WO2018178792A1 - Display system - Google Patents
Display system Download PDFInfo
- Publication number
- WO2018178792A1 WO2018178792A1 PCT/IB2018/051678 IB2018051678W WO2018178792A1 WO 2018178792 A1 WO2018178792 A1 WO 2018178792A1 IB 2018051678 W IB2018051678 W IB 2018051678W WO 2018178792 A1 WO2018178792 A1 WO 2018178792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- display
- function
- display device
- circuit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
Definitions
- One embodiment of the present invention relates to a display device.
- One embodiment of the present invention relates to a display system.
- One embodiment of the present invention relates to a driving method of a display device or a display system.
- one embodiment of the present invention is not limited to the above technical field.
- Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input / output devices, and driving methods thereof , Or a method for producing them, can be mentioned as an example.
- a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
- a transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device.
- an imaging device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like) and an electronic device may include a semiconductor device.
- Non-Patent Document 1 reports an organic EL display having 8K4K resolution.
- Display devices such as television devices having 8K4K resolution are being put into practical use.
- development of a transmission / reception method for 8K4K broadcasting is also in progress.
- the display device supports not only 8K4K standard content but also content having a lower resolution and frame frequency than the 8K4K standard, such as 4K2K standard content and full high-definition content.
- a display device with a high resolution has a problem that the power consumption of the display device becomes high regardless of the resolution or the frame frequency of the content even when displaying a content with a low resolution or a low frame frequency.
- An object of one embodiment of the present invention is to provide a display device or an electronic device with low power consumption, or a driving method thereof. Another object is to realize an electronic device or a display device that supports content with different resolutions. Another object is to realize an electronic device or a display device that supports content with different frame frequencies. Another object is to provide a novel display device, a display system, or a driving method thereof.
- One embodiment of the present invention is a display system including an image receiving device and a display device.
- the display device includes a drive circuit and a display unit.
- the driver circuit has a function of sequentially writing image data (also referred to as first image data) on the display portion.
- the image receiving device has a function of receiving a video signal and a function of controlling a driving circuit of the display device.
- the image receiving apparatus detects an image frame frequency of image information (also referred to as second image data) included in the video signal, and does not perform writing of image data and writing of image data according to the image frame frequency. It has a function of changing the suspension period.
- the image receiving device has a function of controlling the drive circuit so as to cut off the supply of power to the drive circuit during the idle period.
- the display section preferably includes a plurality of gate lines and a plurality of source lines intersecting with the gate lines.
- the image receiving device preferably has a function of detecting the image resolution of the image information.
- the display unit preferably has a backlight device.
- the backlight device is preferably controlled by a drive circuit
- the image receiving device preferably has a function of controlling the drive circuit so that the backlight device blinks at a cycle twice the image frame frequency.
- the image receiving device may have a function of controlling the driving circuit so that the period during which the backlight device is lit overlaps with the pause period and the period during which the backlight device is turned off overlaps with the writing period. preferable.
- a display device or an electronic device with low power consumption, or a driving method thereof can be provided.
- a novel display device, a display system, or a driving method thereof can be provided.
- FIG. 9 illustrates a driving method of a display system.
- FIG. 9 illustrates a driving method of a display system.
- FIG. 9 illustrates a driving method of a display system.
- 2 shows a configuration example of a display device.
- the circuit diagram of a memory element. 2 shows a configuration example of a display device.
- 2 shows a configuration example of a display device.
- 2 shows a configuration example of a display device.
- 2 shows a configuration example of a display device.
- 2 shows a configuration example of a display device.
- 2 shows a configuration example of a display device.
- the block diagram and circuit diagram of a display apparatus The block diagram of a display apparatus. Configuration example of an electronic device.
- a display panel which is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display panel is one mode of the output device.
- a display panel substrate is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or the substrate is integrated with a COG (Chip On Glass) method.
- a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package)
- COG Chip On Glass
- a display panel module is mounted with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package)
- COG Chip On Glass
- the touch sensor has a function of detecting that a detection target such as a finger or a stylus touches, presses, or approaches. Moreover, you may have the function to detect the positional information. Therefore, the touch sensor is an aspect of the input device.
- the touch sensor can be configured to have one or more sensor elements.
- a substrate having a touch sensor may be referred to as a touch sensor panel or simply a touch sensor.
- a touch sensor panel substrate for example, a connector such as an FPC or TCP attached, or a substrate in which an IC is mounted by a COG method, a touch sensor panel module, a touch sensor It may be called a module, a sensor module, or simply a touch sensor.
- a touch panel which is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface, and a detection target such as a finger or a stylus touches, presses, or approaches the display surface. And a function as a touch sensor for detecting the above. Accordingly, the touch panel is an embodiment of an input / output device.
- the touch panel can also be called, for example, a display panel with a touch sensor (or display device) or a display panel with a touch sensor function (or display device).
- the touch panel may be configured to include a display panel and a touch sensor panel.
- the display panel may have a function as a touch sensor inside or on the surface.
- a touch panel substrate having a connector such as an FPC or TCP attached or a substrate having an IC mounted on the substrate by a COG method, a touch panel module, a display module, or simply a touch panel And so on.
- Embodiment 1 In this embodiment, structural examples and operation methods of a display system that can be applied to the electronic device of one embodiment of the present invention will be described.
- an image display device that receives a video signal and displays a video, such as a television device or a monitor device, will be described as an example of the electronic device.
- the display system of one embodiment of the present invention includes an image receiving device and a display device.
- the image receiving device includes a receiving device, a decoder, an arithmetic device (processor), and the like.
- the display device includes a display unit and a drive circuit.
- the image receiving device has a function of driving a drive circuit.
- the image receiving device has a function of receiving a video signal and transmitting image data to a driving circuit.
- the driver circuit has a function of writing image data (also referred to as first image data) in the display portion in accordance with a command from the image receiving device.
- the driving circuit can be configured to include, for example, a timing controller, a source driving circuit, and a gate driving circuit.
- the timing controller can drive a source drive circuit by supplying a signal including image data and a timing signal, and a gate drive circuit by supplying a timing signal.
- the timing controller may have a function of outputting a signal (timing signal or the like) for driving the backlight.
- the display unit has a plurality of pixels. Each pixel is electrically connected to a source line and a gate line. A signal output from the source driver circuit is applied to the source line, and a signal output from the gate driver circuit is applied to the gate line.
- the display section preferably has a high resolution.
- a high resolution For example, 4K2K resolution or higher, typically 8K4K resolution is preferable.
- the resolution refers to the number of effective pixels that the display unit has.
- the image receiving apparatus has a resolution of image information (also referred to as second image data) included in the input video signal (hereinafter also referred to as image resolution to distinguish it from the resolution of the display unit), and a frame frequency ( Hereinafter, in order to distinguish from the frame frequency displayed by the display unit, it is also possible to detect the image frame frequency.
- the image receiving apparatus determines the length of the writing operation period (hereinafter also referred to as writing period) and the length of the period during which writing is not performed (also referred to as pause period) according to the image resolution and the image frame frequency. Can be changed.
- the image receiving device when a video signal including image information having a frame frequency lower than the maximum frequency that can be displayed by the display unit is input, the image receiving device is driven so that the length of the pause period is equal to or longer than the length of the writing period.
- the circuit can be controlled.
- the image receiving apparatus sets the driving circuit so that the p frame (p is an integer of 1 to 2 m ⁇ 1 ) is the writing period and the remaining 2 m -p frames are the rest period. Can be controlled.
- the image is written in the first one frame period (1 / F second) within the period for displaying one image, and the remaining 2 m ⁇ 1 frame period ((2 m ⁇ 1) / F seconds). ) Is preferably a rest period. As a result, the longest pause period can be obtained, so that power consumption can be extremely reduced.
- the image receiving device can control the driving circuit so that data is written and adjacent 2 n gate lines are simultaneously selected.
- the image resolution d and the resolution D represent the total number of effective pixels, that is, the product of the horizontal resolution and the vertical resolution.
- the image receiving device when the vertical resolution or horizontal resolution of the image satisfies 1/2 n ′ (n ′ is an integer equal to or greater than 1) with respect to the vertical resolution or horizontal resolution of the display unit, the image receiving device is adjacent to 2 n ′.
- the image receiving device can control the driving circuit so that the same data is written to the two source lines and adjacent 2 n ′ gate lines are simultaneously selected.
- the image receiving device cuts off the power supply to the drive circuit during the idle period. As a result, power consumption during the suspension period can be significantly reduced.
- FIG. 1 shows a block diagram of the display system 10.
- the display system 10 includes a display device 20 and an image receiving device 30.
- the display device 20 includes a display unit 21, a source drive circuit 22, a gate drive circuit 23, and a timing controller 24.
- the source driving circuit 22, the gate driving circuit 23, and the timing controller 24 may be collectively referred to as a driving circuit.
- the image receiving device 30 has a function of generating a signal to be output to the display device 20 based on a video signal input from the outside.
- the image receiving device 30 includes a processing unit 31, a decoder 32, a front end unit 33, a receiving unit 35, an interface 36, a control circuit 37, and the like.
- the front end unit 33 is connected to the receiving unit 34.
- the display unit 21 has a plurality of pixels arranged in a matrix.
- the pixel has at least one display element.
- Each pixel is electrically connected to one source line (also referred to as a video signal line or a signal line) and one gate line (also referred to as a scanning line).
- a signal for selecting a pixel is supplied to the gate line by the gate driving circuit 23.
- the source line is supplied with a video signal supplied to the pixel by the source driving circuit 22.
- the timing controller 24 has a function of generating a timing signal to be supplied to each of the source driving circuit 22 and the gate driving circuit 23 from a signal supplied from the image receiving device 30.
- the timing controller 24 has a function of generating a video signal to be output to the source driving circuit 22 based on a signal supplied from the image receiving device 30.
- the timing controller 24 preferably has a function of cutting off power supply to the source drive circuit 22, the gate drive circuit 23, and itself based on a signal supplied from the image receiving device 30. Alternatively, it may have a function of performing so-called clock gating, which stops output of timing signals to the source driver circuit 22 and the gate driver circuit 23 based on the signal.
- the display unit 21 preferably has an extremely high resolution.
- the display unit 21 preferably has a higher resolution than that of full high-definition, for example, a high resolution of 4K2K, 8K4K, or higher.
- Each pixel of the display unit 21 has a display element and has a function of displaying a predetermined gradation. Then, the gradation of the pixel is controlled by signals output from the source driving circuit 22 and the gate driving circuit 23, and a predetermined image is displayed on the display unit 21.
- Examples of the display element provided in the pixel include a liquid crystal element and a light emitting element.
- a liquid crystal element a transmissive liquid crystal element, a reflective liquid crystal element, a transflective liquid crystal element, or the like can be used.
- Examples of light-emitting elements include self-luminous light-emitting elements such as OLEDs (Organic Light Emitting Diodes), LEDs (Light Emitting Diodes), QLEDs (Quantum-Dot Light Emitting Diodes), and semiconductor lasers.
- a shutter type MEMS (Micro Electro Mechanical Systems) element an optical interference type MEMS element, a microcapsule type, an electrophoretic method, an electrowetting method, an electropowder fluid (registered trademark) method, etc. are applied.
- a display element or the like can also be used.
- the number of pixels provided in the display unit 21 can be freely set, but it is preferable that the number is large.
- the display unit 21 can be provided with more pixels.
- the front end unit 33 has a function of receiving a signal input from the outside and appropriately performing signal processing. For example, a broadcast signal encoded and modulated by a predetermined method is input to the front end unit 33.
- the front end unit 33 can have a function of performing demodulation, analog-digital conversion, and the like of the received video signal. Further, the front end unit 33 may have a function of performing error correction. Data received by the front end unit 33 and subjected to signal processing is output to the decoder 32.
- the decoder 32 has a function of decoding the encoded signal.
- the decoder 32 decompresses the image information.
- the decoder 32 can have functions for performing entropy decoding, inverse quantization, inverse orthogonal transform such as inverse discrete cosine transform (IDCT) and inverse discrete sine transform (IDST), intraframe prediction, and interframe prediction. .
- IDCT inverse discrete cosine transform
- IDST inverse discrete sine transform
- HEVC High Efficiency Video Coding
- Image data is generated by the decoding process by the decoder 32 and output to the processing unit 31.
- the processing unit 31 has a function of detecting the image resolution d and the image frame frequency f from the image data input from the decoder 32. Further, a control signal and image data to be output to the timing controller 24 are generated according to the value of the image resolution d and the value of the image frame frequency f.
- processing unit 31 can output to the timing controller 24 a signal for cutting off the supply of power to the timing controller 24, the source driving circuit 22 and the gate driving circuit 23 during the suspension period.
- processing unit 31 may have a function of interrupting the supply of power to one or more circuit blocks in the processing unit 31 during the suspension period.
- the processing unit 31 has a function as a processor capable of performing arithmetic processing.
- a configuration including an arithmetic circuit, a control circuit, a memory circuit, various interfaces, and the like can be used.
- a processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or a GPU (Graphics Processing Unit) can be used.
- the processing unit 31 may have a configuration in which the processor is realized by a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) or an FPAA (Field Programmable Analog Array).
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- FPAA Field Programmable Analog Array
- a GPU for the processing unit 31 because the processing speed can be remarkably increased when executing image processing as compared with the case where a CPU or the like is used.
- the processor performs various data processing and program control by interpreting and executing instructions from various programs.
- the program that can be executed by the processor may be stored in a memory area of the processor, or may be stored in a storage device provided separately.
- the processing unit 31 preferably has a function as an image processing engine having a function of executing image processing based on an input video signal.
- Examples of image processing that can be executed by the processing unit 31 include noise removal processing, gradation conversion processing, color tone correction processing, and luminance correction processing.
- Examples of the color tone correction process and the brightness correction process include gamma correction.
- the processing unit 31 may have a function of executing processing such as filter processing, edge enhancement processing, inter-pixel interpolation processing accompanying resolution up-conversion, or inter-frame interpolation processing accompanying frame frequency up-conversion. Good.
- noise removal processing various noises such as mosquito noise that occurs around the outline of characters, block noise that occurs in high-speed moving images, random noise that causes flickering, and dot noise that occurs due to resolution up-conversion are removed.
- the gradation conversion process is a process for converting the gradation of the image into a gradation corresponding to the output characteristics of the display unit 21. For example, when the number of gradations is increased, a process for smoothing the histogram can be performed by interpolating and assigning gradation values corresponding to each pixel to an image input with a small number of gradations. Further, a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
- HDR high dynamic range
- inter-pixel interpolation processing interpolates data that does not exist when the resolution is up-converted. For example, referring to pixels around the target pixel, the data is interpolated so as to display the intermediate colors. For example, when the resolution of the input video signal is 2K (1920 ⁇ 1080), the resolution can be up-converted to 4K (4840 (3840 ⁇ 2160), 4 times, 8K (7680 ⁇ 4320), or 16 times. .
- the color tone correction process is a process for correcting the color tone of the image.
- the brightness correction process is a process for correcting the brightness (brightness contrast) of the image. For example, the type, brightness, or color purity of the illumination arranged in the space where the electronic device having the display system 10 is provided is detected, and the brightness and color tone of the image displayed on the display unit 21 are optimized accordingly. To correct. Or, it has a function to compare the image to be displayed with the images of various scenes in the image list stored in advance, and to correct the image displayed with brightness and color tone suitable for the image of the closest scene. May be.
- the processing unit 31 may have a function of performing inter-frame interpolation processing.
- the inter-frame interpolation process is a process for generating an image of a frame (interpolation frame) that does not originally exist when the frame frequency of a video to be displayed is increased.
- an interpolation frame image to be inserted between two images is generated from the difference between two images.
- an image of a plurality of interpolation frames can be generated between two images.
- the frame frequency of the input video signal is 60 Hz
- the frame frequency of the video signal output to the timing controller is doubled 120 Hz, or quadrupled 240 Hz, Or it can be increased to 8 times 480 Hz or the like.
- a neural network may be used for these image processing. For example, by using a neural network, feature extraction is performed from image data included in the video, and the processing unit 31 can select an optimal correction method according to the extracted feature, or can select parameters used for correction. .
- the neural network itself may have a function of performing image processing. That is, the image data that has been subjected to the image processing may be output by inputting the image data before the image processing to the neural network.
- the receiving unit 35 has a function of receiving data or control signals input from the outside.
- a remote controller for inputting data or control signals to the receiving unit 35, a remote controller, a portable information terminal (such as a smartphone or a tablet), an operation button provided on the display device 20, or the like can be used.
- FIG. 1 shows an example in which data or a control signal is transmitted by the remote controller 41.
- the interface 36 has a function of appropriately performing signal processing on the data or the control signal received by the receiving unit 35 and outputting it to the control circuit 37.
- the control circuit 37 has a function of supplying a control signal to each circuit included in the image receiving device 30.
- the control circuit 37 has a function of supplying a control signal to the processing unit 31.
- the control by the control circuit 37 can be performed based on the control signal received by the receiving unit 35.
- the display system 10A shown in FIG. 1 is different from the display system 10 of FIG. 1 in that the display device 20 has a backlight 25.
- the backlight 25 is provided on the back surface of the display unit 21 and can emit light to the display surface side.
- a display device that displays an image using reflection of external light such as a reflective liquid crystal display device, is applied to the display unit 21, the front light is used instead of the backlight 25. It can be set as the structure arrange
- the timing controller 24 preferably has a function of generating and outputting a timing signal for driving the backlight 25. Further, not only the timing signal but also a function of generating and outputting a signal including luminance information of the backlight 25 may be provided. Further, when the backlight 25 is driven by local dimming, it may have a function of generating and outputting a signal to be supplied to a driving circuit included in the backlight 25.
- the backlight 25 can be driven at a frequency higher than the maximum frame frequency that the display unit 21 can drive.
- a light source that can be driven at a frequency of 120 Hz or higher, 240 Hz or higher, or 480 Hz or higher.
- the display system 10 has a function of changing the driving method of the display device 20 according to the frame frequency of the image information included in the input video signal.
- FIG. 3 shows a timing chart according to the driving method of the display system 10.
- FIG. 3 shows a timing chart of 8 frame periods (periods from 1F to 8F).
- FIG. 3 shows a writing period (Write) and a rest period (Break).
- each frame period corresponds to a period for displaying one image. At this time, each frame period is a writing period.
- the image frame frequency f 120 Hz, which is half of the frame frequency F
- two frame periods correspond to a period for displaying one image.
- the first half frame can be set as a writing period, and the latter half frame period can be set as a pause period.
- the image frame frequency f is 60 Hz, which is a quarter of the frame frequency F
- 4 frame periods correspond to a period for displaying one image.
- the first one frame period can be set as the writing period, and the remaining three frame periods can be set as the pause period.
- the 2 m frame period corresponds to a period for displaying one image.
- the 2 m-frame period (the p 1 or 2 m-1 an integer) the first p-frame and the write period, it is preferable to set the remaining 2 m -p frame pause.
- p is 1. That is, it is preferable to set the first 1 frame out of 2 m frame periods as a writing period and the remaining 2 m ⁇ 1 frames as a pause period.
- the writing operation itself can be made the same regardless of the size of the image frame frequency f by completing the writing period within one frame regardless of the value of the image frame frequency f. Therefore, the above driving method can be realized without adding a circuit or the like for separately generating a timing signal (clock signal or the like) used for the write operation.
- the power consumption can be reduced as the image frame frequency f is smaller.
- the power supply it is preferable to cut off the power supply to at least one of the source driving circuit 22, the gate driving circuit 23, and the timing controller 24 during the suspension period. In particular, it is preferable to cut off the power supply to all of them. Thereby, the power consumption in an idle period can be reduced more.
- FIG. 4 shows an example in which an image is displayed at a frame frequency higher than the maximum frame frequency F of the display device in conjunction with the backlight 25.
- FIG. 4 shows a timing chart of 6 frame periods (periods from 1F to 6F).
- FIG. 4 shows a writing period (Write) and a pause period (Break).
- the backlight 25 can be blinked at a frequency more than twice the maximum frame frequency F of the display device 20.
- a period during which the backlight 25 is lit (lighting period) is indicated as on, and a period during which the backlight 25 is extinguished (off period) is indicated as off.
- the backlight driving frequency is assumed to be the frequency fb.
- the image receiving device 30 is driven so that the backlight 25 is driven at a frequency fb of 480 Hz, which is twice that.
- the timing controller 24 is controlled.
- the image displayed on the display unit 21 is pseudo-displayed at 480 Hz. Therefore, it is suitable for displaying a fast moving object.
- the lighting period of the backlight and the extinguishing period are mixed in one frame period.
- the lighting period of the backlight and the extinguishing period are mixed in one frame period.
- the first half of one frame period is a light-off period and the second half is a light-on period.
- the first half of one frame period is a light-off period and the second half is a light-on period.
- the backlight is lit during a period until the liquid crystal alignment is stabilized, a correct gradation may not be expressed in the period. Therefore, display quality can be improved by superimposing the first half of the writing period and the backlight extinguishing period.
- the backlight drive frequency fb can be set to 240 Hz.
- the backlight drive frequency fb can be set to 120 Hz.
- the turn-off period of the backlight 25 is set to a period of one frame so as to overlap with the writing period of the display unit 21, and the lighting period is overlapped with the rest period of the remaining three frames.
- the drive frequency fb of the backlight 25 is an integer multiple of the frame frequency F of the display device 20. Accordingly, it becomes easy for the timing controller 24 to synchronize the timing signal for driving the display unit 21 and the timing signal for driving the backlight 25. In addition, the circuit configuration of the timing controller 24 can be simplified.
- FIG. 5 shows a block diagram of the display unit 21, the source drive circuit 22, and the gate drive circuit 23.
- the display unit 21 has a plurality of pixels 51 arranged in a matrix.
- the pixel 51 has at least one display element.
- the source line S electrically connected to the source driving circuit 22 and the gate line G electrically connected to the gate driving circuit 23 are electrically connected to the pixel 51, respectively.
- the source drive circuit 22 has a plurality of selector circuits 11.
- the gate drive circuit 23 includes a plurality of selector circuits 12.
- the selector circuit 11 and the selector circuit 12 are each controlled by a control signal from the timing controller 24.
- the selector circuit 11 has a function of electrically connecting a plurality of adjacent source lines S.
- the source driving circuit 22 can output the same signal to a plurality of electrically connected source lines S.
- the selector circuit 12 has a function of electrically connecting a plurality of adjacent gate lines G.
- the gate drive circuit 23 can output the same signal to a plurality of electrically connected gate lines G.
- the selector circuit 11 and the selector circuit 12 have the same configuration except that the wiring to be connected is different.
- the selector circuit 11 includes a switch SW1, a switch SW2, and a switch SW3.
- the selector circuit 11 is connected to wirings S 0 [1] to S 0 [4].
- the wirings S 0 [1] to S 0 [4] are wirings through which video signals are supplied.
- the switch SW1 has a function of switching a wiring connected to the source line S [2] between the wiring S 0 [1] and the wiring S 0 [2].
- the switch SW2 has a function of switching a wiring connected to the source line S [3] between the wiring S 0 [1] and the wiring S 0 [3].
- the switch SW3 has a function of switching a wiring connected to the source line S [4] among the wiring S 0 [1], the wiring S 0 [3], and the wiring S 0 [4].
- the switches SW1 to SW3 have the same layout in order to make the parasitic capacitances and parasitic resistances of the wirings S 0 [1] to S 0 [4] and the source lines S [1] to S [4] uniform. It is good. That is, a dummy switch may be provided in the switches SW1 and SW2, and the same number of switches as the switch SW3 may be provided. Further, a switch similar to the switches SW1 to SW3 may be provided between the wiring S 0 [1] and the source line S [1].
- the selector circuit 12 includes a switch SW4, a switch SW5, and a switch SW6.
- wirings G 0 [1] to G 0 [4] are connected to the selector circuit 12.
- the wirings G 0 [1] to G 0 [4] are wirings to which a selection signal (also referred to as a gate signal or a scanning signal) is supplied.
- the switch SW1 is switched to the switch SW4, the switch SW2 is switched to the switch SW5, the switch SW3 is switched to the switch SW6, and the wiring S 0 [1] is connected to the wiring G 0 [ 1], the wiring S 0 [2] is the wiring G 0 [2], the wiring S 0 [3] is the wiring G 0 [3], and the wiring S 0 [4] is the wiring G 0 [4]. It will be replaced.
- the resolution D of the display unit 21 is 8K4K (number of pixels: 7680 ⁇ 4320), and the image resolution of image data input to the display device 20 is 8K4K, 4K2K (number of pixels: 3840 ⁇ 2160), and FHD (number of pixels: 1920).
- Table 1 shows the correspondence of the lines connected to the source lines S [1] to S [4] and the gate lines G [1] to G [4] with respect to the image resolution d.
- the selector circuit 11 and the selector circuit 12 are controlled so as to have a connection relationship as shown in Table 1, respectively.
- each source line is connected to a different wiring.
- different video signals are input to the respective source lines.
- each gate line is connected to a different wiring. Thereby, each gate line is sequentially selected.
- the same video signal is input for every 2 ⁇ 2 pixels among the plurality of pixels 51 included in the display unit 21, and the four pixels 51 can each display the same gradation.
- image correction such as the resolution of the up-conversion
- it is possible resolution is displayed without distortion the image is 1/2 second resolution of the display unit 21.
- the same video signal is input for every 4 ⁇ 4 pixels, and the 16 pixels 51 can each display the same gradation.
- the image is 1/2 4 resolution of the display unit 21.
- the selector circuit 11 and the selector circuit 12 are configured to connect up to four source lines and gate lines.
- the present invention is not limited to this, and the maximum number is 2 k (k is 1 or more).
- a source line or a gate line can be connected.
- the image resolution is d and the resolution of the display unit is D
- d D / 2 2n (n is an integer equal to or greater than 1)
- the selector circuit 11 is adjacent to 2
- the image resolution d and the resolution D represent the total number of effective pixels, that is, the product of the horizontal resolution and the vertical resolution.
- the selector circuit 11 sets the adjacent 2 n The same data can be written to “ one source line”, and the selector circuit 12 can be controlled to select adjacent 2 n ′ gate lines simultaneously.
- the display device 20 having such a selector circuit 11 and the selector circuit 12 can perform image correction such as resolution up-conversion even when the image resolution d of the input image data is smaller than the resolution D of the display unit 21. It is possible to display without performing.
- the display system exemplified in this embodiment can perform optimal display with optimal power consumption according to the image resolution and frame frequency of input content.
- the processor exemplified below is a processor that can temporarily stop the supply of power and can return to the state before the stop of the supply of power when the supply of power is resumed. .
- a processor for the processing unit 31 illustrated in FIG. 1, for example, it is possible to stop power supply during the suspension period and suppress power consumption.
- a memory element that can be used as a register exemplified below can be applied not only to the processing unit 31 but also to the timing controller 24, the source driver circuit 22, the gate driver circuit 23, and the like. Thereby, power gating during a rest period can be easily performed.
- FIG. 7 is a block diagram illustrating an exemplary configuration of a processor.
- the processor shown in FIG. 7 includes an ALU 1191 (ALU: Arithmetic logic unit, arithmetic circuit), an ALU controller 1192, an instruction decoder 1193, an interrupt controller 1194, a timing controller 1195, a register 1196, a register controller 1197, and a bus interface 1198 on a substrate 1190.
- ALU Arithmetic logic unit, arithmetic circuit
- ALU controller 1192 Arithmetic logic unit, arithmetic circuit
- an instruction decoder 1193 an instruction decoder 1193
- an interrupt controller 1194 a timing controller 1195, a register 1196, a register controller 1197, and a bus interface 1198 on a substrate 1190.
- ROM I / F rewritable ROM 1199
- ROM I / F ROM interface 1189
- the substrate 1190 a semiconductor substrate, an SOI substrate, a glass substrate, or the like is used.
- the ROM 1199 and the ROM interface 1189 may be
- the configuration including the processor or the arithmetic circuit illustrated in FIG. 7 may be a single core, and a plurality of the cores may be included, and each core may operate in parallel.
- the number of bits that the processor can handle with the internal arithmetic circuit and the data bus can be, for example, 8 bits, 16 bits, 32 bits, 64 bits, and the like.
- Instructions input to the processor via the bus interface 1198 are input to the instruction decoder 1193, decoded, and then input to the ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195.
- the ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195 perform various controls based on the decoded instructions. Specifically, the ALU controller 1192 generates a signal for controlling the operation of the ALU 1191.
- the interrupt controller 1194 determines and processes an interrupt request from an external input / output device or a peripheral circuit from the priority or mask state during execution of the processor program.
- the register controller 1197 generates an address of the register 1196, and reads / writes data from / to the register 1196 according to the state of the processor.
- the timing controller 1195 generates a signal for controlling the operation timing of the ALU 1191, the ALU controller 1192, the instruction decoder 1193, the interrupt controller 1194, and the register controller 1197.
- the timing controller 1195 includes an internal clock generation unit that generates an internal clock signal based on the reference clock signal, and supplies the internal clock signal to the various circuits.
- the register 1196 is provided with a memory cell.
- the register controller 1197 selects a holding operation in the register 1196 in accordance with an instruction from the ALU 1191. That is, whether to hold data by a flip-flop or to hold data by a capacitor in a memory cell included in the register 1196 is selected. When data retention by the flip-flop is selected, the power supply voltage is supplied to the memory cell in the register 1196. When holding of data in the capacitor is selected, data is rewritten to the capacitor and supply of power supply voltage to the memory cells in the register 1196 can be stopped.
- FIG. 8 is an example of a circuit diagram of a memory element that can be used as the register 1196.
- the memory element 1200 includes a circuit 1201 in which stored data is volatilized by power-off, a circuit 1202 in which stored data is not volatilized by power-off, a switch 1203, a switch 1204, a logic element 1206, a capacitor 1207, and a selection function.
- Circuit 1220 having.
- the circuit 1202 includes a capacitor 1208, a transistor 1209, and a transistor 1210.
- the memory element 1200 may further include other elements such as a diode, a resistance element, and an inductor, as necessary.
- a ground potential (0 V) or a potential at which the transistor 1209 is turned off is continuously input to the gate of the transistor 1209 of the circuit 1202.
- the gate of the transistor 1209 is grounded through a load such as a resistor.
- the switch 1203 is configured using a transistor 1213 of one conductivity type (eg, n-channel type), and the switch 1204 is configured using a transistor 1214 of conductivity type (eg, p-channel type) opposite to the one conductivity type.
- a transistor 1213 of one conductivity type eg, n-channel type
- the switch 1204 is configured using a transistor 1214 of conductivity type (eg, p-channel type) opposite to the one conductivity type.
- the first terminal of the switch 1203 corresponds to one of the source and the drain of the transistor 1213
- the second terminal of the switch 1203 corresponds to the other of the source and the drain of the transistor 1213
- the switch 1203 corresponds to the gate of the transistor 1213.
- conduction or non-conduction between the first terminal and the second terminal that is, the on state or the off state of the transistor 1213 is selected.
- the first terminal of the switch 1204 corresponds to one of the source and the drain of the transistor 1214
- the second terminal of the switch 1204 corresponds to the other of the source and the drain of the transistor 1214
- the switch 1204 is input to the gate of the transistor 1214.
- the control signal RD selects the conduction or non-conduction between the first terminal and the second terminal (that is, the on state or the off state of the transistor 1214).
- One of the source and the drain of the transistor 1209 is electrically connected to one of the pair of electrodes of the capacitor 1208 and the gate of the transistor 1210.
- the connection part is referred to as a node M2.
- One of a source and a drain of the transistor 1210 is electrically connected to a wiring that can supply a low power supply potential (eg, a GND line), and the other is connected to the first terminal of the switch 1203 (the source and the drain of the transistor 1213 On the other hand).
- a second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) is electrically connected to a first terminal of the switch 1204 (one of the source and the drain of the transistor 1214).
- a second terminal of the switch 1204 (the other of the source and the drain of the transistor 1214) is electrically connected to a wiring that can supply the power supply potential VDD.
- a second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213), a first terminal of the switch 1204 (one of a source and a drain of the transistor 1214), an input terminal of the logic element 1206, and the capacitor 1207
- One of the pair of electrodes is electrically connected.
- the connection part is referred to as a node M1.
- the other of the pair of electrodes of the capacitor 1207 can be configured to receive a constant potential. For example, a low power supply potential (such as GND) or a high power supply potential (such as VDD) can be input.
- the other of the pair of electrodes of the capacitor 1207 is electrically connected to a wiring (eg, a GND line) that can supply a low power supply potential.
- the other of the pair of electrodes of the capacitor 1208 can have a constant potential.
- a low power supply potential such as GND
- a high power supply potential such as VDD
- the other of the pair of electrodes of the capacitor 1208 is electrically connected to a wiring (eg, a GND line) that can supply a low power supply potential.
- capacitor 1207 and the capacitor 1208 can be omitted by actively using parasitic capacitances of transistors and wirings.
- the control signal WE is input to the first gate (first gate electrode) of the transistor 1209.
- the switch 1203 and the switch 1204 are selected to be in a conductive state or a non-conductive state between the first terminal and the second terminal by a control signal RD different from the control signal WE.
- the terminals of the other switch are in a conductive state, the first terminal and the second terminal of the other switch are in a non-conductive state.
- FIG. 8 illustrates an example in which the signal output from the circuit 1201 is input to the other of the source and the drain of the transistor 1209.
- a signal output from the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) is an inverted signal obtained by inverting the logic value by the logic element 1206 and is input to the circuit 1201 through the circuit 1220. .
- FIG. 8 illustrates an example in which a signal output from the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) is input to the circuit 1201 through the logic element 1206 and the circuit 1220. It is not limited to. A signal output from the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) may be input to the circuit 1201 without inversion of the logical value. For example, when there is a node in the circuit 1201 that holds a signal in which the logical value of the signal input from the input terminal is inverted, the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) An output signal can be input to the node.
- the transistors other than the transistor 1209 can be transistors in which a channel is formed in a layer formed of a semiconductor other than an oxide semiconductor or the substrate 1190.
- a transistor in which a channel is formed in a silicon layer or a silicon substrate can be used.
- all the transistors used for the memory element 1200 can be transistors whose channel is formed using an oxide semiconductor layer.
- the memory element 1200 may include a transistor whose channel is formed using an oxide semiconductor layer in addition to the transistor 1209, and the remaining transistors may be formed in a layer formed using a semiconductor other than an oxide semiconductor or the substrate 1190. It can also be a formed transistor.
- a flip-flop circuit can be used for the circuit 1201 in FIG. Further, signals CLK, RES, and Q are input to the circuit 1201, and a signal D is input through the circuit 1220.
- the logic element 1206 for example, an inverter, a clocked inverter, or the like can be used.
- data stored in the circuit 1201 can be held by the capacitor 1208 provided in the circuit 1202 while the power supply voltage is not supplied to the memory element 1200.
- a transistor in which a channel is formed in an oxide semiconductor layer has extremely low off-state current.
- the off-state current of a transistor in which a channel is formed in an oxide semiconductor layer is significantly lower than the off-state current of a transistor in which a channel is formed in crystalline silicon. Therefore, by using the transistor as the transistor 1209, the signal held in the capacitor 1208 is maintained for a long time even when the power supply voltage is not supplied to the memory element 1200. In this manner, the memory element 1200 can hold stored data (data) even while the supply of power supply voltage is stopped.
- the memory element is characterized by performing a precharge operation; therefore, after the supply of power supply voltage is resumed, the time until the circuit 1201 retains the original data again is shortened. be able to.
- the signal held by the capacitor 1208 is input to the gate of the transistor 1210. Therefore, after the supply of the power supply voltage to the memory element 1200 is restarted, the state (on state or off state) of the transistor 1210 is determined in accordance with the signal held by the capacitor 1208, and data can be read from the circuit 1202. it can. Therefore, the original signal can be accurately read even if the potential corresponding to the signal held in the capacitor 1208 slightly fluctuates.
- a storage element 1200 for a storage device such as a register or a cache memory included in the processor, it is possible to prevent data in the storage device from being lost due to the supply of power supply voltage being stopped.
- the state before the power supply stop can be restored in a short time. Accordingly, power can be stopped in a short time in the entire processor or in one or a plurality of logic circuits constituting the processor, so that power consumption can be suppressed.
- the memory element 1200 is described as an example of use for a processor.
- the memory element 1200 is an LSI such as a DSP (Digital Signal Processor), a custom LSI, or a PLD (Programmable Logic Device), and an RF-ID (Radio Frequency). (Identification).
- FIG. 9A is a top view illustrating an example of a display device.
- a display device 700 illustrated in FIG. 9A includes a pixel portion 702 provided over a first substrate 701, a source driver circuit portion 704 and a gate driver circuit portion 706 provided over the first substrate 701, and a pixel.
- the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 are sealed with the first substrate 701, the sealant 712, and the second substrate 705. Note that although not illustrated in FIG. 9A, a display element is provided between the first substrate 701 and the second substrate 705.
- the display device 700 is electrically connected to each of the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 in a region different from the region surrounded by the sealant 712 over the first substrate 701.
- FPC terminal portion 708 Flexible printed circuit
- an FPC 716 is connected to the FPC terminal portion 708, and various signals are supplied to the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 by the FPC 716.
- a signal line 710 is connected to each of the pixel portion 702, the source driver circuit portion 704, the gate driver circuit portion 706, and the FPC terminal portion 708.
- Various signals and the like supplied by the FPC 716 are supplied to the pixel portion 702, the source driver circuit portion 704, the gate driver circuit portion 706, and the FPC terminal portion 708 through the signal line 710.
- a plurality of gate driver circuit portions 706 may be provided in the display device 700.
- the display device 700 an example in which the source driver circuit portion 704 and the gate driver circuit portion 706 are formed over the same first substrate 701 as the pixel portion 702 is shown; however, the display device 700 is not limited to this structure.
- only the gate driver circuit portion 706 may be formed on the first substrate 701, or only the source driver circuit portion 704 may be formed on the first substrate 701.
- a substrate on which a source driver circuit, a gate driver circuit, or the like is formed for example, a driver circuit substrate formed of a single crystal semiconductor film or a polycrystalline semiconductor film
- a connection method of a separately formed drive circuit board is not particularly limited, and a COG (Chip On Glass) method, a wire bonding method, or the like can be used.
- the display device 700 can include various elements.
- the element include, for example, an electroluminescence (EL) element (an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element, an LED, and the like), a light-emitting transistor element (a transistor that emits light in response to current), an electron Emission element, liquid crystal element, electronic ink element, electrophoretic element, electrowetting element, plasma display panel (PDP), MEMS (micro electro mechanical system) display (for example, grating light valve (GLV), digital micromirror Devices (DMD), digital micro shutter (DMS) elements, interferometric modulation (IMOD) elements, etc.), piezoelectric ceramic displays, and the like.
- EL electroluminescence
- a light-emitting transistor element a transistor that emits light in response to current
- an electron Emission element for example, grating light valve (GLV), digital micromirror Devices (DMD), digital micro shutter (DMS) elements,
- An example of a display device using an EL element is an EL display.
- a display device using an electron-emitting device there is a field emission display (FED), a SED type flat display (SED: Surface-conduction Electron-emitter Display), or the like.
- FED field emission display
- SED SED type flat display
- a display device using a liquid crystal element there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like.
- An example of a display device using an electronic ink element or an electrophoretic element is electronic paper.
- part or all of the pixel electrode may have a function as a reflective electrode.
- part or all of the pixel electrode may have aluminum, silver, or the like.
- a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
- the color elements controlled by the pixels when performing color display are not limited to three colors of RGB (R represents red, G represents green, and B represents blue).
- RGB red
- G represents green
- B represents blue
- it may be composed of four pixels: an R pixel, a G pixel, a B pixel, and a W (white) pixel.
- one color element may be configured by two colors of RGB, and two different colors may be selected and configured depending on the color element.
- one or more colors such as yellow, cyan, and magenta may be added to RGB.
- the size of the display area may be different for each dot of the color element.
- the disclosed invention is not limited to a display device for color display, and can be applied to a display device for monochrome display.
- a colored layer (also referred to as a color filter) may be used in order to display white light (W) in a backlight (an organic EL element, an inorganic EL element, an LED, a fluorescent lamp, or the like) and display a full color display device.
- a backlight an organic EL element, an inorganic EL element, an LED, a fluorescent lamp, or the like
- red (R), green (G), blue (B), yellow (Y), and the like can be used in appropriate combination for the colored layer.
- the colored layer the color reproducibility can be increased as compared with the case where the colored layer is not used.
- white light in a region having no colored layer may be directly used for display by arranging a region having a colored layer and a region having no colored layer.
- a decrease in luminance due to the colored layer can be reduced during bright display, and power consumption can be reduced by about 20% to 30%.
- a self-luminous element such as an organic EL element or an inorganic EL element
- R, G, B, Y, and W may be emitted from elements having respective emission colors.
- power consumption may be further reduced as compared with the case where a colored layer is used.
- colorization method in addition to a method (color filter method) in which part of the light emission from the white light emission described above is converted into red, green, and blue through a color filter, red, green, and blue light emission is performed.
- a method of using each (three-color method) or a method of converting a part of light emission from blue light emission into red or green (color conversion method, quantum dot method) may be applied.
- a display device 700A illustrated in FIG. 9B is a display device that can be suitably used for an electronic device having a large screen. For example, it can be suitably used for a television device, a monitor device, a digital signage, and the like.
- the display device 700A includes a plurality of source driver ICs 721 and a pair of gate driver circuits 722.
- the plurality of source driver ICs 721 are attached to the FPC 723, respectively.
- the plurality of FPCs 723 have one terminal connected to the substrate 701 and the other terminal connected to the printed circuit board 724. By bending the FPC 723, the printed circuit board 724 can be placed on the back side of the pixel portion 702 and mounted on an electric device.
- the gate driver circuit 722 is formed on the substrate 701. Thereby, an electronic device with a narrow frame can be realized.
- a large-sized and high-resolution display device can be realized.
- the present invention can be applied to a display device having a screen size of 30 inches or more, 40 inches or more, 50 inches or more, or 60 inches or more.
- a display device with extremely high resolution such as full high vision, 4K2K, or 8K4K can be realized.
- FIGS. 10 and 11 are cross-sectional views taken along one-dot chain line QR shown in FIG. 9, and a structure using a liquid crystal element as a display element.
- FIG. 12 is a cross-sectional view taken along one-dot chain line QR shown in FIG. 9 and has a configuration using an EL element as a display element.
- a display device 700 illustrated in FIGS. 10 to 12 includes a lead wiring portion 711, a pixel portion 702, a source driver circuit portion 704, and an FPC terminal portion 708. Further, the lead wiring portion 711 includes a signal line 710. In addition, the pixel portion 702 includes a transistor 750 and a capacitor 790. In addition, the source driver circuit portion 704 includes a transistor 752.
- a metal oxide oxide semiconductor
- the field effect mobility of the transistor can be increased as compared with the case where amorphous silicon is used, so that the size (occupied area) of the transistor can be reduced.
- the parasitic capacitance of the source line and the gate line can be further reduced.
- the following various effects can be obtained.
- the size (occupied area) of the transistor can be reduced, the parasitic capacitance of the transistor itself can be reduced.
- the aperture ratio can be improved, or the wiring width can be increased without sacrificing the aperture ratio, and the wiring resistance can be decreased.
- the on-state current of the transistor can be increased, the period required for pixel writing can be shortened. By such an effect, the charge / discharge period of the gate line and the source line can be shortened, and the frame frequency can be increased.
- the frame frequency can be varied in the range of 0.1 Hz to 480 Hz.
- the frame frequency is preferably 30 Hz to 480 Hz, more preferably 60 Hz to 240 Hz.
- Another example of the effect of using a transistor with extremely small off-state current is that the pixel storage capacity can be reduced. Thereby, the aperture ratio of the pixel can be increased and the period required for writing the pixel can be further shortened.
- each source line is made as small as possible, it becomes possible to drive at a higher frame frequency or to make a larger display device. For example, using a low-resistance material (for example, copper, aluminum, etc.) for the source line material, increasing the thickness or width of the source line, increasing the interlayer insulating film between the source line and other wiring, For example, the area of the intersection between the source line and another wiring can be reduced.
- a low-resistance material for example, copper, aluminum, etc.
- the transistor used in this embodiment includes an oxide semiconductor film which is highly purified and suppresses formation of oxygen vacancies.
- the transistor can have low off-state current. Therefore, the holding time of an electric signal such as a video signal can be extended, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
- the transistor used in this embodiment can be driven at high speed because relatively high field-effect mobility can be obtained.
- the switching transistor in the pixel portion and the driver transistor used in the driver circuit portion can be formed over the same substrate. That is, since it is not necessary to use a semiconductor device formed of a silicon wafer or the like as a separate drive circuit, the number of parts of the semiconductor device can be reduced.
- a high-quality image can be provided by using a transistor that can be driven at high speed.
- a transistor including a semiconductor containing silicon can be used for a semiconductor layer in which a channel is formed.
- a transistor using amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like can be used.
- amorphous silicon is preferably used because it can be formed over a large substrate with a high yield.
- hydrogenated amorphous silicon which may be expressed as a-Si: H
- dangling bonds are terminated with hydrogen.
- the capacitor 790 includes a lower electrode formed through a step of processing the same conductive film as the conductive film that functions as the first gate electrode included in the transistor 750, and a conductive function that functions as a source electrode or a drain electrode included in the transistor 750. And an upper electrode formed through a process of processing the same conductive film as the film. Further, an insulating film formed through a step of forming the same insulating film as the first gate insulating film included in the transistor 750 between the lower electrode and the upper electrode, and over the transistor 750 An insulating film formed through a step of forming the same insulating film as the insulating film functioning as a protective insulating film is provided. That is, the capacitor 790 has a stacked structure in which an insulating film functioning as a dielectric film is sandwiched between a pair of electrodes.
- a planarization insulating film 770 is provided over the transistor 750, the transistor 752, and the capacitor 790.
- the transistor 750 included in the pixel portion 702 and the transistor 752 included in the source driver circuit portion 704 are transistors having the same structure; however, the present invention is not limited to this.
- the pixel portion 702 and the source driver circuit portion 704 may use different transistors. Specifically, a top-gate transistor is used for the pixel portion 702 and a bottom-gate transistor is used for the source driver circuit portion 704, or a bottom-gate transistor is used for the pixel portion 702, and the source driver circuit portion 704 is used.
- a configuration using a top gate type transistor can be given. Note that the source driver circuit portion 704 may be replaced with a gate driver circuit portion.
- the signal line 710 is formed through the same process as the conductive film functioning as the source electrode and the drain electrode of the transistors 750 and 752. For example, when a material containing a copper element is used as the signal line 710, signal delay due to wiring resistance is small and display on a large screen is possible.
- the FPC terminal portion 708 includes a connection electrode 760, an anisotropic conductive film 780, and an FPC 716.
- the connection electrode 760 is formed through the same process as the conductive film functioning as the source and drain electrodes of the transistors 750 and 752.
- the connection electrode 760 is electrically connected to a terminal included in the FPC 716 through an anisotropic conductive film 780.
- first substrate 701 and the second substrate 705 for example, glass substrates can be used.
- a flexible substrate may be used as the first substrate 701 and the second substrate 705.
- the flexible substrate include a plastic substrate.
- a structure body 778 is provided between the first substrate 701 and the second substrate 705.
- the structure body 778 is a columnar spacer and is provided to control the distance (cell gap) between the first substrate 701 and the second substrate 705.
- a spherical spacer may be used as the structure body 778.
- a light shielding film 738 functioning as a black matrix, a colored film 736 functioning as a color filter, and an insulating film 734 in contact with the light shielding film 738 and the colored film 736 are provided.
- a display device 700 illustrated in FIG. 10 includes a liquid crystal element 775.
- the liquid crystal element 775 includes a conductive film 772, a conductive film 774, and a liquid crystal layer 776.
- the conductive film 774 is provided on the second substrate 705 side and functions as a counter electrode.
- the display device 700 illustrated in FIG. 10 can display an image by controlling transmission and non-transmission of light by changing the alignment state of the liquid crystal layer 776 depending on voltages applied to the conductive films 772 and 774.
- the conductive film 772 is electrically connected to a conductive film functioning as a source electrode or a drain electrode included in the transistor 750.
- the conductive film 772 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of a display element.
- a conductive film that is transparent to visible light or a conductive film that is reflective to visible light can be used.
- a material containing one kind selected from indium, zinc, and tin may be used.
- a material containing aluminum or silver is preferably used.
- the display device 700 is a reflective liquid crystal display device. In the case where a conductive film that transmits visible light is used for the conductive film 772, the display device 700 is a transmissive liquid crystal display device. In the case of a reflective liquid crystal display device, a polarizing plate is provided on the viewing side. On the other hand, in the case of a transmissive liquid crystal display device, a pair of polarizing plates sandwiching a liquid crystal element is provided.
- the driving method of the liquid crystal element can be changed by changing the structure over the conductive film 772.
- FIG. A display device 700 illustrated in FIG. 11 is an example of a configuration using a horizontal electric field method (eg, an FFS mode) as a driving method of a liquid crystal element.
- the insulating film 773 is provided over the conductive film 772
- the conductive film 774 is provided over the insulating film 773.
- the conductive film 774 functions as a common electrode (also referred to as a common electrode), and the alignment of the liquid crystal layer 776 is generated by an electric field generated between the conductive film 772 and the conductive film 774 through the insulating film 773.
- the state can be controlled.
- an alignment film may be provided on one or both of the conductive film 772 and the conductive film 774 on the side in contact with the liquid crystal layer 776.
- an optical member optical substrate
- a polarizing member such as a polarizing member, a retardation member, or an antireflection member
- circularly polarized light using a polarizing substrate and a retardation substrate may be used.
- a backlight, a sidelight, or the like may be used as the light source.
- thermotropic liquid crystal When a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
- a liquid crystal exhibiting a blue phase without using an alignment film may be used.
- the blue phase is one of the liquid crystal phases.
- the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
- a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic, so that alignment treatment is unnecessary.
- a liquid crystal material exhibiting a blue phase has a small viewing angle dependency.
- a liquid crystal element when used as a display element, a TN (Twisted Nematic) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe Field Switching) mode, an ASM (Axially Symmetrical Aligned MicroOcell) mode.
- a Compensated Birefringence mode, an FLC (Ferroelectric Liquid Crystal) mode, an AFLC (Antiferroelectric Liquid Crystal) mode, and the like can be used.
- a normally black liquid crystal display device such as a transmissive liquid crystal display device employing a vertical alignment (VA) mode may be used.
- VA vertical alignment
- the vertical alignment mode There are several examples of the vertical alignment mode. For example, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV (Advanced Super View) mode, and the like can be used.
- a display device 700 illustrated in FIG. 12 includes a light-emitting element 782.
- the light-emitting element 782 includes a conductive film 772, an EL layer 786, and a conductive film 788.
- the display device 700 illustrated in FIG. 12 can display an image when the EL layer 786 included in the light-emitting element 782 provided for each pixel emits light.
- the EL layer 786 includes an organic compound or an inorganic compound such as a quantum dot.
- Examples of materials that can be used for the organic compound include fluorescent materials and phosphorescent materials.
- Examples of materials that can be used for the quantum dots include colloidal quantum dot materials, alloy type quantum dot materials, core / shell type quantum dot materials, and core type quantum dot materials.
- a material including an element group of Group 12 and Group 16, Group 13 and Group 15, or Group 14 and Group 16 may be used.
- a quantum dot material having an element such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, or aluminum may be used.
- an insulating film 730 is provided over the planarization insulating film 770 and the conductive film 772.
- the insulating film 730 covers part of the conductive film 772.
- the light-emitting element 782 has a top emission structure. Therefore, the conductive film 788 has a light-transmitting property and transmits light emitted from the EL layer 786.
- the top emission structure is illustrated, but is not limited thereto.
- the present invention can be applied to a bottom emission structure in which light is emitted to the conductive film 772 side and a dual emission structure in which light is emitted to both the conductive film 772 side and the conductive film 788 side.
- a coloring film 736 is provided at a position overlapping with the light emitting element 782, and a light shielding film 738 is provided at a position overlapping with the insulating film 730, the lead wiring portion 711, and the source driver circuit portion 704. Further, the coloring film 736 and the light shielding film 738 are covered with an insulating film 734. A space between the light emitting element 782 and the insulating film 734 is filled with a sealing film 732. Note that in the display device 700 illustrated in FIG. 12, the structure in which the colored film 736 is provided is illustrated, but the present invention is not limited to this. For example, in the case where the EL layer 786 is formed in an island shape for each pixel, that is, formed by separate coating, the coloring film 736 may not be provided.
- an input / output device may be provided in the display device 700 illustrated in FIGS.
- Examples of the input / output device include a touch panel.
- FIG. 11 shows a configuration in which the touch panel 791 is provided in the display device 700 shown in FIG. 11
- FIG. 14 shows a configuration in which the touch panel 791 is provided in the display device 700 shown in FIG.
- FIG. 13 is a cross-sectional view of a configuration in which the touch panel 791 is provided on the display device 700 illustrated in FIG. 11, and FIG. 14 is a cross-sectional view of a configuration in which the touch panel 791 is provided on the display device 700 illustrated in FIG.
- the touch panel 791 shown in FIGS. 13 and 14 is a so-called in-cell type touch panel provided between the second substrate 705 and the coloring film 736.
- the touch panel 791 may be formed on the second substrate 705 side before the coloring film 736 is formed.
- the touch panel 791 includes an insulating film 792, an electrode 793, an electrode 794, an insulating film 795, an electrode 796, and an insulating film 797.
- a detection target such as a finger or a stylus approaches.
- the intersection of the electrode 793 and the electrode 794 is clearly shown.
- the electrode 796 is electrically connected to two electrodes 793 sandwiching the electrode 794 through an opening provided in the insulating film 795.
- 13 and 14 exemplify the configuration in which the region where the electrode 796 is provided is provided in the pixel portion 702, but the present invention is not limited to this.
- the region may be formed in the source driver circuit portion 704.
- the electrode 793 and the electrode 794 are provided in a region overlapping with the light shielding film 738.
- the electrode 793 is preferably provided so as not to overlap with the light-emitting element 782 or the liquid crystal element 775.
- the electrode 793 has an opening in a region overlapping with the light-emitting element 782 or the liquid crystal element 775. That is, the electrode 793 has a mesh shape.
- the electrode 793 can be configured not to block light emitted from the light-emitting element 782 or light transmitted through the liquid crystal element 775. Therefore, since the reduction in luminance due to the arrangement of the touch panel 791 is extremely small, a display device with high visibility and low power consumption can be realized.
- the electrode 794 may have a similar structure.
- the electrode 793 and the electrode 794 do not overlap with the light-emitting element 782 or the liquid crystal element 775, a metal material with low visible light transmittance can be used for the electrode 793 and the electrode 794.
- the resistance of the electrode 793 and the electrode 794 can be reduced as compared with an electrode using an oxide material having a high visible light transmittance, and the sensor sensitivity of the touch panel can be improved.
- conductive nanowires may be used for the electrodes 793, 794, and 796.
- the nanowire may have an average diameter of 1 nm to 100 nm, preferably 5 nm to 50 nm, more preferably 5 nm to 25 nm.
- metal nanowires such as Ag nanowire, Cu nanowire, or Al nanowire, or a carbon nanotube etc. may be used.
- the light transmittance in visible light can be 89% or more
- the sheet resistance value can be 40 ⁇ / ⁇ or more and 100 ⁇ / ⁇ or less.
- FIG. 13 and FIG. 14 the configuration of the in-cell type touch panel is illustrated, but the present invention is not limited to this.
- a so-called on-cell touch panel formed over the display device 700 or a so-called out-cell touch panel used by being attached to the display device 700 may be used.
- the display device of one embodiment of the present invention can be used in combination with various forms of touch panels.
- a display device illustrated in FIG. 15A includes a circuit portion (hereinafter referred to as a driver circuit) including a region having pixels (hereinafter referred to as a pixel portion 502) and a circuit which is disposed outside the pixel portion 502 and drives the pixels. Part 504), a circuit having a protection function of an element (hereinafter referred to as a protection circuit 506), and a terminal part 507. Note that the protection circuit 506 may be omitted.
- part or all of the drive circuit portion 504 is formed on the same substrate as the pixel portion 502. Thereby, the number of parts and the number of terminals can be reduced.
- part or all of the driver circuit portion 504 is formed by COG or TAB (Tape Automated Bonding). Can be implemented.
- the pixel portion 502 includes a plurality of circuits (hereinafter referred to as pixel circuits 501) for driving display elements arranged in X rows (X is a natural number of 2 or more) and Y columns (Y is a natural number of 2 or more).
- the driver circuit portion 504 outputs a signal for selecting a pixel (scanning signal) (hereinafter referred to as a gate driver 504a) and a circuit for supplying a signal (data signal) for driving a display element of the pixel. (Hereinafter referred to as source driver 504b) and the like.
- the gate driver 504a has a shift register and the like.
- the gate driver 504a receives a signal for driving the shift register via the terminal portion 507, and outputs a signal.
- the gate driver 504a receives a start pulse signal, a clock signal, and the like and outputs a pulse signal.
- the gate driver 504a has a function of controlling the potential of a wiring to which a scan signal is supplied (hereinafter referred to as gate lines GL_1 to GL_X).
- gate lines GL_1 to GL_X a wiring to which a scan signal is supplied
- a plurality of gate drivers 504a may be provided, and the gate lines GL_1 to GL_X may be divided and controlled by the plurality of gate drivers 504a.
- the gate driver 504a has a function of supplying an initialization signal.
- the present invention is not limited to this, and the gate driver 504a can supply another signal.
- the source driver 504b has a shift register and the like. In addition to a signal for driving the shift register, the source driver 504b receives a signal (image signal) as a source of a data signal through the terminal portion 507.
- the source driver 504b has a function of generating a data signal to be written in the pixel circuit 501 based on the image signal.
- the source driver 504b has a function of controlling output of a data signal in accordance with a pulse signal obtained by inputting a start pulse, a clock signal, or the like.
- the source driver 504b has a function of controlling the potential of a wiring to which a data signal is supplied (hereinafter referred to as source lines DL_1 to DL_Y).
- the source driver 504b has a function of supplying an initialization signal.
- the present invention is not limited to this, and the source driver 504b can supply another signal.
- the source driver 504b is configured using a plurality of analog switches, for example.
- the source driver 504b can output a signal obtained by time-dividing the image signal as a data signal by sequentially turning on the plurality of analog switches. Further, the source driver 504b may be configured using a shift register or the like.
- Each of the plurality of pixel circuits 501 receives a pulse signal through one of a plurality of gate lines GL to which a scanning signal is applied, and receives a data signal through one of a plurality of source lines DL to which a data signal is applied. Entered.
- writing and holding of data signals are controlled by the gate driver 504a.
- the pixel circuit 501 in the m-th row and the n-th column receives a pulse signal from the gate driver 504a through the gate line GL_m (m is a natural number equal to or less than X), and the source line DL_n (n) according to the potential of the gate line GL_m. Is a natural number less than or equal to Y), a data signal is input from the source driver 504b.
- the protection circuit 506 shown in FIG. 15A is connected to a gate line GL that is a wiring between the gate driver 504a and the pixel circuit 501, for example.
- the protection circuit 506 is connected to a source line DL that is a wiring between the source driver 504 b and the pixel circuit 501.
- the protection circuit 506 can be connected to a wiring between the gate driver 504 a and the terminal portion 507.
- the protection circuit 506 can be connected to a wiring between the source driver 504 b and the terminal portion 507.
- the terminal portion 507 is a portion where a terminal for inputting a power supply, a control signal, and an image signal from an external circuit to the display device is provided.
- the protection circuit 506 is a circuit that brings the wiring and another wiring into a conductive state when a potential outside a certain range is applied to the wiring to which the protection circuit 506 is connected.
- the protective circuit 506 is connected to the pixel portion 502 and the driver circuit portion 504, thereby increasing the resistance of the display device against overcurrent generated by ESD (Electro Static Discharge) or the like. be able to.
- the configuration of the protection circuit 506 is not limited thereto, and for example, a configuration in which the protection circuit 506 is connected to the gate driver 504a or a configuration in which the protection circuit 506 is connected to the source driver 504b may be employed.
- the protection circuit 506 may be connected to the terminal portion 507.
- FIG. 15A illustrates an example in which the driver circuit portion 504 is formed using the gate driver 504a and the source driver 504b; however, the present invention is not limited to this structure.
- the gate driver 504a may be formed and a substrate on which a separately prepared source driver circuit is formed (for example, a driver circuit substrate formed of a single crystal semiconductor film or a polycrystalline semiconductor film) may be mounted. .
- FIG. 16 shows a different structure from FIG.
- a pair of source lines for example, source line DLa1 and source line DLb1 are arranged so as to sandwich a plurality of pixels arranged in the source line direction.
- Two adjacent gate lines for example, the gate line GL_1 and the gate line GL_2) are electrically connected.
- the pixel connected to the gate line GL_1 is connected to one source line (source line DLa1, source line DLa2, etc.), and the pixel connected to the gate line GL_2 is connected to the other source line (source line DLb1, source line DLa1). Line DLb2 etc.).
- the plurality of pixel circuits 501 illustrated in FIG. 15A can have a structure illustrated in FIG. 15B, for example.
- a pixel circuit 501 illustrated in FIG. 15B includes a liquid crystal element 570, a transistor 550, and a capacitor 560.
- One potential of the pair of electrodes of the liquid crystal element 570 is appropriately set according to the specification of the pixel circuit 501.
- the alignment state of the liquid crystal element 570 is set by written data. Note that a common potential (common potential) may be applied to one of the pair of electrodes of the liquid crystal element 570 included in each of the plurality of pixel circuits 501. Further, a different potential may be applied to one of the pair of electrodes of the liquid crystal element 570 of the pixel circuit 501 in each row.
- a TN mode for driving a display device including the liquid crystal element 570
- a TN mode for example, a TN mode, an STN (Super Twisted Nematic) mode, a VA mode, an ASM mode, an OCB mode, an FLC mode, an AFLC mode, an MVA mode, a PVA mode, an IPS mode, An FFS mode or a TBA (Transverse Bend Alignment) mode
- ECB Electrodefringence
- PDLC Polymer Dispersed Liquid Crystal
- PNLC Polymer Network Liquid Crystal mode
- the present invention is not limited to this, and various liquid crystal elements and driving methods thereof can be used.
- one of a source electrode and a drain electrode of the transistor 550 is electrically connected to the source line DL_n, and the other is electrically connected to the other of the pair of electrodes of the liquid crystal element 570.
- the gate electrode of the transistor 550 is electrically connected to the gate line GL_m.
- the transistor 550 has a function of controlling data writing of the data signal by being turned on or off.
- One of the pair of electrodes of the capacitor 560 is electrically connected to a wiring to which a potential is supplied (hereinafter, potential supply line VL), and the other is electrically connected to the other of the pair of electrodes of the liquid crystal element 570.
- potential supply line VL a wiring to which a potential is supplied
- the capacitor 560 functions as a storage capacitor for storing written data.
- the pixel circuits 501 in each row are sequentially selected by the gate driver 504a illustrated in FIG. Write.
- the pixel circuit 501 in which data is written is in a holding state when the transistor 550 is turned off. By sequentially performing this for each row, an image can be displayed.
- the plurality of pixel circuits 501 illustrated in FIG. 15A can have a structure illustrated in FIG. 15C, for example.
- the pixel circuit 501 illustrated in FIG. 15C includes transistors 552 and 554, a capacitor 562, and a light-emitting element 572.
- One of the source electrode and the drain electrode of the transistor 552 is electrically connected to the data line DL_n, and the gate electrode is electrically connected to the scanning line GL_m.
- the transistor 552 has a function of controlling data writing of the data signal by being turned on or off.
- One of the pair of electrodes of the capacitor 562 is electrically connected to the potential supply line VL_a, and the other is electrically connected to the other of the source electrode and the drain electrode of the transistor 552.
- the capacitor element 562 functions as a storage capacitor for storing written data.
- One of the source electrode and the drain electrode of the transistor 554 is electrically connected to the potential supply line VL_a. Further, the gate electrode of the transistor 554 is electrically connected to the other of the source electrode and the drain electrode of the transistor 552.
- One of an anode and a cathode of the light-emitting element 572 is electrically connected to the potential supply line VL_b, and the other is electrically connected to the other of the source electrode and the drain electrode of the transistor 554.
- the light-emitting element 572 for example, an organic electroluminescence element (also referred to as an organic EL element) or the like can be used.
- the light-emitting element 572 is not limited thereto, and an inorganic EL element made of an inorganic material may be used.
- one of the potential supply line VL_a and the potential supply line VL_b is supplied with the high power supply potential VDD, and the other is supplied with the low power supply potential VSS.
- the pixel circuits 501 in each row are sequentially selected by the gate driver 504a illustrated in FIG. Write.
- the pixel circuit 501 in which data is written is in a holding state when the transistor 552 is turned off. Further, the amount of current flowing between the source electrode and the drain electrode of the transistor 554 is controlled in accordance with the potential of the written data signal, and the light-emitting element 572 emits light with luminance corresponding to the amount of flowing current. By sequentially performing this for each row, an image can be displayed.
- the electronic device exemplified below includes the display device of one embodiment of the present invention in the display portion. Therefore, the electronic device has a high resolution. In addition, the electronic device can achieve both high resolution and a large screen.
- full high vision, 4K2K, 8K4K, 16K8K, or higher resolution video can be displayed on the display portion of the electronic device of one embodiment of the present invention.
- the screen size of the display unit may be 20 inches or more diagonal, 30 inches or more, 50 inches or more, 60 inches or more, or 70 inches or more.
- Examples of electronic devices include relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and large game machines such as pachinko machines.
- a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, a sound reproduction device, and the like can be given.
- the electronic device or the lighting device of one embodiment of the present invention can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
- the electronic device of one embodiment of the present invention may have an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit.
- the antenna may be used for non-contact power transmission.
- the electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
- the electronic device of one embodiment of the present invention can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
- FIG. 17A shows an example of a television device.
- a display portion 7000 is incorporated in a housing 7101.
- a structure in which the housing 7101 is supported by a stand 7103 is shown.
- the display device of one embodiment of the present invention can be applied to the display portion 7000.
- the operation of the television device 7100 illustrated in FIG. 17A can be performed using an operation switch included in the housing 7101 or a separate remote controller 7111.
- the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
- the remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7000 can be operated.
- the television device 7100 is provided with a receiver, a modem, and the like.
- a general television broadcast can be received by the receiver.
- information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
- FIG. 17B shows a laptop personal computer 7200.
- a laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
- a display portion 7000 is incorporated in the housing 7211.
- the display device of one embodiment of the present invention can be applied to the display portion 7000.
- FIGS. 17C and 17D show examples of digital signage (digital signage).
- a digital signage 7300 illustrated in FIG. 17C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
- FIG. 17D shows a digital signage 7400 attached to a columnar column 7401.
- the digital signage 7400 includes a display portion 7000 provided along the curved surface of the column 7401.
- the display device of one embodiment of the present invention can be applied to the display portion 7000.
- the wider the display unit 7000 the more information can be provided at one time.
- the wider the display unit 7000 the more easily noticeable to the human eye.
- the advertising effect can be enhanced.
- a touch panel to the display unit 7000, which not only displays an image or a moving image on the display unit 7000, but also allows the user to operate intuitively.
- usability can be improved by an intuitive operation.
- the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone possessed by the user by wireless communication.
- advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411.
- the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
- the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
The purpose of the present invention is to provide a display device with low power consumption. Another purpose of the present invention is to optimize power consumption according to content that has different resolutions or frame frequencies. Provided is a display system comprising a display device and an image receiving device. If a video signal is input, such signal including image information with a frame frequency lower than the maximum frequency displayable by a display unit, the image receiving device controls a drive circuit of the display device so that the length of an idle period is equal to or less than the length of a writing period. Moreover, if a video signal is input, such signal including image information with an image resolution lower than the resolution of the display unit, the image receiving device controls the drive circuit of the display device so that a plurality of pixels are simultaneously written with the same data.
Description
本発明の一態様は、表示装置に関する。本発明の一態様は、表示システムに関する。本発明の一態様は、表示装置または表示システムの駆動方法に関する。
One embodiment of the present invention relates to a display device. One embodiment of the present invention relates to a display system. One embodiment of the present invention relates to a driving method of a display device or a display system.
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。
Note that one embodiment of the present invention is not limited to the above technical field. Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input / output devices, and driving methods thereof , Or a method for producing them, can be mentioned as an example.
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路、演算装置、記憶装置等は半導体装置の一態様である。また、撮像装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は半導体装置を有している場合がある。
Note that in this specification and the like, a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics. A transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device. In addition, an imaging device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like) and an electronic device may include a semiconductor device.
近年、高解像度の表示装置を備える電子機器が求められている。例えば家庭用のテレビジョン装置(テレビ、またはテレビジョン受信機ともいう)では、解像度がフルハイビジョン(画素数1920×1080)であるものが主流となっているが、4K2K(画素数3840×2160)や、8K4K(画素数7680×4320)等のように、高解像度な表示装置の開発が進められている。非特許文献1には、8K4K解像度を有する有機ELディスプレイが報告されている。
In recent years, electronic devices having a high-resolution display device have been demanded. For example, in a television device for home use (also referred to as a television or a television receiver), the one with a resolution of full high-definition (pixel number 1920 × 1080) is mainstream, but 4K2K (pixel number 3840 × 2160). Development of high-resolution display devices such as 8K4K (number of pixels: 7680 × 4320) is underway. Non-Patent Document 1 reports an organic EL display having 8K4K resolution.
8K4K解像度を有するテレビジョン装置等の表示装置が実用化されつつある。また、8K4K放送の送受信方法についても、開発が進められている。
Display devices such as television devices having 8K4K resolution are being put into practical use. In addition, development of a transmission / reception method for 8K4K broadcasting is also in progress.
ここで、表示装置は、8K4K規格のコンテンツだけでなく、例えば4K2K規格のコンテンツや、フルハイビジョン規格のコンテンツなど、8K4K規格よりも解像度やフレーム周波数の低いコンテンツにも対応することが望まれる。
Here, it is desired that the display device supports not only 8K4K standard content but also content having a lower resolution and frame frequency than the 8K4K standard, such as 4K2K standard content and full high-definition content.
一方、解像度の高い表示装置は、解像度やフレーム周波数の低いコンテンツを表示する場合であっても、コンテンツの解像度やフレーム周波数に関係なく表示装置の消費電力が高くなってしまうといった問題がある。
On the other hand, a display device with a high resolution has a problem that the power consumption of the display device becomes high regardless of the resolution or the frame frequency of the content even when displaying a content with a low resolution or a low frame frequency.
本発明の一態様は、消費電力の低い表示装置若しくは電子機器、またはそれらの駆動方法を提供することを課題の一とする。または、異なる解像度のコンテンツに対応した電子機器、または表示装置を実現することを課題の一とする。または、異なるフレーム周波数のコンテンツに対応した電子機器、または表示装置を実現することを課題の一とする。または、新規な表示装置、表示システム、またはそれらの駆動方法を提供することを課題の一とする。
An object of one embodiment of the present invention is to provide a display device or an electronic device with low power consumption, or a driving method thereof. Another object is to realize an electronic device or a display device that supports content with different resolutions. Another object is to realize an electronic device or a display device that supports content with different frame frequencies. Another object is to provide a novel display device, a display system, or a driving method thereof.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
Note that the description of these issues does not disturb the existence of other issues. Note that one embodiment of the present invention does not have to solve all of these problems. Issues other than these can be extracted from the description, drawings, claims, and the like.
本発明の一態様は、受像装置と、表示装置と、を有する表示システムである。表示装置は、駆動回路と、表示部と、を有する。駆動回路は、表示部に画像データ(第1の画像データともいう)を順次書き込む機能を有する。受像装置は、映像信号を受信する機能と、表示装置の駆動回路を制御する機能と、を有する。受像装置は、映像信号に含まれる画像情報(第2の画像データともいう)の画像フレーム周波数を検出し、画像フレーム周波数に応じて、画像データを書き込む書き込み期間と、画像データの書き込みを行わない休止期間と、を変更する機能を有する。
One embodiment of the present invention is a display system including an image receiving device and a display device. The display device includes a drive circuit and a display unit. The driver circuit has a function of sequentially writing image data (also referred to as first image data) on the display portion. The image receiving device has a function of receiving a video signal and a function of controlling a driving circuit of the display device. The image receiving apparatus detects an image frame frequency of image information (also referred to as second image data) included in the video signal, and does not perform writing of image data and writing of image data according to the image frame frequency. It has a function of changing the suspension period.
また、上記において、受像装置は、休止期間において、駆動回路への電源の供給を遮断するように、駆動回路を制御する機能を有することが好ましい。
In the above, it is preferable that the image receiving device has a function of controlling the drive circuit so as to cut off the supply of power to the drive circuit during the idle period.
また、上記において、表示部は、複数のゲート線と、ゲート線と交差する複数のソース線と、を有することが好ましい。また受像装置は、画像情報の画像解像度を検出する機能を有することが好ましい。このとき、受像装置は、画像情報の画像解像度をd、表示部の解像度をDとしたとき、d=D/22n(nは1以上の整数)を満たす場合に、隣接する2n本のソース線に同じデータを書き込み、且つ隣接する2n本のゲート線を同時に選択するように、駆動回路を制御する機能を有することが好ましい。
In the above, the display section preferably includes a plurality of gate lines and a plurality of source lines intersecting with the gate lines. The image receiving device preferably has a function of detecting the image resolution of the image information. At this time, the image receiving apparatus has 2 n adjacent pixels when d = D / 2 2n (n is an integer equal to or greater than 1) where d is the image resolution of the image information and D is the resolution of the display unit. It is preferable to have a function of controlling the driver circuit so that the same data is written to the source line and adjacent 2n gate lines are simultaneously selected.
また、上記において、受像装置は、画像情報の画像フレーム周波数をf、表示部が表示可能な最大周波数をF、1フレーム期間を1/Fとしたとき、f=F/2m(mは1以上の整数)を満たす場合に、2mフレーム期間のうち、pフレーム(pは1以上2m−1以下の整数)を書き込み期間、残りの2m−pフレームを休止期間とするように、駆動回路を制御する機能を有することが好ましい。このとき、p=1を満たすことが特に好ましい。
In the above, the image receiving apparatus has f = F / 2 m (where m is 1) where f is the image frame frequency of the image information, F is the maximum frequency that can be displayed by the display unit, and 1 is the frame period. When satisfying the above integer), among the 2 m frame periods, the p frame (p is an integer of 1 to 2 m−1 or less) is set as the writing period, and the remaining 2 m -p frames are set as the pause period. It preferably has a function of controlling the drive circuit. At this time, it is particularly preferable to satisfy p = 1.
また、上記において、表示部はバックライト装置を有することが好ましい。このとき、バックライト装置は、駆動回路により制御され、受像装置は、画像フレーム周波数の2倍の周期でバックライト装置が点滅するように、駆動回路を制御する機能を有することが好ましい。またこのとき、受像装置は、バックライト装置が点灯する期間が休止期間と重畳し、且つ、バックライト装置が消灯する期間が書き込み期間と重畳するように、駆動回路を制御する機能を有することが好ましい。
In the above, the display unit preferably has a backlight device. At this time, the backlight device is preferably controlled by a drive circuit, and the image receiving device preferably has a function of controlling the drive circuit so that the backlight device blinks at a cycle twice the image frame frequency. Further, at this time, the image receiving device may have a function of controlling the driving circuit so that the period during which the backlight device is lit overlaps with the pause period and the period during which the backlight device is turned off overlaps with the writing period. preferable.
本発明の一態様によれば、消費電力の低い表示装置若しくは電子機器、またはそれらの駆動方法を提供できる。または、異なる解像度のコンテンツに対応した電子機器、または表示装置を実現できる。または、異なるフレーム周波数のコンテンツに対応した電子機器、または表示装置を実現できる。または、新規な表示装置、表示システム、またはそれらの駆動方法を提供できる。
According to one embodiment of the present invention, a display device or an electronic device with low power consumption, or a driving method thereof can be provided. Alternatively, it is possible to realize an electronic device or a display device that supports content with different resolutions. Alternatively, it is possible to realize an electronic device or a display device that supports content with different frame frequencies. Alternatively, a novel display device, a display system, or a driving method thereof can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. Note that effects other than these can be extracted from the description, drawings, claims, and the like.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
Note that in the structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.
なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
Note that in each drawing described in this specification, the size, the layer thickness, or the region of each component is exaggerated for clarity in some cases. Therefore, it is not necessarily limited to the scale.
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
In addition, ordinal numbers such as “first” and “second” in this specification and the like are attached to avoid confusion between components and are not limited numerically.
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
In this specification and the like, a display panel which is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display panel is one mode of the output device.
また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
In addition, in this specification and the like, a display panel substrate is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or the substrate is integrated with a COG (Chip On Glass) method. In some cases, is mounted a display panel module, a display module, or simply a display panel.
また、本明細書等において、タッチセンサは指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出する機能を有するものである。またその位置情報を検知する機能を有していてもよい。したがってタッチセンサは入力装置の一態様である。例えばタッチセンサは1以上のセンサ素子を有する構成とすることができる。
In addition, in this specification and the like, the touch sensor has a function of detecting that a detection target such as a finger or a stylus touches, presses, or approaches. Moreover, you may have the function to detect the positional information. Therefore, the touch sensor is an aspect of the input device. For example, the touch sensor can be configured to have one or more sensor elements.
また、本明細書等では、タッチセンサを有する基板を、タッチセンサパネル、または単にタッチセンサなどと呼ぶ場合がある。また、本明細書等では、タッチセンサパネルの基板に、例えばFPCもしくはTCPなどのコネクターが取り付けられたもの、または基板にCOG方式等によりICが実装されたものを、タッチセンサパネルモジュール、タッチセンサモジュール、センサモジュール、または単にタッチセンサなどと呼ぶ場合がある。
In this specification and the like, a substrate having a touch sensor may be referred to as a touch sensor panel or simply a touch sensor. In addition, in this specification and the like, a touch sensor panel substrate, for example, a connector such as an FPC or TCP attached, or a substrate in which an IC is mounted by a COG method, a touch sensor panel module, a touch sensor It may be called a module, a sensor module, or simply a touch sensor.
なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表示(出力)する機能と、表示面に指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出するタッチセンサとしての機能と、を有する。したがってタッチパネルは入出力装置の一態様である。
Note that in this specification and the like, a touch panel which is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface, and a detection target such as a finger or a stylus touches, presses, or approaches the display surface. And a function as a touch sensor for detecting the above. Accordingly, the touch panel is an embodiment of an input / output device.
タッチパネルは、例えばタッチセンサ付き表示パネル(または表示装置)、タッチセンサ機能つき表示パネル(または表示装置)とも呼ぶことができる。
The touch panel can also be called, for example, a display panel with a touch sensor (or display device) or a display panel with a touch sensor function (or display device).
タッチパネルは、表示パネルとタッチセンサパネルとを有する構成とすることもできる。または、表示パネルの内部または表面にタッチセンサとしての機能を有する構成とすることもできる。
The touch panel may be configured to include a display panel and a touch sensor panel. Alternatively, the display panel may have a function as a touch sensor inside or on the surface.
また、本明細書等では、タッチパネルの基板に、例えばFPCもしくはTCPなどのコネクターが取り付けられたもの、または基板にCOG方式等によりICが実装されたものを、タッチパネルモジュール、表示モジュール、または単にタッチパネルなどと呼ぶ場合がある。
In this specification and the like, a touch panel substrate having a connector such as an FPC or TCP attached, or a substrate having an IC mounted on the substrate by a COG method, a touch panel module, a display module, or simply a touch panel And so on.
(実施の形態1)
本実施の形態では、本発明の一態様の電子機器に適用することのできる表示システムの構成例及び動作方法例等について説明する。ここでは、電子機器としてテレビジョン装置やモニタ装置などの、映像信号を受信して映像を表示する画像表示装置を例に説明する。 (Embodiment 1)
In this embodiment, structural examples and operation methods of a display system that can be applied to the electronic device of one embodiment of the present invention will be described. Here, an image display device that receives a video signal and displays a video, such as a television device or a monitor device, will be described as an example of the electronic device.
本実施の形態では、本発明の一態様の電子機器に適用することのできる表示システムの構成例及び動作方法例等について説明する。ここでは、電子機器としてテレビジョン装置やモニタ装置などの、映像信号を受信して映像を表示する画像表示装置を例に説明する。 (Embodiment 1)
In this embodiment, structural examples and operation methods of a display system that can be applied to the electronic device of one embodiment of the present invention will be described. Here, an image display device that receives a video signal and displays a video, such as a television device or a monitor device, will be described as an example of the electronic device.
本発明の一態様の表示システムは、受像装置と、表示装置とを有する。受像装置は、受信装置、デコーダ、演算装置(プロセッサ)等を有する。表示装置は、表示部と、駆動回路とを有する。
The display system of one embodiment of the present invention includes an image receiving device and a display device. The image receiving device includes a receiving device, a decoder, an arithmetic device (processor), and the like. The display device includes a display unit and a drive circuit.
受像装置は、駆動回路を駆動する機能を有する。また受像装置は、映像信号を受信して、駆動回路に画像データを送信する機能を有する。駆動回路は、受像装置の命令に応じて表示部に画像データ(第1の画像データともいう)を書き込む機能を有する。
The image receiving device has a function of driving a drive circuit. The image receiving device has a function of receiving a video signal and transmitting image data to a driving circuit. The driver circuit has a function of writing image data (also referred to as first image data) in the display portion in accordance with a command from the image receiving device.
駆動回路は、例えばタイミングコントローラ、ソース駆動回路、及びゲート駆動回路を有する構成とすることができる。タイミングコントローラは、ソース駆動回路に画像データを含む信号及びタイミング信号を、ゲート駆動回路にタイミング信号をそれぞれ供給することで、これらを駆動させることができる。また、表示部がバックライトを有する場合には、タイミングコントローラが当該バックライトを駆動するための信号(タイミング信号等)を出力する機能を有していてもよい。
The driving circuit can be configured to include, for example, a timing controller, a source driving circuit, and a gate driving circuit. The timing controller can drive a source drive circuit by supplying a signal including image data and a timing signal, and a gate drive circuit by supplying a timing signal. In the case where the display portion includes a backlight, the timing controller may have a function of outputting a signal (timing signal or the like) for driving the backlight.
表示部は、複数の画素を有する。各画素は、それぞれソース線及びゲート線と電気的に接続される。ソース線にはソース駆動回路から出力される信号が与えられ、ゲート線にはゲート駆動回路から出力される信号が与えられる。
The display unit has a plurality of pixels. Each pixel is electrically connected to a source line and a gate line. A signal output from the source driver circuit is applied to the source line, and a signal output from the gate driver circuit is applied to the gate line.
表示部は解像度が高いことが好ましい。例えば4K2K解像度以上、代表的には8K4K解像度であることが好ましい。ここで解像度とは、表示部が有する有効画素数を指す。
The display section preferably has a high resolution. For example, 4K2K resolution or higher, typically 8K4K resolution is preferable. Here, the resolution refers to the number of effective pixels that the display unit has.
ここで、受像装置は、入力される映像信号に含まれる画像情報(第2の画像データともいう)の解像度(以下、表示部の解像度と区別するために画像解像度ともいう)、及びフレーム周波数(以下、表示部が表示するフレーム周波数と区別するために、画像フレーム周波数ともいう)とを検出することができる。そして、受像装置は、画像解像度と画像フレーム周波数に応じて、駆動回路の書き込み動作の期間(以下、書き込み期間ともいう)の長さと、書き込みを行わない期間(休止期間ともいう)の長さを変更することができる。
Here, the image receiving apparatus has a resolution of image information (also referred to as second image data) included in the input video signal (hereinafter also referred to as image resolution to distinguish it from the resolution of the display unit), and a frame frequency ( Hereinafter, in order to distinguish from the frame frequency displayed by the display unit, it is also possible to detect the image frame frequency. The image receiving apparatus determines the length of the writing operation period (hereinafter also referred to as writing period) and the length of the period during which writing is not performed (also referred to as pause period) according to the image resolution and the image frame frequency. Can be changed.
例えば、表示部が表示可能な最大周波数よりも低いフレーム周波数の画像情報を含む映像信号が入力された場合に、休止期間の長さを書き込み期間の長さ以上とするように、受像装置は駆動回路を制御することができる。
For example, when a video signal including image information having a frame frequency lower than the maximum frequency that can be displayed by the display unit is input, the image receiving device is driven so that the length of the pause period is equal to or longer than the length of the writing period. The circuit can be controlled.
より具体的には、画像フレーム周波数をf、表示部が表示可能な最大周波数をF、1フレーム期間を1/Fとしたとき、f=F/2m(mは1以上の整数)を満たす場合に、2mフレーム期間のうち、pフレーム(pは1以上2m−1以下の整数)を書き込み期間、残りの2m−pフレームを休止期間とするように、受像装置は駆動回路を制御することができる。
More specifically, when the image frame frequency is f, the maximum frequency that can be displayed by the display unit is F, and the one frame period is 1 / F, f = F / 2 m (m is an integer of 1 or more) is satisfied. In this case, of the 2 m frame periods, the image receiving apparatus sets the driving circuit so that the p frame (p is an integer of 1 to 2 m−1 ) is the writing period and the remaining 2 m -p frames are the rest period. Can be controlled.
より好ましくは、一の画像を表示する期間内において、最初の1フレーム期間(1/F秒)で画像の書き込みを行い、残りの2m−1フレーム期間((2m−1)/F秒)を休止期間とすることが好ましい。これにより、休止期間を最も長くとることができるため、消費電力を極めて小さくすることができる。
More preferably, the image is written in the first one frame period (1 / F second) within the period for displaying one image, and the remaining 2 m −1 frame period ((2 m −1) / F seconds). ) Is preferably a rest period. As a result, the longest pause period can be obtained, so that power consumption can be extremely reduced.
また、表示部の解像度よりも低い画像解像度の画像情報を含む映像信号が入力された場合に、複数の画素に同時に、且つ同じデータを書き込むことで、画像が歪むことなく表示部に画像を表示することができる。
In addition, when a video signal containing image information with an image resolution lower than the resolution of the display unit is input, the same data is written to a plurality of pixels simultaneously, so that the image is displayed on the display unit without distortion. can do.
例えば、画像解像度をd、表示部の解像度をDとしたとき、d=D/22n(nは1以上の整数)を満たす場合に、受像装置は、隣接する2n本のソース線に同じデータを書き込み、且つ隣接する2n本のゲート線を同時に選択するように、受像装置は駆動回路を制御することができる。ここで画像解像度d及び解像度Dは、有効画素数の総数、すなわち水平解像度と垂直解像度の積を表す。
For example, assuming that the image resolution is d and the resolution of the display unit is D, when d = D / 2 2n (n is an integer equal to or greater than 1), the image receiving device is the same as 2 n adjacent source lines. The image receiving device can control the driving circuit so that data is written and adjacent 2 n gate lines are simultaneously selected. Here, the image resolution d and the resolution D represent the total number of effective pixels, that is, the product of the horizontal resolution and the vertical resolution.
または、画像の垂直解像度または水平解像度が、表示部の垂直解像度または水平解像度に対して1/2n’(n’は1以上の整数)を満たす場合に、受像装置は、隣接する2n’本のソース線に同じデータを書き込み、且つ隣接する2n’本のゲート線を同時に選択するように、受像装置は駆動回路を制御することができる。
Alternatively, when the vertical resolution or horizontal resolution of the image satisfies 1/2 n ′ (n ′ is an integer equal to or greater than 1) with respect to the vertical resolution or horizontal resolution of the display unit, the image receiving device is adjacent to 2 n ′. The image receiving device can control the driving circuit so that the same data is written to the two source lines and adjacent 2 n ′ gate lines are simultaneously selected.
また、受像装置は、休止期間において駆動回路への電源供給を遮断することが好ましい。これにより、休止期間中の消費電力を大幅に削減することができる。
Further, it is preferable that the image receiving device cuts off the power supply to the drive circuit during the idle period. As a result, power consumption during the suspension period can be significantly reduced.
このような表示システムを適用することで、コンテンツの画像解像度やフレーム周波数に応じて、最適な消費電力でコンテンツの視聴ができる画像表示装置を実現できる。
By applying such a display system, it is possible to realize an image display device capable of viewing content with optimum power consumption according to the image resolution and frame frequency of the content.
以下では、より具体的な構成例について、図面を参照して説明する。
Hereinafter, a more specific configuration example will be described with reference to the drawings.
[表示システムの構成例]
図1に、表示システム10のブロック図を示す。 [Display system configuration example]
FIG. 1 shows a block diagram of thedisplay system 10.
図1に、表示システム10のブロック図を示す。 [Display system configuration example]
FIG. 1 shows a block diagram of the
なお、本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。
In the drawings attached to the present specification, the components are classified by function and the block diagram is shown as an independent block. However, it is difficult to completely separate actual components by function. A component may be involved in multiple functions.
表示システム10は、表示装置20と、受像装置30と、を有する。
The display system 10 includes a display device 20 and an image receiving device 30.
表示装置20は、表示部21と、ソース駆動回路22と、ゲート駆動回路23と、タイミングコントローラ24と、を有する。ここで、ソース駆動回路22、ゲート駆動回路23、及びタイミングコントローラ24をまとめて駆動回路と呼ぶこともある。
The display device 20 includes a display unit 21, a source drive circuit 22, a gate drive circuit 23, and a timing controller 24. Here, the source driving circuit 22, the gate driving circuit 23, and the timing controller 24 may be collectively referred to as a driving circuit.
受像装置30は、外部から入力された映像信号に基づいて、表示装置20に出力する信号を生成する機能を有する。受像装置30は、処理部31、デコーダ32、フロントエンド部33、受信部35、インターフェース36、制御回路37等を有する。フロントエンド部33は、受信部34と接続されている。
The image receiving device 30 has a function of generating a signal to be output to the display device 20 based on a video signal input from the outside. The image receiving device 30 includes a processing unit 31, a decoder 32, a front end unit 33, a receiving unit 35, an interface 36, a control circuit 37, and the like. The front end unit 33 is connected to the receiving unit 34.
〔表示装置〕
表示部21は、マトリクス状に配置された複数の画素を有する。画素は、少なくとも1つの表示素子を有する。それぞれの画素には、1本のソース線(ビデオ信号線、信号線などともいう)と、1本のゲート線(走査線などともいう)と電気的に接続されている。ゲート線は、ゲート駆動回路23により画素を選択する信号が供給される。ソース線は、ソース駆動回路22により、画素に供給するビデオ信号が供給される。 [Display device]
Thedisplay unit 21 has a plurality of pixels arranged in a matrix. The pixel has at least one display element. Each pixel is electrically connected to one source line (also referred to as a video signal line or a signal line) and one gate line (also referred to as a scanning line). A signal for selecting a pixel is supplied to the gate line by the gate driving circuit 23. The source line is supplied with a video signal supplied to the pixel by the source driving circuit 22.
表示部21は、マトリクス状に配置された複数の画素を有する。画素は、少なくとも1つの表示素子を有する。それぞれの画素には、1本のソース線(ビデオ信号線、信号線などともいう)と、1本のゲート線(走査線などともいう)と電気的に接続されている。ゲート線は、ゲート駆動回路23により画素を選択する信号が供給される。ソース線は、ソース駆動回路22により、画素に供給するビデオ信号が供給される。 [Display device]
The
タイミングコントローラ24は、受像装置30から供給される信号から、ソース駆動回路22及びゲート駆動回路23のそれぞれに供給するタイミング信号を生成する機能を有する。また、タイミングコントローラ24は、受像装置30から供給される信号に基づいて、ソース駆動回路22に出力するビデオ信号を生成する機能を有する。
The timing controller 24 has a function of generating a timing signal to be supplied to each of the source driving circuit 22 and the gate driving circuit 23 from a signal supplied from the image receiving device 30. The timing controller 24 has a function of generating a video signal to be output to the source driving circuit 22 based on a signal supplied from the image receiving device 30.
また、タイミングコントローラ24は、受像装置30から供給される信号に基づいて、ソース駆動回路22、ゲート駆動回路23、及び自身への電源供給を遮断する機能を有していることが好ましい。または、当該信号に基づいて、ソース駆動回路22及びゲート駆動回路23へのタイミング信号の出力を停止する、いわゆるクロックゲーティングを実行する機能を有していてもよい。
The timing controller 24 preferably has a function of cutting off power supply to the source drive circuit 22, the gate drive circuit 23, and itself based on a signal supplied from the image receiving device 30. Alternatively, it may have a function of performing so-called clock gating, which stops output of timing signals to the source driver circuit 22 and the gate driver circuit 23 based on the signal.
表示部21は、解像度が極めて高いことが好ましい。表示部21は、フルハイビジョンよりも大きい解像度、例えば4K2K、8K4K、又はそれ以上である高解像度であることが好ましい。
The display unit 21 preferably has an extremely high resolution. The display unit 21 preferably has a higher resolution than that of full high-definition, for example, a high resolution of 4K2K, 8K4K, or higher.
表示部21が有する画素はそれぞれ表示素子を有し、所定の階調を表示する機能を有する。そして、ソース駆動回路22及びゲート駆動回路23から出力される信号により画素の階調が制御され、表示部21に所定の映像が表示される。
Each pixel of the display unit 21 has a display element and has a function of displaying a predetermined gradation. Then, the gradation of the pixel is controlled by signals output from the source driving circuit 22 and the gate driving circuit 23, and a predetermined image is displayed on the display unit 21.
画素に設けられる表示素子の例としては、液晶素子、発光素子などが挙げられる。液晶素子としては、透過型の液晶素子、反射型の液晶素子、半透過型の液晶素子などを用いることができる。また、発光素子の例としては、例えばOLED(Organic Light Emitting Diode)、LED(Light Emitting Diode)、QLED(Quantum−dotLight Emitting Diode)、半導体レーザなどの、自発光性の発光素子が挙げられる。また、表示素子として、シャッター方式のMEMS(Micro Electro Mechanical Systems)素子、光干渉方式のMEMS素子、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した表示素子などを用いることもできる。
Examples of the display element provided in the pixel include a liquid crystal element and a light emitting element. As the liquid crystal element, a transmissive liquid crystal element, a reflective liquid crystal element, a transflective liquid crystal element, or the like can be used. Examples of light-emitting elements include self-luminous light-emitting elements such as OLEDs (Organic Light Emitting Diodes), LEDs (Light Emitting Diodes), QLEDs (Quantum-Dot Light Emitting Diodes), and semiconductor lasers. In addition, as a display element, a shutter type MEMS (Micro Electro Mechanical Systems) element, an optical interference type MEMS element, a microcapsule type, an electrophoretic method, an electrowetting method, an electropowder fluid (registered trademark) method, etc. are applied. A display element or the like can also be used.
なお、表示部21に設けられる画素の数は、自由に設定することができるが、多いほど好ましい。例えば、表示部21に4K2Kの映像を表示する場合は3840×2160個以上、又は4096×2160個以上の画素を設けることが好ましい。また、8K4Kの映像を表示する場合は、7680×4320個以上の画素を設けることが好ましい。また、表示部21にはさらに多くの画素を設けることもできる。
Note that the number of pixels provided in the display unit 21 can be freely set, but it is preferable that the number is large. For example, when 4K2K video is displayed on the display unit 21, it is preferable to provide 3840 × 2160 pixels or more, or 4096 × 2160 pixels or more. In the case of displaying 8K4K video, it is preferable to provide 7680 × 4320 or more pixels. Further, the display unit 21 can be provided with more pixels.
〔受像装置〕
フロントエンド部33は、外部から入力される信号を受信し、適宜信号処理を行う機能を有する。フロントエンド部33には、例えば所定の方式で符号化され、変調された放送信号などが入力される。フロントエンド部33は、受信した映像信号の復調、アナログ−デジタル変換などを行う機能を備えることができる。また、フロントエンド部33は、エラー訂正を行う機能を有していてもよい。フロントエンド部33によって受信され、信号処理が施されたデータは、デコーダ32に出力される。 [Image receiving device]
Thefront end unit 33 has a function of receiving a signal input from the outside and appropriately performing signal processing. For example, a broadcast signal encoded and modulated by a predetermined method is input to the front end unit 33. The front end unit 33 can have a function of performing demodulation, analog-digital conversion, and the like of the received video signal. Further, the front end unit 33 may have a function of performing error correction. Data received by the front end unit 33 and subjected to signal processing is output to the decoder 32.
フロントエンド部33は、外部から入力される信号を受信し、適宜信号処理を行う機能を有する。フロントエンド部33には、例えば所定の方式で符号化され、変調された放送信号などが入力される。フロントエンド部33は、受信した映像信号の復調、アナログ−デジタル変換などを行う機能を備えることができる。また、フロントエンド部33は、エラー訂正を行う機能を有していてもよい。フロントエンド部33によって受信され、信号処理が施されたデータは、デコーダ32に出力される。 [Image receiving device]
The
デコーダ32は、符号化された信号を復号する機能を有する。フロントエンド部33に入力された映像信号に含まれる画像情報が圧縮されている場合、デコーダ32によって伸長が行われる。例えば、デコーダ32は、エントロピー復号、逆量子化、逆離散コサイン変換(IDCT)や逆離散サイン変換(IDST)などの逆直交変換、フレーム内予測、フレーム間予測などを行う機能を備えることができる。
The decoder 32 has a function of decoding the encoded signal. When the image information included in the video signal input to the front end unit 33 is compressed, the decoder 32 decompresses the image information. For example, the decoder 32 can have functions for performing entropy decoding, inverse quantization, inverse orthogonal transform such as inverse discrete cosine transform (IDCT) and inverse discrete sine transform (IDST), intraframe prediction, and interframe prediction. .
なお、8K4Kテレビ放送における符号化規格には、H.265/MPEG−H High Efficiency Video Coding(以下、HEVCという)が採用されている。フロントエンド部33に入力される放送信号に含まれる画像情報がHEVCに従って符号化されている場合には、デコーダ32によってHEVCに従った復号(デコード)が行われる。
Note that the encoding standard for 8K4K television broadcasting is H.264. H.265 / MPEG-H High Efficiency Video Coding (hereinafter referred to as HEVC) is employed. When the image information included in the broadcast signal input to the front end unit 33 is encoded according to HEVC, the decoder 32 performs decoding (decoding) according to HEVC.
デコーダ32による復号処理により画像データが生成され、処理部31に出力される。
Image data is generated by the decoding process by the decoder 32 and output to the processing unit 31.
処理部31は、デコーダ32から入力された画像データから、画像解像度dと、画像フレーム周波数fとを検出する機能を有する。また、画像解像度dの値と、画像フレーム周波数fの値に応じて、タイミングコントローラ24に出力する制御信号及び画像データを生成する。
The processing unit 31 has a function of detecting the image resolution d and the image frame frequency f from the image data input from the decoder 32. Further, a control signal and image data to be output to the timing controller 24 are generated according to the value of the image resolution d and the value of the image frame frequency f.
また、処理部31は、休止期間においてタイミングコントローラ24、ソース駆動回路22及びゲート駆動回路23への電力の供給を遮断する信号を、タイミングコントローラ24に出力することができる。
Further, the processing unit 31 can output to the timing controller 24 a signal for cutting off the supply of power to the timing controller 24, the source driving circuit 22 and the gate driving circuit 23 during the suspension period.
なお、処理部31は、休止期間において、処理部31内の1以上の回路ブロックへの電源の供給を遮断する機能を有していてもよい。
Note that the processing unit 31 may have a function of interrupting the supply of power to one or more circuit blocks in the processing unit 31 during the suspension period.
処理部31は、演算処理を行うことのできるプロセッサとしての機能を有する。例えば、演算回路、制御回路、メモリ回路、各種インターフェース等を有する構成を用いることができる。
The processing unit 31 has a function as a processor capable of performing arithmetic processing. For example, a configuration including an arithmetic circuit, a control circuit, a memory circuit, various interfaces, and the like can be used.
処理部31としては、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等のプロセッサを用いることができる。また処理部31を、上記プロセッサをFPGA(Field Programmable Gate Array)やFPAA(Field Programmable Analog Array)といったPLD(Programmable Logic Device)によって実現した構成としてもよい。
As the processing unit 31, for example, a processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or a GPU (Graphics Processing Unit) can be used. The processing unit 31 may have a configuration in which the processor is realized by a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) or an FPAA (Field Programmable Analog Array).
特に、処理部31に、GPUを用いると、画像処理を実行する場合に、CPU等を用いた場合に比べて処理速度を格段に高めることができるため好ましい。
Particularly, it is preferable to use a GPU for the processing unit 31 because the processing speed can be remarkably increased when executing image processing as compared with the case where a CPU or the like is used.
プロセッサは、種々のプログラムからの命令を解釈し実行することで、各種のデータ処理やプログラム制御を行う。プロセッサにより実行しうるプログラムは、プロセッサが有するメモリ領域に格納されていてもよいし、別途設けられる記憶装置に格納されていてもよい。
The processor performs various data processing and program control by interpreting and executing instructions from various programs. The program that can be executed by the processor may be stored in a memory area of the processor, or may be stored in a storage device provided separately.
また処理部31は、入力される映像信号に基づいて画像処理を実行する機能を有する、画像処理エンジンとしての機能を有していることが好ましい。
The processing unit 31 preferably has a function as an image processing engine having a function of executing image processing based on an input video signal.
処理部31で実行することのできる画像処理としては、例えばノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理などが挙げられる。色調補正処理や輝度補正処理としては、例えばガンマ補正などがある。
Examples of image processing that can be executed by the processing unit 31 include noise removal processing, gradation conversion processing, color tone correction processing, and luminance correction processing. Examples of the color tone correction process and the brightness correction process include gamma correction.
また、処理部31は、フィルタ処理、エッジ強調処理、解像度のアップコンバートに伴う画素間補間処理、またはフレーム周波数のアップコンバートに伴うフレーム間補間処理などの処理を実行する機能を有していてもよい。
The processing unit 31 may have a function of executing processing such as filter processing, edge enhancement processing, inter-pixel interpolation processing accompanying resolution up-conversion, or inter-frame interpolation processing accompanying frame frequency up-conversion. Good.
例えば、ノイズ除去処理としては、文字などの輪郭の周辺に生じるモスキートノイズ、高速の動画で生じるブロックノイズ、ちらつきを生じるランダムノイズ、解像度のアップコンバートにより生じるドットノイズなどのさまざまなノイズを除去する。
For example, as noise removal processing, various noises such as mosquito noise that occurs around the outline of characters, block noise that occurs in high-speed moving images, random noise that causes flickering, and dot noise that occurs due to resolution up-conversion are removed.
階調変換処理は、画像の階調を表示部21の出力特性に対応した階調へ変換する処理である。例えば階調数を大きくする場合、小さい階調数で入力された画像に対して、各画素に対応する階調値を補間して割り当てることで、ヒストグラムを平滑化する処理を行うことができる。また、ダイナミックレンジを広げる、ハイダイナミックレンジ(HDR)処理も、階調変換処理に含まれる。
The gradation conversion process is a process for converting the gradation of the image into a gradation corresponding to the output characteristics of the display unit 21. For example, when the number of gradations is increased, a process for smoothing the histogram can be performed by interpolating and assigning gradation values corresponding to each pixel to an image input with a small number of gradations. Further, a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
また、画素間補間処理は、解像度をアップコンバートした際に、本来存在しないデータを補間する。例えば、目的の画素の周囲の画素を参照し、それらの中間色を表示するようにデータを補間する。例えば入力される映像信号の解像度が2K(1920×1080)である場合に、解像度を4倍の4K(3840×2160)、または16倍の8K(7680×4320)等にアップコンバートすることができる。
Also, inter-pixel interpolation processing interpolates data that does not exist when the resolution is up-converted. For example, referring to pixels around the target pixel, the data is interpolated so as to display the intermediate colors. For example, when the resolution of the input video signal is 2K (1920 × 1080), the resolution can be up-converted to 4K (4840 (3840 × 2160), 4 times, 8K (7680 × 4320), or 16 times. .
また、色調補正処理は、画像の色調を補正する処理である。また輝度補正処理は、画像の明るさ(輝度コントラスト)を補正する処理である。例えば、表示システム10を有する電子機器が設けられる空間に配置された照明の種類や輝度、または色純度などを検知し、それに応じて表示部21に表示する画像の輝度や色調が最適となるように補正する。または、表示する画像と、あらかじめ保存してある画像リスト内の様々な場面の画像と、を照合し、最も近い場面の画像に適した輝度や色調に表示する画像を補正する機能を有していてもよい。
Also, the color tone correction process is a process for correcting the color tone of the image. The brightness correction process is a process for correcting the brightness (brightness contrast) of the image. For example, the type, brightness, or color purity of the illumination arranged in the space where the electronic device having the display system 10 is provided is detected, and the brightness and color tone of the image displayed on the display unit 21 are optimized accordingly. To correct. Or, it has a function to compare the image to be displayed with the images of various scenes in the image list stored in advance, and to correct the image displayed with brightness and color tone suitable for the image of the closest scene. May be.
また処理部31は、フレーム間補間処理を行う機能を有していてもよい。フレーム間補間処理は、表示する映像のフレーム周波数を増大させる場合に、本来存在しないフレーム(補間フレーム)の画像を生成する処理である。例えば、ある2枚の画像の差分から2枚の画像の間に挿入する補間フレームの画像を生成する。または2枚の画像の間に複数枚の補間フレームの画像を生成することもできる。例えば入力される映像信号のフレーム周波数が60Hzであったとき、複数枚の補間フレームを生成することで、タイミングコントローラに出力する映像信号のフレーム周波数を、2倍の120Hz、または4倍の240Hz、または8倍の480Hzなどに増大させることができる。
The processing unit 31 may have a function of performing inter-frame interpolation processing. The inter-frame interpolation process is a process for generating an image of a frame (interpolation frame) that does not originally exist when the frame frequency of a video to be displayed is increased. For example, an interpolation frame image to be inserted between two images is generated from the difference between two images. Alternatively, an image of a plurality of interpolation frames can be generated between two images. For example, when the frame frequency of the input video signal is 60 Hz, by generating a plurality of interpolated frames, the frame frequency of the video signal output to the timing controller is doubled 120 Hz, or quadrupled 240 Hz, Or it can be increased to 8 times 480 Hz or the like.
またこれらの画像処理に、ニューラルネットワークを用いてもよい。例えばニューラルネットワークにより、映像に含まれる画像データから特徴抽出を行い、処理部31は、抽出された特徴に応じて最適な補正方法を選択することや、または補正に用いるパラメータを選択することができる。または、ニューラルネットワーク自体に画像処理を行う機能を持たせてもよい。すなわち、画像処理を施す前の画像データをニューラルネットワークに入力することで、画像処理が施された画像データを出力させる構成としてもよい。
Further, a neural network may be used for these image processing. For example, by using a neural network, feature extraction is performed from image data included in the video, and the processing unit 31 can select an optimal correction method according to the extracted feature, or can select parameters used for correction. . Alternatively, the neural network itself may have a function of performing image processing. That is, the image data that has been subjected to the image processing may be output by inputting the image data before the image processing to the neural network.
受信部35は、外部から入力されるデータ又は制御信号を受信する機能を有する。受信部35へのデータ又は制御信号の入力には、リモートコントローラ、携帯情報端(スマートフォンやタブレットなど)、表示装置20に設けられた操作ボタンなどを用いることができる。
The receiving unit 35 has a function of receiving data or control signals input from the outside. For inputting data or control signals to the receiving unit 35, a remote controller, a portable information terminal (such as a smartphone or a tablet), an operation button provided on the display device 20, or the like can be used.
図1では、リモートコントローラ41によってデータまたは制御信号が送信される例を示している。
FIG. 1 shows an example in which data or a control signal is transmitted by the remote controller 41.
インターフェース36は、受信部35が受信したデータ又は制御信号に適宜信号処理を施し、制御回路37に出力する機能を有する。
The interface 36 has a function of appropriately performing signal processing on the data or the control signal received by the receiving unit 35 and outputting it to the control circuit 37.
制御回路37は、受像装置30が有する各回路に制御信号を供給する機能を有する。例えば、制御回路37は、処理部31に制御信号を供給する機能を有する。制御回路37による制御は、受信部35が受信した制御信号などに基づいて行うことができる。
The control circuit 37 has a function of supplying a control signal to each circuit included in the image receiving device 30. For example, the control circuit 37 has a function of supplying a control signal to the processing unit 31. The control by the control circuit 37 can be performed based on the control signal received by the receiving unit 35.
図2に示す表示システム10Aは、表示装置20がバックライト25を有する点で、図1の表示システム10と相違している。
2 is different from the display system 10 of FIG. 1 in that the display device 20 has a backlight 25. The display system 10A shown in FIG.
ここで、表示部21に透過型または半透過型の液晶表示装置を用いる場合には、バックライト25は、表示部21の背面に設けられ、表示面側に光を射出することができる。なお、表示部21に反射型の液晶表示装置などの、外光の反射を利用して画像を表示する表示装置が適用される場合には、バックライト25に代えてフロントライトを表示部21の表示面側に配置する構成とすることができる。
Here, when a transmissive or transflective liquid crystal display device is used for the display unit 21, the backlight 25 is provided on the back surface of the display unit 21 and can emit light to the display surface side. When a display device that displays an image using reflection of external light, such as a reflective liquid crystal display device, is applied to the display unit 21, the front light is used instead of the backlight 25. It can be set as the structure arrange | positioned at the display surface side.
ここで、タイミングコントローラ24は、バックライト25を駆動するためのタイミング信号を生成し、出力する機能を有することが好ましい。また、タイミング信号だけでなく、バックライト25の輝度の情報を含む信号を生成、出力する機能を有していてもよい。また、バックライト25をローカルディミング駆動させる場合には、バックライト25が有する駆動回路に供給する信号を生成、出力する機能を有していてもよい。
Here, the timing controller 24 preferably has a function of generating and outputting a timing signal for driving the backlight 25. Further, not only the timing signal but also a function of generating and outputting a signal including luminance information of the backlight 25 may be provided. Further, when the backlight 25 is driven by local dimming, it may have a function of generating and outputting a signal to be supplied to a driving circuit included in the backlight 25.
バックライト25は、表示部21が駆動可能な最大のフレーム周波数よりも高い周波数で駆動できることが好ましい。例えば、120Hz以上、240Hz以上、または480Hz以上の周波数で駆動可能な光源を有することが好ましい。
It is preferable that the backlight 25 can be driven at a frequency higher than the maximum frame frequency that the display unit 21 can drive. For example, it is preferable to have a light source that can be driven at a frequency of 120 Hz or higher, 240 Hz or higher, or 480 Hz or higher.
以上が表示システムの構成例についての説明である。
The above is the description of the configuration example of the display system.
[駆動方法例]
以下では、表示システム10の駆動方法例について説明する。 [Example of driving method]
Below, the example of the drive method of thedisplay system 10 is demonstrated.
以下では、表示システム10の駆動方法例について説明する。 [Example of driving method]
Below, the example of the drive method of the
表示システム10は、入力される映像信号に含まれる画像情報のフレーム周波数に応じて、表示装置20の駆動方法を変更する機能を有する。
The display system 10 has a function of changing the driving method of the display device 20 according to the frame frequency of the image information included in the input video signal.
図3に、表示システム10の駆動方法にかかるタイミングチャートを示す。
FIG. 3 shows a timing chart according to the driving method of the display system 10.
ここでは、表示装置20が駆動可能な最大フレーム周波数Fが240Hzである場合について説明する。このとき、図3に示すように、1フレーム(F)期間は1/240秒となる。図3では、8フレーム期間(1Fから8Fまでの期間)のタイミングチャートを示している。
Here, a case where the maximum frame frequency F that can be driven by the display device 20 is 240 Hz will be described. At this time, as shown in FIG. 3, one frame (F) period is 1/240 seconds. FIG. 3 shows a timing chart of 8 frame periods (periods from 1F to 8F).
図3では、画像フレーム周波数fがフレーム周波数Fと同じ240Hzである場合と、画像フレーム周波数fがフレーム周波数Fの半分である120Hzである場合と、画像フレーム周波数fがフレーム周波数Fの1/4である60Hzである場合を示している。
In FIG. 3, when the image frame frequency f is 240 Hz, which is the same as the frame frequency F, when the image frame frequency f is 120 Hz which is half of the frame frequency F, and when the image frame frequency f is 1/4 of the frame frequency F. The case where it is 60 Hz which is is shown.
また、図3では、書き込み期間(Write)と、休止期間(Break)を示している。
FIG. 3 shows a writing period (Write) and a rest period (Break).
まず、画像フレーム周波数fがフレーム周波数Fと一致する、すなわち画像フレーム周波数fが240Hzである場合、1フレーム期間が一の画像を表示する期間に相当する。このとき、各フレーム期間は全て書き込み期間となる。
First, when the image frame frequency f matches the frame frequency F, that is, when the image frame frequency f is 240 Hz, one frame period corresponds to a period for displaying one image. At this time, each frame period is a writing period.
次に、画像フレーム周波数fがフレーム周波数Fの半分である120Hzのとき、2フレーム期間が一の画像を表示する期間に相当する。このとき、2フレーム期間のうち、前半の1フレームを書き込み期間とし、後半の1フレーム期間を休止期間に設定することができる。
Next, when the image frame frequency f is 120 Hz, which is half of the frame frequency F, two frame periods correspond to a period for displaying one image. At this time, of the two frame periods, the first half frame can be set as a writing period, and the latter half frame period can be set as a pause period.
また、画像フレーム周波数fがフレーム周波数Fの1/4である60Hzのとき、4フレーム期間が一の画像を表示する期間に相当する。このとき、4フレーム期間のうち、最初の1フレーム期間を書き込み期間とし、残りの3フレーム期間を休止期間に設定することができる。
Further, when the image frame frequency f is 60 Hz, which is a quarter of the frame frequency F, 4 frame periods correspond to a period for displaying one image. At this time, of the four frame periods, the first one frame period can be set as the writing period, and the remaining three frame periods can be set as the pause period.
一般化すると、画像フレーム周波数fがフレーム周波数Fの1/2m(mは1以上の整数)を満たすとき、2mフレーム期間が一の画像を表示する期間に相当する。このとき、2mフレーム期間のうち、最初のpフレーム(pは1以上2m−1以下の整数)を書き込み期間とし、残りの2m−pフレームを休止期間に設定することが好ましい。
Generally speaking, when the image frame frequency f satisfies 1/2 m of the frame frequency F (m is an integer of 1 or more), the 2 m frame period corresponds to a period for displaying one image. In this case, among the 2 m-frame period, (the p 1 or 2 m-1 an integer) the first p-frame and the write period, it is preferable to set the remaining 2 m -p frame pause.
特に、上記pが1であることが好ましい。すなわち、2mフレーム期間のうち、最初の1フレームを書き込み期間とし、残りの2m−1フレームを休止期間に設定することが好ましい。
In particular, it is preferable that p is 1. That is, it is preferable to set the first 1 frame out of 2 m frame periods as a writing period and the remaining 2 m −1 frames as a pause period.
画像フレーム周波数fの値によらず、書き込み期間を1フレーム内で完了させることにより、書き込み動作自体を、画像フレーム周波数fの大きさによらず同じとすることができる。そのため、書き込み動作に用いるタイミング信号(クロック信号など)を別途生成するための回路等を追加することなく上記駆動方法を実現できる。
The writing operation itself can be made the same regardless of the size of the image frame frequency f by completing the writing period within one frame regardless of the value of the image frame frequency f. Therefore, the above driving method can be realized without adding a circuit or the like for separately generating a timing signal (clock signal or the like) used for the write operation.
このような駆動方法を用いることで、画像フレーム周波数fが小さいほど、消費電力を低減することができる。
By using such a driving method, the power consumption can be reduced as the image frame frequency f is smaller.
ここで、休止期間において、ソース駆動回路22、ゲート駆動回路23、及びタイミングコントローラ24のうち少なくとも一への電源供給を遮断することが好ましい。特にこれら全てへの電源供給を遮断することが好ましい。これにより、休止期間における消費電力をより低減することができる。
Here, it is preferable to cut off the power supply to at least one of the source driving circuit 22, the gate driving circuit 23, and the timing controller 24 during the suspension period. In particular, it is preferable to cut off the power supply to all of them. Thereby, the power consumption in an idle period can be reduced more.
さらに、休止期間において、受像装置30内の処理部31、及びデコーダ32への電源供給の少なくとも一部を遮断することが好ましい。これにより、休止期間において、表示装置20だけでなく受像装置30の消費電力も低減できる。
Furthermore, it is preferable to cut off at least part of the power supply to the processing unit 31 and the decoder 32 in the image receiving device 30 during the suspension period. Thereby, the power consumption of not only the display device 20 but also the image receiving device 30 can be reduced during the suspension period.
図4には、バックライト25と連動させて、表示装置の最大フレーム周波数Fよりも高いフレーム周波数で画像を表示させる例を示している。図4では、6フレーム期間(1Fから6Fまでの期間)のタイミングチャートを示している。また図4では、書き込み期間(Write)と、休止期間(Break)を示している。
FIG. 4 shows an example in which an image is displayed at a frame frequency higher than the maximum frame frequency F of the display device in conjunction with the backlight 25. FIG. 4 shows a timing chart of 6 frame periods (periods from 1F to 6F). FIG. 4 shows a writing period (Write) and a pause period (Break).
バックライト25は、表示装置20の最大フレーム周波数Fの2倍以上の周波数で点滅させることができる。図4では、バックライト25が点灯する期間(点灯期間)をon、消灯する期間(消灯期間)をoffとして示している。また以降では、バックライトの駆動周波数を周波数fbとする。
The backlight 25 can be blinked at a frequency more than twice the maximum frame frequency F of the display device 20. In FIG. 4, a period during which the backlight 25 is lit (lighting period) is indicated as on, and a period during which the backlight 25 is extinguished (off period) is indicated as off. Further, hereinafter, the backlight driving frequency is assumed to be the frequency fb.
まず、画像フレーム周波数fがフレーム周波数Fと一致する場合、すなわち画像フレーム周波数fが240Hzである場合、受像装置30は、バックライト25が、その2倍である480Hzの周波数fbで駆動するように、タイミングコントローラ24を制御する。
First, when the image frame frequency f matches the frame frequency F, that is, when the image frame frequency f is 240 Hz, the image receiving device 30 is driven so that the backlight 25 is driven at a frequency fb of 480 Hz, which is twice that. The timing controller 24 is controlled.
このとき、表示部21に表示される画像は、疑似的に480Hzで表示されることとなる。そのため、速く動く物体などを表示する場合に好適である。
At this time, the image displayed on the display unit 21 is pseudo-displayed at 480 Hz. Therefore, it is suitable for displaying a fast moving object.
特に、1フレーム期間中に、バックライトの点灯期間と、消灯期間を混在させるように駆動することが好ましい。このように、一の画像と次の画像との間に、バックライトを消灯する期間を設けることで、動画を表示したときの残像が視認されにくくなり、表示品位を向上させることができる。
In particular, it is preferable to drive so that the lighting period of the backlight and the extinguishing period are mixed in one frame period. In this manner, by providing a period during which the backlight is turned off between one image and the next image, an afterimage when displaying a moving image becomes difficult to be visually recognized, and the display quality can be improved.
また、図4に示すように、1フレーム期間中の前半を消灯期間とし、後半を点灯期間とすることが好ましい。特に表示部21に液晶表示装置を用いた場合には、液晶の配向が安定するまでの期間にバックライトが点灯していると、当該期間では正しい階調を表現できない場合がある。そのため、書き込み期間の前半とバックライトの消灯期間とを重畳することで、表示品位を高めることができる。
Further, as shown in FIG. 4, it is preferable that the first half of one frame period is a light-off period and the second half is a light-on period. In particular, when a liquid crystal display device is used for the display unit 21, if the backlight is lit during a period until the liquid crystal alignment is stabilized, a correct gradation may not be expressed in the period. Therefore, display quality can be improved by superimposing the first half of the writing period and the backlight extinguishing period.
次に、画像フレーム周波数fがフレーム周波数Fの半分である120Hzのとき、バックライトの駆動周波数fbを240Hzとすることができる。
Next, when the image frame frequency f is 120 Hz, which is half the frame frequency F, the backlight drive frequency fb can be set to 240 Hz.
このとき、図4に示すように、表示部21の書き込み期間とバックライト25の消灯期間とを重畳させることが好ましい。さらに、表示部21の休止期間とバックライト25の点灯期間とを重畳させることが好ましい。これにより、表示品位を高めることができる。
At this time, it is preferable to overlap the writing period of the display unit 21 and the extinguishing period of the backlight 25 as shown in FIG. Furthermore, it is preferable to overlap the pause period of the display unit 21 and the lighting period of the backlight 25. Thereby, display quality can be improved.
次に、画像フレーム周波数fがフレーム周波数Fの1/4である60Hzのとき、バックライトの駆動周波数fbを120Hzとすることができる。
Next, when the image frame frequency f is 60 Hz, which is 1/4 of the frame frequency F, the backlight drive frequency fb can be set to 120 Hz.
このとき、図4に示すように、バックライト25の消灯期間を表示部21の書き込み期間と重畳するように1フレーム分の期間とし、点灯期間を残りの3フレーム分の休止期間と重畳するように、バックライト25を駆動させることが好ましい。これにより、上記よりも点灯期間の長さが長いため、より明るい表示を行うことができる。
At this time, as shown in FIG. 4, the turn-off period of the backlight 25 is set to a period of one frame so as to overlap with the writing period of the display unit 21, and the lighting period is overlapped with the rest period of the remaining three frames. In addition, it is preferable to drive the backlight 25. Accordingly, since the lighting period is longer than the above, brighter display can be performed.
ここで、バックライト25の駆動周波数fbを、表示装置20のフレーム周波数Fの整数倍とすることが好ましい。これにより、タイミングコントローラ24が表示部21を駆動するためのタイミング信号と、バックライト25を駆動するためのタイミング信号とを同期させることが容易となる。またタイミングコントローラ24の回路構成を簡略化できる。
Here, it is preferable that the drive frequency fb of the backlight 25 is an integer multiple of the frame frequency F of the display device 20. Accordingly, it becomes easy for the timing controller 24 to synchronize the timing signal for driving the display unit 21 and the timing signal for driving the backlight 25. In addition, the circuit configuration of the timing controller 24 can be simplified.
以上が、表示システムの駆動方法についての説明である。
This completes the description of the display system driving method.
[表示装置の構成例]
以下では、表示システム10に好適に用いることのできる表示装置20の構成例について説明する。 [Configuration example of display device]
Below, the structural example of thedisplay apparatus 20 which can be used suitably for the display system 10 is demonstrated.
以下では、表示システム10に好適に用いることのできる表示装置20の構成例について説明する。 [Configuration example of display device]
Below, the structural example of the
図5に、表示部21、ソース駆動回路22、及びゲート駆動回路23のブロック図を示す。
FIG. 5 shows a block diagram of the display unit 21, the source drive circuit 22, and the gate drive circuit 23.
表示部21は、マトリクス状に配置された複数の画素51を有する。画素51は、少なくとも1つの表示素子を有する。また、ソース駆動回路22と電気的に接続されたソース線S、及びゲート駆動回路23と電気的に接続されたゲート線Gとが、それぞれ画素51と電気的に接続されている。
The display unit 21 has a plurality of pixels 51 arranged in a matrix. The pixel 51 has at least one display element. In addition, the source line S electrically connected to the source driving circuit 22 and the gate line G electrically connected to the gate driving circuit 23 are electrically connected to the pixel 51, respectively.
ソース駆動回路22は、複数のセレクタ回路11を有する。また、ゲート駆動回路23は、複数のセレクタ回路12を有する。セレクタ回路11及びセレクタ回路12は、それぞれタイミングコントローラ24からの制御信号により、制御される。
The source drive circuit 22 has a plurality of selector circuits 11. The gate drive circuit 23 includes a plurality of selector circuits 12. The selector circuit 11 and the selector circuit 12 are each controlled by a control signal from the timing controller 24.
セレクタ回路11は、隣接する複数のソース線Sを電気的に接続する機能を有する。ソース駆動回路22は、電気的に接続された複数のソース線Sに、同じ信号を出力することができる。
The selector circuit 11 has a function of electrically connecting a plurality of adjacent source lines S. The source driving circuit 22 can output the same signal to a plurality of electrically connected source lines S.
また、セレクタ回路12は、隣接する複数のゲート線Gを電気的に接続する機能を有する。ゲート駆動回路23は、電気的に接続された複数のゲート線Gに、同じ信号を出力することができる。
The selector circuit 12 has a function of electrically connecting a plurality of adjacent gate lines G. The gate drive circuit 23 can output the same signal to a plurality of electrically connected gate lines G.
〔セレクタ回路の構成例〕
次に、図6を用いて、セレクタ回路11及びセレクタ回路12のより具体的な構成例を説明する。図6では、セレクタ回路11に4本のソース線(ソース線S[1]~S[4])が接続され、セレクタ回路12に4本のゲート線(ゲート線G[1]~G[4])が接続される例を示している。 [Configuration example of selector circuit]
Next, a more specific configuration example of theselector circuit 11 and the selector circuit 12 will be described with reference to FIG. In FIG. 6, four source lines (source lines S [1] to S [4]) are connected to the selector circuit 11, and four gate lines (gate lines G [1] to G [4] are connected to the selector circuit 12. ]) Shows an example of connection.
次に、図6を用いて、セレクタ回路11及びセレクタ回路12のより具体的な構成例を説明する。図6では、セレクタ回路11に4本のソース線(ソース線S[1]~S[4])が接続され、セレクタ回路12に4本のゲート線(ゲート線G[1]~G[4])が接続される例を示している。 [Configuration example of selector circuit]
Next, a more specific configuration example of the
セレクタ回路11とセレクタ回路12とは、接続される配線が異なる以外では同様の構成を有する。
The selector circuit 11 and the selector circuit 12 have the same configuration except that the wiring to be connected is different.
セレクタ回路11は、スイッチSW1、スイッチSW2、及びスイッチSW3を有する。またセレクタ回路11には、配線S0[1]乃至S0[4]が接続される。配線S0[1]乃至S0[4]は、それぞれビデオ信号が供給される配線である。
The selector circuit 11 includes a switch SW1, a switch SW2, and a switch SW3. The selector circuit 11 is connected to wirings S 0 [1] to S 0 [4]. The wirings S 0 [1] to S 0 [4] are wirings through which video signals are supplied.
スイッチSW1は、ソース線S[2]と接続される配線を、配線S0[1]と配線S0[2]の間で切り替える機能を有する。
The switch SW1 has a function of switching a wiring connected to the source line S [2] between the wiring S 0 [1] and the wiring S 0 [2].
スイッチSW2は、ソース線S[3]と接続される配線を、配線S0[1]と配線S0[3]の間で切り替える機能を有する。
The switch SW2 has a function of switching a wiring connected to the source line S [3] between the wiring S 0 [1] and the wiring S 0 [3].
スイッチSW3は、ソース線S[4]と接続される配線を、配線S0[1]、配線S0[3]、及び配線S0[4]の間で切り替える機能を有する。
The switch SW3 has a function of switching a wiring connected to the source line S [4] among the wiring S 0 [1], the wiring S 0 [3], and the wiring S 0 [4].
なお、配線S0[1]~配線S0[4]、ソース線S[1]~ソース線S[4]の寄生容量及び寄生抵抗を均等にするため、スイッチSW1~スイッチSW3を同様のレイアウトとしてもよい。すなわち、スイッチSW1、スイッチSW2にダミーのスイッチを設けて、スイッチSW3と同じ数のスイッチを設ける構成としてもよい。さらに、配線S0[1]とソース線S[1]との間に当該スイッチSW1~スイッチSW3と同様のスイッチを設けてもよい。
Note that the switches SW1 to SW3 have the same layout in order to make the parasitic capacitances and parasitic resistances of the wirings S 0 [1] to S 0 [4] and the source lines S [1] to S [4] uniform. It is good. That is, a dummy switch may be provided in the switches SW1 and SW2, and the same number of switches as the switch SW3 may be provided. Further, a switch similar to the switches SW1 to SW3 may be provided between the wiring S 0 [1] and the source line S [1].
セレクタ回路12は、スイッチSW4、スイッチSW5、及びスイッチSW6を有する。またセレクタ回路12には、配線G0[1]乃至G0[4]が接続される。配線G0[1]乃至G0[4]は、それぞれ選択信号(ゲート信号、走査信号ともいう)が供給される配線である。
The selector circuit 12 includes a switch SW4, a switch SW5, and a switch SW6. In addition, wirings G 0 [1] to G 0 [4] are connected to the selector circuit 12. The wirings G 0 [1] to G 0 [4] are wirings to which a selection signal (also referred to as a gate signal or a scanning signal) is supplied.
セレクタ回路12が有する各スイッチの接続関係は、上記セレクタ回路11において、スイッチSW1をスイッチSW4に、スイッチSW2をスイッチSW5に、スイッチSW3をスイッチSW6に、配線S0[1]を配線G0[1]に、配線S0[2]を配線G0[2]に、配線S0[3]を配線G0[3]に、配線S0[4]を配線G0[4]に、それぞれ置き換えたものとなる。
In the selector circuit 11, the switch SW1 is switched to the switch SW4, the switch SW2 is switched to the switch SW5, the switch SW3 is switched to the switch SW6, and the wiring S 0 [1] is connected to the wiring G 0 [ 1], the wiring S 0 [2] is the wiring G 0 [2], the wiring S 0 [3] is the wiring G 0 [3], and the wiring S 0 [4] is the wiring G 0 [4]. It will be replaced.
〔動作方法例〕
次に、図6に示すセレクタ回路11及びセレクタ回路12の動作方法の一例について説明する。 [Example of operation]
Next, an example of an operation method of theselector circuit 11 and the selector circuit 12 illustrated in FIG. 6 will be described.
次に、図6に示すセレクタ回路11及びセレクタ回路12の動作方法の一例について説明する。 [Example of operation]
Next, an example of an operation method of the
ここでは、表示部21の解像度Dを8K4K(画素数7680×4320)とし、表示装置20に入力される画像データの画像解像度を、8K4K、4K2K(画素数3840×2160)及びFHD(画素数1920×1080)の3種類とした場合について説明する。すなわち、解像度Dと画像解像度dとが、それぞれd=D、d=D/22、d=D/24の関係を満たす場合について説明する。
Here, the resolution D of the display unit 21 is 8K4K (number of pixels: 7680 × 4320), and the image resolution of image data input to the display device 20 is 8K4K, 4K2K (number of pixels: 3840 × 2160), and FHD (number of pixels: 1920). A case of three types of × 1080) will be described. That is, the case where the resolution D and the image resolution d satisfy the relationships d = D, d = D / 2 2 , and d = D / 2 4 will be described.
表1には、画像解像度dに対する、ソース線S[1]乃至S[4]及びゲート線G[1]乃至G[4]が接続する配線の対応を示している。セレクタ回路11及びセレクタ回路12は、それぞれ表1に示すような接続関係となるように制御される。
Table 1 shows the correspondence of the lines connected to the source lines S [1] to S [4] and the gate lines G [1] to G [4] with respect to the image resolution d. The selector circuit 11 and the selector circuit 12 are controlled so as to have a connection relationship as shown in Table 1, respectively.
まず、画像解像度dと解像度Dの関係がd=Dを満たす場合、各ソース線はそれぞれ異なる配線と接続される。これにより、各ソース線にはそれぞれ異なるビデオ信号が入力される。同様に、各ゲート線はそれぞれ異なる配線と接続される。これにより、各ゲート線が順次選択されることとなる。
First, when the relationship between the image resolution d and the resolution D satisfies d = D, each source line is connected to a different wiring. As a result, different video signals are input to the respective source lines. Similarly, each gate line is connected to a different wiring. Thereby, each gate line is sequentially selected.
続いて、画像解像度dと解像度Dの関係がd=D/22を満たす場合、隣接する2つのソース線が1つの配線と接続される。これにより、隣接する2つのソース線には、それぞれ同じ配線から、同じビデオ信号が入力される。また、隣接する2つのゲート線が1つの配線と接続される。これにより、隣接する2つのゲート線ごとに、順次選択されることとなる。
Subsequently, the relationship between image resolution d and resolution D may satisfy d = D / 2 2, two adjacent source lines are connected to one wiring. As a result, the same video signal is input to the two adjacent source lines from the same wiring. Two adjacent gate lines are connected to one wiring. As a result, the two adjacent gate lines are sequentially selected.
このとき、表示部21が有する複数の画素51のうち、2×2個の画素毎に、同じビデオ信号が入力され、その4つの画素51はそれぞれ同じ階調を表示することができる。これにより、解像度のアップコンバートなどの画像補正を行わなくても、解像度が表示部21の解像度の1/22である画像を歪むことなく表示することができる。
At this time, the same video signal is input for every 2 × 2 pixels among the plurality of pixels 51 included in the display unit 21, and the four pixels 51 can each display the same gradation. Thus, even without image correction, such as the resolution of the up-conversion, it is possible resolution is displayed without distortion the image is 1/2 second resolution of the display unit 21.
続いて、画像解像度dと解像度Dの関係がd=D/24を満たす場合、隣接する4つのソース線が1つの配線と接続され、これら4つのソース線に同じビデオ信号が入力される。同様に、隣接する4つのゲート線が1つの配線と接続され、これら4つのゲート線ごとに、順次選択されることとなる。
Subsequently, when the relationship between the image resolution d and the resolution D satisfies d = D / 2 4 , four adjacent source lines are connected to one wiring, and the same video signal is input to these four source lines. Similarly, four adjacent gate lines are connected to one wiring, and the four gate lines are sequentially selected.
このとき、表示部21が有する複数の画素51のうち、4×4個の画素毎に同じビデオ信号が入力され、その16個の画素51はそれぞれ同じ階調を表示することができる。これにより、画像補正を行わなくても、解像度が表示部21の解像度の1/24である画像を歪むことなく表示することができる。
At this time, among the plurality of pixels 51 included in the display unit 21, the same video signal is input for every 4 × 4 pixels, and the 16 pixels 51 can each display the same gradation. Thus, even without image correction, it is possible resolution is displayed without distortion the image is 1/2 4 resolution of the display unit 21.
なお、ここではセレクタ回路11及びセレクタ回路12が、ソース線及びゲート線を最大4本まで接続可能な構成である例を示したが、これに限られず、最大で2k本(kは1以上の整数)のソース線またはゲート線を接続可能な構成とすることができる。
Here, an example is shown in which the selector circuit 11 and the selector circuit 12 are configured to connect up to four source lines and gate lines. However, the present invention is not limited to this, and the maximum number is 2 k (k is 1 or more). A source line or a gate line can be connected.
より具体的には、例えば、画像解像度をd、表示部の解像度をDとしたとき、d=D/22n(nは1以上の整数)を満たす場合に、セレクタ回路11は、隣接する2n本のソース線に同じデータを書き込み、セレクタ回路12は、隣接する2n本のゲート線を同時に選択するように、制御される構成とすることができる。ここで画像解像度d及び解像度Dは、有効画素数の総数、すなわち水平解像度と垂直解像度の積を表す。
More specifically, for example, when the image resolution is d and the resolution of the display unit is D, when d = D / 2 2n (n is an integer equal to or greater than 1), the selector circuit 11 is adjacent to 2 The same data is written to n source lines, and the selector circuit 12 can be controlled so as to simultaneously select 2 n gate lines adjacent to each other. Here, the image resolution d and the resolution D represent the total number of effective pixels, that is, the product of the horizontal resolution and the vertical resolution.
または、画像の垂直解像度または水平解像度が、表示部の垂直解像度または水平解像度に対して1/2n’(n’は1以上の整数)を満たす場合に、セレクタ回路11は、隣接する2n’本のソース線に同じデータを書き込み、セレクタ回路12は隣接する2n’本のゲート線を同時に選択するように制御される構成とすることができる。
Alternatively, when the vertical resolution or horizontal resolution of the image satisfies 1/2 n ′ (n ′ is an integer equal to or greater than 1) with respect to the vertical resolution or horizontal resolution of the display unit, the selector circuit 11 sets the adjacent 2 n The same data can be written to “ one source line”, and the selector circuit 12 can be controlled to select adjacent 2 n ′ gate lines simultaneously.
このようなセレクタ回路11及びセレクタ回路12を有する表示装置20は、入力される画像データの画像解像度dが表示部21の解像度Dよりも小さい場合であっても、解像度のアップコンバート等の画像補正を行うことなく、表示することができる。
The display device 20 having such a selector circuit 11 and the selector circuit 12 can perform image correction such as resolution up-conversion even when the image resolution d of the input image data is smaller than the resolution D of the display unit 21. It is possible to display without performing.
以上が表示装置の構成例についての説明である。
The above is the description of the configuration example of the display device.
本実施の形態で例示した表示システムは、入力されるコンテンツの画像解像度やフレーム周波数に応じて、最適な消費電力で最適な表示を行うことができる。
The display system exemplified in this embodiment can perform optimal display with optimal power consumption according to the image resolution and frame frequency of input content.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態2)
本実施の形態では、上記実施の形態で例示した表示システムに用いることのできるプロセッサの構成例について説明する。 (Embodiment 2)
In this embodiment, a configuration example of a processor that can be used for the display system described in the above embodiment will be described.
本実施の形態では、上記実施の形態で例示した表示システムに用いることのできるプロセッサの構成例について説明する。 (Embodiment 2)
In this embodiment, a configuration example of a processor that can be used for the display system described in the above embodiment will be described.
以下で例示するプロセッサは、一時的に電源の供給を停止することが可能で、且つ、電源の供給が再開されたときに、電源の供給の停止前の状態に復帰することのできるプロセッサである。このようなプロセッサを例えば図1で例示した処理部31に用いることで、休止期間中に電源供給を停止し、消費電力を抑えることが可能となる。
The processor exemplified below is a processor that can temporarily stop the supply of power and can return to the state before the stop of the supply of power when the supply of power is resumed. . By using such a processor for the processing unit 31 illustrated in FIG. 1, for example, it is possible to stop power supply during the suspension period and suppress power consumption.
また、以下で例示するレジスタとして用いることのできる記憶素子は、処理部31だけでなく、タイミングコントローラ24、ソース駆動回路22、またはゲート駆動回路23等にも適用することができる。これにより、休止期間中のパワーゲーティングを容易に実行することができる。
Further, a memory element that can be used as a register exemplified below can be applied not only to the processing unit 31 but also to the timing controller 24, the source driver circuit 22, the gate driver circuit 23, and the like. Thereby, power gating during a rest period can be easily performed.
図7は、プロセッサの一例の構成を示すブロック図である。
FIG. 7 is a block diagram illustrating an exemplary configuration of a processor.
図7に示すプロセッサは、基板1190上に、ALU1191(ALU:Arithmetic logic unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198(Bus I/F)、書き換え可能なROM1199、およびROMインターフェース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。ROM1199およびROMインターフェース1189は、別チップに設けてもよい。もちろん、図7に示すプロセッサは、その構成を簡略化して示した一例にすぎず、実際のプロセッサはその用途によって多種多様な構成を有している。例えば、図7に示すプロセッサまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成としてもよい。また、プロセッサが内部演算回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。
The processor shown in FIG. 7 includes an ALU 1191 (ALU: Arithmetic logic unit, arithmetic circuit), an ALU controller 1192, an instruction decoder 1193, an interrupt controller 1194, a timing controller 1195, a register 1196, a register controller 1197, and a bus interface 1198 on a substrate 1190. (Bus I / F), rewritable ROM 1199, and ROM interface 1189 (ROM I / F). As the substrate 1190, a semiconductor substrate, an SOI substrate, a glass substrate, or the like is used. The ROM 1199 and the ROM interface 1189 may be provided in separate chips. Needless to say, the processor illustrated in FIG. 7 is only an example in which the configuration is simplified, and an actual processor may have various configurations depending on the application. For example, the configuration including the processor or the arithmetic circuit illustrated in FIG. 7 may be a single core, and a plurality of the cores may be included, and each core may operate in parallel. Further, the number of bits that the processor can handle with the internal arithmetic circuit and the data bus can be, for example, 8 bits, 16 bits, 32 bits, 64 bits, and the like.
バスインターフェース1198を介してプロセッサに入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。
Instructions input to the processor via the bus interface 1198 are input to the instruction decoder 1193, decoded, and then input to the ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195.
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、プロセッサのプログラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、プロセッサの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
The ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195 perform various controls based on the decoded instructions. Specifically, the ALU controller 1192 generates a signal for controlling the operation of the ALU 1191. The interrupt controller 1194 determines and processes an interrupt request from an external input / output device or a peripheral circuit from the priority or mask state during execution of the processor program. The register controller 1197 generates an address of the register 1196, and reads / writes data from / to the register 1196 according to the state of the processor.
また、タイミングコントローラ1195は、ALU1191、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、およびレジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタイミングコントローラ1195は、基準クロック信号を元に、内部クロック信号を生成する内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。
Also, the timing controller 1195 generates a signal for controlling the operation timing of the ALU 1191, the ALU controller 1192, the instruction decoder 1193, the interrupt controller 1194, and the register controller 1197. For example, the timing controller 1195 includes an internal clock generation unit that generates an internal clock signal based on the reference clock signal, and supplies the internal clock signal to the various circuits.
図7に示すプロセッサでは、レジスタ1196に、メモリセルが設けられている。
In the processor shown in FIG. 7, the register 1196 is provided with a memory cell.
図7に示すプロセッサにおいて、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる。
In the processor shown in FIG. 7, the register controller 1197 selects a holding operation in the register 1196 in accordance with an instruction from the ALU 1191. That is, whether to hold data by a flip-flop or to hold data by a capacitor in a memory cell included in the register 1196 is selected. When data retention by the flip-flop is selected, the power supply voltage is supplied to the memory cell in the register 1196. When holding of data in the capacitor is selected, data is rewritten to the capacitor and supply of power supply voltage to the memory cells in the register 1196 can be stopped.
図8は、レジスタ1196として用いることのできる記憶素子の回路図の一例である。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮断で記憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と、論理素子1206と、容量素子1207と、選択機能を有する回路1220と、を有する。回路1202は、容量素子1208と、トランジスタ1209と、トランジスタ1210と、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、インダクタなどのその他の素子をさらに有していてもよい。
FIG. 8 is an example of a circuit diagram of a memory element that can be used as the register 1196. The memory element 1200 includes a circuit 1201 in which stored data is volatilized by power-off, a circuit 1202 in which stored data is not volatilized by power-off, a switch 1203, a switch 1204, a logic element 1206, a capacitor 1207, and a selection function. Circuit 1220 having. The circuit 1202 includes a capacitor 1208, a transistor 1209, and a transistor 1210. Note that the memory element 1200 may further include other elements such as a diode, a resistance element, and an inductor, as necessary.
ここで、記憶素子1200への電源電圧の供給が停止した際、回路1202のトランジスタ1209のゲートには接地電位(0V)、またはトランジスタ1209がオフする電位が入力され続ける構成とする。例えば、トランジスタ1209のゲートが抵抗等の負荷を介して接地される構成とする。
Here, when supply of the power supply voltage to the memory element 1200 is stopped, a ground potential (0 V) or a potential at which the transistor 1209 is turned off is continuously input to the gate of the transistor 1209 of the circuit 1202. For example, the gate of the transistor 1209 is grounded through a load such as a resistor.
スイッチ1203は、一導電型(例えば、nチャネル型)のトランジスタ1213を用いて構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)のトランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の端子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第2の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203はトランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1213のオン状態またはオフ状態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとドレインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソースとドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1214のオン状態またはオフ状態)が選択される。
The switch 1203 is configured using a transistor 1213 of one conductivity type (eg, n-channel type), and the switch 1204 is configured using a transistor 1214 of conductivity type (eg, p-channel type) opposite to the one conductivity type. An example is shown. Here, the first terminal of the switch 1203 corresponds to one of the source and the drain of the transistor 1213, the second terminal of the switch 1203 corresponds to the other of the source and the drain of the transistor 1213, and the switch 1203 corresponds to the gate of the transistor 1213. In accordance with the control signal RD input to the second terminal, conduction or non-conduction between the first terminal and the second terminal (that is, the on state or the off state of the transistor 1213) is selected. The first terminal of the switch 1204 corresponds to one of the source and the drain of the transistor 1214, the second terminal of the switch 1204 corresponds to the other of the source and the drain of the transistor 1214, and the switch 1204 is input to the gate of the transistor 1214. The control signal RD selects the conduction or non-conduction between the first terminal and the second terminal (that is, the on state or the off state of the transistor 1214).
トランジスタ1209のソースとドレインの一方は、容量素子1208の一対の電極のうちの一方、およびトランジスタ1210のゲートと電気的に接続される。ここで、接続部分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1208の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。
One of the source and the drain of the transistor 1209 is electrically connected to one of the pair of electrodes of the capacitor 1208 and the gate of the transistor 1210. Here, the connection part is referred to as a node M2. One of a source and a drain of the transistor 1210 is electrically connected to a wiring that can supply a low power supply potential (eg, a GND line), and the other is connected to the first terminal of the switch 1203 (the source and the drain of the transistor 1213 On the other hand). A second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) is electrically connected to a first terminal of the switch 1204 (one of the source and the drain of the transistor 1214). A second terminal of the switch 1204 (the other of the source and the drain of the transistor 1214) is electrically connected to a wiring that can supply the power supply potential VDD. A second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213), a first terminal of the switch 1204 (one of a source and a drain of the transistor 1214), an input terminal of the logic element 1206, and the capacitor 1207 One of the pair of electrodes is electrically connected. Here, the connection part is referred to as a node M1. The other of the pair of electrodes of the capacitor 1207 can be configured to receive a constant potential. For example, a low power supply potential (such as GND) or a high power supply potential (such as VDD) can be input. The other of the pair of electrodes of the capacitor 1207 is electrically connected to a wiring (eg, a GND line) that can supply a low power supply potential. The other of the pair of electrodes of the capacitor 1208 can have a constant potential. For example, a low power supply potential (such as GND) or a high power supply potential (such as VDD) can be input. The other of the pair of electrodes of the capacitor 1208 is electrically connected to a wiring (eg, a GND line) that can supply a low power supply potential.
なお、容量素子1207および容量素子1208は、トランジスタや配線の寄生容量等を積極的に利用することによって省略することも可能である。
Note that the capacitor 1207 and the capacitor 1208 can be omitted by actively using parasitic capacitances of transistors and wirings.
トランジスタ1209の第1ゲート(第1のゲート電極)には、制御信号WEが入力される。スイッチ1203およびスイッチ1204は、制御信号WEとは異なる制御信号RDによって第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態となる。
The control signal WE is input to the first gate (first gate electrode) of the transistor 1209. The switch 1203 and the switch 1204 are selected to be in a conductive state or a non-conductive state between the first terminal and the second terminal by a control signal RD different from the control signal WE. When the terminals of the other switch are in a conductive state, the first terminal and the second terminal of the other switch are in a non-conductive state.
トランジスタ1209のソースとドレインの他方には、回路1201に保持されたデータに対応する信号が入力される。図8では、回路1201から出力された信号が、トランジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206によってその論理値が反転された反転信号となり、回路1220を介して回路1201に入力される。
A signal corresponding to data held in the circuit 1201 is input to the other of the source and the drain of the transistor 1209. FIG. 8 illustrates an example in which the signal output from the circuit 1201 is input to the other of the source and the drain of the transistor 1209. A signal output from the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) is an inverted signal obtained by inverting the logic value by the logic element 1206 and is input to the circuit 1201 through the circuit 1220. .
なお、図8では、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206および回路1220を介して回路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号を当該ノードに入力することができる。
Note that FIG. 8 illustrates an example in which a signal output from the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) is input to the circuit 1201 through the logic element 1206 and the circuit 1220. It is not limited to. A signal output from the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) may be input to the circuit 1201 without inversion of the logical value. For example, when there is a node in the circuit 1201 that holds a signal in which the logical value of the signal input from the input terminal is inverted, the second terminal of the switch 1203 (the other of the source and the drain of the transistor 1213) An output signal can be input to the node.
また、図8において、記憶素子1200に用いられるトランジスタのうち、トランジスタ1209以外のトランジスタは、酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることができる。例えば、シリコン層またはシリコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子1200に用いられるトランジスタ全てを、チャネルが酸化物半導体層で形成されるトランジスタとすることもできる。または、記憶素子1200は、トランジスタ1209以外にも、チャネルが酸化物半導体層で形成されるトランジスタを含んでいてもよく、残りのトランジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることもできる。
In FIG. 8, among the transistors used for the memory element 1200, the transistors other than the transistor 1209 can be transistors in which a channel is formed in a layer formed of a semiconductor other than an oxide semiconductor or the substrate 1190. For example, a transistor in which a channel is formed in a silicon layer or a silicon substrate can be used. Further, all the transistors used for the memory element 1200 can be transistors whose channel is formed using an oxide semiconductor layer. Alternatively, the memory element 1200 may include a transistor whose channel is formed using an oxide semiconductor layer in addition to the transistor 1209, and the remaining transistors may be formed in a layer formed using a semiconductor other than an oxide semiconductor or the substrate 1190. It can also be a formed transistor.
図8における回路1201には、例えばフリップフロップ回路を用いることができる。また、回路1201には、信号CLK、RES、Qが入力され、また回路1220を介して信号Dが入力される。また、論理素子1206としては、例えばインバータやクロックドインバータ等を用いることができる。
For example, a flip-flop circuit can be used for the circuit 1201 in FIG. Further, signals CLK, RES, and Q are input to the circuit 1201, and a signal D is input through the circuit 1220. As the logic element 1206, for example, an inverter, a clocked inverter, or the like can be used.
本発明の一態様の半導体装置では、記憶素子1200に電源電圧が供給されない間は、回路1201に記憶されていたデータを、回路1202に設けられた容量素子1208によって保持することができる。
In the semiconductor device of one embodiment of the present invention, data stored in the circuit 1201 can be held by the capacitor 1208 provided in the circuit 1202 while the power supply voltage is not supplied to the memory element 1200.
また、酸化物半導体層にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例えば、酸化物半導体層にチャネルが形成されるトランジスタのオフ電流は、結晶性を有するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。そのため、当該トランジスタをトランジスタ1209として用いることによって、記憶素子1200に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわたり保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(データ)を保持することが可能である。
In addition, a transistor in which a channel is formed in an oxide semiconductor layer has extremely low off-state current. For example, the off-state current of a transistor in which a channel is formed in an oxide semiconductor layer is significantly lower than the off-state current of a transistor in which a channel is formed in crystalline silicon. Therefore, by using the transistor as the transistor 1209, the signal held in the capacitor 1208 is maintained for a long time even when the power supply voltage is not supplied to the memory element 1200. In this manner, the memory element 1200 can hold stored data (data) even while the supply of power supply voltage is stopped.
また、スイッチ1203およびスイッチ1204を設けることによって、プリチャージ動作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が元のデータを保持しなおすまでの時間を短くすることができる。
Further, by providing the switch 1203 and the switch 1204, the memory element is characterized by performing a precharge operation; therefore, after the supply of power supply voltage is resumed, the time until the circuit 1201 retains the original data again is shortened. be able to.
また、回路1202において、容量素子1208によって保持された信号はトランジスタ1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再開された後、容量素子1208によって保持された信号に応じて、トランジスタ1210の状態(オン状態、またはオフ状態)が決まり、回路1202から読み出すことができる。それ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信号を正確に読み出すことが可能である。
In the circuit 1202, the signal held by the capacitor 1208 is input to the gate of the transistor 1210. Therefore, after the supply of the power supply voltage to the memory element 1200 is restarted, the state (on state or off state) of the transistor 1210 is determined in accordance with the signal held by the capacitor 1208, and data can be read from the circuit 1202. it can. Therefore, the original signal can be accurately read even if the potential corresponding to the signal held in the capacitor 1208 slightly fluctuates.
このような記憶素子1200を、プロセッサが有するレジスタやキャッシュメモリなどの記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐことができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、または複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を抑えることができる。
By using such a storage element 1200 for a storage device such as a register or a cache memory included in the processor, it is possible to prevent data in the storage device from being lost due to the supply of power supply voltage being stopped. In addition, after the supply of the power supply voltage is resumed, the state before the power supply stop can be restored in a short time. Accordingly, power can be stopped in a short time in the entire processor or in one or a plurality of logic circuits constituting the processor, so that power consumption can be suppressed.
本実施の形態では、記憶素子1200をプロセッサに用いる例として説明したが、記憶素子1200は、DSP(Digital Signal Processor)、カスタムLSI、PLD(Programmable Logic Device)等のLSI、RF−ID(Radio Frequency Identification)にも応用可能である。
In this embodiment, the memory element 1200 is described as an example of use for a processor. However, the memory element 1200 is an LSI such as a DSP (Digital Signal Processor), a custom LSI, or a PLD (Programmable Logic Device), and an RF-ID (Radio Frequency). (Identification).
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態3)
本実施の形態においては、先の実施の形態で例示した表示システムに適用可能な表示装置の一例について説明を行う。 (Embodiment 3)
In this embodiment, an example of a display device applicable to the display system illustrated in the above embodiment will be described.
本実施の形態においては、先の実施の形態で例示した表示システムに適用可能な表示装置の一例について説明を行う。 (Embodiment 3)
In this embodiment, an example of a display device applicable to the display system illustrated in the above embodiment will be described.
[構成例]
図9(A)は、表示装置の一例を示す上面図である。図9(A)に示す表示装置700は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドライバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の基板701と第2の基板705は、シール材712によって封止されている。すなわち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は、第1の基板701とシール材712と第2の基板705によって封止されている。なお、図9(A)には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる。 [Configuration example]
FIG. 9A is a top view illustrating an example of a display device. Adisplay device 700 illustrated in FIG. 9A includes a pixel portion 702 provided over a first substrate 701, a source driver circuit portion 704 and a gate driver circuit portion 706 provided over the first substrate 701, and a pixel. A sealant 712 disposed so as to surround the portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706, and a second substrate 705 provided so as to face the first substrate 701. Note that the first substrate 701 and the second substrate 705 are sealed with a sealant 712. That is, the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 are sealed with the first substrate 701, the sealant 712, and the second substrate 705. Note that although not illustrated in FIG. 9A, a display element is provided between the first substrate 701 and the second substrate 705.
図9(A)は、表示装置の一例を示す上面図である。図9(A)に示す表示装置700は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドライバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の基板701と第2の基板705は、シール材712によって封止されている。すなわち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は、第1の基板701とシール材712と第2の基板705によって封止されている。なお、図9(A)には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる。 [Configuration example]
FIG. 9A is a top view illustrating an example of a display device. A
また、表示装置700は、第1の基板701上のシール材712によって囲まれている領域とは異なる領域に、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706のそれぞれに電気的に接続されるFPC端子部708(FPC:Flexible printed circuit)が設けられる。また、FPC端子部708には、FPC716が接続され、FPC716によって画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708には、信号線710が各々接続されている。FPC716により供給される各種信号等は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708に与えられる。
In addition, the display device 700 is electrically connected to each of the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 in a region different from the region surrounded by the sealant 712 over the first substrate 701. FPC terminal portion 708 (FPC: Flexible printed circuit) is provided. In addition, an FPC 716 is connected to the FPC terminal portion 708, and various signals are supplied to the pixel portion 702, the source driver circuit portion 704, and the gate driver circuit portion 706 by the FPC 716. A signal line 710 is connected to each of the pixel portion 702, the source driver circuit portion 704, the gate driver circuit portion 706, and the FPC terminal portion 708. Various signals and the like supplied by the FPC 716 are supplied to the pixel portion 702, the source driver circuit portion 704, the gate driver circuit portion 706, and the FPC terminal portion 708 through the signal line 710.
また、表示装置700にゲートドライバ回路部706を複数設けてもよい。また、表示装置700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成してもよい、またはソースドライバ回路部704のみを第1の基板701に形成してもよい。この場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結晶半導体膜または多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に形成する構成としてもよい。なお、別途形成した駆動回路基板の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法などを用いることができる。
Further, a plurality of gate driver circuit portions 706 may be provided in the display device 700. In addition, as the display device 700, an example in which the source driver circuit portion 704 and the gate driver circuit portion 706 are formed over the same first substrate 701 as the pixel portion 702 is shown; however, the display device 700 is not limited to this structure. For example, only the gate driver circuit portion 706 may be formed on the first substrate 701, or only the source driver circuit portion 704 may be formed on the first substrate 701. In this case, a substrate on which a source driver circuit, a gate driver circuit, or the like is formed (for example, a driver circuit substrate formed of a single crystal semiconductor film or a polycrystalline semiconductor film) may be formed over the first substrate 701. . Note that a connection method of a separately formed drive circuit board is not particularly limited, and a COG (Chip On Glass) method, a wire bonding method, or the like can be used.
また、表示装置700は、様々な素子を有することができる。該素子の一例としては、例えば、エレクトロルミネッセンス(EL)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子、LEDなど)、発光トランジスタ素子(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクトロウェッティング素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャッター(DMS)素子、インターフェロメトリック・モジュレーション(IMOD)素子など)、圧電セラミックディスプレイなどが挙げられる。
In addition, the display device 700 can include various elements. Examples of the element include, for example, an electroluminescence (EL) element (an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element, an LED, and the like), a light-emitting transistor element (a transistor that emits light in response to current), an electron Emission element, liquid crystal element, electronic ink element, electrophoretic element, electrowetting element, plasma display panel (PDP), MEMS (micro electro mechanical system) display (for example, grating light valve (GLV), digital micromirror Devices (DMD), digital micro shutter (DMS) elements, interferometric modulation (IMOD) elements, etc.), piezoelectric ceramic displays, and the like.
また、EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク素子又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
An example of a display device using an EL element is an EL display. As an example of a display device using an electron-emitting device, there is a field emission display (FED), a SED type flat display (SED: Surface-conduction Electron-emitter Display), or the like. As an example of a display device using a liquid crystal element, there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like. An example of a display device using an electronic ink element or an electrophoretic element is electronic paper. Note that in the case of realizing a transflective liquid crystal display or a reflective liquid crystal display, part or all of the pixel electrode may have a function as a reflective electrode. For example, part or all of the pixel electrode may have aluminum, silver, or the like. Further, in that case, a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用することもできる。
Note that as a display method in the display device 700, a progressive method, an interlace method, or the like can be used. Further, the color elements controlled by the pixels when performing color display are not limited to three colors of RGB (R represents red, G represents green, and B represents blue). For example, it may be composed of four pixels: an R pixel, a G pixel, a B pixel, and a W (white) pixel. Alternatively, as in a pen tile arrangement, one color element may be configured by two colors of RGB, and two different colors may be selected and configured depending on the color element. Alternatively, one or more colors such as yellow, cyan, and magenta may be added to RGB. The size of the display area may be different for each dot of the color element. Note that the disclosed invention is not limited to a display device for color display, and can be applied to a display device for monochrome display.
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともいう。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領域における白色光を直接表示に利用してもよい。一部に着色層を有さない領域を配置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有する素子から発光させてもよい。自発光素子を用いることで、着色層を用いた場合よりも、さらに消費電力を低減できる場合がある。
In addition, a colored layer (also referred to as a color filter) may be used in order to display white light (W) in a backlight (an organic EL element, an inorganic EL element, an LED, a fluorescent lamp, or the like) and display a full color display device. Good. For example, red (R), green (G), blue (B), yellow (Y), and the like can be used in appropriate combination for the colored layer. By using the colored layer, the color reproducibility can be increased as compared with the case where the colored layer is not used. At this time, white light in a region having no colored layer may be directly used for display by arranging a region having a colored layer and a region having no colored layer. By disposing a region that does not have a colored layer in part, a decrease in luminance due to the colored layer can be reduced during bright display, and power consumption can be reduced by about 20% to 30%. However, when a full color display is performed using a self-luminous element such as an organic EL element or an inorganic EL element, R, G, B, Y, and W may be emitted from elements having respective emission colors. By using a self-luminous element, power consumption may be further reduced as compared with the case where a colored layer is used.
また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。
In addition, as a colorization method, in addition to a method (color filter method) in which part of the light emission from the white light emission described above is converted into red, green, and blue through a color filter, red, green, and blue light emission is performed. A method of using each (three-color method) or a method of converting a part of light emission from blue light emission into red or green (color conversion method, quantum dot method) may be applied.
図9(B)に示す表示装置700Aは、大型の画面を有する電子機器に好適に用いることのできる表示装置である。例えばテレビジョン装置、モニタ装置、デジタルサイネージなどに好適に用いることができる。
A display device 700A illustrated in FIG. 9B is a display device that can be suitably used for an electronic device having a large screen. For example, it can be suitably used for a television device, a monitor device, a digital signage, and the like.
表示装置700Aは、複数のソースドライバIC721と、一対のゲートドライバ回路722を有する。
The display device 700A includes a plurality of source driver ICs 721 and a pair of gate driver circuits 722.
複数のソースドライバIC721は、それぞれFPC723に取り付けられている。また、複数のFPC723は、一方の端子が基板701に、他方の端子がプリント基板724にそれぞれ接続されている。FPC723を折り曲げることで、プリント基板724を画素部702の裏側に配置して、電気機器に実装することができる。
The plurality of source driver ICs 721 are attached to the FPC 723, respectively. The plurality of FPCs 723 have one terminal connected to the substrate 701 and the other terminal connected to the printed circuit board 724. By bending the FPC 723, the printed circuit board 724 can be placed on the back side of the pixel portion 702 and mounted on an electric device.
一方、ゲートドライバ回路722は、基板701上に形成されている。これにより、狭額縁の電子機器を実現できる。
On the other hand, the gate driver circuit 722 is formed on the substrate 701. Thereby, an electronic device with a narrow frame can be realized.
このような構成とすることで、大型で且つ高解像度な表示装置を実現できる。例えば画面サイズが対角30インチ以上、40インチ以上、50インチ以上、または60インチ以上の表示装置に適用することができる。また、解像度がフルハイビジョン、4K2K、または8K4Kなどといった極めて高解像度の表示装置を実現することができる。
With such a configuration, a large-sized and high-resolution display device can be realized. For example, the present invention can be applied to a display device having a screen size of 30 inches or more, 40 inches or more, 50 inches or more, or 60 inches or more. In addition, a display device with extremely high resolution such as full high vision, 4K2K, or 8K4K can be realized.
[断面構成例]
以下では、表示素子として液晶素子を用いる構成及びEL素子を用いる構成について、図10乃至図12を用いて説明する。なお、図10及び図11は、図9に示す一点鎖線Q−Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、図12は、図9に示す一点鎖線Q−Rにおける断面図であり、表示素子としてEL素子を用いた構成である。 [Section configuration example]
Hereinafter, a structure using a liquid crystal element as a display element and a structure using an EL element will be described with reference to FIGS. 10 and 11 are cross-sectional views taken along one-dot chain line QR shown in FIG. 9, and a structure using a liquid crystal element as a display element. FIG. 12 is a cross-sectional view taken along one-dot chain line QR shown in FIG. 9 and has a configuration using an EL element as a display element.
以下では、表示素子として液晶素子を用いる構成及びEL素子を用いる構成について、図10乃至図12を用いて説明する。なお、図10及び図11は、図9に示す一点鎖線Q−Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、図12は、図9に示す一点鎖線Q−Rにおける断面図であり、表示素子としてEL素子を用いた構成である。 [Section configuration example]
Hereinafter, a structure using a liquid crystal element as a display element and a structure using an EL element will be described with reference to FIGS. 10 and 11 are cross-sectional views taken along one-dot chain line QR shown in FIG. 9, and a structure using a liquid crystal element as a display element. FIG. 12 is a cross-sectional view taken along one-dot chain line QR shown in FIG. 9 and has a configuration using an EL element as a display element.
まず、図10乃至図12に示す共通部分について最初に説明し、次に異なる部分について以下説明する。
First, common parts shown in FIGS. 10 to 12 will be described first, and then different parts will be described below.
〔表示装置の共通部分に関する説明〕
図10乃至図12に示す表示装置700は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を有する。 [Description of common parts of display device]
Adisplay device 700 illustrated in FIGS. 10 to 12 includes a lead wiring portion 711, a pixel portion 702, a source driver circuit portion 704, and an FPC terminal portion 708. Further, the lead wiring portion 711 includes a signal line 710. In addition, the pixel portion 702 includes a transistor 750 and a capacitor 790. In addition, the source driver circuit portion 704 includes a transistor 752.
図10乃至図12に示す表示装置700は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を有する。 [Description of common parts of display device]
A
各画素に設けられるトランジスタには、チャネルが形成される半導体層に、金属酸化物(酸化物半導体)を適用することが好ましい。これにより、非晶質シリコンを用いた場合に比べてトランジスタの電界効果移動度を高めることができるため、トランジスタのサイズ(占有面積)を縮小することができる。これにより、ソース線及びゲート線の寄生容量をより小さくできる。
In a transistor provided in each pixel, it is preferable to apply a metal oxide (oxide semiconductor) to a semiconductor layer in which a channel is formed. Accordingly, the field effect mobility of the transistor can be increased as compared with the case where amorphous silicon is used, so that the size (occupied area) of the transistor can be reduced. Thereby, the parasitic capacitance of the source line and the gate line can be further reduced.
また特に、酸化物半導体を用いたトランジスタを適用することで、以下に示すような様々な効果を奏する。例えば、トランジスタのサイズ(占有面積)を小さくできるため、トランジスタ自体の寄生容量を小さくできる。さらには、アモルファスシリコンを用いた場合に比べて、開口率を向上できる、または開口率を犠牲にすることなく配線幅を大きくでき、配線抵抗を小さくできる。また、トランジスタのオン電流を高めることができるため、画素の書き込みに要する期間を短くできる。このような効果により、ゲート線及びソース線の充放電期間を短くでき、フレーム周波数を高めることが可能となる。
In particular, by applying a transistor using an oxide semiconductor, the following various effects can be obtained. For example, since the size (occupied area) of the transistor can be reduced, the parasitic capacitance of the transistor itself can be reduced. Furthermore, compared with the case where amorphous silicon is used, the aperture ratio can be improved, or the wiring width can be increased without sacrificing the aperture ratio, and the wiring resistance can be decreased. In addition, since the on-state current of the transistor can be increased, the period required for pixel writing can be shortened. By such an effect, the charge / discharge period of the gate line and the source line can be shortened, and the frame frequency can be increased.
さらに、酸化物半導体を用いたトランジスタはオフ電流を極めて小さくできるため、画素に書き込まれた電位の保持期間を長くでき、フレーム周波数を低くすることも可能となる。例えば、フレーム周波数を0.1Hz以上480Hz以下の範囲で可変とすることができる。またテレビジョン装置等においては、フレーム周波数を30Hz以上480Hz以下、好ましくは60Hz以上240Hz以下とすることが好ましい。
Furthermore, since a transistor including an oxide semiconductor can extremely reduce off-state current, a holding period of a potential written in a pixel can be extended and a frame frequency can be decreased. For example, the frame frequency can be varied in the range of 0.1 Hz to 480 Hz. In a television device or the like, the frame frequency is preferably 30 Hz to 480 Hz, more preferably 60 Hz to 240 Hz.
オフ電流が極めて小さいトランジスタを用いる効果の他の1つとして、画素の保持容量を小さくできることが挙げられる。これにより、画素の開口率を高めることや、画素の書き込みに要する期間をより短くすることができる。
Another example of the effect of using a transistor with extremely small off-state current is that the pixel storage capacity can be reduced. Thereby, the aperture ratio of the pixel can be increased and the period required for writing the pixel can be further shortened.
また、各ソース線の電気抵抗と容量をできるだけ小さくすると、より高いフレーム周波数での駆動や、より大型の表示装置とすることなどが可能となる。例えば、ソース線の材料に低抵抗な材料(例えば銅、アルミニウムなど)を用いること、ソース線の厚さや幅を大きくすること、ソース線と他の配線の間の層間絶縁膜を厚くすること、ソース線と他の配線との交差部の面積を小さくすること、などが挙げられる。
Also, if the electrical resistance and capacitance of each source line are made as small as possible, it becomes possible to drive at a higher frame frequency or to make a larger display device. For example, using a low-resistance material (for example, copper, aluminum, etc.) for the source line material, increasing the thickness or width of the source line, increasing the interlayer insulating film between the source line and other wiring, For example, the area of the intersection between the source line and another wiring can be reduced.
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体膜を有する。該トランジスタは、オフ電流を低くすることができる。よって、映像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。
The transistor used in this embodiment includes an oxide semiconductor film which is highly purified and suppresses formation of oxygen vacancies. The transistor can have low off-state current. Therefore, the holding time of an electric signal such as a video signal can be extended, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
The transistor used in this embodiment can be driven at high speed because relatively high field-effect mobility can be obtained. For example, by using such a transistor capable of high-speed driving for a display device, the switching transistor in the pixel portion and the driver transistor used in the driver circuit portion can be formed over the same substrate. That is, since it is not necessary to use a semiconductor device formed of a silicon wafer or the like as a separate drive circuit, the number of parts of the semiconductor device can be reduced. In the pixel portion, a high-quality image can be provided by using a transistor that can be driven at high speed.
また、チャネルが形成される半導体層に、シリコンを含む半導体を用いたトランジスタを用いることもできる。例えば、アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いたトランジスタを適用することができる。特に、アモルファスシリコンを用いると、大型の基板上に歩留り良く形成できるため好ましい。アモルファスシリコンを用いる場合には、水素によりダングリングボンドの終端を図った水素化アモルファスシリコン(a−Si:Hと表記する場合がある)を用いることが好ましい。
Alternatively, a transistor including a semiconductor containing silicon can be used for a semiconductor layer in which a channel is formed. For example, a transistor using amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like can be used. In particular, amorphous silicon is preferably used because it can be formed over a large substrate with a high yield. When amorphous silicon is used, it is preferable to use hydrogenated amorphous silicon (which may be expressed as a-Si: H) in which dangling bonds are terminated with hydrogen.
容量素子790は、トランジスタ750が有する第1のゲート電極と機能する導電膜と同一の導電膜を加工する工程を経て形成される下部電極と、トランジスタ750が有するソース電極またはドレイン電極として機能する導電膜と同一の導電膜を加工する工程を経て形成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ750が有する第1のゲート絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を経て形成される絶縁膜、及びトランジスタ750上の保護絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を経て形成される絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電体膜として機能する絶縁膜が挟持された積層型の構造である。
The capacitor 790 includes a lower electrode formed through a step of processing the same conductive film as the conductive film that functions as the first gate electrode included in the transistor 750, and a conductive function that functions as a source electrode or a drain electrode included in the transistor 750. And an upper electrode formed through a process of processing the same conductive film as the film. Further, an insulating film formed through a step of forming the same insulating film as the first gate insulating film included in the transistor 750 between the lower electrode and the upper electrode, and over the transistor 750 An insulating film formed through a step of forming the same insulating film as the insulating film functioning as a protective insulating film is provided. That is, the capacitor 790 has a stacked structure in which an insulating film functioning as a dielectric film is sandwiched between a pair of electrodes.
また、図10乃至図12において、トランジスタ750、トランジスタ752、及び容量素子790上に平坦化絶縁膜770が設けられている。
10 to 12, a planarization insulating film 770 is provided over the transistor 750, the transistor 752, and the capacitor 790.
また、図10乃至図12においては、画素部702が有するトランジスタ750と、ソースドライバ回路部704が有するトランジスタ752と、を同じ構造のトランジスタを用いる構成について例示したが、これに限定されない。例えば、画素部702と、ソースドライバ回路部704とは、異なるトランジスタを用いてもよい。具体的には、画素部702にトップゲート型のトランジスタを用い、ソースドライバ回路部704にボトムゲート型のトランジスタを用いる構成、あるいは画素部702にボトムゲート型のトランジスタを用い、ソースドライバ回路部704にトップゲート型のトランジスタを用いる構成などが挙げられる。なお、上記のソースドライバ回路部704を、ゲートドライバ回路部と読み替えてもよい。
10 to 12 illustrate a structure in which the transistor 750 included in the pixel portion 702 and the transistor 752 included in the source driver circuit portion 704 are transistors having the same structure; however, the present invention is not limited to this. For example, the pixel portion 702 and the source driver circuit portion 704 may use different transistors. Specifically, a top-gate transistor is used for the pixel portion 702 and a bottom-gate transistor is used for the source driver circuit portion 704, or a bottom-gate transistor is used for the pixel portion 702, and the source driver circuit portion 704 is used. In addition, a configuration using a top gate type transistor can be given. Note that the source driver circuit portion 704 may be replaced with a gate driver circuit portion.
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。信号線710として、例えば、銅元素を含む材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。
Further, the signal line 710 is formed through the same process as the conductive film functioning as the source electrode and the drain electrode of the transistors 750 and 752. For example, when a material containing a copper element is used as the signal line 710, signal delay due to wiring resistance is small and display on a large screen is possible.
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC716を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は、異方性導電膜780を介してFPC716が有する端子と電気的に接続される。
The FPC terminal portion 708 includes a connection electrode 760, an anisotropic conductive film 780, and an FPC 716. Note that the connection electrode 760 is formed through the same process as the conductive film functioning as the source and drain electrodes of the transistors 750 and 752. The connection electrode 760 is electrically connected to a terminal included in the FPC 716 through an anisotropic conductive film 780.
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いることができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられる。
Further, as the first substrate 701 and the second substrate 705, for example, glass substrates can be used. Alternatively, a flexible substrate may be used as the first substrate 701 and the second substrate 705. Examples of the flexible substrate include a plastic substrate.
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構造体778は柱状のスペーサであり、第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設けられる。なお、構造体778として、球状のスペーサを用いていてもよい。
In addition, a structure body 778 is provided between the first substrate 701 and the second substrate 705. The structure body 778 is a columnar spacer and is provided to control the distance (cell gap) between the first substrate 701 and the second substrate 705. Note that a spherical spacer may be used as the structure body 778.
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する絶縁膜734が設けられる。
Further, on the second substrate 705 side, a light shielding film 738 functioning as a black matrix, a colored film 736 functioning as a color filter, and an insulating film 734 in contact with the light shielding film 738 and the colored film 736 are provided.
〔液晶素子を用いる表示装置の構成例〕
図10に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705側に設けられ、対向電極としての機能を有する。図10に示す表示装置700は、導電膜772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによって光の透過、非透過が制御され画像を表示することができる。 [Configuration Example of Display Device Using Liquid Crystal Element]
Adisplay device 700 illustrated in FIG. 10 includes a liquid crystal element 775. The liquid crystal element 775 includes a conductive film 772, a conductive film 774, and a liquid crystal layer 776. The conductive film 774 is provided on the second substrate 705 side and functions as a counter electrode. The display device 700 illustrated in FIG. 10 can display an image by controlling transmission and non-transmission of light by changing the alignment state of the liquid crystal layer 776 depending on voltages applied to the conductive films 772 and 774.
図10に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705側に設けられ、対向電極としての機能を有する。図10に示す表示装置700は、導電膜772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによって光の透過、非透過が制御され画像を表示することができる。 [Configuration Example of Display Device Using Liquid Crystal Element]
A
また、導電膜772は、トランジスタ750が有するソース電極またはドレイン電極として機能する導電膜と電気的に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能する。
Further, the conductive film 772 is electrically connected to a conductive film functioning as a source electrode or a drain electrode included in the transistor 750. The conductive film 772 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of a display element.
導電膜772としては、可視光において透光性のある導電膜、または可視光において反射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、例えば、インジウム、亜鉛、錫の中から選ばれた一種を含む材料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよい。
As the conductive film 772, a conductive film that is transparent to visible light or a conductive film that is reflective to visible light can be used. As the conductive film that transmits visible light, for example, a material containing one kind selected from indium, zinc, and tin may be used. As the conductive film having reflectivity in visible light, for example, a material containing aluminum or silver is preferably used.
導電膜772に可視光において反射性のある導電膜を用いる場合、表示装置700は、反射型の液晶表示装置となる。また、導電膜772に可視光において透光性のある導電膜を用いる場合、表示装置700は、透過型の液晶表示装置となる。反射型の液晶表示装置の場合、視認側に偏光板を設ける。一方、透過型の液晶表示装置の場合、液晶素子を挟む一対の偏光板を設ける。
In the case where a conductive film that reflects visible light is used for the conductive film 772, the display device 700 is a reflective liquid crystal display device. In the case where a conductive film that transmits visible light is used for the conductive film 772, the display device 700 is a transmissive liquid crystal display device. In the case of a reflective liquid crystal display device, a polarizing plate is provided on the viewing side. On the other hand, in the case of a transmissive liquid crystal display device, a pair of polarizing plates sandwiching a liquid crystal element is provided.
また、導電膜772上の構成を変えることで、液晶素子の駆動方式を変えることができる。この場合の一例を図11に示す。また、図11に示す表示装置700は、液晶素子の駆動方式として横電界方式(例えば、FFSモード)を用いる構成の一例である。図11に示す構成の場合、導電膜772上に絶縁膜773が設けられ、絶縁膜773上に導電膜774が設けられる。この場合、導電膜774は、共通電極(コモン電極ともいう)としての機能を有し、絶縁膜773を介して、導電膜772と導電膜774との間に生じる電界によって、液晶層776の配向状態を制御することができる。
Further, the driving method of the liquid crystal element can be changed by changing the structure over the conductive film 772. An example of this case is shown in FIG. A display device 700 illustrated in FIG. 11 is an example of a configuration using a horizontal electric field method (eg, an FFS mode) as a driving method of a liquid crystal element. In the case of the structure illustrated in FIG. 11, the insulating film 773 is provided over the conductive film 772, and the conductive film 774 is provided over the insulating film 773. In this case, the conductive film 774 functions as a common electrode (also referred to as a common electrode), and the alignment of the liquid crystal layer 776 is generated by an electric field generated between the conductive film 772 and the conductive film 774 through the insulating film 773. The state can be controlled.
また、図10及び図11において図示しないが、導電膜772または導電膜774のいずれか一方または双方に、液晶層776と接する側に、それぞれ配向膜を設ける構成としてもよい。また、図10及び図11において図示しないが、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などを適宜設けてもよい。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
Although not shown in FIGS. 10 and 11, an alignment film may be provided on one or both of the conductive film 772 and the conductive film 774 on the side in contact with the liquid crystal layer 776. Although not shown in FIGS. 10 and 11, an optical member (optical substrate) such as a polarizing member, a retardation member, or an antireflection member may be provided as appropriate. For example, circularly polarized light using a polarizing substrate and a retardation substrate may be used. Further, a backlight, a sidelight, or the like may be used as the light source.
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
When a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要である。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。また、ブルー相を示す液晶材料は、視野角依存性が小さい。
In addition, when the horizontal electric field method is adopted, a liquid crystal exhibiting a blue phase without using an alignment film may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic, so that alignment treatment is unnecessary. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. . A liquid crystal material exhibiting a blue phase has a small viewing angle dependency.
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
In addition, when a liquid crystal element is used as a display element, a TN (Twisted Nematic) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe Field Switching) mode, an ASM (Axially Symmetrical Aligned MicroOcell) mode. A Compensated Birefringence mode, an FLC (Ferroelectric Liquid Crystal) mode, an AFLC (Antiferroelectric Liquid Crystal) mode, and the like can be used.
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。
Alternatively, a normally black liquid crystal display device such as a transmissive liquid crystal display device employing a vertical alignment (VA) mode may be used. There are several examples of the vertical alignment mode. For example, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV (Advanced Super View) mode, and the like can be used.
〔発光素子を用いる表示装置〕
図12に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜772、EL層786、及び導電膜788を有する。図12に示す表示装置700は、画素毎に設けられる発光素子782が有するEL層786が発光することによって、画像を表示することができる。なお、EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。 [Display device using light emitting element]
Adisplay device 700 illustrated in FIG. 12 includes a light-emitting element 782. The light-emitting element 782 includes a conductive film 772, an EL layer 786, and a conductive film 788. The display device 700 illustrated in FIG. 12 can display an image when the EL layer 786 included in the light-emitting element 782 provided for each pixel emits light. Note that the EL layer 786 includes an organic compound or an inorganic compound such as a quantum dot.
図12に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜772、EL層786、及び導電膜788を有する。図12に示す表示装置700は、画素毎に設けられる発光素子782が有するEL層786が発光することによって、画像を表示することができる。なお、EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。 [Display device using light emitting element]
A
有機化合物に用いることのできる材料としては、蛍光性材料または燐光性材料などが挙げられる。また、量子ドットに用いることのできる材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、などが挙げられる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、アルミニウム等の元素を有する量子ドット材料を用いてもよい。
Examples of materials that can be used for the organic compound include fluorescent materials and phosphorescent materials. Examples of materials that can be used for the quantum dots include colloidal quantum dot materials, alloy type quantum dot materials, core / shell type quantum dot materials, and core type quantum dot materials. Alternatively, a material including an element group of Group 12 and Group 16, Group 13 and Group 15, or Group 14 and Group 16 may be used. Alternatively, a quantum dot material having an element such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, or aluminum may be used.
図12に示す表示装置700には、平坦化絶縁膜770及び導電膜772上に絶縁膜730が設けられる。絶縁膜730は、導電膜772の一部を覆う。なお、発光素子782はトップエミッション構造である。したがって、導電膜788は透光性を有し、EL層786が発する光を透過する。なお、本実施の形態においては、トップエミッション構造について、例示するが、これに限定されない。例えば、導電膜772側に光を射出するボトムエミッション構造や、導電膜772側及び導電膜788側の双方に光を射出するデュアルエミッション構造にも適用することができる。
In the display device 700 illustrated in FIG. 12, an insulating film 730 is provided over the planarization insulating film 770 and the conductive film 772. The insulating film 730 covers part of the conductive film 772. Note that the light-emitting element 782 has a top emission structure. Therefore, the conductive film 788 has a light-transmitting property and transmits light emitted from the EL layer 786. In the present embodiment, the top emission structure is illustrated, but is not limited thereto. For example, the present invention can be applied to a bottom emission structure in which light is emitted to the conductive film 772 side and a dual emission structure in which light is emitted to both the conductive film 772 side and the conductive film 788 side.
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重なる位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設けられている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図12に示す表示装置700においては、着色膜736を設ける構成について例示したが、これに限定されない。例えば、EL層786を画素毎に島状に形成する、すなわち塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。
Further, a coloring film 736 is provided at a position overlapping with the light emitting element 782, and a light shielding film 738 is provided at a position overlapping with the insulating film 730, the lead wiring portion 711, and the source driver circuit portion 704. Further, the coloring film 736 and the light shielding film 738 are covered with an insulating film 734. A space between the light emitting element 782 and the insulating film 734 is filled with a sealing film 732. Note that in the display device 700 illustrated in FIG. 12, the structure in which the colored film 736 is provided is illustrated, but the present invention is not limited to this. For example, in the case where the EL layer 786 is formed in an island shape for each pixel, that is, formed by separate coating, the coloring film 736 may not be provided.
〔表示装置に入出力装置を設ける構成例〕
また、図10乃至図12に示す表示装置700に入出力装置を設けてもよい。当該入出力装置としては、例えば、タッチパネル等が挙げられる。 [Configuration example in which an input / output device is provided in a display device]
Further, an input / output device may be provided in thedisplay device 700 illustrated in FIGS. Examples of the input / output device include a touch panel.
また、図10乃至図12に示す表示装置700に入出力装置を設けてもよい。当該入出力装置としては、例えば、タッチパネル等が挙げられる。 [Configuration example in which an input / output device is provided in a display device]
Further, an input / output device may be provided in the
図11に示す表示装置700にタッチパネル791を設ける構成を図13に、図12に示す表示装置700にタッチパネル791を設ける構成を図14に、それぞれ示す。
11 shows a configuration in which the touch panel 791 is provided in the display device 700 shown in FIG. 11, and FIG. 14 shows a configuration in which the touch panel 791 is provided in the display device 700 shown in FIG.
図13は図11に示す表示装置700にタッチパネル791を設ける構成の断面図であり、図14は図12に示す表示装置700にタッチパネル791を設ける構成の断面図である。
13 is a cross-sectional view of a configuration in which the touch panel 791 is provided on the display device 700 illustrated in FIG. 11, and FIG. 14 is a cross-sectional view of a configuration in which the touch panel 791 is provided on the display device 700 illustrated in FIG.
まず、図13及び図14に示すタッチパネル791について、以下説明を行う。
First, the touch panel 791 shown in FIGS. 13 and 14 will be described below.
図13及び図14に示すタッチパネル791は、第2の基板705と着色膜736との間に設けられる、所謂インセル型のタッチパネルである。タッチパネル791は、着色膜736を形成する前に、第2の基板705側に形成すればよい。
The touch panel 791 shown in FIGS. 13 and 14 is a so-called in-cell type touch panel provided between the second substrate 705 and the coloring film 736. The touch panel 791 may be formed on the second substrate 705 side before the coloring film 736 is formed.
なお、タッチパネル791は、絶縁膜792と、電極793と、電極794と、絶縁膜795と、電極796と、絶縁膜797と、を有する。例えば、指やスタイラスなどの被検知体が近づくことで生じうる、電極793と電極794との間の容量の変化を検知することができる。
Note that the touch panel 791 includes an insulating film 792, an electrode 793, an electrode 794, an insulating film 795, an electrode 796, and an insulating film 797. For example, it is possible to detect a change in capacitance between the electrode 793 and the electrode 794 that may occur when a detection target such as a finger or a stylus approaches.
また、図13及び図14に示すトランジスタ750の上方においては、電極793と、電極794との交差部を明示している。電極796は、絶縁膜795に設けられた開口部を介して、電極794を挟む2つの電極793と電気的に接続されている。なお、図13及び図14においては、電極796が設けられる領域を画素部702に設ける構成を例示したが、これに限定されず、例えば、ソースドライバ回路部704に形成してもよい。
Further, above the transistor 750 shown in FIGS. 13 and 14, the intersection of the electrode 793 and the electrode 794 is clearly shown. The electrode 796 is electrically connected to two electrodes 793 sandwiching the electrode 794 through an opening provided in the insulating film 795. 13 and 14 exemplify the configuration in which the region where the electrode 796 is provided is provided in the pixel portion 702, but the present invention is not limited to this. For example, the region may be formed in the source driver circuit portion 704.
電極793及び電極794は、遮光膜738と重なる領域に設けられる。また、図13、図14に示すように、電極793は、発光素子782または液晶素子775と重ならないように設けられると好ましい。別言すると、電極793は、発光素子782または液晶素子775と重なる領域に開口部を有する。すなわち、電極793はメッシュ形状を有する。このような構成とすることで、電極793は、発光素子782が射出する光、または液晶素子775を透過する光を遮らない構成とすることができる。したがって、タッチパネル791を配置することによる輝度の低下が極めて少ないため、視認性が高く、且つ消費電力が低減された表示装置を実現できる。なお、電極794も同様の構成とすればよい。
The electrode 793 and the electrode 794 are provided in a region overlapping with the light shielding film 738. In addition, as illustrated in FIGS. 13 and 14, the electrode 793 is preferably provided so as not to overlap with the light-emitting element 782 or the liquid crystal element 775. In other words, the electrode 793 has an opening in a region overlapping with the light-emitting element 782 or the liquid crystal element 775. That is, the electrode 793 has a mesh shape. With such a structure, the electrode 793 can be configured not to block light emitted from the light-emitting element 782 or light transmitted through the liquid crystal element 775. Therefore, since the reduction in luminance due to the arrangement of the touch panel 791 is extremely small, a display device with high visibility and low power consumption can be realized. Note that the electrode 794 may have a similar structure.
また、電極793及び電極794が発光素子782または液晶素子775と重ならないため、電極793及び電極794には、可視光の透過率が低い金属材料を用いることができる。
In addition, since the electrode 793 and the electrode 794 do not overlap with the light-emitting element 782 or the liquid crystal element 775, a metal material with low visible light transmittance can be used for the electrode 793 and the electrode 794.
そのため、可視光の透過率が高い酸化物材料を用いた電極と比較して、電極793及び電極794の抵抗を低くすることが可能となり、タッチパネルのセンサ感度を向上させることができる。
Therefore, the resistance of the electrode 793 and the electrode 794 can be reduced as compared with an electrode using an oxide material having a high visible light transmittance, and the sensor sensitivity of the touch panel can be improved.
例えば、電極793、794、796には、導電性のナノワイヤを用いてもよい。当該ナノワイヤは、直径の平均値が1nm以上100nm以下、好ましくは5nm以上50nm以下、より好ましくは5nm以上25nm以下の大きさとすればよい。また、上記ナノワイヤとしては、Agナノワイヤ、Cuナノワイヤ、またはAlナノワイヤ等の金属ナノワイヤ、あるいは、カーボンナノチューブなどを用いればよい。例えば、電極793、794、796のいずれか一つあるいは全部にAgナノワイヤを用いる場合、可視光における光透過率を89%以上、シート抵抗値を40Ω/□以上100Ω/□以下とすることができる。
For example, conductive nanowires may be used for the electrodes 793, 794, and 796. The nanowire may have an average diameter of 1 nm to 100 nm, preferably 5 nm to 50 nm, more preferably 5 nm to 25 nm. Moreover, as said nanowire, metal nanowires, such as Ag nanowire, Cu nanowire, or Al nanowire, or a carbon nanotube etc. may be used. For example, when an Ag nanowire is used for any one or all of the electrodes 793, 794, and 796, the light transmittance in visible light can be 89% or more, and the sheet resistance value can be 40Ω / □ or more and 100Ω / □ or less. .
また、図13及び図14においては、インセル型のタッチパネルの構成について例示したが、これに限定されない。例えば、表示装置700上に形成する、所謂オンセル型のタッチパネルや、表示装置700に貼り合わせて用いる、所謂アウトセル型のタッチパネルとしてもよい。
Further, in FIG. 13 and FIG. 14, the configuration of the in-cell type touch panel is illustrated, but the present invention is not limited to this. For example, a so-called on-cell touch panel formed over the display device 700 or a so-called out-cell touch panel used by being attached to the display device 700 may be used.
このように、本発明の一態様の表示装置は、様々な形態のタッチパネルと組み合わせて用いることができる。
As described above, the display device of one embodiment of the present invention can be used in combination with various forms of touch panels.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態4)
本実施の形態では、本発明の一態様の表示システムに適用可能な表示装置について、図15を用いて説明を行う。 (Embodiment 4)
In this embodiment, a display device applicable to the display system of one embodiment of the present invention will be described with reference to FIGS.
本実施の形態では、本発明の一態様の表示システムに適用可能な表示装置について、図15を用いて説明を行う。 (Embodiment 4)
In this embodiment, a display device applicable to the display system of one embodiment of the present invention will be described with reference to FIGS.
[表示装置の回路構成]
図15(A)に示す表示装置は、画素を有する領域(以下、画素部502という)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路506という)と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。 [Circuit configuration of display device]
A display device illustrated in FIG. 15A includes a circuit portion (hereinafter referred to as a driver circuit) including a region having pixels (hereinafter referred to as a pixel portion 502) and a circuit which is disposed outside thepixel portion 502 and drives the pixels. Part 504), a circuit having a protection function of an element (hereinafter referred to as a protection circuit 506), and a terminal part 507. Note that the protection circuit 506 may be omitted.
図15(A)に示す表示装置は、画素を有する領域(以下、画素部502という)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路506という)と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。 [Circuit configuration of display device]
A display device illustrated in FIG. 15A includes a circuit portion (hereinafter referred to as a driver circuit) including a region having pixels (hereinafter referred to as a pixel portion 502) and a circuit which is disposed outside the
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されていることが望ましい。これにより、部品数や端子数を減らすことができる。駆動回路部504の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回路部504の一部、または全部は、COGやTAB(Tape Automated Bonding)によって、実装することができる。
It is desirable that part or all of the drive circuit portion 504 is formed on the same substrate as the pixel portion 502. Thereby, the number of parts and the number of terminals can be reduced. When part or all of the driver circuit portion 504 is not formed over the same substrate as the pixel portion 502, part or all of the driver circuit portion 504 is formed by COG or TAB (Tape Automated Bonding). Can be implemented.
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置された、表示素子を駆動するための複数の回路(以下、画素回路501という)を有し、駆動回路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するための回路(以下、ソースドライバ504b)などの駆動回路を有する。
The pixel portion 502 includes a plurality of circuits (hereinafter referred to as pixel circuits 501) for driving display elements arranged in X rows (X is a natural number of 2 or more) and Y columns (Y is a natural number of 2 or more). The driver circuit portion 504 outputs a signal for selecting a pixel (scanning signal) (hereinafter referred to as a gate driver 504a) and a circuit for supplying a signal (data signal) for driving a display element of the pixel. (Hereinafter referred to as source driver 504b) and the like.
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力する。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力され、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以下、ゲート線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲートドライバ504aを複数設け、複数のゲートドライバ504aにより、ゲート線GL_1乃至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ504aは、別の信号を供給することも可能である。
The gate driver 504a has a shift register and the like. The gate driver 504a receives a signal for driving the shift register via the terminal portion 507, and outputs a signal. For example, the gate driver 504a receives a start pulse signal, a clock signal, and the like and outputs a pulse signal. The gate driver 504a has a function of controlling the potential of a wiring to which a scan signal is supplied (hereinafter referred to as gate lines GL_1 to GL_X). Note that a plurality of gate drivers 504a may be provided, and the gate lines GL_1 to GL_X may be divided and controlled by the plurality of gate drivers 504a. Alternatively, the gate driver 504a has a function of supplying an initialization signal. However, the present invention is not limited to this, and the gate driver 504a can supply another signal.
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元となる信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与えられる配線(以下、ソース線DL_1乃至DL_Yという)の電位を制御する機能を有する。または、ソースドライバ504bは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも可能である。
The source driver 504b has a shift register and the like. In addition to a signal for driving the shift register, the source driver 504b receives a signal (image signal) as a source of a data signal through the terminal portion 507. The source driver 504b has a function of generating a data signal to be written in the pixel circuit 501 based on the image signal. In addition, the source driver 504b has a function of controlling output of a data signal in accordance with a pulse signal obtained by inputting a start pulse, a clock signal, or the like. The source driver 504b has a function of controlling the potential of a wiring to which a data signal is supplied (hereinafter referred to as source lines DL_1 to DL_Y). Alternatively, the source driver 504b has a function of supplying an initialization signal. However, the present invention is not limited to this, and the source driver 504b can supply another signal.
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを用いてソースドライバ504bを構成してもよい。
The source driver 504b is configured using a plurality of analog switches, for example. The source driver 504b can output a signal obtained by time-dividing the image signal as a data signal by sequentially turning on the plurality of analog switches. Further, the source driver 504b may be configured using a shift register or the like.
複数の画素回路501のそれぞれは、走査信号が与えられる複数のゲート線GLの一つを介してパルス信号が入力され、データ信号が与えられる複数のソース線DLの一つを介してデータ信号が入力される。また、複数の画素回路501のそれぞれは、ゲートドライバ504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列目の画素回路501は、ゲート線GL_m(mはX以下の自然数)を介してゲートドライバ504aからパルス信号が入力され、ゲート線GL_mの電位に応じてソース線DL_n(nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
Each of the plurality of pixel circuits 501 receives a pulse signal through one of a plurality of gate lines GL to which a scanning signal is applied, and receives a data signal through one of a plurality of source lines DL to which a data signal is applied. Entered. In each of the plurality of pixel circuits 501, writing and holding of data signals are controlled by the gate driver 504a. For example, the pixel circuit 501 in the m-th row and the n-th column receives a pulse signal from the gate driver 504a through the gate line GL_m (m is a natural number equal to or less than X), and the source line DL_n (n) according to the potential of the gate line GL_m. Is a natural number less than or equal to Y), a data signal is input from the source driver 504b.
図15(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路501の間の配線であるゲート線GLに接続される。または、保護回路506は、ソースドライバ504bと画素回路501の間の配線であるソース線DLに接続される。または、保護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することができる。または、保護回路506は、ソースドライバ504bと端子部507との間の配線に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
The protection circuit 506 shown in FIG. 15A is connected to a gate line GL that is a wiring between the gate driver 504a and the pixel circuit 501, for example. Alternatively, the protection circuit 506 is connected to a source line DL that is a wiring between the source driver 504 b and the pixel circuit 501. Alternatively, the protection circuit 506 can be connected to a wiring between the gate driver 504 a and the terminal portion 507. Alternatively, the protection circuit 506 can be connected to a wiring between the source driver 504 b and the terminal portion 507. Note that the terminal portion 507 is a portion where a terminal for inputting a power supply, a control signal, and an image signal from an external circuit to the display device is provided.
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。
The protection circuit 506 is a circuit that brings the wiring and another wiring into a conductive state when a potential outside a certain range is applied to the wiring to which the protection circuit 506 is connected.
図15(A)に示すように、画素部502と駆動回路部504に保護回路506を接続することにより、ESD(Electro Static Discharge:静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成とすることもできる。
As shown in FIG. 15A, the protective circuit 506 is connected to the pixel portion 502 and the driver circuit portion 504, thereby increasing the resistance of the display device against overcurrent generated by ESD (Electro Static Discharge) or the like. be able to. However, the configuration of the protection circuit 506 is not limited thereto, and for example, a configuration in which the protection circuit 506 is connected to the gate driver 504a or a configuration in which the protection circuit 506 is connected to the source driver 504b may be employed. Alternatively, the protection circuit 506 may be connected to the terminal portion 507.
また、図15(A)においては、ゲートドライバ504aとソースドライバ504bによって駆動回路部504を形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成された基板(例えば、単結晶半導体膜、または多結晶半導体膜で形成された駆動回路基板)を実装する構成としてもよい。
FIG. 15A illustrates an example in which the driver circuit portion 504 is formed using the gate driver 504a and the source driver 504b; however, the present invention is not limited to this structure. For example, only the gate driver 504a may be formed and a substrate on which a separately prepared source driver circuit is formed (for example, a driver circuit substrate formed of a single crystal semiconductor film or a polycrystalline semiconductor film) may be mounted. .
ここで、図16に、図15(A)とは異なる構成を示す。図16では、ソース線方向に配列する複数の画素を挟むように、一対のソース線(例えばソース線DLa1とソース線DLb1)が配置されている。また、隣接する2本のゲート線(例えばゲート線GL_1とゲート線GL_2)が電気的に接続されている。
Here, FIG. 16 shows a different structure from FIG. In FIG. 16, a pair of source lines (for example, source line DLa1 and source line DLb1) are arranged so as to sandwich a plurality of pixels arranged in the source line direction. Two adjacent gate lines (for example, the gate line GL_1 and the gate line GL_2) are electrically connected.
また、ゲート線GL_1に接続される画素は、片方のソース線(ソース線DLa1、ソース線DLa2等)に接続され、ゲート線GL_2に接続される画素は、他方のソース線(ソース線DLb1、ソース線DLb2等)に接続される。
The pixel connected to the gate line GL_1 is connected to one source line (source line DLa1, source line DLa2, etc.), and the pixel connected to the gate line GL_2 is connected to the other source line (source line DLb1, source line DLa1). Line DLb2 etc.).
このような構成とすることで、2本のゲート線を同時に選択することができる。これにより、一水平期間の長さを、図15(A)に示す構成と比較して2倍にすることができる。これにより、表示装置の高解像度化、及び大画面化が容易となる。
With this configuration, two gate lines can be selected simultaneously. Thereby, the length of one horizontal period can be doubled compared with the structure shown to FIG. 15 (A). Thereby, it becomes easy to increase the resolution and enlarge the screen of the display device.
また、図15(A)に示す複数の画素回路501は、例えば、図15(B)に示す構成とすることができる。
Further, the plurality of pixel circuits 501 illustrated in FIG. 15A can have a structure illustrated in FIG. 15B, for example.
図15(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容量素子560と、を有する。
A pixel circuit 501 illustrated in FIG. 15B includes a liquid crystal element 570, a transistor 550, and a capacitor 560.
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の電極の一方に異なる電位を与えてもよい。
One potential of the pair of electrodes of the liquid crystal element 570 is appropriately set according to the specification of the pixel circuit 501. The alignment state of the liquid crystal element 570 is set by written data. Note that a common potential (common potential) may be applied to one of the pair of electrodes of the liquid crystal element 570 included in each of the plurality of pixel circuits 501. Further, a different potential may be applied to one of the pair of electrodes of the liquid crystal element 570 of the pixel circuit 501 in each row.
例えば、液晶素子570を備える表示装置の駆動方法としては、TNモード、STN(Super Twisted Nematic)モード、VAモード、ASMモード、OCBモード、FLCモード、AFLCモード、MVAモード、PVAモード、IPSモード、FFSモード、又はTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方法として様々なものを用いることができる。
For example, as a method for driving a display device including the liquid crystal element 570, a TN mode, an STN (Super Twisted Nematic) mode, a VA mode, an ASM mode, an OCB mode, an FLC mode, an AFLC mode, an MVA mode, a PVA mode, an IPS mode, An FFS mode or a TBA (Transverse Bend Alignment) mode may be used. In addition to the above-described driving methods, there are ECB (Electrically Controlled Birefringence) mode, PDLC (Polymer Dispersed Liquid Crystal) mode, PNLC (Polymer Network Liquid Crystal mode), and other driving methods for the display device. However, the present invention is not limited to this, and various liquid crystal elements and driving methods thereof can be used.
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイン電極の一方は、ソース線DL_nに電気的に接続され、他方は液晶素子570の一対の電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、ゲート線GL_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
In the pixel circuit 501 in the m-th row and the n-th column, one of a source electrode and a drain electrode of the transistor 550 is electrically connected to the source line DL_n, and the other is electrically connected to the other of the pair of electrodes of the liquid crystal element 570. The The gate electrode of the transistor 550 is electrically connected to the gate line GL_m. The transistor 550 has a function of controlling data writing of the data signal by being turned on or off.
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VL)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続される。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
One of the pair of electrodes of the capacitor 560 is electrically connected to a wiring to which a potential is supplied (hereinafter, potential supply line VL), and the other is electrically connected to the other of the pair of electrodes of the liquid crystal element 570. The Note that the value of the potential of the potential supply line VL is appropriately set according to the specifications of the pixel circuit 501. The capacitor 560 functions as a storage capacitor for storing written data.
図15(B)の画素回路501を有する表示装置では、例えば、図15(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ550をオン状態にしてデータ信号のデータを書き込む。
In the display device including the pixel circuit 501 in FIG. 15B, for example, the pixel circuits 501 in each row are sequentially selected by the gate driver 504a illustrated in FIG. Write.
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
The pixel circuit 501 in which data is written is in a holding state when the transistor 550 is turned off. By sequentially performing this for each row, an image can be displayed.
また、図15(A)に示す複数の画素回路501は、例えば、図15(C)に示す構成とすることができる。
Further, the plurality of pixel circuits 501 illustrated in FIG. 15A can have a structure illustrated in FIG. 15C, for example.
また、図15(C)に示す画素回路501は、トランジスタ552、554と、容量素子562と、発光素子572と、を有する。
In addition, the pixel circuit 501 illustrated in FIG. 15C includes transistors 552 and 554, a capacitor 562, and a light-emitting element 572.
トランジスタ552のソース電極及びドレイン電極の一方はデータ線DL_nに電気的に接続され、ゲート電極は走査線GL_mに電気的に接続される。
One of the source electrode and the drain electrode of the transistor 552 is electrically connected to the data line DL_n, and the gate electrode is electrically connected to the scanning line GL_m.
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
The transistor 552 has a function of controlling data writing of the data signal by being turned on or off.
容量素子562の一対の電極の一方は、電位供給線VL_aに電気的に接続され、他方は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
One of the pair of electrodes of the capacitor 562 is electrically connected to the potential supply line VL_a, and the other is electrically connected to the other of the source electrode and the drain electrode of the transistor 552.
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
The capacitor element 562 functions as a storage capacitor for storing written data.
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
One of the source electrode and the drain electrode of the transistor 554 is electrically connected to the potential supply line VL_a. Further, the gate electrode of the transistor 554 is electrically connected to the other of the source electrode and the drain electrode of the transistor 552.
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続される。
One of an anode and a cathode of the light-emitting element 572 is electrically connected to the potential supply line VL_b, and the other is electrically connected to the other of the source electrode and the drain electrode of the transistor 554.
発光素子572としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、発光素子572としては、これに限定されず、無機材料からなる無機EL素子を用いてもよい。
As the light-emitting element 572, for example, an organic electroluminescence element (also referred to as an organic EL element) or the like can be used. However, the light-emitting element 572 is not limited thereto, and an inorganic EL element made of an inorganic material may be used.
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。
Note that one of the potential supply line VL_a and the potential supply line VL_b is supplied with the high power supply potential VDD, and the other is supplied with the low power supply potential VSS.
図15(C)の画素回路501を有する表示装置では、例えば、図15(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552をオン状態にしてデータ信号のデータを書き込む。
In the display device including the pixel circuit 501 in FIG. 15C, for example, the pixel circuits 501 in each row are sequentially selected by the gate driver 504a illustrated in FIG. Write.
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554のソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
The pixel circuit 501 in which data is written is in a holding state when the transistor 552 is turned off. Further, the amount of current flowing between the source electrode and the drain electrode of the transistor 554 is controlled in accordance with the potential of the written data signal, and the light-emitting element 572 emits light with luminance corresponding to the amount of flowing current. By sequentially performing this for each row, an image can be displayed.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
(実施の形態5)
本実施の形態では、本発明の一態様の電子機器について、図面を参照して説明する。 (Embodiment 5)
In this embodiment, electronic devices of one embodiment of the present invention are described with reference to drawings.
本実施の形態では、本発明の一態様の電子機器について、図面を参照して説明する。 (Embodiment 5)
In this embodiment, electronic devices of one embodiment of the present invention are described with reference to drawings.
以下で例示する電子機器は、表示部に本発明の一態様の表示装置を備えるものである。したがって、高い解像度が実現された電子機器である。また高い解像度と、大きな画面が両立された電子機器とすることができる。
The electronic device exemplified below includes the display device of one embodiment of the present invention in the display portion. Therefore, the electronic device has a high resolution. In addition, the electronic device can achieve both high resolution and a large screen.
本発明の一態様の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。また、表示部の画面サイズとしては、対角20インチ以上、対角30インチ以上、対角50インチ以上、対角60インチ以上、または対角70インチ以上とすることもできる。
For example, full high vision, 4K2K, 8K4K, 16K8K, or higher resolution video can be displayed on the display portion of the electronic device of one embodiment of the present invention. Further, the screen size of the display unit may be 20 inches or more diagonal, 30 inches or more, 50 inches or more, 60 inches or more, or 70 inches or more.
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
Examples of electronic devices include relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and large game machines such as pachinko machines. In addition to the electronic devices provided, a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, a sound reproduction device, and the like can be given.
本発明の一態様の電子機器または照明装置は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
The electronic device or the lighting device of one embodiment of the present invention can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
The electronic device of one embodiment of the present invention may have an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit. In the case where the electronic device has an antenna and a secondary battery, the antenna may be used for non-contact power transmission.
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
The electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
The electronic device of one embodiment of the present invention can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
図17(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
FIG. 17A shows an example of a television device. In the television device 7100, a display portion 7000 is incorporated in a housing 7101. Here, a structure in which the housing 7101 is supported by a stand 7103 is shown.
表示部7000に、本発明の一態様の表示装置を適用することができる。
The display device of one embodiment of the present invention can be applied to the display portion 7000.
図17(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
The operation of the television device 7100 illustrated in FIG. 17A can be performed using an operation switch included in the housing 7101 or a separate remote controller 7111. Alternatively, the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like. The remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7000 can be operated.
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
Note that the television device 7100 is provided with a receiver, a modem, and the like. A general television broadcast can be received by the receiver. In addition, by connecting to a wired or wireless communication network via a modem, information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
図17(B)に、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
FIG. 17B shows a laptop personal computer 7200. A laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like. A display portion 7000 is incorporated in the housing 7211.
表示部7000に、本発明の一態様の表示装置を適用することができる。
The display device of one embodiment of the present invention can be applied to the display portion 7000.
図17(C)、(D)に、デジタルサイネージ(Digital Signage:電子看板)の例を示す。
FIGS. 17C and 17D show examples of digital signage (digital signage).
図17(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
A digital signage 7300 illustrated in FIG. 17C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
また、図17(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
FIG. 17D shows a digital signage 7400 attached to a columnar column 7401. The digital signage 7400 includes a display portion 7000 provided along the curved surface of the column 7401.
図17(C)、(D)において、表示部7000に、本発明の一態様の表示装置を適用することができる。
17C and 17D, the display device of one embodiment of the present invention can be applied to the display portion 7000.
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
The wider the display unit 7000, the more information can be provided at one time. In addition, the wider the display unit 7000, the more easily noticeable to the human eye. For example, the advertising effect can be enhanced.
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
It is preferable to apply a touch panel to the display unit 7000, which not only displays an image or a moving image on the display unit 7000, but also allows the user to operate intuitively. In addition, when it is used for providing information such as route information or traffic information, usability can be improved by an intuitive operation.
また、図17(C)、(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
In addition, as illustrated in FIGS. 17C and 17D, the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone possessed by the user by wireless communication. Is preferred. For example, advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
Also, it is possible to cause the digital signage 7300 or the digital signage 7400 to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
Note that at least part of this embodiment can be implemented in combination with any of the other embodiments described in this specification as appropriate.
10 表示システム
10A 表示システム
11 セレクタ回路
12 セレクタ回路
20 表示装置
21 表示部
22 ソース駆動回路
23 ゲート駆動回路
24 タイミングコントローラ
25 バックライト
30 受像装置
31 処理部
32 デコーダ
33 フロントエンド部
34 受信部
35 受信部
36 インターフェース
37 制御回路
41 リモートコントローラ
51 画素 DESCRIPTION OFSYMBOLS 10 Display system 10A Display system 11 Selector circuit 12 Selector circuit 20 Display apparatus 21 Display part 22 Source drive circuit 23 Gate drive circuit 24 Timing controller 25 Backlight 30 Image receiving apparatus 31 Processing part 32 Decoder 33 Front end part 34 Reception part 35 Reception part 36 Interface 37 Control circuit 41 Remote controller 51 Pixel
10A 表示システム
11 セレクタ回路
12 セレクタ回路
20 表示装置
21 表示部
22 ソース駆動回路
23 ゲート駆動回路
24 タイミングコントローラ
25 バックライト
30 受像装置
31 処理部
32 デコーダ
33 フロントエンド部
34 受信部
35 受信部
36 インターフェース
37 制御回路
41 リモートコントローラ
51 画素 DESCRIPTION OF
Claims (7)
- 受像装置と、表示装置と、を有する表示システムであって、
前記表示装置は、駆動回路と、表示部と、を有し、
前記駆動回路は、前記表示部に画像データを順次書き込む機能を有し、
前記受像装置は、映像信号を受信する機能と、前記表示装置の前記駆動回路を制御する機能と、を有し、
前記受像装置は、前記映像信号に含まれる画像情報の画像フレーム周波数を検出し、前記画像フレーム周波数に応じて、前記画像データを書き込む書き込み期間と、前記画像データの書き込みを行わない休止期間と、を変更する機能を有する、
表示システム。 A display system having an image receiving device and a display device,
The display device includes a drive circuit and a display unit,
The drive circuit has a function of sequentially writing image data to the display unit,
The image receiving device has a function of receiving a video signal and a function of controlling the drive circuit of the display device,
The image receiving device detects an image frame frequency of image information included in the video signal, and according to the image frame frequency, a writing period in which the image data is written, a pause period in which the image data is not written, Have the ability to change the
Display system. - 受像装置と、表示装置と、を有する表示システムであって、
前記表示装置は、駆動回路と、表示部と、を有し、
前記駆動回路は、前記表示部に画像データを順次書き込む機能を有し、
前記受像装置は、映像信号を受信する機能と、前記表示装置の前記駆動回路を制御する機能と、を有し、
前記受像装置は、前記映像信号に含まれる画像情報の画像フレーム周波数を検出し、前記画像フレーム周波数に応じて、前記画像データを書き込む書き込み期間と、前記画像データの書き込みを行わない休止期間と、を変更する機能を有し、
前記受像装置は、前記休止期間において、前記駆動回路への電源の供給を遮断するように、前記駆動回路を制御する機能を有する、
表示システム。 A display system having an image receiving device and a display device,
The display device includes a drive circuit and a display unit,
The drive circuit has a function of sequentially writing image data to the display unit,
The image receiving device has a function of receiving a video signal and a function of controlling the drive circuit of the display device,
The image receiving device detects an image frame frequency of image information included in the video signal, and according to the image frame frequency, a writing period in which the image data is written, a pause period in which the image data is not written, Has the ability to change
The image receiving device has a function of controlling the drive circuit so as to cut off the supply of power to the drive circuit during the pause period.
Display system. - 請求項1または請求項2において、
前記受像装置は、前記画像情報の画像解像度を検出する機能を有し、
前記表示部は、複数のゲート線と、前記ゲート線と交差する複数のソース線と、を有し、
前記受像装置は、前記画像情報の前記画像解像度をd、前記表示部の解像度をDとしたとき、d=D/22n(nは1以上の整数)を満たす場合に、隣接する2n本の前記ソース線に同じデータを書き込み、且つ隣接する2n本の前記ゲート線を同時に選択するように、前記駆動回路を制御する機能を有する、
表示システム。 In claim 1 or claim 2,
The image receiving device has a function of detecting an image resolution of the image information;
The display unit includes a plurality of gate lines and a plurality of source lines intersecting with the gate lines,
When the image resolution of the image information is d and the resolution of the display unit is D, the image receiving device has 2 n adjacent pixels when d = D / 2 2n (n is an integer of 1 or more). Having the function of controlling the drive circuit so that the same data is written to the source line and the adjacent 2 n gate lines are simultaneously selected.
Display system. - 請求項1または請求項2において、
前記受像装置は、前記画像情報の前記画像フレーム周波数をf、前記表示部が表示可能な最大周波数をF、1フレーム期間を1/Fとしたとき、f=F/2m(mは1以上の整数)を満たす場合に、2mフレーム期間のうち、pフレーム(pは1以上2m−1以下の整数)を前記書き込み期間、残りの2m−pフレームを前記休止期間とするように、前記駆動回路を制御する機能を有する、
表示システム。 In claim 1 or claim 2,
When the image frame frequency of the image information is f, the maximum frequency that can be displayed by the display unit is F, and the frame period is 1 / F, f = F / 2 m (m is 1 or more). Of the 2 m frame period, the p frame (p is an integer of 1 to 2 m-1 or less) is used as the writing period, and the remaining 2 m -p frames are used as the pause period. , Having a function of controlling the drive circuit,
Display system. - 請求項4において、
p=1を満たすことを特徴とする、
表示システム。 In claim 4,
p = 1 is satisfied,
Display system. - 請求項4において、
前記表示部はバックライト装置を有し、
前記バックライト装置は、前記駆動回路により制御され、
前記受像装置は、前記画像フレーム周波数の2倍の周期で前記バックライト装置が点滅するように、前記駆動回路を制御する機能を有する、
表示システム。 In claim 4,
The display unit has a backlight device,
The backlight device is controlled by the drive circuit,
The image receiving device has a function of controlling the drive circuit such that the backlight device blinks at a cycle twice the image frame frequency.
Display system. - 請求項6において、
前記受像装置は、前記バックライト装置が点灯する期間が前記休止期間と重畳し、且つ、前記バックライト装置が消灯する期間が前記書き込み期間と重畳するように、前記駆動回路を制御する機能を有する、
表示システム。 In claim 6,
The image receiving device has a function of controlling the drive circuit such that a period during which the backlight device is lit overlaps with the pause period, and a period during which the backlight device is turned off overlaps with the writing period. ,
Display system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017060415 | 2017-03-27 | ||
JP2017-060415 | 2017-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018178792A1 true WO2018178792A1 (en) | 2018-10-04 |
Family
ID=63677415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/051678 WO2018178792A1 (en) | 2017-03-27 | 2018-03-14 | Display system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018178792A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036046A (en) * | 2001-07-23 | 2003-02-07 | Toshiba Corp | Display device and driving method thereof |
JP2004045662A (en) * | 2002-07-10 | 2004-02-12 | Sharp Corp | Display device and driving method thereof |
JP2005003974A (en) * | 2003-06-12 | 2005-01-06 | Hitachi Displays Ltd | Liquid crystal display |
JP2005134724A (en) * | 2003-10-31 | 2005-05-26 | Sharp Corp | Liquid crystal display |
JP2012018271A (en) * | 2010-07-07 | 2012-01-26 | Sharp Corp | Control device and control method for display module, display device, portable electronic apparatus, display control program, and recording medium recording the program |
JP2015018229A (en) * | 2013-06-14 | 2015-01-29 | 株式会社半導体エネルギー研究所 | Information processing system and driving method thereof |
-
2018
- 2018-03-14 WO PCT/IB2018/051678 patent/WO2018178792A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036046A (en) * | 2001-07-23 | 2003-02-07 | Toshiba Corp | Display device and driving method thereof |
JP2004045662A (en) * | 2002-07-10 | 2004-02-12 | Sharp Corp | Display device and driving method thereof |
JP2005003974A (en) * | 2003-06-12 | 2005-01-06 | Hitachi Displays Ltd | Liquid crystal display |
JP2005134724A (en) * | 2003-10-31 | 2005-05-26 | Sharp Corp | Liquid crystal display |
JP2012018271A (en) * | 2010-07-07 | 2012-01-26 | Sharp Corp | Control device and control method for display module, display device, portable electronic apparatus, display control program, and recording medium recording the program |
JP2015018229A (en) * | 2013-06-14 | 2015-01-29 | 株式会社半導体エネルギー研究所 | Information processing system and driving method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110832573B (en) | Display unit, display device and electronic equipment | |
US11803092B2 (en) | Liquid crystal display device | |
US11520185B2 (en) | Liquid crystal display device | |
JP6336183B2 (en) | Liquid crystal display | |
US11200859B2 (en) | Display device and electronic device | |
US8619011B2 (en) | Liquid crystal display device | |
US10268326B2 (en) | Semiconductor device, touch panel, and electronic device | |
JP2008225413A (en) | Liquid crystal display | |
CN103578399A (en) | Display device and electronic apparatus | |
JP2008009391A (en) | Display device and driving method thereof | |
JP2018152639A (en) | Semiconductor device and display system | |
US20180061376A1 (en) | Electronic device system | |
JP2024019128A (en) | display device | |
JP2008287068A (en) | Display device | |
JP5690894B2 (en) | Liquid crystal display | |
JP5371159B2 (en) | Semiconductor device | |
WO2018178792A1 (en) | Display system | |
JP2007310159A (en) | Liquid crystal display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776397 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776397 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |