[go: up one dir, main page]

WO2018174004A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2018174004A1
WO2018174004A1 PCT/JP2018/010788 JP2018010788W WO2018174004A1 WO 2018174004 A1 WO2018174004 A1 WO 2018174004A1 JP 2018010788 W JP2018010788 W JP 2018010788W WO 2018174004 A1 WO2018174004 A1 WO 2018174004A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
optical fiber
core
optical
optical unit
Prior art date
Application number
PCT/JP2018/010788
Other languages
English (en)
French (fr)
Inventor
佐藤 文昭
美昭 長尾
涼英 岡
高橋 健
隆郎 平間
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US16/496,037 priority Critical patent/US11029477B2/en
Priority to JP2019507659A priority patent/JP7074124B2/ja
Priority to EP18771594.1A priority patent/EP3605174B1/en
Publication of WO2018174004A1 publication Critical patent/WO2018174004A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/449Twisting

Definitions

  • the present invention relates to a slotless type optical fiber cable in which a plurality of optical fiber core wires or a tape core wire in which a plurality of optical fiber core wires are arranged are covered with a cable jacket.
  • optical networks In addition to increasing the speed of communication and the amount of information due to the spread of information communication such as the Internet, the construction of optical networks is progressing to support bidirectional communication and large-capacity communication.
  • FTTH Fiber To The Home
  • the optical fiber With the expansion of the optical fiber into the subscriber's house and the expansion of the local network, the optical fiber is branched from the middle part of the optical fiber cable containing a plurality of optical fibers (referred to as an optical fiber intermediate branch).
  • an optical fiber intermediate branch the middle part of the optical fiber cable containing a plurality of optical fibers
  • the optical fiber may be stored in a color-coded loose tube.
  • Patent Document 1 discloses a structure of a loose tube type optical fiber cable.
  • Patent Document 2 discloses a structure of a slotless type optical fiber cable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical fiber cable that is easier to lay and can achieve high-density mounting than conventional cables.
  • An optical fiber cable includes an optical unit in which a plurality of optical fiber core wires or a tape core wire in which a plurality of optical fiber core wires are arranged is gathered and twisted;
  • An optical fiber cable includes: (1) an optical unit in which a plurality of optical fiber cores or a tape core wire in which a plurality of optical fiber cores are arranged is gathered and twisted;
  • a slotless type optical fiber cable comprising a cable core for storing an optical unit and a cable jacket provided around the cable core, wherein a tension member made of a fibrous body is provided in the cable core.
  • a tension member made of a fibrous body is provided in the cable core.
  • the fiber body is disposed at the center position of the cable core, and the occupation ratio of the optical unit calculated from the cross-sectional area of the optical unit with respect to the cross-sectional area of the cable core is 25% or more and 65% or less. . If the occupation ratio is set to 65% or less in a state where the optical unit is twisted, it is difficult to apply a side pressure to the optical fiber, and cable transmission loss can be improved. Further, since the compressive strain is dispersed even when the cable is bent in an arc shape, the cable bending loss can be improved.
  • the occupancy ratio in the twisted optical unit is 25% or more, even if the cable is bent in an arc shape, the fiber body is difficult to move toward the bending center of the cable, and some optical fiber core wires are Since the phenomenon of being pinched by the fiber body hardly occurs, cable bending loss can be improved.
  • the optical unit is configured by a plurality of subunits obtained by twisting a plurality of the tape core wires, and a plurality of glass fiber bodies are filled as the fiber body around the subunits. Since the fiber bodies are arranged substantially evenly around the optical unit, it is possible to provide an optical fiber cable that has no bending direction and is easy to be laid in a pipeline. Further, since the glass fiber body is used, the weight of the cable can be reduced as compared with the case where a metal tension member is provided. (4) The fiber body is formed of glass fiber or aramid fiber. The weight of the cable can be reduced as compared with the case where a metal tension member is provided. (5) The glass fiber body is an optical fiber core that does not contribute to transmission.
  • the optical unit is constituted by the tape core wire, and the tape core wire is an intermittent tape core in which a connecting portion and a non-connecting portion are intermittently formed in a longitudinal direction between the adjacent optical fiber core wires. Is a line. Since the intermittent tape core is more flexible than a general tape core, the occupation rate can be increased by configuring the optical unit with the intermittent tape core.
  • Water absorption powder is applied to the tension member. By applying water-absorbing powder, water can be stopped into the cable core.
  • the said optical fiber core wire is formed in the range whose coating outer diameter given to the glass fiber is 135 micrometers-220 micrometers. If a thin fiber is used, high-density mounting becomes even easier.
  • FIG. 1 is a diagram showing an example of an optical fiber cable according to the first embodiment of the present invention
  • FIG. 2 is a diagram showing an example of the structure of an intermittent tape core wire.
  • the optical fiber cable 10 shown in FIG. 1 is a slotless type, and has, for example, a round cable core 11 and a cable jacket 12 formed around the cable core 11.
  • the cable core 11 accommodates, for example, 144 pieces of 12 intermittent tape core wires 20 and 1728 cores.
  • the intermittent tape core wire is formed by arranging a plurality of optical fiber core wires in parallel, and intermittently connecting adjacent optical fiber core wires by a connecting portion and a non-connecting portion.
  • 2A shows a state in which the intermittent tape core is opened in the arrangement direction
  • FIG. 2B shows a cross-sectional view taken along line BB in FIG. 2A.
  • the wire 20 is configured by intermittently connecting twelve tape core wires every two cores.
  • a tape coating 24 made of an ultraviolet curable resin or the like is provided around each optical fiber core wire 21.
  • two core wires integrated with each other are not connected to the connecting portion 22.
  • the parts 23 are intermittently connected.
  • the tape coating 24 is connected, and in the non-connecting portion 23, the adjacent tape coating 24 is separated without being connected.
  • an intermittent tape core wire does not need to provide a connection part and a non-connection part for every 2 cores, For example, you may connect intermittently by a connection part and a non-connection part for every 1 core.
  • the optical fiber core 21 accommodated in the intermittent tape core is, for example, on the outside of what is called an optical fiber strand in which a glass fiber having a standard outer diameter of 125 ⁇ m is coated with a coating outer diameter of about 250 ⁇ m.
  • an optical fiber strand in which a glass fiber having a standard outer diameter of 125 ⁇ m is coated with a coating outer diameter of about 250 ⁇ m.
  • the present invention is not limited to this, and a thin fiber having a coating outer diameter in the range of 135 ⁇ m to 220 ⁇ m, for example, about 165 ⁇ m or 200 ⁇ m may be used. If a thin fiber is used, high-density mounting becomes even easier.
  • the subunit 33 shown in FIG. 1 has 96 cores formed by collecting, for example, eight 12-fiber intermittent tape core wires 20 and twisting them in a spiral shape.
  • the optical unit 30 formed by collecting 18 wires and twisting them in a spiral shape is accommodated.
  • the intermittent tape core wire 20 is more flexible than a general tape core wire, and if the optical unit 30 is composed of an intermittent tape core wire, the occupation ratio of the optical fiber core wire 21 can be increased. .
  • a tape core wire which comprises the optical unit 30 it is not necessary to use such an intermittent tape core wire, it uses a connection type
  • the occupation ratio of the optical unit 30 is calculated from the total cross-sectional area of the optical unit 30 with respect to the cross-sectional area of the cable core 11.
  • the total cross-sectional area of the optical unit 30 includes the cross-sectional area of the tape coating 24 described with reference to FIG.
  • the twist of the intermittent tape core wire 20 and the subunit 33 may be an SZ shape that is periodically reversed in addition to a spiral shape in one direction.
  • the cable core 11 also houses a tension member 31 made of a fibrous body.
  • One tension member 31 shown in FIG. 1 is arranged at the center of the optical unit 30 along the longitudinal direction of the optical unit 30. Note that the optical unit 30 of this embodiment is formed by twisting the subunits 33 around the tension member 31.
  • the tension member 31 has a non-metallic material, for example, glass fiber reinforced plastic (GFRP) formed of glass fiber, aramid fiber reinforced plastic (AFRP, KFRP).
  • GFRP glass fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • KFRP aramid fiber reinforced plastic
  • the cable core 11 is gathered into a round shape by vertically attaching or horizontally winding the optical unit 30 with a press-wound tape 32.
  • a press-wound tape 32 For example, a nonwoven fabric containing polyethylene terephthalate (PET) or the like is used as the press-wrapping tape 32, and is wound from the outside of the optical unit 30.
  • PET polyethylene terephthalate
  • the outside of the press-wound tape 32 is covered with a cable jacket 12 made of, for example, PE (polyethylene), PVC (polyvinyl chloride), or the like.
  • a tear string 13 for tearing the cable jacket 12 in the cable longitudinal direction is embedded when the cable jacket 12 is extruded.
  • one tear string 13 is provided on each side of the cable core 11.
  • the tear string 13 is a string-like member such as nylon or polyester.
  • the protrusion part 14 may be formed in the cable jacket 12 at the time of extrusion molding so that the embedding position of the tear string 13 can be visually recognized from the outside.
  • the optical fiber cable according to the first embodiment has a slotless structure, high-density mounting is possible. Further, since the tension member 31 made of a fibrous body is disposed at the center position of the cable core 11, it is possible to provide an optical fiber cable that has no bending direction and is easy to be laid in a pipe line. Further, since the plurality of subunits 33 are twisted around the tension member 31, even if the cable is bent, the tension member 31 is difficult to move toward the bending center of the cable, and a side pressure is not easily applied to the optical fiber. .
  • FIG. 3 is a table for explaining the evaluation results of the transmission characteristics of the optical fiber.
  • the influence of the side pressure applied to the optical fiber hereinafter referred to as “cable transmission loss”
  • the influence of the compressive strain applied to the optical fiber hereinafter referred to as “cable bending loss”
  • the transmission loss was measured by changing the occupation ratio of the optical unit 30 for several samples of the cable 10 in a straight line state. And among the several samples measured, the case where the maximum value of transmission loss was less than 0.3 (dB / km) was determined as good (O), and the case where it was not determined as poor (X).
  • Example 1 When the occupation ratio of the optical unit 30 was 15% (referred to as “Sample 1”), the maximum value of the transmission loss was 0.19 dB / km, which was determined to be good. When the occupation ratio is changed and the occupation ratio is 25% (referred to as “Sample 2”), the maximum value of the transmission loss is 0.19 dB / km, and the occupation ratio is 35% (referred to as “Sample 3”).
  • the maximum value of transmission loss is 0.20 dB / km and the occupation rate is 45% (referred to as “Sample 4”), the maximum value of transmission loss is 0.20 dB / km and the occupation rate is 55% (“ The maximum transmission loss is 0.21 dB / km and the occupation ratio is 65% (referred to as “Sample 6”), and the maximum transmission loss is 0.23 dB / km. It was determined to be good.
  • the occupation ratio of the optical unit 30 is 75% (referred to as “Sample 7”)
  • the maximum value of the transmission loss is 0.45 dB / km, which is not less than 0.3 dB / km, and thus determined as defective. did.
  • the occupation ratio is set to 65% or less in a state where the optical unit is twisted, it is difficult to apply a side pressure to the optical fiber and the cable transmission characteristics can be improved.
  • samples 1 to 7 were wound around a rod-shaped member (member whose diameter is about 10 times the cable outer diameter) once, and the transmission loss after one turn compared to the transmission loss in a straight line state.
  • the maximum value of bending loss was 0.1 dB, which was determined to be good.
  • the maximum value of bending loss is 0.07 dB.
  • the maximum value of bending loss is 0.06 dB.
  • the maximum value of bending loss is 0.
  • the maximum value of the bending loss was 0.
  • the maximum value of the bending loss was 0.
  • the maximum value of the bending loss was 0.15 dB / km, so that it was determined to be defective.
  • the occupation ratio when the occupation ratio is set to 65% or less, it is difficult to apply a side pressure to the optical fiber as described above. However, even if the cable is bent in an arc shape, the compressive strain is dispersed, so that the cable bending characteristics can be improved. . If the occupation ratio of the twisted optical unit 30 is 25% or more, even if the cable is bent in an arc shape, the tension member 31 is difficult to move toward the bending center of the cable, and some optical fiber cores Since the phenomenon that the wire is sandwiched between the tension members 31 hardly occurs, it can be seen that the cable bending characteristics can be improved.
  • FIG. 4 is a diagram illustrating an example of an optical fiber cable according to the second embodiment of the present invention.
  • the optical fiber cable 10 shown in FIG. 4 is also a slotless type, and has, for example, a round cable core 11.
  • the subunit 33 is formed by twisting and gathering the intermittent tape core wires 20 in a spiral shape, for example, and is bundled with a bundle material 34 for identification.
  • the cable core 11 accommodates an optical unit 30 formed by collecting a plurality of the subunits 33 and twisting them in a spiral shape, for example.
  • the cable core 11 also accommodates a tension member 31 made of a fibrous body.
  • a plurality of tension members 31 shown in FIG. 4 are disposed outside the optical unit 30 along the longitudinal direction of the optical unit 30. It is arranged with books.
  • the tension member 31 is formed of a glass fiber, for example, an optical fiber core wire that does not contribute to transmission, as a wire material having resistance to tension and compression.
  • the configuration of the cable jacket 12 and the like is the same as that of the first embodiment, and a detailed description thereof is omitted.
  • the optical fiber cable according to the second embodiment has a slotless structure as in the first embodiment, and enables high-density mounting. Further, since the tension members 31 made of a fibrous body are arranged almost evenly at the outer position of the optical unit 30 in the cable core 11, an optical fiber cable that has no bending direction and is easy to be laid in a pipe line. Can be provided.
  • SYMBOLS 10 Optical fiber cable, 11 ... Cable core, 12 ... Cable jacket, 13 ... Tear string, 14 ... Protrusion part, 20 ... Intermittent tape core wire, 21 ... Optical fiber core wire, 22 ... Connection part, 23 ... Non-connection 24: Tape coating, 30 ... Optical unit, 31 ... Tension member, 32 ... Pressing tape, 33 ... Sub unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

従来のケーブルに比べ、布設しやすく且つ高密度実装を達成可能な、光ファイバケーブルを提供する。複数本の光ファイバ心線、または複数本の光ファイバ心線を並べたテープ心線が集められて撚られてなる光ユニット(30)と、光ユニットを収納するケーブルコア(11)と、ケーブルコアの周囲に設けられたケーブル外被(12)と、を備えたスロットレス型の光ファイバケーブル(10)であり、ケーブルコア内に、繊維体からなるテンションメンバ(31)を備える。

Description

光ファイバケーブル
 本発明は、複数本の光ファイバ心線、または複数本の光ファイバ心線を並べたテープ心線をケーブル外被で被覆した、スロットレス型の光ファイバケーブルに関する。
 インターネット等の情報通信の普及による通信の高速化や情報量の増大に加え、双方向通信と大容量通信に対応するために、光ネットワークの構築が進展している。この光ネットワークでは、通信事業者と各家庭とを光ファイバで直接結び、高速通信サービスを提供するFTTH(Fiber To The Home)が開始されている。このような加入者宅への光ファイバの引き込みや構内ネットワークなどの拡大で、複数本の光ファイバを収納した光ファイバケーブルの途中部分から光ファイバを分岐して(光ファイバの中間分岐と言われている)、複数の家庭や複数端末に分配する配線工事の需要が増えている。
 光ファイバの中間分岐時に光ファイバ心線を取り出しやすくするために、光ファイバ心線を色分けされたルースチューブに収納することがある。例えば、特許文献1には、ルースチューブ型の光ファイバケーブルの構造が開示されている。また、特許文献2には、スロットレス型の光ファイバケーブルの構造が開示されている。
特表2015-517679号公報 特開2010-8923号公報
 しかしながら、上記特許文献1のようなルースチューブ型の場合、光ファイバケーブル内には、ルースチューブ自体のスペースが必要になり、また、ルースチューブの間がデッドスペースになるので、高密度実装が困難になる。
 一方、上記特許文献2のようなスロットレス型の場合、高密度実装は可能であるものの、テンションメンバが中心に配置されておらず、ケーブル外被内の2箇所に配置されているため、光ファイバケーブルに曲げ方向性が生じ、ケーブルを布設しにくい。
 本発明は、上述のような実情に鑑みてなされたもので、従来のケーブルに比べ、布設しやすく且つ高密度実装を達成可能な、光ファイバケーブルを提供することを目的とする。
 本発明の一態様に係る光ファイバケーブルは、複数本の光ファイバ心線、または複数本の光ファイバ心線を並べたテープ心線が集められて撚られてなる光ユニットと、該光ユニットを収納するケーブルコアと、前記ケーブルコアの周囲に設けられたケーブル外被と、を備えたスロットレス型の光ファイバケーブルであって、前記ケーブルコア内に、繊維体からなるテンションメンバを備える。
 上記によれば、従来のケーブルに比べ、布設しやすく且つ高密度実装を達成することができる。
本発明の第1実施形態による光ファイバケーブルの一例を示す図である。 間欠テープ心線の構造の一例を示す図である。 光ファイバの伝送特性の評価結果を説明する表である。 本発明の第2実施形態による光ファイバケーブルの一例を示す図である。
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 本発明の一態様に係る光ファイバケーブルは、(1)複数本の光ファイバ心線、または複数本の光ファイバ心線を並べたテープ心線が集められて撚られてなる光ユニットと、該光ユニットを収納するケーブルコアと、前記ケーブルコアの周囲に設けられたケーブル外被と、を備えたスロットレス型の光ファイバケーブルであって、前記ケーブルコア内に、繊維体からなるテンションメンバを備える。スロットレス型の構造であるため、従来のケーブルに比べて高密度実装が可能である。また、繊維体からなるテンションメンバが、ケーブルコア内に配置されていることから、曲げの方向性が無く、従来のケーブルに比べ、管路に布設しやすい光ファイバケーブルを提供することができる。
(2)前記繊維体が前記ケーブルコアの中央位置に配置され、前記ケーブルコアの断面積に対する前記光ユニットの断面積から計算される該光ユニットの占有率が、25%以上65%以下である。光ユニットが撚られた状態で、占有率を65%以下にすれば、光ファイバに側圧が掛かり難くなり、ケーブル伝送損失を改善できる。また、ケーブルが円弧状に曲げられても圧縮歪みが分散するため、ケーブル曲げ損失も改善できる。一方、撚られた光ユニットでの占有率を25%以上にすれば、ケーブルを円弧状に曲げても、繊維体がケーブルの曲げ中心に向けて移動し難く、一部の光ファイバ心線が繊維体で挟み込まれる現象が生じ難いので、ケーブル曲げ損失を改善できる。
(3)前記光ユニットは、前記テープ心線を複数撚り併せた複数のサブユニットで構成され、前記サブユニットの周囲に、前記繊維体として、複数のガラス繊維体を充填する。光ユニットの周囲に繊維体がほぼ均等に配置されていることから、曲げの方向性が無く、管路に布設しやすい光ファイバケーブルを提供することができる。また、ガラス繊維体を用いているので、金属製のテンションメンバを設けた場合に比べてケーブルの軽量化を達成することができる。
(4)前記繊維体が、ガラス繊維、あるいはアラミド系繊維で形成される。金属製のテンションメンバを設けた場合に比べてケーブルの軽量化を達成することができる。
(5)前記ガラス繊維体は、伝送に寄与しない光ファイバ心線である。不良の光ファイバ心線などを使用すれば、低コスト化を実現することができる。
(6)前記光ユニットは、前記テープ心線で構成され、前記テープ心線は、隣り合う前記光ファイバ心線間の長手方向に連結部と非連結部が間欠的に形成された間欠テープ心線である。一般的なテープ心線に比べて間欠テープ心線は柔軟性を有するため、光ユニットを間欠テープ心線で構成すれば、占有率を上げることができる。
(7)前記テンションメンバには、吸水パウダーが塗布されている。吸水パウダーを塗布することで、ケーブルコア内への止水を達成できる。
(8)前記光ファイバ心線は、ガラスファイバに施された被覆外径が135μmから220μmの範囲で形成されている。細径ファイバを用いれば、高密度実装がより一層容易になる。
[本発明の実施形態の詳細]
 以下、添付図面を参照しながら、本発明による光ファイバケーブルの好適な実施の形態について説明する。
 図1は、本発明の第1実施形態による光ファイバケーブルの一例を示す図であり、図2は、間欠テープ心線の構造の一例を示す図である。
 図1に示した光ファイバケーブル10はスロットレス型であり、例えば丸型のケーブルコア11と、このケーブルコア11の周囲に形成されたケーブル外被12とを有する。
 ケーブルコア11には、例えば12心の間欠テープ心線20を144枚使用して1728心としたものが収容されている。
 間欠テープ心線とは、複数本の光ファイバ心線が平行一列に配列され、隣り合う光ファイバ心線同士を連結部と非連結部により間欠的に連結してなるものである。図2(A)は間欠テープ心線を配列方向に開いた状態を、図2(B)は図2(A)のB-B線矢視断面図をそれぞれ示しており、図示の間欠テープ心線20は、12心のテープ心線が2心毎に間欠的に接続されて構成されている。
 図2(B)に示すように、各光ファイバ心線21の周囲には、紫外線硬化樹脂等によるテープ被覆24が設けられ、例えば2心を一体化した心線同士が連結部22と非連結部23により間欠的に連結されている。連結部22では、テープ被覆24が連結されており、非連結部23では、隣り合うテープ被覆24が連結されずに分離している。なお、間欠テープ心線は、2心毎に連結部と非連結部を設けなくてもよく、例えば1心毎に連結部と非連結部で間欠的に連結してもよい。
 この間欠テープ心線に収容される光ファイバ心線21は、例えば、標準外径125μmのガラスファイバに被覆外径が250μm前後の被覆を施した光ファイバ素線と称されるものの外側に、さらに着色被覆を施したものであるが、これに限られるものでは無く、被覆外径が135μmから220μmの範囲、例えば、165μmや200μm程度の細径ファイバであってもよい。細径ファイバを用いれば、高密度実装がより一層容易になる。
 図1に示すサブユニット33は、例えば12心の間欠テープ心線20を8枚集め、螺旋状に撚って形成された96心のものであり、ケーブルコア11には、このサブユニット33を、例えば18本集めて螺旋状に撚って形成された光ユニット30が収容されている。間欠テープ心線20は、一般的なテープ心線に比べて柔軟性を有しており、光ユニット30を間欠テープ心線で構成すれば、光ファイバ心線21の占有率を上げることができる。なお、光ユニット30を構成するテープ心線としては、このような間欠テープ心線を用いなくともよく、連結型のテープ心線を用いたり、単心の光ファイバ心線を複数揃えたものであってもよい。
 この光ユニット30の占有率は、ケーブルコア11の断面積に対する光ユニット30の総断面積から計算される。なお、光ユニット30の総断面積には、図2で説明したテープ被覆24の分の断面積も含まれる。
 なお、間欠テープ心線20やサブユニット33の撚りは、一方向の螺旋状の他、周期的に反転するSZ状であってもよい。
 また、ケーブルコア11には、繊維体からなるテンションメンバ31も収容されている。図1に示したテンションメンバ31は、光ユニット30の中央位置に、この光ユニット30の長手方向に沿って1本配置されている。なお、本実施形態の光ユニット30は、テンションメンバ31の周囲に、サブユニット33を撚り集めて形成される。
 テンションメンバ31には、引っ張りや圧縮に対する耐力を有する線材として、非金属材料、例えば、ガラス繊維で形成されたガラス繊維強化プラスチック(GFRP)、アラミド系繊維で形成されたアラミド繊維強化プラスチック(AFRP、KFRP)で形成される。これにより、金属製のテンションメンバを設けた場合に比べてケーブルの軽量化を達成することができる。また、軽量であるため、ケーブルコア11内の光ファイバに側圧が掛かり難くなる。なお、ケーブルコア11内への止水のために、テンションメンバ31に吸水パウダーを塗布してもよい。
 一方、ケーブルコア11は、光ユニット30を押さえ巻きテープ32で縦添えまたは横巻きして丸型にまとめられている。押さえ巻きテープ32は、例えばポリエチレンテレフタレート(PET)などを含む不織布が用いられ、光ユニット30の外側から巻きつけられている。
 押さえ巻きテープ32の外側は、例えばPE(ポリエチレン)、PVC(ポリ塩化ビニル)等で構成されたケーブル外被12で覆われている。
 ケーブル外被12には、ケーブル外被12をケーブル長手方向に引き裂くための引き裂き紐13が、ケーブル外被12の押出成形時に埋設されている。引き裂き紐13は、例えばケーブルコア11を挟んで両側に1本ずつ設けられている。引き裂き紐13は、例えば、ナイロンやポリエステルなどの紐状部材である。なお、引き裂き紐13の埋設位置が外部から視認できるように、ケーブル外被12には突起部14が押出成形時に形成されていてもよい。
 第1実施形態による光ファイバケーブルによれば、スロットレス型の構造であるため、高密度実装が可能である。
 また、繊維体からなるテンションメンバ31が、ケーブルコア11の中央位置に配置されていることから、曲げの方向性が無く、管路に敷設しやすい光ファイバケーブルを提供することができる。また、テンションメンバ31の周囲に、複数のサブユニット33が撚り集められているので、ケーブルを曲げても、テンションメンバ31がケーブルの曲げ中心に向けて移動し難く、光ファイバに側圧が掛かりにくい。
 図3は、光ファイバの伝送特性の評価結果を説明する表である。
 この伝送特性の評価では、光ファイバに掛かる側圧の影響(以下、「ケーブル伝送損失」と称する。)と、光ファイバに掛かる圧縮歪みの影響(以下、「ケーブル曲げ損失」と称する。)を評価した。
 前者のケーブル伝送損失の評価では、直線状態としたケーブル10の数サンプルについて、光ユニット30の占有率を変更して伝送損失(測定波長1550(nm))を測定した。そして、測定した数サンプルのうち、伝送損失の最大値が0.3(dB/km)未満になる場合を良好(○)、ならない場合を不良(×)と判定した。
 光ユニット30の占有率が15%の場合(「試料1」と称する)、伝送損失の最大値は0.19dB/kmとなり、良好と判定した。
 上記占有率を変更し、占有率が25%の場合(「試料2」と称する)、伝送損失の最大値は0.19dB/km、占有率が35%の場合(「試料3」と称する)、伝送損失の最大値は0.20dB/km、占有率が45%の場合(「試料4」と称する)、伝送損失の最大値は0.20dB/km、占有率が55%の場合(「試料5」と称する)、伝送損失の最大値は0.21dB/km、占有率が65%の場合(「試料6」と称する)、伝送損失の最大値は0.23dB/kmとなり、いずれも良好と判定した。
 これに対し、光ユニット30の占有率が75%の場合(「試料7」と称する)、伝送損失の最大値は0.45dB/kmとなり、0.3dB/km以上になったため、不良と判定した。
 このように、光ユニットが撚られた状態で、占有率を65%以下にすれば、光ファイバに側圧が掛かり難く、ケーブル伝送特性を改善できることが分かる。
 後者のケーブル曲げ損失の評価では、試料1~7を棒状部材(直径がケーブル外径の約10倍の部材)に1周巻きつけ、直線状態での伝送損失に対し、1ターン後の伝送損失(測定波長1550(nm))の増加分が最大で0.1(dB)以下になる場合を良好(○)、ならない場合を不良(×)と判定した。
 試料2の場合、曲げ損失の最大値は0.1dBとなり、良好と判定した。また、試料3の場合には、曲げ損失の最大値は0.07dB、試料4の場合には、曲げ損失の最大値は0.06dB、試料5の場合には、曲げ損失の最大値は0.06dB、試料6の場合には、曲げ損失の最大値は0.08dBとなり、いずれも良好と判定した。
 これに対し、試料1の場合には、曲げ損失の最大値は0.3dBとなり、0.1dB以上になったため、不良と判定した。また、試料7の場合には、曲げ損失の最大値は0.15dB/kmであったため、不良と判定した。
 このように、占有率を65%以下にすれば、上記したように光ファイバに側圧が掛かり難くなるが、ケーブルが円弧状に曲げられても圧縮歪みが分散するため、ケーブル曲げ特性も改善できる。また、撚られた光ユニット30での占有率を25%以上にすれば、ケーブルを円弧状に曲げても、テンションメンバ31がケーブルの曲げ中心に向けて移動し難く、一部の光ファイバ心線がテンションメンバ31で挟み込まれる現象が生じ難いので、ケーブル曲げ特性を改善できることが分かる。
 図4は、本発明の第2実施形態による光ファイバケーブルの一例を示す図である。
 図4に示した光ファイバケーブル10もスロットレス型であり、例えば丸型のケーブルコア11を有する。
 サブユニット33は、間欠テープ心線20を例えば螺旋状に撚り集めて形成され、識別用のバンドル材34で束ねられている。ケーブルコア11には、このサブユニット33を複数集めて例えば螺旋状に撚って形成された光ユニット30が収容されている。
 また、ケーブルコア11には、繊維体からなるテンションメンバ31も収容されており、図4に示したテンションメンバ31は、光ユニット30の外側位置に、この光ユニット30の長手方向に沿って複数本縦添えして配置されている。テンションメンバ31には、引っ張りや圧縮に対する耐力を有する線材として、ガラス繊維、例えば、伝送に寄与しない光ファイバ心線で形成されている。なお、ケーブル外被12等の構成は第1実施形態と同じであり、詳細な説明は省略する。
 第2実施形態による光ファイバケーブルによれば、第1実施形態と同様に、スロットレス構造であり、高密度実装が可能になる。
 また、繊維体からなるテンションメンバ31が、ケーブルコア11内で光ユニット30の外側位置にほぼ均等に配置されていることから、曲げの方向性が無く、管路に敷設しやすい光ファイバケーブルを提供することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10…光ファイバケーブル、11…ケーブルコア、12…ケーブル外被、13…引き裂き紐、14…突起部、20…間欠テープ心線、21…光ファイバ心線、22…連結部、23…非連結部、24…テープ被覆、30…光ユニット、31…テンションメンバ、32…押さえ巻きテープ、33…サブユニット。

Claims (8)

  1.  複数本の光ファイバ心線、または複数本の光ファイバ心線を並べたテープ心線が集められて撚られてなる光ユニットと、該光ユニットを収納するケーブルコアと、前記ケーブルコアの周囲に設けられたケーブル外被と、を備えたスロットレス型の光ファイバケーブルであって、
     前記ケーブルコア内に、繊維体からなるテンションメンバを備える、光ファイバケーブル。
  2.  前記繊維体が前記ケーブルコアの中央位置に配置され、前記ケーブルコアの断面積に対する前記光ユニットの断面積から計算される該光ユニットの占有率が、25%以上65%以下である、請求項1に記載の光ファイバケーブル。
  3.  前記光ユニットは、前記テープ心線を複数撚り併せた複数のサブユニットで構成され、前記サブユニットの周囲に、前記繊維体として、複数のガラス繊維体を充填した、請求項1に記載の光ファイバケーブル。
  4.  前記繊維体が、ガラス繊維、あるいはアラミド系繊維で形成される、請求項1または2に記載の光ファイバケーブル。
  5.  前記ガラス繊維体は、伝送に寄与しない光ファイバ心線である、請求項3に記載の光ファイバケーブル。
  6.  前記光ユニットは、前記テープ心線で構成され、前記テープ心線は、隣り合う前記光ファイバ心線間の長手方向に連結部と非連結部が間欠的に形成された間欠テープ心線である、請求項1から5のいずれか一項に記載の光ファイバケーブル。
  7.  前記テンションメンバには、吸水パウダーが塗布されている、請求項1から6のいずれか一項に記載の光ファイバケーブル。
  8.  前記光ファイバ心線は、ガラスファイバに施された被覆外径が135μmから220μmの範囲で形成されている、請求項1から7のいずれか一項に記載の光ファイバケーブル。
     
PCT/JP2018/010788 2017-03-21 2018-03-19 光ファイバケーブル WO2018174004A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/496,037 US11029477B2 (en) 2017-03-21 2018-03-19 Optical fiber cable
JP2019507659A JP7074124B2 (ja) 2017-03-21 2018-03-19 光ファイバケーブル
EP18771594.1A EP3605174B1 (en) 2017-03-21 2018-03-19 Optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054532 2017-03-21
JP2017-054532 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018174004A1 true WO2018174004A1 (ja) 2018-09-27

Family

ID=63585426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010788 WO2018174004A1 (ja) 2017-03-21 2018-03-19 光ファイバケーブル

Country Status (4)

Country Link
US (1) US11029477B2 (ja)
EP (1) EP3605174B1 (ja)
JP (1) JP7074124B2 (ja)
WO (1) WO2018174004A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054493A1 (ja) * 2018-09-11 2020-03-19 株式会社フジクラ 光ファイバケーブル
JP2020042175A (ja) * 2018-09-11 2020-03-19 株式会社フジクラ 光ファイバケーブル
JP2020064098A (ja) * 2018-10-15 2020-04-23 株式会社フジクラ 光ファイバケーブル
JP2020071264A (ja) * 2018-10-29 2020-05-07 古河電気工業株式会社 光ファイバケーブル及び光ファイバケーブルの製造方法
JP2020071263A (ja) * 2018-10-29 2020-05-07 古河電気工業株式会社 光ファイバケーブル
JP2020076915A (ja) * 2018-11-09 2020-05-21 株式会社フジクラ 光ファイバケーブル
WO2020106595A1 (en) 2018-11-20 2020-05-28 Ofs Fitel, Llc Optical fiber cable having rollable ribbons and central strength member
WO2020145129A1 (ja) 2019-01-10 2020-07-16 古河電気工業株式会社 光ファイバケーブル、ケーブルコアの製造方法
US11287591B2 (en) * 2018-10-11 2022-03-29 Fujikura Ltd. Optical fiber cable
WO2022102666A1 (ja) * 2020-11-11 2022-05-19 住友電気工業株式会社 光ファイバケーブル
WO2023027117A1 (ja) * 2021-08-25 2023-03-02 住友電気工業株式会社 光ファイバケーブル
JP2023028559A (ja) * 2021-08-19 2023-03-03 古河電気工業株式会社 間欠接着型光ファイバテープ心線、光ファイバケーブル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183034A1 (en) * 2018-03-20 2019-09-26 Commscope Technologies Llc Fiber optic cable terminal with a pushable stub cable
WO2022092251A1 (ja) * 2020-10-30 2022-05-05 住友電気工業株式会社 光ファイバケーブルおよび光ファイバユニット

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611634A (ja) * 1992-06-25 1994-01-21 Furukawa Electric Co Ltd:The 細径光ファイバ心線
JP2003177288A (ja) * 2001-12-11 2003-06-27 Fujikura Ltd 光ファイバドロップケーブル及び製造方法
JP2003329905A (ja) * 2002-05-03 2003-11-19 Samsung Electronics Co Ltd 光ファイバケーブル
JP2007041568A (ja) * 2005-07-08 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> 多心光ファイバケーブル
JP2010008923A (ja) 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバケーブル
JP2012083418A (ja) * 2010-10-07 2012-04-26 Sumitomo Electric Ind Ltd 光ファイバコード
JP2014109751A (ja) * 2012-12-04 2014-06-12 Sumitomo Electric Ind Ltd 光ケーブル
JP2015517679A (ja) 2012-05-02 2015-06-22 エーエフエル・テレコミュニケーションズ・エルエルシー リボン型光ファイバー構造体を有する円形で小径の光ケーブル
EP2977804A1 (en) * 2014-07-25 2016-01-27 CCS Technology, Inc. Optical cable
EP3104203A1 (en) * 2015-06-09 2016-12-14 Sterlite Technologies Ltd Easy accessable outdoor optical fiber cable

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078853A (en) * 1976-02-25 1978-03-14 Bell Telephone Laboratories, Incorporated Optical communication cable
US5345525A (en) 1992-01-28 1994-09-06 At&T Bell Laboratories Utility optical fiber cable
US5561729A (en) * 1995-05-15 1996-10-01 Siecor Corporation Communications cable including fiber reinforced plastic materials
US5857051A (en) * 1997-04-21 1999-01-05 Lucent Technologies Inc. High density riser and plenum breakout cables for indoor and outdoor cable applications
US6160940A (en) * 1997-06-05 2000-12-12 Corning Cable Systems Llc Fiber optic cable for installation in a cable passageway and methods and an apparatus for producing the same
JPH11142702A (ja) * 1997-11-13 1999-05-28 Sumitomo Electric Ind Ltd 光ケーブル及びその布設方法
US6449412B1 (en) * 1998-06-30 2002-09-10 Corning Cable Systems Llc Fiber optic ribbon interconnect cable
US6256439B1 (en) * 1998-10-21 2001-07-03 Lucent Technologies Inc. Lubricant for central core fiber optic cable having stranded ribbons
US6185352B1 (en) * 2000-02-24 2001-02-06 Siecor Operations, Llc Optical fiber ribbon fan-out cables
DE10028562A1 (de) * 2000-06-09 2001-12-13 Scc Special Comm Cables Gmbh Optische Übertragungselemente enthaltendes Luftkabelund Verfahren zur Herstellung eines Luftkabels
US6519399B2 (en) * 2001-02-19 2003-02-11 Corning Cable Systems Llc Fiber optic cable with profiled group of optical fibers
US6731844B2 (en) * 2001-06-21 2004-05-04 Corning Cable Systems Llc Identification of optical ribbons
US6987916B2 (en) * 2001-12-18 2006-01-17 Alcatel Fiber optic central tube cable with bundled support member
AU2003276713A1 (en) 2002-11-06 2004-06-07 Sumitomo Electric Industries, Ltd. Optical fiber ribbon and optical fiber cable using the same
US7336873B2 (en) * 2002-12-19 2008-02-26 Corning Cable Systems, Llc. Optical tube assembly having a dry insert and methods of making the same
US20090190890A1 (en) * 2002-12-19 2009-07-30 Freeland Riley S Fiber optic cable having a dry insert and methods of making the same
US7277615B2 (en) * 2002-12-19 2007-10-02 Corning Cable Systems, Llc. Fiber optic cable having a dry insert and methods of making the same
JP2004342579A (ja) * 2003-04-25 2004-12-02 Tatsuta Electric Wire & Cable Co Ltd 光・メタル複合ケーブル
US6993237B2 (en) * 2003-11-26 2006-01-31 Corning Cable Systems Llc Pulling grip for installing pre-connectorized fiber optic cable
CN101069112A (zh) * 2004-11-05 2007-11-07 普雷斯曼电缆及系统能源有限公司 防水光缆及其生产方法
US7936957B1 (en) * 2007-03-09 2011-05-03 Superior Essex Communications, Lp High-density fiber optic ribbon cable with enhanced water blocking performance
WO2010001663A1 (ja) * 2008-06-30 2010-01-07 日本電信電話株式会社 光ファイバケーブル及び光ファイバテープ
FR2941539B1 (fr) * 2009-01-23 2011-02-25 Draka Comteq France Fibre optique monomode
JP5227996B2 (ja) * 2010-04-05 2013-07-03 株式会社フジクラ 光ファイバテープ心線、光ファイバケーブル及び配線形態
JP5789381B2 (ja) * 2011-02-23 2015-10-07 株式会社フジクラ 光ファイバテープ心線の製造方法、製造装置、及びその製造方法で製造された光ファイバテープ心線並びに光ファイバケーブル
US9170388B2 (en) * 2011-09-30 2015-10-27 Corning Cable Systems Llc Fiber optic ribbon cable having enhanced ribbon stack coupling and methods thereof
US9250410B2 (en) * 2011-12-22 2016-02-02 Corning Cable Systems Llc Optical fiber cable and interconnect assembly
JP5940847B2 (ja) * 2012-03-16 2016-06-29 株式会社フジクラ 光ファイバケーブルの製造方法及び製造装置
EP2711754A1 (en) * 2012-09-20 2014-03-26 Draka Comteq B.V. Water-swellable element for optical-fiber cables
US9116322B1 (en) * 2012-12-13 2015-08-25 Superior Essex International LP Cables including strength members that limit jacket elongation
US9188754B1 (en) * 2013-03-15 2015-11-17 Draka Comteq, B.V. Method for manufacturing an optical-fiber buffer tube
JP6412779B2 (ja) * 2014-11-20 2018-10-24 株式会社フジクラ 光ファイバテープ心線、光ファイバケーブル、および、光ファイバテープ心線の製造方法
JP6459833B2 (ja) * 2015-07-31 2019-01-30 住友電気工業株式会社 光ファイバケーブル
US10094995B2 (en) * 2016-02-16 2018-10-09 Ofs Fitel, Llc Rollable ribbons in loose-tube cable structures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611634A (ja) * 1992-06-25 1994-01-21 Furukawa Electric Co Ltd:The 細径光ファイバ心線
JP2003177288A (ja) * 2001-12-11 2003-06-27 Fujikura Ltd 光ファイバドロップケーブル及び製造方法
JP2003329905A (ja) * 2002-05-03 2003-11-19 Samsung Electronics Co Ltd 光ファイバケーブル
JP2007041568A (ja) * 2005-07-08 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> 多心光ファイバケーブル
JP2010008923A (ja) 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバケーブル
JP2012083418A (ja) * 2010-10-07 2012-04-26 Sumitomo Electric Ind Ltd 光ファイバコード
JP2015517679A (ja) 2012-05-02 2015-06-22 エーエフエル・テレコミュニケーションズ・エルエルシー リボン型光ファイバー構造体を有する円形で小径の光ケーブル
JP2014109751A (ja) * 2012-12-04 2014-06-12 Sumitomo Electric Ind Ltd 光ケーブル
EP2977804A1 (en) * 2014-07-25 2016-01-27 CCS Technology, Inc. Optical cable
EP3104203A1 (en) * 2015-06-09 2016-12-14 Sterlite Technologies Ltd Easy accessable outdoor optical fiber cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605174A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068114B2 (ja) 2018-09-11 2022-05-16 株式会社フジクラ 光ファイバケーブル
JP2020042175A (ja) * 2018-09-11 2020-03-19 株式会社フジクラ 光ファイバケーブル
US11592634B2 (en) 2018-09-11 2023-02-28 Fujikura Ltd. Optical fiber cable
EP4184229A1 (en) * 2018-09-11 2023-05-24 Fujikura Ltd. Optical fiber cable
WO2020054493A1 (ja) * 2018-09-11 2020-03-19 株式会社フジクラ 光ファイバケーブル
US11709329B2 (en) 2018-10-11 2023-07-25 Fujikura Ltd. Optical fiber cable
US12105335B2 (en) 2018-10-11 2024-10-01 Afl Telecommunications Llc Optical fiber cable
US11287591B2 (en) * 2018-10-11 2022-03-29 Fujikura Ltd. Optical fiber cable
JP2020064098A (ja) * 2018-10-15 2020-04-23 株式会社フジクラ 光ファイバケーブル
JP7068131B2 (ja) 2018-10-15 2022-05-16 株式会社フジクラ 光ファイバケーブル
JP2020071264A (ja) * 2018-10-29 2020-05-07 古河電気工業株式会社 光ファイバケーブル及び光ファイバケーブルの製造方法
JP2020071263A (ja) * 2018-10-29 2020-05-07 古河電気工業株式会社 光ファイバケーブル
JP2020076915A (ja) * 2018-11-09 2020-05-21 株式会社フジクラ 光ファイバケーブル
JP7068142B2 (ja) 2018-11-09 2022-05-16 株式会社フジクラ 光ファイバケーブル
JP2022507842A (ja) * 2018-11-20 2022-01-18 オーエフエス ファイテル,エルエルシー ローラブルリボンおよび中央強度部材を有する光ファイバケーブル
CN113056690A (zh) * 2018-11-20 2021-06-29 Ofs菲特尔有限责任公司 具有可卷绕带和中心强度构件的光纤线缆
WO2020106595A1 (en) 2018-11-20 2020-05-28 Ofs Fitel, Llc Optical fiber cable having rollable ribbons and central strength member
EP3884326A4 (en) * 2018-11-20 2022-05-25 Ofs Fitel Llc FIBER OPTIC CABLE HAVING ROLL-UP RIBBONS AND A CENTER RESISTANCE ELEMENT
JP7273960B2 (ja) 2018-11-20 2023-05-15 オーエフエス ファイテル,エルエルシー ローラブルリボンおよび中央強度部材を有する光ファイバケーブル
CN113056690B (zh) * 2018-11-20 2023-04-14 Ofs菲特尔有限责任公司 具有可卷绕带和中心强度构件的光纤线缆
WO2020145129A1 (ja) 2019-01-10 2020-07-16 古河電気工業株式会社 光ファイバケーブル、ケーブルコアの製造方法
US11513302B2 (en) 2019-01-10 2022-11-29 Furukawa Electric Co., Ltd. Optical fiber cable and cable core production method
JP2023073421A (ja) * 2019-01-10 2023-05-25 古河電気工業株式会社 光ファイバケーブル、ケーブルコアの製造方法
JP7479533B2 (ja) 2019-01-10 2024-05-08 古河電気工業株式会社 スロットレス光ファイバケーブル、スロットレス光ケーブルコアの製造方法
TWI742501B (zh) * 2019-01-10 2021-10-11 日商古河電氣工業股份有限公司 光纖纜線、纜線核心的製造方法
JPWO2022102666A1 (ja) * 2020-11-11 2022-05-19
WO2022102666A1 (ja) * 2020-11-11 2022-05-19 住友電気工業株式会社 光ファイバケーブル
JP2023028559A (ja) * 2021-08-19 2023-03-03 古河電気工業株式会社 間欠接着型光ファイバテープ心線、光ファイバケーブル
JP7732801B2 (ja) 2021-08-19 2025-09-02 古河電気工業株式会社 間欠接着型光ファイバテープ心線、光ファイバケーブル
WO2023027117A1 (ja) * 2021-08-25 2023-03-02 住友電気工業株式会社 光ファイバケーブル
EP4394470A4 (en) * 2021-08-25 2024-11-27 Sumitomo Electric Industries, Ltd. FIBER OPTIC CABLE

Also Published As

Publication number Publication date
EP3605174A4 (en) 2020-11-25
EP3605174A1 (en) 2020-02-05
JPWO2018174004A1 (ja) 2020-01-23
EP3605174B1 (en) 2024-10-30
US11029477B2 (en) 2021-06-08
US20200041739A1 (en) 2020-02-06
JP7074124B2 (ja) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2018174004A1 (ja) 光ファイバケーブル
CN103777291B (zh) 光纤线缆
US7742667B2 (en) Fiber optic cables and methods for forming the same
US6546175B1 (en) Self-supporting fiber optic cable
US6341188B1 (en) Method and arrangement for installing optical fibre cable elements
CN105934695A (zh) 光缆
TW200907449A (en) Optical element assembly cable
US6529662B1 (en) Optical fiber cable
CN211554402U (zh) 一种三单元层绞式轻型光缆
JP7135744B2 (ja) 光ファイバケーブル
JP7310517B2 (ja) 光ファイバケーブル
CN114280740A (zh) 一种柔性光纤线及其制作方法
JP2005292205A (ja) 光ファイバケーブル及び光ファイバケーブルの布設方法
JPH10148738A (ja) 架空集合屋外用光ケーブルおよびその製造方法
US12321029B2 (en) Optical fiber cable with flexible wrapping tubes
JP2001067948A (ja) 可とう性光ファイバケーブル
CN203643652U (zh) 三单元单向螺旋绞合层绞式光缆
CN217820983U (zh) 一种光纤线
WO2019004147A1 (ja) 光ファイバケーブル
JP3875678B2 (ja) 光ファイバ分岐分配方法及び光ファイバ分岐分配方法で使用される光ファイバシート、並びに収納トレイ
JP2018132541A (ja) 光ファイバケーブル
JP2004144960A (ja) 光ファイバケーブル
JP2004233572A (ja) 光ファイバケーブルおよびその製造方法
JP2003140009A (ja) 光ファイバドロップケーブル
JP2011232374A (ja) 多心光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771594

Country of ref document: EP

Effective date: 20191021