[go: up one dir, main page]

WO2018179303A1 - Heating structure and treatment tool - Google Patents

Heating structure and treatment tool Download PDF

Info

Publication number
WO2018179303A1
WO2018179303A1 PCT/JP2017/013494 JP2017013494W WO2018179303A1 WO 2018179303 A1 WO2018179303 A1 WO 2018179303A1 JP 2017013494 W JP2017013494 W JP 2017013494W WO 2018179303 A1 WO2018179303 A1 WO 2018179303A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance pattern
inclined surface
generating structure
heat generating
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/013494
Other languages
French (fr)
Japanese (ja)
Inventor
工藤 貢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to PCT/JP2017/013494 priority Critical patent/WO2018179303A1/en
Publication of WO2018179303A1 publication Critical patent/WO2018179303A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes

Definitions

  • the present invention relates to a heat generating structure and a treatment tool.
  • the heat generating structure (electrode part) described in Patent Document 1 includes a heater (electrothermal conversion element), a heat transfer plate (high-frequency electrode), and an adhesive member (high heat conductive heat-resistant adhesive sheet) described below.
  • the heater is a sheet heater in which a resistance pattern (electric resistance pattern) that generates heat when energized is formed on one surface of a substrate.
  • the heat transfer plate is made of a conductive material such as copper.
  • the heat transfer plate is disposed to face one surface (resistance pattern) of the substrate constituting the heater, and transfers heat from the resistance pattern to the living tissue (giving thermal energy to the living tissue).
  • the adhesive member is a sheet having good thermal conductivity and electrical insulation. The adhesive member is interposed between the heater and the heat transfer plate, and bonds and fixes them.
  • FIG. 14 is a diagram illustrating a problem in the conventional heat generating structure 11 ′. Specifically, FIG. 14 is a cross-sectional view of the heat generating structure 11 ′.
  • reference numeral “12 ′” denotes the above-described heat transfer plate.
  • Reference numeral “121 ′” denotes the outer surface of the heat transfer plate described above.
  • Reference numeral “1213 ′” is the above-described protrusion.
  • Reference numeral “122 ′” denotes an inner surface which forms the front and back surfaces of the heat transfer plate described above.
  • Reference numeral “13 ′” denotes the heater described above.
  • Reference numeral “15 ′” denotes the substrate described above.
  • Reference numeral “151 ′” is one surface of the substrate described above.
  • Reference numeral “16 ′” is the above-described resistance pattern.
  • Reference numeral “14 ′” denotes the adhesive member described above.
  • the living tissue comes into contact with the vertex of the protrusion 1213 ′, and the vertex And so forth by applying thermal energy from.
  • the distance from the resistance pattern 16 ′ to the apex portion of the ridge 1213 ′ is increased by the provision of the ridge 1213 ′. For this reason, there is a problem that the temperature rise time of the apex portion is delayed and the treatment time of the living tissue is accordingly increased.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a heat generating structure and a treatment tool that can shorten the treatment time of a living tissue.
  • a heat generating structure has a resistance pattern that generates heat by energization, an outer surface, and an inner surface that forms the front and back surfaces of the outer surface, A heat transfer plate to which heat from the resistance pattern is transmitted, and an adhesive member interposed between the resistance pattern and the inner surface, and adhesively fixing the resistance pattern and the heat transfer plate.
  • the surface is provided with a ridge that extends along the first direction, and the inner surface has a ridge that extends along the first direction at a position facing the ridge. Is provided, and at least a part of the resistance pattern is located in the recess.
  • the treatment tool according to the present invention includes the heat generating structure described above.
  • FIG. 1 is a diagram schematically illustrating a treatment system according to the first embodiment.
  • FIG. 2 is an enlarged view of the distal end portion of the treatment instrument.
  • FIG. 3 is a view showing a heat generating structure.
  • FIG. 4 is a view showing a heat generating structure.
  • FIG. 5 is a diagram showing a heat generating structure.
  • FIG. 6 is a diagram illustrating an example of a heater manufacturing method.
  • FIG. 7 is a diagram for explaining the effect of the first embodiment.
  • FIG. 8 is a diagram showing a heat generating structure according to the second embodiment.
  • FIG. 9 is a diagram showing a heat generating structure according to the second embodiment.
  • FIG. 10 is a diagram illustrating a heater according to the third embodiment.
  • FIG. 11 is a diagram showing a heat transfer plate according to the fourth embodiment.
  • FIG. 12 is a diagram for explaining the effect of the fourth embodiment.
  • FIG. 13 is a diagram showing a modification of the first to fourth embodiments.
  • FIG. 14 is a diagram for explaining a problem in a conventional heat generating structure.
  • FIG. 1 is a diagram schematically illustrating a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats (joins (or anastomoses) and detaches, etc.) the living tissue by applying thermal energy to the living tissue to be treated.
  • the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
  • the treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment on a living tissue through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a part that the surgeon holds by hand.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5.
  • a gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1).
  • An opening / closing mechanism (not shown) that opens and closes the first and second gripping members 8 and 9 constituting the gripping portion 7 according to the operation of the operation knob 51 by the operator is provided inside the shaft 6. It has been. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).
  • FIG. 2 is an enlarged view of the distal end portion of the treatment instrument 2.
  • the gripping part 7 is a part that grips a living tissue and treats the living tissue.
  • the grip portion 7 includes first and second grip members 8 and 9.
  • the first and second gripping members 8 and 9 are pivotally supported on the other end (left end portion in FIGS. 1 and 2) of the shaft 6 so as to be openable and closable in the direction of the arrow R1 (FIG. 2).
  • the living tissue can be grasped.
  • the “tip side” described below is the tip side of the gripping part 7 and means the left side in FIGS. Further, the “base end side” described below means the shaft 6 side of the gripping portion 7 and the right side in FIGS. 1 and 2.
  • the first gripping member 8 is disposed on the lower side in FIG. 1 or FIG. 2 with respect to the second gripping member 9. As shown in FIG. 2, the first gripping member 8 includes a first cover member 10 and a heat generating structure 11.
  • the first cover member 10 is configured by a long plate body extending in the longitudinal direction (left and right direction in FIGS. 1 and 2) from the distal end of the gripping portion 7 to the proximal end.
  • a concave portion 101 is formed on the upper surface in FIG.
  • the recess 101 is located at the center in the width direction of the first cover member 10 and extends along the longitudinal direction of the first cover member 10.
  • the base end side wall portion is omitted.
  • the first cover member 10 is supported by the shaft 6 in a posture in which the concave portion 101 faces upward in FIG. 2 while supporting the heat generating structure 11 in the concave portion 101.
  • FIG. 3 to 5 are views showing the heat generating structure 11.
  • FIG. 3 is a perspective view of the heat generating structure 11 as viewed from above in FIG. 4 is an exploded perspective view of the heat generating structure 11 shown in FIG.
  • FIG. 5 is a cross-sectional view of the heat generating structure 11 cut from the front end side along a cut surface along the width direction.
  • the heat generating structure 11 is housed in the recess 101 in a state in which a part of the heat generating structure 11 protrudes upward from the recess 101 in FIG.
  • the heat generating structure 11 generates heat energy under the control of the control device 3.
  • the heat generating structure 11 includes a heat transfer plate 12, a heater 13 (FIGS. 3 to 5), and an adhesive member 14 (FIGS. 3 to 5).
  • the heat transfer plate 12 has a long thin plate (a long shape extending in the longitudinal direction of the gripping portion 7) made of a material such as copper, for example, with each surface on both sides in the width direction as a boundary at the center in the width direction. It has a shape bent so as to form an angle ⁇ (FIG. 5) with each other.
  • the heat transfer plate 12 is formed to have a uniform thickness dimension.
  • the upper surface in FIGS. 2 to 5 corresponds to the outer surface 121 according to the present invention.
  • the left surface of the outer surface 121 in FIG. 5 corresponds to the first inclined surface 1211 according to the present invention.
  • FIGS. 2 to 5 corresponds to the second inclined surface 1212 according to the present invention. Then, as shown in FIGS. 2 to 5, the first and second inclined surfaces 1211 and 1212 cross each other at an angle ⁇ to protrude upward in the longitudinal direction (according to the present invention). A ridge 1213 extending in the first direction) is formed.
  • the lower surface in FIGS. 3 to 5 which is opposite to the outer surface 121 corresponds to the inner surface 122 according to the present invention.
  • the inner surface 122 is opposite to the first inclined surface 1211, and the left surface of the inner surface 122 in FIG. 5 corresponds to the third inclined surface 1221 according to the present invention.
  • the inner surface 122 is opposite to the second inclined surface 1212, and the right surface of the inner surface 122 in FIG. 5 corresponds to the fourth inclined surface 1222 according to the present invention.
  • the third and fourth inclined surfaces 1221 and 1222 cross each other at an angle ⁇ on the inner surface 122 so as to oppose the ridge 1213 and upward.
  • a concave portion 1223 is formed which is recessed toward the longitudinal direction and extends in the longitudinal direction.
  • the heat transfer plate 12 described above is accommodated in the recess 101 in a state where the protrusion 1213 protrudes upward from the recess 101 in FIG.
  • the heat transfer plate 12 is in a state where the living tissue is gripped by the first and second gripping members 8 and 9, the outer surface 121 (protruding portion 1213) comes into contact with the living tissue, and the heater 13 Heat is transferred to the living tissue (thermal energy is applied to the living tissue).
  • the protrusion 1213 protrudes upward from the recess 101.
  • the present invention is not limited to this, and the protrusion 1213 does not protrude upward from the recess 101.
  • the opposing board 18 is accommodated in the state which protruded below in FIG. 2 from the recessed part 171, Therefore The opposing board 18 and the heat exchanger plate 12 (outer surface 121) The living tissue can be grasped between the two.
  • the heater 13 generates heat and functions as a sheet heater that heats the heat transfer plate 12 by the generated heat.
  • the heater 13 includes a substrate 15 and a resistance pattern 16.
  • the substrate 15 is a long sheet (long shape extending in the longitudinal direction of the gripping portion 7) made of an insulating material such as polyimide.
  • the substrate 15 is formed so that the thickness dimension is uniform.
  • the material of the substrate 15 is not limited to polyimide, and for example, a high heat insulating material such as aluminum nitride, alumina, glass, zirconia, etc. may be adopted.
  • the resistance pattern 16 is obtained by processing stainless steel (SUS304), which is a conductive material. As shown in FIGS. 3 to 5, a pair of connecting portions 161 (FIGS. 3 and 4) and a pattern body 162 (FIG. 4 and FIG. 5). The resistance pattern 16 is bonded to the upper surface 151 of the substrate 15 in FIGS. 3 to 5 by thermocompression bonding.
  • the material of the resistance pattern 16 is not limited to stainless steel (SUS304), and other stainless steel materials (for example, No. 400 series) may be used, or a conductive material such as platinum or tungsten may be adopted.
  • the resistance pattern 16 is not limited to the configuration in which the substrate 15 is bonded to the surface 151 by thermocompression bonding, and a configuration in which the surface 151 is formed by vapor deposition, printing, or the like may be employed.
  • connection portions 161 are respectively provided on the base end side of the substrate 15, extend from the base end side toward the tip end side, and extend along the width direction of the substrate 15. So as to face each other.
  • two lead wires CL (FIGS. 3 and 4) constituting the electric cable C are joined (connected) to the pair of connection portions 161, respectively.
  • One end of the pattern body 162 is connected (conductive) to one connecting portion 161, and extends from the one end along a U-shape following the outer edge shape of the substrate 15 while meandering in a wavy shape, and the other end is connected to the other end
  • the connection part 161 is connected (conducted).
  • the resistance pattern 16 generates heat when a voltage is applied (energized) to the pair of connection portions 161 by the control device 3 via the two lead wires CL.
  • FIG. 6 is a diagram illustrating an example of a method for manufacturing the heater 13. Specifically, FIG. 6 is a perspective view of the heater 13 viewed from the heat transfer plate 12 side. And in this Embodiment 1, the heater 13 is manufactured as shown below, for example. First, the worker forms the resistance pattern 16 on one surface 151 of the flat substrate 15 as shown in FIG. Next, as shown in FIG. 6B, the operator bends the substrate 15 and the resistance pattern 16 so that the surfaces on both sides in the width direction form an angle ⁇ with the center in the width direction of the substrate 15 as a boundary. .
  • the method for manufacturing the heater 13 is not limited to the above-described method, and the resistance pattern 16 may be formed on the substrate 15 that has been previously formed to have the shape shown in FIG.
  • the heat transfer plate 12 is not limited to the method of forming a flat thin plate by bending, and may be formed to have a bent shape.
  • the length dimension between the left and right end portions of the substrate 15 in FIG. 5 is set to be smaller than the length dimension between the left and right end portions of the heat transfer plate 12 in FIG.
  • the length dimension in the longitudinal direction of the substrate 15 is set to be larger than the length dimension in the longitudinal direction of the heat transfer plate 12.
  • the adhesive member 14 is interposed between the inner surface 122 and the surface 151 (resistive pattern 16) of the substrate 15, and a part of the heater 13 is a base end of the heat transfer plate 12.
  • the heat transfer plate 12 and the heater 13 are bonded and fixed in a state of protruding from the end on the side to the base end side.
  • the adhesive member 14 is a long sheet (long form extending in the longitudinal direction of the gripping portion 7) having good thermal conductivity and electrical insulation, withstanding high temperatures, and having adhesiveness.
  • each surface on both sides in the width direction is bent at an angle ⁇ with the center in the width direction as a boundary.
  • the adhesive member 14 is formed to have a uniform thickness dimension.
  • the length dimension between the left and right ends in FIG. 5 of the adhesive member 14 is set to be substantially the same as the length dimension between the left and right ends in FIG. 5 of the heat transfer plate 12. Further, the length dimension in the longitudinal direction of the adhesive member 14 is set to be larger than the length dimension in the longitudinal direction of the heat transfer plate 12 and smaller than the length dimension of the substrate 15 in the longitudinal direction.
  • the length dimension of the adhesive member 14 is not limited to this, and the length dimension between the left and right ends of the adhesive member 14 may be larger than the length dimension between the left and right ends of the heat transfer plate 12. The length dimension between the left and right ends of the member 14 may be smaller than the length dimension between the left and right ends of the substrate 15.
  • the heat-transfer plate 12 is arrange
  • the adhesive member 14 is disposed so as to cover the entire pattern main body 162 and a part of the pair of connection portions 161. That is, the adhesive member 14 is arranged in a state of protruding to the proximal end side with respect to the heat transfer plate 12. Then, the pair of lead wires CL are connected (joined) to a region not covered with the adhesive member 14 in the pair of connection portions 161.
  • the resistance pattern 16 faces the third and fourth inclined surfaces 1221 and 1222, respectively, as shown in FIG. And the resistance pattern 16 is located in the space Sp of the cross-sectional triangle shape in the concave streak part 1223.
  • the center position C1 of the center positions C1 and C2 in the width direction in the resistance pattern 16 is more than the position C3 ′ on the surface 151 of the substrate 15 facing the center position C3 in the width direction on the third inclined surface 1221.
  • the center position C2 is located closer to the third inclined surface 1221 than the position C4 ′ on the surface 151 of the substrate 15 facing the center position C4 in the width direction of the fourth inclined surface 1222.
  • the second holding member 9 includes a second cover member 17 and a counter plate 18.
  • the second cover member 17 has the same shape as the first cover member 10. That is, the 2nd cover member 17 has the recessed part 171 similar to the recessed part 101, as shown in FIG.
  • the second cover member 17 is pivotally supported by the shaft 6 in a posture in which the concave portion 171 faces downward in FIG. 2 (a posture facing the concave portion 101) while supporting the counter plate 18 in the concave portion 101.
  • the counter plate 18 is made of a conductive material such as copper, for example.
  • the counter plate 18 is configured by a flat plate having substantially the same planar shape as the concave portion 171 and is fixed in the concave portion 171.
  • the opposing plate 18 grips the living tissue with the heat transfer plate 12 (outer surface 121).
  • the foot switch 4 is a part operated by the operator with his / her foot. And according to the said operation to the foot switch 4, on / off of the electricity supply from the control apparatus 3 to the treatment tool 2 (resistance pattern 16) is switched. Note that the means for switching on and off is not limited to the foot switch 4, and a switch operated by hand or the like may be employed.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. More specifically, the control device 3 applies a voltage to the resistance pattern 16 via the electric cable C in response to an operation to the foot switch 4 by the operator (operation to turn on the power), and the heat transfer plate 12 is moved. Heat.
  • CPU Central Processing Unit
  • FIG. 7 is a diagram for explaining the effect of the first embodiment. Specifically, FIG. 7 shows the temperature change of the apex portion of the protrusion 1213 when the resistance pattern 16 is heated in the heat generating structure 11 according to the first embodiment.
  • the temperature change of the resistance pattern 16 is indicated by a one-dot chain line
  • the temperature change of the apex portion of the protrusion 1213 is indicated by a solid line.
  • the resistance pattern 16 ′ is heated in the conventional heat generating structure 11 ′ (FIG. 14) that does not have the concave stripe portion 1223.
  • the change in temperature at the apex of the protruding portion 1213 ′ is indicated by a broken line. Note that the temperature change of the resistance pattern 16 ′ is the same as the temperature change of the resistance pattern 16 (the chain line in FIG. 7).
  • the inner surface 122 of the heat transfer plate 12 is provided with a concave line portion 1223 extending in the longitudinal direction at a position facing the protruding line portion 1213.
  • the resistance pattern 16 is located in the space Sp of the cross-sectional triangle shape in the concave streak part 1223. For this reason, compared with the distance from the resistance pattern 16 ′ in the conventional heating structure 11 ′ shown in FIG. 14 to the apex portion of the ridge portion 1213 ′, from the resistance pattern 16 to the apex portion of the ridge portion 1213. Can be shortened.
  • the temperature raising time at the apex portion of the protrusion 1213 can be accelerated.
  • the apex portion of the protrusion 1213 ′ can be raised to 250 ° C. in less than 1 second. Therefore, according to the heat generating structure 11 according to the first embodiment, there is an effect that the treatment time of the living tissue can be shortened.
  • one center position C1 of the resistance pattern 16 is a position on the surface 151 of the substrate 15 facing the center position C3 in the width direction of the third inclined surface 1221. It is located closer to the fourth inclined surface 1222 than C3 ′.
  • the other center position C2 is located closer to the third inclined surface 1221 than the position C4 ′ on the surface 151 of the substrate 15 facing the center position C4 in the width direction of the fourth inclined surface 1222.
  • the resistance pattern 16 can be arrange
  • FIG. 8 is a perspective view of the heat generating structure 11A corresponding to FIG. 9 is an exploded perspective view of the heat generating structure 11A shown in FIG.
  • the second embodiment is different from the first embodiment described above in that a heat generating structure 11A different from the heat generating structure 11 is employed.
  • the first and second heaters 13A1, 13A2, and the first and first heaters 13A1, 13A2 are different in shape from the heater 13 and the adhesive member 14 with respect to the heat generating structure 11 described in the first embodiment.
  • Two adhesive members 14A1 and 14A2 are employed.
  • the first heater 13A1 includes a first substrate 15A1 and a first resistance pattern 16A1.
  • the first substrate 15A1 is made of the same material as the substrate 15 described in the first embodiment, and has the same shape as one of two bodies obtained by dividing the substrate 15 at the center in the width direction.
  • the first resistance pattern 16A1 is made of the same material as the resistance pattern 16 described in the first embodiment and has the same configuration. In FIGS. 8 and 9 of the first substrate 15A1, It is provided on the upper first surface 151A1. That is, the first resistance pattern 16A1 includes a pair of first connection portions 161A1 and a first pattern body 162A1 similar to the pair of connection portions 161 and the pattern body 162 described above. As shown in FIG.
  • the second heater 13A2 has the same configuration and shape as the first heater 13A1. That is, the second heater 13A2 includes the first substrate 15A1 (including the first surface 151A1) and the first resistance pattern 16A1 (including the pair of first connection portions 161A1 and the first pattern body 162A1). A similar second substrate 15A2 (including the second surface 151A2) and a second resistance pattern 16A2 (including a pair of second connection portions 161A2 and a second pattern body 162A2) are provided.
  • the first and second adhesive members 14A1 and 14A2 are obtained by dividing the adhesive member 14 described in the first embodiment described above at the center in the width direction.
  • the first adhesive member 14A1 is interposed between the third inclined surface 1221 and the first surface 151A1, and bonds and fixes the heat transfer plate 12 and the first heater 13A1.
  • the first resistance pattern 16A1 faces the third inclined surface 1221.
  • 1st resistance pattern 16 A1 is located in the space Sp (FIG. 9) of the cross-sectional triangle shape in the concave part 1223.
  • FIG. Further, the center position C1 (FIG. 9) in the width direction of the first resistance pattern 16A1 is the first position of the first substrate 15A1 facing the center position C3 (FIG.
  • the heater and the adhesive member are each composed of two bodies of the first and second heaters 13A1, 13A2 and the first and second adhesive members 14A1, 14A2 as in the second embodiment described above.
  • the same effects as those of the first embodiment described above are obtained.
  • FIG. 10 is a diagram showing a heater 13B according to the third embodiment. Specifically, FIG. 10 is a perspective view of the heater 13B viewed from the heat transfer plate 12 side. As shown in FIG. 10, the third embodiment is different from the first embodiment described above in that a heater 13B different from the heater 13 is employed. As shown in FIG. 10, the heater 13 ⁇ / b> B includes a substrate 15 ⁇ / b> B made of the same material as the substrate 15 described in the first embodiment and the same material as the resistance pattern 16 described in the first embodiment. And a resistance pattern 16B constituted by
  • the substrate 15 ⁇ / b> B is a U-shaped sheet that is located at the center in the width direction and has a notch 152 that extends from the distal end toward the proximal end.
  • the resistance pattern 16B is obtained by changing the shape of the pattern main body 162 in accordance with the planar shape of the substrate 15B with respect to the resistance pattern 16B described in the first embodiment.
  • the pattern main body 162 in the resistance pattern 16B has one end connected (conducted) to one connection portion 161, and follows the M-shape following the outer edge shape of the substrate 15B while meandering from the one end.
  • the other end is connected (conducted) to the other connecting portion 161.
  • the heater 13B has the substrate 15B and the resistance pattern 16B so that the surfaces on both sides in the width direction form an angle ⁇ with the notch 152 as a boundary. It is formed by bending.
  • the method of manufacturing the heater 13B is not limited to the above-described method, and the resistance pattern 16B may be formed on the substrate 15B that has been previously bent.
  • the positional relationship between the heat transfer plate 12 and the resistance pattern 16B is the same as the positional relationship described in the first embodiment.
  • the shape of the substrate 15B is not limited to a U shape in a plan view, and may be a Y-shaped sheet in a plan view with a front end divided into two.
  • FIG. 11 is a diagram showing a heat transfer plate 12C according to the fourth embodiment. Specifically, FIG. 11 is a cross-sectional view of the heat transfer plate 12C cut from a cutting surface along the width direction and viewed from the front end side. As shown in FIG. 11, the fourth embodiment is different from the first embodiment described above in that a heat transfer plate 12C different from the heat transfer plate 12 is employed.
  • the heat transfer plate 12 ⁇ / b> C has a different cross-sectional shape from the heat transfer plate 12 described in the first embodiment. Specifically, in the heat transfer plate 12, the angle formed by the first and second inclined surfaces 1211 and 1212 and the angle formed by the third and fourth inclined surfaces 1221 and 1222 are set to the same angle ⁇ . It was. That is, the heat transfer plate 12 has a uniform thickness dimension. In contrast, in the heat transfer plate 12C according to the fourth embodiment, as shown in FIG. 11, the angle formed by the first and second inclined surfaces 1211 and 1212 is set to the first angle ⁇ 1. Yes.
  • the angle formed by the third and fourth inclined surfaces 1221 and 1222 is set to a second angle ⁇ 2 that is larger than the first angle ⁇ 1. That is, the heat transfer plate 12 ⁇ / b> C is set such that the thickness dimension becomes smaller toward both sides in the width direction.
  • the positional relationship between the heat transfer plate 12C and the resistance pattern 16 is the same as the positional relationship described in the first embodiment.
  • FIG. 12 is a diagram for explaining the effect of the fourth embodiment.
  • FIG. 12 is a cross-sectional view corresponding to FIG. 11 in which the angle formed by the third and fourth inclined surfaces 1221 and 1222 is a third angle ⁇ 3 smaller than the first angle ⁇ 1.
  • a hot plate 12C ' is shown.
  • the angle (the third angle) formed by the third and fourth inclined surfaces 1221 and 1222 is larger than the angle (the first angle ⁇ 1) formed by the first and second inclined surfaces 1211 and 1212.
  • the normal directions N1 and N2 of the resistance pattern 16 are away from the apex portion of the protrusion 1213.
  • the normal directions N1 and N2 mean the direction of heat transfer from the resistance pattern 16. For this reason, it is difficult to effectively speed up the temperature raising time of the apex portion.
  • the third and fourth inclined surfaces 1221 are larger than the angle (first angle ⁇ 1) formed by the first and second inclined surfaces 1211 and 1212. , 1222 (second angle ⁇ 2) is set large. For this reason, the normal directions N1 and N2 (FIG. 11) of the resistance pattern 16 (pattern body 162) approach the apex portion of the ridge portion 1213. Therefore, it is possible to effectively speed up the temperature raising time of the apex portion.
  • FIG. 13 is a diagram showing a modification of the first to fourth embodiments. Specifically, FIG. 13 is a cross-sectional view of the heat generating structure 11D according to the present modification taken along the cut surface along the width direction and viewed from the front end side.
  • the thickness dimension of the adhesive member 14 (14A1, 14A2) is set to be uniform.
  • the present invention is not limited to this.
  • an adhesive member 14D having a non-uniform thickness may be employed as in the heat generating structure 11D according to the present modification shown in FIG.
  • the shape of the heater 13 (13A1, 13A2) is set so that the normal directions N1, N2 of the resistance pattern 16 (16A1, 16A2) do not intersect.
  • the shape of the heater 13 may be set so that the normal directions N1 and N2 of the resistance pattern 16 (16A1 and 16A2) intersect as in the heat generating structure 11D according to the present modification illustrated in FIG. I do not care. Even if it is a case where it comprises in this way, it is preferable that the resistance pattern 16 is located in the space Sp in the groove part 1223.
  • the protruding portion 1213 has a shape in which the first and second inclined surfaces 1211 and 1212 intersect each other and the apex portion is sharp.
  • the first and second inclined surfaces may not be connected, and a flat surface may be interposed between the first and second inclined surfaces.
  • the concave strip portion 1223 has a space Sp having a triangular cross-section when the third and fourth inclined surfaces 1221 and 1222 intersect each other, but the present invention is not limited thereto.
  • the third and fourth inclined surfaces may not be connected, and a flat surface may be interposed between the third and fourth inclined surfaces so as to have a trapezoidal space.
  • all of the resistance patterns 16 (16A1, 16A2) are located in the space Sp in the concave strip portion 1223.
  • the present invention is not limited to this. Only a part of the space Sp may be used.
  • the first and second gripping members 8 and 9 are opened and closed as the gripping portion 7.
  • a configuration in which the holding member 9 is omitted may be adopted.
  • the heating structure 11 (11A, 11D) is provided only on the first gripping member 8.
  • the member 9 may be provided with a similar heat generating structure 11 (11A, 11D).
  • the treatment instrument 2 is configured to apply thermal energy to the living tissue. Alternatively, a configuration that further applies ultrasonic energy may be employed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A heating structure 11 is provided with: a resistance pattern 16 that generates heat when electric current is carried thereto; a heat transfer plate 12, which has an outer surface 121, and an inner surface 122 on the reverse side of the outer surface 121, and to which heat from the resistance pattern 16 is transmitted; an adhesive member 14, which is disposed between the resistance pattern 16 and the inner surface 122, and which adheres and fixes the resistance pattern 16 and the heat transfer plate 12 to each other. The outer surface 121 is provided with a protruding strip section 1213 extending in the longitudinal direction. The inner surface 122 is provided with a recessed strip section 1223 extending in the longitudinal direction, said recessed strip section being at a position on the reverse side of the protruding strip section 1213. At least a part of the resistance pattern 16 is positioned in the recessed stripe section 1223.

Description

発熱構造体及び処置具Heat generating structure and treatment tool

 本発明は、発熱構造体及び処置具に関する。 The present invention relates to a heat generating structure and a treatment tool.

 従来、生体組織に熱エネルギを付与する発熱構造体が設けられ、当該熱エネルギの付与により生体組織を処置(接合(若しくは吻合)及び切離等)する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載の発熱構造体(電極部)は、以下に示すヒータ(電熱変換素子)、伝熱板(高周波電極)、及び接着部材(高熱伝導耐熱接着シート)を備える。
 ヒータは、基板の一方の面に通電により発熱する抵抗パターン(電気抵抗パターン)が形成されたシートヒータである。
 伝熱板は、銅等の導電性材料で構成されている。そして、伝熱板は、ヒータを構成する基板の一方の面(抵抗パターン)に対向して配設され、抵抗パターンからの熱を生体組織に伝達する(熱エネルギを生体組織に付与する)。
 接着部材は、良好な熱伝導性及び電気絶縁性を有するシートである。そして、接着部材は、ヒータ及び伝熱板の間に介装され、これらを接着固定する。
2. Description of the Related Art Conventionally, there has been known a treatment instrument that is provided with a heat generating structure that applies thermal energy to a living tissue, and that treats the living tissue (joining (or anastomosis), cutting, etc.) by applying the heat energy (for example, a patent) Reference 1).
The heat generating structure (electrode part) described in Patent Document 1 includes a heater (electrothermal conversion element), a heat transfer plate (high-frequency electrode), and an adhesive member (high heat conductive heat-resistant adhesive sheet) described below.
The heater is a sheet heater in which a resistance pattern (electric resistance pattern) that generates heat when energized is formed on one surface of a substrate.
The heat transfer plate is made of a conductive material such as copper. The heat transfer plate is disposed to face one surface (resistance pattern) of the substrate constituting the heater, and transfers heat from the resistance pattern to the living tissue (giving thermal energy to the living tissue).
The adhesive member is a sheet having good thermal conductivity and electrical insulation. The adhesive member is interposed between the heater and the heat transfer plate, and bonds and fixes them.

特開2014-124491号公報JP 2014-124491 A

 ところで、生体組織を切離等する場合には、例えば、伝熱板において、生体組織に接触する外表面に突条部を設けた方が生体組織に対して鋭利になるため有利となる可能性がある。しかしながら、このように構成した場合には、以下の問題が生じてしまう。
 図14は、従来の発熱構造体11´における問題を説明する図である。具体的に、図14は、発熱構造体11´の断面図である。
 なお、図14において、符号「12´」は、上述した伝熱板である。符号「121´」は、上述した伝熱板の外表面である。符号「1213´」は、上述した突条部である。符号「122´」は、上述した伝熱板において、外表面と表裏をなす内表面である。符号「13´」は、上述したヒータである。符号「15´」は、上述した基板である。符号「151´」は、上述した基板の一方の面である。符号「16´」は、上述した抵抗パターンである。符号「14´」は、上述した接着部材である。
By the way, when separating a living tissue, for example, in a heat transfer plate, it is advantageous to provide a protrusion on the outer surface in contact with the living tissue because it becomes sharper to the living tissue. There is. However, such a configuration causes the following problems.
FIG. 14 is a diagram illustrating a problem in the conventional heat generating structure 11 ′. Specifically, FIG. 14 is a cross-sectional view of the heat generating structure 11 ′.
In FIG. 14, reference numeral “12 ′” denotes the above-described heat transfer plate. Reference numeral “121 ′” denotes the outer surface of the heat transfer plate described above. Reference numeral “1213 ′” is the above-described protrusion. Reference numeral “122 ′” denotes an inner surface which forms the front and back surfaces of the heat transfer plate described above. Reference numeral “13 ′” denotes the heater described above. Reference numeral “15 ′” denotes the substrate described above. Reference numeral “151 ′” is one surface of the substrate described above. Reference numeral “16 ′” is the above-described resistance pattern. Reference numeral “14 ′” denotes the adhesive member described above.

 伝熱板12´の外表面121´に断面三角形状の突条部1213´を設けた場合(図14)には、生体組織は、突条部1213´における頂点部分に接触し、当該頂点部分から熱エネルギが付与されることにより切離等される。しかしながら、突条部1213´を設けた分、抵抗パターン16´から突条部1213´における頂点部分までの距離が長くなっている。このため、当該頂点部分の昇温時間が遅くなり、それに伴って、生体組織の処置時間が長くなってしまう、という問題がある。 When the protrusion 1212 ′ having a triangular cross section is provided on the outer surface 121 ′ of the heat transfer plate 12 ′ (FIG. 14), the living tissue comes into contact with the vertex of the protrusion 1213 ′, and the vertex And so forth by applying thermal energy from. However, the distance from the resistance pattern 16 ′ to the apex portion of the ridge 1213 ′ is increased by the provision of the ridge 1213 ′. For this reason, there is a problem that the temperature rise time of the apex portion is delayed and the treatment time of the living tissue is accordingly increased.

 本発明は、上記に鑑みてなされたものであって、生体組織の処置時間を短縮することができる発熱構造体及び処置具を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a heat generating structure and a treatment tool that can shorten the treatment time of a living tissue.

 上述した課題を解決し、目的を達成するために、本発明に係る発熱構造体は、通電により発熱する抵抗パターンと、外表面と、当該外表面と表裏をなす内表面とを有し、前記抵抗パターンからの熱が伝達される伝熱板と、前記抵抗パターンと前記内表面との間に介装され、前記抵抗パターンと前記伝熱板とを接着固定する接着部材とを備え、前記外表面には、第1の方向に沿って延在する突条部が設けられ、前記内表面には、前記突条部に対向する位置に前記第1の方向に沿って延在する凹条部が設けられ、前記抵抗パターンの少なくとも一部は、前記凹条部内に位置する。 In order to solve the above-described problems and achieve the object, a heat generating structure according to the present invention has a resistance pattern that generates heat by energization, an outer surface, and an inner surface that forms the front and back surfaces of the outer surface, A heat transfer plate to which heat from the resistance pattern is transmitted, and an adhesive member interposed between the resistance pattern and the inner surface, and adhesively fixing the resistance pattern and the heat transfer plate. The surface is provided with a ridge that extends along the first direction, and the inner surface has a ridge that extends along the first direction at a position facing the ridge. Is provided, and at least a part of the resistance pattern is located in the recess.

 また、本発明に係る処置具は、上述した発熱構造体を備える。 Moreover, the treatment tool according to the present invention includes the heat generating structure described above.

 本発明に係る発熱構造体及び処置具によれば、生体組織の処置時間を短縮することができる、という効果を奏する。 According to the heat generating structure and the treatment tool according to the present invention, there is an effect that the treatment time of the living tissue can be shortened.

図1は、本実施の形態1に係る処置システムを模式的に示す図である。FIG. 1 is a diagram schematically illustrating a treatment system according to the first embodiment. 図2は、処置具の先端部分を拡大した図である。FIG. 2 is an enlarged view of the distal end portion of the treatment instrument. 図3は、発熱構造体を示す図である。FIG. 3 is a view showing a heat generating structure. 図4は、発熱構造体を示す図である。FIG. 4 is a view showing a heat generating structure. 図5は、発熱構造体を示す図である。FIG. 5 is a diagram showing a heat generating structure. 図6は、ヒータの製造方法の一例を示す図である。FIG. 6 is a diagram illustrating an example of a heater manufacturing method. 図7は、本実施の形態1の効果を説明する図である。FIG. 7 is a diagram for explaining the effect of the first embodiment. 図8は、本実施の形態2に係る発熱構造体を示す図である。FIG. 8 is a diagram showing a heat generating structure according to the second embodiment. 図9は、本実施の形態2に係る発熱構造体を示す図である。FIG. 9 is a diagram showing a heat generating structure according to the second embodiment. 図10は、本実施の形態3に係るヒータを示す図である。FIG. 10 is a diagram illustrating a heater according to the third embodiment. 図11は、本実施の形態4に係る伝熱板を示す図である。FIG. 11 is a diagram showing a heat transfer plate according to the fourth embodiment. 図12は、本実施の形態4の効果を説明する図である。FIG. 12 is a diagram for explaining the effect of the fourth embodiment. 図13は、本実施の形態1~4の変形例を示す図である。FIG. 13 is a diagram showing a modification of the first to fourth embodiments. 図14は、従来の発熱構造体における問題を説明する図である。FIG. 14 is a diagram for explaining a problem in a conventional heat generating structure.

 以下、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing.

(実施の形態1)
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を模式的に示す図である。
 処置システム1は、処置対象である生体組織に熱エネルギを付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切離等)する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
(Embodiment 1)
[Schematic configuration of treatment system]
FIG. 1 is a diagram schematically illustrating a treatment system 1 according to the first embodiment.
The treatment system 1 treats (joins (or anastomoses) and detaches, etc.) the living tissue by applying thermal energy to the living tissue to be treated. As illustrated in FIG. 1, the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.

 〔処置具の構成〕
 処置具2は、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2の把持部材8,9を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側(図1中、右端部側)から他端側(図1中、左端部側)まで配設されている。
[Configuration of treatment tool]
The treatment tool 2 is, for example, a linear type surgical treatment tool for performing treatment on a living tissue through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a part that the surgeon holds by hand. The handle 5 is provided with an operation knob 51 as shown in FIG.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5. A gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1). An opening / closing mechanism (not shown) that opens and closes the first and second gripping members 8 and 9 constituting the gripping portion 7 according to the operation of the operation knob 51 by the operator is provided inside the shaft 6. It has been. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).

 〔把持部の構成〕
 図2は、処置具2の先端部分を拡大した図である。
 把持部7は、生体組織を把持して、当該生体組織を処置する部分である。この把持部7は、図1または図2に示すように、第1,第2の把持部材8,9を備える。
 第1,第2の把持部材8,9は、矢印R1(図2)方向に開閉可能にシャフト6の他端(図1,図2中、左端部)に軸支され、術者による操作ノブ51の操作に応じて、生体組織を把持可能とする。
(Configuration of gripping part)
FIG. 2 is an enlarged view of the distal end portion of the treatment instrument 2.
The gripping part 7 is a part that grips a living tissue and treats the living tissue. As shown in FIG. 1 or FIG. 2, the grip portion 7 includes first and second grip members 8 and 9.
The first and second gripping members 8 and 9 are pivotally supported on the other end (left end portion in FIGS. 1 and 2) of the shaft 6 so as to be openable and closable in the direction of the arrow R1 (FIG. 2). In response to the operation 51, the living tissue can be grasped.

 〔第1の把持部材の構成〕
 なお、以下で記載する「先端側」は、把持部7の先端側であって、図1,図2中、左側を意味する。また、以下で記載する「基端側」は、把持部7のシャフト6側であって、図1,図2中、右側を意味する。
 第1の把持部材8は、第2の把持部材9に対して、図1または図2中、下方側に配設される。この第1の把持部材8は、図2に示すように、第1のカバー部材10と、発熱構造体11とを備える。
[Configuration of first gripping member]
The “tip side” described below is the tip side of the gripping part 7 and means the left side in FIGS. Further, the “base end side” described below means the shaft 6 side of the gripping portion 7 and the right side in FIGS. 1 and 2.
The first gripping member 8 is disposed on the lower side in FIG. 1 or FIG. 2 with respect to the second gripping member 9. As shown in FIG. 2, the first gripping member 8 includes a first cover member 10 and a heat generating structure 11.

 第1のカバー部材10は、把持部7の先端から基端に向かう長手方向(図1,図2中、左右方向)に延在する長尺状の板体で構成されている。この第1のカバー部材10において、図2中、上方側の面には、凹部101が形成されている。
 凹部101は、第1のカバー部材10における幅方向の中心に位置し、当該第1のカバー部材10の長手方向に沿って延在する。また、凹部101を構成する側壁部のうち、基端側の側壁部は、省略されている。そして、第1のカバー部材10は、凹部101内で発熱構造体11を支持しつつ、凹部101が図2中、上方に向く姿勢でシャフト6に軸支される。
The first cover member 10 is configured by a long plate body extending in the longitudinal direction (left and right direction in FIGS. 1 and 2) from the distal end of the gripping portion 7 to the proximal end. In the first cover member 10, a concave portion 101 is formed on the upper surface in FIG.
The recess 101 is located at the center in the width direction of the first cover member 10 and extends along the longitudinal direction of the first cover member 10. Of the side wall portions constituting the recess 101, the base end side wall portion is omitted. The first cover member 10 is supported by the shaft 6 in a posture in which the concave portion 101 faces upward in FIG. 2 while supporting the heat generating structure 11 in the concave portion 101.

 図3~図5は、発熱構造体11を示す図である。具体的に、図3は、発熱構造体11を図2中、上方側から見た斜視図である。図4は、図3に示した発熱構造体11の分解斜視図である。図5は、幅方向に沿う切断面にて発熱構造体11を切断して先端側から見た断面図である。
 発熱構造体11は、一部が凹部101から図2中、上方側に突出した状態で、凹部101内に収容される。そして、発熱構造体11は、制御装置3による制御の下、熱エネルギを発生する。この発熱構造体11は、図2~図5に示すように、伝熱板12と、ヒータ13(図3~図5)と、接着部材14(図3~図5)とを備える。
3 to 5 are views showing the heat generating structure 11. Specifically, FIG. 3 is a perspective view of the heat generating structure 11 as viewed from above in FIG. 4 is an exploded perspective view of the heat generating structure 11 shown in FIG. FIG. 5 is a cross-sectional view of the heat generating structure 11 cut from the front end side along a cut surface along the width direction.
The heat generating structure 11 is housed in the recess 101 in a state in which a part of the heat generating structure 11 protrudes upward from the recess 101 in FIG. The heat generating structure 11 generates heat energy under the control of the control device 3. As shown in FIGS. 2 to 5, the heat generating structure 11 includes a heat transfer plate 12, a heater 13 (FIGS. 3 to 5), and an adhesive member 14 (FIGS. 3 to 5).

 伝熱板12は、例えば銅等の材料で構成された長尺状(把持部7の長手方向に延在する長尺状)の薄板を幅方向の中心を境界として幅方向両側の各面が互いに角度α(図5)を成すように折り曲げた形状を有する。本実施の形態1では、伝熱板12は、厚み寸法が均一となるように形成されている。
 ここで、伝熱板12において、図2~図5中、上方側の表面は、本発明に係る外表面121に相当する。また、外表面121における図5中、左側の面は、本発明に係る第1の傾斜面1211に相当する。さらに、外表面121における図5中、右側の面は、本発明に係る第2の傾斜面1212に相当する。そして、外表面121には、図2~図5に示すように、第1,第2の傾斜面1211,1212が互いに角度αで交差することにより、上方に突出して長手方向(本発明に係る第1の方向に相当)に延在する突条部1213が形成されている。
The heat transfer plate 12 has a long thin plate (a long shape extending in the longitudinal direction of the gripping portion 7) made of a material such as copper, for example, with each surface on both sides in the width direction as a boundary at the center in the width direction. It has a shape bent so as to form an angle α (FIG. 5) with each other. In the first embodiment, the heat transfer plate 12 is formed to have a uniform thickness dimension.
Here, in the heat transfer plate 12, the upper surface in FIGS. 2 to 5 corresponds to the outer surface 121 according to the present invention. Further, the left surface of the outer surface 121 in FIG. 5 corresponds to the first inclined surface 1211 according to the present invention. Furthermore, the right surface of the outer surface 121 in FIG. 5 corresponds to the second inclined surface 1212 according to the present invention. Then, as shown in FIGS. 2 to 5, the first and second inclined surfaces 1211 and 1212 cross each other at an angle α to protrude upward in the longitudinal direction (according to the present invention). A ridge 1213 extending in the first direction) is formed.

 また、伝熱板12において、外表面121と表裏をなす図3~図5中、下方側の表面は、本発明に係る内表面122に相当する。また、内表面122において、第1の傾斜面1211と表裏をなし、当該内表面122の図5中、左側の面は、本発明に係る第3の傾斜面1221に相当する。さらに、内表面122において、第2の傾斜面1212と表裏をなし、当該内表面122の図5中、右側の面は、本発明に係る第4の傾斜面1222に相当する。そして、内表面122には、図2~図5に示すように、第3,第4の傾斜面1221,1222が互いに角度αで交差することにより、突条部1213に対向するとともに、上方に向けて窪んで長手方向に延在する凹条部1223が形成されている。
 以上説明した伝熱板12は、突条部1213が凹部101から図2中、上方側に突出した状態で当該凹部101内に収容される。そして、伝熱板12は、第1,第2の把持部材8,9にて生体組織を把持した状態で、外表面121(突条部1213)が当該生体組織に接触し、ヒータ13からの熱を当該生体組織に伝達する(熱エネルギを生体組織に付与する)。
 なお、本実施の形態1では、突条部1213が凹部101から上方側に突出した構成としたが、これに限定されず、突条部1213が凹部101から上方側に突出していない構成であってもよい。この場合、後述する第2の把持部材9において、対向板18が凹部171から図2中、下方側に突出した状態で収容されることで、対向板18と伝熱板12(外表面121)との間で生体組織を把持することができる。
In the heat transfer plate 12, the lower surface in FIGS. 3 to 5 which is opposite to the outer surface 121 corresponds to the inner surface 122 according to the present invention. Further, the inner surface 122 is opposite to the first inclined surface 1211, and the left surface of the inner surface 122 in FIG. 5 corresponds to the third inclined surface 1221 according to the present invention. Furthermore, the inner surface 122 is opposite to the second inclined surface 1212, and the right surface of the inner surface 122 in FIG. 5 corresponds to the fourth inclined surface 1222 according to the present invention. As shown in FIGS. 2 to 5, the third and fourth inclined surfaces 1221 and 1222 cross each other at an angle α on the inner surface 122 so as to oppose the ridge 1213 and upward. A concave portion 1223 is formed which is recessed toward the longitudinal direction and extends in the longitudinal direction.
The heat transfer plate 12 described above is accommodated in the recess 101 in a state where the protrusion 1213 protrudes upward from the recess 101 in FIG. The heat transfer plate 12 is in a state where the living tissue is gripped by the first and second gripping members 8 and 9, the outer surface 121 (protruding portion 1213) comes into contact with the living tissue, and the heater 13 Heat is transferred to the living tissue (thermal energy is applied to the living tissue).
In the first embodiment, the protrusion 1213 protrudes upward from the recess 101. However, the present invention is not limited to this, and the protrusion 1213 does not protrude upward from the recess 101. May be. In this case, in the 2nd holding member 9 mentioned later, the opposing board 18 is accommodated in the state which protruded below in FIG. 2 from the recessed part 171, Therefore The opposing board 18 and the heat exchanger plate 12 (outer surface 121) The living tissue can be grasped between the two.

 ヒータ13は、一部が発熱し、当該発熱により伝熱板12を加熱するシートヒータとして機能する。このヒータ13は、図3~図5に示すように、基板15と、抵抗パターン16とを備える。
 基板15は、ポリイミド等の絶縁材料から構成された長尺状(把持部7の長手方向に延在する長尺状)のシートである。本実施の形態1では、基板15は、厚み寸法が均一となるように形成されている。
 なお、基板15の材料としては、ポリイミドに限らず、例えば、窒化アルミ、アルミナ、ガラス、ジルコニア等の高耐熱絶縁性材料を採用しても構わない。
A part of the heater 13 generates heat and functions as a sheet heater that heats the heat transfer plate 12 by the generated heat. As shown in FIGS. 3 to 5, the heater 13 includes a substrate 15 and a resistance pattern 16.
The substrate 15 is a long sheet (long shape extending in the longitudinal direction of the gripping portion 7) made of an insulating material such as polyimide. In the first embodiment, the substrate 15 is formed so that the thickness dimension is uniform.
The material of the substrate 15 is not limited to polyimide, and for example, a high heat insulating material such as aluminum nitride, alumina, glass, zirconia, etc. may be adopted.

 抵抗パターン16は、導電性材料であるステンレス(SUS304)を加工したものであり、図3~図5に示すように、一対の接続部161(図3,図4)と、パターン本体162(図4,図5)とを備える。そして、抵抗パターン16は、基板15における図3~図5中、上方側の面151に熱圧着により貼り合わせられる。
 なお、抵抗パターン16の材料としては、ステンレス(SUS304)に限らず、他のステンレス材料(例えば400番系)でもよいし、プラチナや、タングステン等の導電性材料を採用しても構わない。また、抵抗パターン16としては、基板15における面151に熱圧着により貼り合わせた構成に限らず、当該面151に蒸着や印刷等により形成した構成を採用しても構わない。
The resistance pattern 16 is obtained by processing stainless steel (SUS304), which is a conductive material. As shown in FIGS. 3 to 5, a pair of connecting portions 161 (FIGS. 3 and 4) and a pattern body 162 (FIG. 4 and FIG. 5). The resistance pattern 16 is bonded to the upper surface 151 of the substrate 15 in FIGS. 3 to 5 by thermocompression bonding.
The material of the resistance pattern 16 is not limited to stainless steel (SUS304), and other stainless steel materials (for example, No. 400 series) may be used, or a conductive material such as platinum or tungsten may be adopted. In addition, the resistance pattern 16 is not limited to the configuration in which the substrate 15 is bonded to the surface 151 by thermocompression bonding, and a configuration in which the surface 151 is formed by vapor deposition, printing, or the like may be employed.

 一対の接続部161は、図3または図4に示すように、基板15の基端側にそれぞれ設けられ、当該基端側から先端側に向けてそれぞれ延在し、基板15の幅方向に沿って互いに対向するように設けられている。そして、一対の接続部161には、電気ケーブルCを構成する2つのリード線CL(図3,図4)がそれぞれ接合(接続)される。
 パターン本体162は、一端が一方の接続部161に接続(導通)し、当該一端から、波状に蛇行しながら、基板15の外縁形状に倣うU字形状に沿って延在し、他端が他方の接続部161に接続(導通)する。
 そして、抵抗パターン16は、2つのリード線CLを介して制御装置3により一対の接続部161に電圧が印加(通電)されることにより、発熱する。
As shown in FIG. 3 or FIG. 4, the pair of connection portions 161 are respectively provided on the base end side of the substrate 15, extend from the base end side toward the tip end side, and extend along the width direction of the substrate 15. So as to face each other. Then, two lead wires CL (FIGS. 3 and 4) constituting the electric cable C are joined (connected) to the pair of connection portions 161, respectively.
One end of the pattern body 162 is connected (conductive) to one connecting portion 161, and extends from the one end along a U-shape following the outer edge shape of the substrate 15 while meandering in a wavy shape, and the other end is connected to the other end The connection part 161 is connected (conducted).
The resistance pattern 16 generates heat when a voltage is applied (energized) to the pair of connection portions 161 by the control device 3 via the two lead wires CL.

 図6は、ヒータ13の製造方法の一例を示す図である。具体的に、図6は、伝熱板12側からヒータ13を見た斜視図である。
 そして、本実施の形態1では、ヒータ13は、例えば、以下に示すように製造される。
 先ず、作業者は、図6(a)に示すように、平板状の基板15の一方の面151に抵抗パターン16を形成する。
 次に、作業者は、図6(b)に示すように、基板15における幅方向の中心を境界として幅方向両側の各面が互いに角度αを成すように当該基板15及び抵抗パターン16を折り曲げる。
 なお、ヒータ13の製造方法としては、上述した方法に限らず、予め図6(b)に示す形状を有するように成形された基板15に対して抵抗パターン16を形成しても構わない。また、伝熱板12についても、平板状の薄板を折り曲げて形成する方法に限らず、折り曲げられた形状を有するように成形しても構わない。以下に示す接着部材14についても同様である。
 ここで、基板15における図5中、左右両端部間の長さ寸法は、伝熱板12における図5中、左右両端部間の長さ寸法よりも小さくなるように設定されている。また、基板15における長手方向の長さ寸法は、伝熱板12における長手方向の長さ寸法よりも大きくなるように設定されている。
FIG. 6 is a diagram illustrating an example of a method for manufacturing the heater 13. Specifically, FIG. 6 is a perspective view of the heater 13 viewed from the heat transfer plate 12 side.
And in this Embodiment 1, the heater 13 is manufactured as shown below, for example.
First, the worker forms the resistance pattern 16 on one surface 151 of the flat substrate 15 as shown in FIG.
Next, as shown in FIG. 6B, the operator bends the substrate 15 and the resistance pattern 16 so that the surfaces on both sides in the width direction form an angle α with the center in the width direction of the substrate 15 as a boundary. .
The method for manufacturing the heater 13 is not limited to the above-described method, and the resistance pattern 16 may be formed on the substrate 15 that has been previously formed to have the shape shown in FIG. Further, the heat transfer plate 12 is not limited to the method of forming a flat thin plate by bending, and may be formed to have a bent shape. The same applies to the adhesive member 14 shown below.
Here, the length dimension between the left and right end portions of the substrate 15 in FIG. 5 is set to be smaller than the length dimension between the left and right end portions of the heat transfer plate 12 in FIG. Further, the length dimension in the longitudinal direction of the substrate 15 is set to be larger than the length dimension in the longitudinal direction of the heat transfer plate 12.

 接着部材14は、図3~図5に示すように、内表面122と基板15の面151(抵抗パターン16)との間に介装され、ヒータ13の一部が伝熱板12における基端側の端部から基端側に張り出した状態で伝熱板12とヒータ13とを接着固定する。この接着部材14は、良好な熱伝導性及び電気絶縁性を有し、かつ、高温に耐え、接着性を有する長尺状(把持部7の長手方向に延在する長尺状)のシートを伝熱板12と同様に幅方向の中心を境界として幅方向両側の各面が互いに角度αを成すように折り曲げた形状を有する。本実施の形態1では、接着部材14は、厚み寸法が均一となるように形成されている。
 ここで、接着部材14における図5中、左右両端部間の長さ寸法は、伝熱板12における図5中、左右両端部間の長さ寸法と略同一となるように設定されている。また、接着部材14における長手方向の長さ寸法は、伝熱板12における長手方向の長さ寸法よりも大きく、基板15における長手方向の長さ寸法よりも小さくなるように設定されている。
 なお、接着部材14の長さ寸法はこれに限定されず、接着部材14の左右両端部間の長さ寸法が伝熱板12の左右両端部間の長さ寸法より大きくてもよく、また接着部材14の左右両端部間の長さ寸法が基板15の左右両端部間の長さ寸法より小さくてもよい。
 そして、伝熱板12は、図3または図4に示すように、パターン本体162全体を覆うように配置される。また、接着部材14は、パターン本体162全体を覆うとともに、一対の接続部161の一部を覆うように配置される。すなわち、接着部材14は、伝熱板12に対して基端側に張り出した状態で配置される。そして、一対のリード線CLは、一対の接続部161において、接着部材14にて覆われていない領域にそれぞれ接続(接合)される。
3 to 5, the adhesive member 14 is interposed between the inner surface 122 and the surface 151 (resistive pattern 16) of the substrate 15, and a part of the heater 13 is a base end of the heat transfer plate 12. The heat transfer plate 12 and the heater 13 are bonded and fixed in a state of protruding from the end on the side to the base end side. The adhesive member 14 is a long sheet (long form extending in the longitudinal direction of the gripping portion 7) having good thermal conductivity and electrical insulation, withstanding high temperatures, and having adhesiveness. Like the heat transfer plate 12, each surface on both sides in the width direction is bent at an angle α with the center in the width direction as a boundary. In the first embodiment, the adhesive member 14 is formed to have a uniform thickness dimension.
Here, the length dimension between the left and right ends in FIG. 5 of the adhesive member 14 is set to be substantially the same as the length dimension between the left and right ends in FIG. 5 of the heat transfer plate 12. Further, the length dimension in the longitudinal direction of the adhesive member 14 is set to be larger than the length dimension in the longitudinal direction of the heat transfer plate 12 and smaller than the length dimension of the substrate 15 in the longitudinal direction.
The length dimension of the adhesive member 14 is not limited to this, and the length dimension between the left and right ends of the adhesive member 14 may be larger than the length dimension between the left and right ends of the heat transfer plate 12. The length dimension between the left and right ends of the member 14 may be smaller than the length dimension between the left and right ends of the substrate 15.
And the heat-transfer plate 12 is arrange | positioned so that the pattern main body 162 whole may be covered, as shown in FIG. 3 or FIG. In addition, the adhesive member 14 is disposed so as to cover the entire pattern main body 162 and a part of the pair of connection portions 161. That is, the adhesive member 14 is arranged in a state of protruding to the proximal end side with respect to the heat transfer plate 12. Then, the pair of lead wires CL are connected (joined) to a region not covered with the adhesive member 14 in the pair of connection portions 161.

 〔伝熱板及び抵抗パターンの位置関係〕
 次に、伝熱板12及び抵抗パターン16の位置関係について説明する。
 接着部材14にて伝熱板12及びヒータ13が接着固定された状態では、抵抗パターン16は、図5に示すように、第3,第4の傾斜面1221,1222にそれぞれ対向する。そして、抵抗パターン16は、凹条部1223内の断面三角形状の空間Spに位置する。また、抵抗パターン16における幅方向の各中心位置C1,C2のうち中心位置C1は、第3の傾斜面1221における幅方向の中心位置C3に対向する基板15の面151上の位置C3´よりも第4の傾斜面1222側に位置する。さらに、中心位置C2は、第4の傾斜面1222における幅方向の中心位置C4に対向する基板15の面151上の位置C4´よりも第3の傾斜面1221側に位置する。
[Relationship between heat transfer plate and resistance pattern]
Next, the positional relationship between the heat transfer plate 12 and the resistance pattern 16 will be described.
In a state where the heat transfer plate 12 and the heater 13 are bonded and fixed by the adhesive member 14, the resistance pattern 16 faces the third and fourth inclined surfaces 1221 and 1222, respectively, as shown in FIG. And the resistance pattern 16 is located in the space Sp of the cross-sectional triangle shape in the concave streak part 1223. The center position C1 of the center positions C1 and C2 in the width direction in the resistance pattern 16 is more than the position C3 ′ on the surface 151 of the substrate 15 facing the center position C3 in the width direction on the third inclined surface 1221. Located on the fourth inclined surface 1222 side. Furthermore, the center position C2 is located closer to the third inclined surface 1221 than the position C4 ′ on the surface 151 of the substrate 15 facing the center position C4 in the width direction of the fourth inclined surface 1222.

 〔第2の把持部材の構成〕
 第2の把持部材9は、図2に示すように、第2のカバー部材17と、対向板18とを備える。
 第2のカバー部材17は、第1のカバー部材10と同一の形状を有する。すなわち、第2のカバー部材17は、図2に示すように、凹部101と同様の凹部171を有する。そして、第2のカバー部材17は、凹部101内で対向板18を支持しつつ、凹部171が図2中、下方に向く姿勢(凹部101に対向する姿勢)でシャフト6に軸支される。
 対向板18は、例えば、銅等の導電性材料で構成されている。この対向板18は、凹部171と略同一の平面形状を有する平板で構成され、当該凹部171内に固定される。そして、対向板18は、伝熱板12(外表面121)との間で生体組織を把持する。
[Configuration of Second Holding Member]
As shown in FIG. 2, the second holding member 9 includes a second cover member 17 and a counter plate 18.
The second cover member 17 has the same shape as the first cover member 10. That is, the 2nd cover member 17 has the recessed part 171 similar to the recessed part 101, as shown in FIG. The second cover member 17 is pivotally supported by the shaft 6 in a posture in which the concave portion 171 faces downward in FIG. 2 (a posture facing the concave portion 101) while supporting the counter plate 18 in the concave portion 101.
The counter plate 18 is made of a conductive material such as copper, for example. The counter plate 18 is configured by a flat plate having substantially the same planar shape as the concave portion 171 and is fixed in the concave portion 171. The opposing plate 18 grips the living tissue with the heat transfer plate 12 (outer surface 121).

 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3から処置具2(抵抗パターン16)への通電のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチ4に限らず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。より具体的に、制御装置3は、術者によるフットスイッチ4への操作(通電オンの操作)に応じて、電気ケーブルCを介して抵抗パターン16に電圧を印加して、伝熱板12を加熱する。
[Configuration of control device and foot switch]
The foot switch 4 is a part operated by the operator with his / her foot. And according to the said operation to the foot switch 4, on / off of the electricity supply from the control apparatus 3 to the treatment tool 2 (resistance pattern 16) is switched.
Note that the means for switching on and off is not limited to the foot switch 4, and a switch operated by hand or the like may be employed.
The control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. More specifically, the control device 3 applies a voltage to the resistance pattern 16 via the electric cable C in response to an operation to the foot switch 4 by the operator (operation to turn on the power), and the heat transfer plate 12 is moved. Heat.

 〔処置システムの動作〕
 次に、上述した処置システム1の動作について説明する。
 術者は、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、把持部7(伝熱板12及び対向板18)にて処置対象の生体組織を把持する。
 次に、術者は、フットスイッチ4を操作し、制御装置3から処置具2への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、電気ケーブルCを介して抵抗パターン16に電圧を印加し、伝熱板12を加熱する。そして、伝熱板12の熱により、当該伝熱板12に接触している生体組織は処置される。
[Action system action]
Next, operation | movement of the treatment system 1 mentioned above is demonstrated.
The surgeon holds the treatment instrument 2 by hand, and inserts the distal end portion of the treatment instrument 2 (a part of the gripping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar. Then, the surgeon operates the operation knob 51 and grips the living tissue to be treated with the grip portion 7 (the heat transfer plate 12 and the opposing plate 18).
Next, the surgeon operates the foot switch 4 to turn on the power supply from the control device 3 to the treatment instrument 2. When switched on, the control device 3 applies a voltage to the resistance pattern 16 via the electric cable C to heat the heat transfer plate 12. Then, the living tissue in contact with the heat transfer plate 12 is treated by the heat of the heat transfer plate 12.

 以上説明した本実施の形態1によれば、以下の効果を奏する。
 図7は、本実施の形態1の効果を説明する図である。具体的に、図7では、本実施の形態1に係る発熱構造体11において、抵抗パターン16を発熱させた場合での突条部1213の頂点部分の温度変化を示している。なお、図7では、抵抗パターン16の温度変化を一点鎖線で示し、突条部1213の頂点部分の温度変化を実線で示している。また、本実施の形態1に係る発熱構造体11と比較するために、凹条部1223を設けていない従来の発熱構造体11´(図14)において、抵抗パターン16´を発熱させた場合での突条部1213´の頂点部分の温度変化を破線で示している。なお、抵抗パターン16´の温度変化は、抵抗パターン16の温度変化(図7の一点鎖線)と同一である。
According to the first embodiment described above, the following effects are obtained.
FIG. 7 is a diagram for explaining the effect of the first embodiment. Specifically, FIG. 7 shows the temperature change of the apex portion of the protrusion 1213 when the resistance pattern 16 is heated in the heat generating structure 11 according to the first embodiment. In FIG. 7, the temperature change of the resistance pattern 16 is indicated by a one-dot chain line, and the temperature change of the apex portion of the protrusion 1213 is indicated by a solid line. Further, in order to compare with the heat generating structure 11 according to the first embodiment, in the conventional heat generating structure 11 ′ (FIG. 14) that does not have the concave stripe portion 1223, the resistance pattern 16 ′ is heated. The change in temperature at the apex of the protruding portion 1213 ′ is indicated by a broken line. Note that the temperature change of the resistance pattern 16 ′ is the same as the temperature change of the resistance pattern 16 (the chain line in FIG. 7).

 本実施の形態1に係る発熱構造体11では、伝熱板12の内表面122には、突条部1213に対向する位置に長手方向に延在する凹条部1223が設けられている。そして、抵抗パターン16は、凹条部1223内の断面三角形状の空間Spに位置する。
 このため、図14に示した従来の発熱構造体11´での抵抗パターン16´から突条部1213´における頂点部分までの距離と比較して、抵抗パターン16から突条部1213における頂点部分までの距離を短くすることができる。すなわち、従来の発熱構造体11´と比較して、突条部1213の頂点部分の昇温時間を速めることができる。例えば、図7に示すように、図14に示した従来の発熱構造体11´では突条部1213´の頂点部分を250℃にするために1秒以上掛かるのに対し、本実施の形態1に係る発熱構造体11では1秒未満で突条部1213の頂点部分を250℃まで上昇させることができる。
 したがって、本実施の形態1に係る発熱構造体11によれば、生体組織の処置時間を短縮することができる、という効果を奏する。
In the heat generating structure 11 according to the first embodiment, the inner surface 122 of the heat transfer plate 12 is provided with a concave line portion 1223 extending in the longitudinal direction at a position facing the protruding line portion 1213. And the resistance pattern 16 is located in the space Sp of the cross-sectional triangle shape in the concave streak part 1223.
For this reason, compared with the distance from the resistance pattern 16 ′ in the conventional heating structure 11 ′ shown in FIG. 14 to the apex portion of the ridge portion 1213 ′, from the resistance pattern 16 to the apex portion of the ridge portion 1213. Can be shortened. That is, as compared with the conventional heat generating structure 11 ′, the temperature raising time at the apex portion of the protrusion 1213 can be accelerated. For example, as shown in FIG. 7, in the conventional heat generating structure 11 ′ shown in FIG. 14, it takes 1 second or more to set the apex portion of the protrusion 1213 ′ to 250 ° C., but this Embodiment 1 In the heat generating structure 11 according to the above, the apex portion of the protruding portion 1213 can be raised to 250 ° C. in less than 1 second.
Therefore, according to the heat generating structure 11 according to the first embodiment, there is an effect that the treatment time of the living tissue can be shortened.

 また、本実施の形態1に係る発熱構造体11では、抵抗パターン16における一方の中心位置C1は、第3の傾斜面1221における幅方向の中心位置C3に対向する基板15の面151上の位置C3´よりも第4の傾斜面1222側に位置する。また、他方の中心位置C2は、第4の傾斜面1222における幅方向の中心位置C4に対向する基板15の面151上の位置C4´よりも第3の傾斜面1221側に位置する。
 このため、突条部1213における頂点部分により近い位置に抵抗パターン16を配設することができ、当該頂点部分の昇温時間をより速めることができる。
In the heat generating structure 11 according to the first embodiment, one center position C1 of the resistance pattern 16 is a position on the surface 151 of the substrate 15 facing the center position C3 in the width direction of the third inclined surface 1221. It is located closer to the fourth inclined surface 1222 than C3 ′. The other center position C2 is located closer to the third inclined surface 1221 than the position C4 ′ on the surface 151 of the substrate 15 facing the center position C4 in the width direction of the fourth inclined surface 1222.
For this reason, the resistance pattern 16 can be arrange | positioned in the position close | similar to the vertex part in the protrusion part 1213, and the temperature rising time of the said vertex part can be accelerated more.

(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図8及び図9は、本実施の形態2に係る発熱構造体11Aを示す図である。具体的に、図8は、図3に対応した発熱構造体11Aの斜視図である。図9は、図8に示した発熱構造体11Aの分解斜視図である。
 本実施の形態2では、図8または図9に示すように、上述した実施の形態1に対して、発熱構造体11とは異なる発熱構造体11Aを採用している点が異なる。
 発熱構造体11Aでは、上述した実施の形態1で説明した発熱構造体11に対して、ヒータ13及び接着部材14とはそれぞれ形状の異なる第1,第2のヒータ13A1,13A2及び第1,第2の接着部材14A1,14A2を採用している。
(Embodiment 2)
Next, the second embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
8 and 9 are views showing a heat generating structure 11A according to the second embodiment. Specifically, FIG. 8 is a perspective view of the heat generating structure 11A corresponding to FIG. 9 is an exploded perspective view of the heat generating structure 11A shown in FIG.
As shown in FIG. 8 or FIG. 9, the second embodiment is different from the first embodiment described above in that a heat generating structure 11A different from the heat generating structure 11 is employed.
In the heat generating structure 11A, the first and second heaters 13A1, 13A2, and the first and first heaters 13A1, 13A2 are different in shape from the heater 13 and the adhesive member 14 with respect to the heat generating structure 11 described in the first embodiment. Two adhesive members 14A1 and 14A2 are employed.

 第1のヒータ13A1は、図8または図9に示すように、第1の基板15A1と、第1の抵抗パターン16A1とを備える。
 第1の基板15A1は、上述した実施の形態1で説明した基板15と同一の材料で構成され、当該基板15を幅方向の中心で分割した2体のうち一方と同一の形状を有する。
 第1の抵抗パターン16A1は、上述した実施の形態1で説明した抵抗パターン16と同一の材料で構成されているとともに同一の構成を有し、第1の基板15A1における図8,図9中、上方側の第1の面151A1に設けられている。すなわち、第1の抵抗パターン16A1は、上述した一対の接続部161及びパターン本体162と同様の一対の第1の接続部161A1及び第1のパターン本体162A1を備える。
 第2のヒータ13A2は、図8または図9に示すように、第1のヒータ13A1と同一の構成及び形状を有する。すなわち、第2のヒータ13A2は、第1の基板15A1(第1の面151A1を含む)及び第1の抵抗パターン16A1(一対の第1の接続部161A1及び第1のパターン本体162A1を含む)と同様の第2の基板15A2(第2の面151A2を含む)及び第2の抵抗パターン16A2(一対の第2の接続部161A2及び第2のパターン本体162A2を含む)を備える。
As shown in FIG. 8 or FIG. 9, the first heater 13A1 includes a first substrate 15A1 and a first resistance pattern 16A1.
The first substrate 15A1 is made of the same material as the substrate 15 described in the first embodiment, and has the same shape as one of two bodies obtained by dividing the substrate 15 at the center in the width direction.
The first resistance pattern 16A1 is made of the same material as the resistance pattern 16 described in the first embodiment and has the same configuration. In FIGS. 8 and 9 of the first substrate 15A1, It is provided on the upper first surface 151A1. That is, the first resistance pattern 16A1 includes a pair of first connection portions 161A1 and a first pattern body 162A1 similar to the pair of connection portions 161 and the pattern body 162 described above.
As shown in FIG. 8 or FIG. 9, the second heater 13A2 has the same configuration and shape as the first heater 13A1. That is, the second heater 13A2 includes the first substrate 15A1 (including the first surface 151A1) and the first resistance pattern 16A1 (including the pair of first connection portions 161A1 and the first pattern body 162A1). A similar second substrate 15A2 (including the second surface 151A2) and a second resistance pattern 16A2 (including a pair of second connection portions 161A2 and a second pattern body 162A2) are provided.

 第1,第2の接着部材14A1,14A2は、上述した実施の形態1で説明した接着部材14を幅方向の中心で分割したものである。
 そして、第1の接着部材14A1は、第3の傾斜面1221と第1の面151A1との間に介装され、伝熱板12と第1のヒータ13A1とを接着固定する。この状態では、第1の抵抗パターン16A1は、第3の傾斜面1221に対向する。そして、第1の抵抗パターン16A1は、凹条部1223内の断面三角形状の空間Sp(図9)に位置する。また、第1の抵抗パターン16A1における幅方向の中心位置C1(図9)は、第3の傾斜面1221における幅方向の中心位置C3(図9)に対向する第1の基板15A1の第1の面151A1上の位置C3´(図9)よりも第4の傾斜面1222側に位置する。
 また、第2の接着部材14A2は、第4の傾斜面1222と第2の面151A2との間に介装され、伝熱板12と第2のヒータ13A2とを接着固定する。この状態では、第2の抵抗パターン16A2は、第4の傾斜面1222に対向する。そして、第2の抵抗パターン16A2は、凹条部1223内の断面三角形状の空間Sp(図9)に位置する。また、第2の抵抗パターン16A2における幅方向の中心位置C2(図9)は、第4の傾斜面1222における幅方向の中心位置C4(図9)に対向する第2の基板15A2の第2の面151A2上の位置C4´(図9)よりも第3の傾斜面1221側に位置する。
The first and second adhesive members 14A1 and 14A2 are obtained by dividing the adhesive member 14 described in the first embodiment described above at the center in the width direction.
The first adhesive member 14A1 is interposed between the third inclined surface 1221 and the first surface 151A1, and bonds and fixes the heat transfer plate 12 and the first heater 13A1. In this state, the first resistance pattern 16A1 faces the third inclined surface 1221. And 1st resistance pattern 16 A1 is located in the space Sp (FIG. 9) of the cross-sectional triangle shape in the concave part 1223. FIG. Further, the center position C1 (FIG. 9) in the width direction of the first resistance pattern 16A1 is the first position of the first substrate 15A1 facing the center position C3 (FIG. 9) in the width direction of the third inclined surface 1221. It is located closer to the fourth inclined surface 1222 than the position C3 ′ (FIG. 9) on the surface 151A1.
The second adhesive member 14A2 is interposed between the fourth inclined surface 1222 and the second surface 151A2, and adheres and fixes the heat transfer plate 12 and the second heater 13A2. In this state, the second resistance pattern 16A2 faces the fourth inclined surface 1222. And 2nd resistance pattern 16A2 is located in the space Sp (FIG. 9) of the cross-sectional triangle shape in the concave-line part 1223. FIG. Further, the center position C2 (FIG. 9) in the width direction of the second resistance pattern 16A2 is the second position of the second substrate 15A2 facing the center position C4 (FIG. 9) in the width direction of the fourth inclined surface 1222. It is located closer to the third inclined surface 1221 than the position C4 ′ (FIG. 9) on the surface 151A2.

 以上説明した本実施の形態2のようにヒータ及び接着部材を第1,第2のヒータ13A1,13A2及び第1,第2の接着部材14A1,14A2の2体でそれぞれ構成した場合であっても、上述した実施の形態1と同様の効果を奏する。 Even when the heater and the adhesive member are each composed of two bodies of the first and second heaters 13A1, 13A2 and the first and second adhesive members 14A1, 14A2 as in the second embodiment described above. The same effects as those of the first embodiment described above are obtained.

(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図10は、本実施の形態3に係るヒータ13Bを示す図である。具体的に、図10は、伝熱板12側からヒータ13Bを見た斜視図である。
 本実施の形態3では、図10に示すように、上述した実施の形態1に対して、ヒータ13とは異なるヒータ13Bを採用している点が異なる。
 ヒータ13Bは、図10に示すように、上述した実施の形態1で説明した基板15と同一の材料で構成された基板15Bと、上述した実施の形態1で説明した抵抗パターン16と同一の材料で構成された抵抗パターン16Bとを備える。
(Embodiment 3)
Next, the third embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 10 is a diagram showing a heater 13B according to the third embodiment. Specifically, FIG. 10 is a perspective view of the heater 13B viewed from the heat transfer plate 12 side.
As shown in FIG. 10, the third embodiment is different from the first embodiment described above in that a heater 13B different from the heater 13 is employed.
As shown in FIG. 10, the heater 13 </ b> B includes a substrate 15 </ b> B made of the same material as the substrate 15 described in the first embodiment and the same material as the resistance pattern 16 described in the first embodiment. And a resistance pattern 16B constituted by

 基板15Bは、図10に示すように、幅方向の中心に位置し、先端から基端に向けて延在する切欠部152を有する平面視U字状のシートである。
 抵抗パターン16Bは、上述した実施の形態1で説明した抵抗パターン16Bに対して、基板15Bの平面形状に合わせてパターン本体162の形状が変更されたものである。具体的に、抵抗パターン16Bにおけるパターン本体162は、一端が一方の接続部161に接続(導通)し、当該一端から、波状に蛇行しながら、基板15Bの外縁形状に倣うM字形状に沿って延在し、他端が他方の接続部161に接続(導通)する。
As shown in FIG. 10, the substrate 15 </ b> B is a U-shaped sheet that is located at the center in the width direction and has a notch 152 that extends from the distal end toward the proximal end.
The resistance pattern 16B is obtained by changing the shape of the pattern main body 162 in accordance with the planar shape of the substrate 15B with respect to the resistance pattern 16B described in the first embodiment. Specifically, the pattern main body 162 in the resistance pattern 16B has one end connected (conducted) to one connection portion 161, and follows the M-shape following the outer edge shape of the substrate 15B while meandering from the one end. The other end is connected (conducted) to the other connecting portion 161.

 そして、本実施の形態1では、具体的な図示は省略したが、ヒータ13Bは、切欠部152を境界として幅方向の両側の各面が互いに角度αを成すように当該基板15B及び抵抗パターン16Bを折り曲げることで形成される。ヒータ13Bの製造方法としては、上述した方法に限らず、予め折り曲げられた形状を有するように成形された基板15Bに対して抵抗パターン16Bを形成しても構わない。
 なお、伝熱板12及び抵抗パターン16Bの位置関係は、上述した実施の形態1で説明した位置関係と同一である。
In the first embodiment, although not shown in the drawings, the heater 13B has the substrate 15B and the resistance pattern 16B so that the surfaces on both sides in the width direction form an angle α with the notch 152 as a boundary. It is formed by bending. The method of manufacturing the heater 13B is not limited to the above-described method, and the resistance pattern 16B may be formed on the substrate 15B that has been previously bent.
The positional relationship between the heat transfer plate 12 and the resistance pattern 16B is the same as the positional relationship described in the first embodiment.

 以上説明した本実施の形態3のようなヒータ13Bを採用した場合であっても、上述した実施の形態1と同様の効果を奏する。
 なお、基板15Bの形状としては、平面視U字状に限らず、先端側が二股に分かれた平面視Y字状のシートで構成しても構わない。
Even when the heater 13B as in the third embodiment described above is employed, the same effects as those in the first embodiment described above can be obtained.
Note that the shape of the substrate 15B is not limited to a U shape in a plan view, and may be a Y-shaped sheet in a plan view with a front end divided into two.

(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図11は、本実施の形態4に係る伝熱板12Cを示す図である。具体的に、図11は、幅方向に沿う切断面にて伝熱板12Cを切断して先端側から見た断面図である。
 本実施の形態4では、図11に示すように、上述した実施の形態1に対して、伝熱板12とは異なる伝熱板12Cを採用している点が異なる。
(Embodiment 4)
Next, the fourth embodiment will be described.
In the following description, the same reference numerals are given to the same components as those in the first embodiment described above, and detailed description thereof will be omitted or simplified.
FIG. 11 is a diagram showing a heat transfer plate 12C according to the fourth embodiment. Specifically, FIG. 11 is a cross-sectional view of the heat transfer plate 12C cut from a cutting surface along the width direction and viewed from the front end side.
As shown in FIG. 11, the fourth embodiment is different from the first embodiment described above in that a heat transfer plate 12C different from the heat transfer plate 12 is employed.

 伝熱板12Cは、図11に示すように、上述した実施の形態1で説明した伝熱板12とは断面形状が異なる。
 具体的に、伝熱板12では、第1,第2の傾斜面1211,1212の成す角度と、第3,第4の傾斜面1221,1222の成す角度とが同一の角度αに設定されていた。すなわち、伝熱板12は、厚み寸法が均一に設定されていた。
 これに対して、本実施の形態4に係る伝熱板12Cでは、図11に示すように、第1,第2の傾斜面1211,1212の成す角度は、第1の角度α1に設定されている。一方、第3,第4の傾斜面1221,1222の成す角度は、第1の角度α1よりも大きい第2の角度α2に設定されている。すなわち、伝熱板12Cは、幅方向の両側に向かうにしたがって厚み寸法が小さくなるように設定されている。
 なお、伝熱板12C及び抵抗パターン16の位置関係は、上述した実施の形態1で説明した位置関係と同一である。
As shown in FIG. 11, the heat transfer plate 12 </ b> C has a different cross-sectional shape from the heat transfer plate 12 described in the first embodiment.
Specifically, in the heat transfer plate 12, the angle formed by the first and second inclined surfaces 1211 and 1212 and the angle formed by the third and fourth inclined surfaces 1221 and 1222 are set to the same angle α. It was. That is, the heat transfer plate 12 has a uniform thickness dimension.
In contrast, in the heat transfer plate 12C according to the fourth embodiment, as shown in FIG. 11, the angle formed by the first and second inclined surfaces 1211 and 1212 is set to the first angle α1. Yes. On the other hand, the angle formed by the third and fourth inclined surfaces 1221 and 1222 is set to a second angle α2 that is larger than the first angle α1. That is, the heat transfer plate 12 </ b> C is set such that the thickness dimension becomes smaller toward both sides in the width direction.
The positional relationship between the heat transfer plate 12C and the resistance pattern 16 is the same as the positional relationship described in the first embodiment.

 以上説明した本実施の形態4によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 図12は、本実施の形態4の効果を説明する図である。具体的に、図12は、図11に対応した断面図であって、第3,第4の傾斜面1221,1222の成す角度を第1の角度α1よりも小さい第3の角度α3とした伝熱板12C´を示している。
 ところで、図12に示すように、第1,第2の傾斜面1211,1212の成す角度(第1の角度α1)よりも第3,第4の傾斜面1221,1222の成す角度(第3の角度α3)を小さくした場合には、抵抗パターン16(パターン本体162)の法線方向N1,N2は、突条部1213における頂点部分から遠ざかるものとなる。当該法線方向N1,N2は、抵抗パターン16からの熱の伝達方向を意味する。このため、当該頂点部分の昇温時間を効果的に速めることが難しい。
 これに対して、本実施の形態4に係る伝熱板12Cでは、第1,第2の傾斜面1211,1212の成す角度(第1の角度α1)よりも第3,第4の傾斜面1221,1222の成す角度(第2の角度α2)を大きく設定している。このため、抵抗パターン16(パターン本体162)の法線方向N1,N2(図11)は、突条部1213における頂点部分に近付くものとなる。したがって、当該頂点部分の昇温時間を効果的に速めることができる。
According to the fourth embodiment described above, the following effects are obtained in addition to the same effects as those of the first embodiment.
FIG. 12 is a diagram for explaining the effect of the fourth embodiment. Specifically, FIG. 12 is a cross-sectional view corresponding to FIG. 11 in which the angle formed by the third and fourth inclined surfaces 1221 and 1222 is a third angle α3 smaller than the first angle α1. A hot plate 12C 'is shown.
By the way, as shown in FIG. 12, the angle (the third angle) formed by the third and fourth inclined surfaces 1221 and 1222 is larger than the angle (the first angle α1) formed by the first and second inclined surfaces 1211 and 1212. When the angle α3) is reduced, the normal directions N1 and N2 of the resistance pattern 16 (pattern body 162) are away from the apex portion of the protrusion 1213. The normal directions N1 and N2 mean the direction of heat transfer from the resistance pattern 16. For this reason, it is difficult to effectively speed up the temperature raising time of the apex portion.
On the other hand, in the heat transfer plate 12C according to the fourth embodiment, the third and fourth inclined surfaces 1221 are larger than the angle (first angle α1) formed by the first and second inclined surfaces 1211 and 1212. , 1222 (second angle α2) is set large. For this reason, the normal directions N1 and N2 (FIG. 11) of the resistance pattern 16 (pattern body 162) approach the apex portion of the ridge portion 1213. Therefore, it is possible to effectively speed up the temperature raising time of the apex portion.

(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態によってのみ限定されるべきものではない。
 図13は、本実施の形態1~4の変形例を示す図である。具体的に、図13は、幅方向に沿う切断面にて本変形例に係る発熱構造体11Dを切断して先端側から見た断面図である。
 上述した実施の形態1~4では、接着部材14(14A1,14A2)は、厚み寸法が均一に設定されていたが、これに限らない。例えば、図13に示した本変形例に係る発熱構造体11Dのように、厚み寸法が不均一な接着部材14Dを採用しても構わない。
 また、上述した実施の形態1~4では、ヒータ13(13A1,13A2)の形状は、抵抗パターン16(16A1,16A2)の各法線方向N1,N2が交差しないように設定されていたが、これに限らない。例えば、図13に示した本変形例に係る発熱構造体11Dのように、抵抗パターン16(16A1,16A2)の各法線方向N1,N2が交差するようにヒータ13の形状を設定しても構わない。このように構成した場合であっても、抵抗パターン16は、凹条部1223内の空間Spに位置付けることが好ましい。
(Other embodiments)
So far, the embodiment for carrying out the present invention has been described, but the present invention should not be limited only by the embodiment described above.
FIG. 13 is a diagram showing a modification of the first to fourth embodiments. Specifically, FIG. 13 is a cross-sectional view of the heat generating structure 11D according to the present modification taken along the cut surface along the width direction and viewed from the front end side.
In the first to fourth embodiments described above, the thickness dimension of the adhesive member 14 (14A1, 14A2) is set to be uniform. However, the present invention is not limited to this. For example, an adhesive member 14D having a non-uniform thickness may be employed as in the heat generating structure 11D according to the present modification shown in FIG.
In the first to fourth embodiments described above, the shape of the heater 13 (13A1, 13A2) is set so that the normal directions N1, N2 of the resistance pattern 16 (16A1, 16A2) do not intersect. Not limited to this. For example, the shape of the heater 13 may be set so that the normal directions N1 and N2 of the resistance pattern 16 (16A1 and 16A2) intersect as in the heat generating structure 11D according to the present modification illustrated in FIG. I do not care. Even if it is a case where it comprises in this way, it is preferable that the resistance pattern 16 is located in the space Sp in the groove part 1223. FIG.

 上述した実施の形態1~4及び図13に示した変形例では、突条部1213は、第1,第2の傾斜面1211,1212が互いに交差し、頂点部分が鋭利な形状を有していたが、これに限らない。例えば、第1,第2の傾斜面が連接されず、当該第1,第2の傾斜面の間に平坦面を介在させた形状としても構わない。凹条部1223も同様に、第3,第4の傾斜面1221,1222が互いに交差することにより断面三角形状の空間Spを有していたが、これに限らない。例えば、第3,第4の傾斜面が連接されず、当該第3,第4の傾斜面の間に平坦面を介在させ、断面台形形状の空間を有する形状としても構わない。
 上述した実施の形態1~4及び図13に示した変形例では、抵抗パターン16(16A1,16A2)は、その全てが凹条部1223内の空間Spに位置していたが、これに限らず、一部のみが空間Spに位置した構成としても構わない。
In the above-described first to fourth embodiments and the modification shown in FIG. 13, the protruding portion 1213 has a shape in which the first and second inclined surfaces 1211 and 1212 intersect each other and the apex portion is sharp. However, it is not limited to this. For example, the first and second inclined surfaces may not be connected, and a flat surface may be interposed between the first and second inclined surfaces. Similarly, the concave strip portion 1223 has a space Sp having a triangular cross-section when the third and fourth inclined surfaces 1221 and 1222 intersect each other, but the present invention is not limited thereto. For example, the third and fourth inclined surfaces may not be connected, and a flat surface may be interposed between the third and fourth inclined surfaces so as to have a trapezoidal space.
In the above-described first to fourth embodiments and the modification shown in FIG. 13, all of the resistance patterns 16 (16A1, 16A2) are located in the space Sp in the concave strip portion 1223. However, the present invention is not limited to this. Only a part of the space Sp may be used.

 上述した実施の形態1~4及び図13に示した変形例では、把持部7として、第1,第2の把持部材8,9を開閉させていたが、これに限らず、例えば、第2の把持部材9を省略した構成を採用しても構わない。
 上述した実施の形態1~4及び図13に示した変形例では、第1の把持部材8にのみ発熱構造体11(11A,11D)を設けていたが、これに限らず、第2の把持部材9にも同様の発熱構造体11(11A,11D)を設けても構わない。
 上述した実施の形態1~4及び図13に示した変形例では、処置具2は、生体組織に対して熱エネルギを付与する構成としていたが、これに限らず、熱エネルギの他、高周波エネルギや超音波エネルギをさらに付与する構成を採用しても構わない。
In the above-described first to fourth embodiments and the modification example shown in FIG. 13, the first and second gripping members 8 and 9 are opened and closed as the gripping portion 7. A configuration in which the holding member 9 is omitted may be adopted.
In the above-described first to fourth embodiments and the modification shown in FIG. 13, the heating structure 11 (11A, 11D) is provided only on the first gripping member 8. However, the present invention is not limited to this. The member 9 may be provided with a similar heat generating structure 11 (11A, 11D).
In the above-described first to fourth embodiments and the modification shown in FIG. 13, the treatment instrument 2 is configured to apply thermal energy to the living tissue. Alternatively, a configuration that further applies ultrasonic energy may be employed.

 1 処置システム
 2 処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 把持部
 8,9 第1,第2の把持部材
 10 第1のカバー部材
 11,11´,11A,11D 発熱構造体
 12,12´,12C,12C´ 伝熱板
 13,13´,13B ヒータ
 13A1,13A2 第1,第2のヒータ
 14,14´ 接着部材
 14A1,14A2 第1,第2の接着部材
 15,15´,15B 基板
 15A1,15A2 第1,第2の基板
 16,16´,16B 抵抗パターン
 16A1,16A2 第1,第2の抵抗パターン
 17 第2のカバー部材
 18 対向板
 51 操作ノブ
 101 凹部
 121,121´ 外表面
 122,122´ 内表面
 151,151´ 面
 151A1,151A2 第1,第2の面
 152 切欠部
 161 接続部
 161A1,161A2 第1,第2の接続部
 162 パターン本体
 162A1,162A2 第1,第2のパターン本体
 171 凹部
 1211,1212 第1,第2の傾斜面
 1213,1213´ 突条部
 1221,1222 第3,第4の傾斜面
 1223 凹条部
 C 電気ケーブル
 C1~C4 中心位置
 C3´,C4´ 位置
 CL リード線
 N1,N2 法線方向
 R1 矢印
 Sp 空間
 α 角度
 α1~α3 第1~第3の角度
DESCRIPTION OF SYMBOLS 1 Treatment system 2 Treatment tool 3 Control apparatus 4 Foot switch 5 Handle 6 Shaft 7 Gripping part 8,9 1st, 2nd holding member 10 1st cover member 11,11 ', 11A, 11D Heat generating structure 12,12 ', 12C, 12C' Heat transfer plate 13, 13 ', 13B Heater 13A1, 13A2 First and second heaters 14, 14' Adhesive member 14A1, 14A2 First and second adhesive members 15, 15 ', 15B Substrate 15A1, 15A2 First and second substrates 16, 16 ', 16B Resistance pattern 16A1, 16A2 First, second resistance pattern 17 Second cover member 18 Opposing plate 51 Operation knob 101 Recess 121, 121' Outer surface 122 , 122 ′ inner surface 151, 151 ′ surface 151A1, 151A2 first and second surfaces 152 notch 161 connecting portion 161A1, 61A2 First and second connection parts 162 Pattern main body 162A1, 162A2 First and second pattern main bodies 171 Recessed parts 1211, 1212 First and second inclined surfaces 1213, 1213 ′ Projections 1221, 1222 Third, third 4 inclined surface 1223 concave portion C electric cable C1 to C4 center position C3 ′, C4 ′ position CL lead wire N1, N2 normal direction R1 arrow Sp space α angle α1 to α3 first to third angle

Claims (7)

 通電により発熱する抵抗パターンと、
 外表面と、当該外表面と表裏をなす内表面とを有し、前記抵抗パターンからの熱が伝達される伝熱板と、
 前記抵抗パターンと前記内表面との間に介装され、前記抵抗パターンと前記伝熱板とを接着固定する接着部材とを備え、
 前記外表面には、
 第1の方向に沿って延在する突条部が設けられ、
 前記内表面には、
 前記突条部に対向する位置に前記第1の方向に沿って延在する凹条部が設けられ、
 前記抵抗パターンの少なくとも一部は、
 前記凹条部内に位置する発熱構造体。
A resistance pattern that generates heat when energized;
A heat transfer plate having an outer surface and an inner surface that forms a front and back surface with the outer surface, to which heat from the resistance pattern is transmitted;
An adhesive member interposed between the resistance pattern and the inner surface, for bonding and fixing the resistance pattern and the heat transfer plate;
On the outer surface,
A ridge extending along the first direction is provided;
On the inner surface,
A concave portion extending along the first direction is provided at a position facing the protruding portion,
At least a part of the resistance pattern is
A heat generating structure located in the concave portion.
 前記外表面は、
 互いに交差して前記突条部を形成する第1の傾斜面と第2の傾斜面とを備え、
 前記内表面は、
 互いに交差して前記凹条部を形成する第3の傾斜面と第4の傾斜面とを備え、
 前記抵抗パターンは、
 前記第3の傾斜面と前記第4の傾斜面とにそれぞれ対向して配設されている
 請求項1に記載の発熱構造体。
The outer surface is
A first inclined surface and a second inclined surface that intersect with each other to form the protruding portion,
The inner surface is
A third inclined surface and a fourth inclined surface which intersect with each other to form the concave stripe portion,
The resistance pattern is
The heat generating structure according to claim 1, wherein the heat generating structure is disposed to face the third inclined surface and the fourth inclined surface.
 前記第1の傾斜面と前記第2の傾斜面とは、
 第1の角度で交差し、
 前記第3の傾斜面と前記第4の傾斜面とは、
 前記第1の角度よりも大きい第2の角度で交差する
 請求項2に記載の発熱構造体。
The first inclined surface and the second inclined surface are:
Intersect at a first angle,
The third inclined surface and the fourth inclined surface are:
The heat generating structure according to claim 2, which intersects at a second angle larger than the first angle.
 前記抵抗パターンにおける幅方向の各中心位置は、
 前記第3の傾斜面の幅方向における中心位置よりも前記第4の傾斜面側の位置と、前記第4の傾斜面の幅方向における中心位置よりも前記第3の傾斜面側の位置とにそれぞれ対向する
 請求項2または3に記載の発熱構造体。
Each center position in the width direction in the resistance pattern is
The position on the fourth inclined surface side with respect to the center position in the width direction of the third inclined surface, and the position on the third inclined surface side with respect to the center position in the width direction of the fourth inclined surface. The heat generating structure according to claim 2, which faces each other.
 前記抵抗パターンは、
 互いに独立し、前記第3の傾斜面に対向して配設される第1の抵抗パターンと、前記第4の傾斜面に対向して配設される第2の抵抗パターンとの2体で構成されている
 請求項2~4のいずれか一つに記載の発熱構造体。
The resistance pattern is
It is composed of two bodies, a first resistance pattern disposed independently of each other and facing the third inclined surface, and a second resistance pattern disposed facing the fourth inclined surface. The heat generating structure according to any one of claims 2 to 4.
 前記接着部材は、
 互いに独立し、前記第1の抵抗パターンを前記第3の傾斜面に接着固定する第1の接着部材と、前記第2の抵抗パターンを前記第4の傾斜面に接着固定する第2の接着部材との2体で構成されている
 請求項5に記載の発熱構造体。
The adhesive member is
A first adhesive member that bonds and fixes the first resistance pattern to the third inclined surface and a second adhesive member that bonds and fixes the second resistance pattern to the fourth inclined surface independently of each other. The heat generating structure according to claim 5.
 請求項1~6のいずれか一つに記載の発熱構造体を備える処置具。 A treatment instrument comprising the heat generating structure according to any one of claims 1 to 6.
PCT/JP2017/013494 2017-03-30 2017-03-30 Heating structure and treatment tool Ceased WO2018179303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013494 WO2018179303A1 (en) 2017-03-30 2017-03-30 Heating structure and treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013494 WO2018179303A1 (en) 2017-03-30 2017-03-30 Heating structure and treatment tool

Publications (1)

Publication Number Publication Date
WO2018179303A1 true WO2018179303A1 (en) 2018-10-04

Family

ID=63674367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013494 Ceased WO2018179303A1 (en) 2017-03-30 2017-03-30 Heating structure and treatment tool

Country Status (1)

Country Link
WO (1) WO2018179303A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136525A (en) * 2000-10-30 2002-05-14 Olympus Optical Co Ltd Surgical instrument
WO2015022919A1 (en) * 2013-08-16 2015-02-19 オリンパスメディカルシステムズ株式会社 Treatment tool and treatment system
WO2016167196A1 (en) * 2015-04-13 2016-10-20 オリンパス株式会社 Gripping treatment unit
WO2016189713A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Therapeutic energy-application structure and medical treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136525A (en) * 2000-10-30 2002-05-14 Olympus Optical Co Ltd Surgical instrument
WO2015022919A1 (en) * 2013-08-16 2015-02-19 オリンパスメディカルシステムズ株式会社 Treatment tool and treatment system
WO2016167196A1 (en) * 2015-04-13 2016-10-20 オリンパス株式会社 Gripping treatment unit
WO2016189713A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Therapeutic energy-application structure and medical treatment device

Similar Documents

Publication Publication Date Title
CN105025831B (en) therapeutic disposal device
EP2939625B1 (en) Therapeutic treatment device
JP6274881B2 (en) Therapeutic treatment device
JP5797348B2 (en) THERAPEUTIC TREATMENT DEVICE AND MANUFACTURING METHOD THEREOF
JP6487723B2 (en) Medical treatment device
US10603097B2 (en) Treatment energy application structure and medical treatment device
JPWO2016063376A1 (en) Medical treatment device
JP6833849B2 (en) Treatment tool
WO2018055778A1 (en) Treatment instrument and treatment system
WO2018179303A1 (en) Heating structure and treatment tool
WO2016189713A1 (en) Therapeutic energy-application structure and medical treatment device
JP6458127B2 (en) Therapeutic energy application structure and medical treatment apparatus
WO2017221331A1 (en) Treatment tool
WO2018146729A1 (en) Energy applying structure and treatment tool
WO2016189716A1 (en) Therapeutic energy-application structure and medical treatment device
CN112672703A (en) Medical heater, treatment instrument, and method for manufacturing treatment instrument
WO2020183681A1 (en) Medical heater, and treatment instrument
WO2019092822A1 (en) Treatment tool
WO2019202717A1 (en) Treatment instrument
WO2019092845A1 (en) Treatment tool
WO2019207807A1 (en) Treatment tool and method of manufacturing treatment tool
WO2017163410A1 (en) Energy treatment tool
WO2019215852A1 (en) Treatment tool
WO2018146730A1 (en) Energy applying structure and treatment tool
WO2020044563A1 (en) Medical heater, treatment instrument, and production method for treatment instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP