WO2018179788A1 - Planetary transmission device and differential device - Google Patents
Planetary transmission device and differential device Download PDFInfo
- Publication number
- WO2018179788A1 WO2018179788A1 PCT/JP2018/002817 JP2018002817W WO2018179788A1 WO 2018179788 A1 WO2018179788 A1 WO 2018179788A1 JP 2018002817 W JP2018002817 W JP 2018002817W WO 2018179788 A1 WO2018179788 A1 WO 2018179788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- plate
- planetary
- shaft
- planetary plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/04—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion
- F16H25/06—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion with intermediate members guided along tracks on both rotary members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/12—Differential gearings without gears having orbital motion
- F16H48/14—Differential gearings without gears having orbital motion with cams
Definitions
- the present invention relates to a planetary transmission device and a differential device to which the planetary transmission device is applied.
- first and second transmission shafts arranged so as to be relatively rotatable on a main axis line, and integrally connected to the first transmission shaft.
- An eccentric shaft disposed on an eccentric axis that is eccentric with respect to the main axis, a first transmission plate disposed on the main axis, and a planetary plate that is rotatably supported by the eccentric shaft and faces the first transmission plate
- a second transmission plate connected to the second transmission shaft so as to face the planetary plate on the opposite side of the first transmission plate, and a first transmission mechanism interposed between the first transmission plate and the planetary plate And a second speed change mechanism interposed between the planetary plate and the second transmission plate.
- the first speed change mechanism is formed on a side surface of the first transmission plate facing the planetary plate and has an annular waveform on the main axis.
- the first transmission groove is centered on the surface of the planetary plate and is formed on one side of the planetary plate facing the first transmission plate, and has a wave number different from that of the first transmission groove.
- the second transmission mechanism is formed on the other side of the planetary plate, is formed on the side of the second transmission plate facing the planetary plate, and a third transmission groove centered on the eccentric axis in an annular waveform.
- the first and fourth transmission grooves to be arranged on the main axis and the coaxial accuracy and the eccentric axis are arranged due to manufacturing errors and assembly errors of the first and second transmission mechanisms.
- a large frictional resistance is generated in each transmission mechanism, causing transmission.
- the efficiency will be reduced. Therefore, high precision is required for manufacturing and assembling the first and second transmission mechanisms in order to avoid such inconvenience, but this requirement causes an increase in manufacturing cost.
- the present invention has been made in view of such circumstances, and even if there is some deviation as described above due to manufacturing errors and assembly errors of the first and second transmission mechanisms, the deviation is absorbed and smooth operation is possible. It is an object of the present invention to provide a planetary transmission device that can suppress an increase in manufacturing cost and a differential device to which the planetary transmission device is applied.
- first and second transmission shafts arranged so as to be relatively rotatable on a main axis, and integrally connected to the first transmission shaft,
- An eccentric shaft disposed on an eccentric eccentric axis, a first transmission plate disposed on the main axis, a planetary plate supported rotatably on the eccentric shaft and opposed to the first transmission plate, and the planet
- a second transmission plate facing the plate on the opposite side to the first transmission plate and coupled to the second transmission shaft
- a first transmission mechanism interposed between the first transmission plate and the planetary plate
- a second transmission mechanism interposed between the planetary plate and the second transmission plate, and the first transmission mechanism is formed on a side surface of the first transmission plate facing the planetary plate, A first transmission groove centered on the main axis in an annular waveform, and a side surface of the planetary plate facing the first transmission plate;
- a second transmission mechanism formed on the other side of the planetary plate and centered on the eccentric axis in an annular waveform, and a second transmission mechanism.
- a fourth transmission groove formed on a side surface of the second transmission plate facing the planetary plate and having a wave number different from that of the third transmission groove and centered on the main axis, and the third and fourth transmission grooves.
- a planetary transmission device including a plurality of second rolling transmission members that are rotatably inserted in the transmission grooves at an overlapping portion of the transmission grooves, wherein the planetary plates are arranged in the axial direction; Divided into two planetary plate halves and the first and second planetary plate halves Only the planetary plate half is rotatably supported on the eccentric shaft, and the first and second planetary plate halves are elastic members that allow relative displacement in the radial direction of the first and second planetary plate halves.
- the first feature is that they are connected to each other.
- the first and second transmission shafts respectively correspond to first and second output shafts 19 and 20 in the embodiments of the present invention described later, and the first and second transmission plates are the input plate 12 and the output.
- the first and second rolling transmission members respectively correspond to the plates 15 and correspond to the first and second transmission balls 37 and 38, respectively.
- the first and second transmission shafts are arranged so as to be rotatable relative to each other on the main axis, and are arranged on an eccentric axis that is integrally connected to the first transmission shaft and eccentric with respect to the main axis.
- An eccentric shaft a first transmission plate disposed on the main axis, a planetary plate supported by the eccentric shaft so as to be able to rotate, and facing the first transmission plate, and the planetary plate with the first transmission plate A second transmission plate facing the opposite side of the plate and coupled to the second transmission shaft; a first transmission mechanism interposed between the first transmission plate and the planetary plate; the planetary plate and the A second transmission mechanism interposed between the second transmission plates, wherein the first transmission mechanism is formed on a side surface of the first transmission plate facing the planetary plate and has an annular waveform on the main axis.
- a first transmission groove located at the center and one side surface of the planetary plate facing the first transmission plate;
- a second transmission groove centered on the eccentric axis with an annular waveform having a wave number different from that of the first transmission groove, and a plurality of second transmission grooves interposed between the first and second transmission grooves so as to roll freely.
- the second transmission mechanism is formed on the other side surface of the planetary plate, and has a third transmission groove centered on the eccentric axis in an annular waveform, and the second transmission plate, A fourth transmission groove formed on a side surface opposite to the planetary plate and centered on the main axis in an annular waveform having a wave number different from that of the third transmission groove;
- a planetary transmission device including a plurality of second rolling transmission members interposed rotatably in a transmission groove, wherein the planetary plate is divided into first and second planetary plate halves arranged in the axial direction. And at least the first planetary plate half is rotatably supported on the eccentric shaft. It said first and second planetary plate halves, the second feature to be connected to each other via the elastic member to allow rotation direction of the relative displacement of the first and second planetary plate halves.
- the elastic member in addition to the first or second feature, is provided with a preload that urges the first and second planetary plate halves in a direction away from each other in the axial direction. This is the third feature.
- an accommodation space is provided between the first and second planetary plate halves, and the accommodation space includes the first transmission shaft.
- a fourth feature is that a counterweight that is attached and suppresses rotational unbalance of an eccentric rotating body including the eccentric shaft and the planetary plate is arranged.
- a differential device to which any one of the first to fourth features is applied, wherein the first and second cylinder shafts that are rotatably supported by the transmission case on the main axis are respectively centered.
- a differential case that has first and second case side walls formed thereon, and receives rotational power from the outside; and an input plate as the first transmission plate that is coupled to the first case side wall so as to be integrally rotatable;
- First and second output shafts as the first and second transmission shafts disposed on the main axis line in the differential case, and rotational power received in the differential case and transmitted from the differential case to the input plate.
- a differential mechanism that distributes to the first and second output shafts, and the differential mechanism is supported by the eccentric shaft that is integrally connected to the first output shaft, and rotatably supported by the eccentric shaft.
- the planetary plate facing the input plate
- An output plate as the second transmission plate, opposed to the planet plate on the opposite side of the input plate, and supported in the axial direction on the second case side wall while being connected to the second output shaft;
- the first speed change mechanism interposed between the input plate and the planetary plate; and the second speed change mechanism interposed between the planetary plate and the output plate.
- a fifth drive shaft is rotatably connected to the first tube shaft, and a second drive shaft rotatably connected to the second tube shaft is connected to the second output shaft. It is characterized by.
- the coaxial accuracy of the first transmission groove and the fourth transmission groove to be arranged on the main axis, and the eccentric axis If the coaxial accuracy of the second transmission groove and the third transmission groove that are to be arranged in the first and second transmission grooves is somewhat out of order, the first and second planetary plate halves are elastically deformed to cause the first and second planetary plate halves to be elastically deformed. The second planetary plate half is relatively displaced in the radial direction to absorb the deviation. For this reason, the smooth operation of the first and second transmission mechanisms can be ensured without being interfered by the deviation. As a result, the manufacturing accuracy and assembly accuracy of each transmission mechanism are eased, and an increase in manufacturing cost can be suppressed.
- the phase of the second transmission groove and the third transmission groove is somewhat out of order due to manufacturing errors or assembly errors of the first and second transmission mechanisms
- Due to the elastic deformation of the elastic member that connects the second planetary plate halves the first and second planetary plate halves are relatively displaced in the direction of rotation, and the deviation is absorbed.
- the smooth operation of the first and second speed change mechanisms can be ensured without being interfered with by the deviation.
- the manufacturing accuracy and assembly accuracy of each transmission mechanism are eased, and an increase in manufacturing cost can be suppressed.
- the backlash of the first and second transmission mechanisms is made zero by the axial preload applied to the elastic member connecting the first and second planetary plate halves, Alternatively, the two speed change mechanisms can be operated more smoothly.
- the counterweight attached to the first transmission shaft is disposed by using the accommodation space provided between the first and second planetary plate halves, thereby providing the counterweight.
- the planetary transmission can be made compact.
- the offset amount of the center of gravity of the counterweight on the main axis with respect to the center of gravity of the eccentric rotating body including the eccentric shaft and the planetary plate can be reduced, and the couple caused by the centrifugal force acting on both the centers of gravity can be kept small.
- the planetary transmission device can be applied to a differential device. Therefore, the differential device can exhibit the same effect as the planetary transmission device.
- FIG. 1 is a longitudinal front view of a differential device according to Embodiment 1 of the present invention.
- FIG. 2 is a sectional view taken along line 2-2 of FIG.
- FIG. 3 is a sectional view taken along line 3-3 in FIG. 1.
- FIG. 4 is a sectional view taken along line 4-4 of FIG.
- FIG. 5 is a sectional view taken along line 5-5 in FIG.
- the longitudinal section front view of the differential which concerns on Example 2 of this invention.
- FIG. 7 is a cross-sectional view taken along line 7-7 in FIG.
- a differential device D as a planetary transmission is housed in a transmission case 1 of a vehicle together with a transmission, and rotational power output from the transmission is connected to left and right drive wheels of the vehicle. It is used for distributing to the first and second drive shafts S1, S2.
- the differential case 2 of the differential device D includes a pair of left and right first and second case side walls 2a and 2b that are opposed to each other at an interval, and the outer peripheral ends of the first and second case side walls 2a and 2b are integrally formed. And a ring gear 4 connected to the. Therefore, the ring gear 4 is a component of the differential case 2.
- the ring gear 4 meshes with the output gear 3 of the transmission to receive the output of the transmission.
- first and second case side walls 2a, 2b are connected means between the first and second case side walls 2a, 2b and the ring gear 4, but bolts, caulking, or the like can also be used.
- the first and second case side walls 2a and 2b are provided with a plurality of through holes 44 and 45 for allowing lubricating oil to flow between the differential case 2 and the transmission case 1, respectively.
- the first and second case side walls 2a and 2b integrally have first and second cylinder shafts 5 and 6 that protrude outward and are aligned on the main axis X1, and these first and second cylinders are integrated.
- the shafts 5 and 6 are rotatably supported by the mission case 1 via first and second ball bearings 7 and 8.
- the first and second drive shafts S1 and S2 are rotatably supported by the first and second cylinder shafts 5 and 6, respectively.
- the transmission case 1 includes first and second oil seals 10 and 11 for bringing a seal lip into close contact with the outer periphery of the first and second drive shafts S1 and S2 outside the first and second ball bearings 7 and 8, respectively. Installed.
- a plurality of first and second spiral grooves 49 and 50 capable of transferring lubricating oil are formed on the inner peripheral surfaces of the first and second cylindrical shafts 5 and 6.
- the differential case 2 is splined to the first drive shaft S1 and disposed on the main axis X1, and the first output shaft 19 is splined to the second drive shaft S2 and disposed on the main axis X1.
- a second output shaft 20 and a planetary differential mechanism 21 that distributes rotational power input from the output gear 3 to the ring gear 4 to the first and second output shafts 20 are accommodated.
- the differential mechanism 21 includes an input plate 12 that is integrally coupled to the first case side wall 2a, and an eccentric axis X2 that is integrally connected to the first output shaft 19 and is eccentric by a predetermined distance e from the main axis X1.
- the first transmission mechanism 26 interposed between the first planetary plate 14 and the planetary plate 14 on the opposite side of the input plate 12 and the annular output plate 15 connected to the second output shaft 20, and the planetary plate 14 and And a second speed change mechanism 27 interposed between the output plates 15.
- the output plate 15 is axially supported on the inner surface of the second case side wall 2b via the annular first thrust washer 31. .
- a second thrust washer 32 for adjusting a gap between the first case side wall 2a and the first output shaft 19 in the axial direction is interposed.
- a plurality of radially extending oil grooves 46, 47 are provided on the inner surfaces of the first and second case side walls 2a, 2b that are in contact with the first and second thrust washers 31, 32.
- the first case side wall 2a and the input plate 12 are integrally formed as a single part, but they may be individually configured and connected to each other by a spline or the like.
- the first speed change mechanism 26 includes an annular wave-shaped first transmission groove 33 formed on a side surface of the input plate 12 facing the planetary plate 14, and the input plate of the planetary plate 14.
- 12 is formed on one side surface opposite to the first transmission groove 33 and has an annular corrugated second transmission groove 34 having a wave number smaller than that of the first transmission groove 33, and both the transmission grooves 33, in the overlapping portion of the first and second transmission grooves 33, 34, 34, a plurality of first transmission balls 37 that are rotatably arranged and arranged at equal intervals, and a first annular ball that is rotatably disposed between the input plate 12 and the planetary plate 14 and holds the first transmission balls 37.
- a retainer plate 39 has the same number of holding holes 39a as the first transmission balls 37 and are arranged at equal intervals on the same circumference, and the first transmission balls 37 are rotatably held by these holding holes 39a. It is like that.
- the second speed change mechanism 27 includes a ring-shaped third transmission groove 35 formed on the other side of the planetary plate 14 facing the output plate 15, and the output plate 15.
- An annular corrugated fourth transmission groove 36 formed on a side surface facing the planetary plate 14 and having a wave number smaller than that of the third transmission groove 35, and both transmission grooves 35 in the overlapping portion of the third and fourth transmission grooves 35, 36.
- 2 retainer plates 40 The second retainer plate 40 has the same number of holding holes 40a as the second transmission balls 38 and is arranged at equal intervals on the same circumference, and the first transmission balls 37 are rotatably held by these holding holes 40a. It is like that.
- the first transmission groove 33 and the third transmission groove 35 are formed along an endless hypocycloid curve or hypotrochoid curve
- the second transmission groove 34 and the fourth transmission groove 36 are endless epicycloid curves.
- it is formed along an epitrochoid curve.
- the first transmission groove 33 and the fourth transmission groove 36 are centered on the main axis X1
- the second transmission groove 34 and the third transmission groove 35 are centered on the eccentric axis X2.
- the wave number of the first transmission groove 33 is Z1
- the wave number of the second transmission groove 34 is Z2
- the wave number of the third transmission groove 35 is Z3
- the wave number of the fourth transmission groove 36 is Z4
- the four transmission grooves 33 to 36 are formed so as to satisfy the following expressions (1) to (3).
- (Z1 / Z2) ⁇ (Z3 / Z4) 2 (1)
- Z1-Z2 2 (2)
- Z3-Z4 2 (3)
- the eight-wave first transmission groove 33 and the six-wave second transmission groove 34 are overlapped at seven locations, and the seven transmission grooves 33 and 34 have seven grooves at the seven overlapping portions.
- the first transmission ball 37 is interposed, and the six-wave third transmission groove 35 and the four-wave fourth transmission groove 36 overlap at five locations, and the five transmission grooves 35 and 36 overlap with the five overlapping portions.
- Five second transmission balls 38 are interposed.
- the planetary plate 14 is divided into a first planetary plate half 14 a and a second planetary plate half 14 b aligned in the axial direction, and only the first planetary plate half 14 a is formed on the eccentric shaft 13.
- the third ball bearing 9 is rotatably supported.
- the planetary plate halves 14 a and 14 b are connected via an elastic member 18.
- the elastic member 18 is molded from rubber or elastic synthetic resin.
- the second transmission groove 34 is formed on the outer surface of the first planetary plate half 14a
- the third transmission groove 35 is formed on the outer surface of the second planetary plate half 14b.
- a plurality of pin-shaped convex portions 16 arranged at equal intervals in the circumferential direction are provided on the surface of the first planetary plate half 14a facing the second planetary plate half 14b, while the second planetary plate
- a plurality of concave portions 17 that receive the convex portions 16 are provided on the surface of the half body 14 b facing the first planetary plate half body 14 a so as to be arranged at equal intervals in the circumferential direction, and a cap is provided between the convex portions 16 and the concave portions 17.
- a shaped elastic member 18 is interposed. At that time, the phases of the second transmission groove 34 and the third transmission groove 35 are matched as prescribed.
- a gap g is provided between the opposing surfaces of both planetary plate halves 14a and 14b.
- the elastic member 18 is disposed so as to allow constant relative displacement in the radial direction, the rotation direction, and the axial direction of the planetary plate halves 14a and 14b by elastic deformation thereof.
- the elastic member 18 is given an axial preload that urges the first and second planetary half halves 14a and 14b in a direction to separate them from each other. Specifically, the elastic member 18 is axially compressed and deformed between the tip surface of the convex portion 16 and the bottom surface of the concave portion 17, and the repulsive force causes the first and second planetary plate halves 14 a and 14 b to interact with each other. It will be energized in the direction to separate.
- the second planetary plate half 14 b is formed between the first and second planetary plate halves 14 a, 14 b with a bottomed cylinder comprising a cylindrical portion 22 and an end wall portion 23.
- the storage space 42 is provided by comprising in a shape.
- An inner end portion of the first output shaft 19 extends toward the accommodation space 42, and a counterweight 43 fixed to the inner end portion is accommodated in the accommodation space 42.
- the weight portion 43a of the counterweight 43 is disposed in an opposite phase to the eccentric shaft 13 with the main axis X1 interposed therebetween.
- the cylindrical portion 22 of the first planetary plate half 14a is provided with a plurality of lightening holes 29.
- the recess 17 is provided on the end surface of the cylindrical portion 22, and the third transmission groove 35 is provided on the outer surface of the end wall portion 23.
- the ring gear 4 When the ring gear 4 is rotated by the input from the output gear 3, the rotation is transmitted to the input plate 12 integral with the differential case 2, and therefore the first case side wall 2a, and the input plate 12 rotates around the main axis X1.
- the eight-wave first transmission groove 33 of the input plate 12 drives the six-wave second transmission groove 34 of the first planetary plate half body 14a via the first transmission ball 37, and Since the driving force is simultaneously transmitted to the second planetary plate half 14b via the elastic member 18, the input plate 12 has the speed increase ratio of 8/6, that is, the first and second planetary plate halves 14a, 14b,
- the planetary plate 14 is rotated about the eccentric axis X2.
- the sixth transmission groove 35 of the planetary plate 14 drives the fourth transmission groove 36 of the output plate 15 via the second transmission ball 38.
- the output plate 15 is rotated with a speed increasing ratio of 6/4.
- the second output shaft 20 is fixed by fixing the second drive shaft S2 and rotational power is input to the ring gear 4 from the output gear 3 of the transmission.
- the input plate 12 When the input plate 12 is rotated by the input from the ring gear 4, the input plate 12 is driven to the planetary plate 14 (first and second planetary plate halves 14 a and 14 b), and the planetary plate 14 is driven to the stationary output plate 15. Due to the reaction force, the planetary plate 14 revolves around the main axis X1 while rotating around the eccentric shaft 13, thereby rotating the eccentric shaft 13 around the main axis X1. As a result, the input plate 12 rotates the first output shaft 19 with a double speed increasing ratio.
- the differential mechanism 21 can exhibit a differential function in which the rotational speed of the input plate 12 and the average value of the rotational speeds of the first and second output shafts 19 and 20 are always equal. Means. Thus, the differential mechanism 21 can distribute the rotational power of the input plate 12 to the first and second output shafts 19 and 20 according to their loads.
- the rotational torque of the input plate 12 is applied to the planetary plate 14 (first and second planetary plate halves 14a and 14b) via the first transmission groove 33, the plurality of first transmission balls 37 and the second transmission groove 34.
- the rotational torque of the planetary plate 14 is transmitted to the output plate 15 through the third transmission groove 35, the plurality of second transmission balls 38 and the fourth transmission groove 36, respectively.
- torque transmission is performed in a distributed manner at a plurality of locations where the first and second transmission balls 37 and 38 are present, and the durability of the differential mechanism 21 is improved. It is possible to reduce the weight and contribute to the provision of the differential device D that can withstand a high load while being small.
- the first and second retainer plates 39 and 40 hold a plurality of first and second transmission balls 37 and 38 to restrict their equidistant arrangement, and also part of the first transmission during torque transmission.
- rampage occurs in the ball 37 or the second transmission ball 38, it cooperates with the other plurality of first transmission balls 37 or the second transmission ball 38 to suppress the rampage of the part of the transmission balls. , Smooth torque transmission by the first and second transmission balls 37 and 38 is ensured.
- the planetary plate 14 is divided into first and second planetary plate halves 14a and 14b arranged in the axial direction, and only the first planetary plate half 14a is rotatably supported by the eccentric shaft 13, and
- the first and second planetary plate halves 14a and 14b are elastic members interposed between the plurality of convex portions 16 of the first planetary plate half 14a and the plurality of concave portions 17 of the second planetary plate half 14b.
- the planetary plate halves 14 a and 14 b are connected so as to allow relative displacement in the radial direction and the rotation direction.
- the elastic member 18 is subjected to compression deformation in the rotation direction of the planetary plate 14.
- the first and second planetary plate halves 14a and 14b are relatively displaced in the direction of rotation, so that the above-mentioned deviation is absorbed.
- the smooth operation of the first and second transmission mechanisms 26 and 27 and the differential mechanism 21 can be ensured without being interfered by the various deviations as described above. Therefore, the manufacturing accuracy and assembly accuracy of each of the transmission mechanisms 26 and 27 are eased, and an increase in manufacturing cost can be suppressed.
- the output plate 15 is connected to the second case side wall. 2b, the first transmission ball 37 is in pressure contact with the first and second transmission grooves 33, 34, and the second transmission ball 38 is in the third and fourth transmission grooves 35, 36, each of which is always maintained in a pressure contact state with 36, thereby eliminating the play in the axial direction of the output plate 15, reducing the backlash of the first and second transmission mechanisms 26, 27, and differentially.
- the mechanism 21 can be operated more smoothly.
- the output plate 15 is kept in pressure contact with the second case side wall 2b, so that the first thrust washer 31 interposed between the output plate 15 and the second case side wall 2b has a shim function. Therefore, the first thrust washer 31 can be omitted.
- the elastic member 18 is useful for absorbing torque fluctuations caused by fluctuations in input power and load.
- a counterweight 43 attached to the first output shaft 19 is arranged in the accommodating space 42 provided between the first and second planetary plate halves 14a and 14b, so that the planetary difference with the counterweight 43 is provided.
- the moving device D can be configured compactly.
- the offset s of the center of gravity G2 of the counterweight 43 on the main axis X1 with respect to the center of gravity G1 of the eccentric rotating body including the eccentric shaft 13 and the planetary plate 14 can be made zero or small. Couples due to centrifugal force acting on G2 can be suppressed.
- one of the first and second planetary plate halves 14a and 14b has an inner cylindrical portion having an uneven outer peripheral surface 24a. 24 is provided, and on the other side, an outer cylinder portion 25 having an uneven inner peripheral surface 25a is provided.
- the inner cylinder portion 24 and the outer cylinder portion 25 are inlay-fitted with each other so as to sandwich an elastic member 18 ′ having an L-shaped cross section between the concave / convex outer peripheral surface 24 a and the concave / convex inner peripheral surface 25 a.
- the phases of the second transmission groove 34 and the third transmission groove 35 are matched as prescribed. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given to the portions corresponding to the first embodiment in FIGS. 6 and 7, and the detailed description thereof will be omitted.
- the differential device D can be applied to a central differential device (center differential) for driving front and rear wheels in a front and rear wheel drive vehicle.
- the differential case 2 is configured as a stationary gear case
- the first output shaft 19 is a drive shaft connected to, for example, an electric motor
- the second output shaft 20 is a driven shaft connected to a load.
- the present invention can be applied to a speed reducer or a speed increasing device.
- the first and second transmission balls 37 and 38 can be replaced by rollers, respectively.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
- Transmission Devices (AREA)
- Friction Gearing (AREA)
Abstract
Description
本発明は,遊星式伝動装置及びそれを適用した差動装置に関する。 The present invention relates to a planetary transmission device and a differential device to which the planetary transmission device is applied.
従来,遊星式伝動装置として,例えば下記特許文献1に記載されるように,主軸線上で相対回転可能に配置される第1及び第2伝動軸と,該第1伝動軸に一体的に連設され,主軸線に対して偏心した偏心軸線上に配置される偏心軸と,主軸線上に配置される第1伝動板と,偏心軸に自転可能に支持されて第1伝動板に対向する遊星板と,該遊星板に,第1伝動板と反対側で対向して,第2伝動軸に連結される第2伝動板と,第1伝動板及び遊星板間に介装される第1変速機構と,遊星板及び第2伝動板間に介装される第2変速機構とを備え,第1変速機構は,第1伝動板の,遊星板に対向する側面に形成され,環状波形で主軸線上に中心を置く第1伝動溝と,遊星板の,第1伝動板に対向する一側面に形成され,第1伝動溝と異なる波数を持つ環状波形で偏心軸線上に中心を置く第2伝動溝と,第1及び第2伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第1転がり伝動部材とを含み,また第2変速機構は,遊星板の他側面に形成され,環状波形で偏心軸線上に中心を置く第3伝動溝と,第2伝動板の,遊星板に対向する側面に形成され,第3伝動溝と異なる波数を持つ環状波形で主軸線上に中心を置く第4伝動溝と,第3及び第4伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第2転がり伝動部材とを含むものが知られている。
Conventionally, as a planetary transmission device, for example, as described in
かかる遊星式伝動装置では,第1及び第2変速機構の製作誤差や組み付け誤差により,主軸線上に配置されるべき第1伝動溝及び第4伝動溝の同軸精度や,偏心軸線上に配置されるべき第2伝動溝及び第3伝動溝の同軸精度,第2伝動溝及び第3伝動溝相互の位相精度に狂いが生じた場合には,各変速機構に大なる摩擦抵抗が発生して,伝動効率の低下を招くことになる。したがって,そのような不都合を回避すべく第1及び第2変速機構の製作及び組み付けには高精度が要求されることになるが,その要求は製作コストの上昇を招くことになる。 In such a planetary transmission device, the first and fourth transmission grooves to be arranged on the main axis and the coaxial accuracy and the eccentric axis are arranged due to manufacturing errors and assembly errors of the first and second transmission mechanisms. When there is a deviation in the coaxial accuracy of the second and third transmission grooves and the phase accuracy between the second and third transmission grooves, a large frictional resistance is generated in each transmission mechanism, causing transmission. The efficiency will be reduced. Therefore, high precision is required for manufacturing and assembling the first and second transmission mechanisms in order to avoid such inconvenience, but this requirement causes an increase in manufacturing cost.
本発明は,かかる事情に鑑みてなされたもので,第1及び第2変速機構の製作誤差や組み付け誤差による前述のような狂いが多少あっても,その狂いを吸収して円滑な作動を可能にし,製作コストの上昇を抑制し得る遊星式伝動装置及び,それを適用した差動装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and even if there is some deviation as described above due to manufacturing errors and assembly errors of the first and second transmission mechanisms, the deviation is absorbed and smooth operation is possible. It is an object of the present invention to provide a planetary transmission device that can suppress an increase in manufacturing cost and a differential device to which the planetary transmission device is applied.
上記目的を達成するために,本発明では,主軸線上で相対回転可能に配置される第1及び第2伝動軸と,該第1伝動軸に一体的に連設され,前記主軸線に対して偏心した偏心軸線上に配置される偏心軸と,前記主軸線上に配置される第1伝動板と,前記偏心軸に自転可能に支持されて前記第1伝動板に対向する遊星板と,該遊星板に,前記第1伝動板と反対側で対向して,前記第2伝動軸に連結される第2伝動板と,前記第1伝動板及び前記遊星板間に介装される第1変速機構と,前記遊星板及び前記第2伝動板間に介装される第2変速機構とを備え,前記第1変速機構は,前記第1伝動板の,前記遊星板に対向する側面に形成され,環状波形で前記主軸線上に中心を置く第1伝動溝と,前記遊星板の,前記第1伝動板に対向する一側面に形成され,前記第1伝動溝と異なる波数を持つ環状波形で前記偏心軸線上に中心を置く第2伝動溝と,前記第1及び第2伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第1転がり伝動部材とを含み,また前記第2変速機構は,前記遊星板の他側面に形成され,環状波形で前記偏心軸線上に中心を置く第3伝動溝と,前記第2伝動板の,前記遊星板に対向する側面に形成され,第3伝動溝と異なる波数を持つ環状波形で前記主軸線上に中心を置く第4伝動溝と,前記第3及び第4伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第2転がり伝動部材とを含む,遊星式伝動装置であって,前記遊星板が軸方向に並ぶ第1及び第2遊星板半体に分割されると共に,前記第1及び第2遊星板半体のうち前記第1遊星板半体のみが前記偏心軸に自転可能に支持され,前記第1及び第2遊星板半体が,該第1及び第2遊星板半体の半径方向の相対変位を許容する弾性部材を介して相互に連結されることを第1の特徴とする。 In order to achieve the above object, according to the present invention, first and second transmission shafts arranged so as to be relatively rotatable on a main axis, and integrally connected to the first transmission shaft, An eccentric shaft disposed on an eccentric eccentric axis, a first transmission plate disposed on the main axis, a planetary plate supported rotatably on the eccentric shaft and opposed to the first transmission plate, and the planet A second transmission plate facing the plate on the opposite side to the first transmission plate and coupled to the second transmission shaft; and a first transmission mechanism interposed between the first transmission plate and the planetary plate And a second transmission mechanism interposed between the planetary plate and the second transmission plate, and the first transmission mechanism is formed on a side surface of the first transmission plate facing the planetary plate, A first transmission groove centered on the main axis in an annular waveform, and a side surface of the planetary plate facing the first transmission plate; A second transmission groove that is centered on the eccentric axis with an annular waveform having a wave number different from that of the first transmission groove, and can freely roll to both transmission grooves at the overlapping portion of the first and second transmission grooves. And a second transmission mechanism formed on the other side of the planetary plate and centered on the eccentric axis in an annular waveform, and a second transmission mechanism. , A fourth transmission groove formed on a side surface of the second transmission plate facing the planetary plate and having a wave number different from that of the third transmission groove and centered on the main axis, and the third and fourth transmission grooves. A planetary transmission device including a plurality of second rolling transmission members that are rotatably inserted in the transmission grooves at an overlapping portion of the transmission grooves, wherein the planetary plates are arranged in the axial direction; Divided into two planetary plate halves and the first and second planetary plate halves Only the planetary plate half is rotatably supported on the eccentric shaft, and the first and second planetary plate halves are elastic members that allow relative displacement in the radial direction of the first and second planetary plate halves. The first feature is that they are connected to each other.
尚,前記第1及び第2伝動軸は,後述する本発明の実施例中の第1及び第2出力軸19,20にそれぞれ対応し,第1及び第2伝動板は,入力板12及び出力板15にそれぞれ対応し,前記第1及び第2転がり伝動部材は,第1及び第2伝動ボール37,38にそれぞれ対応する。
The first and second transmission shafts respectively correspond to first and
また本発明では,主軸線上で相対回転可能に配置される第1及び第2伝動軸と,該第1伝動軸に一体的に連設され,前記主軸線に対して偏心した偏心軸線上に配置される偏心軸と,前記主軸線上に配置される第1伝動板と,前記偏心軸に自転可能に支持されて前記第1伝動板に対向する遊星板と,該遊星板に,前記第1伝動板と反対側で対向して,前記第2伝動軸に連結される第2伝動板と,前記第1伝動板及び前記遊星板間に介装される第1変速機構と,前記遊星板及び前記第2伝動板間に介装される第2変速機構とを備え,前記第1変速機構は,前記第1伝動板の,前記遊星板に対向する側面に形成され,環状波形で前記主軸線上に中心を置く第1伝動溝と,前記遊星板の,前記第1伝動板に対向する一側面に形成され,前記第1伝動溝と異なる波数を持つ環状波形で前記偏心軸線上に中心を置く第2伝動溝と,前記第1及び第2伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第1転がり伝動部材とを含み,また前記第2変速機構は,前記遊星板の他側面に形成され,環状波形で前記偏心軸線上に中心を置く第3伝動溝と,前記第2伝動板の,前記遊星板に対向する側面に形成され,第3伝動溝と異なる波数を持つ環状波形で前記主軸線上に中心を置く第4伝動溝と,前記第3及び第4伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第2転がり伝動部材とを含む,遊星式伝動装置であって,前記遊星板が軸方向に並ぶ第1及び第2遊星板半体に分割されると共に,少なくとも前記第1遊星板半体が前記偏心軸に自転可能に支持され,前記第1及び第2遊星板半体が,該第1及び第2遊星板半体の自転方向の相対変位を許容する弾性部材を介して相互に連結されることを第2の特徴とする。 According to the present invention, the first and second transmission shafts are arranged so as to be rotatable relative to each other on the main axis, and are arranged on an eccentric axis that is integrally connected to the first transmission shaft and eccentric with respect to the main axis. An eccentric shaft, a first transmission plate disposed on the main axis, a planetary plate supported by the eccentric shaft so as to be able to rotate, and facing the first transmission plate, and the planetary plate with the first transmission plate A second transmission plate facing the opposite side of the plate and coupled to the second transmission shaft; a first transmission mechanism interposed between the first transmission plate and the planetary plate; the planetary plate and the A second transmission mechanism interposed between the second transmission plates, wherein the first transmission mechanism is formed on a side surface of the first transmission plate facing the planetary plate and has an annular waveform on the main axis. A first transmission groove located at the center and one side surface of the planetary plate facing the first transmission plate; A second transmission groove centered on the eccentric axis with an annular waveform having a wave number different from that of the first transmission groove, and a plurality of second transmission grooves interposed between the first and second transmission grooves so as to roll freely. The second transmission mechanism is formed on the other side surface of the planetary plate, and has a third transmission groove centered on the eccentric axis in an annular waveform, and the second transmission plate, A fourth transmission groove formed on a side surface opposite to the planetary plate and centered on the main axis in an annular waveform having a wave number different from that of the third transmission groove; A planetary transmission device including a plurality of second rolling transmission members interposed rotatably in a transmission groove, wherein the planetary plate is divided into first and second planetary plate halves arranged in the axial direction. And at least the first planetary plate half is rotatably supported on the eccentric shaft. It said first and second planetary plate halves, the second feature to be connected to each other via the elastic member to allow rotation direction of the relative displacement of the first and second planetary plate halves.
さらに本発明では,第1又は第2の特徴に加えて,前記弾性部材には,前記第1及び第2遊星板半体を軸方向に相互に離反する方向に付勢する予荷重が付与されることを第3の特徴とする。 Further, in the present invention, in addition to the first or second feature, the elastic member is provided with a preload that urges the first and second planetary plate halves in a direction away from each other in the axial direction. This is the third feature.
さらにまた本発明では,第1~第3の特徴の何れかに加えて,前記第1及び第2遊星板半体間に収容スペースが設けられ,該収容スペースには,前記第1伝動軸に取り付けられて前記偏心軸及び前記遊星板を含む偏心回転体の回転アンバランスを抑制するカウンタウエイトが配置されることを第4の特徴とする。 Further, in the present invention, in addition to any of the first to third features, an accommodation space is provided between the first and second planetary plate halves, and the accommodation space includes the first transmission shaft. A fourth feature is that a counterweight that is attached and suppresses rotational unbalance of an eccentric rotating body including the eccentric shaft and the planetary plate is arranged.
さらにまた本発明では,第1~第4の特徴の何れかを適用した差動装置であって,前記主軸線上でミッションケースに回転可能に支持される第1及び第2筒軸をそれぞれ中心部に形成した第1及び第2ケース側壁を有し,外部から回転動力を入力されるデフケースと,前記第1ケース側壁に一体回転可能に結合される,前記第1伝動板としての入力板と,前記デフケース内で前記主軸線上に配置される,前記第1及び第2伝動軸としての第1及び第2出力軸と,前記デフケースに収容され,前記デフケースから前記入力板に伝達される回転動力を前記第1及び第2出力軸に分配する差動機構とを備え,前記差動機構は,前記第1出力軸に一体的に連設される前記偏心軸と,該偏心軸に自転可能に支持されて前記入力板に対向する前記遊星板と,該遊星板に前記入力板とは反対側で対向し,前記第2出力軸に連結されながら前記第2ケース側壁で軸方向に支承される,前記第2伝動板としての出力板と,前記入力板及び前記遊星板間に介装される前記第1変速機構と,前記遊星板及び前記出力板間に介装される前記第2変速機構とを有し,前記第1出力軸に,前記第1筒軸に回転可能に支持される第1ドライブ軸が,また前記第2出力軸に,前記第2筒軸に回転可能に支持される第2ドライブ軸がそれぞれ連結されることを第5の特徴とする。 Furthermore, in the present invention, a differential device to which any one of the first to fourth features is applied, wherein the first and second cylinder shafts that are rotatably supported by the transmission case on the main axis are respectively centered. A differential case that has first and second case side walls formed thereon, and receives rotational power from the outside; and an input plate as the first transmission plate that is coupled to the first case side wall so as to be integrally rotatable; First and second output shafts as the first and second transmission shafts disposed on the main axis line in the differential case, and rotational power received in the differential case and transmitted from the differential case to the input plate. A differential mechanism that distributes to the first and second output shafts, and the differential mechanism is supported by the eccentric shaft that is integrally connected to the first output shaft, and rotatably supported by the eccentric shaft. And the planetary plate facing the input plate An output plate as the second transmission plate, opposed to the planet plate on the opposite side of the input plate, and supported in the axial direction on the second case side wall while being connected to the second output shaft; The first speed change mechanism interposed between the input plate and the planetary plate; and the second speed change mechanism interposed between the planetary plate and the output plate. A fifth drive shaft is rotatably connected to the first tube shaft, and a second drive shaft rotatably connected to the second tube shaft is connected to the second output shaft. It is characterized by.
本発明の第1の特徴によれば,第1及び第2変速機構の製作誤差や組み付け誤差により,主軸線上に配置されるべき第1伝動溝及び第4伝動溝の同軸精度や,偏心軸線上に配置されるべき第2伝動溝及び第3伝動溝の同軸精度に多少とも狂いがある場合には,第1及び第2遊星板半体間を連結する弾性部材の弾性変形により,第1及び第2遊星板半体が半径方向に相対変位して上記狂いが吸収される。このため,前記狂いに干渉されることなく第1及び第2変速機構の円滑な作動を確保することができる。これにより各変速機構の製作精度及び組み付け精度が緩和され,製作コストの上昇を抑えることができる。 According to the first feature of the present invention, due to manufacturing errors and assembly errors of the first and second transmission mechanisms, the coaxial accuracy of the first transmission groove and the fourth transmission groove to be arranged on the main axis, and the eccentric axis If the coaxial accuracy of the second transmission groove and the third transmission groove that are to be arranged in the first and second transmission grooves is somewhat out of order, the first and second planetary plate halves are elastically deformed to cause the first and second planetary plate halves to be elastically deformed. The second planetary plate half is relatively displaced in the radial direction to absorb the deviation. For this reason, the smooth operation of the first and second transmission mechanisms can be ensured without being interfered by the deviation. As a result, the manufacturing accuracy and assembly accuracy of each transmission mechanism are eased, and an increase in manufacturing cost can be suppressed.
本発明の第2の特徴によれば,第1及び第2変速機構の製作誤差や組み付け誤差により,第2伝動溝及び第3伝動溝相互の位相に多少とも狂いがある場合には,第1及び第2遊星板半体間を連結する弾性部材の弾性変形により,第1~第2遊星板半体が自転方向に相対変位して上記狂いが吸収される。このため,上記狂いに干渉されることなく第1及び第2変速機構の円滑な作動を確保することができる。これにより各変速機構の製作精度及び組み付け精度が緩和され,製作コストの上昇を抑えることができる。 According to the second feature of the present invention, when the phase of the second transmission groove and the third transmission groove is somewhat out of order due to manufacturing errors or assembly errors of the first and second transmission mechanisms, Due to the elastic deformation of the elastic member that connects the second planetary plate halves, the first and second planetary plate halves are relatively displaced in the direction of rotation, and the deviation is absorbed. For this reason, the smooth operation of the first and second speed change mechanisms can be ensured without being interfered with by the deviation. As a result, the manufacturing accuracy and assembly accuracy of each transmission mechanism are eased, and an increase in manufacturing cost can be suppressed.
本発明の第3の特徴によれば,第1及び第2遊星板半体間を連結する弾性部材に付与した軸方向の予荷重により,第1及び第2変速機構のバックラッシュをゼロにし,もしくは減少させ,両変速機構を,より円滑に作動させることができる。 According to the third feature of the present invention, the backlash of the first and second transmission mechanisms is made zero by the axial preload applied to the elastic member connecting the first and second planetary plate halves, Alternatively, the two speed change mechanisms can be operated more smoothly.
本発明の第4の特徴によれば,第1及び第2遊星板半体間に設けられる収容スペースを利用して,第1伝動軸に取り付けられるカウンタウエイトが配置されることで,カウンタウエイト付きの遊星式伝動装置をコンパクトに構成することができる。しかも,主軸線上におけるカウンタウエイトの重心の,偏心軸及び遊星板を含む偏心回転体の重心に対するオフセット量を少なくでき,上記両重心に働く遠心力による偶力を小さく抑えることができる。 According to the fourth feature of the present invention, the counterweight attached to the first transmission shaft is disposed by using the accommodation space provided between the first and second planetary plate halves, thereby providing the counterweight. The planetary transmission can be made compact. In addition, the offset amount of the center of gravity of the counterweight on the main axis with respect to the center of gravity of the eccentric rotating body including the eccentric shaft and the planetary plate can be reduced, and the couple caused by the centrifugal force acting on both the centers of gravity can be kept small.
本発明の第5の特徴によれば,前記遊星式伝動装置を差動装置に適用することができる。したがって,その差動装置には前記遊星式伝動装置と同様の効果を発揮させることができる。 According to the fifth aspect of the present invention, the planetary transmission device can be applied to a differential device. Therefore, the differential device can exhibit the same effect as the planetary transmission device.
本発明の実施形態を添付図面に基づいて以下に説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
図1において,遊星式伝動装置としての差動装置Dは,自動車のミッションケース1内に変速装置と共に収容され,変速装置から出力される回転動力を,自動車の左右の駆動輪に連結される第1及び第2ドライブ軸S1,S2に分配することに供される。
In FIG. 1, a differential device D as a planetary transmission is housed in a
この差動装置Dのデフケース2は,間隔を開けて互いに対向する左右一対の第1及び第2ケース側壁2a,2bと,これら第1及び第2ケース側壁2a,2bの外周端部間を一体に連結するリングギヤ4とで構成される。したがって,リングギヤ4は,デフケース2の一構成要素となる。このリングギヤ4は,変速装置の出力ギヤ3と噛合して変速装置の出力を受けるようになっている。
The
第1及び第2ケース側壁2a,2bとリングギヤ4との連結手段として,図示例では,インロー嵌合及び溶接を用いているが,ボルトやかしめ等を用いることもできる。第1及び第2ケース側壁2a,2bには,デフケース2及びミッションケース1間で潤滑オイルを流通させる複数の透孔44,45がそれぞれ設けられる。
In the illustrated example, spigot fitting and welding are used as connecting means between the first and second
第1及び第2ケース側壁2a,2bは,それぞれの外側方に突出して主軸線X1上に並ぶ第1及び第2筒軸5,6を一体に有しており,これら第1及び第2筒軸5,6がミッションケース1に第1及び第2ボールベアリング7,8を介して回転自在に支持される。またこれら第1及び第2筒軸5,6により第1及び第2ドライブ軸S1,S2がそれぞれ回転自在に支持される。またミッションケース1には,第1及び第2ボールベアリング7,8の外側において第1及び第2ドライブ軸S1,S2の外周にそれぞれシールリップを密接させる第1及び第2オイルシール10,11が装着される。また第1及び第2筒軸5,6の内周面には,潤滑オイルを移送し得る複数条の第1及び第2螺旋溝49,50が形成される。
The first and second
デフケース2には,第1ドライブ軸S1にスプライン嵌合して主軸線X1上に配置される第1出力軸19と,第2ドライブ軸S2にスプライン嵌合して主軸線X1上に配置される第2出力軸20と,出力ギヤ3からリングギヤ4に入力される回転動力を第1及び第2出力軸20に分配する遊星式の差動機構21とが収容される。
The
この差動機構21は,第1ケース側壁2aに一体的に結合される入力板12と,第1出力軸19に一体的に連設されて主軸線X1から所定距離e偏心した偏心軸線X2上に配置される偏心軸13と,この偏心軸13に第3ボールベアリング9を介して回転自在に支持されて入力板12に対向する環状の遊星板14と,これら入力板12及び遊星板14間に介装される第1変速機構26と,遊星板14に,入力板12とは反対側で対向すると共に,第2出力軸20と連結される環状の出力板15と,これら遊星板14及び出力板15間に介装される第2変速機構27とを備えており,出力板15は,環状の第1スラストワッシャ31を介して第2ケース側壁2bの内側面に軸方向に支承される。また第1ケース側壁2a及び第1出力軸19の軸方向対向面間には,その間の隙間を調整する第2スラストワッシャ32が介装される。第1及び第2ケース側壁2a,2bの,第1及び第2スラストワッシャ31,32が接触する内面には,放射状に延びる複数条のオイル溝46,47が設けられる。
The
図示例では,第1ケース側壁2a及び入力板12は,単一部品として一体に構成されているが,これらを個別に構成してスプライン等により相互に連結してもよい。
In the illustrated example, the first
第1変速機構26は,図1及び図2に示すように,入力板12の,遊星板14に対向する側面に形成される環状波形の第1伝動溝33と,遊星板14の,入力板12に対向する一側面に形成され,第1伝動溝33より少ない波数を持つ環状波形の第2伝動溝34と,第1及び第2伝動溝33,34の重なり部においてその両伝動溝33,34に転動自在に介装されて等間隔に並ぶ複数の第1伝動ボール37と,入力板12及び遊星板14間に回転自在に配置されて第1伝動ボール37を保持する環状の第1リテーナ板39とで構成される。この第1リテーナ板39は,第1伝動ボール37と同数で同一円周上に等間隔に並ぶ保持孔39aを有しており,これら保持孔39aで第1伝動ボール37を回転自在に保持するようになっている。
As shown in FIGS. 1 and 2, the first
また第2変速機構27は,図1及び図3に示すように,遊星板14の,出力板15に対向する他側面に形成される環状波形の第3伝動溝35と,出力板15の,遊星板14に対向する側面に形成され,第3伝動溝35より少ない波数を持つ環状波形の第4伝動溝36と,第3及び第4伝動溝35,36の重なり部においてその両伝動溝35,36に転動自在に介装されて等間隔に並ぶ複数の第2伝動ボール38と,遊星板14及び出力板15間に回転自在に配置されて第2伝動ボール38を保持する環状の第2リテーナ板40とで構成される。この第2リテーナ板40は,第2伝動ボール38と同数で同一円周上に等間隔に並ぶ保持孔40aを有しており,これら保持孔40aで第1伝動ボール37を回転自在に保持するようになっている。
As shown in FIGS. 1 and 3, the second
図示例では,第1伝動溝33及び第3伝動溝35は,無端のハイポサイクロイド曲線又はハイポトロコイド曲線に沿って形成され,第2伝動溝34及び第4伝動溝36は,無端のエピサイクロイド曲線又はエピトロコイド曲線に沿って形成される。そして第1伝動溝33及び第4伝動溝36は主軸線X1上に中心を置き,第2伝動溝34及び第3伝動溝35は偏心軸線X2上に中心を置いている。
In the illustrated example, the
以上において,第1伝動溝33の波数をZ1,第2伝動溝34の波数をZ2,第3伝動溝35の波数をZ3,第4伝動溝36の波数をZ4としたとき,第1~第4伝動溝33~36は下記(1)~(3)式を満足させるように形成される。
(Z1/Z2)×(Z3/Z4)=2・・・・・(1)
Z1-Z2=2・・・・・・・・・・・・・・(2)
Z3-Z4=2・・・・・・・・・・・・・・(3)
In the above, when the wave number of the
(Z1 / Z2) × (Z3 / Z4) = 2 (1)
Z1-Z2 = 2 (2)
Z3-Z4 = 2 (3)
したがって,具体的には,図示例のようにZ1=8,Z2=6,Z3=6,Z4=4とするか,Z1=6,Z2=4,Z3=8,Z4=6とすればよい。 Therefore, specifically, as in the illustrated example, Z1 = 8, Z2 = 6, Z3 = 6, Z4 = 4, or Z1 = 6, Z2 = 4, Z3 = 8, and Z4 = 6. .
而して,図示例では,8波の第1伝動溝33と6波の第2伝動溝34とは7箇所で重なり,この7箇所の重なり部においてその両伝動溝33,34に7個の第1伝動ボール37が介装され,また6波の第3伝動溝35と4波の第4伝動溝36とは5箇所で重なり,この5箇所の重なり部においてその両伝動溝35,36に5個の第2伝動ボール38が介装される。
Thus, in the illustrated example, the eight-wave
次に,図1及び図4において,遊星板14は,軸方向に並ぶ第1遊星板半体14a第2遊星板半体14bに分割され,第1遊星板半体14aのみが偏心軸13に第3ボールベアリング9を介して回転可能に支持される。また上記両遊星板半体14a,14bは弾性部材18を介して連結される。この弾性部材18は,ゴム又は弾性合成樹脂より成形される。而して,第2伝動溝34は第1遊星板半体14aの外側面に形成され,第3伝動溝35は第2遊星板半体14bの外側面に形成されることになる。
Next, in FIGS. 1 and 4, the
図示例では,第1遊星板半体14aの,第2遊星板半体14bとの対向面には,周方向等間隔に並ぶ複数のピン状の凸部16が設けられる一方,第2遊星板半体14bの,第1遊星板半体14aとの対向面には,周方向等間隔に並んで上記凸部16を受け入れる複数の凹部17が設けられ,これら凸部16及び凹部17間にキャップ状の弾性部材18が介装される。その際,第2伝動溝34及び第3伝動溝35相互の位相は規定通りに合わせられる。また両遊星板半体14a,14bの対向面間には間隙gが設けられる。
In the illustrated example, a plurality of pin-shaped
こうして,弾性部材18は,その弾性変形により,両遊星板半体14a,14bの半径方向,自転方向及び軸方向の一定の相対変位を許容するように配設される。
Thus, the
また上記弾性部材18には,第1及び第2遊星板半体14a,14bを相互に離反させる方向に付勢する軸方向の予荷重が付与される。具体的には,凸部16の先端面と凹部17の底面との間で弾性部材18に軸方向の圧縮変形を与え,その反発力が第1及び第2遊星板半体14a,14bを相互に離反させる方向に付勢することになる。
Further, the
次に,図1,図3及び図5において,第1及び第2遊星板半体14a,14b間には,第2遊星板半体14bを円筒部22及び端壁部23よりなる有底円筒状に構成することで,収容スペース42が設けられる。この収容スペース42に向かって第1出力軸19の内端部が延びており,その内端部に固着されるカウンタウエイト43が収容スペース42に収容される。その際,カウンタウエイト43のウエイト部43aは,主軸線X1を挟んで偏心軸13とは逆位相に配置される。第1遊星板半体14aの円筒部22には,複数の肉抜き孔29が設けられる。尚,凹部17は上記円筒部22の端面に設けられ,また第3伝動溝35は上記端壁部23の外側面に設けられる。
Next, in FIGS. 1, 3 and 5, the second
而して,第1出力軸19の回転時,カウンタウエイト43の重心G2に働く遠心力が,偏心軸13及び遊星板14を含む偏心回転体の重心G1に働く遠心力と対抗して,上記偏心回転体の回転アンバランスをゼロにし,もしくは抑制するようになっている。
Thus, when the
次に,この実施例1の作用について説明する。 Next, the operation of the first embodiment will be described.
第1ドライブ軸S1を固定することで,第1出力軸19を不動状態にしておき,変速機の出力ギヤ3からリングギヤ4に回転動力が入力された場合を想定する。
Suppose that the first drive shaft S1 is fixed to keep the
出力ギヤ3からの入力によりリングギヤ4が回転すると,その回転は,デフケース2,したがってその第1ケース側壁2aと一体の入力板12へと伝達し,入力板12は主軸線X1周りに回転する。この入力板12の回転により,入力板12の8波の第1伝動溝33が第1遊星板半体14aの6波の第2伝動溝34を第1伝動ボール37を介して駆動し,その駆動力は弾性部材18を介して第2遊星板半体14bにも同時に伝達するので,入力板12は,8/6の増速比をもって第1及び第2遊星板半体14a,14b,即ち遊星板14を偏心軸線X2周りに自転させる。この遊星板14の自転によれば,遊星板14の6波の第3伝動溝35が出力板15の第4伝動溝36を第2伝動ボール38を介して駆動するので,遊星板14は,6/4の増速比をもって出力板15を回転させる。結局,入力板12は,(Z1/Z2)×(Z3/Z4)=(8/6)×(6/4)=2の増速比をもって出力板15及び,それに連結した第2出力軸20を回転させることになる。
When the
また,第2ドライブ軸S2を固定することで,第2出力軸20を不動状態にしておき,変速機の出力ギヤ3からリングギヤ4に回転動力が入力された場合を想定する。
Further, it is assumed that the
リングギヤ4からの入力により入力板12が回転すると,入力板12の遊星板14(第1及び第2遊星板半体14a,14b)に対する駆動と,遊星板14の,不動の出力板15に対する駆動反力とにより,遊星板14は,偏心軸13周りに自転しながら,主軸線X1周りに公転することにより,偏心軸13を主軸線X1周りに回転駆動する。その結果,入力板12は,2倍の増速比をもって第1出力軸19を回転させることになる。
When the
これらのことは,差動機構21が,入力板12の回転数と,第1及び第2出力軸19,20の回転数の平均値とを常に等しくさせるという,差動機能を発揮し得ることを意味する。これにより差動機構21は,入力板12の回転動力を,第1及び第2出力軸19,20に,それらの負荷に応じて分配することができる。
These facts indicate that the
この間,入力板12の回転トルクは,第1伝動溝33,複数の第1伝動ボール37及び第2伝動溝34を介して遊星板14(第1及び第2遊星板半体14a,14b)に,また遊星板14の回転トルクは,第3伝動溝35,複数の第2伝動ボール38及び第4伝動溝36を介して出力板15にそれぞれ伝達されるので,入力板12と遊星板14,遊星板14と出力板15の各間では,トルク伝達が第1及び第2伝動ボール37,38が存在する複数箇所に分散して行われることになり,差動機構21の耐久性の向上と共にその軽量化を図ることができ,小型でありながら高負荷に耐え得る差動装置Dの提供に寄与することができる。
During this time, the rotational torque of the
また,第1及び第2リテーナ板39,40は,複数の第1及び第2伝動ボール37,38を保持してそれらの等間隔配列を規制する他,トルク伝達中,一部の第1伝動ボール37又は第2伝動ボール38に暴れが生じたとき,他の複数の第1伝動ボール37又は第2伝動ボール38と協働して,上記一部の伝動ボールの暴れを抑制する役割を果たし,第1及び第2伝動ボール37,38によるスムーズなトルク伝達が確保される。
The first and
ところで,遊星板14は,軸方向に並ぶ第1及び第2遊星板半体14a,14bに分割されると共に,第1遊星板半体14aのみが偏心軸13に自転可能に支持され,そして第1及び第2遊星板半体14a,14bは,第1遊星板半体14aの複数の凸部16と,第2遊星板半体14bの複数の凹部17との間に介装される弾性部材18を介して両遊星板半体14a,14bの半径方向及び自転方向の相対変位を許容するように連結されるので,第1及び第2変速機構26,27の製作誤差や組み付け誤差により,主軸線X1上に配置されるべき第1伝動溝33及び第4伝動溝36の同軸精度や,偏心軸線X2上に配置されるべき第2伝動溝34及び第3伝動溝35の同軸精度に多少とも狂いがある場合には,弾性部材18に遊星板14の半径方向の圧縮変形が与えられ,第1及び第2遊星板半体14a,14bが半径方向に相対変位することで上記狂いが吸収される。
By the way, the
また,遊星板14の両側面に形成される第2伝動溝34及び第3伝動溝35相互の位相に多少とも狂いがある場合には,弾性部材18に遊星板14の自転方向の圧縮変形が与えられ,第1及び第2遊星板半体14a,14bが自転方向に相対変位することで上記狂いが吸収される。
Further, when the phase of the
かくして,上記のような種々の狂いに干渉されることなく第1及び第2変速機構26,27,延いては差動機構21の円滑な作動が確保される。したがって,各変速機構26,27の製作精度及び組み付け精度が緩和され,製作コストの上昇を抑えることができる。
Thus, the smooth operation of the first and
さらに,弾性部材18には,第1及び第2遊星板半体14a,14bを相互に離反させる方向に付勢する軸方向の予荷重が付与されるので,出力板15は,第2ケース側壁2bとの圧力接触状態に,また第1伝動ボール37は,第1及び第2伝動溝33,34との圧力接触状態に,また第2伝動ボール38は,第3及び第4伝動溝35,36との圧力接触状態にそれぞれ常時保持されることになり,これにより出力板15の軸方向の遊びを排除すると共に,第1及び第2変速機構26,27のバックラッシュを減少させ,差動機構21を,より円滑に作動させることができる。このように,出力板15が第2ケース側壁2bとの圧力接触状態に保持されることで,出力板15及び第2ケース側壁2b間に介装される第1スラストワッシャ31には,シム機能を持たせる必要がなくなるので,この第1スラストワッシャ31を省略することも可能である。
Further, since the
また,弾性部材18は,入力動力や負荷の変動に起因するトルク変動の吸収にも役立つ。
Also, the
また,第1及び第2遊星板半体14a,14b間に設けられる収容スペース42には,第1出力軸19に取り付けられるカウンタウエイト43が配置されることで,カウンタウエイト43付きの遊星式差動装置Dをコンパクトに構成することができる。しかも,主軸線X1上におけるカウンタウエイト43の重心G2の,偏心軸13及び遊星板14を含む偏心回転体の重心G1に対するオフセット量sをゼロにし,もしくは小さくすることができ,上記両重心G1,G2に働く遠心力による偶力を抑えることができる。
In addition, a
本発明の実施例2に係る差動装置Dでは,図6及び図7に示すように,第1及び第2遊星板半体14a,14bの一方には,凹凸外周面24aを有する内筒部24が設けられ,他方には,凹凸内周面25aを有する外筒部25が設けられる。これら内筒部24及び外筒部25は,凹凸外周面24a及び凹凸内周面25a間に環状で断面L字状の弾性部材18′を挟み込むようにして相互にインロー嵌合される。その際,第2伝動溝34及び第3伝動溝35相互の位相は規定通りに合わせられる。その他の構成は,実施例1と同様であるので,図6及び図7中,実施例1との対応部分には,同一の参照符号を付して,それらの詳細な説明を省略する。
In the differential device D according to the second embodiment of the present invention, as shown in FIGS. 6 and 7, one of the first and second
この実施例2においても,第1及び第2遊星板半体14a,14b,並びに弾性部材18′は,実施例1と同様の作用効果を発揮することができる。
Also in the second embodiment, the first and second
尚,本発明は,上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 Note that the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the scope of the invention.
例えば,差動装置Dは,前,後輪駆動車両における前,後輪駆動用の中央差動装置(センタデフ)に適用することもできる。またデフケース2を不動のギヤケースに構成し,第1出力軸19を,例えば電動モータに接続する駆動軸とすると共に,第2出力軸20を負荷に接続する従動軸とし,第1及び第2変速機構26,27の変速比を適宜設定することにより,本発明を減速装置又は増速装置に適用することができる。また第1及び第2伝動ボール37,38は,それぞれローラに置き換えることができる。
For example, the differential device D can be applied to a central differential device (center differential) for driving front and rear wheels in a front and rear wheel drive vehicle. Further, the
D・・差動装置
S1・・第1ドライブ軸
S2・・第2ドライブ軸
X1・・主軸線
X2・・偏心軸線
1・・ミッションケース
2・・デフケース
2a・・第1ケース側壁
2b・・第2ケース側壁
5・・第1筒軸
6・・第2筒軸
12・・第1伝動板(入力板)
13・・偏心軸
14・・遊星板
14a・・第1遊星板半体
14b・・第2遊星板半体
15・・第2伝動板(出力板)
18,18′・・弾性部材
19・・第1伝動軸(第1出力軸)
20・・第2伝動軸(第2出力軸)
21・・差動機構
26・・第1変速機構
27・・第2変速機構
33・・第1伝動溝
34・・第2伝動溝
35・・第3伝動溝
36・・第4伝動溝
37・・第1転がり伝動部材(第1伝動ボール)
38・・第2転がり伝動部材(第2伝動ボール)
42・・収容スペース
43・・カウンタウエイト
D. ・ Differential gear S1 ・ ・ First drive shaft S2 ・ ・ Second drive shaft X1 ・ ・ Main axis X2 ・ ・
13. ·
18, 18 '...
20. ・ Second transmission shaft (second output shaft)
21. ・
38 .. Second rolling transmission member (second transmission ball)
42 ...
Claims (5)
前記第1変速機構は,前記第1伝動板の,前記遊星板に対向する側面に形成され,環状波形で前記主軸線上に中心を置く第1伝動溝と,前記遊星板の,前記第1伝動板に対向する一側面に形成され,前記第1伝動溝と異なる波数を持つ環状波形で前記偏心軸線上に中心を置く第2伝動溝と,前記第1及び第2伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第1転がり伝動部材とを含み,
また前記第2変速機構は,前記遊星板の他側面に形成され,環状波形で前記偏心軸線上に中心を置く第3伝動溝と,前記第2伝動板の,前記遊星板に対向する側面に形成され,第3伝動溝と異なる波数を持つ環状波形で前記主軸線上に中心を置く第4伝動溝と,前記第3及び第4伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第2転がり伝動部材とを含む,遊星式伝動装置であって,
前記遊星板が軸方向に並ぶ第1及び第2遊星板半体に分割されると共に,前記第1及び第2遊星板半体のうち前記第1遊星板半体のみが前記偏心軸に自転可能に支持され,
前記第1及び第2遊星板半体が,該第1及び第2遊星板半体の半径方向の相対変位を許容する弾性部材を介して相互に連結されることを特徴とする遊星式伝動装置。 A first transmission shaft and a second transmission shaft which are arranged to be relatively rotatable on the main axis; an eccentric shaft which is integrally connected to the first transmission shaft and which is arranged on an eccentric axis which is eccentric with respect to the main axis; , A first transmission plate disposed on the main axis, a planetary plate that is rotatably supported by the eccentric shaft and faces the first transmission plate, and the planetary plate on a side opposite to the first transmission plate. Oppositely, a second transmission plate coupled to the second transmission shaft, a first transmission mechanism interposed between the first transmission plate and the planetary plate, and between the planetary plate and the second transmission plate A second speed change mechanism interposed in the
The first transmission mechanism is formed on a side surface of the first transmission plate facing the planetary plate, and has a first transmission groove centered on the main axis in an annular waveform, and the first transmission of the planetary plate. A second transmission groove formed on one side facing the plate and centered on the eccentric axis in an annular waveform having a wave number different from that of the first transmission groove; and at an overlapping portion of the first and second transmission grooves A plurality of first rolling transmission members that are rotatably inserted in both transmission grooves,
The second speed change mechanism is formed on the other side surface of the planetary plate, and has a third transmission groove centered on the eccentric axis in an annular waveform, and a side surface of the second transmission plate facing the planetary plate. A fourth transmission groove that is formed and is centered on the main axis in an annular waveform having a wave number different from that of the third transmission groove; and an overlapping portion of the third and fourth transmission grooves is provided so as to be freely rollable in both the transmission grooves. A planetary transmission device including a plurality of second rolling transmission members mounted,
The planetary plate is divided into first and second planetary plate halves arranged in the axial direction, and only the first planetary plate half of the first and second planetary plate halves can rotate to the eccentric shaft. Supported by
The planetary transmission apparatus, wherein the first and second planetary plate halves are connected to each other via an elastic member that allows relative displacement in the radial direction of the first and second planetary plate halves. .
前記第1変速機構は,前記第1伝動板の,前記遊星板に対向する側面に形成され,環状波形で前記主軸線上に中心を置く第1伝動溝と,前記遊星板の,前記第1伝動板に対向する一側面に形成され,前記第1伝動溝と異なる波数を持つ環状波形で前記偏心軸線上に中心を置く第2伝動溝と,前記第1及び第2伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第1転がり伝動部材とを含み,
また前記第2変速機構は,前記遊星板の他側面に形成され,環状波形で前記偏心軸線上に中心を置く第3伝動溝と,前記第2伝動板の,前記遊星板に対向する側面に形成され,第3伝動溝と異なる波数を持つ環状波形で前記主軸線上に中心を置く第4伝動溝と,前記第3及び第4伝動溝の重なり部において該両伝動溝に転動自在に介装される複数の第2転がり伝動部材とを含む,遊星式伝動装置であって,
前記遊星板が軸方向に並ぶ第1及び第2遊星板半体に分割されると共に,少なくとも前記第1遊星板半体が前記偏心軸に自転可能に支持され,
前記第1及び第2遊星板半体が,該第1及び第2遊星板半体の自転方向の相対変位を許容する弾性部材を介して相互に連結されることを特徴とする遊星式伝動装置。 A first transmission shaft and a second transmission shaft which are arranged to be relatively rotatable on the main axis; an eccentric shaft which is integrally connected to the first transmission shaft and which is arranged on an eccentric axis which is eccentric with respect to the main axis; , A first transmission plate disposed on the main axis, a planetary plate that is rotatably supported by the eccentric shaft and faces the first transmission plate, and the planetary plate on a side opposite to the first transmission plate. Oppositely, a second transmission plate coupled to the second transmission shaft, a first transmission mechanism interposed between the first transmission plate and the planetary plate, and between the planetary plate and the second transmission plate A second speed change mechanism interposed in the
The first transmission mechanism is formed on a side surface of the first transmission plate facing the planetary plate, and has a first transmission groove centered on the main axis in an annular waveform, and the first transmission of the planetary plate. A second transmission groove formed on one side facing the plate and centered on the eccentric axis in an annular waveform having a wave number different from that of the first transmission groove; and at an overlapping portion of the first and second transmission grooves A plurality of first rolling transmission members that are rotatably inserted in both transmission grooves,
The second speed change mechanism is formed on the other side surface of the planetary plate, and has a third transmission groove centered on the eccentric axis in an annular waveform, and a side surface of the second transmission plate facing the planetary plate. A fourth transmission groove that is formed and is centered on the main axis in an annular waveform having a wave number different from that of the third transmission groove; and an overlapping portion of the third and fourth transmission grooves is provided so as to be freely rollable in both the transmission grooves. A planetary transmission device including a plurality of second rolling transmission members mounted,
The planetary plate is divided into first and second planetary plate halves arranged in the axial direction, and at least the first planetary plate half is supported to be rotatable about the eccentric shaft,
The planetary transmission device, wherein the first and second planetary plate halves are connected to each other via an elastic member that allows relative displacement in the rotation direction of the first and second planetary plate halves. .
前記弾性部材には,前記第1及び第2遊星板半体を軸方向に相互に離反する方向に付勢する予荷重が付与される。 The planetary transmission device according to claim 1 or 2,
The elastic member is applied with a preload that urges the first and second planetary plate halves in a direction away from each other in the axial direction.
前記第1及び第2遊星板半体間に収容スペースが設けられ,該収容スペースには,前記第1伝動軸に取り付けられて前記偏心軸及び前記遊星板を含む偏心回転体の回転アンバランスを抑制するカウンタウエイトが配置される。 The planetary transmission device according to any one of claims 1 to 3,
An accommodation space is provided between the first and second planetary plate halves, and the accommodation space is attached to the first transmission shaft for rotational unbalance of the eccentric rotating body including the eccentric shaft and the planetary plate. A counterweight to be suppressed is arranged.
前記主軸線上でミッションケースに回転可能に支持される第1及び第2筒軸をそれぞれ中心部に形成した第1及び第2ケース側壁を有し,外部から回転動力を入力されるデフケースと,前記第1ケース側壁に一体回転可能に結合される,前記第1伝動板としての入力板と,前記デフケース内で前記主軸線上に配置される,前記第1及び第2伝動軸としての第1及び第2出力軸と,前記デフケースに収容され,前記デフケースから前記入力板に伝達される回転動力を前記第1及び第2出力軸に分配する差動機構とを備え,
前記差動機構は,前記第1出力軸に一体的に連設される前記偏心軸と,該偏心軸に自転可能に支持されて前記入力板に対向する前記遊星板と,該遊星板に前記入力板とは反対側で対向し,前記第2出力軸に連結されながら前記第2ケース側壁で軸方向に支承される,前記第2伝動板としての出力板と,前記入力板及び前記遊星板間に介装される前記第1変速機構と,前記遊星板及び前記出力板間に介装される前記第2変速機構とを有し,
前記第1出力軸に,前記第1筒軸に回転可能に支持される第1ドライブ軸が,また前記第2出力軸に,前記第2筒軸に回転可能に支持される第2ドライブ軸がそれぞれ連結される。 A differential device to which the planetary transmission device according to any one of claims 1 to 4 is applied,
A differential case that has first and second case side walls formed at the center of first and second cylindrical shafts that are rotatably supported by the transmission case on the main axis, and that receives rotational power from the outside; An input plate as the first transmission plate coupled to the side wall of the first case so as to be integrally rotatable, and first and second as the first and second transmission shafts disposed on the main axis in the differential case. Two output shafts, and a differential mechanism that is housed in the differential case and distributes rotational power transmitted from the differential case to the input plate to the first and second output shafts,
The differential mechanism includes the eccentric shaft that is integrally connected to the first output shaft, the planetary plate that is rotatably supported by the eccentric shaft and faces the input plate, and the planetary plate that includes the planetary plate. An output plate as the second transmission plate, opposed to the input plate on the opposite side, and supported in the axial direction on the second case side wall while being connected to the second output shaft, the input plate and the planetary plate The first transmission mechanism interposed therebetween, and the second transmission mechanism interposed between the planetary plate and the output plate,
The first output shaft has a first drive shaft rotatably supported by the first tube shaft, and the second output shaft has a second drive shaft rotatably supported by the second tube shaft. Each is connected.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017-064743 | 2017-03-29 | ||
| JP2017064743A JP2018168876A (en) | 2017-03-29 | 2017-03-29 | Planetary transmission device and differential device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018179788A1 true WO2018179788A1 (en) | 2018-10-04 |
Family
ID=63677561
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/002817 Ceased WO2018179788A1 (en) | 2017-03-29 | 2018-01-30 | Planetary transmission device and differential device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2018168876A (en) |
| WO (1) | WO2018179788A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61119869A (en) * | 1984-11-15 | 1986-06-07 | Toshiba Corp | power transmission device |
| JPH02249768A (en) * | 1989-03-24 | 1990-10-05 | Nissan Motor Co Ltd | Connecting structure of parallel shafts |
| WO2016013315A1 (en) * | 2014-07-25 | 2016-01-28 | 武蔵精密工業株式会社 | Differential device |
| WO2016199708A1 (en) * | 2015-06-08 | 2016-12-15 | 武蔵精密工業株式会社 | Transmission device |
| JP2017053378A (en) * | 2015-09-07 | 2017-03-16 | 武蔵精密工業株式会社 | Transmission device and differential device |
-
2017
- 2017-03-29 JP JP2017064743A patent/JP2018168876A/en active Pending
-
2018
- 2018-01-30 WO PCT/JP2018/002817 patent/WO2018179788A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61119869A (en) * | 1984-11-15 | 1986-06-07 | Toshiba Corp | power transmission device |
| JPH02249768A (en) * | 1989-03-24 | 1990-10-05 | Nissan Motor Co Ltd | Connecting structure of parallel shafts |
| WO2016013315A1 (en) * | 2014-07-25 | 2016-01-28 | 武蔵精密工業株式会社 | Differential device |
| WO2016199708A1 (en) * | 2015-06-08 | 2016-12-15 | 武蔵精密工業株式会社 | Transmission device |
| JP2017053378A (en) * | 2015-09-07 | 2017-03-16 | 武蔵精密工業株式会社 | Transmission device and differential device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018168876A (en) | 2018-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9490679B2 (en) | Wheel driving device | |
| US8734283B2 (en) | Speed reduction mechanism, and motor torque transmission device including the same | |
| US9005066B2 (en) | Motor assembly with speed reducer | |
| US8961361B2 (en) | Wheel drive unit | |
| JP6513658B2 (en) | Differential | |
| US8721484B2 (en) | Speed reduction mechanism, and motor torque transmission device including the same | |
| US10683910B2 (en) | Power transmission mechanism | |
| WO2017094796A1 (en) | Transmission device and differential device | |
| JP2017190782A (en) | Differential apparatus | |
| JP2017141910A (en) | Transmission device | |
| WO2018179788A1 (en) | Planetary transmission device and differential device | |
| WO2017170588A1 (en) | Gearing | |
| JP2017053378A (en) | Transmission device and differential device | |
| JP2018135976A (en) | Differential gear | |
| JP2017172774A (en) | Transmission device | |
| WO2017131141A1 (en) | Transmission device | |
| WO2017170587A1 (en) | Gearing | |
| JP2017141929A (en) | Transmission device | |
| US20180291993A1 (en) | Transmission device | |
| WO2017170590A1 (en) | Gearing | |
| WO2017104763A1 (en) | Differential device | |
| JP5882966B2 (en) | In-wheel motor drive device | |
| WO2017154898A1 (en) | Power transmitting device | |
| JPH0529135Y2 (en) | ||
| WO2017086344A1 (en) | Differential device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774398 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18774398 Country of ref document: EP Kind code of ref document: A1 |