoresistive elements different from each other by 90 degrees in a plan view are electrically connected in series. *
- first magnetoresistive element 11 and the second magnetoresistive element 12 are electrically connected in series.
- the third magnetoresistive element 13 and the fourth magnetoresistive element 14 are electrically connected in series.
- the fifth magnetoresistive element 15 and the sixth magnetoresistive element 16 are electrically connected in series.
- the seventh magnetoresistive element 17 and the eighth magnetoresistive element 18 are electrically connected in series. *
- the two magnetoresistive elements electrically connected in series are electrically connected in parallel with each other. That is, the first magnetoresistive element 11 and the second magnetoresistive element 12, the third magnetoresistive element 13 and the fourth magnetoresistive element 14, the fifth magnetoresistive element 15 and the sixth magnetoresistive element 16, and the seventh magnetic resistance.
- the resistance element 17 and the eighth magnetoresistance element 18 are electrically connected in parallel.
- the circuit 50 shown in FIG. 3 is constituted by the eight magnetoresistive elements 11 to 18. *
- R 1 to R 8 in FIGS. 1 and 3 are resistance values of the first magnetoresistive element 11 to the eighth magnetoresistive element 18, respectively.
- R 1 is the resistance value of the first magnetoresistive element 11
- R 2 is the resistance value of the second magnetoresistive element 12
- R 3 is the resistance value of the third magnetoresistive element 13
- R 4 is the resistance value of the fourth magnetoresistive element 14.
- R 5 is the resistance value of the fifth magnetoresistive element
- R 6 is the resistance value of the sixth magnetoresistive element 16
- R 7 is the resistance value of the seventh magnetoresistive element 17.
- R 8 is the resistance value of the eighth magnetoresistive element 18.
- R 1 R 8 is represented by the following formula.
- a current flows through the first magnetoresistive element 11 and the eighth magnetoresistive element 18 in the X-axis direction, and the second magnetoresistive element 12 and the seventh magnetoresistive element 17 flow with respect to the X axis in plan view.
- a current flows in the direction of 90 degrees, that is, the Y-axis direction, and a current flows in the third magnetoresistive element 13 and the sixth magnetoresistive element 16 in a direction of 45 degrees with respect to the X axis in plan view.
- a current flows through the resistance element 14 and the fifth magnetoresistance element 15 in a direction of 135 degrees with respect to the X axis in a plan view.
- R 1 R 0 ⁇ R sin 2 ( ⁇ )
- R 2 R 0 ⁇ R sin 2 ( ⁇ / 2 ⁇ )
- R 3 R 0 - ⁇ Rsin 2 ( ⁇ / 4- ⁇ )
- R 4 R 0 ⁇ R sin 2 ( ⁇ / 4 + ⁇ )
- R 5 R 0 ⁇ R sin 2 ( ⁇ / 4 + ⁇ )
- R 6 R 0 ⁇ R sin 2 ( ⁇ / 4 ⁇ )
- R 7 R 0 ⁇ Rsin 2 ( ⁇ / 2 ⁇ )
- R 8 R 0 ⁇ R sin 2 ( ⁇ )
- R 0 is the resistance value of the magnetoresistive elements 11 to 18 in the absence of a magnetic field
- ⁇ R is the change amount of the resistance value of the magnetoresistive elements 11 to 18 when the external magnetic field changes.
- the power supply unit 20 applies a predetermined voltage Vp to the circuit 50. That is, the power supply unit 20 applies a predetermined voltage Vp to each of two magnetoresistive elements connected in series. That is, the power supply unit 20 applies a predetermined voltage Vp to the first magnetoresistive element 11 and the second magnetoresistive element 12 connected in series. The power supply unit 20 applies a predetermined voltage Vp to the third magnetoresistive element 13 and the fourth magnetoresistive element 14 connected in series. The power supply unit 20 applies a predetermined voltage Vp to the fifth magnetoresistive element 15 and the sixth magnetoresistive element 16 connected in series. The power supply unit 20 applies a predetermined voltage Vp to the seventh magnetoresistive element 17 and the eighth magnetoresistive element 18 connected in series. *
- the voltage detector 30 detects an intermediate potential between two magnetoresistive elements connected in series. That is, the voltage detection unit 30 includes an intermediate potential V B ⁇ between the first magnetoresistive element 11 and the second magnetoresistive element 12, an intermediate potential V A ⁇ between the third magnetoresistive element 13 and the fourth magnetoresistive element 14, intermediate potential V a + of the fifth magneto resistance element 15 and the sixth magneto resistance element 16, to detect respective intermediate voltage V B + of the seventh magnetoresistance element 17 and the eighth magnetoresistance element 18.
- the voltage detector 30 detects the difference between these intermediate potentials (V B + ⁇ V B ⁇ , V A + ⁇ V A ⁇ ). As a result, the voltage across the magnetoresistive elements 11 to 18 can be detected easily and accurately.
- the calculation unit 40 determines the voltages at both ends of the magnetoresistive elements 11 to 18 detected by the voltage detecting unit 30, the resistance values of the magnetoresistive elements 11 to 18, and the strength of the anisotropic magnetic field of the magnetoresistive elements 11 to 18. Is used to determine the magnetic field direction of the external magnetic field.
- the calculation unit 40 includes a magnetization direction calculation unit 41 and a magnetic field direction calculation unit 42. *
- the magnetization direction calculator 41 calculates the magnetization directions of the magnetoresistive elements 11 to 18 determined by the magnetic field direction of the external magnetic field and the uniaxial magnetic anisotropy of the magnetoresistive elements 11 to 18.
- the magnetization direction calculating unit 41 uses the voltages at both ends of the magnetoresistive elements 11 to 18 detected by the voltage detecting unit 30 and the resistance values of the magnetoresistive elements 11 to 18 as the magnetization directions of the magnetoresistive elements 11 to 18.
- the magnetoresistive elements 11 to 18 are magnetized by the external magnetic field. However, since the magnetoresistive elements 11 to 18 have uniaxial magnetic anisotropy, the magnetization directions of the magnetoresistive elements 11 to 18 are affected by the uniaxial magnetic anisotropy. *
- FIG. 4 and 5 show the relationship between the magnetic field direction of the external magnetic field, the magnetization directions of the magnetoresistive elements 11 to 18, and the uniaxial magnetic anisotropy of the magnetoresistive elements 11 to 18.
- FIG. 4 schematically shows the relationship between the magnetic field direction of the external magnetic field and the magnetization Ms direction of the magnetoresistive elements 11 to 18 when the uniaxial magnetic anisotropy K of the magnetoresistive elements 11 to 18 is in the X-axis direction.
- FIG. 5 schematically shows the relationship between the magnetic field direction of the external magnetic field and the magnetization Ms direction of the magnetoresistive elements 11 to 18 when the uniaxial magnetic anisotropy K of the magnetoresistive elements 11 to 18 is in the Y-axis direction. Show. *
- the uniaxial magnetic anisotropy K of the magnetoresistive elements 11 to 18 affects the direction of magnetization Ms (magnetization direction) of the magnetoresistive elements 11 to 18 magnetized by the external magnetic field. . *
- the resistance values R 1 and R 8 of the first magnetoresistive element 11 and the eighth magnetoresistive element 18 are expressed by the following (Expression 1) and (Expression 2).
- ⁇ 1 is an angle formed by the X axis and the magnetization direction of the first magnetoresistive element 11.
- R 1 R 0 ⁇ R sin 2 ( ⁇ 1 )
- R 8 R 0 ⁇ R sin 2 ( ⁇ 1 )
- the resistance values R 4 and R 5 of the fourth magnetoresistive element 14 and the fifth magnetoresistive element 15 are expressed by the following (Expression 3) and (Expression 4).
- R 5 R 0 ⁇ R sin 2 ( ⁇ / 4 + ⁇ 1 )
- the resistance values R 2 and R 7 of the second magnetoresistive element 12 and the seventh magnetoresistive element 17 are expressed by the following expressions (Expression 5) and (Expression 6).
- ⁇ 2 is an angle formed by the X axis and the direction of the magnetization Ms of the first magnetoresistive element 11.
- R 2 R 0 ⁇ R sin 2 ( ⁇ / 2 ⁇ 2 )
- R 7 R 0 ⁇ R sin 2 ( ⁇ / 2 ⁇ 2 )
- the resistances R 3 and R 6 of the third magnetoresistive element 13 and the sixth magnetoresistive element 16 are expressed by the following (Expression 7) and (Expression 8).
- R 6 R 0 ⁇ R sin 2 ( ⁇ / 4 ⁇ 2 )
- the resistance values R 1 to R 8 in the equations (Equation 1) to (Equation 8) described above are influenced by the uniaxial magnetic anisotropy of the magnetization of the magnetoresistive elements 11 to 18 by the external magnetic field. It is the resistance value when receiving.
- the magnetization direction calculation unit 41 converts the intermediate potentials V B ⁇ , V B + , V A ⁇ , V A + (or intermediate voltages V B , V A ) detected by the voltage detection unit 30 into the following (formula 9) and ( By substituting into Equation 10), ⁇ 1 and ⁇ 2 are obtained.
- the relationship between the magnetization directions ⁇ 1 and ⁇ 2 can be obtained by substituting the expressions (Expression 1) to (Expression 8) described above for R 1 to R 8. The formula is obtained. (Formula 9) (Formula 10)
- the magnetic field direction calculation unit 42 uses the ⁇ 1 and ⁇ 2 calculated by the magnetization direction calculation unit 41 and the intensity of the anisotropic magnetic field of the magnetoresistive elements 11 to 18, that is, ⁇ in FIG. 4 and FIG. Obtain the magnetic field direction of the external magnetic field.
- ⁇ is the angle of the magnetic field direction of the external magnetic field with respect to the direction of current flowing in the magnetoresistive elements 11 to 18 (current direction).
- the strength of the anisotropic magnetic field means the strength of the magnetic field when the magnetization is saturated by applying an external magnetic field in the magnetization difficulty direction in the magnetoresistive elements 11 to 18.
- the strength of the anisotropic magnetic field is the strength Ha of the magnetic field when the magnetization reaches the saturation magnetization Ms when the magnetoresistive elements 11 to 18 are magnetized in the magnetization difficult direction.
- the strength of the anisotropic magnetic field can be obtained by actual measurement, for example. *
- the energy F per unit volume generated in the magnetoresistive elements 11 to 18 magnetized by the external magnetic field is obtained by the following equation in consideration of the magnetic anisotropy energy and the energy of the external magnetic field.
- F Ksin 2 ( ⁇ ) ⁇ MsH cos ( ⁇ )
- the magnetic field direction ⁇ of the external magnetic field can be obtained using the converted magnetic field h and the magnetization directions ⁇ 1 and ⁇ 2 .
- the converted magnetic field h is determined by the strength H of the external magnetic field and the strength Ha of the anisotropic magnetic field. Therefore, if the value Ha of the anisotropic magnetic field and the magnetization directions ⁇ 1 and ⁇ 2 are determined, the magnetic field direction ⁇ of the external magnetic field can be obtained.
- the magnetic field direction calculation unit 42 calculates the magnetic field direction ⁇ of the external magnetic field by substituting the value Ha of the anisotropic magnetic field and the magnetization directions ⁇ 1 and ⁇ 2 into the above (Equation 13).
- the magnetic field direction calculation unit 42, the magnetization direction theta 1, with one value of theta 2 may calculate the magnetic field direction ⁇ of the external magnetic field, the magnetization direction theta 1, both theta 2
- the average value thereof may be used as the magnetic field direction of the external magnetic field.
- the plurality of magnetoresistive elements 11 to 18 of the magnetic sensor unit 1 each have uniaxial magnetic anisotropy. Therefore, when the plurality of magnetoresistive elements 11 to 18 are magnetized by the external magnetic field, they are magnetized in a direction different from the magnetic field direction of the external magnetic field. Therefore, even if the magnetization directions of the magnetoresistive elements 11 to 18 of the magnetic sensor unit 1 are detected, the magnetic field direction of the external magnetic field cannot be obtained with high accuracy.
- the magnetization directions ⁇ 1 and ⁇ 2 of the magnetoresistive elements 11 to 18 magnetized by the external magnetic field and the intensity Ha of the anisotropic magnetic field of the magnetoresistive elements 11 to 18 are obtained.
- the magnetic field direction ⁇ of the external magnetic field can be obtained in consideration of the uniaxial magnetic anisotropy of the magnetoresistive elements 11 to 18.
- the magnetic field direction ⁇ of the external magnetic field that takes into account the uniaxial magnetic anisotropy of the magnetoresistive elements 11 to 18 can be obtained by calculation. Therefore, unlike the prior art, there is no need to prepare a correction value considering the uniaxial magnetic anisotropy of the magnetoresistive elements 11-18.
- the magnetic field direction ⁇ of the external magnetic field can be easily and accurately detected using the plurality of magnetoresistive elements 11 to 18.
- the plurality of magnetoresistive elements 11 to 18 are magnetoresistive elements arranged along two directions orthogonal to each other in plan view (for example, the first magnetoresistive element 11 and the second magnetoresistive element 12). including.
- the magnetic field direction ⁇ of the external magnetic field can be detected with high accuracy using the two magnetoresistive elements arranged along the two orthogonal directions. That is, by using the two magnetoresistive elements, the relationship between the magnetic field direction ⁇ of the external magnetic field and the magnetization directions ⁇ 1 and ⁇ 2 of the two magnetoresistive elements can be defined by an equation using a trigonometric function. Therefore, by using this equation, the magnetic field direction ⁇ of the external magnetic field in consideration of the uniaxial magnetic anisotropy of the magnetoresistive elements 11 to 18 can be accurately obtained by calculation.
- FIG. 7 is a flowchart showing the operation of the magnetic sensor unit 1.
- step S1 the voltage detector 30 detects the voltages across the magnetoresistive elements 11 to 18. That is, the voltage detection unit 30 causes the intermediate potential V B ⁇ between the first magnetoresistive element 11 and the second magnetoresistive element 12, the intermediate potential V A ⁇ between the third magnetoresistive element 13 and the fourth magnetoresistive element 14, intermediate potential V a + of the fifth magneto resistance element 15 and the sixth magnetoresistance element 16, a seventh magnetoresistance element 17 an intermediate potential V B + the eighth magnetoresistance element 18, respectively detected. Specifically, the voltage detector 30 detects the voltage across the magnetoresistive elements 11 to 18 by detecting the difference between these intermediate potentials (V B + ⁇ V B ⁇ , V A + ⁇ V A ⁇ ). can do.
- step S2 the magnetization direction calculation unit 31 of the calculation unit 40 calculates ⁇ 1 and ⁇ 2 from the following equations using the voltages acting on both ends of the magnetoresistive elements 11 to 18 detected in step S1. To do.
- the following expressions are (Expression 9) and (Expression 10) described above. (Formula 9) (Formula 10)
- ⁇ is obtained from the following equation using ⁇ 1 and ⁇ 2 obtained in step S2 and the strength Ha of the anisotropic magnetic field obtained in advance.
- the magnetic field direction ⁇ of the external magnetic field with respect to the current direction of the current flowing through the magnetoresistive elements 11 to 18 can be obtained. Therefore, the magnetic field direction ⁇ of the external magnetic field is calculated using the voltages at both ends of the magnetoresistive elements 11 to 18 detected by the voltage detector 30 and the strength Ha of the anisotropic magnetic field of the magnetoresistive elements 11 to 18. it can. *
- step S1 corresponds to a voltage detection step.
- step S2 corresponds to a magnetization direction calculation step.
- Step S3 corresponds to a magnetic field direction calculation step.
- the magnetic sensor unit 1 has eight magnetoresistive elements 11 to 18.
- the magnetic sensor unit should just have the magnetoresistive element arrange
- FIG. 8 schematically shows a configuration of a magnetic sensor unit 101 including four magnetoresistive elements 11, 12, 17, and 18.
- the magnetic sensor unit 101 includes a magnetic sensor 110 that can detect a change in an external magnetic field by a plurality of magnetoresistive elements 11, 12, 17, and 18.
- the plurality of magnetoresistive elements 11, 12, 17, and 18 include two pairs of magnetoresistive elements arranged in the same direction in plan view. That is, the four magnetoresistive elements 11, 12, 17, and 18 are a pair of second magnetic elements aligned in the same direction as the pair of first and eighth magnetoresistive elements 11 and 18 aligned in the same direction in plan view.
- the resistor element 12 and the seventh magnetoresistive element 17 are included.
- the pair of first magnetoresistive element 11 and the eighth magnetoresistive element 18 and the pair of second magnetoresistive element 12 and the seventh magnetoresistive element 17 are respectively arranged along different directions in plan view. In the magnetic sensor unit 101, the interval in each direction described above is 90 degrees in plan view. *
- the first magnetoresistive element 11 and the second magnetoresistive element 12 are electrically connected in series.
- the seventh magnetoresistive element 17 and the eighth magnetoresistive element 18 are electrically connected in series.
- the first magnetoresistive element 11 and the second magnetoresistive element 12, and the seventh magnetoresistive element 17 and the eighth magnetoresistive element 18 are electrically connected in parallel.
- the circuit 150 shown in FIG. 9 is configured by the four magnetoresistive elements 11, 12, 17, and 18.
- R 1 , R 2 , R 7 , and R 8 in FIGS. 8 and 9 are the first magnetoresistive element 11, the second magnetoresistive element 12, the seventh magnetoresistive element 17, and the eighth magnetoresistive element 18, respectively. Resistance value.
- R 1 , R 2 , R 7 , and R 8 are the same as (Equation 1), (Equation 5), (Equation 6), (Equation) of the embodiment. 2).
- Voltage detector 30 detects the first magnetoresistance element 11 an intermediate potential V B of the second magnetoresistance element 12, a seventh magnetoresistance element 17 an intermediate potential V A of the eighth magnetoresistance element 18, respectively.
- the magnetization direction calculation unit 41 obtains ⁇ 1 and ⁇ 2 by substituting the intermediate potentials V B and V A detected by the voltage detection unit 30 into the following (Equation 14) and (Equation 15), respectively.
- R 1 , R 2 , R 7 , R 8 are represented by the above (Formula 1), (Formula 5), (Formula 6), and (Formula 2), respectively.
- the relational expression of the magnetization directions ⁇ 1 and ⁇ 2 can be obtained.
- the magnetic field direction calculation unit 42 substitutes the value of the anisotropic magnetic field intensity Ha and the magnetization directions ⁇ 1 and ⁇ 2 obtained by the magnetization direction calculation unit 41 into (Equation 13) of the above embodiment.
- the magnetic field direction ⁇ of the external magnetic field is calculated.
- the magnetic field direction ⁇ of the external magnetic field can be obtained in consideration of the uniaxial magnetic anisotropy of each of the magnetoresistive elements 11, 12, 17, and 18.
- the magnetic sensor unit 1 has four pairs of magnetoresistive elements arranged in the same direction in plan view.
- the magnetic sensor unit may have only the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth magnetoresistive element 14.
- the magnetic field direction ⁇ of the external magnetic field can be calculated by the same method as in the above embodiment.
- the magnetic sensor unit 1 detects an intermediate potential between a pair of magnetoresistive elements electrically connected in series in order to detect voltages across the magnetoresistive elements 11 to 18.
- the magnetic sensor unit may detect the voltages at both ends of the magnetoresistive elements 11 to 18 by another configuration, for example, as long as the voltage at both ends of the magnetoresistive elements 11 to 18 can be detected.
- the magnetization directions ⁇ 1 and ⁇ 2 of the magnetoresistive elements 11 to 18 and the magnetic field direction ⁇ of the external magnetic field are defined with reference to the X axis shown in FIG.
- the magnetization directions ⁇ 1 and ⁇ 2 and the magnetic field direction ⁇ may be defined with reference to axes other than the X axis.
- the present invention is applicable to a magnetic sensor unit having a plurality of magnetoresistive elements.
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
【課題】磁気センサ毎に補正値を用いることなく、磁気抵抗素子の一軸磁気異方性の影響を考慮して外部磁界の磁界方向を精度良く検出可能な磁気センサユニット及びそれを用いた磁界方向検出方法を提供する。【解決手段】磁気センサユニット1は、少なくとも異なる2方向に沿って配置され、外部磁界によって磁化される複数の磁気抵抗素子11~18と、磁気抵抗素子11~18の両端における電圧と、磁気抵抗素子11~18の異方性磁界の強さとを用いて、前記外部磁界の磁界方向を求める演算部40と、を備える。演算部40は、磁気抵抗素子11~18の磁化方向を、前記電圧と磁気抵抗素子11~18の抵抗値とを用いて求める磁化方向算出部41と、前記磁化方向と前記異方性磁界の強さとを用いて、前記外部磁界の磁界方向を算出する磁界方向算出部42と、を有する。
Description
本発明は、磁気センサユニット及びそれを用いた磁界方向検出方法に関する。
例えばモータの回転子の回転位置を検出する装置として、磁気式エンコーダが知られている。この磁気式エンコーダに用いられる磁気センサは、少なくとも異なる2方向に沿って配置され、外部磁界によって磁化される複数の磁気抵抗素子を有する。前記磁気センサでは、前記外部磁界の磁界方向の変化を、前記複数の磁気抵抗素子を用いて検出する。
ところで、前記磁気式エンコーダに前記磁気センサを用いた場合、前記磁気センサから出力される信号にノイズ等の誤差が含まれる可能性がある。そのため、例えば特許文献1に開示されるように、磁気式エンコーダを工場から出荷した後、所定のオフセット値を用いて、磁気センサの出力信号を補正する。
なお、前記特許文献1に開示されている構成では、前記磁気式エンコーダの工場出荷後に、前記磁気センサから出力される出力信号における理想状態からのズレ量を用いて、前記オフセット値が補正される。これにより、磁気式エンコーダの工場出荷後に、前記オフセット値を調整した環境とは異なる環境下で前記磁気式エンコーダが使用された場合でも、前記センサの検出誤差を小さくすることができる。
ところで、前記磁気センサの出力信号の誤差には、磁気的な誤差が含まれる。この磁気的な誤差は、前記磁気センサの磁気抵抗素子が有する一軸磁気異方性の影響が大きい。また、この磁気抵抗素子が有する一軸磁気異方性は、磁気センサの出力信号の誤差にも大きく影響する。
すなわち、前記磁気抵抗素子が有する一軸磁気異方性によって、外部磁界によって磁化される前記磁気抵抗素子の磁化方向が影響を受ける。これにより、前記磁気抵抗素子の抵抗値が変化するため、前記磁気抵抗素子から、実際の出力信号とは異なる出力信号が出力される。そうすると、前記磁気センサによって、外部磁界の磁界方向の変化を精度良く検出できない。
これに対し、上述の特許文献1に開示されるように、オフセット値を用いて磁気センサの出力信号を補正する方法が考えられる。しかしながら、前記特許文献1に開示されている構成では、前記オフセット値を磁気式エンコーダの工場出荷時に求めて設定する必要がある。しかも、前記オフセット値は、磁気センサ毎にそれぞれ異なるため、各磁気センサで前記オフセット値を求めて設定する必要がある。
本発明の目的は、磁気センサ毎に補正値を用いることなく、前記一軸磁気異方性の影響を考慮して外部磁界の磁界方向を精度良く検出可能な磁気センサユニット及びそれを用いた磁界方向検出方法を提供することにある。
本発明の一実施形態に係る磁気センサユニットは、少なくとも異なる2方向に沿って配置され、外部磁界によって磁化される複数の磁気抵抗素子と、前記複数の磁気抵抗素子に対して電圧を印加する電源部と、前記電源部によって前記複数の磁気抵抗素子に対して電圧を印加した場合に、各磁気抵抗素子の両端における電圧を検出する電圧検出部と、前記電圧検出部によって検出された電圧と、前記各磁気抵抗素子の異方性磁界の強さとを用いて、前記外部磁界の磁界方向を求める演算部と、を備える。前記演算部は、前記外部磁界の磁界方向及び前記各磁気抵抗素子が有する一軸磁気異方性によって決まる前記各磁気抵抗素子の磁化方向を、前記電圧検出部によって検出された電圧と前記各磁気抵抗素子の抵抗値とを用いて求める磁化方向算出部と、前記磁化方向と前記異方性磁界の強さとを用いて、前記外部磁界の前記磁界方向を算出する磁界方向算出部と、を有する。
本発明の一実施形態に係る磁気センサユニットを用いた磁界方向検出方法は、少なくとも異なる2方向に沿って配置され、外部磁界によって磁化される複数の磁気抵抗素子と、前記複数の磁気抵抗素子に対して電圧を印加する電源部と、を備えた磁気センサユニットを用いた磁界方向検出方法である。この磁界方向検出方法は、前記複数の磁気抵抗素子の両端におけるそれぞれの電圧を検出する電圧検出工程と、前記電圧検出工程で検出した前記電圧と各磁気抵抗素子の抵抗値とを用いて、前記複数の磁気抵抗素子の磁化方向を求める磁化方向算出工程と、前記磁化方向算出工程で算出した前記磁化方向と前記各磁気抵抗素子の異方性磁界の強さとを用いて、前記外部磁界の磁界方向を求める磁界方向算出工程と、を有する。
本発明の一実施形態に係る磁気センサユニット及びそれを用いた磁界方向検出方法によれば、磁気センサ毎に補正値を用いることなく、前記一軸磁気異方性の影響を考慮して外部磁界の磁界方向を精度良く検出することができる。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
なお、以下の説明において、磁界の方向とは、N極からS極に向かって生じる磁界の向きを意味し、以下では、磁界の方向を単に磁界方向ともいう。また、磁化方向は、磁気抵抗素子が外部磁界によって磁化される方向を意味する。具体的には、前記磁化方向は、磁化された磁気抵抗素子において、N極からS極に向かう磁界の向きを意味する。
(磁気センサユニット)
図1は、本発明の実施形態に係る磁気センサユニット1の構成を模式的に示す図である。磁気センサユニット1は、外部磁界の変化を複数の磁気抵抗素子11~18によって検出可能な磁気センサ10を有する。図2に示すように、磁気センサ10は、例えば磁界(外部磁界)を生じる磁石2に対向して配置され、磁石2が生じる磁界の方向の変化を検出する。なお、図2において、破線で示す矢印は、磁石2が生じる磁界を示す。このように、外部磁界の磁界方向の変化を検出可能な磁気センサ10は、例えば、モータの回転子の回転位置を検出するロータリーエンコーダなどに用いられる。
図1は、本発明の実施形態に係る磁気センサユニット1の構成を模式的に示す図である。磁気センサユニット1は、外部磁界の変化を複数の磁気抵抗素子11~18によって検出可能な磁気センサ10を有する。図2に示すように、磁気センサ10は、例えば磁界(外部磁界)を生じる磁石2に対向して配置され、磁石2が生じる磁界の方向の変化を検出する。なお、図2において、破線で示す矢印は、磁石2が生じる磁界を示す。このように、外部磁界の磁界方向の変化を検出可能な磁気センサ10は、例えば、モータの回転子の回転位置を検出するロータリーエンコーダなどに用いられる。
図1に示すように、磁気センサユニット1は、磁気センサ10と、電源部20と、電圧検出部30と、演算部40とを備える。磁気センサ10は、複数の磁気抵抗素子11~18を有する。すなわち、磁気センサユニット1は、複数の磁気抵抗素子11~18を有する。
磁気抵抗素子11~18は、NiFeなどの強磁性薄膜金属によって構成されている。よって、磁気抵抗素子11~18は、外部磁界によって磁化される。複数の磁気抵抗素子11~18は、例えば図示しない基板上に配置されている。以下の説明において、平面視とは、基板の表面(平面)を、該表面に対して法線方向から見た場合を意味する。なお、図1には、基板上における複数の磁気抵抗素子11~18の配置が、平面視で模式的に表されている。
複数の磁気抵抗素子11~18は、平面視で同一方向に並ぶ一対の磁気抵抗素子を、4組含む。すなわち、本実施形態の磁気センサユニット1は、8つの磁気抵抗素子11~18を有する。8つの磁気抵抗素子11~18は、平面視で、同一方向に並ぶ一対の第1磁気抵抗素子11及び第8磁気抵抗素子18と、同一方向に並ぶ一対の第2磁気抵抗素子12及び第7磁気抵抗素子17と、同一方向に並ぶ一対の第3磁気抵抗素子13及び第6磁気抵抗素子16と、同一方向に並ぶ一対の第4磁気抵抗素子14及び第5磁気抵抗素子15とを含む。なお、図1における各磁気抵抗素子11~18における白抜き矢印は、各磁気抵抗素子11~18の一軸磁気異方性の方向を意味する。
一対の第1磁気抵抗素子11及び第8磁気抵抗素子18と、一対の第2磁気抵抗素子12及び第7磁気抵抗素子17と、一対の第3磁気抵抗素子13及び第6磁気抵抗素子16と、一対の第4磁気抵抗素子14及び第5磁気抵抗素子15とは、それぞれ、平面視で異なる方向に沿って配置されている。すなわち、一対の第1磁気抵抗素子11及び第8磁気抵抗素子18が並ぶ方向と、一対の第2磁気抵抗素子12及び第7磁気抵抗素子17が並ぶ方向と、一対の第3磁気抵抗素子13及び第6磁気抵抗素子16が並ぶ方向と、一対の第4磁気抵抗素子14及び第5磁気抵抗素子15が並ぶ方向とは、平面視で異なる方向である。本実施形態では、平面視で、上述の各方向の間隔は、45度である。
具体的には、一対の第1磁気抵抗素子11及び第8磁気抵抗素子18が並ぶ方向と、一対の第3磁気抵抗素子13及び第6磁気抵抗素子16が並ぶ方向とは、平面視で45度異なる。一対の第3磁気抵抗素子13及び第6磁気抵抗素子16が並ぶ方向と、一対の第2磁気抵抗素子12及び第7磁気抵抗素子17が並ぶ方向とは、平面視で45度異なる。一対の第2磁気抵抗素子12及び第7磁気抵抗素子17が並ぶ方向と、一対の第4磁気抵抗素子14及び第5磁気抵抗素子15が並ぶ方向とは、平面視で45度異なる。一対の第4磁気抵抗素子14及び第5磁気抵抗素子15が並ぶ方向と、一対の第1磁気抵抗素子11及び第8磁気抵抗素子18が並ぶ方向とは、平面視で45度異なる。
これにより、一対の第1磁気抵抗素子11及び第8磁気抵抗素子18が並ぶ方向と、一対の第2磁気抵抗素子12及び第7磁気抵抗素子17が並ぶ方向とは、平面視で90度異なる。また、一対の第3磁気抵抗素子13及び第6磁気抵抗素子16が並ぶ方向と、一対の第4磁気抵抗素子14及び第5磁気抵抗素子15が並ぶ方向とは、平面視で90度異なる。すなわち、複数の磁気抵抗素子11~18は、平面視で直交する2方向に沿って配置された磁気抵抗素子を含む。
8つの磁気抵抗素子11~18のうち、平面視で異なる2方向に沿って配置された2つの磁気抵抗素子は、電気的に直列に接続されている。詳しくは、第1磁気抵抗素子11から第8磁気抵抗素子18のうち、平面視で、配置された方向が90度異なる2つの磁気抵抗素子は、電気的に直列に接続されている。
具体的には、第1磁気抵抗素子11と第2磁気抵抗素子12とが電気的に直列に接続されている。第3磁気抵抗素子13と第4磁気抵抗素子14とが電気的に直列に接続されている。第5磁気抵抗素子15と第6磁気抵抗素子16とが電気的に直列に接続されている。第7磁気抵抗素子17と第8磁気抵抗素子18とが電気的に直列に接続されている。
電気的に直列に接続された2つの磁気抵抗素子は、互いに電気的に並列に接続されている。すなわち、第1磁気抵抗素子11及び第2磁気抵抗素子12と、第3磁気抵抗素子13及び第4磁気抵抗素子14と、第5磁気抵抗素子15及び第6磁気抵抗素子16と、第7磁気抵抗素子17及び第8磁気抵抗素子18とは、電気的に並列に接続されている。これにより、8つの磁気抵抗素子11~18によって、図3に示す回路50が構成される。
なお、図1及び図3におけるR1からR8は、それぞれ、第1磁気抵抗素子11から第8磁気抵抗素子18の抵抗値である。具体的には、R1は第1磁気抵抗素子11の抵抗値であり、R2は第2磁気抵抗素子12の抵抗値であり、R3は第3磁気抵抗素子13の抵抗値であり、R4は第4磁気抵抗素子14の抵抗値である。また、R5は第5磁気抵抗素子15の抵抗値であり、R6は第6磁気抵抗素子16の抵抗値であり、R7は第7磁気抵抗素子17の抵抗値である。R8は第8磁気抵抗素子18の抵抗値である。
図1に示すように、例えば、第1磁気抵抗素子11及び第8磁気抵抗素子18をX軸に沿って配置した場合、平面視でX軸に対する外部磁界の角度をθとすると、R1からR8は下式によって表される。なお、第1磁気抵抗素子11及び第8磁気抵抗素子18には、X軸方向に電流を流し、第2磁気抵抗素子12及び第7磁気抵抗素子17には、平面視でX軸に対して90度の方向、すなわちY軸方向に電流を流し、第3磁気抵抗素子13及び第6磁気抵抗素子16には、平面視でX軸に対して45度の方向に電流を流し、第4磁気抵抗素子14及び第5磁気抵抗素子15には、平面視でX軸に対して135度の方向に電流を流す。
R1=R0-ΔRsin2(θ)
R2=R0-ΔRsin2(π/2-θ)
R3=R0-ΔRsin2(π/4-θ)
R4=R0-ΔRsin2(π/4+θ)
R5=R0-ΔRsin2(π/4+θ)
R6=R0-ΔRsin2(π/4-θ)
R7=R0-ΔRsin2(π/2-θ)
R8=R0-ΔRsin2(θ)
ここで、R0は無磁界中の磁気抵抗素子11~18の抵抗値であり、ΔRは外部磁界が変化した場合における磁気抵抗素子11~18の抵抗値の変化量である。
R1=R0-ΔRsin2(θ)
R2=R0-ΔRsin2(π/2-θ)
R3=R0-ΔRsin2(π/4-θ)
R4=R0-ΔRsin2(π/4+θ)
R5=R0-ΔRsin2(π/4+θ)
R6=R0-ΔRsin2(π/4-θ)
R7=R0-ΔRsin2(π/2-θ)
R8=R0-ΔRsin2(θ)
ここで、R0は無磁界中の磁気抵抗素子11~18の抵抗値であり、ΔRは外部磁界が変化した場合における磁気抵抗素子11~18の抵抗値の変化量である。
電源部20は、図3に示すように、回路50に対し、所定の電圧Vpを印加する。すなわち、電源部20は、直列に接続された2つの磁気抵抗素子に対し、それぞれ、所定の電圧Vpを印加する。すなわち、電源部20は、直列に接続された第1磁気抵抗素子11及び第2磁気抵抗素子12に対して所定の電圧Vpを印加する。電源部20は、直列に接続された第3磁気抵抗素子13及び第4磁気抵抗素子14に対して所定の電圧Vpを印加する。電源部20は、直列に接続された第5磁気抵抗素子15及び第6磁気抵抗素子16に対して所定の電圧Vpを印加する。電源部20は、直列に接続された第7磁気抵抗素子17及び第8磁気抵抗素子18に対して所定の電圧Vpを印加する。
電圧検出部30は、直列に接続された2つの磁気抵抗素子の中間電位を検出する。すなわち、電圧検出部30は、第1磁気抵抗素子11と第2磁気抵抗素子12との中間電位VB-、第3磁気抵抗素子13と第4磁気抵抗素子14との中間電位VA-、第5磁気抵抗素子15と第6磁気抵抗素子16との中間電位VA+、第7磁気抵抗素子17と第8磁気抵抗素子18との中間電位VB+をそれぞれ検出する。電圧検出部30は、これらの中間電位の差(VB+-VB-、VA+-VA-)を検出する。これにより、磁気抵抗素子11~18の両端の電圧を容易に且つ精度良く検出することができる。
演算部40は、電圧検出部30で検出された磁気抵抗素子11~18の両端の電圧と、磁気抵抗素子11~18の抵抗値と、磁気抵抗素子11~18の異方性磁界の強さとを用いて、外部磁界の磁界方向を求める。具体的には、演算部40は、磁化方向算出部41と、磁界方向算出部42とを備える。
磁化方向算出部41は、前記外部磁界の磁界方向と磁気抵抗素子11~18が有する一軸磁気異方性とによって決まる磁気抵抗素子11~18の磁化方向を、算出する。磁化方向算出部41は、磁気抵抗素子11~18の磁化方向を、電圧検出部30によって検出された磁気抵抗素子11~18の両端の電圧と、磁気抵抗素子11~18の抵抗値とを用いて求める。
既述のように、磁気抵抗素子11~18は、外部磁界によって磁化される。しかしながら、磁気抵抗素子11~18が一軸磁気異方性を有するため、磁気抵抗素子11~18の磁化方向は、前記一軸磁気異方性の影響を受ける。
外部磁界の磁界方向、磁気抵抗素子11~18の磁化方向、磁気抵抗素子11~18の一軸磁気異方性の関係を図4及び図5に示す。図4は、磁気抵抗素子11~18の一軸磁気異方性KがX軸方向の場合に、外部磁界の磁界方向と、磁気抵抗素子11~18の磁化Msの方向との関係を模式的に示す。図5は、磁気抵抗素子11~18の一軸磁気異方性KがY軸方向の場合に、外部磁界の磁界方向と、磁気抵抗素子11~18の磁化Msの方向との関係を模式的に示す。
図4及び図5に示すように、磁気抵抗素子11~18の一軸磁気異方性Kによって、外部磁界によって磁化される磁気抵抗素子11~18の磁化Msの方向(磁化方向)は影響を受ける。
図4に示す場合において、第1磁気抵抗素子11及び第8磁気抵抗素子18の抵抗値R1,R8は、以下の(式1)、(式2)によって表される。θ1は、X軸と第1磁気抵抗素子11の磁化方向とがなす角度である。
(式1)R1=R0-ΔRsin2(θ1)
(式2)R8=R0-ΔRsin2(θ1)
(式1)R1=R0-ΔRsin2(θ1)
(式2)R8=R0-ΔRsin2(θ1)
また、図4に示す場合において、第4磁気抵抗素子14及び第5磁気抵抗素子15の抵抗値R4,R5は、以下の(式3)、(式4)によって表される。
(式3)R4=R0-ΔRsin2(π/4+θ1)
(式4)R5=R0-ΔRsin2(π/4+θ1)
(式3)R4=R0-ΔRsin2(π/4+θ1)
(式4)R5=R0-ΔRsin2(π/4+θ1)
図5に示す場合において、第2磁気抵抗素子12及び第7磁気抵抗素子17の抵抗値R2,R7は、以下の(式5)、(式6)式によって表される。θ2は、X軸と第1磁気抵抗素子11の磁化Msの方向とがなす角度である。
(式5)R2=R0-ΔRsin2(π/2-θ2)
(式6)R7=R0-ΔRsin2(π/2-θ2)
(式5)R2=R0-ΔRsin2(π/2-θ2)
(式6)R7=R0-ΔRsin2(π/2-θ2)
また、図5に示す場合において、第3磁気抵抗素子13及び第6磁気抵抗素子16の抵抗R3,R6は、以下の(式7)、(式8)によって表される。
(式7)R3=R0-ΔRsin2(π/4-θ2)
(式8)R6=R0-ΔRsin2(π/4-θ2)
(式7)R3=R0-ΔRsin2(π/4-θ2)
(式8)R6=R0-ΔRsin2(π/4-θ2)
上述の(式1)から(式8)の各式における抵抗値R1からR8は、外部磁界による磁気抵抗素子11~18の磁化が磁気抵抗素子11~18の一軸磁気異方性によって影響を受けている場合の抵抗値である。
磁化方向算出部41は、電圧検出部30によって検出された中間電位VB-,VB+,VA-,VA+(または中間電圧VB,VA)を、以下の(式9)及び(式10)にそれぞれ代入することにより、θ1,θ2を求める。なお、以下の(式9)及び(式10)において、R1からR8に上述の(式1)から(式8)の各式を代入することにより、磁化方向θ1,θ2の関係式が得られる。
(式9)
(式10)
(式9)
(式10)
磁界方向算出部42は、磁化方向算出部41によって算出されたθ1,θ2と、磁気抵抗素子11~18の異方性磁界の強さとを用いて、図4及び図5におけるφ、すなわち外部磁界の磁界方向を求める。なお、φは、磁気抵抗素子11~18に流れる電流の方向(電流方向)に対する外部磁界の磁界方向の角度である。
前記異方性磁界の強さは、磁気抵抗素子11~18において、磁化困難方向に外部磁界を与えて、磁化が飽和したときの磁場の強さを意味する。磁気抵抗素子11~18を磁化容易方向及び磁化困難方向に磁化させた場合、図6に示すような外部磁界の強さHと磁化Mとの関係が得られる。前記異方性磁界の強さは、磁気抵抗素子11~18を磁化困難方向に磁化させた際に、磁化が飽和磁化Msに達したときの磁場の強さHaである。なお、前記異方性磁界の強さは、例えば、実測によって求められる。
ところで、外部磁界によって磁化される磁気抵抗素子11~18に生じる単位体積当たりのエネルギーFは、磁気異方性エネルギー及び外部磁界のエネルギーを考慮すると、下式によって求められる。
(式11)F=Ksin2(θ)-MsHcos(φ-θ)
(式11)F=Ksin2(θ)-MsHcos(φ-θ)
上式の両辺をKで割ると、
(式12)f=F/K=sin2(θ)-2hcos(φ-θ)
ここで、
h(換算磁界)=H/Ha
Ha=2K/Msより、MsH/K=2H(Ms/(2K))=2H/Ha=2h
φ:外部磁界の磁界方向(rad)
θ:各磁気抵抗素子の磁化方向(rad)
H:外部磁界の強さ(A/m)
Ha:各磁気抵抗素子の異方性磁界の強さ(A/m)
(式12)f=F/K=sin2(θ)-2hcos(φ-θ)
ここで、
h(換算磁界)=H/Ha
Ha=2K/Msより、MsH/K=2H(Ms/(2K))=2H/Ha=2h
φ:外部磁界の磁界方向(rad)
θ:各磁気抵抗素子の磁化方向(rad)
H:外部磁界の強さ(A/m)
Ha:各磁気抵抗素子の異方性磁界の強さ(A/m)
上述の(式12)にf=0を代入して、φについて解くことにより、下式が得られる。
(式13)φ=arccos(sin2θ/(2h))+θ
(式13)φ=arccos(sin2θ/(2h))+θ
よって、換算磁界h及び磁化方向θ1,θ2を用いて、外部磁界の磁界方向φを求めることができる。なお、換算磁界hは、外部磁界の強さHと異方性磁界の強さHaとによって決まる。そのため、異方性磁界の強さHaの値と磁化方向θ1,θ2とが決まれば、外部磁界の磁界方向φを求めることができる。
なお、(式13)から分かるように、換算磁界hが小さいほど、すなわち、外部磁界の強さHが異方性磁界の強さHaに近いほど、外部磁界の磁界方向φの算出結果に対する異方性磁界の影響が大きい。
磁界方向算出部42は、上述の(式13)に、異方性磁界の強さHaの値と磁化方向θ1,θ2とを代入することにより、外部磁界の磁界方向φを算出する。なお、磁界方向算出部42は、磁化方向θ1,θ2のいずれか一方の値を用いて、外部磁界の磁界方向φを算出してもよいし、磁化方向θ1,θ2の両方の値を用いて外部磁界の磁界方向φをそれぞれ算出した後、それらの平均値を外部磁界の磁界方向としてもよい。
既述のように、磁気センサユニット1の複数の磁気抵抗素子11~18は、それぞれ、一軸磁気異方性を有する。そのため、複数の磁気抵抗素子11~18は、外部磁界によって磁化される際に、外部磁界の磁界方向とは異なる方向に磁化される。よって、磁気センサユニット1の磁気抵抗素子11~18の磁化方向を検出しても、外部磁界の磁界方向を精度良く求めることはできない。
これに対し、本実施形態の構成では、外部磁界によって磁化された各磁気抵抗素子11~18の磁化方向θ1,θ2と、各磁気抵抗素子11~18の異方性磁界の強さHaとを用いて、外部磁界の磁界方向φを求める。これにより、磁気抵抗素子11~18の一軸磁気異方性を考慮して、外部磁界の磁界方向φを求めることができる。
しかも、上述の構成では、磁気抵抗素子11~18の一軸磁気異方性を考慮した外部磁界の磁界方向φを演算によって求めることができる。よって、従来のように、磁気抵抗素子11~18の一軸磁気異方性を考慮した補正値を用意する必要がない。
したがって、上述の構成により、複数の磁気抵抗素子11~18を用いて、外部磁界の磁界方向φを容易に且つ精度良く検出することができる。
また、本実施形態では、複数の磁気抵抗素子11~18は、平面視で直交する2方向に沿って配置された磁気抵抗素子(例えば第1磁気抵抗素子11及び第2磁気抵抗素子12など)を含む。これにより、直交する2方向に沿って配置された2つの磁気抵抗素子を用いて、外部磁界の磁界方向φを精度良く検出することができる。すなわち、前記2つの磁気抵抗素子を用いることにより、外部磁界の磁界方向φと前記2つの磁気抵抗素子の磁化方向θ1,θ2との関係を、三角関数を用いた式によって規定できる。よって、この式を用いることにより、磁気抵抗素子11~18の一軸磁気異方性を考慮した外部磁界の磁界方向φを演算によって精度良く求めることができる。
(磁気センサユニットの動作)
次に、上述の構成を有する磁気センサユニット1の動作を、図7を用いて説明する。図7は、磁気センサユニット1の動作を示すフローチャートである。
次に、上述の構成を有する磁気センサユニット1の動作を、図7を用いて説明する。図7は、磁気センサユニット1の動作を示すフローチャートである。
図7に示すように、まず、ステップS1において、電圧検出部30によって、磁気抵抗素子11~18の両端の電圧を検出する。すなわち、電圧検出部30によって、第1磁気抵抗素子11と第2磁気抵抗素子12との中間電位VB-、第3磁気抵抗素子13と第4磁気抵抗素子14との中間電位VA-、第5磁気抵抗素子15と第6磁気抵抗素子16との中間電位VA+、第7磁気抵抗素子17と第8磁気抵抗素子18との中間電位VB+を、それぞれ検出する。具体的には、電圧検出部30は、これらの中間電位の差(VB+-VB-、VA+-VA-)を検出することにより、磁気抵抗素子11~18の両端の電圧を検出することができる。
次に、ステップS2において、演算部40の磁化方向算出部31が、ステップS1で検出された磁気抵抗素子11~18の両端に作用する電圧を用いて、下式からθ1,θ2を算出する。なお、下式は、既述の(式9)及び(式10)である。
(式9)
(式10)
(式9)
(式10)
続くステップS3では、ステップS2で求めたθ1,θ2と、予め求められている異方性磁界の強さHaとを用いて、下式からφを求める。なお、下式は、既述の(式13)である。
(式13)φ=arccos(sin2θ/(2h))+θ
(式13)φ=arccos(sin2θ/(2h))+θ
これにより、磁気抵抗素子11~18に流れる電流の電流方向に対する外部磁界の磁界方向φを求めることができる。よって、電圧検出部30によって検出される磁気抵抗素子11~18の両端における電圧と、磁気抵抗素子11~18の異方性磁界の強さHaとを用いて、外部磁界の磁界方向φを算出できる。
ここで、ステップS1が、電圧検出工程に対応する。ステップS2が磁化方向算出工程に対応する。ステップS3が磁界方向算出工程に対応する。
(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
前記実施形態では、磁気センサユニット1は、8つの磁気抵抗素子11~18を有する。しかしながら、磁気センサユニットは、平面視で異なる2方向に沿って配置された磁気抵抗素子を有していればよい。すなわち、磁気センサユニットにおいて、平面視で同一方向に並ぶ一対の磁気抵抗素子が、90度の間隔で2組、配置されていてもよい。よって、磁気センサユニットは、少なくとも4つの磁気抵抗素子を有していればよい。
図8に、4つの磁気抵抗素子11,12,17,18を備えた磁気センサユニット101の構成を模式的に示す。磁気センサユニット101は、外部磁界の変化を複数の磁気抵抗素子11,12,17,18によって検出可能な磁気センサ110を有する。
複数の磁気抵抗素子11,12,17,18は、平面視で同一方向に並ぶ一対の磁気抵抗素子を、2組含む。すなわち、4つの磁気抵抗素子11,12,17,18は、平面視で、同一方向に並ぶ一対の第1磁気抵抗素子11及び第8磁気抵抗素子18と、同一方向に並ぶ一対の第2磁気抵抗素子12及び第7磁気抵抗素子17とを含む。一対の第1磁気抵抗素子11及び第8磁気抵抗素子18と、一対の第2磁気抵抗素子12及び第7磁気抵抗素子17とは、それぞれ、平面視で異なる方向に沿って配置されている。磁気センサユニット101では、平面視で、上述の各方向の間隔は、90度である。
第1磁気抵抗素子11と第2磁気抵抗素子12とが電気的に直列に接続されている。第7磁気抵抗素子17と第8磁気抵抗素子18とが電気的に直列に接続されている。第1磁気抵抗素子11及び第2磁気抵抗素子12と、第7磁気抵抗素子17及び第8磁気抵抗素子18とは、電気的に並列に接続されている。
これにより、4つの磁気抵抗素子11,12,17,18によって、図9に示す回路150が構成される。なお、図8及び図9におけるR1,R2,R7,R8は、それぞれ、第1磁気抵抗素子11、第2磁気抵抗素子12、第7磁気抵抗素子17及び第8磁気抵抗素子18の抵抗値である。また、前記実施形態の図4及び図5に示す場合において、R1,R2,R7,R8は、前記実施形態の(式1)、(式5)、(式6)、(式2)で表される。
電圧検出部30は、第1磁気抵抗素子11と第2磁気抵抗素子12との中間電位VB、第7磁気抵抗素子17と第8磁気抵抗素子18との中間電位VAをそれぞれ検出する。
電圧検出部30は、第1磁気抵抗素子11と第2磁気抵抗素子12との中間電位VB、第7磁気抵抗素子17と第8磁気抵抗素子18との中間電位VAをそれぞれ検出する。
なお、その他の構成は、前記実施形態における磁気センサユニット1と同様なので、詳しい説明を省略する。
磁化方向算出部41は、電圧検出部30によって検出された中間電位VB,VAを、以下の(式14)及び(式15)にそれぞれ代入することにより、θ1,θ2を求める。なお、以下の(式14)及び(式15)において、R1,R2,R7,R8に上述の(式1)、(式5)、(式6)、(式2)の各式を代入することにより、磁化方向θ1,θ2の関係式が得られる。
(式14)
(式15)
(式14)
(式15)
磁界方向算出部42は、前記実施形態の(式13)に、異方性磁界の強さHaの値と磁化方向算出部41で求めた磁化方向θ1,θ2とを代入することにより、外部磁界の磁界方向φを算出する。
これにより、各磁気抵抗素子11,12,17,18の一軸磁気異方性を考慮して、外部磁界の磁界方向φを求めることができる。
前記実施形態では、磁気センサユニット1は、平面視で同一方向に並ぶ一対の磁気抵抗素子を、4組有する。しかしながら、磁気センサユニットは、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13及び第4磁気抵抗素子14のみを有していてもよい。この場合には、電圧検出部20によって、磁気抵抗素子11~14の両端における電圧を検出することにより、前記実施形態と同様の方法によって、外部磁界の磁界方向φを算出することができる。
前記実施形態では、磁気センサユニット1は、磁気抵抗素子11~18の両端の電圧を検出するために、電気的に直列に接続された一対の磁気抵抗素子の中間電位を検出する。しかしながら、磁気センサユニットは、磁気抵抗素子11~18の両端の電圧を検出可能な構成であれば、例えば他の構成によって磁気抵抗素子11~18の両端の電圧を検出してもよい。
前記実施形態では、磁気抵抗素子11~18の磁化方向θ1,θ2及び外部磁界の磁界方向φを、図1に示すX軸を基準として規定しているが、この限りではなく、例えばY軸など、X軸以外を基準として、磁化方向θ1,θ2及び磁界方向φを規定してもよい。
本発明は、複数の磁気抵抗素子を有する磁気センサユニットに利用可能である。
1、101 磁気センサユニット
10、110 磁気センサ
11 第1磁気抵抗素子
12 第2磁気抵抗素子
13 第3磁気抵抗素子
14 第4磁気抵抗素子
15 第5磁気抵抗素子
16 第6磁気抵抗素子
17 第7磁気抵抗素子
18 第8磁気抵抗素子
20 電源部
30 電圧検出部
40 演算部
50、150 回路
θ1、θ2 磁気抵抗素子の磁化方向
φ 外部磁界の磁界方向
H 外部磁界の強さ
Ms 磁気抵抗素子の磁化
R1~R8 磁気抵抗素子の抵抗値
Claims (6)
- 磁気センサユニットであって、少なくとも異なる2方向に沿って配置され、外部磁界によって磁化される複数の磁気抵抗素子と、前記複数の磁気抵抗素子に対して電圧を印加する電源部と、前記電源部によって前記複数の磁気抵抗素子に対して電圧を印加した場合に、各磁気抵抗素子の両端における電圧を検出する電圧検出部と、前記電圧検出部によって検出された電圧と、前記各磁気抵抗素子の異方性磁界の強さとを用いて、前記外部磁界の磁界方向を求める演算部と、を備え、前記演算部は、前記外部磁界の磁界方向及び前記各磁気抵抗素子が有する一軸磁気異方性によって決まる前記各磁気抵抗素子の磁化方向を、前記電圧検出部によって検出された電圧と前記各磁気抵抗素子の抵抗値とを用いて求める磁化方向算出部と、前記磁化方向と前記異方性磁界の強さとを用いて、前記外部磁界の前記磁界方向を算出する磁界方向算出部と、を有する、磁気センサユニット。
- 請求項1に記載の磁気センサユニットにおいて、前記複数の磁気抵抗素子のうち異なる2方向に沿って配置された2つの磁気抵抗素子は、電気的に直列に接続され、前記電圧検出部は、前記直列に接続された2つの磁気抵抗素子の中間電位を検出する、磁気センサユニット。
- 請求項1または2に記載の磁気センサユニットにおいて、前記異なる2方向は、直交する2方向である、磁気センサユニット。
- 請求項1から3のいずれか一つに記載の磁気センサユニットにおいて、前記複数の磁気抵抗素子は、少なくとも異なる4方向に沿って配置されている、磁気センサユニット。
- 少なくとも異なる2方向に沿って配置され、外部磁界によって磁化される複数の磁気抵抗素子と、前記複数の磁気抵抗素子に対して電圧を印加する電源部と、を備えた磁気センサユニットを用いた磁界方向検出方法であって、前記複数の磁気抵抗素子の両端におけるそれぞれの電圧を検出する電圧検出工程と、前記電圧検出工程で検出した前記電圧と各磁気抵抗素子の抵抗値とを用いて、前記複数の磁気抵抗素子の磁化方向を求める磁化方向算出工程と、前記磁化方向算出工程で算出した前記磁化方向と前記各磁気抵抗素子の異方性磁界の強さとを用いて、前記外部磁界の磁界方向を求める磁界方向算出工程と、を有する、磁気センサユニットを用いた磁界方向検出方法。
- 請求項5に記載の磁気センサユニットを用いた磁界方向検出方法において、前記磁界方向算出工程では、(1)式を用いて、前記外部磁界の前記磁界方向を算出する、磁気センサユニットを用いた磁界方向検出方法。
φ=arccos(sin2θ/(2h))+θ (1)
h=H/Ha
φ:外部磁界の磁界方向(rad)
θ:各磁気抵抗素子の磁化方向(rad)
H:外部磁界の強さ(A/m)
Ha:各磁気抵抗素子の異方性磁界の強さ(A/m)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017-058234 | 2017-03-23 | ||
| JP2017058234 | 2017-03-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018173590A1 true WO2018173590A1 (ja) | 2018-09-27 |
Family
ID=63586381
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/005903 WO2018173590A1 (ja) | 2017-03-23 | 2018-02-20 | 磁気センサユニット及びそれを用いた磁界方向検出方法 |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018173590A1 (ja) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3024218B2 (ja) * | 1994-08-23 | 2000-03-21 | 松下電器産業株式会社 | 磁気信号検出装置 |
| JP2002350136A (ja) * | 2001-05-22 | 2002-12-04 | Hitachi Metals Ltd | 方位計 |
| JP2005197364A (ja) * | 2004-01-05 | 2005-07-21 | Mitsubishi Electric Corp | 磁界検出素子、磁界検出器、磁界検出方法および磁界検出素子の製造方法 |
| JP2008111801A (ja) * | 2006-10-31 | 2008-05-15 | Tdk Corp | 磁気センサおよびその製造方法 |
| JP2008209311A (ja) * | 2007-02-27 | 2008-09-11 | Tdk Corp | 磁気センサ、磁気方位センサ、磁界検出方法および磁気方位検出方法 |
| JP2009031292A (ja) * | 2007-07-26 | 2009-02-12 | Magic Technologies Inc | 磁場角測定方法および装置、並びにmr素子の磁化方法 |
| JP2010197399A (ja) * | 2010-04-01 | 2010-09-09 | Mitsubishi Electric Corp | 磁界検出装置およびそれを調整する方法 |
| WO2010113820A1 (ja) * | 2009-03-30 | 2010-10-07 | 日立金属株式会社 | 回転角度検出装置 |
| US20150002142A1 (en) * | 2013-06-28 | 2015-01-01 | Analog Devices Technology | Magnetic field direction sensor |
-
2018
- 2018-02-20 WO PCT/JP2018/005903 patent/WO2018173590A1/ja active Application Filing
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3024218B2 (ja) * | 1994-08-23 | 2000-03-21 | 松下電器産業株式会社 | 磁気信号検出装置 |
| JP2002350136A (ja) * | 2001-05-22 | 2002-12-04 | Hitachi Metals Ltd | 方位計 |
| JP2005197364A (ja) * | 2004-01-05 | 2005-07-21 | Mitsubishi Electric Corp | 磁界検出素子、磁界検出器、磁界検出方法および磁界検出素子の製造方法 |
| JP2008111801A (ja) * | 2006-10-31 | 2008-05-15 | Tdk Corp | 磁気センサおよびその製造方法 |
| JP2008209311A (ja) * | 2007-02-27 | 2008-09-11 | Tdk Corp | 磁気センサ、磁気方位センサ、磁界検出方法および磁気方位検出方法 |
| JP2009031292A (ja) * | 2007-07-26 | 2009-02-12 | Magic Technologies Inc | 磁場角測定方法および装置、並びにmr素子の磁化方法 |
| WO2010113820A1 (ja) * | 2009-03-30 | 2010-10-07 | 日立金属株式会社 | 回転角度検出装置 |
| JP2010197399A (ja) * | 2010-04-01 | 2010-09-09 | Mitsubishi Electric Corp | 磁界検出装置およびそれを調整する方法 |
| US20150002142A1 (en) * | 2013-06-28 | 2015-01-01 | Analog Devices Technology | Magnetic field direction sensor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105785290B (zh) | 磁场传感器 | |
| US10648787B2 (en) | Rotating field sensor | |
| JP5590349B2 (ja) | 磁気センサシステム | |
| JP3848670B1 (ja) | 回転角度検出装置 | |
| CN108627083B (zh) | 角度传感器系统 | |
| JP6331177B1 (ja) | 角度センサシステム | |
| US9958511B2 (en) | Soft switching of magnetization in a magnetoresistive sensor | |
| US20160169707A1 (en) | Rotating field sensor | |
| EP2284555A1 (en) | Magnetic sensor including a bridge circuit | |
| CN105629023B (zh) | 电流检测装置 | |
| US11243274B2 (en) | Magnetic sensor system | |
| JP2011027683A (ja) | 磁気センサ | |
| US10352728B2 (en) | Angle sensor, correction method for use therewith, and angle sensor system | |
| KR20150135307A (ko) | 외부 자계에 민감하지 않은 홀 센서 | |
| US20140028307A1 (en) | Magnetoresistive sensor systems and methods having a yaw angle between premagnetization and magnetic field directions | |
| US20170336229A1 (en) | Condition determination apparatus and method, physical quantity information generation apparatus, and angle sensor | |
| US10746571B2 (en) | Condition determination apparatus and method, physical quantity information generation apparatus, and angle sensor | |
| JP2016170028A (ja) | 磁気センサ | |
| JP7156249B2 (ja) | 位置検出装置 | |
| JP5206962B2 (ja) | 回転角度センサ | |
| JP5989257B2 (ja) | 磁気検出装置 | |
| CN115900528A (zh) | 用于无全旋转安全测量的角度传感器校准方法 | |
| US10900811B2 (en) | Displacement detection device | |
| JP2020134149A (ja) | 信号処理回路および磁気センサシステム | |
| JP2011089931A (ja) | 電流センサ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772405 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18772405 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |