WO2018173942A1 - Cooling structure, cooling system, heating device, and structural object - Google Patents
Cooling structure, cooling system, heating device, and structural object Download PDFInfo
- Publication number
- WO2018173942A1 WO2018173942A1 PCT/JP2018/010409 JP2018010409W WO2018173942A1 WO 2018173942 A1 WO2018173942 A1 WO 2018173942A1 JP 2018010409 W JP2018010409 W JP 2018010409W WO 2018173942 A1 WO2018173942 A1 WO 2018173942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medium
- heat
- hole
- medium flow
- flow path
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 199
- 238000010438 heat treatment Methods 0.000 title description 8
- 230000017525 heat dissipation Effects 0.000 claims abstract description 19
- 230000007246 mechanism Effects 0.000 claims description 33
- 238000009413 insulation Methods 0.000 claims description 16
- 230000005484 gravity Effects 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 66
- 239000000758 substrate Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 25
- 230000005855 radiation Effects 0.000 description 22
- 230000001965 increasing effect Effects 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000009423 ventilation Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/467—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present invention relates to a cooling structure, a cooling system, a heating device, and a structure.
- the heat generated in an integrated circuit device mounted on a wiring board is passed through heat dissipation vias (through holes) formed in the wiring board.
- heat dissipation vias through holes formed in the wiring board.
- An object of the present invention is to provide a cooling structure, a cooling system, a heat generating device, and a structure that can enhance the cooling effect as compared with the conventional structure, and thereby can easily cope with downsizing.
- a heat dissipating part having a mounting surface on which electronic components are mounted directly or indirectly, A medium flow path for flowing the medium in the heat radiating portion is provided.
- the cooling effect of the electronic component cooling structure can be enhanced more than that of the conventional structure, thereby making it possible to easily cope with downsizing and the like.
- FIG. 1 is an explanatory diagram schematically showing a schematic configuration example of an electronic component cooling structure according to the first embodiment of the present invention.
- the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
- the cooling structure includes a heat radiating portion having a placement surface on which the electronic component 101 is placed directly or indirectly.
- “Directly” “placed” means a mode of being placed without any intervention, and “indirectly placed” is a mode of being placed via any member.
- the electronic component 101 may be placed indirectly on the placement surface via the insulating substrate 4, the heat dissipation insulation sheet, or the like, or may be placed directly on the placement surface.
- the heat radiating part of the cooling structure may include a heat sink 5 which is a heat radiating member to be described later and / or a heat conductive plate 2 as a heat conductive member.
- the heat dissipating member may include a heat dissipating main body 7 and heat dissipating fins 6 which are examples of a heat dissipating structure provided in the heat dissipating main body 7.
- the heat radiating body 7 and the heat radiating structure may be formed integrally.
- the heat radiating member does not have a heat radiating structure, and may be a heat radiating block, for example.
- the cooling structure 1 described later is a concept including the insulating substrate 4 in addition to the cooling structure.
- a heat exhaust plate having high heat exhaust properties may be used, or a cooling plate having a cooling function may be used.
- the heat conducting member and the cooling structure 1 may be made of different materials or may be made of the same material.
- the first metal may be used as the material of the heat conduction member
- the second metal may be used as the material of the cooling structure.
- a material containing copper as the material of the heat conduction member may be used.
- a material containing aluminum may be used as the material.
- a metal may be used as the material of the heat conducting member, and a non-metal may be used as the material of the cooling structure.
- a material containing copper or aluminum is used as the material of the heat conducting member, and the material of the cooling structure is used.
- a material containing ceramic may be used.
- the electronic component cooling structure 1 includes an insulating substrate 4 on which an electronic component 101 serving as a heating element is mounted on one surface (upper surface in FIG. 1), and an insulating substrate 4.
- a heat conducting plate 2 as a heat conducting member joined to another surface (lower surface in FIG. 1) and a heat sink 5 as a heat radiating member joined to the lower surface of the heat conducting plate 2 are provided.
- the cooling structure 1 includes an insulating substrate 4 on which the electronic component 101 is mounted, a heat sink 5 that is indirectly bonded to the insulating substrate 4 through the heat conducting plate 2, and the insulating substrate 4 and the heat sink 5. And a heat conductive plate 2 interposed therebetween.
- the heat conductive plate 2 has a mounting surface 2a on which the insulating substrate 4 is mounted. At least a part of the heat medium hole 3 that is a medium flow path (at least a part shown in FIG. 1) is arranged to extend in a direction along the placement surface 2a.
- the in-plane direction of the insulating substrate 4 (the direction including the left-right direction in FIG. 1 and the front and back direction of the paper surface) is the in-plane direction of the mounting surface 2a, and the in-plane direction of the tower mounting surface 2a At least a part of the heat medium hole 3 extends along the line.
- the “direction along the mounting surface 2a” is not only a direction extending in parallel with the direction in which the mounting surface 2a extends, but also the direction in which the mounting surface 2a extends. A direction extending in the direction is also included.
- the insulating substrate 4 has a plate shape on which the electronic component 101 is mounted.
- a circuit pattern 24 that forms an electric circuit is formed on the surface of the insulating substrate 4, and the electronic component 101 that is a heating element is attached to the circuit pattern 24.
- Various types of electronic components 101 can be applied as the electronic component 101 mounted on the insulating substrate 4.
- the type is not particularly limited as long as it is a heating element.
- a semiconductor chip such as a light emitting diode or a power device is used. It may be an integrated circuit device such as an MPU (CPU) or a power supply component such as a transistor or a capacitor.
- the heat sink 5 functions as a heat radiating member that radiates heat from the electronic component 101. Therefore, the heat sink 5 is formed of a metal material having good thermal conductivity, and is on the side opposite to the electronic component 101 side (that is, the side of the joint surface with the thermal conduction plate 2) (the lower side in the figure).
- the heat sink 5 has heat radiation fins 6 as heat radiation structures for radiating heat transmitted to the heat sink 5.
- the heat conductive plate 2 is a plate-shaped member made of a material having thermal conductivity, and functions as a heat conductive member that transfers heat from the insulating substrate 4 to the heat sink 5. Therefore, it is preferable that the heat conductive plate 2 is formed of a metal plate member having good heat conductivity.
- the heat conduction plate 2 is not necessarily a single plate-like member, and may have a multilayer structure in which a plurality of layers are laminated, for example.
- the heat conductive plate 2 may include a plate material that forms the intermediate layer in a side view and a metal layer that is provided so as to cover the upper surface and the lower surface of the plate material.
- the plate material for example, a material such as copper, copper alloy, aluminum, and aluminum alloy is applied
- the metal layer for example, a plating layer such as copper is applied.
- the heat conductive plate 2 is not necessarily limited to a metal material, and may be formed of a non-metal material such as ceramics as long as the material has good heat conductivity. Furthermore, even if the surface of the heat conductive plate 2 or the inner wall surface of the heat medium hole 3 to be described later is formed with a thin film rust preventive film that does not deteriorate the thermal conductivity such as gold plating in order to prevent oxidative corrosion. Good.
- a heat conductive plate 2 details of the insulating substrate 4 immediately below the place where the electronic component 101 is mounted and the area immediately below the area (that is, the area including immediately below the position where the electronic component is mounted) will be described in detail later.
- a mounting region 25 of the electronic component 101 on the heat conducting plate 2 (see, for example, FIG. 2 described later).
- the number and shape of the scheduled mounting areas 25 are appropriately set according to specifications and the like, and are not particularly limited.
- the heat medium hole 3 is for performing heat sink (cooling) of the heat conducting plate 2 by convection of a medium such as a gas (for example, air) passing through the heat medium hole 3 or a liquid such as water or oil. . That is, the heat medium hole 3 is configured to exhaust heat by the flow of the medium in the hole.
- the heat medium hole 3 serving as a medium flow path is provided between the insulating substrate 4 and the heat radiating fins 6 of the heat sink 5 by being provided in the heat conducting plate 2.
- the heat medium hole 3 includes a first opening 301 that is an inlet portion into which a medium such as gas or liquid flows, and a second opening 302 that is an outlet portion through which the medium is discharged.
- the first opening 301 and the second opening 302 are provided so as to be exposed at the end face of the heat conducting plate 2.
- the heat medium hole 3 has a through-hole configuration from the inlet portion on one end face of the heat conducting plate 2 to the outlet portion on the other end face.
- Such a heat medium hole 3 can be formed by utilizing mechanical processing, etching processing, or the like for the heat conductive plate 2.
- the heat conductive plate 2 has a multilayer structure in which a plate material and a metal layer are laminated, a groove shape in which one surface side (the side to which the insulating substrate 4 is bonded or the opposite side) of the plate material opens.
- the heat medium hole 3 can be easily formed by providing a metal layer so as to close the opening of the recess.
- the metal layer in this case is an example of a lid member that closes the recess.
- the formation method of the heat medium hole 3 is not particularly limited, and the heat medium hole 3 may be formed by any method as long as it is configured in a through hole shape.
- the heat medium hole 3 serving as a medium flow path passes through a region to be mounted 25 of the electronic component 101 on the heat conductive plate 2 (for example, see FIG. 2 described later). It is formed as follows. In other words, the heat medium hole 3 is arranged so that at least a part thereof overlaps with the vicinity of the place where the electronic component 101 is mounted when viewed in plan.
- the description is made assuming that one heat medium hole 3 is provided for one mounting region 25 in the heat conductive plate 2, but the heat medium hole in the heat conductive plate 2 is described. 3 and the number of scheduled mounting areas 25 are not particularly limited.
- a configuration in which a plurality of mounting regions 25 and a plurality of heat medium holes 3 are provided in the heat medium hole 2 may be employed.
- the present invention is not limited to the configuration in which one heat medium hole 3 overlaps one mounting scheduled area 25.
- the heat conduction plate 2 may be provided with a plurality of scheduled mounting areas 25 and the heat medium holes 3 may be provided so as to overlap with some of the plurality of scheduled mounting areas 25.
- region 25 may be sufficient.
- FIG. 2 is an explanatory diagram showing a configuration example of the heat medium hole in the electronic component cooling structure according to the first embodiment of the present invention.
- the extending direction of the heat medium hole 3 may be along the vertical direction (gravity direction) when the electronic component cooling structure 1 is used.
- the first opening 301 serving as the medium inlet is disposed on the lower surface in the vertical direction
- the second opening 302 serving as the medium outlet is disposed on the upper surface in the vertical direction.
- the flow of the medium in the hole of the heat medium hole 3 can be generated using, for example, thermal convection (natural convection) due to the chimney effect (draft effect).
- Such an extending direction of the heat medium hole 3 can be realized, for example, by arranging the entire cooling structure 1 in such a manner (rotating the cooling structure 1 shown in FIG. 1 90 degrees to the left). Further, the heat medium hole 3 may be arranged such that the extending direction of the heat medium hole 3 is inclined with respect to the horizontal direction when the electronic component cooling structure 1 is used.
- the first opening 301 serving as a medium inlet to the heat medium hole 3 provided on one surface of the heat conducting plate 2 is an outlet of the medium from the heat medium hole 3.
- the first opening 301 and the second opening 302 cause a height difference in the direction of gravity between the first opening 301 and the second opening 302. I just need it.
- At least a part of the heat medium hole 3 in a direction perpendicular to the upper surface of the heat conduction plate 2 is a region 25 in which the electronic component 101 is to be mounted on the heat conduction plate 2. It may be formed to pass through. That is, the heat medium hole 3 may be disposed so that at least a part of the heat medium hole 3 overlaps the planned mounting area 25 of the electronic component 101 when viewed in the normal direction.
- the cross-sectional shape of the heat medium hole 3 (referred to as a cross-sectional shape obtained by cutting the heat medium hole 3 along a plane parallel to the extending direction) is, for example, a uniform cross-sectional dimension from the first opening 301 to the second opening 302. Is formed. Therefore, it is possible to facilitate the formation of the heat medium hole 3, and it is possible to suppress the complexity of the structure of the cooling structure 1 and the increase in cost.
- the heat medium hole 3 is not limited to such a form, and may have a cross-sectional shape as described later.
- the heat medium hole 3 may be configured to have the following characteristics. (1) The first opening 301 serving as a medium inlet portion provided on one surface of the heat conducting plate 2 is communicated with the second opening 302 serving as a medium outlet portion, which is stretched in a predetermined stretching direction. It has a through-hole configuration for the purpose of exhaust heat (heat extraction) due to the flow of the medium in the hole. (2) When viewed in the normal direction, at least a part of the heat medium hole 3 overlaps at least a part of the mounting region 25 of the electronic component 101 mounted on the insulating substrate 4. (3) When the electronic component 101 is used, the heat medium hole 3 extends in the vertical direction (gravity direction) (at least in a direction other than the horizontal direction).
- the heat generated by the electronic component 101 is transmitted to the heat sink 5 as the heat radiating member via the insulating substrate 4 and the heat conductive plate 2, and the heat radiating structure portion in the heat sink 5 Heat is dissipated by the radiation fins 6.
- the heat from the electronic component 101 is also transmitted to the hole of the heat medium hole 3 in the heat conducting plate 2 and heats the medium (for example, gas or liquid such as air) in the hole.
- the medium in the heat medium hole 3 is heated and expands in temperature, rises in the hole of the heat medium hole 3, and passes through the second opening 302 (opening located on the upper side) to the heat conduction plate 2.
- a new medium for example, outside air
- heat convection is generated in the hole of the heat medium hole 3.
- the medium is a gas
- a medium flow from the lower side to the upper side is generated by the chimney effect (draft effect).
- the heat conducting plate 2 is provided with the through-hole-shaped heat medium hole 3.
- the heat is also exhausted by the medium flow in the three holes. That is, regarding the heat from the electronic component 101, first, “rough heat” is exhausted by the flow of the medium in the heat medium hole 3, and then “remaining heat” transmitted to the heat radiation fin 6 of the heat sink 5 is the heat radiation fin. The heat is dissipated by 6.
- heat is exhausted not only by the heat radiation fins 6 of the heat sink 5 but also by the flow of the medium in the heat medium hole 3.
- the cooling effect on the heat can be enhanced as compared with the conventional structure.
- the heat dissipating fins 6 of the heat sink 5 only need to dissipate “remaining heat” after exhaust heat is exhausted due to the flow of the medium in the heat medium hole 3, thereby suppressing an increase in size and the like for increasing the cooling capacity. As a result, it is possible to easily cope with downsizing and the like.
- the first opening 301 serving as a medium inlet is disposed below the second opening 302 serving as a medium outlet, and the heat medium
- the medium flow in the hole 3 is configured to be generated by thermal convection due to a chimney effect (draft effect) or the like. Therefore, if heat is transferred into the hole of the heat medium hole 3, it is possible to surely generate the medium flow by the heat convection naturally generated due to the density change due to the heating of the medium. That is, reliable exhaust heat using thermal convection (natural convection) is possible, which is very preferable for enhancing the cooling effect.
- the configuration of the cooling structure 1 can be prevented from becoming complicated, which is preferable in terms of downsizing and the like.
- the heat medium hole 3 is arranged so as to overlap with the planned mounting area 25 of the electronic component 101, and passes through a region near the mounting position of the electronic component 101. As described above, if the heat medium hole 3 passes through the vicinity of the electronic component 101, the heat transmitted from the electronic component 101 can be efficiently transferred in a state where the temperature difference from the medium flowing through the hole of the heat medium hole 3 is large. Therefore, it is possible to improve the exhaust heat efficiency (that is, the cooling efficiency with respect to the heat from the electronic component 101) by the medium.
- the heat medium hole 3 is formed in the heat conductive plate 2 interposed between the insulating substrate 4 and the heat sink 5. That is, the heat medium hole 3 is formed in the heat conductive plate 2 which is a separate member from the insulating substrate 4 and the heat sink 5. Therefore, it is easy to realize a sufficient degree of freedom in setting the path, shape, and the like of the heat medium hole 3, which is preferable in securing the versatility of the cooling structure 1 and the like.
- the hole cross-sectional area of the first opening 301 (here, the first opening 301 is perpendicular to the extending direction of the heat medium hole 3).
- the cross-sectional area of the second opening 302 (the cross-sectional area of the second opening 301 is cut by a plane perpendicular to the extending direction of the heat medium hole 3).
- the entire heat medium hole 3 is formed in a tapered hole shape.
- the tapered hole shape is realized by forming the first opening 301 side larger than the second opening 302 side with respect to the hole volume in consideration of a predetermined dimension in the extending direction of the heat medium hole 3. It may be.
- the hole cross-sectional area or hole volume on the medium inlet side in the hole of the heat medium hole 3 is larger than the hole cross-sectional area or hole volume on the medium outlet side in the hole. It has a part formed so that it may become larger.
- the hole cross-sectional area on the inlet side the medium can be actively taken into the hole of the heat medium hole 3, while by reducing the hole cross-sectional area on the outlet side, Heat exchange to the incorporated media can be facilitated. Therefore, according to the heat medium hole 3 having such a configuration, it is useful in improving the exhaust heat efficiency by the medium.
- the configuration example shown in FIG. 2C includes a small cross-sectional area 31 and a large cross-sectional area 32 having different cross-sectional areas in the cross-sectional shape of the heat medium hole 3. More specifically, a small cross-sectional area 31 is formed in each of the vicinity of the first opening 301 and the vicinity of the second opening 302, and the small cross-sectional area 31 in the vicinity of the first opening 301. A large cross-sectional area portion 32 having a larger cross-sectional area than that of the small cross-sectional area portion 31 is provided in an intermediate portion in the extending direction of the heat medium hole 3.
- the large cross-sectional area 32 is provided so as to overlap the predetermined mounting scheduled area 25 when viewed in the normal direction.
- the large cross-sectional area portion 32 is provided so as to cover the entire area of the predetermined mounting area 25.
- the entire electronic component 101 mounted in the planned mounting area 25 is superimposed on the large cross-sectional area portion 32.
- the size and shape of the large cross-sectional area portion 32 in the normal direction view depend on the size and shape of the planned mounting region 25 (in other words, the size and shape of the element 101 mounted in the planned mounting region 25). Is set.
- the heat medium hole 3 shown in FIG. 2C is arranged so as to pass through the planned mounting area 25 that is an area corresponding to the electronic component 101 and the non-mounted target area other than the planned mounting area 25.
- the size (specifically, the width or height) of the hole cross-sectional shape of the large cross-sectional area portion 32 that passes through the planned mounting area 25 is smaller than the hole cross-sectional shape of the small cross-sectional area portion 31 that passes through the non-mounted area. It is formed to be larger than the size of.
- the heat from the electronic component 101 is transferred to the medium in the hole of the heat medium hole 3.
- a sufficient effective area can be secured.
- by reducing the size of the hole cross-sectional shape of the small cross-sectional area portion 31 that passes through the non-mounting scheduled region it is possible to suppress a decrease in heat capacity in the heat conduction plate 2 in which the heat medium hole 3 is formed. Therefore, providing a difference in the size of the hole cross-sectional shape between the mounting planned area and the non-mounting planned area is useful in improving the heat exhaust efficiency by the medium.
- the configuration example shown in FIG. 2D is a combination of the configuration example shown in FIG. 2B and the configuration example shown in FIG. That is, the cross-sectional shape of the heat medium hole 3 includes a small cross-sectional area portion 31 and a large cross-sectional area portion 32 having different cross-sectional areas in the portion, and two small area portions 31 are formed in a tapered hole shape. .
- the large cross-sectional area 32 that is directly below or in the vicinity of the electronic component 101 mounted on the insulating substrate 4 is formed larger than the other parts, and the medium in the two small cross-sectional areas 31 is discharged.
- the portion on the opening side is formed smaller than the portion of one small cross-sectional area portion 31.
- FIG. 3 is an explanatory diagram showing another configuration example related to the heat medium hole in the electronic component cooling structure according to the first embodiment of the present invention.
- a heat insulating member 229 with good heat insulating performance is attached in the vicinity of the first opening 301 and in the vicinity of the second opening 302.
- a heat insulating member 229 is mounted on the surface of the heat conductive plate 2 so as to surround the first opening 301, and the heat conductive plate 2 is surrounded so as to surround the second opening 302.
- a heat insulating member 229 is mounted on the surface.
- the heat insulating member 229 include those made of a resin material such as silicon or heat insulating rubber.
- a material having high heat insulation properties such as heat insulation ink may be applied.
- a material having high heat insulation properties such as heat insulation ink may be applied.
- it may be configured by using a fiber heat insulating material typified by glass wool, a foam heat insulating material typified by polystyrene foam, or the like.
- the heat insulating member 229 has an external gas or liquid that is an ambient atmosphere in the vicinity of the first opening 301 that is the medium inlet of the heat medium hole 3 and the second opening 302 that is the medium outlet. It arrange
- the heat insulating member 229 is disposed for the purpose of preventing a temperature drop inside the 3.
- the heat insulating property between the atmosphere around the first opening 301 or the second opening 302 and the inside of the heat medium hole 3 can be improved. Therefore, a sufficient temperature difference between the atmosphere and the inside of the hole can be secured, which is useful for improving the exhaust heat efficiency by the medium. In particular, when the chimney effect is used, the chimney effect can be enhanced, which is very useful.
- the case where the heat insulating member 229 is disposed in the vicinity of the first opening 301 and the vicinity of the second opening 302 is described as an example, but the present invention is not limited to this.
- the case where only the part 301 side is insulated and the case where only the second opening 302 side is insulated are also included. That is, even when heat insulation is performed inside and outside the hole of the heat medium hole 3, the heat insulating member 229 having a heat insulating function is mounted in the vicinity of at least one of the first opening 301 and the second opening 302. It is sufficient that the heat insulation effect is obtained at each part by heat insulating each part. Therefore, a heat insulation process that matches the target embodiment may be performed.
- the heat insulating member 229 is provided outside the heat medium hole 3 (that is, on the surface of the heat conductive plate 2) is shown, but the present invention is not limited to this.
- the heat insulating member 229 may be provided in the vicinity of each opening inside the heat medium hole 3.
- the case where the cross-sectional shape of the heat medium hole 3 is uniform is given here as in the configuration example shown in FIG. 2A, it is not limited to such a form. The same applies to the heat medium hole 3 as in the configuration example shown in (d).
- FIG. 4 is an explanatory view showing still another configuration example regarding the heat medium hole in the electronic component cooling structure according to the first embodiment of the present invention.
- a projecting portion 2 x projecting outward from one surface of the heat conducting plate 2 along the extending direction of the heat medium hole 3 is provided, and so as to penetrate the projecting portion 2 x.
- the heat medium hole 3 is disposed in the front.
- the 2nd opening part 302 used as the medium exit part from the heat-medium hole 2 is located in the edge of the protrusion part 2x.
- a heat insulating member 229 may be attached as in the configuration example shown in FIG.
- the second opening 302 is positioned at the end edge of the projecting portion 2x (that is, a position far from the electronic component 101). It is possible to suppress the influence of heat from the electronic component 101 on the atmosphere around the second opening 302. Therefore, a sufficient temperature difference between the atmosphere and the inside of the heat medium hole 3 can be secured, which is useful for improving the exhaust heat efficiency by the medium.
- the chimney effect can be enhanced, for example, by appropriately setting the protruding length of the protruding portion 2x or insulating the entire protruding portion 2x, which is very useful. .
- the present invention is not limited to this, and includes a case in which the protrusion 2x is provided on the medium inlet side of the heat medium hole 3 and the first opening 301 is located at the edge of the protrusion 2x. That is, the protrusion 2x only needs to be provided on at least one of the medium inlet side and the medium outlet side of the heat medium hole 3. Even in such a case, the heat insulating effect at each portion is improved, which is useful for improving the exhaust heat efficiency by the medium.
- the heat generated by the electronic component 101 is transmitted to the heat sink 5 through the insulating substrate 4 and the heat conductive plate 2 and is radiated by the heat radiating fins 6 of the heat sink 5. Since the heat medium hole 3 is disposed in the heat conduction plate 2, the heat is also exhausted by the medium flow in the hole of the heat medium hole 3. That is, regarding the heat from the electronic component 101, first, “rough heat” is exhausted by the flow of the medium in the heat medium hole 3, and then “remaining heat” transmitted to the heat radiation fin 6 of the heat sink 5 is the heat radiation fin. 6 dissipates heat.
- the cooling effect on the heat from the electronic component 101 can be enhanced as compared with the conventional structure.
- the heat conduction plate 2 is provided with the heat medium hole 3 to increase the amount of heat of the medium that absorbs heat not only from the surface side of the cooling structure 1 but also from the inside. Therefore, the cooling efficiency is improved. Therefore, according to the present embodiment, the cooling capacity of the entire cooling structure 1 is increased as compared with the conventional cooling structure, and the cooling effect on the electronic component 101 can be enhanced. As a result, it is possible to provide the electronic component cooling structure 1 that is further downsized.
- the electronic component cooling structure 1 is arranged such that at least a part of the heat medium hole 3 passes through a region in the vicinity of the mounting location of the electronic component 101.
- the heat medium hole 3 passes through the vicinity of the electronic component 101, the heat transmitted from the electronic component 101 can be efficiently transferred with a large temperature difference from the medium flowing through the hole of the heat medium hole 3. Therefore, the exhaust heat efficiency (that is, the cooling efficiency with respect to the heat from the electronic component 101) by the medium can be improved.
- the heat conduction plate 2 is interposed between the insulating substrate 4 and the heat sink 5, and the heat medium hole 3 is formed in the heat conduction plate 2. Yes.
- the heat medium hole 3 is formed in the heat conductive plate 2 which is a separate member from the insulating substrate 4 and the heat sink 5, a sufficient degree of freedom in setting the path, shape, etc. of the heat medium hole 3 is ensured. This is easy to realize, and is preferable in securing the versatility of the cooling structure 1 and the like.
- the first opening 301 serving as a medium inlet is disposed below the second opening 302 serving as a medium outlet, and the heat medium hole
- the medium flow in the three holes is generated by thermal convection. Therefore, if heat is transferred into the hole of the heat medium hole 3, it is possible to surely generate a medium flow by natural convection. That is, reliable exhaust heat utilizing natural convection is possible, which is very preferable for enhancing the cooling effect.
- the configuration of the cooling structure 1 can be prevented from becoming complicated, which is preferable in terms of downsizing and the like.
- the hole sectional area or the hole volume on the medium inlet side in the hole of the heat medium hole 3 is the hole sectional area on the medium outlet side in the hole. Or it has a part formed so that it may become larger than a hole volume, and if the whole hole of the heat carrier hole 3 is formed in the shape of a taper hole, it will be useful in improving the exhaust heat efficiency by the medium It becomes.
- the medium can be actively introduced into the hole of the heat medium hole 3, while the hole cross-sectional area or hole volume on the outlet side is reduced. The heat exchange with the medium taken into the hole can be promoted.
- the heat medium hole 3 passes through the planned mounting area 25 that is an area corresponding to the electronic component 101 and the non-mounted target area other than the planned mounting area 25. If the hole cross-sectional shape in the planned mounting region 25 is larger than the size of the hole cross-sectional shape in the non-mounted region, the mounting region 25 and the non-mounted region are not mounted. Since a difference is provided in the size of the hole cross-sectional shape in each of the planned areas, it is useful for improving the heat exhaust efficiency by the medium.
- the effective area for moving the heat from the electronic component 101 to the medium in the hole of the heat medium hole 3 by increasing the size of the hole cross-sectional shape of the large cross-sectional area portion 32 that passes through the planned mounting region 25. Can be secured sufficiently.
- the size of the hole cross-sectional shape of the small cross-sectional area portion 31 that passes through the non-mounting scheduled region it is possible to suppress a decrease in heat capacity in the heat conduction plate 2 in which the heat medium hole 3 is formed.
- the protrusion 2x through which the heat medium hole 3 passes is provided, and the first opening 301 or the medium serving as the medium inlet at the end edge of the protrusion 2x. If the second opening 302 serving as the outlet is located, the influence of heat from the electronic component 101 on the atmosphere around the first opening 301 or the second opening 302 can be suppressed. Accordingly, a sufficient temperature difference between the atmosphere and the inside of the heat medium hole 3 can be secured, which is useful for improving the exhaust heat efficiency by the medium.
- the chimney effect can be enhanced, for example, by appropriately setting the protruding length of the protruding portion 2x or insulating the entire protruding portion 2x, which is very useful. .
- Second embodiment of the present invention Next, a second embodiment of the present invention will be described. Here, differences from the above-described first embodiment will be mainly described. That is, in the second embodiment, components similar to those in the first embodiment described above are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
- FIG. 5 is an explanatory diagram schematically showing a schematic configuration example of an electronic component cooling structure according to the second embodiment of the present invention.
- the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
- the cooling structure 1A of the electronic component which concerns on 2nd embodiment is comprised similarly to the case of 1st embodiment, the following points differ.
- the cooling structure 1A does not include the heat conductive plate 2, and includes an insulating substrate 4 on which an electronic component 101 serving as a heating element is mounted on one surface, and the insulating substrate 4 And a heat sink 5A directly joined to the surface.
- the heat sink 5 ⁇ / b> A that is a heat radiating member has a placement surface 5 a on which the insulating substrate 4 is placed.
- the heat dissipation member may include a heat dissipation main body portion 7A and fins 6A that are an example of a heat dissipation structure portion provided in the heat dissipation main body portion 7A.
- a heat medium hole 3A having a through hole extending in a predetermined direction is provided in the vicinity of the insulating substrate bonding surface in the heat sink 5A. That is, the heat medium hole 3A is disposed between the insulating substrate 4 and the heat radiation fin 6A of the heat sink 5A.
- the heat medium hole 3A is a through hole that communicates the first opening 301 and the second opening 302, and heat is exhausted by the flow of the medium in the hole. It is composed of.
- the heat medium hole 3 ⁇ / b> A may be configured to have the following characteristics.
- a first opening 301 serving as a medium inlet provided on one surface of the heat sink 5A and a second opening 302 serving as a medium outlet provided in one surface of the heat sink 5A are communicated with each other in a predetermined direction.
- the heat medium hole 3A extends in the vertical direction (gravity direction) (at least extends in a direction other than the horizontal direction).
- the heat generated by the electronic component 101 is the heat sink 5A via the insulating substrate 4 as in the first embodiment.
- the heat dissipation fin 6A of the heat sink 5A dissipates heat, but in the process, the heat medium hole 3A is disposed in the heat sink 5A. Be heated. That is, with respect to the heat from the electronic component 101, first, “rough heat” is exhausted by the flow of the medium in the heat medium hole 3A, and then “remaining heat” transmitted to the heat radiation fin 6A of the heat sink 5A is the heat radiation fin.
- the heat is dissipated by 6A.
- the heat sink 5A is directly bonded to the insulating substrate 4, and the heat medium hole 3A is formed in a region near the insulating substrate 4 in the heat sink 5A. Therefore, the intervention of the heat conduction plate 2 which is a separate member becomes unnecessary. Therefore, it is possible to suppress the complication of the configuration of the cooling structure 1A while obtaining the effect that the cooling effect on the electronic component 101 can be enhanced.
- the heat conducting plate 2B included in the heat radiating portion has a placement surface 5a on which the insulating substrate 4 is placed.
- the heat radiating member may have the heat radiating main body part 7B and the fin 6B which is an example of the heat radiating structure part provided in the heat radiating main body part 7B.
- FIG. 6 is an explanatory view schematically showing a schematic configuration example of the electronic component cooling structure according to the third embodiment of the present invention.
- the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
- the electronic component cooling structure 1 ⁇ / b> C is configured in substantially the same manner as in the first embodiment, except for the following points.
- the cooling structure 1 ⁇ / b> C includes a first vent pipe 710 as a piping member attached to the first opening 301 and a chimney member attached to the second opening 302.
- a second ventilation pipe 720 As a second ventilation pipe 720.
- the first vent pipe 710 functions as a cylindrical introduction pipe, and a first joint formed in the first opening 301 of the heat conducting plate 2C is provided with a through hole 730 along its axis. It is comprised so that 700 may be mounted
- the second vent pipe 720 functions as a cylindrical exhaust pipe, is provided with a through hole 740, and is attached to a second joint 701 formed in the second opening 302 of the heat conducting plate 2C. It is configured to be. That is, the second vent pipe 720 is connected to the second opening 302 via the second joint 701, and the heat medium hole 3C in the heat conduction plate 2C is formed by the through hole 740 of the second vent pipe 720. It is comprised so that it may extend
- the second vent pipe 720 includes a main body 721 and a chimney 722.
- the main body 721 has a cylindrical shape, is provided with a through hole 740 along the axis thereof, and is configured to be attached to the second joint 701 formed in the second opening 302 of the heat conducting plate 2C.
- the chimney 722 has a cylindrical shape and is provided with a through hole 740 along the axis thereof.
- One end of the chimney 722 is connected to the end of the main body 721 opposite to the side of the heat conduction plate 2C, An opening facing upward is provided at the other end.
- the axis of the chimney 722 is, for example, along a direction orthogonal to the axis direction of the heat medium hole 3C in the heat conducting plate 2C.
- the second vent pipe 720 including the main body 721 and the chimney 722 is attached to the second joint 701 of the heat conducting plate 2.
- the end of the chimney 722 on the opening side (that is, the end not connected to the main body 721) is vertical.
- the second joint 701 is disposed at a different position. More specifically, the opening on the side opposite to the heat conduction plate 2C in the second vent pipe 720 is located above the reference surface in the vertical direction when one surface of the heat conduction plate 2C is used as the reference surface. It faces to the upper side.
- the first joint 700 functions as a mounting portion for mounting the first vent pipe 710 as a piping member in the first opening 301 in the heat conducting plate 2C.
- the second joint 701 functions as a mounting portion for mounting the second vent pipe 720 as a chimney member in the second opening 302 in the heat conducting plate 2C.
- Both the first joint 700 and the second joint 701 are formed integrally with the heat conducting plate 2C. Specifically, for example, the first joint 700 and the second joint 701 are threaded on the outer peripheral side surface of the protruding portion from the heat conducting plate 2C, thereby constituting a male screw portion.
- each of the first vent pipe 710 and the second vent pipe 720 is formed with a female screw portion that is screwed with the male screw portion.
- the present invention is not necessarily limited to this.
- the first joint 700 and the second joint 701 are threaded on the inner peripheral side surface of the concave portion of the heat conducting plate 2C, and thereby the female screw portion. May be included.
- each of the first vent pipe 710 and the second vent pipe 720 is formed with a male screw portion that is screwed with the female screw portion.
- the first joint 700 and the second joint 701 are configured such that the through-hole 730 of the first vent pipe 710 and the through-hole 740 of the second vent pipe 720 are heated in the heat conduction plate 2C. It is possible to mount the medium hole 3C in an airtight state.
- the configuration example in which the male screw portion and the female screw portion are screwed together has been described.
- the present invention is not limited to this, and any other mode (for example, a convex portion and a concave portion) can be used as long as airtight installation is possible. (Press-fit mounting) may be used.
- the first joint 700 and the second joint 701 can be mounted in a state having heat insulation properties when the first vent pipe 710 and the second vent pipe 720 are mounted.
- a heat insulating member having a heat insulating function (not shown) at any one of the outer peripheral surface, the inner peripheral surface, or the end surface of the first joint 700 and the second joint 701, or at a plurality of these locations. ) Is preferably mounted.
- a heat insulating member it is possible to use the same thing as the case of 1st embodiment.
- the space between the heat conducting plate 2C and the first vent pipe 710 or the second vent pipe 720 (that is, the hole of the heat medium hole 3C). It is possible to improve the heat insulating property between the inside and the through holes 730 and 740.
- the cooling structure 1 ⁇ / b> C of the present embodiment may be a configuration having the following characteristics.
- the heat medium hole 3C extends in a predetermined extending direction and is provided with a first opening 301 as a medium inlet provided on one surface of the heat conducting plate 2 and a second opening as a medium outlet.
- 302 has a through-hole-shaped configuration for the purpose of exhaust heat (heat extraction) due to the medium flow in the hole.
- at least a part of the heat medium hole 3 ⁇ / b> C overlaps with at least a part of the planned mounting area 25 of the electronic component 101 mounted on the insulating substrate 4.
- a second vent pipe 720 as a chimney member is attached to the second opening 302, and the heat medium hole 3C is extended by the through hole 740 of the second vent pipe 720, whereby the opening of the through hole 740 is opened. Is positioned above the second opening 302 in the vertical direction (gravity direction).
- a first vent pipe 710 as a piping member is attached to the first opening 301, and the heat medium hole 3 ⁇ / b> C is extended by the through hole 730 of the first vent pipe 710.
- the first joint 700 and the second joint 701 which are the mounting portions of the first ventilation pipe 710 and the second ventilation pipe 720 have airtightness and heat insulation.
- the heat medium hole 3C is extended by the through hole 740 of the second ventilation pipe 720, whereby the opening of the through hole 740 is opened. It is located above the second opening 302 in the vertical direction (gravity direction). Therefore, when the electronic component 101 is used, even if the heat medium hole 3C is arranged so as to extend in the horizontal direction, the opening of the through hole 730 of the first vent pipe 710 serving as the medium inlet is not provided.
- the hole of the heat medium hole 3C is formed by thermal convection due to a chimney effect (draft effect) or the like.
- the flow of the medium inside occurs. That is, regardless of the arrangement of the electronic component 101 and the insulating substrate 4, it is possible to cause a medium flow using natural convection in the hole of the heat medium hole 3C. If a medium flow occurs in the hole of the heat medium hole 3C, the heat generated by the electronic component 101 is discharged as in the case of the first embodiment.
- the opening of the through hole 730 is disposed at a position far from the electronic component 101, and the through hole 730 is formed. It is possible to suppress the influence of heat from the electronic component 101 on the atmosphere around the opening. Therefore, a sufficient temperature difference between the atmosphere and the inside of the heat medium hole 3 can be secured, which is useful for improving the exhaust heat efficiency by the medium. Moreover, since the exhaust heat efficiency can be improved by mounting the first ventilation pipe 710 which is a separate member from the heat conduction plate 2C, the heat medium hole 3C and the first opening 301 which are the mounting side are arranged. Is fully secured.
- the heat medium hole 3C by extending the heat medium hole 3C by the through hole 740 of the second vent pipe 720, similarly to the case of the first vent pipe 710 described above, the area around the opening of the through hole 740 is increased. A sufficient temperature difference between the atmosphere and the inside of the heat medium hole 3 can be secured. Therefore, in particular, the effect of thermal convection can be enhanced, which is useful for improving the exhaust heat efficiency by the medium. Furthermore, since the exhaust heat efficiency can be improved by mounting the second ventilation pipe 720 which is a separate member from the heat conduction plate 2C, the heat medium hole 3C and the second opening 302 which are the mounting side are The degree of freedom of placement is sufficiently secured.
- first joint 700 and the second joint 701 have airtightness and heat insulation. If it has airtightness, the first joint 700 or the second joint 701 will not leak a medium, and if it has heat insulation properties, heat from the electronic component 101 will not be generated. Is surely insulated by the first joint 700 or the second joint 701. Therefore, the flow of the medium in the hole of the heat medium hole 3C can be ensured, which is very useful for improving the exhaust heat efficiency by the medium.
- exhaust heat is not only caused by the heat dissipation fins 6 of the heat sink 5 but also by the flow of the medium in the heat medium hole 3C formed in the heat conduction plate 2C. Therefore, the same effect as in the first embodiment can be obtained.
- FIG. 7 is an explanatory view schematically showing a schematic configuration example of a cooling structure for an electronic component according to the fourth embodiment of the present invention.
- the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
- the electronic component cooling structure 1 is configured in substantially the same manner as in the first embodiment, except for the following points.
- the medium flow in the hole of the heat medium hole 3 is generated by using a medium flow forcibly supplied from outside the heat medium hole 3.
- a fan 50 as a medium flow generator for generating a forced medium flow is provided on the extension line of the heat medium hole 3 in the extending direction.
- the fan 50 as the medium flow generator may be any fan that generates a forced medium flow, and may be configured using, for example, a propeller type axial flow fan, a sirocco type or turbo type centrifugal fan, or the like. it can.
- the medium flow generator is not limited to the fan 50 as long as it generates a forced medium flow, and may be a compressor, a pump, or the like.
- when applied to a cooling structure for an in-vehicle electronic component it may be configured to take in and use traveling wind generated when the vehicle (vehicle) travels. Moreover, you may make it cool forcedly using a radiator.
- the heat medium hole 3 corresponds to a forced medium flow by the fan 50, and is configured to generate a medium flow in the hole by using the forced medium flow. Therefore, in the heat medium hole 3, the first opening 301 serving as the medium inlet to the heat medium hole 3 is arranged toward the upstream side of the forced medium flow generated by the fan 50, thereby A medium is fed into the hole of the heat medium hole 3.
- the present invention is not limited to this. For example, even if the second opening 302 serving as the medium outlet from the heat medium hole 3 is disposed toward the downstream side of the forced medium flow generated by the fan 50. Even in such a case, it is possible to generate a medium flow in the hole of the heat medium hole 3 by using the negative pressure of the forced medium flow. That is, the fan 50 is disposed on at least one side of the first opening 301 serving as a medium inlet to the heat medium hole 3 and the second opening 302 serving as a medium outlet from the heat medium hole 3. That's fine.
- the heat medium hole 3 corresponds to the forced medium flow by the fan 50
- the heat medium hole 3 may be arranged to extend in the horizontal direction when the electronic component 101 is used.
- it is not always necessary to have a straight path from the first opening 301 to the second opening 302.
- it may be arranged so as to have a curved portion, a bent portion or the like in the middle thereof. If the path is arranged in a straight line, complication of the heat medium hole 3 can be suppressed.
- the path has a curved portion, a bent portion, or the like, the heat medium is selectively selected according to the arrangement of the planned mounting region 25.
- the path of the hole 3 can be set, which is suitable for exhaust heat (heat induction). Specifically, it is conceivable to set the path of the heat medium hole 3 so as to have a corrugated shape portion, a spiral shape portion, or the like in the normal direction view.
- This also means that the first opening 301 and the second opening 302 do not necessarily have to be arranged on each of the two opposing surfaces of the heat conducting plate 2. Specifically, for example, the first opening 301 and the second opening 302 are arranged on the same surface of the heat conducting plate 2, or any one of the upper surface, the lower surface, and the side end surface of the heat conducting plate 2. It may be distributed separately.
- the heat medium hole 3 corresponds to a forced medium flow by the fan 50, and the medium flow is sent into the hole of the heat medium hole 3 from the first opening 301.
- a pressure feeding mechanism 60 that pumps the medium into the hole of the heat medium hole 3 is provided on the side of the first opening 301 serving as a medium inlet to the heat medium hole 3.
- the pressure feeding mechanism 60 includes the following configurations. That is, the pressure feeding mechanism 60 includes a funnel-shaped case portion 61 that is wide on the inlet side and narrowed on the outlet side, and a driven fan that is arranged on the inlet side in the case portion 61 and rotates by the medium flow from the fan 50. 62 and a pumping fan 63 that is arranged coaxially with the driven fan 62 on the outlet side in the case portion 61 and rotates with the driven fan 62 to pump the medium. With the pressure feeding mechanism 60 having such a configuration, the inlet side of the case portion 61 is wide open, so that the medium flow from the fan 50 can be taken in efficiently.
- the pressure feeding mechanism 60 can pressure-feed a medium in the hole of the heat medium hole 3 without requiring a separate drive source. Therefore, the complication of the configuration can be suppressed, which is preferable from the viewpoint of miniaturization and the like.
- the pressure feeding mechanism 60 has a dustproof filter 64 in the case portion 61. This is because, if the pressure feeding mechanism 60 has the dustproof filter 64, it is possible to prevent foreign matters and the like from entering the medium flowing through the hole of the heat medium hole 3.
- the medium is temporarily stored in the medium storage chamber 65.
- the pressure feeding mechanism 60 is provided in the front stage of the medium storage chamber 65, the medium fed from the pressure feeding mechanism 60 is stored in the medium storage chamber 65 in a compressed state. Therefore, for example, even when the forced medium flow supplied from the outside stops, while the medium storage chamber 65 stores the medium, the medium storage chamber 65 enters the hole of the heat medium hole 3. Since the medium flows and the exhaust heat is performed by the flow of the medium, the cooling effect is not hindered.
- the heat medium hole 3 extends in a predetermined extending direction and is provided with a first opening 301 as a medium inlet provided on one surface of the heat conducting plate 2 and a second opening as a medium outlet. 302 has a through-hole-shaped configuration for the purpose of exhaust heat (heat extraction) due to the medium flow in the hole.
- the heat medium hole 3 overlaps at least a part of the mounting region 25 of the electronic component 101 mounted on the insulating substrate 4.
- the first opening 301 serving as a medium inlet to the heat medium hole 3 is arranged toward the upstream side of the forced medium flow, and the flow of the medium in the hole of the heat medium hole 3 is related to the heat.
- the medium hole 3 is configured to be generated by using a forced medium flow from outside the hole.
- a pressure feeding mechanism 60 that pumps the medium into the hole of the heat medium hole 3 is provided on the side of the first opening 301 serving as a medium inlet to the heat medium hole 3.
- a medium storage chamber 65 for storing a medium is provided between the heat medium hole 3 and the pressure feeding mechanism 60.
- the fan 50 is operated to thereby generate a forced medium flow.
- the driven fan 62 and the pressure feeding fan 63 in the pressure feeding mechanism 60 rotate according to the forced medium flow, so that the medium taken in on the inlet side of the case portion 61 is the first in the heat medium hole 3. It is pumped toward the one opening 301 side.
- a medium flow is generated in the hole of the heat medium hole 3 from the first opening 301 side toward the second opening 302 side.
- the medium storage chamber 65 is provided between the heat medium hole 3 and the pressure feeding mechanism 60, the medium is temporarily stored in the medium storage chamber 65. Even when the medium flow is interrupted, the medium flows from the medium storage chamber 65 into the hole of the heat medium hole 3 while the medium storage chamber 65 stores the medium.
- the heat generated by the electronic component 101 is exhausted as in the case of the first embodiment. That is, regarding the heat from the electronic component 101, first, “rough heat” is exhausted by the flow of the medium in the heat medium hole 3, and then “remaining heat” transmitted to the heat radiation fin 6 of the heat sink 5 is the heat radiation fin. The heat is dissipated by 6.
- the first opening 301 serving as a medium inlet to the heat medium hole 3 is arranged toward the upstream side of the forced medium flow, A medium flow in the hole of the medium hole 3 is generated using a forced medium flow from outside the heat medium hole 3. That is, the medium flow in the hole of the heat medium hole 3 is generated by using the medium flow that is forcibly supplied. Therefore, it is possible to reliably generate a medium flow in the hole of the heat medium hole 3, which is very preferable for enhancing the cooling effect.
- the medium flow that is forcibly supplied it is possible to increase the degree of freedom in the arrangement of the heat medium holes 3 in the extending direction, the path of the heat medium holes 3, and the like. It is preferable also in correspondence.
- a fan 50 as a medium flow generator is disposed on the side of the first opening 301 serving as a medium inlet to the heat medium hole 3, and the fan 50 is compulsory.
- a smooth medium flow That is, the flow of the medium in the hole of the heat medium hole 3 is generated using the fan 50 as the medium flow generator. Therefore, the flow of the medium and the flow velocity are controlled by controlling the operation of the fan 50 in addition to the fact that the medium flow is surely generated in the hole of the heat medium hole 3 and the cooling effect is enhanced. As a result, it becomes possible to improve the controllability of the cooling effect.
- the pressure feeding mechanism 60 includes the driven fan 62 and the pressure feeding fan 63, the pressure feeding mechanism 60 requires a separate drive source. Instead, the medium can be pumped into the hole of the heat medium hole 3. Therefore, while enhancing the cooling effect by pumping the medium, even in such a case, the complication of the configuration can be suppressed, which is preferable in terms of downsizing and the like.
- a medium for example, the pressure feeding mechanism 60
- a medium is provided in the medium storage chamber 65. Is stored in a state where the medium storage chamber 65 stores the medium, for example, even when the forced medium flow supplied from the outside is interrupted. Since the medium flows from the medium storage chamber 65 into the hole of the heat medium hole 3 and the heat is exhausted by the flow of the medium, the cooling effect is not hindered.
- FIG. 8 is an explanatory view schematically showing another configuration example of the cooling structure for an electronic component according to the fourth embodiment of the present invention.
- the forced medium flow by the fan 50 is supplied not only to the inside of the heat medium hole 3 but also to the heat radiating fins 6 as the heat radiating structure portion in the heat sink 5 as the heat radiating member.
- the fan 50 and the heat radiating fin 6 are arranged. Specifically, the fan 50 is disposed so as to face the heat radiation fin 6 of the heat sink 5, and the fan 50 generates a forced medium flow toward the heat radiation fin 6.
- the radiating fin 6 is provided with a first opening 301 serving as a medium inlet to the heat medium hole 3, and a pressure feeding mechanism 60 is built in the vicinity of the first opening 301.
- the heat medium holes 3 connected to the pressure feeding mechanism 60 are arranged so as to pass through the mounting scheduled area 25 of the heat conducting plate 2.
- the forced medium flow generated by the fan 50 is supplied to the radiating fins 6 of the heat sink 5 in addition to the function of generating the medium flow in the holes of the heat medium hole 3. It also has a function of promoting heat dissipation by the heat dissipation fins 6. Therefore, the medium flow has these functions, and further improvement of the cooling effect can be realized.
- any of the configuration examples of the first embodiment to the third embodiment described above can be applied, but here the case where the configuration example described in the first embodiment is applied. Take an example.
- FIG. 9 is an explanatory view schematically showing a schematic configuration example of an electronic component cooling structure according to the fifth embodiment of the present invention.
- the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
- the electronic component cooling structure 1 is configured in substantially the same manner as in the first embodiment, except for the following points.
- the electronic component 101 is a light emitting diode (LED) chip, and is an automobile vehicle such as a four-wheeled vehicle or a two-wheeled vehicle, a railway vehicle, an aircraft, a ship, other transportation machines, etc. (hereinafter simply referred to as a vehicle). ) Is used as a light source of a headlamp 200. Therefore, in order to cool the electronic component (LED chip) 101, the cooling structure 1 is disposed in the housing 201 of the headlamp that is a sealed space.
- LED light emitting diode
- the medium flow in the hole of the heat medium hole 3 is generated using the forced medium flow by taking in the traveling wind generated when the vehicle is traveling as the forced medium flow. It is configured.
- the cooling structure 1 includes a first guide tube portion 66 attached to the first opening 301 and a second guide tube portion 67 attached to the second opening 302.
- a sealed space is formed inside the housing 201, and the LED chip 101 and the reflector 202 are arranged in the sealed space. Then, the light emitted from the LED chip 101 is reflected by the reflector 202, so that light is irradiated to the front (light irradiation destination) side of the headlamp 200 through the lens portion 203 constituting a part of the housing 201. Is configured to do.
- Both the first guide tube portion 66 and the second guide tube portion 67 are tubular ones that guide the medium flow.
- the first guide pipe portion 66 is mounted so as to be connected to the first opening 301 serving as a medium inlet to the heat medium hole 3, and the forced flow of the medium from the outside is supplied to the first opening 301. It leads to.
- the first opening 301 may be attached using the first joint 700 described in the third embodiment.
- the present invention is not limited to this, and other known methods may be used.
- the first guide pipe portion 66 is restricted in the arrangement of the inlet portion and the outlet portion as long as the first guide tube portion 66 has a tubular shape capable of guiding the medium flow.
- a bent portion or a curved portion may be provided in the middle of the pipeline.
- the second guide pipe portion 67 is mounted so as to be connected to the second opening 302 serving as the medium outlet from the heat medium hole 3, and the forced medium flow discharged from the second opening 302 is provided. To the outside.
- the attachment to the second opening 302 can be performed using the second joint 701 described in the third embodiment.
- the present invention is not limited to this, and other known methods may be used.
- the second guide pipe portion 67 is a forced medium flow to be guided, the second guide pipe portion 67 is restricted in the arrangement of the inlet portion and the outlet portion and the like as long as it is a tubular shape that can guide the medium flow.
- a bent portion or a curved portion may be provided in the middle of the pipeline.
- the heat medium hole 3 passing through the LED chip 101 and the vicinity thereof is arranged inside the housing 201 of the headlamp 200 (that is, in a sealed space).
- the first guide pipe portion 66 is arranged so as to guide the medium flow that passes through the housing 201 and is supplied outside the sealed space to the heat medium hole 3 inside the sealed space.
- the second guide pipe portion 67 is arranged so as to penetrate the housing 201 and guide the medium flow in the hole of the heat medium hole 3 in the sealed space to the outside of the sealed space.
- the first guide pipe portion 66 is provided with the pressure feeding mechanism 60 and the medium storage chamber 65 described in the fourth embodiment in the vicinity of the edge opposite to the side connected to the first opening 301. Preferably it is. This is because if the pressure feeding mechanism 60 is provided, the medium flow can be efficiently fed, and if the medium storage chamber 65 is provided, it is possible to suppress the disappearance of the medium flow immediately even when the vehicle is stopped.
- the heat medium hole 3 extends in a predetermined extending direction and is provided with a first opening 301 as a medium inlet provided on one surface of the heat conducting plate 2 and a second opening as a medium outlet. 302 has a through-hole-shaped configuration for the purpose of exhaust heat (heat extraction) due to the medium flow in the hole.
- the heat medium hole 3 overlaps at least a part of the mounting region 25 of the electronic component 101 mounted on the insulating substrate 4.
- a first guide pipe 66 for guiding the medium flow is connected to the first opening 301 serving as a medium inlet to the heat medium hole 3, and a first outlet serving as a medium outlet from the heat medium hole 3.
- a second guide pipe portion 67 that guides the medium flow is connected to the two openings 302. (4)
- the medium intake side of the first guide pipe portion 66 (for example, the inlet side of the case portion 61 in the attached pressure feeding mechanism 60) is arranged toward the upstream side of the forced medium flow, and the heat medium
- the medium flow in the hole 3 is configured to be generated by using a forced medium flow from outside the heat medium hole 3.
- the medium flow in which the first guide pipe portion 66 is supplied outside the sealed space Is guided to the heat medium hole 3 in the sealed space, and the second guide pipe portion 67 is arranged to guide the flow of the medium in the hole of the heat medium hole 3 to the outside of the sealed space.
- the heat generated by the LED chip 101 is exhausted as in the case of the first embodiment. That is, regarding the heat from the LED chip 101, first, “rough heat” is exhausted by the flow of the medium in the heat medium hole 3, and then “residual heat” transmitted to the heat radiation fin 6 of the heat sink 5 is the heat radiation fin. The heat is dissipated by 6.
- the second guide pipe portion 67 guides the flow of the medium to the outside of the housing 201 of the headlamp 200. Therefore, even when the LED chip 101 or the like is disposed in the housing 201 that is a sealed space, the heat from the LED chip 101 is exhausted by the flow of the medium in the hole of the heat medium hole 2 and the heat is discharged. Since it is possible to prevent the medium used for heat from adversely affecting the gas or the like in the housing 201, for example, it is possible to avoid the occurrence of condensation or the like in the housing 201.
- the first guide pipe portion 66 is connected to the first opening 301 serving as the medium inlet to the heat medium hole 3, and the first outlet 301 serving as the medium outlet from the heat medium hole 3 is used. Since the second guide tube portion 67 is connected to the two openings 302, the first guide tube portion is provided even when a forced medium flow is supplied at a location away from the heat medium hole 3. By guiding the medium flow through 66 and the second guide pipe portion 67, it is possible to generate a medium flow in the hole of the heat medium hole 3. Therefore, it is possible to ensure a sufficient degree of freedom in arrangement of the electronic component 101, the heat medium hole 3, and the like.
- the electronic component 101 is an LED chip used as the light source of the vehicle headlamp 200, and the electronic component ( The case of cooling the (LED chip) 101 has been described as an example.
- the present invention is not limited to this and may be applied to the following configuration example.
- the electronic component 101 is not limited to the LED chip for headlamps, and may be arranged in an open space instead of a sealed space.
- the forced medium flow may be generated by a medium flow generator such as the fan 50 as in the case of the fourth embodiment.
- vehicle-mounted electronic components and the like that are arranged away from the cooler may be configuration examples applied to these cooling operations, and in any case, they are very suitable for obtaining an excellent cooling effect.
- both the first guide tube portion 66 and the second guide tube portion 67 are provided is described as an example, but the present invention is not limited to this, and the first guide tube portion 66 or only one of the second guide pipe portions 67 may be provided. If at least one of the first guide tube portion 66 and the second guide tube portion 67 is provided, at least one of the first guide tube portion 66 and the second guide tube portion 67 guides the medium flow so that the electronic component 101, the heat medium hole 3 and the like can be freely arranged. This is because a sufficient degree can be secured.
- the present invention is not necessarily as described in each of the above-described embodiments, and can be realized by appropriately combining the contents described in each of the embodiments. Even in that case, the description of each embodiment is provided. Technical effects can be obtained.
- the cooling structure or cooling system of each embodiment can be combined with members having a known cooling function. Moreover, the cooling structure or cooling system of each embodiment can be used for a device having a high heat generation amount or a device in which the heat generation amount can be a problem, such as an automobile control device, a solar power generation device, or a supercomputer.
- the cooling structure or cooling system of each embodiment is a vehicle, a household appliance including a lighting fixture, a computer, a robot, a laser device, an exposure device, an inspection device, a medical device, a communication device, a toy, a ship, an airplane, a drone, etc. It can be installed in a device and used in the heat generating device.
- the cooling structure or the cooling system of each embodiment can be installed in a structure such as a house or a factory and used in the structure.
- a heat dissipating part having a mounting surface on which electronic components are mounted directly or indirectly, There is provided a cooling structure provided with a medium flow path for flowing a medium in the heat radiating section.
- the heat dissipating part has a heat dissipating member having a heat dissipating body part and a heat dissipating structure part,
- the cooling structure according to attachment 1 may be provided in which part or all of the medium flow path extends in a direction along the placement surface in the heat dissipation main body.
- the heat dissipating part includes a heat dissipating member and a heat conducting member provided on the heat dissipating member and having the placement surface described above. A part or all of the medium flow path is provided in the heat conducting member.
- the cooling structure according to attachment 1 or 2 may be provided.
- the heat dissipating part has a heat dissipating body part and a heat dissipating member having a heat dissipating structure part provided in the heat dissipating main body part, and a heat conducting member having the mounting surface.
- a part of the medium flow path is provided in the heat dissipation main body, A part of the medium flow path is provided in the heat conducting member.
- the cooling structure according to any one of supplementary notes 1 to 3 may be provided.
- the first opening serving as the medium inlet of the medium flow path is disposed below the second opening serving as the medium outlet of the medium flow path in the gravity direction.
- One cooling structure may be provided.
- the medium flow path has a portion formed such that the hole cross-sectional area or hole volume on the medium inlet side of the medium flow path is larger than the hole cross-sectional area or hole volume on the medium outlet side.
- a cooling structure according to any one of the above may be provided.
- the medium flow path is disposed so as to pass through a mounting scheduled area corresponding to an area where electronic components are to be placed and a non-mounting scheduled area other than the mounting planned area,
- the size of the hole cross-sectional shape in a part or all of the medium flow path located in the mounting scheduled area is larger than the size of the hole cross-sectional shape of the medium flow path positioned in the non-mounting planned area.
- the cooling structure according to any one of 7 may be provided.
- a heat insulating member is provided in at least one of the first opening serving as the medium inlet of the medium flow path and the second opening serving as the medium outlet of the medium flow path. May be provided.
- the heat dissipating part has a protrusion provided with the medium flow path,
- the first opening serving as the medium inlet of the medium flow path or the second opening serving as the medium outlet of the medium flow path is located at the edge of the protrusion.
- One cooling structure may be provided.
- a chimney member having a through hole is provided in the second opening serving as the medium outlet of the medium flow path,
- the cooling structure according to any one of appendices 1 to 10, wherein the medium flow path and the through hole of the chimney member are communicated with each other.
- Appendix 12 A piping member having a through hole is provided in the first opening serving as the medium inlet of the medium flow path, The cooling structure according to any one of appendices 1 to 11, wherein the medium flow path and the through hole of the piping member are communicated with each other.
- the heat dissipating part has a heat dissipating body part and a heat dissipating structure part provided in the heat dissipating body part,
- the cooling medium according to any one of appendices 1 to 12, wherein the medium flow path is also provided in the heat dissipation structure.
- Appendix 14 The cooling structure according to any one of appendices 1 to 13, A medium flow supply unit for flowing a medium into the medium flow path of the cooling structure; A cooling system may be provided.
- Appendix 16 The cooling system according to appendix 14 or 15, further comprising a medium storage chamber that is provided between the cooling structure and the medium flow supply unit and stores the medium.
- the cooling structure is disposed in a sealed space; A first guide pipe part that guides the medium to the medium flow path located in the sealed space and a second guide pipe part that guides the medium from the medium flow path to the outside of the sealed space are provided.
- the cooling system according to any one of 14 to 17.
- Appendix 20 The cooling structure and the medium flow supply unit are provided in a vehicle, The cooling system according to any one of appendices 14 to 19, wherein the medium flow supply unit supplies a traveling wind generated when the vehicle travels to the medium flow path.
- a heating device comprising the cooling structure according to any one of appendices 1 to 13 or the cooling system according to any one of appendices 14 to 20.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
電子部品が直接又は間接的に載置される載置面を有する放熱部を備え、
前記放熱部内に媒体を流すための媒体流路が設けられる。 According to one aspect of the invention,
A heat dissipating part having a mounting surface on which electronic components are mounted directly or indirectly,
A medium flow path for flowing the medium in the heat radiating portion is provided.
先ず、本発明の第一実施形態について説明する。 <1. First embodiment of the present invention>
First, a first embodiment of the present invention will be described.
図1は、本発明の第一実施形態に係る電子部品の冷却構造の概略構成例を模式的に示す説明図である。なお、図例は、冷却構造の概略構成例を模式的に示したものであり、その表示サイズや表示縮尺等については必ずしも現物に則したものではない。 (1-i) Configuration of Electronic Component Cooling Structure FIG. 1 is an explanatory diagram schematically showing a schematic configuration example of an electronic component cooling structure according to the first embodiment of the present invention. In addition, the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
本実施の形態の冷却構造体は、電子部品101が直接又は間接的に載置される載置面を有する放熱部を有している。「直接」「載置される」というのは何も介さずに載置される態様を意味し、「間接的に載置される」というのは何らしかの部材を介して載置される態様を意味する。そして、電子部品101は絶縁基板4、放熱絶縁シート等を介して間接的に載置面に載置されてもよいし、載置面に直接載置されてもよい。冷却構造体の放熱部は、後述する放熱部材であるヒートシンク5及び/又は熱伝導部材としての熱伝導板2を有してもよい。放熱部材は、放熱本体部7と、放熱本体部7に設けられた放熱構造部の一例である放熱フィン6を有してもよい。放熱本体部7と放熱構造部とは一体となって形成されてもよい。放熱部材は放熱構造部を有しておらず、例えば放熱ブロックのようなものであってもよい。 (overall structure)
The cooling structure according to the present embodiment includes a heat radiating portion having a placement surface on which the
絶縁基板4は、電子部品101が搭載される板状のものである。絶縁基板4の表面には、電気回路を形成する回路パターン24が形成されており、その回路パターン24に発熱体である電子部品101が取り付けられるようになっている。 (Insulated substrate)
The
ヒートシンク5は、電子部品101からの熱を放熱する放熱部材として機能するものである。そのために、ヒートシンク5は、熱伝導性の良い金属材料によって形成されており、電子部品101の側(すなわち熱伝導板2との接合面の側)とは反対側(図中における下方側)に、当該ヒートシンク5に伝わった熱を放熱する放熱構造部としての放熱フィン6を有している。 (heatsink)
The
熱伝導板2は、熱伝導性を有する材料からなる板状のもので、絶縁基板4からの熱をヒートシンク5に伝える熱伝導部材として機能するものである。そのために、熱伝導板2は、熱伝導性の良好な金属製の板状部材で形成されていることが好ましい。 (Heat conduction plate)
The heat
また、熱伝導板2は、必ずしも金属材料に限定されるものではなく、熱伝導性の良い物質であれば、セラミックス等の非金属材料によって形成されたものであってもよい。
さらに、熱伝導板2の表面や後述する熱媒体孔3の内壁面等には、酸化腐食を防止するために、金めっき等の熱伝導性を劣化させない薄膜防錆被膜が形成されていてもよい。 The
In addition, the heat
Furthermore, even if the surface of the heat
熱伝導板2の内部には、所定の方向に延伸する貫通孔状の熱媒体孔3が設けられている。熱媒体孔3は、その熱媒体孔3を通過する気体(例えば空気)や水や油等の液体等といった媒体の対流により、熱伝導板2の熱引き(冷却)を行うためのものである。つまり、熱媒体孔3は、孔内の媒体の流れにより排熱を行うように構成されている。そして、媒体流路となる熱媒体孔3は、熱伝導板2に設けられていることで、絶縁基板4とヒートシンク5の放熱フィン6との間に配設されることになる。 (Heat medium hole)
Inside the
また、一つの実装予定領域25に対して一つの熱媒体孔3が重畳する構成に限定されるものではない。例えば、熱伝導板2に複数の実装予定領域25が設けられ、これら複数のうちの一部の実装予定領域25に対して熱媒体孔3が重畳するように設けられる構成であってもよい。さらに、一つの実装予定領域25に対して複数の熱媒体孔3が重畳するように設けられる構成であってもよい。 Here, the description is made assuming that one
Further, the present invention is not limited to the configuration in which one
次に、上述した構成の電子部品の冷却構造1を使用する際の配置、特に当該冷却構造1の使用時における熱媒体孔3の延伸方向について、具体的に説明する。
ここでは、熱媒体孔3の孔内における媒体の対流を、強制的に生成するのではなく、自然対流によって生成する場合を例に挙げる。
図2は、本発明の第一実施形態に係る電子部品の冷却構造における熱媒体孔の構成例を示す説明図である。 (1-ii) Stretching direction of heat medium hole Next, the arrangement when using the
Here, a case where the convection of the medium in the hole of the
FIG. 2 is an explanatory diagram showing a configuration example of the heat medium hole in the electronic component cooling structure according to the first embodiment of the present invention.
(1)所定の延伸方向に延伸して、熱伝導板2の一の面に設けた媒体入口部としての第1開口部301と、媒体出口部としての第2開口部302とを連通し、孔内における媒体の流れによる排熱(熱引き)を目的とする貫通孔状の構成を有する。
(2)法線方向視において、熱媒体孔3の少なくとも一部分が、絶縁基板4に搭載される電子部品101の実装予定領域25の少なくとも一部分に重畳する。
(3)電子部品101の使用時において、熱媒体孔3が鉛直方向(重力方向)に延伸する(少なくとも、水平方向ではない方向に延伸する)。 As described above, the
(1) The
(2) When viewed in the normal direction, at least a part of the
(3) When the
次に、上述した構成の電子部品の冷却構造1における熱および媒体の流れについて、具体的に説明する。 (1-iii) Heat and Medium Flow Next, the heat and medium flow in the electronic
ここで、本実施形態における熱媒体孔3について、他の構成例を説明する。
上述した構成例では、熱媒体孔3の断面形状が第1開口部301から第2開口部302まで均一である場合を挙げたが(図2(a)参照)、このような形態に限るものではない。 (1-iv) Modified Example Here, another structural example of the
In the configuration example described above, the case where the cross-sectional shape of the
図3に示す構成例では、第1開口部301の近傍と第2開口部302の近傍に、断熱性能の良い断熱部材229が取り付けられている。具体的には、第1開口部301の周りを囲うように熱伝導板2の面上に断熱部材229が装着されているとともに、第2開口部302の周りを囲うように熱伝導板2の面上に断熱部材229が装着されている。断熱部材229としては、例えば、シリコンや断熱ゴム等の樹脂材料からなるものが挙げられる。また、例えば、断熱インク等の断熱性の高い材料を塗布して構成してもよい。さらには、例えば、グラスウールに代表される繊維系断熱材やポリスチレンフォームに代表される発泡系断熱材等を用いて構成することも考えられる。 FIG. 3 is an explanatory diagram showing another configuration example related to the heat medium hole in the electronic component cooling structure according to the first embodiment of the present invention.
In the configuration example shown in FIG. 3, a
また、ここでは、断熱部材229を熱媒体孔3の外側(すなわち熱伝導板2の面上)に設けた例を示しているが、これに限るものではない。断熱部材229は、熱媒体孔3の内側におけるそれぞれの開口部近傍に設けてもよい。
さらに、ここでは、図2(a)に示す構成例と同様に熱媒体孔3の断面形状が均一である場合を挙げたが、このような形態に限るものではなく、図2(b)~(d)に示す構成例のような熱媒体孔3についても全く同様に適用可能である。 Here, the case where the
Here, an example in which the
Furthermore, although the case where the cross-sectional shape of the
図4に示す構成例では、熱媒体孔3の延伸方向に沿って熱伝導板2の一面から外方に向けて突出する突出部2xが設けられているとともに、その突出部2xを貫通するように熱媒体孔3が配設されている。そして、突出部2xの端縁に、熱媒体孔2からの媒体出口部となる第2開口部302が位置している。第2開口部302の近傍には、図3に示す構成例のように、断熱部材229が装着されていてもよい。 FIG. 4 is an explanatory view showing still another configuration example regarding the heat medium hole in the electronic component cooling structure according to the first embodiment of the present invention.
In the configuration example shown in FIG. 4, a projecting
また、ここでは、図2(a)に示す構成例と同様に熱媒体孔3の断面形状が均一である場合を挙げたが、このような形態に限るものではなく、図2(b)~(d)に示す構成例のような熱媒体孔3についても全く同様に適用可能である。 Here, the case where the
Here, the case where the cross-sectional shape of the
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。 (1-v) Effects Obtained by the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
次に、本発明の第二実施形態について説明する。
ここでは、主として、上述した第一実施形態との相違点について説明する。つまり、第二実施形態において、上述した第一実施形態と同様の構成要素については、図中において同一の符号を付し、その詳細な説明を省略する。 <2. Second embodiment of the present invention>
Next, a second embodiment of the present invention will be described.
Here, differences from the above-described first embodiment will be mainly described. That is, in the second embodiment, components similar to those in the first embodiment described above are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
図5は、本発明の第二実施形態に係る電子部品の冷却構造の概略構成例を模式的に示す説明図である。なお、図例は、冷却構造の概略構成例を模式的に示したものであり、その表示サイズや表示縮尺等については必ずしも現物に則したものではない。 (2-i) Configuration of Electronic Component Cooling Structure FIG. 5 is an explanatory diagram schematically showing a schematic configuration example of an electronic component cooling structure according to the second embodiment of the present invention. In addition, the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
図5(a)に示すように、第二実施形態に係る電子部品の冷却構造1Aは、大略第一実施形態の場合と同様に構成されるが、以下の点が異なる。かかる冷却構造1Aは、第一実施形態の場合とは異なり熱伝導板2を備えておらず、発熱体となる電子部品101を一の面に搭載した絶縁基板4と、その絶縁基板4の他の面に直接的に接合されたヒートシンク5Aと、を備えて構成されている。図5(a)に示す態様では、放熱部材であるヒートシンク5Aが絶縁基板4の載置される載置面5aを有している。図5(a)に示す態様では、放熱部材が、放熱本体部7Aと、放熱本体部7Aに設けられた放熱構造部の一例であるフィン6Aとを有してもよい。 (overall structure)
As shown to Fig.5 (a), although the
かかる冷却構造1Aでは、熱伝導板2を備えていないことから、ヒートシンク5Aにおける絶縁基板接合面の近傍部分に、所定の方向に延伸する貫通孔状の熱媒体孔3Aが設けられている。つまり、熱媒体孔3Aは、絶縁基板4とヒートシンク5Aの放熱フィン6Aとの間に配設されている。 (Heat medium hole)
Since the
(1)所定の延伸方向に延伸して、ヒートシンク5Aの一の面に設けた媒体入口部としての第1開口部301と、媒体出口部としての第2開口部302とを連通し、孔内における媒体の流れによる排熱(熱引き)を目的とする貫通孔状の構成を有する。
(2)法線方向視において、熱媒体孔3Aの少なくとも一部分が、絶縁基板4に搭載される電子部品101の実装予定領域25の少なくとも一部分に重畳する。
(3)電子部品101の使用時において、熱媒体孔3Aが鉛直方向(重力方向)に延伸する(少なくとも、水平方向ではない方向に延伸する)。 That is, the
(1) A
(2) When viewed in the normal direction, at least a part of the
(3) When the
上述した構成の電子部品の冷却構造1Aおいても、電子部品101が発する熱は、第一実施形態の場合と同様に、絶縁基板4を介してヒートシンク5Aに伝わり、そのヒートシンク5Aの放熱フィン6Aで放熱されるが、その過程において、ヒートシンク5Aに熱媒体孔3Aが配設されていることから、その熱媒体孔3Aの孔の媒体の流れによっても排熱される。つまり、電子部品101からの熱については、先ず、熱媒体孔3A内の媒体の流れにより「粗熱」が排熱され、その後、ヒートシンク5Aの放熱フィン6Aまで伝わった「余熱」がその放熱フィン6Aによって放熱されるのである。 (2-ii) Flow of Heat and Medium In the electronic
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。 (2-iii) Effects Obtained by the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
なお、ここでは、ヒートシンク5Aに熱媒体孔3Aが形成されており、別部材である熱伝導板2が介在していない場合を例に説明しているが、これに限るものではなく、第一実施形態で説明した構成例を組み合わせて用いるようにしてもよい。
具体的には、図5(b)に示すように、絶縁基板4とヒートシンク5Bとの間に熱伝導板2Bを介在させた構成において、熱伝導板2Bとヒートシンク5Bとのそれぞれに熱媒体孔3Bを形成して、これらの熱媒体孔3Bを併用するようにしてもよい。このような構成例においても、第一実施形態の場合と同様の効果が得られる。図5(b)に示す態様では、放熱部に含まれる熱伝導板2Bが絶縁基板4の載置される載置面5aを有している。そして、図5(b)に示す態様では、放熱部材が、放熱本体部7Bと、放熱本体部7Bに設けられた放熱構造部の一例であるフィン6Bとを有してもよい。 (2-iv) Modified Example Here, a case where the
Specifically, as shown in FIG. 5B, in the configuration in which the heat
次に、本発明の第三実施形態について説明する。
ここでも、主として、上述した第一実施形態との相違点について説明する。つまり、第三実施形態において、上述した第一実施形態と同様の構成要素については、図中において同一の符号を付し、その詳細な説明を省略する。 <3. Third embodiment of the present invention>
Next, a third embodiment of the present invention will be described.
Again, the differences from the first embodiment described above will be mainly described. That is, in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
図6は、本発明の第三実施形態に係る電子部品の冷却構造の概略構成例を模式的に示す説明図である。なお、図例は、冷却構造の概略構成例を模式的に示したものであり、その表示サイズや表示縮尺等については必ずしも現物に則したものではない。 (3-i) Configuration of Electronic Component Cooling Structure FIG. 6 is an explanatory view schematically showing a schematic configuration example of the electronic component cooling structure according to the third embodiment of the present invention. In addition, the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
図6に示すように、第三実施形態に係る電子部品の冷却構造1Cは、大略第一実施形態の場合と同様に構成されるが、以下の点が異なる。かかる冷却構造1Cは、第一実施形態で説明した構成に加えて、第1開口部301に装着される配管部材としての第1の通気管710と、第2開口部302に装着される煙突部材としての第2の通気管720と、を備えている。 (overall structure)
As shown in FIG. 6, the electronic
第1の通気管710は、筒状の導入管として機能するものであり、その軸線に沿って貫通孔730が設けられ、熱伝導板2Cの第1開口部301に形成された第1のジョイント700に装着されるように構成されている。つまり、第1の通気管710は、第1のジョイント700を介して第1開口部301に接続され、当該第1の通気管710が有する貫通孔730によって熱伝導板2Cにおける熱媒体孔3Cを延伸するように構成されている。 (First vent pipe)
The
第2の通気管720は、筒状の排気管として機能するものであり、貫通孔740が設けられており、熱伝導板2Cの第2開口部302に形成された第2のジョイント701に装着されるように構成されている。つまり、第2の通気管720は、第2のジョイント701を介して第2開口部302に接続され、当該第2の通気管720が有する貫通孔740によって熱伝導板2Cにおける熱媒体孔3Cを延伸するように構成されている。 (Second vent pipe)
The
本体部721は、筒状であり、その軸線に沿って貫通孔740が設けられており、熱伝導板2Cの第2開口部302に形成された第2のジョイント701に装着されるように構成されている。
煙突部722は、筒状であり、その軸線に沿って貫通孔740が設けられており、一方の端部が本体部721における熱伝導板2Cの側とは反対側の端部と接続し、他方の端部には上方を向く開口部が設けられている。煙突部722の軸線は、熱伝導板2Cにおける熱媒体孔3Cの軸線方向に対して、例えば直交する方向に沿っている。ただし、必ずしも直交している必要はなく、熱媒体孔3Cの軸線方向と交差するように傾いていてもよい。
このような本体部721と煙突部722を備える第2の通気管720は、熱伝導板2の第2のジョイント701に装着される。このとき、本体部721の軸線方向と煙突部722の軸線方向とが交差することから、煙突部722の開口部側の端部(すなわち、本体部721と接続されない側の端部)は、鉛直方向(熱伝導板2Cの表面に直角垂直な方向)に関して、第2のジョイント701の形成位置とは異なる位置に配置されることになる。より具体的には、第2の通気管720における熱伝導板2Cとは反対側の開口部は、熱伝導板2Cの一方の表面を基準面としたとき、この基準面より鉛直方向の上方側に延伸していて、その上方側を向く。 However, the
The
The
The
第1のジョイント700は、熱伝導板2Cにおける第1開口部301に配管部材としての第1の通気管710を装着する装着部として機能するものである。また、第2のジョイント701は、熱伝導板2Cにおける第2開口部302に煙突部材としての第2の通気管720を装着する装着部として機能するものである。
これら第1のジョイント700および第2のジョイント701は、いずれも、熱伝導板2Cと一体的に成形されている。具体的には、例えば、第1のジョイント700および第2のジョイント701は、熱伝導板2Cからの突出部分の外周側面にねじ切り加工がされていて、これにより雄ねじ部を構成している。この場合、第1の通気管710および第2の通気管720のそれぞれには、雄ねじ部と螺合する雌ねじ部が形成されることになる。ただし、必ずしもこれに限定されることはなく、例えば、第1のジョイント700および第2のジョイント701は、熱伝導板2Cにおける凹状部分の内周側面にねじ切り加工がされていて、これにより雌ねじ部を構成するものであってもよい。この場合、第1の通気管710および第2の通気管720のそれぞれには、雌ねじ部と螺合する雄ねじ部が形成されることになる。
このような構成により、第1のジョイント700および第2のジョイント701は、第1の通気管710の貫通孔730および第2の通気管720の貫通孔740のそれぞれが、熱伝導板2Cにおける熱媒体孔3Cに対して、気密性を有する状態で装着されることを可能にする。
なお、ここでは、雄ねじ部と雌ねじ部が螺合する構成例を説明したが、これに限るものではなく、気密性を有する装着が可能であれば、他の態様(例えば、凸部と凹部との圧入装着)の構成例を用いるようにしてもよい。 (First joint, second joint)
The first joint 700 functions as a mounting portion for mounting the
Both the first joint 700 and the second joint 701 are formed integrally with the
With this configuration, the first joint 700 and the second joint 701 are configured such that the through-
Here, the configuration example in which the male screw portion and the female screw portion are screwed together has been described. However, the present invention is not limited to this, and any other mode (for example, a convex portion and a concave portion) can be used as long as airtight installation is possible. (Press-fit mounting) may be used.
第1のジョイント700および第2のジョイント701は、第1の通気管710および第2の通気管720の装着にあたり、断熱性を有する状態での装着を可能にするものであることが好ましい。具体的には、例えば、第1のジョイント700および第2のジョイント701の外周面、内周面もしくは端面のいずれかの箇所、またはこれらの複数箇所に、断熱機能を有する断熱部材(ただし不図示)が装着されていることが好ましい。断熱部材としては、第一実施形態の場合と同様のものを用いることが考えられる。このような構成により、断熱性を有する状態での装着を可能にすれば、熱伝導板2Cと第1の通気管710または第2の通気管720との間(すなわち、熱媒体孔3Cの孔内と各貫通孔730,740との間)の断熱性を向上させることができる。 (Insulation member)
It is preferable that the first joint 700 and the second joint 701 can be mounted in a state having heat insulation properties when the
(1)熱媒体孔3Cは、所定の延伸方向に延伸して、熱伝導板2の一の面に設けた媒体入口部としての第1開口部301と、媒体出口部としての第2開口部302とを連通し、孔内における媒体の流れによる排熱(熱引き)を目的とする貫通孔状の構成を有する。
(2)法線方向視において、熱媒体孔3Cの少なくとも一部分が、絶縁基板4に搭載される電子部品101の実装予定領域25の少なくとも一部分に重畳する。
(3)第2開口部302に煙突部材としての第2の通気管720が装着され、第2の通気管720の貫通孔740によって熱媒体孔3Cが延伸され、これにより貫通孔740の開口部が第2開口部302よりも鉛直方向(重力方向)の上方側に位置する。
(4)好ましくは、第1開口部301に配管部材としての第1の通気管710が装着され、第1の通気管710の貫通孔730によって熱媒体孔3Cが延伸される。
(5)好ましくは、第1の通気管710および第2の通気管720の装着部である第1のジョイント700および第2のジョイント701が、気密性、断熱性を有する。 As described above, the
(1) The
(2) When viewed in the normal direction, at least a part of the
(3) A
(4) Preferably, a
(5) Preferably, the first joint 700 and the second joint 701 which are the mounting portions of the
上述した構成の電子部品の冷却構造1Cでは、第2の通気管720の貫通孔740によって熱媒体孔3Cが延伸され、これにより貫通孔740の開口部が第2開口部302よりも鉛直方向(重力方向)の上方側に位置する。したがって、電子部品101の使用時において、熱媒体孔3Cが水平方向に延伸するように配置された場合であっても、媒体入口部となる第1の通気管710の貫通孔730の開口部が、媒体出口部となる第2の通気管720の貫通孔740第2開口部よりも下方側に配置されることになるので、煙突効果(ドラフト効果)等による熱対流によって熱媒体孔3Cの孔内の媒体の流れが生じる。つまり、電子部品101および絶縁基板4の配置態様にかかわらず、熱媒体孔3Cの孔内に、自然対流を利用した媒体の流れを生じさせることが可能となる。熱媒体孔3Cの孔内に媒体の流れが生じれば、電子部品101が発する熱は、第一実施形態の場合と同様に排熱されることになる。 (3-ii) Flow of Heat and Medium In the electronic
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。 (3-iii) Effects Obtained by the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
しかも、熱伝導板2Cとは別部材である第2の通気管720の装着によって排熱効率向上を可能にするので、装着される側である熱媒体孔3Cおよび第2開口部302については、配置の自由度が十分に担保される。 (B) In the electronic
Moreover, since the exhaust heat efficiency can be improved by mounting the
なお、ここでは、熱伝導板2Cに第1の通気管710と第2の通気管720との両方が装着されている場合を例に説明しているが、これに限るものではなく、これらのいずれか一方が装着された構成例としてよい。例えば、第2の通気管710のみが装着された場合には、熱媒体孔3Cの延伸方向にかかわらず煙突効果を生じさせ得る点、および、温度差の確保による排熱効率向上の点で、非常に有用なものとなる。また、例えば、第1の通気管710のみが装着された場合には、温度差の確保による排熱効率向上の点で、非常に有用なものとなる。その場合には、第一実施形態の場合と同様にして煙突効果を生じさせればよい。 (3-iv) Modified Example Here, the case where both the
次に、本発明の第四実施形態について説明する。
ここでも、主として、上述した第一実施形態~第三実施形態との相違点について説明する。つまり、第四実施形態において、上述した第一実施形態~第三実施形態と同様の構成要素については、図中において同一の符号を付し、その詳細な説明を省略する。 <4. Fourth embodiment of the present invention>
Next, a fourth embodiment of the present invention will be described.
Again, differences from the first to third embodiments described above will be mainly described. That is, in the fourth embodiment, the same components as those in the first to third embodiments described above are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
上述した第一実施形態~第三実施形態では、熱対流により生じる自然対流を利用する場合を説明したが、第四実施形態では、強制的に生成された媒体の流れを利用する場合を例に挙げる。また、媒体が流れる熱媒体孔に関する構成については、上述した第一実施形態~第三実施形態のいずれの構成例も適用可能であるが、ここでは第一実施形態で説明した構成例を適用した場合を例に挙げる。 (4-i) Structure of electronic component cooling structure In the first to third embodiments described above, the case where natural convection caused by thermal convection is used has been described. In the fourth embodiment, forcible generation is performed. Take the case of using the flow of the recorded medium as an example. In addition, regarding the configuration related to the heat medium hole through which the medium flows, any of the configuration examples of the first to third embodiments described above can be applied, but here, the configuration example described in the first embodiment is applied. Take the case as an example.
図7(a)に示すように、第四実施形態に係る電子部品の冷却構造1は、大略第一実施形態の場合と同様に構成されるが、以下の点が異なる。第四実施形態では、熱媒体孔3の孔内の媒体の流れを、当該熱媒体孔3の孔外から強制的に供給される媒体流を利用して生じさせるように構成されている。そのために、熱媒体孔3の延伸方向の延長線上に、強制的な媒体流を生じさせる媒体流発生機としてのファン50が設けられている。このように強制的な媒体流を生じさせることで、排熱効果や冷却効果をより高めることができる。 (overall structure)
As shown in FIG. 7A, the electronic
媒体流発生機としてのファン50は、強制的な媒体流を生じさせるものであればよく、例えば、プロペラ型の軸流ファンや、シロッコ型またはターボ型の遠心ファン等を用いて構成することができる。ただし、媒体流発生機としては、強制的な媒体流を生じさせるものであれば、ファン50に限るものではなく、コンプレッサやポンプ等であってもよい。さらには、例えば、車載用の電子部品の冷却構造に適用する場合であれば、車両(乗り物)走行時に生じる走行風を取り入れて利用するように構成されたものであってもよい。また、ラジエーターを用いて強制的に冷却されるようにしてもよい。 (Media flow generator)
The
熱媒体孔3は、ファン50による強制的な媒体流に対応しており、その強制的な媒体流を利用して、孔内における媒体の流れを生じさせるように構成されている。そのため、熱媒体孔3は、その熱媒体孔3への媒体入口部となる第1開口部301が、ファン50が発生させる強制的な媒体流の上流側に向けて配置されており、これにより熱媒体孔3の孔内に媒体が送り込まれるようになっている。ただし、これに限るものではなく、例えば、熱媒体孔3からの媒体出口部となる第2開口部302が、ファン50が発生させる強制的な媒体流の下流側に向けて配置されていてもよく、その場合であっても強制的な媒体流の負圧を利用して熱媒体孔3の孔内に媒体の流れを生じさせることが可能である。つまり、ファン50は、熱媒体孔3への媒体入口部となる第1開口部301と熱媒体孔3からの媒体出口部となる第2開口部302との少なくとも一方の側に配置されていればよい。 (Heat medium hole)
The
さらに、熱媒体孔3は、ファン50による強制的な媒体流に対応していることから、必ずしも第1開口部301から第2開口部302へ直線状の経路を有している必要はなく、例えば、その途中に湾曲部や屈曲部等を有するように配されたものであってもよい。経路が直線状に配されていれば、熱媒体孔3の複雑化を抑制できるが、湾曲部や屈曲部等を有していれば、実装予定領域25の配置に応じて選択的に熱媒体孔3の経路を設定することが可能となり、排熱(熱の誘導)を行う上で好適なものとなる。具体的には、熱媒体孔3の経路を、法線方向視において、波型形状部分や螺旋型形状部分等を有するように設定することが考えられる。また、このことは、第1開口部301と第2開口部302とを必ずしも熱伝導板2の対向する二面のそれぞれに配する必要がないことを意味する。具体的には、例えば、第1開口部301と第2開口部302とを、熱伝導板2の同一面に配したり、また熱伝導板2の上部面、下部面または側端面のいずれかに分けて配したりしてもよい。 Further, since the
Furthermore, since the
ところで、熱媒体孔3は、ファン50による強制的な媒体流に対応したものであり、その媒体流が第1開口部301から熱媒体孔3の孔内に送り込まれるようになっている。しかしながら、熱媒体孔3への媒体入口部となる第1開口部301については、必ずしも十分な孔断面積を確保できるとは限らない。そこで、熱媒体孔3への媒体入口部となる第1開口部301の側には、熱媒体孔3の孔内に媒体を圧送する圧送機構60が設けられていることが好ましい。圧送機構60が媒体を圧送することで、第1開口部301の孔断面積が小さい場合であっても、媒体流を熱媒体孔3の孔内に効率的に送り込み、その熱媒体孔3の孔内に媒体の流れを確実に生じさせることが可能となる。 (Pressure feeding mechanism)
By the way, the
このような圧送機構60が設けられている場合であっても、強制的な媒体流が途絶えると、これに伴って熱媒体孔3の孔内における媒体の流れが消滅してしまうおそれがある。強制的な媒体流が途絶える場合としては、例えば、ファン50の故障や電源供給トラブル等が発生した場合が考えられる。また、例えば、車両走行時の走行風を利用する場合であれば、車両の停止時がこれに相当する。これらの理由で強制的な媒体流が途絶えた場合であっても、これにより直ちに熱媒体孔3の孔内の媒体の流れが消滅してしまうのは好ましくない。そこで、図7(b)に示すように、熱媒体孔3と圧送機構60との間には、媒体を貯留するバッファタンクとして機能する媒体貯留室65が設けられていることが好ましい。 (Medium storage room)
Even in the case where such a
(1)熱媒体孔3は、所定の延伸方向に延伸して、熱伝導板2の一の面に設けた媒体入口部としての第1開口部301と、媒体出口部としての第2開口部302とを連通し、孔内における媒体の流れによる排熱(熱引き)を目的とする貫通孔状の構成を有する。
(2)法線方向視において、熱媒体孔3の少なくとも一部分が、絶縁基板4に搭載される電子部品101の実装予定領域25の少なくとも一部分に重畳する。
(3)熱媒体孔3への媒体入口部となる第1開口部301が強制的な媒体流の上流側に向けて配置されており、熱媒体孔3の孔内の媒体の流れを当該熱媒体孔3の孔外からの強制的な媒体流を利用して生じさせるように構成されている。
(4)好ましくは、熱媒体孔3への媒体入口部となる第1開口部301の側に、熱媒体孔3の孔内に媒体を圧送する圧送機構60が設けられている。
(5)好ましくは、熱媒体孔3と圧送機構60との間に、媒体を貯留する媒体貯留室65が設けられている。 As described above, the configuration example of the present embodiment only needs to have the following characteristics.
(1) The
(2) When viewed in the normal direction, at least a part of the
(3) The
(4) Preferably, a
(5) Preferably, a
上述した本実施形態における電子部品の冷却構造1においては、先ず、ファン50が動作して、これにより強制的な媒体流を生じさせる。強制的な媒体流が生じると、これに応じて圧送機構60における従動ファン62および圧送ファン63が回転動作をすることで、ケース部61の入口側で取り込まれた媒体が熱媒体孔3における第1開口部301の側に向けて圧送される。これにより、熱媒体孔3の孔内には、第1開口部301の側から第2開口部302の側に向けて、媒体の流れが発生する。このとき、熱媒体孔3と圧送機構60との間に媒体貯留室65が設けられていれば、その媒体貯留室65内に一時的に媒体が貯留されるので、例えばファン50による強制的な媒体流が途絶えた場合であっても、媒体貯留室65が媒体を貯留している間は、その媒体貯留室65から熱媒体孔3の孔内に媒体が流れる。 (4-ii) Flow of heat and medium In the electronic
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。 (4-iii) Effects Obtained by the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
なお、ここでは、ファン50による強制的な媒体流を、主として、熱媒体孔3の孔内に媒体の流れを生じさせるために利用した場合を例に説明しているが、これに限るものではなく、以下のような構成例に適用してもよい。 (4-iv) Modified Example Here, the case where the forced medium flow by the
図示する構成例では、ファン50による強制的な媒体流が、熱媒体孔3の孔内のみならず、放熱部材としてのヒートシンク5における放熱構造部としての放熱フィン6にも供給されるように、当該ファン50および当該放熱フィン6が配置されている。具体的には、ヒートシンク5の放熱フィン6に対向するようにファン50が配置されており、ファン50が放熱フィン6に向けて強制的な媒体流を生じさせるようになっている。放熱フィン6には、熱媒体孔3への媒体入口部となる第1開口部301が設けられるとともに、その第1開口部301の近傍に圧送機構60が内蔵されている。そして、圧送機構60に連なる熱媒体孔3が熱伝導板2の実装予定領域25を通過するように配されている。 FIG. 8 is an explanatory view schematically showing another configuration example of the cooling structure for an electronic component according to the fourth embodiment of the present invention.
In the illustrated configuration example, the forced medium flow by the
次に、本発明の第五実施形態について説明する。
ここでは、主として、上述した第四実施形態との相違点について説明する。つまり、第五実施形態において、上述した第四実施形態と同様の構成要素については、図中において同一の符号を付し、その詳細な説明を省略する。 <5. Fifth embodiment of the present invention>
Next, a fifth embodiment of the present invention will be described.
Here, differences from the above-described fourth embodiment will be mainly described. That is, in the fifth embodiment, the same components as those in the fourth embodiment described above are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
図9は、本発明の第五実施形態に係る電子部品の冷却構造の概略構成例を模式的に示す説明図である。なお、図例は、冷却構造の概略構成例を模式的に示したものであり、その表示サイズや表示縮尺等については必ずしも現物に則したものではない。 (5-i) Configuration of Electronic Component Cooling Structure FIG. 9 is an explanatory view schematically showing a schematic configuration example of an electronic component cooling structure according to the fifth embodiment of the present invention. In addition, the example of a figure shows typically the example of schematic structure of the cooling structure, and about the display size, the display scale, etc., it does not necessarily follow the actual thing.
図9に示すように、第五実施形態に係る電子部品の冷却構造1は、大略第一実施形態の場合と同様に構成されるが、以下の点が異なる。
第五実施形態では、電子部品101が発光ダイオード(LED)チップであり、四輪車や二輪車等の自動車車両、鉄道車両、航空機、船舶、その他の輸送機械等(以下、単に車両と総称する。)における前照灯(ヘッドライト)200の光源として用いられる。そのために、電子部品(LEDチップ)101を冷却すべく、冷却構造1は、密閉空間である前照灯のハウジング201内に配されている。
また、第五実施形態では、熱媒体孔3の孔内の媒体の流れを、車両走行時に生じる走行風を強制的な媒体流として取り入れて、その強制的な媒体流を利用して生じさせるように構成されている。そのために、冷却構造1は、第1開口部301に装着される第1の案内管部66と、第2開口部302に装着される第2の案内管部67と、を備えている。 (overall structure)
As shown in FIG. 9, the electronic
In the fifth embodiment, the
In the fifth embodiment, the medium flow in the hole of the
LEDチップ101が搭載される前照灯200は、ハウジング201の内部に密閉空間が形成されており、その密閉空間にLEDチップ101およびリフレクタ202が配されている。そして、LEDチップ101からの出射光をリフレクタ202で反射することで、ハウジング201の一部を構成するレンズ部203を介して、前照灯200の前方(光の照射先)側に光を照射するように構成されている。 (Headlight)
In the
第1の案内管部66および第2の案内管部67は、いずれも、媒体流を案内する管状のものである。
第1の案内管部66は、熱媒体孔3への媒体入口部となる第1開口部301に接続するように装着されるもので、外部からの強制的な媒体流を第1開口部301まで導くものである。第1開口部301への装着は、第三実施形態で説明した第1の通気管710の場合と同様に、同じく第三実施形態で説明した第1のジョイント700を利用して行うことが考えられるが、これに限るものではなく、他の公知の手法を用いたものであってもよい。また、第1の案内管部66は、案内する媒体流が強制的なものであることから、当該媒体流を案内し得る管状のものであれば、その入口部や出口部等の配置に制約はなく、また管路の途中に屈曲部や湾曲部等を有するものであってもよい。
第2の案内管部67は、熱媒体孔3からの媒体出口部となる第2開口部302に接続するように装着されるもので、第2開口部302から排出される強制的な媒体流を外部へ導くものである。第2開口部302への装着についても、第三実施形態で説明した第2の通気管720の場合と同様に、同じく第三実施形態で説明した第2のジョイント701を利用して行うことが考えられるが、これに限るものではなく、他の公知の手法を用いたものであってもよい。また、第2の案内管部67は、案内する媒体流が強制的なものであることから、当該媒体流を案内し得る管状のものであれば、その入口部や出口部等の配置に制約はなく、また管路の途中に屈曲部や湾曲部等を有するものであってもよい。 (Guide pipe part)
Both the first
The first
The second
(1)熱媒体孔3は、所定の延伸方向に延伸して、熱伝導板2の一の面に設けた媒体入口部としての第1開口部301と、媒体出口部としての第2開口部302とを連通し、孔内における媒体の流れによる排熱(熱引き)を目的とする貫通孔状の構成を有する。
(2)法線方向視において、熱媒体孔3の少なくとも一部分が、絶縁基板4に搭載される電子部品101の実装予定領域25の少なくとも一部分に重畳する。
(3)熱媒体孔3への媒体入口部となる第1開口部301に媒体流を案内する第1の案内管部66が接続されており、熱媒体孔3からの媒体出口部となる第2開口部302に媒体流を案内する第2の案内管部67が接続されている。
(4)第1の案内管部66の媒体取り込み側(例えば、付設された圧送機構60におけるケース部61の入口側)が強制的な媒体流の上流側に向けて配置されており、熱媒体孔3の孔内の媒体の流れを当該熱媒体孔3の孔外からの強制的な媒体流を利用して生じさせるように構成されている。
(5)好ましくは、電子部品101およびその近傍領域を通過する熱媒体孔3が密閉空間に配されている場合に、第1の案内管部66が密閉空間の外方で供給される媒体流を密閉空間内の熱媒体孔3まで案内するとともに、第2の案内管部67が熱媒体孔3の孔内の媒体の流れを密閉空間の外方まで案内するように配されている。 As described above, the configuration example of the present embodiment only needs to have the following characteristics.
(1) The
(2) When viewed in the normal direction, at least a part of the
(3) A
(4) The medium intake side of the first guide pipe portion 66 (for example, the inlet side of the
(5) Preferably, when the
上述した本実施形態における電子部品の冷却構造1においては、先ず、車両が走行すると、これにより強制的な媒体流を生じる。強制的な媒体流が生じると、これに応じた圧送機構60による媒体の圧送、および、媒体貯留室65内での一時的な貯留を経た後に、その媒体の流れを第1の案内管部66が熱媒体孔3における第1開口部301まで案内する。これにより、熱媒体孔3の孔内には、第1開口部301の側から第2開口部302の側に向けて、媒体の流れが発生する。このとき、媒体貯留室65内での媒体の貯留を経ることで、例えば車両が停止して強制的な媒体流が途絶えた場合であっても、媒体貯留室65が媒体を貯留している間は、その媒体貯留室65から熱媒体孔3の孔内に媒体が流れる。 (5-ii) Flow of heat and medium In the electronic
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。 (5-iii) Effects Obtained by the Present Embodiment According to the present embodiment, one or more effects shown below can be obtained.
なお、ここでは、電子部品101が車両の前照灯200の光源として用いられるLEDチップであり、車両走行時に生じる走行風を強制的な媒体流として取り入れて電子部品(LEDチップ)101の冷却を行う場合を例に説明しているが、これに限るものではなく、以下のような構成例に適用してもよい。例えば、電子部品101は、前照灯用のLEDチップに限るものではなく、また、密閉空間ではなく開放された空間に配されたものであってもよい。また、強制的な媒体流は、第四実施形態の場合と同様に、ファン50等の媒体流発生機により生じさせたものであってもよい。 (5-iv) Modifications Here, the
以上に、本発明の実施形態として、第一実施形態から第五実施形態を例に挙げて、具体的に説明した。しかしながら、本発明は上述の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 <6. Other embodiments>
As described above, the embodiments of the present invention have been specifically described by taking the first to fifth embodiments as examples. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
以下、本発明の好ましい態様について付記する。 <7. Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.
本発明の一態様によれば、
電子部品が直接又は間接的に載置される載置面を有する放熱部を備え、
前記放熱部内に媒体を流すための媒体流路が設けられる冷却構造体が提供される。 (Appendix 1)
According to one aspect of the invention,
A heat dissipating part having a mounting surface on which electronic components are mounted directly or indirectly,
There is provided a cooling structure provided with a medium flow path for flowing a medium in the heat radiating section.
前記放熱部は、放熱本体部と、放熱構造部とを有する放熱部材を有し、
前記媒体流路の一部または全部は前記放熱本体部内で前記載置面に沿った方向で延在する
付記1に記載の冷却構造体が提供されてもよい。 (Appendix 2)
The heat dissipating part has a heat dissipating member having a heat dissipating body part and a heat dissipating structure part,
The cooling structure according to
前記放熱部は、放熱部材と、前記放熱部材に設けられ、前記載置面を有する熱伝導部材とを有し、
前記媒体流路の一部または全部は前記熱伝導部材内に設けられている
付記1または2に記載の冷却構造体が提供されてもよい。 (Appendix 3)
The heat dissipating part includes a heat dissipating member and a heat conducting member provided on the heat dissipating member and having the placement surface described above.
A part or all of the medium flow path is provided in the heat conducting member. The cooling structure according to
前記放熱部は、放熱本体部及び前記放熱本体部に設けられた放熱構造部を有する放熱部材と、前記載置面を有する熱伝導部材と、を有し、
前記媒体流路の一部は前記放熱本体部内に設けられ、
前記媒体流路の一部は前記熱伝導部材内に設けられている
付記1から3のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 4)
The heat dissipating part has a heat dissipating body part and a heat dissipating member having a heat dissipating structure part provided in the heat dissipating main body part, and a heat conducting member having the mounting surface.
A part of the medium flow path is provided in the heat dissipation main body,
A part of the medium flow path is provided in the heat conducting member. The cooling structure according to any one of
前記媒体流路内の媒体の流れを熱対流によって生じさせるように構成されている
付記1から4のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 5)
The cooling structure according to any one of
前記媒体流路の媒体入口部となる第1開口部が、前記媒体流路の媒体出口部となる第2開口部よりも、重力方向の下方側に配置されている
付記1から5のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 6)
The first opening serving as the medium inlet of the medium flow path is disposed below the second opening serving as the medium outlet of the medium flow path in the gravity direction. One cooling structure may be provided.
前記媒体流路は、当該媒体流路の媒体入口側の孔断面積または孔容積のほうが媒体出口側の孔断面積または孔容積よりも大きくなるように形成された部分を有する
付記1から6のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 7)
The medium flow path has a portion formed such that the hole cross-sectional area or hole volume on the medium inlet side of the medium flow path is larger than the hole cross-sectional area or hole volume on the medium outlet side. A cooling structure according to any one of the above may be provided.
前記媒体流路は、電子部品が載置される予定の領域に対応する実装予定領域と当該実装予定領域以外の非実装予定領域とを通過するように配設され、
前記実装予定領域に位置する前記媒体流路の一部または全部における孔断面形状の大きさのほうが前記非実装予定領域に位置する前記媒体流路の孔断面形状の大きさよりも大きくなる
付記1から7のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 8)
The medium flow path is disposed so as to pass through a mounting scheduled area corresponding to an area where electronic components are to be placed and a non-mounting scheduled area other than the mounting planned area,
The size of the hole cross-sectional shape in a part or all of the medium flow path located in the mounting scheduled area is larger than the size of the hole cross-sectional shape of the medium flow path positioned in the non-mounting planned area. 7. The cooling structure according to any one of 7 may be provided.
前記媒体流路の媒体入口部となる第1開口部および前記媒体流路の媒体出口部となる第2開口部の少なくとも一方に、断熱部材が設けられている
付記1から8のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 9)
A heat insulating member is provided in at least one of the first opening serving as the medium inlet of the medium flow path and the second opening serving as the medium outlet of the medium flow path. May be provided.
前記放熱部は前記媒体流路が設けられた突出部を有し、
前記突出部の端縁に、前記媒体流路の媒体入口部となる第1開口部または前記媒体流路の媒体出口部となる第2開口部が位置している
付記1から9のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 10)
The heat dissipating part has a protrusion provided with the medium flow path,
The first opening serving as the medium inlet of the medium flow path or the second opening serving as the medium outlet of the medium flow path is located at the edge of the protrusion. One cooling structure may be provided.
前記媒体流路の媒体出口部となる第2開口部に、貫通孔を有する煙突部材が設けられ、
前記媒体流路と前記煙突部材の前記貫通孔とが連通される
付記1から10のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 11)
A chimney member having a through hole is provided in the second opening serving as the medium outlet of the medium flow path,
The cooling structure according to any one of
前記媒体流路の媒体入口部となる第1開口部に、貫通孔を有する配管部材が設けられ、
前記媒体流路と前記配管部材の前記貫通孔とが連通される
付記1から11のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 12)
A piping member having a through hole is provided in the first opening serving as the medium inlet of the medium flow path,
The cooling structure according to any one of
前記放熱部は、放熱本体部と、前記放熱本体部に設けられた放熱構造部とを有し、
前記媒体流路が前記放熱構造部内にも設けられる
付記1から12のいずれか1つに記載の冷却構造体が提供されてもよい。 (Appendix 13)
The heat dissipating part has a heat dissipating body part and a heat dissipating structure part provided in the heat dissipating body part,
The cooling medium according to any one of
付記1から13のいずれか1項に記載の冷却構造体と、
前記冷却構造体の前記媒体流路内に媒体を流すための媒体流供給部と、
を備える冷却システムが提供されてもよい。 (Appendix 14)
The cooling structure according to any one of
A medium flow supply unit for flowing a medium into the medium flow path of the cooling structure;
A cooling system may be provided.
前記媒体流供給部は媒体流発生機又は圧送機構を有する
付記14に記載の冷却システムが提供されてもよい。 (Appendix 15)
The cooling system according to attachment 14, wherein the medium flow supply unit includes a medium flow generator or a pressure feeding mechanism.
前記冷却構造体と前記媒体流供給部との間に設けられ、前記媒体を貯留する媒体貯留室をさらに備える付記14または15に記載の冷却システムが提供されてもよい。 (Appendix 16)
The cooling system according to appendix 14 or 15, further comprising a medium storage chamber that is provided between the cooling structure and the medium flow supply unit and stores the medium.
前記冷却構造体と前記媒体流供給部との間に設けられ、前記媒体を前記媒体流路へと案内する案内管部をさらに備えた
付記14から16のいずれか1つに記載の冷却システム。 (Appendix 17)
The cooling system according to any one of appendices 14 to 16, further comprising a guide pipe portion that is provided between the cooling structure and the medium flow supply unit and guides the medium to the medium flow path.
前記冷却構造体は密閉空間に配置され、
前記媒体を前記密閉空間内に位置する前記媒体流路へと案内する第一案内管部と、前記媒体流路からの媒体を前記密閉空間外に案内する第二案内管部とが設けられる
付記14から17のいずれか1つに記載の冷却システム。 (Appendix 18)
The cooling structure is disposed in a sealed space;
A first guide pipe part that guides the medium to the medium flow path located in the sealed space and a second guide pipe part that guides the medium from the medium flow path to the outside of the sealed space are provided. The cooling system according to any one of 14 to 17.
前記媒体流供給部は、空気、水または油を前記冷却構造体の前記媒体流路内に供給する
付記14から18のいずれか1つに記載の冷却システム。 (Appendix 19)
The cooling system according to any one of appendices 14 to 18, wherein the medium flow supply unit supplies air, water, or oil into the medium flow path of the cooling structure.
前記冷却構造体および前記媒体流供給部は車両に設けられ、
前記媒体流供給部は、前記車両の走行時に生じる走行風を前記媒体流路に供給する
付記14から19のいずれか1つに記載の冷却システム。 (Appendix 20)
The cooling structure and the medium flow supply unit are provided in a vehicle,
The cooling system according to any one of appendices 14 to 19, wherein the medium flow supply unit supplies a traveling wind generated when the vehicle travels to the medium flow path.
付記1から13のいずれか1つに記載の冷却構造体又は付記14から20のいずれか1つに記載の冷却システムを備える発熱装置。 (Appendix 21)
A heating device comprising the cooling structure according to any one of
付記1から13のいずれか1つに記載の冷却構造体又は付記14から20のいずれか1つに記載の冷却システムを備える構造物。 (Appendix 22)
A structure including the cooling structure according to any one of
2,2B,2C…熱伝導板
2x…突出部
3,3A,3B,3C…熱媒体孔
4…絶縁基板
5,5A,5B…ヒートシンク(放熱部材)
6,6A,6B…放熱フィン(放熱構造部)
25…実装予定領域
31…小断面積部
32…大断面積部
50…ファン(媒体流発生機)
60…圧送機構
62…従動ファン
63…圧送ファン
64…防塵フィルタ
65…媒体貯留室
66…第1の案内管部
67…第2の案内管部
101…電子部品
229…断熱部材
301…第1開口部
302…第2開口部
700…第1のジョイント
701…第2のジョイント
710…第1の通気管(配管部材)
720…第2の通気管(煙突部材)
730,740…貫通孔 1, 1A, 1B, 1C ... Electronic
6, 6A, 6B ... Radiation fin (heat radiation structure)
25 ... Mounting
DESCRIPTION OF
720 ... Second vent pipe (chimney member)
730, 740 ... through hole
Claims (22)
- 電子部品が直接又は間接的に載置される載置面を有する放熱部を備え、
前記放熱部内に媒体を流すための媒体流路が設けられる冷却構造体。 A heat dissipating part having a mounting surface on which electronic components are mounted directly or indirectly,
A cooling structure provided with a medium flow path for flowing a medium in the heat radiating section. - 前記放熱部は、放熱本体部と、前記放熱本体部に設けられた放熱構造部とを有する放熱部材を有し、
前記媒体流路の一部または全部は前記放熱本体部内で前記載置面に沿った方向で延在する
請求項1に記載の冷却構造体。 The heat dissipating part has a heat dissipating member having a heat dissipating body part and a heat dissipating structure part provided in the heat dissipating body part,
The cooling structure according to claim 1, wherein part or all of the medium flow path extends in a direction along the placement surface in the heat dissipation main body. - 前記放熱部は、放熱部材と、前記載置面を有する熱伝導部材とを有し、
前記媒体流路の一部または全部は前記熱伝導部材内に設けられている
請求項1または2に記載の冷却構造体。 The heat dissipating part has a heat dissipating member and a heat conducting member having the placement surface described above,
The cooling structure according to claim 1, wherein a part or all of the medium flow path is provided in the heat conducting member. - 前記放熱部は、放熱本体部及び前記放熱本体部に設けられた放熱構造部を有する放熱部材と、前記載置面を有する熱伝導部材と、を有し、
前記媒体流路の一部は前記放熱本体部内に設けられ、
前記媒体流路の一部は前記熱伝導部材内に設けられている
請求項1から3のいずれか1項に記載の冷却構造体。 The heat dissipating part has a heat dissipating body part and a heat dissipating member having a heat dissipating structure part provided in the heat dissipating main body part, and a heat conducting member having the mounting surface.
A part of the medium flow path is provided in the heat dissipation main body,
The cooling structure according to any one of claims 1 to 3, wherein a part of the medium flow path is provided in the heat conducting member. - 前記媒体流路内の媒体の流れを熱対流によって生じさせるように構成されている
請求項1から4のいずれか1項に記載の冷却構造体。 The cooling structure according to any one of claims 1 to 4, wherein the cooling structure is configured to generate a flow of the medium in the medium flow path by thermal convection. - 前記媒体流路の媒体入口部となる第1開口部が、前記媒体流路の媒体出口部となる第2開口部よりも、重力方向の下方側に配置されている
請求項1から5のいずれか1項に記載の冷却構造体。 6. The first opening that serves as a medium inlet of the medium flow path is disposed below the second opening that serves as a medium outlet of the medium flow path in the gravity direction. The cooling structure according to claim 1. - 前記媒体流路は、当該媒体流路の媒体入口側の孔断面積のほうが媒体出口側の孔断面積よりも大きくなるように形成された部分を有する
請求項1から6のいずれか1項に記載の冷却構造体。 The medium flow path has a portion formed such that a hole cross-sectional area on the medium inlet side of the medium flow path is larger than a hole cross-sectional area on the medium outlet side. The cooling structure described. - 前記媒体流路は、電子部品が載置される予定の領域に対応する実装予定領域と当該実装予定領域以外の非実装予定領域とを通過するように配設され、
前記実装予定領域に位置する前記媒体流路の一部または全部における孔断面形状の大きさのほうが前記非実装予定領域に位置する前記媒体流路の孔断面形状の大きさよりも大きくなる
請求項1から7のいずれか1項に記載の冷却構造体。 The medium flow path is disposed so as to pass through a mounting scheduled area corresponding to an area where electronic components are to be placed and a non-mounting scheduled area other than the mounting planned area,
2. The size of the hole cross-sectional shape of a part or all of the medium flow path located in the planned mounting area is larger than the size of the hole cross-sectional shape of the medium flow path positioned in the non-mounting planned area. The cooling structure according to any one of 1 to 7. - 前記媒体流路の媒体入口部となる第1開口部および前記媒体流路の媒体出口部となる第2開口部の少なくとも一方に、断熱部材が設けられている
請求項1から8のいずれか1項に記載の冷却構造体。 The heat insulation member is provided in at least one of the 1st opening part used as the medium entrance part of the said medium flow path, and the 2nd opening part used as the medium exit part of the said medium flow path. The cooling structure according to item. - 前記放熱部は前記媒体流路が設けられた突出部を有し、
前記突出部の端縁に、前記媒体流路の媒体入口部となる第1開口部または前記媒体流路の媒体出口部となる第2開口部が位置している
請求項1から9のいずれか1項に記載の冷却構造体。 The heat dissipating part has a protrusion provided with the medium flow path,
The first opening serving as a medium inlet of the medium flow path or the second opening serving as a medium outlet of the medium flow path is located at an edge of the protrusion. The cooling structure according to item 1. - 前記媒体流路の媒体出口部となる第2開口部に、貫通孔を有する煙突部材が設けられ、
前記媒体流路と前記煙突部材の前記貫通孔とが連通される
請求項1から10のいずれか1項に記載の冷却構造体。 A chimney member having a through hole is provided in the second opening serving as the medium outlet of the medium flow path,
The cooling structure according to any one of claims 1 to 10, wherein the medium flow path and the through-hole of the chimney member are communicated with each other. - 前記媒体流路の媒体入口部となる第1開口部に、貫通孔を有する配管部材が設けられ、
前記媒体流路と前記配管部材の前記貫通孔とが連通される
請求項1から11のいずれか1項に記載の冷却構造体。 A piping member having a through hole is provided in the first opening serving as the medium inlet of the medium flow path,
The cooling structure according to any one of claims 1 to 11, wherein the medium flow path and the through hole of the piping member communicate with each other. - 前記放熱部は、放熱本体部と、前記放熱本体部に設けられた放熱構造部とを有し、
前記媒体流路が前記放熱構造部内にも設けられる
請求項1から12のいずれか1項に記載の冷却構造体。 The heat dissipating part has a heat dissipating body part and a heat dissipating structure part provided in the heat dissipating body part,
The cooling structure according to any one of claims 1 to 12, wherein the medium flow path is also provided in the heat dissipation structure. - 請求項1から13のいずれか1項に記載の冷却構造体と、
前記冷却構造体の前記媒体流路内に媒体を流すための媒体流供給部と、
を備える冷却システム。 The cooling structure according to any one of claims 1 to 13,
A medium flow supply unit for flowing a medium into the medium flow path of the cooling structure;
With cooling system. - 前記媒体流供給部は媒体流発生機又は圧送機構を有する
請求項14に記載の冷却システム。 The cooling system according to claim 14, wherein the medium flow supply unit includes a medium flow generator or a pressure feeding mechanism. - 前記冷却構造体と前記媒体流供給部との間に設けられ、前記媒体を貯留する媒体貯留室をさらに備える請求項14または15に記載の冷却システム。 The cooling system according to claim 14 or 15, further comprising a medium storage chamber that is provided between the cooling structure and the medium flow supply unit and stores the medium.
- 前記冷却構造体と前記媒体流供給部との間に設けられ、前記媒体を前記媒体流路へと案内する案内管部をさらに備えた
請求項14から16のいずれか1項に記載の冷却システム。 The cooling system according to any one of claims 14 to 16, further comprising a guide pipe portion that is provided between the cooling structure and the medium flow supply unit and guides the medium to the medium flow path. . - 前記冷却構造体は密閉空間に配置され、
前記媒体を前記密閉空間内に位置する前記媒体流路へと案内する第一案内管部と、前記媒体流路からの媒体を前記密閉空間外に案内する第二案内管部とが設けられる
請求項14から17のいずれか1項に記載の冷却システム。 The cooling structure is disposed in a sealed space;
A first guide pipe portion that guides the medium to the medium flow path positioned in the sealed space, and a second guide pipe section that guides the medium from the medium flow path to the outside of the sealed space are provided. Item 18. The cooling system according to any one of Items 14 to 17. - 前記媒体流供給部は、空気、水または油を前記冷却構造体の前記媒体流路内に供給する
請求項14から18のいずれか1項に記載の冷却システム。 The cooling system according to any one of claims 14 to 18, wherein the medium flow supply unit supplies air, water, or oil into the medium flow path of the cooling structure. - 前記冷却構造体および前記媒体流供給部は車両に設けられ、
前記媒体流供給部は、前記車両の走行時に生じる走行風を前記媒体流路に供給する
請求項14から19のいずれか1項に記載の冷却システム。 The cooling structure and the medium flow supply unit are provided in a vehicle,
The cooling system according to any one of claims 14 to 19, wherein the medium flow supply unit supplies a traveling wind generated when the vehicle travels to the medium flow path. - 請求項1から13のいずれか1項に記載の冷却構造体又は請求項14から20のいずれか1項に記載の冷却システムを備える発熱装置。 A heat generating device comprising the cooling structure according to any one of claims 1 to 13 or the cooling system according to any one of claims 14 to 20.
- 請求項1から13のいずれか1項に記載の冷却構造体又は請求項14から20のいずれか1項に記載の冷却システムを備える構造物。
A structure provided with the cooling structure according to any one of claims 1 to 13 or the cooling system according to any one of claims 14 to 20.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18772334.1A EP3605600B1 (en) | 2017-03-22 | 2018-03-16 | Cooling structural body, cooling system, heat generator and construction |
KR1020197030866A KR102552685B1 (en) | 2017-03-22 | 2018-03-16 | Cooling structures, cooling systems, heating devices and structures |
US16/496,400 US11994351B2 (en) | 2017-03-22 | 2018-03-16 | Cooling structural body, cooling system, heat generator and construction |
CN201880019822.0A CN110520980A (en) | 2017-03-22 | 2018-03-16 | Cooling construction body, cooling system, heat generating device and structure |
BR112019019493-2A BR112019019493B1 (en) | 2017-03-22 | 2018-03-16 | STRUCTURAL COOLING BODY, COOLING SYSTEM, AND HEAT GENERATOR |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-055419 | 2017-03-22 | ||
JP2017055419 | 2017-03-22 | ||
JP2017-234068 | 2017-12-06 | ||
JP2017234068A JP6715818B2 (en) | 2017-03-22 | 2017-12-06 | Cooling structure, cooling system, heat generating device and structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173942A1 true WO2018173942A1 (en) | 2018-09-27 |
Family
ID=63586378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010409 WO2018173942A1 (en) | 2017-03-22 | 2018-03-16 | Cooling structure, cooling system, heating device, and structural object |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018173942A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110962158A (en) * | 2018-09-28 | 2020-04-07 | 台达电子工业股份有限公司 | Robot cooling system |
TWI693012B (en) * | 2018-09-28 | 2020-05-01 | 台達電子工業股份有限公司 | Heat dissipating system of robot |
CN111642092A (en) * | 2020-06-10 | 2020-09-08 | 安徽海瑞通科技股份有限公司 | 5G communication user external network cabinet |
KR20200106758A (en) * | 2019-03-05 | 2020-09-15 | 현대자동차주식회사 | Blower for ventilating seat and Seat ventilation system having the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03129896A (en) * | 1989-10-16 | 1991-06-03 | Fujitsu Ltd | Cooling system |
JPH08250627A (en) * | 1995-03-13 | 1996-09-27 | Alpha:Kk | Heat exchanger |
JPH10275883A (en) | 1997-03-28 | 1998-10-13 | Nec Corp | Structure for cooling integrated circuit device |
JP2002111263A (en) * | 2000-09-27 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Electronic device with heat removal and heat shielding structure |
JP2002124123A (en) * | 2000-10-17 | 2002-04-26 | Denso Corp | Vehicle headlight |
JP2003069267A (en) * | 2001-08-30 | 2003-03-07 | Fujikura Ltd | Electronic equipment cooling system |
JP2006100410A (en) * | 2004-09-28 | 2006-04-13 | Kyocera Corp | Electronic component storage package and electronic device |
JP2009129642A (en) * | 2007-11-21 | 2009-06-11 | Stanley Electric Co Ltd | LED lighting device |
WO2010150366A1 (en) * | 2009-06-24 | 2010-12-29 | Necディスプレイソリューションズ株式会社 | Light source device and projection type display device equipped with same |
JP2014036050A (en) * | 2012-08-07 | 2014-02-24 | Nidec Sankyo Corp | Heat radiator and heat radiation system |
-
2018
- 2018-03-16 WO PCT/JP2018/010409 patent/WO2018173942A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03129896A (en) * | 1989-10-16 | 1991-06-03 | Fujitsu Ltd | Cooling system |
JPH08250627A (en) * | 1995-03-13 | 1996-09-27 | Alpha:Kk | Heat exchanger |
JPH10275883A (en) | 1997-03-28 | 1998-10-13 | Nec Corp | Structure for cooling integrated circuit device |
JP2002111263A (en) * | 2000-09-27 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Electronic device with heat removal and heat shielding structure |
JP2002124123A (en) * | 2000-10-17 | 2002-04-26 | Denso Corp | Vehicle headlight |
JP2003069267A (en) * | 2001-08-30 | 2003-03-07 | Fujikura Ltd | Electronic equipment cooling system |
JP2006100410A (en) * | 2004-09-28 | 2006-04-13 | Kyocera Corp | Electronic component storage package and electronic device |
JP2009129642A (en) * | 2007-11-21 | 2009-06-11 | Stanley Electric Co Ltd | LED lighting device |
WO2010150366A1 (en) * | 2009-06-24 | 2010-12-29 | Necディスプレイソリューションズ株式会社 | Light source device and projection type display device equipped with same |
JP2014036050A (en) * | 2012-08-07 | 2014-02-24 | Nidec Sankyo Corp | Heat radiator and heat radiation system |
Non-Patent Citations (1)
Title |
---|
See also references of EP3605600A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110962158A (en) * | 2018-09-28 | 2020-04-07 | 台达电子工业股份有限公司 | Robot cooling system |
TWI693012B (en) * | 2018-09-28 | 2020-05-01 | 台達電子工業股份有限公司 | Heat dissipating system of robot |
US10926422B2 (en) | 2018-09-28 | 2021-02-23 | Delta Electronics, Inc. | Heat dissipating system of robot |
KR20200106758A (en) * | 2019-03-05 | 2020-09-15 | 현대자동차주식회사 | Blower for ventilating seat and Seat ventilation system having the same |
CN111660895A (en) * | 2019-03-05 | 2020-09-15 | 现代自动车株式会社 | Seat ventilation blower and seat ventilation system having the same |
US11637473B2 (en) * | 2019-03-05 | 2023-04-25 | Hyundai Motor Company | Seat ventilation blower and seat ventilation system having the same |
KR102726702B1 (en) * | 2019-03-05 | 2024-11-06 | 현대자동차주식회사 | Blower for ventilating seat and Seat ventilation system having the same |
CN111642092A (en) * | 2020-06-10 | 2020-09-08 | 安徽海瑞通科技股份有限公司 | 5G communication user external network cabinet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102552685B1 (en) | Cooling structures, cooling systems, heating devices and structures | |
WO2018173942A1 (en) | Cooling structure, cooling system, heating device, and structural object | |
US7651253B2 (en) | Heat exchange enhancement | |
JP6561846B2 (en) | Cooling device and electronic device | |
CN105932538B (en) | Has the air-cooled type laser aid of the L-shaped heat-conduction component with radiating fin | |
JP5021657B2 (en) | Electronic structure cooling system, method and aircraft using the same | |
US20080258598A1 (en) | Heat Exchange Enhancement | |
US20080180969A1 (en) | Heat Exchange Enhancement | |
US20060244926A1 (en) | Water-cooled projector | |
JP2008226843A (en) | Lighting or signal device for automotive having outer wall having heat exchanger | |
JP2018006642A (en) | Electronic device | |
CN111094857B (en) | Heat exchanger unit and air conditioner | |
JP2018160659A5 (en) | ||
JP5117287B2 (en) | Electronic equipment cooling system | |
US20240107711A1 (en) | Electronic device | |
HK40017140A (en) | Cooling structure, cooling system, heating device, and structural object | |
US20130063933A1 (en) | Modular Integrated High Power LED Luminaire | |
BR112019019493B1 (en) | STRUCTURAL COOLING BODY, COOLING SYSTEM, AND HEAT GENERATOR | |
WO2025046663A1 (en) | Electronic device | |
JP6214406B2 (en) | Vehicle lighting | |
CN115016208A (en) | Laser projection device | |
JP5659328B2 (en) | Power converter | |
CN107642686A (en) | Bidirectional lighting lamp | |
JP2014107507A (en) | Electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772334 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 139850140003005502 Country of ref document: IR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019019493 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20197030866 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018772334 Country of ref document: EP Effective date: 20191022 |
|
ENP | Entry into the national phase |
Ref document number: 112019019493 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190919 |