[go: up one dir, main page]

WO2018180281A1 - Rack shaft and electric power steering device - Google Patents

Rack shaft and electric power steering device Download PDF

Info

Publication number
WO2018180281A1
WO2018180281A1 PCT/JP2018/008566 JP2018008566W WO2018180281A1 WO 2018180281 A1 WO2018180281 A1 WO 2018180281A1 JP 2018008566 W JP2018008566 W JP 2018008566W WO 2018180281 A1 WO2018180281 A1 WO 2018180281A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rack
axis
outer diameter
pinion
Prior art date
Application number
PCT/JP2018/008566
Other languages
French (fr)
Japanese (ja)
Inventor
真楽 吉川
前原 秀雄
勝海 下田
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018180281A1 publication Critical patent/WO2018180281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack

Definitions

  • the present invention relates to a rack shaft and an electric power steering device.
  • JP2015-205581A describes a rack shaft used in a dual pinion type electric power steering apparatus.
  • the rack shaft includes a hollow first shaft on which a first rack for manual steering force transmission is formed, and a solid second shaft on which a second rack for steering assist force transmission is formed. .
  • the first axis and the second axis have the same diameter, so that one of the first axis and the second axis on which a relatively high load acts is used as a reference.
  • the diameter is determined, the diameter of the other shaft to which a relatively low load acts becomes unnecessarily large, and the mass increases accordingly.
  • An object of the present invention is to reduce the weight of a rack shaft and an electric power steering device.
  • a rack shaft that is engaged with a second pinion that is rotated by an electric motor and a first shaft that is formed with a first rack that meshes with a first pinion that rotates as the steering wheel is steered.
  • a second rack is formed, and includes a second shaft coupled to the first shaft, and the outer diameter of the first shaft and the outer diameter of the second shaft are different from each other.
  • FIG. 1 is a configuration diagram of a steering device according to a first embodiment of the present invention.
  • FIG. 2A is a longitudinal cross-sectional view showing a coupling portion of the rack shaft according to the first embodiment of the present invention, and shows a state before the first shaft and the second shaft are coupled.
  • FIG. 2B is a longitudinal cross-sectional view showing a coupling portion of the rack shaft according to the first embodiment of the present invention, and shows a state where the first shaft and the second shaft are coupled.
  • FIG. 3A is a cross-sectional view of the rack shaft along the line III-III in FIG. 1, and shows the dimensions of each part of the rack shaft.
  • 3B is a cross-sectional view of the rack shaft along the line III-III in FIG.
  • FIG. 4A is a longitudinal sectional view showing a coupling portion of a rack shaft according to the second embodiment of the present invention.
  • FIG. 4B is a longitudinal cross-sectional view showing a coupling portion of rack shafts according to a modification of the second embodiment of the present invention.
  • FIG. 5A is a plan view showing a rack shaft according to a third embodiment of the present invention.
  • FIG. 5B is a plan view showing a rack shaft according to a modification of the third embodiment of the present invention.
  • FIG. 6A is a longitudinal sectional view showing a rack shaft according to a fourth embodiment of the present invention.
  • FIG. 6B is a longitudinal sectional view showing a rack shaft according to the second modification of the fourth embodiment of the present invention.
  • FIG. 6C is a longitudinal sectional view showing a rack shaft according to a third modification of the fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a rack shaft according to a fifth embodiment of the present invention.
  • FIG. 8 is a side view showing a rack shaft support structure according to a fifth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a rack shaft according to the first modification of the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a rack shaft according to the second modification of the embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a steering device 100 according to the first embodiment of the present invention.
  • the steering device 100 is a dual pinion type electric power steering device in which a steering force by a driver and an assist driving force by the electric motor 21 are independently input to the rack shaft 12A.
  • the steering device 100 includes a steering mechanism 10 that steers the vehicle wheel 2 in response to rotation of the steering wheel 1 to which a steering force is input by the driver, an assist mechanism 20 that assists the driver's steering force, and steering. And a control device 30 for controlling the force assist amount.
  • the steering mechanism 10 includes a steering shaft 11 that is connected to the steering wheel 1 and rotates according to the rotation of the steering wheel 1, and a rack shaft 12 ⁇ / b> A that steers the vehicle wheel 2 according to the rotation of the steering shaft 11. .
  • the steering shaft 11 includes an input shaft 13 connected to the steering wheel 1, an output shaft 15 connected to the input shaft 13 via a torsion bar 14, and a first pinion 16 formed on the output shaft 15 and meshing with the rack shaft 12A. And having.
  • the assist mechanism 20 includes an electric motor 21 that is a power source of assist force, a pinion shaft 22 as a rotating shaft to which the driving force of the electric motor 21 is transmitted via the speed reduction mechanism 3, and a rack shaft formed on the pinion shaft 22. And a second pinion 23 that meshes with 12A.
  • the speed reduction mechanism 3 includes a worm shaft 3 a connected to the output shaft of the electric motor 21, and a worm wheel 3 b that meshes with the worm shaft 3 a and is connected to the pinion shaft 22.
  • the control device 30 includes a torque sensor 31 that detects the steering torque applied to the torsion bar 14 based on the relative rotation between the input shaft 13 and the output shaft 15, and a rotation angle sensor 32 that detects the rotation angle of the pinion shaft 22.
  • the steering angle sensor 34 that detects the steering angle that is the rotation angle of the steering wheel 1, the motor rotation angle sensor 35 that is configured by a resolver and detects the rotation angle of the electric motor 21, and the controller 33 that controls the operation of the electric motor 21. And having.
  • the controller 33 controls the driving of the electric motor 21 based on the steering torque detected by the torque sensor 31 and the rotation angle of the electric motor 21 detected by the motor rotation angle sensor 35.
  • the controller 33 may control the driving of the electric motor 21 in consideration of the steering angle detected by the steering angle sensor 34 in addition to the steering torque and the rotation angle of the electric motor 21. Further, the controller 33 may control the driving of the electric motor 21 in consideration of the rotation angle of the pinion shaft 22 detected by the rotation angle sensor 32.
  • the detection result of the rotation angle sensor 32 is used also in control of VDC (Vehicle Dynamics Control) etc. which suppress the side slip etc. of a vehicle.
  • VDC Vehicle Dynamics Control
  • the rack shaft 12A is a round bar-like member that extends linearly along the left-right direction of the vehicle, and is formed by coupling the first shaft 110 and the second shaft 120 together.
  • shaft 120 are each formed from the same material (for example, carbon steel).
  • the rack shaft 12A is formed such that the axial length of the first shaft 110 and the axial length of the second shaft 120 are the same.
  • the rack shaft 12A is housed in a housing (not shown) fastened to the vehicle body. Both end portions of the rack shaft 12 ⁇ / b> A pass through an end portion in the axial direction of a housing (not shown) and are connected to the tie rod 25. That is, both end portions of the rack shaft 12 ⁇ / b> A are connected to the left and right wheels 2 via the tie rods 25.
  • the first shaft 110 is formed with a first rack 115 that meshes with the first pinion 16 that rotates as the steering wheel 1 is steered.
  • the rotational force from the steering wheel 1 is transmitted to the output shaft 15 via the input shaft 13 and the torsion bar 14.
  • the rotational force of the output shaft 15 is transmitted to the first rack 115 via the first pinion 16.
  • the rotational force of the first pinion 16 is converted into a force in the axial direction of the rack shaft 12A (the left-right direction of the vehicle). Therefore, when the steering wheel 1 is steered, the driver's steering force is transmitted to the rack shaft 12A via the first rack 115, and the vehicle wheel 2 is steered in accordance with the movement of the rack shaft 12A.
  • a second rack 125 that meshes with a second pinion 23 that is rotated by the electric motor 21 is formed on the second shaft 120.
  • the rotational force from the electric motor 21 is transmitted to the pinion shaft 22 via the speed reduction mechanism 3.
  • the rotational force of the pinion shaft 22 is transmitted to the second rack 125 via the second pinion 23.
  • the rotational force of the second pinion 23 is converted into a force in the axial direction of the rack shaft 12A (the left-right direction of the vehicle). Therefore, when the electric motor 21 is driven to rotate, the rotational force of the electric motor 21 is transmitted to the rack shaft 12A via the second rack 125, and the vehicle wheel 2 is steered in accordance with the movement of the rack shaft 12A.
  • the rack shaft 12A is formed by joining two members of a first shaft 110 that is a solid columnar member and a second shaft 120 that is a solid columnar member.
  • Various methods such as friction welding, welding, and screw fitting can be employed as the coupling method, but it is preferable to employ friction welding with relatively high joint strength.
  • the rack shaft 12A is reduced in weight by making the outer diameter of the first shaft 110 and the outer diameter of the second shaft 120 different.
  • FIG. 2A and FIG. 2B are longitudinal sectional views showing a coupling portion of the rack shaft 12A according to the first embodiment of the present invention.
  • 2A shows a state before the first shaft 110 and the second shaft 120 are coupled
  • FIG. 2B shows a state where the first shaft 110 and the second shaft 120 are coupled.
  • the axial end of the first shaft 110 and the axial end of the second shaft 120 are coupled by friction welding.
  • the first shaft 110 includes a main body portion 111 and a cylindrical connecting tube portion 112 provided at an end portion of the main body portion 111 in the axial direction.
  • the connecting tube portion 112 is a portion in which the outer peripheral portion at the axial end of the main body portion 111 extends in the axial direction, and the outer diameter of the connecting tube portion 112 is the same as the outer diameter of the main body portion 111.
  • the center of the connecting cylinder part 112 is concentric with the center of the main body part 111.
  • the second shaft 120 includes a main body 121 and a cylindrical connecting cylinder 122 provided at an axial end of the main body 121.
  • the connecting cylinder portion 122 protrudes in the axial direction from the axial end portion of the main body portion 121.
  • the center of the connecting cylinder part 122 is concentric with the center of the main body part 121.
  • the outer diameter D1 of the main body 111 of the first shaft 110 is smaller than the outer diameter D2 of the main body 121 of the second shaft 120 (D1 ⁇ D2).
  • the connecting tube portion 122 of the second shaft 120 is formed so that the outer diameter D3 thereof is the same as the outer diameter D1 of the connecting tube portion 112 of the first shaft 110.
  • the connection cylinder part 112 and the connection cylinder part 122 are formed so that each thickness may become the same.
  • the manufacturing method of the rack shaft 12A includes a friction welding process, a first rack forming process, and a second rack forming process.
  • the friction welding process as shown in FIG. 2A, the first shaft 110 and the first shaft 110 are arranged so that the end surface 112a of the connecting tube portion 112 of the first shaft 110 and the end surface 122a of the connecting tube portion 122 of the second shaft 120 face each other.
  • Two axes 120 are arranged coaxially.
  • the first shaft 110 and the second shaft 120 are pressurized in the axial direction in a state where the end surface 112a and the end surface 122a are in contact with each other.
  • first shaft 110 and the second shaft 120 are pressurized, the first shaft 110 and the second shaft 120 are relatively rotated in the circumferential direction to generate frictional heat on the contact surface.
  • mutual diffusion between the first shaft 110 and the second shaft 120 is promoted, The second shaft 120 is joined.
  • the first rack 110 is formed on the first shaft 110 by performing a cutting process in which a part of the outer peripheral surface in the axial direction and the circumferential direction of the first shaft 110 is scraped by a broaching machine or the like.
  • the second rack 125 is formed on the second shaft 120 by performing a cutting process in which a part of the outer peripheral surface in the axial direction and the circumferential direction of the second shaft 120 is scraped with a broaching machine or the like.
  • the first rack 115 has a CGR (Constant Gear Ratio) specification in which the rack teeth have a uniform pitch
  • the second rack 125 has a VGR (Variable Gear) Ratio) specification in which the rack teeth have a variable pitch.
  • the module, the twist angle, and the number of teeth are set so that the stroke amount, the stroke ratio, the axis crossing angle (intersection angle between the output shaft 15 and the rack shaft 12A), the strength requirements, and the like are satisfied.
  • the module, the torsion angle, the outer diameter, and the phase angle are set so that the assist thrust by the electric motor 21, the durability, the mounting property on the vehicle, the requirements for the steering follow-up characteristic, and the like are satisfied.
  • the first rack forming step and the second rack forming step may be performed before the friction welding step or after the friction welding step.
  • the friction welding process is performed, and the other rack is formed so as to correspond to the circumferential position of the already formed rack.
  • a rack forming step may be performed. In this case, the positioning accuracy in the circumferential direction between the first rack 115 and the second rack 125 is not affected by the friction welding, which is preferable.
  • the rack teeth of the first rack 115 and the second rack 125 are formed so that the reference pitch line P1 of the first rack 115 and the reference pitch line P2 of the second rack 125 are parallel to each other ( (See FIG. 3A).
  • the reference pitch line P1 of the first rack 115 and the reference pitch line P2 of the second rack 125 are not limited to being parallel to each other, and may be inclined with respect to each other.
  • FIG. 3A and 3B are cross-sectional views of the rack shaft along the line III-III in FIG. 3A shows the dimensions of each part of the rack shaft 12A, and FIG. 3B shows the positional relationship between the rack shaft 12A, the output shaft 15, and the pinion shaft 22.
  • FIG. 3B only the center axes CL1 and CL2 of the output shaft 15 and the pinion shaft 22 are shown, and the first pinion 16 and the second pinion 23 are not shown.
  • the portion of the main body 111 of the first shaft 110 where the first rack 115 is formed is referred to as a first rack forming portion 116
  • the second rack 125 is formed of the main body 121 of the second shaft 120.
  • the portion in which is formed is referred to as a second rack forming portion 126.
  • the axial lengths of the first rack forming portion 116 and the second rack forming portion 126 correspond to a length that allows the rack shaft 12A to be slid in order to steer the wheel 2 left and right to the maximum turning angle.
  • the shape of the cross section of the first rack forming portion 116 of the first shaft 110 is indicated by a solid line
  • the shape of the cross section of the second rack forming portion 126 of the second shaft 120 is indicated by a two-dot chain line. ing.
  • each part of the first shaft 110 and the dimensions of each part of the second shaft 120 are compared.
  • an axis that is orthogonal to the reference pitch line P1 of the first rack 115 and the center axis O of the rack shaft 12A and that passes through the center axis O of the rack shaft 12A will be described as a Z axis.
  • each part of the first rack forming part 116 are smaller than the dimensions of each part of the second rack forming part 126 corresponding to each part of the first rack forming part 116. This will be described in detail below.
  • the tooth width W1 of the first rack 115 is smaller than the tooth width W2 of the second rack 125 (W1 ⁇ W2).
  • the tooth width W1 of the first rack 115 is smaller than the outer diameter D1 of the first rack forming portion 116
  • the tooth width W2 of the second rack 125 is smaller than the outer diameter D2 of the second rack forming portion 126 (W1 ⁇ D1, W2 ⁇ D2).
  • the wall thickness T1 of the first rack forming section 116 is smaller than the wall thickness T2 of the second rack forming section 126 (T1 ⁇ T2).
  • the wall thickness T1 is the Z-axis dimension from the tooth tip of the first rack 115 on the Z-axis to the back surface of the first rack forming portion 116
  • the wall thickness T2 is from the tooth tip of the second rack 125 on the Z-axis. This is the Z-axis dimension up to the back surface of the second rack forming portion 126.
  • the Z-axis dimension Z1 from the center axis O of the rack shaft 12A to the reference pitch line P1 of the first rack 115 is smaller than the Z-axis dimension Z2 from the center axis O to the reference pitch line P2 of the second rack 125 (Z1 ⁇ Z2).
  • the center axis CL1 of the output shaft 15 can be brought closer to the center axis O of the rack shaft 12A than the center axis CL2 of the pinion shaft 22.
  • the pinion shaft 22 and the output so that the inter-axis distance ZL1 between the rack shaft 12A and the output shaft 15 is smaller than the inter-axis distance ZL2 between the rack shaft 12A and the pinion shaft 22.
  • the inter-axis distance ZL1 is the Z-axis dimension from the central axis O of the rack shaft 12A to the central axis CL1 of the output shaft 15, and the inter-axis distance ZL2 is the central axis CL2 of the pinion shaft 22 from the central axis O of the rack shaft 12A. Z-axis dimensions up to.
  • the rack shaft 12A includes a first shaft 110 on which a first rack 115 to which a steering force is transmitted and a second rack 125 to which a driving force of the electric motor 21 is transmitted. And a second shaft 120 coupled to the second shaft 120.
  • the outer diameter D1 of the first shaft 110 and the outer diameter D2 of the second shaft 120 are different diameters. Since the diameter of one of the first shaft 110 and the second shaft 120 is smaller than the diameter of the other shaft, the mass of one shaft is smaller than that of the other shaft. Can be reduced. Therefore, the rack shaft 12A and the steering device 100 can be reduced in weight.
  • the materials of the first shaft 110 and the second shaft 120 are the same.
  • Each of the first shaft 110 and the second shaft 120 is a solid columnar member.
  • the load acting on the first shaft 110 to which the steering force is transmitted is smaller than that of the second shaft 120 to which the driving force of the electric motor 21 is transmitted.
  • the outer diameter D1 of the first rack forming portion 116 of the first shaft 110 is smaller than the outer diameter D2 of the second rack forming portion 126 of the second shaft 120 (D1 ⁇ D2). .
  • shaft 110 can be made smaller than the mass of the 2nd axis
  • the rack shaft 12 ⁇ / b> A having excellent durability against a high load from the electric motor 21 can be obtained.
  • the rack shaft 12A can be reduced in weight while satisfying the strength required for each of the first shaft 110 and the second shaft 120.
  • the Z-axis dimension Z1 from the center axis O of the rack shaft 12A to the reference pitch line P1 is smaller than the Z-axis dimension Z2 from the center axis O to the reference pitch line P2. Therefore, as shown in FIG. 3B, the center axis CL1 of the output shaft 15 can be brought closer to the center axis O of the rack shaft 12A than the center axis CL2 of the pinion shaft 22 (ZL1 ⁇ ZL2).
  • the output shaft 15 is brought close to the rack shaft 12A so that the distance between the output shaft 15 and the rack shaft 12A is shortened, and this portion is made compact.
  • the degree of freedom of attachment of the steering device 100 to the vehicle can be improved, that is, the mountability can be improved.
  • the outer diameters of the first shaft 110 and the second shaft 120 can be set individually. For this reason, for example, by making the outer diameter D2 of the second shaft 120 larger than the outer diameter D1 of the first shaft 110, the contact area of the rack teeth of the second shaft 120 with the second pinion 23 can be increased. Thereby, the freedom degree of the axis crossing angle which is the crossing angle of the pinion shaft 22 and the rack shaft 12A can be improved. As a result, the degree of freedom of mounting the steering device 100 on the vehicle can be improved, that is, the mountability can be improved.
  • connection cylinder part 112,122 was formed so that the outer diameter D1 of the connection cylinder part 112 and the outer diameter D3 of the connection cylinder part 122 may become the same (FIG. 2A
  • the present invention is not limited to this.
  • Either one of the connecting tube portions 112 and 122 may be formed larger.
  • the outer diameter D3 of the connecting cylinder part 122 may be formed larger than the outer diameter D1 of the connecting cylinder part 112 (D3> D1). What is necessary is just to form the connection cylinder parts 112 and 122 so that the contact area of the grade which can obtain sufficient joint strength at least can be obtained.
  • the example in which the size of each part of the first rack forming unit 116 is smaller than the size of each part of the second rack forming unit 126 corresponding to each part of the first rack forming unit 116 has been described.
  • the invention is not limited to this.
  • the Z-axis dimension Z1 from the central axis O of the rack shaft 12A to the reference pitch lines P1, P2 , Z2 may be such that Z1> Z2.
  • the magnitude relationship between the thicknesses T1 and T2 may satisfy T1> T2.
  • FIG. 4A is a longitudinal sectional view showing a coupling portion of the rack shaft 12B1.
  • each of the first shaft 110 and the second shaft 120 is a solid columnar member.
  • the first shaft 210 is a hollow cylindrical member. This is different from the first embodiment. This will be specifically described below.
  • the first shaft 210 is a cylindrical member.
  • the connecting tube portion 122 of the second shaft 120 is formed so that the thickness of the connecting tube portion 122 is the same as the thickness of the first shaft 210.
  • An axial end portion of the first shaft 210 is joined to the connecting tube portion 122 of the second shaft 120 by friction welding.
  • the first rack forming process before the friction welding process.
  • a cylindrical mandrel is reciprocated in the hollow portion of the first shaft 210 while the first shaft 210 is held by a rack forming mold. Thereby, the first shaft 210 is gradually plastically deformed.
  • the first rack 115 can be formed on the first rack forming portion 116 of the first shaft 210 by reciprocating the mandrel having a large diameter little by little in the axial direction.
  • the outer diameter D1 of the first shaft 210 in the first rack forming portion 116 is smaller than the outer diameter D2 of the second shaft 120 in the second rack forming portion 126 (D1 ⁇ D2).
  • the rack shaft 12B1 and the steering device 100 can be further reduced in weight compared to the first embodiment.
  • FIG. 4B is a longitudinal sectional view showing a coupling portion of the rack shaft 12B2 according to a modification of the second embodiment of the present invention.
  • a connecting tube portion 222 having an outer diameter D2 is formed at the axial end portion of the second shaft 220, and the outer diameter D2 is applied to the axial end portion of the first shaft 210.
  • the connecting tube portion 212 may be formed.
  • the outer diameter D1 of the first rack forming portion 116 can be made smaller than the outer diameter D2 of the second rack forming portion 126, so that the rack shaft 12B2 and the steering device 100 can be reduced in weight.
  • the outer diameters of the connecting tube portions 212 and 222 are larger than those in the above embodiment, so that the relative rotational speed of the first shaft 210 and the second shaft 220 is kept low in the friction welding process. Also, the peripheral speed necessary for friction welding can be obtained.
  • FIG. 5A is a plan view showing a rack shaft 12C1 according to a third embodiment of the present invention.
  • the first shaft 310A and the second shaft 320A are solid cylindrical members formed from the same material. For this reason, the mass per unit length in the first rack forming portion 116 of the small-diameter first shaft 310A is smaller than the mass per unit length in the second rack forming portion 126 of the large-diameter second shaft 320A.
  • the length of the first shaft 310A having a small mass per unit length is made longer than the length of the second shaft 320A having a large mass per unit length, thereby realizing weight reduction.
  • the shaft length of the first shaft 110 is the same as the shaft length of the second shaft 120, but in the third embodiment, the shaft length L1 of the first shaft 310A is the second shaft 320A. This is different from the first embodiment in that it is longer than the axial length L2.
  • the total length of the rack shaft 12C1 is the same as the total length of the rack shaft 12A of the first embodiment.
  • one axis having a small mass per unit length is formed longer than the other axis having a large mass per unit length.
  • the rack shaft 12C1 and the steering device 100 can further be reduced in weight.
  • FIG. 5B is a plan view showing a rack shaft 12C2 according to a modification of the third embodiment of the present invention.
  • the first shaft 310B is a hollow cylindrical member, and the outer diameter of the first shaft 310B is larger than the outer diameter of the second shaft 320B.
  • the first shaft 310B is a hollow cylindrical member, and the first rack 115 is formed by forging.
  • the second shaft 320B is a solid cylindrical member, and the second rack 125 is formed by cutting. Since the rack teeth can be formed more accurately in the cutting process than in the forging process, the meshing accuracy between the second rack 125 and the second pinion 23 is higher than the meshing accuracy between the first rack 115 and the first pinion 16. Is also expensive.
  • the durability of the second rack 125 can be ensured by increasing the meshing accuracy between the rack teeth of the second shaft 320B on which a relatively high load acts and the pinion.
  • the mass per unit length in the first rack forming portion 116 is smaller than the mass per unit length in the second rack forming portion 126. For this reason, by forming the axial length L1 of the first shaft 310B longer than the axial length L2 of the second shaft 320B, the rack shaft 12C2 and the steering device 100 can be reduced in weight compared to the case where the axial length is the same. .
  • a rack shaft 12D1 according to a fourth embodiment of the present invention will be described with reference to FIG. 6A.
  • the following description will focus on differences from the first embodiment, and in the figure, the same or corresponding components as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. .
  • FIG. 6A is a longitudinal sectional view showing a rack shaft 12D1 according to a fourth embodiment of the present invention.
  • the end surface 112a of the first shaft 110 and the end surface 122a of the second shaft 120 are joined by friction welding (see FIGS. 2A and 2B).
  • the second shaft 420A is a cylindrical member, and the first shaft 410A is press-fitted into the hollow portion of the second shaft 420A and welded, whereby the first shaft 410A and the second shaft 420A are welded.
  • the shaft 420A is coupled.
  • FIG. 6B is a longitudinal sectional view showing a rack shaft 12D2 according to the second modification of the fourth embodiment of the present invention.
  • a fastening member 490 such as a bolt or nut.
  • the first shaft 410B and the second shaft 420B are coupled.
  • FIG. 6C is a longitudinal sectional view showing a rack shaft 12D3 according to Modification 3 of the fourth embodiment of the present invention.
  • the first shaft 410C and the second shaft 420C are sandwiched between the socket 493 of the ball joint 491 and the step 418 provided on the first shaft 410C.
  • the second shaft 420C is coupled.
  • the first shaft 410 ⁇ / b> C is provided with a columnar fitting portion 417 that protrudes in the axial direction from the axial end portion of the main body portion 111.
  • the fitting portion 417 is a portion that is fitted into the hollow portion of the second shaft 420 ⁇ / b> C and has an outer diameter smaller than that of the main body portion 111. Since the fitting portion 417 is formed to have a smaller diameter than the main body portion 111, the axial end surface of the main body portion 111 facing the axial end surface of the second shaft 420 ⁇ / b> C is a stepped portion 418.
  • a ball joint 491 which is a universal joint connected to the end of the rack shaft 12D3 is provided at the end of the tie rod 25.
  • the ball joint 491 includes a socket 493 fixed to the end portion of the first shaft 410C and a ball 492 fixed to the end portion of the shaft portion of the tie rod 25.
  • the socket 493 includes a ball accommodating portion 493a that accommodates the ball 492, and a bolt 493b that is integrally provided on the proximal end side of the ball accommodating portion 493a.
  • the male screw provided on the bolt 493b is screwed into the female screw provided in the hole 449 extending in the axial direction from the distal end surface of the fitting portion 417 of the first shaft 410C, whereby the socket 493 is engaged with the first shaft 410C. It is fixed to.
  • FIG. 6C illustrates an example in which an annular member 499 is interposed between the socket 493 and the rack shaft 12D3, the annular member 499 may be omitted.
  • the outer peripheral portion of the fitting portion 417 of the first shaft 410C and the inner peripheral portion of the second shaft 420C are respectively keyed. It is preferable that a groove is provided and a key is fitted into the key groove to prevent the first shaft 410C and the second shaft 420C from rotating.
  • FIG. 7 is a cross-sectional view showing a rack shaft 12E according to a fifth embodiment of the present invention
  • FIG. 8 is a side view showing a support structure for the rack shaft 12E according to the fifth embodiment of the present invention.
  • the pinion and the rack guide are indicated by a two-dot chain line.
  • the first axis 110 and the second axis 120 are coupled so that the central axis of the first axis 110 and the central axis of the second axis 120 are the same (see FIG. 3A).
  • the central axis O1 of the first shaft 110 and the central axis O2 of the second shaft 120 are eccentric.
  • the steering device 100 includes a first rack guide 561 that presses the first rack forming portion 116 from the back side (back side) toward the first pinion 16, and the second rack forming portion 126 on the back side. And a second rack guide 562 for pressing toward the second pinion 23.
  • the first rack guide 561 includes a guide part 561a having an arc surface corresponding to the shape of the back surface side of the first rack forming part 116, and a coil spring 561b that biases the guide part 561a toward the first pinion 16. I have.
  • the second rack guide 562 includes a guide portion 562a having an arc surface corresponding to the shape of the back surface side of the second rack forming portion 126, and a coil spring 562b that biases the guide portion 562a toward the second pinion 23. And.
  • the first rack forming portion 116 is sandwiched between the first pinion 16 and the first rack guide 561, and the second rack forming portion 126 is sandwiched between the second pinion 23 and the second rack guide 562.
  • FIG. 9 is a cross-sectional view of a rack shaft 12G according to the first modification of the embodiment of the present invention.
  • the shape of the cross section of the first rack forming portion 116 of the first shaft 710 is indicated by a solid line
  • the shape of the cross section of the second rack forming portion 126 of the second shaft 720 is indicated by a two-dot chain line.
  • each part of the first rack forming part 116 are smaller than the dimensions of each part of the second rack forming part 126.
  • the dimensions of the above-mentioned parts include the rack tooth widths W1 and W2, the lengths of the long axes (long diameters a1 and a2) and the short axes (short diameters b1 and b2) in the rack forming part, and the thickness of the rack forming part. T1 and T2, and Z axis dimensions Z1 and Z2 from the center axis O of the rack shaft to the reference pitch lines P1 and P2 are included.
  • the rack shaft 12G according to the modification 1 is not limited to changing all the dimensions of each part in the cross-sectional shape orthogonal to the central axis O, and at least the major axis a1 and a2 has the first axis 710. And the second axis 720 may be different.
  • the rack teeth may be formed so that the tooth width W ⁇ b> 1 of the first rack 115 is the same as the outer diameter D ⁇ b> 1 of the first rack forming portion 116.
  • the rack teeth may be formed such that the rack tooth widths W1 and W2 are larger than the outer diameters D1 and D2 of the shaft (W1> D1, W2> D2).
  • shaft demonstrated the example formed from the same material
  • this invention is not limited to this.
  • the first axis and the second axis may be formed from different materials.
  • the second shaft is made stronger than the first shaft by using a material having a higher strength than the material of the first shaft (ie, a material having a high tensile strength). Also good.
  • the outer diameter of the second shaft can be made smaller than the outer diameter of the first shaft.
  • the materials of the first shaft and the second shaft can be made different.
  • the diameter of the first axis or the second axis, the axis crossing angle, the inter-axis distance between the center axis of the rack shaft and the center axis of the pinion, and the like can be adjusted to improve the mountability to the vehicle.
  • the present invention is not limited to the case where the outer diameter of the connecting cylinder portion of one shaft is the same as the outer diameter of the main body portion of the other shaft.
  • the outer diameter of the connecting cylinder portion of the first shaft and the outer diameter of the connecting cylinder portion of the second shaft may be different from the outer diameters of the main body portion of the first shaft and the main body portion of the second shaft.
  • a rack shaft can be reduced in weight by making the connecting cylinder part of a 1st axis
  • the strength of the rack shaft can be improved by making the connecting cylinder portion of the first shaft and the second shaft larger in diameter than the main body portion of the first shaft and the main body portion of the second shaft.
  • the rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G have first shafts 110, 210, 310A, 310B, 410A on which a first rack 115 to which a steering force is transmitted is formed.
  • 410B, 410C, 710 and a second rack 125 to which the driving force of the electric motor 21 is transmitted are formed, and the second shaft is coupled to the first shaft 110, 210, 310A, 310B, 410A, 410B, 410C, 710.
  • the mass can be reduced compared to the case where the outer diameter of one shaft is the same as the outer diameter of the other shaft.
  • the rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G can be reduced in weight.
  • the rack shafts 12A, 12B1, 12B2, 12C1, 12D1, 12D2, 12D3, 12E, and 12G have the first shafts 110, 210, 310A, 410A, 410B, 410C, and 710 having the outer diameter D1 of the second shafts 120, 220, and 320A.
  • 420A, 420B, 420C, 720 is smaller than the outer diameter D2.
  • the outer diameter D1 of the first shaft 110, 210, 310A, 410A, 410B, 410C, 710 having a smaller load acting than the second shaft 120, 220, 320A, 420A, 420B, 420C, 720 is reduced. Accordingly, the outer diameters D1 and D2 of the first shafts 110, 210, 310A, 410A, 410B, 410C, and 710 and the second shafts 120, 220, 320A, 420A, 420B, 420C, and 720 are required for the respective shafts. It is possible to reduce the weight while satisfying the required strength.
  • the central axis O2 of the second shaft 120 is eccentric with respect to the central axis O1 of the first shaft 110.
  • the rack shafts 12C1 and 12C2 are configured such that one of the first shafts 310A and 310B and the second shafts 320A and 320B has a smaller mass per unit length and a larger mass per unit length. It is formed long.
  • the rack shafts 12C1 and 12C2 can be reduced in weight.
  • the steering device 100 includes rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G, and an electric motor 21, and the rotational force of the electric motor 21 is passed through the second rack 125.
  • This is an electric power steering device for transmitting to rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G.
  • the steering device 100 can be reduced in weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Steering Mechanism (AREA)
  • Transmission Devices (AREA)

Abstract

This rack shaft 12A is provided with: a first shaft 110 having formed thereon a first rack 115 meshing with a first pinion 16 which rotates as a steering wheel 1 is turned; and a second shaft 120 which has formed thereon a second rack 125 meshing with a second pinion 23 rotated by an electric motor 21 and which is joined to the first shaft 110. The first shaft 110 and the second shaft 120 have different outer diameters.

Description

ラックシャフト及び電動パワーステアリング装置Rack shaft and electric power steering device
 本発明は、ラックシャフト及び電動パワーステアリング装置に関する。 The present invention relates to a rack shaft and an electric power steering device.
 JP2015-205581Aには、デュアルピニオン式の電動パワーステアリング装置に用いるラックシャフトが記載されている。このラックシャフトは、マニュアル操舵力伝達用の第1ラックが形成された中空の第1軸と、操舵補助力伝達用の第2ラックが形成された中実の第2軸と、を備えている。 JP2015-205581A describes a rack shaft used in a dual pinion type electric power steering apparatus. The rack shaft includes a hollow first shaft on which a first rack for manual steering force transmission is formed, and a solid second shaft on which a second rack for steering assist force transmission is formed. .
 しかしながら、JP2015-205581Aに記載のラックシャフトでは、第1軸と第2軸が同径であるため、第1軸及び第2軸のうち、相対的に高い負荷が作用する一方の軸を基準に径が定められると、相対的に低い負荷が作用する他方の軸の径が無駄に大きくなってしまい、その分、質量が大きくなってしまう。 However, in the rack shaft described in JP2015-205581A, the first axis and the second axis have the same diameter, so that one of the first axis and the second axis on which a relatively high load acts is used as a reference. When the diameter is determined, the diameter of the other shaft to which a relatively low load acts becomes unnecessarily large, and the mass increases accordingly.
 本発明は、ラックシャフト及び電動パワーステアリング装置の軽量化を図ることを目的とする。 An object of the present invention is to reduce the weight of a rack shaft and an electric power steering device.
 本発明のある態様によれば、ラックシャフトであって、ステアリングホイールの操舵に伴い回転する第1ピニオンと噛み合う第1ラックが形成された第1軸と、電動モータにより回転する第2ピニオンと噛み合う第2ラックが形成され、第1軸に結合された第2軸と、を備え、第1軸の外径と第2軸の外径とは異径である。 According to an aspect of the present invention, a rack shaft that is engaged with a second pinion that is rotated by an electric motor and a first shaft that is formed with a first rack that meshes with a first pinion that rotates as the steering wheel is steered. A second rack is formed, and includes a second shaft coupled to the first shaft, and the outer diameter of the first shaft and the outer diameter of the second shaft are different from each other.
図1は、本発明の第1実施形態に係るステアリング装置の構成図である。FIG. 1 is a configuration diagram of a steering device according to a first embodiment of the present invention. 図2Aは、本発明の第1実施形態に係るラックシャフトの結合部分を示す縦断面図であり、第1軸と第2軸とが結合される前の状態を示す。FIG. 2A is a longitudinal cross-sectional view showing a coupling portion of the rack shaft according to the first embodiment of the present invention, and shows a state before the first shaft and the second shaft are coupled. 図2Bは、本発明の第1実施形態に係るラックシャフトの結合部分を示す縦断面図であり、第1軸と第2軸とが結合された状態を示す。FIG. 2B is a longitudinal cross-sectional view showing a coupling portion of the rack shaft according to the first embodiment of the present invention, and shows a state where the first shaft and the second shaft are coupled. 図3Aは、図1のIII-III線に沿うラックシャフトの横断面図であり、ラックシャフトの各部寸法を示す。FIG. 3A is a cross-sectional view of the rack shaft along the line III-III in FIG. 1, and shows the dimensions of each part of the rack shaft. 図3Bは、図1のIII-III線に沿うラックシャフトの横断面図であり、ラックシャフトと出力軸及びピニオン軸との位置関係を示す。3B is a cross-sectional view of the rack shaft along the line III-III in FIG. 1, and shows the positional relationship between the rack shaft, the output shaft, and the pinion shaft. 図4Aは、本発明の第2実施形態に係るラックシャフトの結合部分を示す縦断面図である。FIG. 4A is a longitudinal sectional view showing a coupling portion of a rack shaft according to the second embodiment of the present invention. 図4Bは、本発明の第2実施形態の変形例に係るラックシャフトの結合部分を示す縦断面図である。FIG. 4B is a longitudinal cross-sectional view showing a coupling portion of rack shafts according to a modification of the second embodiment of the present invention. 図5Aは、本発明の第3実施形態に係るラックシャフトを示す平面図である。FIG. 5A is a plan view showing a rack shaft according to a third embodiment of the present invention. 図5Bは、本発明の第3実施形態の変形例に係るラックシャフトを示す平面図である。FIG. 5B is a plan view showing a rack shaft according to a modification of the third embodiment of the present invention. 図6Aは、本発明の第4実施形態に係るラックシャフトを示す縦断面図である。FIG. 6A is a longitudinal sectional view showing a rack shaft according to a fourth embodiment of the present invention. 図6Bは、本発明の第4実施形態の変形例2に係るラックシャフトを示す縦断面図である。FIG. 6B is a longitudinal sectional view showing a rack shaft according to the second modification of the fourth embodiment of the present invention. 図6Cは、本発明の第4実施形態の変形例3に係るラックシャフトを示す縦断面図である。FIG. 6C is a longitudinal sectional view showing a rack shaft according to a third modification of the fourth embodiment of the present invention. 図7は、本発明の第5実施形態に係るラックシャフトを示す横断面図である。FIG. 7 is a cross-sectional view showing a rack shaft according to a fifth embodiment of the present invention. 図8は、本発明の第5実施形態に係るラックシャフトの支持構造を示す側面図である。FIG. 8 is a side view showing a rack shaft support structure according to a fifth embodiment of the present invention. 図9は、本発明の実施形態の変形例1に係るラックシャフトを示す横断面図である。FIG. 9 is a cross-sectional view showing a rack shaft according to the first modification of the embodiment of the present invention. 図10は、本発明の実施形態の変形例2に係るラックシャフトを示す横断面図である。FIG. 10 is a cross-sectional view showing a rack shaft according to the second modification of the embodiment of the present invention.
 図面を参照して、本発明の実施形態について説明する。 Embodiments of the present invention will be described with reference to the drawings.
 <第1実施形態>
 図1は、本発明の第1実施形態に係るステアリング装置100の構成図である。ステアリング装置100は、運転者による操舵力と電動モータ21によるアシスト駆動力とがそれぞれ独立してラックシャフト12Aに入力されるデュアルピニオン式の電動パワーステアリング装置である。
<First Embodiment>
FIG. 1 is a configuration diagram of a steering device 100 according to the first embodiment of the present invention. The steering device 100 is a dual pinion type electric power steering device in which a steering force by a driver and an assist driving force by the electric motor 21 are independently input to the rack shaft 12A.
 ステアリング装置100は、運転者によって操舵力が入力されるステアリングホイール1の回転に応じて車両の車輪2を転舵させる転舵機構10と、運転者の操舵力をアシストするアシスト機構20と、操舵力のアシスト量を制御する制御装置30と、を備える。 The steering device 100 includes a steering mechanism 10 that steers the vehicle wheel 2 in response to rotation of the steering wheel 1 to which a steering force is input by the driver, an assist mechanism 20 that assists the driver's steering force, and steering. And a control device 30 for controlling the force assist amount.
 転舵機構10は、ステアリングホイール1に連結されステアリングホイール1の回転に応じて回転するステアリングシャフト11と、ステアリングシャフト11の回転に応じて車両の車輪2を転舵させるラックシャフト12Aと、を有する。 The steering mechanism 10 includes a steering shaft 11 that is connected to the steering wheel 1 and rotates according to the rotation of the steering wheel 1, and a rack shaft 12 </ b> A that steers the vehicle wheel 2 according to the rotation of the steering shaft 11. .
 ステアリングシャフト11は、ステアリングホイール1に連結された入力軸13と、入力軸13にトーションバー14を介して連結された出力軸15と、出力軸15に形成されラックシャフト12Aと噛み合う第1ピニオン16と、を有する。 The steering shaft 11 includes an input shaft 13 connected to the steering wheel 1, an output shaft 15 connected to the input shaft 13 via a torsion bar 14, and a first pinion 16 formed on the output shaft 15 and meshing with the rack shaft 12A. And having.
 アシスト機構20は、アシスト力の動力源である電動モータ21と、減速機構3を介して電動モータ21の駆動力が伝達される回転軸としてのピニオン軸22と、ピニオン軸22に形成されラックシャフト12Aと噛み合う第2ピニオン23と、を有する。減速機構3は、電動モータ21の出力軸に連結されたウォームシャフト3aと、ウォームシャフト3aと噛み合うとともにピニオン軸22に連結されたウォームホイール3bと、を有する。 The assist mechanism 20 includes an electric motor 21 that is a power source of assist force, a pinion shaft 22 as a rotating shaft to which the driving force of the electric motor 21 is transmitted via the speed reduction mechanism 3, and a rack shaft formed on the pinion shaft 22. And a second pinion 23 that meshes with 12A. The speed reduction mechanism 3 includes a worm shaft 3 a connected to the output shaft of the electric motor 21, and a worm wheel 3 b that meshes with the worm shaft 3 a and is connected to the pinion shaft 22.
 制御装置30は、入力軸13と出力軸15との相対回転に基づいてトーションバー14に付与される操舵トルクを検出するトルクセンサ31と、ピニオン軸22の回転角度を検出する回転角度センサ32と、ステアリングホイール1の回転角度である操舵角度を検出する操舵角度センサ34と、レゾルバによって構成され電動モータ21の回転角度を検出するモータ回転角度センサ35と、電動モータ21の作動を制御するコントローラ33と、を有する。 The control device 30 includes a torque sensor 31 that detects the steering torque applied to the torsion bar 14 based on the relative rotation between the input shaft 13 and the output shaft 15, and a rotation angle sensor 32 that detects the rotation angle of the pinion shaft 22. The steering angle sensor 34 that detects the steering angle that is the rotation angle of the steering wheel 1, the motor rotation angle sensor 35 that is configured by a resolver and detects the rotation angle of the electric motor 21, and the controller 33 that controls the operation of the electric motor 21. And having.
 コントローラ33は、トルクセンサ31によって検出される操舵トルクと、モータ回転角度センサ35によって検出される電動モータ21の回転角度と、に基づいて電動モータ21の駆動を制御する。なお、コントローラ33は、操舵トルク及び電動モータ21の回転角度に加えて、操舵角度センサ34によって検出される操舵角度を考慮して、電動モータ21の駆動を制御してもよい。さらに、コントローラ33は、回転角度センサ32によって検出されるピニオン軸22の回転角度を考慮して電動モータ21の駆動を制御してもよい。 The controller 33 controls the driving of the electric motor 21 based on the steering torque detected by the torque sensor 31 and the rotation angle of the electric motor 21 detected by the motor rotation angle sensor 35. The controller 33 may control the driving of the electric motor 21 in consideration of the steering angle detected by the steering angle sensor 34 in addition to the steering torque and the rotation angle of the electric motor 21. Further, the controller 33 may control the driving of the electric motor 21 in consideration of the rotation angle of the pinion shaft 22 detected by the rotation angle sensor 32.
 回転角度センサ32によって検出されるピニオン軸22の回転角度を用いれば、車輪2の転舵角を正確に把握することができる。このため、回転角度センサ32の検出結果は、車両の横滑り等を抑制するVDC(Vehicle Dynamics Control)等の制御においても用いられる。 If the rotation angle of the pinion shaft 22 detected by the rotation angle sensor 32 is used, the turning angle of the wheel 2 can be accurately grasped. For this reason, the detection result of the rotation angle sensor 32 is used also in control of VDC (Vehicle Dynamics Control) etc. which suppress the side slip etc. of a vehicle.
 ラックシャフト12Aは、車両の左右方向に沿って直線状に延在する丸棒状部材であり、第1軸110と第2軸120とを結合することにより形成される。第1軸110及び第2軸120は、それぞれ同じ材料(たとえば炭素鋼)から形成される。本実施形態では、ラックシャフト12Aは、第1軸110の軸長と第2軸120の軸長とが同じになるように形成されている。 The rack shaft 12A is a round bar-like member that extends linearly along the left-right direction of the vehicle, and is formed by coupling the first shaft 110 and the second shaft 120 together. The 1st axis | shaft 110 and the 2nd axis | shaft 120 are each formed from the same material (for example, carbon steel). In the present embodiment, the rack shaft 12A is formed such that the axial length of the first shaft 110 and the axial length of the second shaft 120 are the same.
 ラックシャフト12Aは、車体に締結されるハウジング(不図示)内に収容されている。ラックシャフト12Aの両端部は、ハウジング(不図示)の軸方向端部を貫通して、タイロッド25に接続されている。つまり、ラックシャフト12Aの両端部のそれぞれは、タイロッド25を介して左右の車輪2に連結されている。 The rack shaft 12A is housed in a housing (not shown) fastened to the vehicle body. Both end portions of the rack shaft 12 </ b> A pass through an end portion in the axial direction of a housing (not shown) and are connected to the tie rod 25. That is, both end portions of the rack shaft 12 </ b> A are connected to the left and right wheels 2 via the tie rods 25.
 第1軸110には、ステアリングホイール1の操舵に伴い回転する第1ピニオン16と噛み合う第1ラック115が形成されている。ステアリングホイール1からの回転力は、入力軸13及びトーションバー14を介して出力軸15に伝達される。出力軸15の回転力は、第1ピニオン16を介して第1ラック115に伝達される。第1ピニオン16の回転力は、ラックシャフト12Aの軸方向(車両の左右方向)の力に変換される。このため、ステアリングホイール1が操舵されると、運転者の操舵力が第1ラック115を介してラックシャフト12Aに伝達され、車両の車輪2がラックシャフト12Aの移動に応じて転舵される。 The first shaft 110 is formed with a first rack 115 that meshes with the first pinion 16 that rotates as the steering wheel 1 is steered. The rotational force from the steering wheel 1 is transmitted to the output shaft 15 via the input shaft 13 and the torsion bar 14. The rotational force of the output shaft 15 is transmitted to the first rack 115 via the first pinion 16. The rotational force of the first pinion 16 is converted into a force in the axial direction of the rack shaft 12A (the left-right direction of the vehicle). Therefore, when the steering wheel 1 is steered, the driver's steering force is transmitted to the rack shaft 12A via the first rack 115, and the vehicle wheel 2 is steered in accordance with the movement of the rack shaft 12A.
 第2軸120には、電動モータ21により回転する第2ピニオン23と噛み合う第2ラック125が形成されている。電動モータ21からの回転力は、減速機構3を介してピニオン軸22に伝達される。ピニオン軸22の回転力は、第2ピニオン23を介して第2ラック125に伝達される。第2ピニオン23の回転力は、ラックシャフト12Aの軸方向(車両の左右方向)の力に変換される。このため、電動モータ21が回転駆動されると、電動モータ21の回転力が第2ラック125を介してラックシャフト12Aに伝達され、車両の車輪2がラックシャフト12Aの移動に応じて転舵される。 A second rack 125 that meshes with a second pinion 23 that is rotated by the electric motor 21 is formed on the second shaft 120. The rotational force from the electric motor 21 is transmitted to the pinion shaft 22 via the speed reduction mechanism 3. The rotational force of the pinion shaft 22 is transmitted to the second rack 125 via the second pinion 23. The rotational force of the second pinion 23 is converted into a force in the axial direction of the rack shaft 12A (the left-right direction of the vehicle). Therefore, when the electric motor 21 is driven to rotate, the rotational force of the electric motor 21 is transmitted to the rack shaft 12A via the second rack 125, and the vehicle wheel 2 is steered in accordance with the movement of the rack shaft 12A. The
 ラックシャフト12Aは、中実の円柱状部材である第1軸110と、中実の円柱状部材である第2軸120の2部材を結合することによって形成される。結合方法には、摩擦圧接、溶接、ねじ嵌合など、種々の方法を採用することができるが、比較的、接合強度が高い摩擦圧接を採用することが好ましい。 The rack shaft 12A is formed by joining two members of a first shaft 110 that is a solid columnar member and a second shaft 120 that is a solid columnar member. Various methods such as friction welding, welding, and screw fitting can be employed as the coupling method, but it is preferable to employ friction welding with relatively high joint strength.
 第1軸と第2軸からなるラックシャフトにおいて、第1軸と第2軸が同径である場合には、第1軸及び第2軸のうち、相対的に高い負荷が作用する一方の軸を基準に径を定める必要がある。このため、相対的に低い負荷が作用する他方の軸の径が無駄に大きくなってしまい、その分、質量が大きくなってしまう。 In the rack shaft composed of the first axis and the second axis, when the first axis and the second axis have the same diameter, one of the first axis and the second axis on which a relatively high load acts. It is necessary to determine the diameter based on the above. For this reason, the diameter of the other shaft on which a relatively low load acts becomes unnecessarily large, and the mass increases accordingly.
 そこで、本実施形態では、第1軸110の外径と第2軸120の外径を異径とすることで、ラックシャフト12Aの軽量化を実現している。 Therefore, in the present embodiment, the rack shaft 12A is reduced in weight by making the outer diameter of the first shaft 110 and the outer diameter of the second shaft 120 different.
 図2A及び図2Bは、本発明の第1実施形態に係るラックシャフト12Aの結合部分を示す縦断面図である。図2Aでは、第1軸110と第2軸120とが結合される前の状態を示し、図2Bでは、第1軸110と第2軸120とが結合された状態を示している。図2A及び図2Bに示すように、第1軸110の軸方向端部と第2軸120の軸方向端部とは摩擦圧接により結合される。 FIG. 2A and FIG. 2B are longitudinal sectional views showing a coupling portion of the rack shaft 12A according to the first embodiment of the present invention. 2A shows a state before the first shaft 110 and the second shaft 120 are coupled, and FIG. 2B shows a state where the first shaft 110 and the second shaft 120 are coupled. As shown in FIGS. 2A and 2B, the axial end of the first shaft 110 and the axial end of the second shaft 120 are coupled by friction welding.
 第1軸110は、本体部111と、本体部111の軸方向端部に設けられた円筒状の連結筒部112と、を備えている。連結筒部112は、本体部111の軸方向端部における外周部が軸方向に延在する部分であり、連結筒部112の外径は本体部111の外径と同径である。連結筒部112の中心は、本体部111の中心と同心である。第2軸120は、本体部121と、本体部121の軸方向端部に設けられた円筒状の連結筒部122と、を備えている。連結筒部122は、本体部121の軸方向端部から軸方向に突出している。連結筒部122の中心は、本体部121の中心と同心である。 The first shaft 110 includes a main body portion 111 and a cylindrical connecting tube portion 112 provided at an end portion of the main body portion 111 in the axial direction. The connecting tube portion 112 is a portion in which the outer peripheral portion at the axial end of the main body portion 111 extends in the axial direction, and the outer diameter of the connecting tube portion 112 is the same as the outer diameter of the main body portion 111. The center of the connecting cylinder part 112 is concentric with the center of the main body part 111. The second shaft 120 includes a main body 121 and a cylindrical connecting cylinder 122 provided at an axial end of the main body 121. The connecting cylinder portion 122 protrudes in the axial direction from the axial end portion of the main body portion 121. The center of the connecting cylinder part 122 is concentric with the center of the main body part 121.
 第1軸110の本体部111の外径D1は、第2軸120の本体部121の外径D2よりも小さい(D1<D2)。本実施形態では、第2軸120の連結筒部122は、その外径D3が第1軸110の連結筒部112の外径D1と同一となるように形成されている。なお、連結筒部112及び連結筒部122は、それぞれの肉厚が同一となるように形成されている。 The outer diameter D1 of the main body 111 of the first shaft 110 is smaller than the outer diameter D2 of the main body 121 of the second shaft 120 (D1 <D2). In the present embodiment, the connecting tube portion 122 of the second shaft 120 is formed so that the outer diameter D3 thereof is the same as the outer diameter D1 of the connecting tube portion 112 of the first shaft 110. In addition, the connection cylinder part 112 and the connection cylinder part 122 are formed so that each thickness may become the same.
 ラックシャフト12Aの製造方法の一例を説明する。ラックシャフト12Aの製造方法は、摩擦圧接工程と、第1ラック形成工程と、第2ラック形成工程と、を含む。摩擦圧接工程では、図2Aに示すように、第1軸110の連結筒部112の端面112aと第2軸120の連結筒部122の端面122aとが対向するように、第1軸110と第2軸120を同軸に配置する。図2Bに示すように、端面112aと端面122aとを当接させた状態で第1軸110と第2軸120を軸方向に加圧する。 An example of a method for manufacturing the rack shaft 12A will be described. The manufacturing method of the rack shaft 12A includes a friction welding process, a first rack forming process, and a second rack forming process. In the friction welding process, as shown in FIG. 2A, the first shaft 110 and the first shaft 110 are arranged so that the end surface 112a of the connecting tube portion 112 of the first shaft 110 and the end surface 122a of the connecting tube portion 122 of the second shaft 120 face each other. Two axes 120 are arranged coaxially. As shown in FIG. 2B, the first shaft 110 and the second shaft 120 are pressurized in the axial direction in a state where the end surface 112a and the end surface 122a are in contact with each other.
 第1軸110及び第2軸120を加圧した状態で、第1軸110と第2軸120とを周方向に相対回転させて、当接面にて摩擦熱を発生させる。相対回転を停止し、第1軸110と第2軸120との加圧状態を所定時間保持することによって、第1軸110と第2軸120との相互拡散を促進させ、第1軸110と第2軸120とを接合する。 In a state where the first shaft 110 and the second shaft 120 are pressurized, the first shaft 110 and the second shaft 120 are relatively rotated in the circumferential direction to generate frictional heat on the contact surface. By stopping the relative rotation and maintaining the pressurized state of the first shaft 110 and the second shaft 120 for a predetermined time, mutual diffusion between the first shaft 110 and the second shaft 120 is promoted, The second shaft 120 is joined.
 第1ラック形成工程では、第1軸110の軸方向及び周方向における外周面の一部をブローチ盤などによって削り取る切削加工を施し、第1軸110に第1ラック115を形成する。第2ラック形成工程では、第2軸120の軸方向及び周方向における外周面の一部をブローチ盤などによって削り取る切削加工を施し、第2軸120に第2ラック125を形成する。第1ラック115は、ラック歯が均等ピッチであるCGR(Constant Gear Ratio)仕様とされ、第2ラック125は、ラック歯が可変ピッチであるVGR(Variable Gear Ratio)仕様とされている。 In the first rack forming step, the first rack 110 is formed on the first shaft 110 by performing a cutting process in which a part of the outer peripheral surface in the axial direction and the circumferential direction of the first shaft 110 is scraped by a broaching machine or the like. In the second rack forming step, the second rack 125 is formed on the second shaft 120 by performing a cutting process in which a part of the outer peripheral surface in the axial direction and the circumferential direction of the second shaft 120 is scraped with a broaching machine or the like. The first rack 115 has a CGR (Constant Gear Ratio) specification in which the rack teeth have a uniform pitch, and the second rack 125 has a VGR (Variable Gear) Ratio) specification in which the rack teeth have a variable pitch.
 第1軸110側においては、モジュール、ねじれ角及び歯数が、ストローク量、ストロークレシオ、軸交角(出力軸15とラックシャフト12Aの交差角度)、強度の要件等が満たされるように設定される。第2軸120側においては、モジュール、ねじれ角、外径及び位相角が、電動モータ21によるアシスト推力、耐久強度及び車両への搭載性、転舵追従特性の要件等が満たされるように設定される。 On the first shaft 110 side, the module, the twist angle, and the number of teeth are set so that the stroke amount, the stroke ratio, the axis crossing angle (intersection angle between the output shaft 15 and the rack shaft 12A), the strength requirements, and the like are satisfied. . On the second shaft 120 side, the module, the torsion angle, the outer diameter, and the phase angle are set so that the assist thrust by the electric motor 21, the durability, the mounting property on the vehicle, the requirements for the steering follow-up characteristic, and the like are satisfied. The
 なお、第1ラック形成工程及び第2ラック形成工程は、摩擦圧接工程の前に行ってもよいし、摩擦圧接工程の後に行ってもよい。第1ラック115及び第2ラック125のいずれか一方を形成するラック形成工程を行ってから摩擦圧接工程を行い、既に形成されたラックの周方向位置に対応するように、他方のラックを形成するラック形成工程を行ってもよい。この場合、第1ラック115と第2ラック125との周方向の位置決め精度が、摩擦圧接の影響を受けることがないので好適である。本実施形態では、第1ラック115の基準ピッチ線P1と第2ラック125の基準ピッチ線P2とが平行となるように、第1ラック115及び第2ラック125のラック歯が形成されている(図3A参照)。なお、第1ラック115の基準ピッチ線P1と第2ラック125の基準ピッチ線P2は、平行となる場合に限定されず、互いに傾いていてもよい。 The first rack forming step and the second rack forming step may be performed before the friction welding step or after the friction welding step. After performing the rack forming process for forming one of the first rack 115 and the second rack 125, the friction welding process is performed, and the other rack is formed so as to correspond to the circumferential position of the already formed rack. A rack forming step may be performed. In this case, the positioning accuracy in the circumferential direction between the first rack 115 and the second rack 125 is not affected by the friction welding, which is preferable. In the present embodiment, the rack teeth of the first rack 115 and the second rack 125 are formed so that the reference pitch line P1 of the first rack 115 and the reference pitch line P2 of the second rack 125 are parallel to each other ( (See FIG. 3A). The reference pitch line P1 of the first rack 115 and the reference pitch line P2 of the second rack 125 are not limited to being parallel to each other, and may be inclined with respect to each other.
 図3A及び図3Bは、図1のIII-III線に沿うラックシャフトの横断面図である。図3Aでは、ラックシャフト12Aの各部寸法を示し、図3Bでは、ラックシャフト12Aと出力軸15及びピニオン軸22との位置関係を示している。なお、図3Bでは、出力軸15及びピニオン軸22の中心軸CL1,CL2のみを示し、第1ピニオン16、第2ピニオン23の図示は省略している。 3A and 3B are cross-sectional views of the rack shaft along the line III-III in FIG. 3A shows the dimensions of each part of the rack shaft 12A, and FIG. 3B shows the positional relationship between the rack shaft 12A, the output shaft 15, and the pinion shaft 22. In FIG. 3B, only the center axes CL1 and CL2 of the output shaft 15 and the pinion shaft 22 are shown, and the first pinion 16 and the second pinion 23 are not shown.
 図1に示すように、第1軸110の本体部111において、第1ラック115が形成された部分を第1ラック形成部116と称し、第2軸120の本体部121において、第2ラック125が形成された部分を第2ラック形成部126と称する。第1ラック形成部116及び第2ラック形成部126の軸方向長さは、車輪2を左右に最大転舵角度まで転舵するためにラックシャフト12Aをスライド可能な長さに相当する。 As shown in FIG. 1, the portion of the main body 111 of the first shaft 110 where the first rack 115 is formed is referred to as a first rack forming portion 116, and the second rack 125 is formed of the main body 121 of the second shaft 120. The portion in which is formed is referred to as a second rack forming portion 126. The axial lengths of the first rack forming portion 116 and the second rack forming portion 126 correspond to a length that allows the rack shaft 12A to be slid in order to steer the wheel 2 left and right to the maximum turning angle.
 図3A及び図3Bでは、第1軸110の第1ラック形成部116における横断面の形状を実線で示し、第2軸120の第2ラック形成部126における横断面の形状を二点鎖線で示している。 3A and 3B, the shape of the cross section of the first rack forming portion 116 of the first shaft 110 is indicated by a solid line, and the shape of the cross section of the second rack forming portion 126 of the second shaft 120 is indicated by a two-dot chain line. ing.
 図3Aを参照して、第1軸110の各部寸法と、第2軸120の各部寸法とを比較する。なお、第1ラック115の基準ピッチ線P1及びラックシャフト12Aの中心軸Oのそれぞれに直交し、かつ、ラックシャフト12Aの中心軸Oを通る軸をZ軸として説明する。 Referring to FIG. 3A, the dimensions of each part of the first shaft 110 and the dimensions of each part of the second shaft 120 are compared. Note that an axis that is orthogonal to the reference pitch line P1 of the first rack 115 and the center axis O of the rack shaft 12A and that passes through the center axis O of the rack shaft 12A will be described as a Z axis.
 図3Aに示すように、本実施形態では、第1ラック形成部116の各部の寸法は、第1ラック形成部116の各部に対応する第2ラック形成部126の各部の寸法よりも小さい。以下、詳しく説明する。 As shown in FIG. 3A, in this embodiment, the dimensions of each part of the first rack forming part 116 are smaller than the dimensions of each part of the second rack forming part 126 corresponding to each part of the first rack forming part 116. This will be described in detail below.
 第1ラック115の歯幅W1は、第2ラック125の歯幅W2よりも小さい(W1<W2)。第1ラック115の歯幅W1は、第1ラック形成部116の外径D1よりも小さく、第2ラック125の歯幅W2は、第2ラック形成部126の外径D2よりも小さい(W1<D1,W2<D2)。第1ラック形成部116の半径R1(=(1/2)×D1)は、第2ラック形成部126の半径R2(=(1/2)×D2)よりも小さい(R1<R2)。 The tooth width W1 of the first rack 115 is smaller than the tooth width W2 of the second rack 125 (W1 <W2). The tooth width W1 of the first rack 115 is smaller than the outer diameter D1 of the first rack forming portion 116, and the tooth width W2 of the second rack 125 is smaller than the outer diameter D2 of the second rack forming portion 126 (W1 < D1, W2 <D2). The radius R1 (= (1/2) × D1) of the first rack forming portion 116 is smaller than the radius R2 (= (1/2) × D2) of the second rack forming portion 126 (R1 <R2).
 第1ラック形成部116の肉厚T1は、第2ラック形成部126の肉厚T2よりも小さい(T1<T2)。肉厚T1は、Z軸上における第1ラック115の歯先から第1ラック形成部116の背面までのZ軸寸法であり、肉厚T2は、Z軸上における第2ラック125の歯先から第2ラック形成部126の背面までのZ軸寸法である。 The wall thickness T1 of the first rack forming section 116 is smaller than the wall thickness T2 of the second rack forming section 126 (T1 <T2). The wall thickness T1 is the Z-axis dimension from the tooth tip of the first rack 115 on the Z-axis to the back surface of the first rack forming portion 116, and the wall thickness T2 is from the tooth tip of the second rack 125 on the Z-axis. This is the Z-axis dimension up to the back surface of the second rack forming portion 126.
 ラックシャフト12Aの中心軸Oから第1ラック115の基準ピッチ線P1までのZ軸寸法Z1は、中心軸Oから第2ラック125の基準ピッチ線P2までのZ軸寸法Z2よりも小さい(Z1<Z2)。このため、出力軸15の中心軸CL1をピニオン軸22の中心軸CL2に比べて、ラックシャフト12Aの中心軸Oに近づけることができる。本実施形態では、図3Bに示すように、ラックシャフト12Aと出力軸15の軸間距離ZL1が、ラックシャフト12Aとピニオン軸22の軸間距離ZL2よりも小さくなるように、ピニオン軸22及び出力軸15が配置されている。軸間距離ZL1は、ラックシャフト12Aの中心軸Oから出力軸15の中心軸CL1までのZ軸寸法であり、軸間距離ZL2は、ラックシャフト12Aの中心軸Oからピニオン軸22の中心軸CL2までのZ軸寸法である。 The Z-axis dimension Z1 from the center axis O of the rack shaft 12A to the reference pitch line P1 of the first rack 115 is smaller than the Z-axis dimension Z2 from the center axis O to the reference pitch line P2 of the second rack 125 (Z1 < Z2). For this reason, the center axis CL1 of the output shaft 15 can be brought closer to the center axis O of the rack shaft 12A than the center axis CL2 of the pinion shaft 22. In the present embodiment, as shown in FIG. 3B, the pinion shaft 22 and the output so that the inter-axis distance ZL1 between the rack shaft 12A and the output shaft 15 is smaller than the inter-axis distance ZL2 between the rack shaft 12A and the pinion shaft 22. A shaft 15 is arranged. The inter-axis distance ZL1 is the Z-axis dimension from the central axis O of the rack shaft 12A to the central axis CL1 of the output shaft 15, and the inter-axis distance ZL2 is the central axis CL2 of the pinion shaft 22 from the central axis O of the rack shaft 12A. Z-axis dimensions up to.
 以上の第1実施形態によれば、以下に示す作用効果を奏する。 According to the above 1st Embodiment, there exists the effect shown below.
 (1)ラックシャフト12Aは、操舵力が伝達される第1ラック115が形成された第1軸110と、電動モータ21の駆動力が伝達される第2ラック125が形成され、第1軸110に結合された第2軸120と、を備えている。第1軸110の外径D1と第2軸120の外径D2とは異径である。第1軸110及び第2軸120のうち、一方の軸の径が他方の軸の径に比べて小さいので、一方の軸の外径が他方の軸の外径と同じ場合に比べて、質量を軽減できる。したがって、ラックシャフト12A及びステアリング装置100を軽量化できる。 (1) The rack shaft 12A includes a first shaft 110 on which a first rack 115 to which a steering force is transmitted and a second rack 125 to which a driving force of the electric motor 21 is transmitted. And a second shaft 120 coupled to the second shaft 120. The outer diameter D1 of the first shaft 110 and the outer diameter D2 of the second shaft 120 are different diameters. Since the diameter of one of the first shaft 110 and the second shaft 120 is smaller than the diameter of the other shaft, the mass of one shaft is smaller than that of the other shaft. Can be reduced. Therefore, the rack shaft 12A and the steering device 100 can be reduced in weight.
 (2)本実施形態では、第1軸110及び第2軸120の材料は同じである。第1軸110及び第2軸120は、それぞれ中実の円柱状部材である。電動モータ21の駆動力が伝達される第2軸120に比べて、操舵力が伝達される第1軸110に作用する負荷は小さい。このため、本実施形態では、第1軸110の第1ラック形成部116における外径D1を第2軸120における第2ラック形成部126における外径D2よりも小さくしている(D1<D2)。これにより、第1軸110の質量を第2軸120の質量よりも小さくしてラックシャフト12Aを軽量化できる。さらに、第2軸120の強度は、第1軸110の強度よりも大きくできるので、電動モータ21からの高い負荷にも優れた耐久性を有するラックシャフト12Aとすることができる。このように、本実施形態によれば、第1軸110及び第2軸120のそれぞれに必要な強度を満足しつつ、ラックシャフト12Aの軽量化を図ることができる。 (2) In the present embodiment, the materials of the first shaft 110 and the second shaft 120 are the same. Each of the first shaft 110 and the second shaft 120 is a solid columnar member. The load acting on the first shaft 110 to which the steering force is transmitted is smaller than that of the second shaft 120 to which the driving force of the electric motor 21 is transmitted. For this reason, in this embodiment, the outer diameter D1 of the first rack forming portion 116 of the first shaft 110 is smaller than the outer diameter D2 of the second rack forming portion 126 of the second shaft 120 (D1 <D2). . Thereby, the mass of the 1st axis | shaft 110 can be made smaller than the mass of the 2nd axis | shaft 120, and the rack shaft 12A can be reduced in weight. Furthermore, since the strength of the second shaft 120 can be greater than the strength of the first shaft 110, the rack shaft 12 </ b> A having excellent durability against a high load from the electric motor 21 can be obtained. Thus, according to the present embodiment, the rack shaft 12A can be reduced in weight while satisfying the strength required for each of the first shaft 110 and the second shaft 120.
 (3)ラックシャフト12Aの中心軸Oから基準ピッチ線P1までのZ軸寸法Z1が、中心軸Oから基準ピッチ線P2までのZ軸寸法Z2よりも小さい。このため、図3Bに示すように、出力軸15の中心軸CL1をピニオン軸22の中心軸CL2に比べて、ラックシャフト12Aの中心軸Oに近づけることができる(ZL1<ZL2)。本実施形態では、出力軸15とラックシャフト12Aの軸間距離が短くなるように、出力軸15をラックシャフト12Aに近接させ、この部分をコンパクトにした。この結果、ステアリング装置100の車両への取付自由度を向上、すなわち搭載性を向上できる。 (3) The Z-axis dimension Z1 from the center axis O of the rack shaft 12A to the reference pitch line P1 is smaller than the Z-axis dimension Z2 from the center axis O to the reference pitch line P2. Therefore, as shown in FIG. 3B, the center axis CL1 of the output shaft 15 can be brought closer to the center axis O of the rack shaft 12A than the center axis CL2 of the pinion shaft 22 (ZL1 <ZL2). In the present embodiment, the output shaft 15 is brought close to the rack shaft 12A so that the distance between the output shaft 15 and the rack shaft 12A is shortened, and this portion is made compact. As a result, the degree of freedom of attachment of the steering device 100 to the vehicle can be improved, that is, the mountability can be improved.
 (4)本実施形態では、第1軸110及び第2軸120の外径を個別に設定できる。このため、たとえば、第1軸110の外径D1に比べて第2軸120の外径D2を大きくすることにより、第2ピニオン23に対する第2軸120のラック歯の接触面積を大きくできる。これにより、ピニオン軸22とラックシャフト12Aの交差角度である軸交角の自由度を向上できる。その結果、ステアリング装置100の車両への取付自由度を向上、すなわち搭載性を向上できる。 (4) In the present embodiment, the outer diameters of the first shaft 110 and the second shaft 120 can be set individually. For this reason, for example, by making the outer diameter D2 of the second shaft 120 larger than the outer diameter D1 of the first shaft 110, the contact area of the rack teeth of the second shaft 120 with the second pinion 23 can be increased. Thereby, the freedom degree of the axis crossing angle which is the crossing angle of the pinion shaft 22 and the rack shaft 12A can be improved. As a result, the degree of freedom of mounting the steering device 100 on the vehicle can be improved, that is, the mountability can be improved.
 <第1実施形態の変形例1>
 上記第1実施形態では、連結筒部112の外径D1と連結筒部122の外径D3とが同じになるように連結筒部112,122が形成される例について説明したが(図2A、図2B参照)、本発明はこれに限定されない。連結筒部112,122のいずれか一方を大きく形成してもよい。たとえば、連結筒部112の外径D1に対して、連結筒部122の外径D3を大きく形成してもよい(D3>D1)。少なくとも、十分な接合強度を得ることができる程度の接触面積を得ることができるように連結筒部112,122を形成すればよい。
<Variation 1 of the first embodiment>
Although the said 1st Embodiment demonstrated the example in which the connection cylinder part 112,122 was formed so that the outer diameter D1 of the connection cylinder part 112 and the outer diameter D3 of the connection cylinder part 122 may become the same (FIG. 2A, The present invention is not limited to this. Either one of the connecting tube portions 112 and 122 may be formed larger. For example, the outer diameter D3 of the connecting cylinder part 122 may be formed larger than the outer diameter D1 of the connecting cylinder part 112 (D3> D1). What is necessary is just to form the connection cylinder parts 112 and 122 so that the contact area of the grade which can obtain sufficient joint strength at least can be obtained.
 <第1実施形態の変形例2>
 上記第1実施形態では、第1ラック形成部116の各部の寸法が、第1ラック形成部116の各部に対応する第2ラック形成部126の各部の寸法よりも小さい例について説明したが、本発明はこれに限定されない。たとえば、第1ラック形成部116の外径D1と第2ラック形成部126の外径D2との差が小さい場合、ラックシャフト12Aの中心軸Oから基準ピッチ線P1,P2までのZ軸寸法Z1,Z2の大小関係が、Z1>Z2となる場合もある。また、肉厚T1,T2の大小関係が、T1>T2となる場合もある。
<Modification 2 of the first embodiment>
In the first embodiment, the example in which the size of each part of the first rack forming unit 116 is smaller than the size of each part of the second rack forming unit 126 corresponding to each part of the first rack forming unit 116 has been described. The invention is not limited to this. For example, when the difference between the outer diameter D1 of the first rack forming portion 116 and the outer diameter D2 of the second rack forming portion 126 is small, the Z-axis dimension Z1 from the central axis O of the rack shaft 12A to the reference pitch lines P1, P2 , Z2 may be such that Z1> Z2. Further, the magnitude relationship between the thicknesses T1 and T2 may satisfy T1> T2.
 <第2実施形態>
 図4Aを参照して、本発明の第2実施形態に係るラックシャフト12B1について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、図中、上記第1実施形態で説明した構成と同一の構成または相当する構成には同一の符号を付して説明を省略する。
Second Embodiment
With reference to FIG. 4A, a rack shaft 12B1 according to a second embodiment of the present invention will be described. The following description will focus on differences from the first embodiment, and in the figure, the same or corresponding components as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. .
 図4Aは、ラックシャフト12B1の結合部分を示す縦断面図である。上記第1実施形態では、第1軸110及び第2軸120のそれぞれが中実の円柱状部材であったが、第2実施形態では、第1軸210が中空の円筒状部材である点で、上記第1実施形態と相違する。以下、具体的に説明する。 FIG. 4A is a longitudinal sectional view showing a coupling portion of the rack shaft 12B1. In the first embodiment, each of the first shaft 110 and the second shaft 120 is a solid columnar member. However, in the second embodiment, the first shaft 210 is a hollow cylindrical member. This is different from the first embodiment. This will be specifically described below.
 図4Aに示すように、第1軸210は、円筒状部材とされている。第2軸120の連結筒部122は、連結筒部122の肉厚が第1軸210の肉厚と同一となるように形成されている。第1軸210の軸方向端部は、摩擦圧接により、第2軸120の連結筒部122に接合される。 As shown in FIG. 4A, the first shaft 210 is a cylindrical member. The connecting tube portion 122 of the second shaft 120 is formed so that the thickness of the connecting tube portion 122 is the same as the thickness of the first shaft 210. An axial end portion of the first shaft 210 is joined to the connecting tube portion 122 of the second shaft 120 by friction welding.
 なお、本実施形態では、第1ラック形成工程を摩擦圧接工程前に行うことが好ましい。第1ラック形成工程では、第1軸210をラック形成用の金型で保持した状態で、第1軸210の中空部に円柱状のマンドレルを往復動作させる。これにより、第1軸210を徐々に塑性変形させる。少しずつ径の大きなマンドレルを軸方向に往復動作させることで、第1軸210の第1ラック形成部116に第1ラック115を形成することができる。 In the present embodiment, it is preferable to perform the first rack forming process before the friction welding process. In the first rack forming step, a cylindrical mandrel is reciprocated in the hollow portion of the first shaft 210 while the first shaft 210 is held by a rack forming mold. Thereby, the first shaft 210 is gradually plastically deformed. The first rack 115 can be formed on the first rack forming portion 116 of the first shaft 210 by reciprocating the mandrel having a large diameter little by little in the axial direction.
 第2実施形態では、第1実施形態と同様、第1ラック形成部116における第1軸210の外径D1が、第2ラック形成部126における第2軸120の外径D2よりも小さい(D1<D2)。 In the second embodiment, as in the first embodiment, the outer diameter D1 of the first shaft 210 in the first rack forming portion 116 is smaller than the outer diameter D2 of the second shaft 120 in the second rack forming portion 126 (D1 <D2).
 このような第2実施形態によれば、第1実施形態と同様の作用効果に加え、次の作用効果を奏する。 According to such a second embodiment, in addition to the same functions and effects as those of the first embodiment, the following functions and effects are achieved.
 (5)第1軸210を円筒状部材とすることで、第1実施形態に比べて、さらにラックシャフト12B1及びステアリング装置100を軽量化できる。 (5) By using the first shaft 210 as a cylindrical member, the rack shaft 12B1 and the steering device 100 can be further reduced in weight compared to the first embodiment.
 <第2実施形態の変形例>
 上記第2実施形態では、第2軸120の外径D2に比べて小さい外径D3(=D1)の連結筒部122を設ける例(D2>D3=D1)について説明したが、本発明はこれに限定されない。図4Bは、本発明の第2実施形態の変形例に係るラックシャフト12B2の結合部分を示す縦断面図である。
<Modification of Second Embodiment>
In the second embodiment, the example (D2> D3 = D1) in which the connecting cylinder portion 122 having the outer diameter D3 (= D1) smaller than the outer diameter D2 of the second shaft 120 is described. It is not limited to. FIG. 4B is a longitudinal sectional view showing a coupling portion of the rack shaft 12B2 according to a modification of the second embodiment of the present invention.
 図4Bに示すように、第2軸220の軸方向端部に外径D2の連結筒部222を形成し、第1軸210の軸方向端部に、拡径加工を施して、外径D2の連結筒部212を形成してもよい。このような変形例であっても、第1ラック形成部116における外径D1を第2ラック形成部126における外径D2よりも小さくできるので、ラックシャフト12B2及びステアリング装置100を軽量化できる。さらに、本変形例によれば、連結筒部212,222の外径が上記実施形態に比べて大きいため、摩擦圧接工程において、第1軸210と第2軸220の相対回転速度を低く抑えても摩擦圧接に必要な周速度を得ることができる。 As shown in FIG. 4B, a connecting tube portion 222 having an outer diameter D2 is formed at the axial end portion of the second shaft 220, and the outer diameter D2 is applied to the axial end portion of the first shaft 210. The connecting tube portion 212 may be formed. Even in such a modification, the outer diameter D1 of the first rack forming portion 116 can be made smaller than the outer diameter D2 of the second rack forming portion 126, so that the rack shaft 12B2 and the steering device 100 can be reduced in weight. Furthermore, according to this modification, the outer diameters of the connecting tube portions 212 and 222 are larger than those in the above embodiment, so that the relative rotational speed of the first shaft 210 and the second shaft 220 is kept low in the friction welding process. Also, the peripheral speed necessary for friction welding can be obtained.
 <第3実施形態>
 図5Aを参照して、本発明の第3実施形態に係るラックシャフト12C1について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、図中、上記第1実施形態で説明した構成と同一の構成または相当する構成には同一の符号を付して説明を省略する。図5Aは、本発明の第3実施形態に係るラックシャフト12C1を示す平面図である。
<Third Embodiment>
A rack shaft 12C1 according to a third embodiment of the present invention will be described with reference to FIG. 5A. The following description will focus on differences from the first embodiment, and in the figure, the same or corresponding components as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. . FIG. 5A is a plan view showing a rack shaft 12C1 according to a third embodiment of the present invention.
 第1軸310A及び第2軸320Aは、それぞれ同じ材料から形成された中実の円柱状部材である。このため、小径の第1軸310Aの第1ラック形成部116における単位長さ当たりの質量は、大径の第2軸320Aの第2ラック形成部126における単位長さ当たりの質量よりも小さい。 The first shaft 310A and the second shaft 320A are solid cylindrical members formed from the same material. For this reason, the mass per unit length in the first rack forming portion 116 of the small-diameter first shaft 310A is smaller than the mass per unit length in the second rack forming portion 126 of the large-diameter second shaft 320A.
 そこで、第3実施形態では、単位長さ当たりの質量が小さい第1軸310Aの長さを、単位長さ当たりの質量が大きい第2軸320Aの長さよりも長くして軽量化を実現している。つまり、上記第1実施形態では、第1軸110の軸長と第2軸120の軸長とが同じであるが、第3実施形態では、第1軸310Aの軸長L1が第2軸320Aの軸長L2よりも長い点で、上記第1実施形態と相違する。なお、ラックシャフト12C1の全長は第1実施形態のラックシャフト12Aの全長と同じである。 Therefore, in the third embodiment, the length of the first shaft 310A having a small mass per unit length is made longer than the length of the second shaft 320A having a large mass per unit length, thereby realizing weight reduction. Yes. That is, in the first embodiment, the shaft length of the first shaft 110 is the same as the shaft length of the second shaft 120, but in the third embodiment, the shaft length L1 of the first shaft 310A is the second shaft 320A. This is different from the first embodiment in that it is longer than the axial length L2. The total length of the rack shaft 12C1 is the same as the total length of the rack shaft 12A of the first embodiment.
 このような第3実施形態によれば、第1実施形態と同様の作用効果に加え、次の作用効果を奏する。 According to the third embodiment as described above, in addition to the same functions and effects as those of the first embodiment, the following functions and effects are achieved.
 (6)第1軸310A及び第2軸320Aのうち、単位長さ当たりの質量が小さい一方の軸が、単位長さ当たりの質量が大きい他方の軸に比べて長く形成されている。これにより、第1実施形態に比べて、さらにラックシャフト12C1及びステアリング装置100を軽量化できる。 (6) Of the first axis 310A and the second axis 320A, one axis having a small mass per unit length is formed longer than the other axis having a large mass per unit length. Thereby, compared with 1st Embodiment, the rack shaft 12C1 and the steering device 100 can further be reduced in weight.
 <第3実施形態の変形例>
 上記第3実施形態では、第1軸310Aと第2軸320Aとが中実の円柱状部材である例について説明したが、本発明はこれに限定されない。図5Bは、本発明の第3実施形態の変形例に係るラックシャフト12C2を示す平面図である。
<Modification of Third Embodiment>
In the third embodiment, the example in which the first shaft 310A and the second shaft 320A are solid cylindrical members has been described, but the present invention is not limited to this. FIG. 5B is a plan view showing a rack shaft 12C2 according to a modification of the third embodiment of the present invention.
 図5Bに示すように、本変形例では、第1軸310Bが中空の円筒状部材であって、第1軸310Bの外径が第2軸320Bの外径よりも大きい。第1軸310Bは、中空の円筒状部材であり、鍛造加工により第1ラック115が形成される。第2軸320Bは、中実の円柱状部材であり、切削加工により第2ラック125が形成される。鍛造加工よりも切削加工の方が精度良くラック歯を成形することができるため、第2ラック125と第2ピニオン23との噛み合い精度は、第1ラック115と第1ピニオン16との噛み合い精度よりも高い。比較的高い負荷が作用する第2軸320Bのラック歯とピニオンとの噛み合い精度を高めることにより、第2ラック125の耐久性を確保することができる。 As shown in FIG. 5B, in this modification, the first shaft 310B is a hollow cylindrical member, and the outer diameter of the first shaft 310B is larger than the outer diameter of the second shaft 320B. The first shaft 310B is a hollow cylindrical member, and the first rack 115 is formed by forging. The second shaft 320B is a solid cylindrical member, and the second rack 125 is formed by cutting. Since the rack teeth can be formed more accurately in the cutting process than in the forging process, the meshing accuracy between the second rack 125 and the second pinion 23 is higher than the meshing accuracy between the first rack 115 and the first pinion 16. Is also expensive. The durability of the second rack 125 can be ensured by increasing the meshing accuracy between the rack teeth of the second shaft 320B on which a relatively high load acts and the pinion.
 本変形例においても第1ラック形成部116における単位長さ当たりの質量は、第2ラック形成部126における単位長さ当たりの質量に比べて小さい。このため、第1軸310Bの軸長L1を第2軸320Bの軸長L2よりも長く形成することで、軸長を同じにする場合に比べて、ラックシャフト12C2及びステアリング装置100を軽量化できる。 Also in this modification, the mass per unit length in the first rack forming portion 116 is smaller than the mass per unit length in the second rack forming portion 126. For this reason, by forming the axial length L1 of the first shaft 310B longer than the axial length L2 of the second shaft 320B, the rack shaft 12C2 and the steering device 100 can be reduced in weight compared to the case where the axial length is the same. .
 <第4実施形態>
 図6Aを参照して、本発明の第4実施形態に係るラックシャフト12D1について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、図中、上記第1実施形態で説明した構成と同一の構成または相当する構成には同一の符号を付して説明を省略する。
<Fourth embodiment>
A rack shaft 12D1 according to a fourth embodiment of the present invention will be described with reference to FIG. 6A. The following description will focus on differences from the first embodiment, and in the figure, the same or corresponding components as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. .
 図6Aは、本発明の第4実施形態に係るラックシャフト12D1を示す縦断面図である。上記第1実施形態では、第1軸110の端面112aと第2軸120の端面122aとが摩擦圧接により接合される(図2A、図2B参照)。これに対して、第4実施形態では、第2軸420Aが円筒状部材であり、第1軸410Aが第2軸420Aの中空部に圧入され、溶接されることにより第1軸410Aと第2軸420Aとが結合される。 FIG. 6A is a longitudinal sectional view showing a rack shaft 12D1 according to a fourth embodiment of the present invention. In the first embodiment, the end surface 112a of the first shaft 110 and the end surface 122a of the second shaft 120 are joined by friction welding (see FIGS. 2A and 2B). On the other hand, in the fourth embodiment, the second shaft 420A is a cylindrical member, and the first shaft 410A is press-fitted into the hollow portion of the second shaft 420A and welded, whereby the first shaft 410A and the second shaft 420A are welded. The shaft 420A is coupled.
 このような第4実施形態によれば、第1実施形態と同様の作用効果を奏する。 According to such 4th Embodiment, there exists an effect similar to 1st Embodiment.
 <第4実施形態の変形例1>
 上記第4実施形態では、第1軸410Aを第2軸420Aの中空部に圧入した後、溶接により第1軸410Aと第2軸420Aとを結合する例について説明したが、本発明はこれに限定されない。たとえば、焼き嵌めにより両者を結合してもよいし、第1軸410Aに形成した雄ねじを第2軸420Aの中空部に形成した雌ねじに螺合させることにより結合してもよい。
<Modification 1 of 4th Embodiment>
In the fourth embodiment, the example in which the first shaft 410A and the second shaft 420A are joined by welding after the first shaft 410A is press-fitted into the hollow portion of the second shaft 420A has been described. It is not limited. For example, both may be coupled by shrink fitting, or may be coupled by screwing a male screw formed on the first shaft 410A with a female screw formed on the hollow portion of the second shaft 420A.
 <第4実施形態の変形例2>
 図6Bは、本発明の第4実施形態の変形例2に係るラックシャフト12D2を示す縦断面図である。図6Bに示すように、本変形例では、ボルト、ナットなどの締結部材490により第1軸410Bの軸方向端部のフランジ419と第2軸420Bの軸方向端部のフランジ429とが締結され、第1軸410Bと第2軸420Bとが結合される。
<Modification 2 of 4th Embodiment>
FIG. 6B is a longitudinal sectional view showing a rack shaft 12D2 according to the second modification of the fourth embodiment of the present invention. As shown in FIG. 6B, in this modification, the flange 419 at the axial end of the first shaft 410B and the flange 429 at the axial end of the second shaft 420B are fastened by a fastening member 490 such as a bolt or nut. The first shaft 410B and the second shaft 420B are coupled.
 <第4実施形態の変形例3>
 図6Cは、本発明の第4実施形態の変形例3に係るラックシャフト12D3を示す縦断面図である。図6Cに示すように、本変形例では、ボールジョイント491のソケット493と第1軸410Cに設けられた段部418との間に第2軸420Cが挟まれた状態で、第1軸410Cと第2軸420Cとが結合される。第1軸410Cには、本体部111の軸方向端部から軸方向に突出する円柱状の嵌入部417が設けられる。嵌入部417は、第2軸420Cの中空部に嵌入される部分であって、本体部111よりも外径が小さい。嵌入部417が本体部111よりも小径に形成されるので、第2軸420Cの軸方向端面に対向する本体部111の軸方向端面が段部418とされる。
<Modification 3 of 4th Embodiment>
FIG. 6C is a longitudinal sectional view showing a rack shaft 12D3 according to Modification 3 of the fourth embodiment of the present invention. As shown in FIG. 6C, in this modification, the first shaft 410C and the second shaft 420C are sandwiched between the socket 493 of the ball joint 491 and the step 418 provided on the first shaft 410C. The second shaft 420C is coupled. The first shaft 410 </ b> C is provided with a columnar fitting portion 417 that protrudes in the axial direction from the axial end portion of the main body portion 111. The fitting portion 417 is a portion that is fitted into the hollow portion of the second shaft 420 </ b> C and has an outer diameter smaller than that of the main body portion 111. Since the fitting portion 417 is formed to have a smaller diameter than the main body portion 111, the axial end surface of the main body portion 111 facing the axial end surface of the second shaft 420 </ b> C is a stepped portion 418.
 タイロッド25の端部には、ラックシャフト12D3の端部に接続される自在継手であるボールジョイント491が設けられる。ボールジョイント491は、第1軸410Cの端部に固着されるソケット493と、タイロッド25の軸部の端部に固着されるボール492と、を有する。ソケット493は、ボール492を収容するボール収容部493aと、ボール収容部493aの基端側に一体的に設けられたボルト493bと、を有する。ボルト493bに設けられた雄ねじが、第1軸410Cの嵌入部417の先端面から軸方向に延在する孔部449に設けられた雌ねじに螺合されることにより、ソケット493が第1軸410Cに固着される。 A ball joint 491 which is a universal joint connected to the end of the rack shaft 12D3 is provided at the end of the tie rod 25. The ball joint 491 includes a socket 493 fixed to the end portion of the first shaft 410C and a ball 492 fixed to the end portion of the shaft portion of the tie rod 25. The socket 493 includes a ball accommodating portion 493a that accommodates the ball 492, and a bolt 493b that is integrally provided on the proximal end side of the ball accommodating portion 493a. The male screw provided on the bolt 493b is screwed into the female screw provided in the hole 449 extending in the axial direction from the distal end surface of the fitting portion 417 of the first shaft 410C, whereby the socket 493 is engaged with the first shaft 410C. It is fixed to.
 本変形例では、第1軸410Cの嵌入部417が、第2軸420Cの中空部に嵌入された後、ソケット493のボルト493bが嵌入部417の先端部に螺合される。これにより、ソケット493と第1軸410Cの段部418との間で第2軸420Cが挟持され、第1軸410Cと第2軸420Cとが結合される。図6Cでは、ソケット493とラックシャフト12D3との間に円環状の環状部材499を介在させる例について図示しているが、環状部材499は省略してもよい。このように、ソケット493と第1軸410Cの段部418とで第2軸420Cを挟持する場合、第1軸410Cの嵌入部417の外周部と第2軸420Cの内周部のそれぞれにキー溝を設け、このキー溝にキーを嵌合させ、第1軸410Cと第2軸420Cの回り止めを行うことが好ましい。 In this modification, after the fitting portion 417 of the first shaft 410C is fitted into the hollow portion of the second shaft 420C, the bolt 493b of the socket 493 is screwed into the tip portion of the fitting portion 417. Thereby, the second shaft 420C is sandwiched between the socket 493 and the step portion 418 of the first shaft 410C, and the first shaft 410C and the second shaft 420C are coupled. Although FIG. 6C illustrates an example in which an annular member 499 is interposed between the socket 493 and the rack shaft 12D3, the annular member 499 may be omitted. As described above, when the second shaft 420C is sandwiched between the socket 493 and the step portion 418 of the first shaft 410C, the outer peripheral portion of the fitting portion 417 of the first shaft 410C and the inner peripheral portion of the second shaft 420C are respectively keyed. It is preferable that a groove is provided and a key is fitted into the key groove to prevent the first shaft 410C and the second shaft 420C from rotating.
 <第5実施形態>
 図7及び図8を参照して、本発明の第5実施形態に係るラックシャフト12Eについて説明する。以下では、上記第1実施形態と異なる点を中心に説明し、図中、上記第1実施形態で説明した構成と同一の構成または相当する構成には同一の符号を付して説明を省略する。
<Fifth Embodiment>
With reference to FIG.7 and FIG.8, the rack shaft 12E which concerns on 5th Embodiment of this invention is demonstrated. The following description will focus on differences from the first embodiment, and in the figure, the same or corresponding components as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. .
 図7は、本発明の第5実施形態に係るラックシャフト12Eを示す横断面図であり、図8は、本発明の第5実施形態に係るラックシャフト12Eの支持構造を示す側面図である。なお、図8では、ピニオン及びラックガイドを二点鎖線で示している。 FIG. 7 is a cross-sectional view showing a rack shaft 12E according to a fifth embodiment of the present invention, and FIG. 8 is a side view showing a support structure for the rack shaft 12E according to the fifth embodiment of the present invention. In FIG. 8, the pinion and the rack guide are indicated by a two-dot chain line.
 上記第1実施形態では、第1軸110の中心軸と第2軸120の中心軸とが同一となるように、第1軸110と第2軸120とが結合される(図3A参照)。これに対して、第5実施形態では、図7及び図8に示すように、第1軸110の中心軸O1と第2軸120の中心軸O2とが偏心している。 In the first embodiment, the first axis 110 and the second axis 120 are coupled so that the central axis of the first axis 110 and the central axis of the second axis 120 are the same (see FIG. 3A). On the other hand, in the fifth embodiment, as shown in FIGS. 7 and 8, the central axis O1 of the first shaft 110 and the central axis O2 of the second shaft 120 are eccentric.
 図8に示すように、ステアリング装置100は、第1ラック形成部116を背面側(歯裏側)から第1ピニオン16に向けて押し付ける第1ラックガイド561と、第2ラック形成部126を背面側から第2ピニオン23に向けて押し付ける第2ラックガイド562と、を備えている。 As shown in FIG. 8, the steering device 100 includes a first rack guide 561 that presses the first rack forming portion 116 from the back side (back side) toward the first pinion 16, and the second rack forming portion 126 on the back side. And a second rack guide 562 for pressing toward the second pinion 23.
 第1ラックガイド561は、第1ラック形成部116の背面側の形状に対応した円弧面を有するガイド部561aと、ガイド部561aを第1ピニオン16に向けて付勢するコイルばね561bと、を備えている。 The first rack guide 561 includes a guide part 561a having an arc surface corresponding to the shape of the back surface side of the first rack forming part 116, and a coil spring 561b that biases the guide part 561a toward the first pinion 16. I have.
 同様に、第2ラックガイド562は、第2ラック形成部126の背面側の形状に対応した円弧面を有するガイド部562aと、ガイド部562aを第2ピニオン23に向けて付勢するコイルばね562bと、を備えている。 Similarly, the second rack guide 562 includes a guide portion 562a having an arc surface corresponding to the shape of the back surface side of the second rack forming portion 126, and a coil spring 562b that biases the guide portion 562a toward the second pinion 23. And.
 第1ラック形成部116が第1ピニオン16と第1ラックガイド561とにより挟持され、第2ラック形成部126が第2ピニオン23と第2ラックガイド562とにより挟持されている。 The first rack forming portion 116 is sandwiched between the first pinion 16 and the first rack guide 561, and the second rack forming portion 126 is sandwiched between the second pinion 23 and the second rack guide 562.
 ピニオンからラック歯へ回転トルクが作用すると、ラック歯の歯すじに沿ってラックシャフトを回転させるように分力が発生する。しかしながら、本実施形態では、第1軸110と第2軸120が偏心して配置されているため、一方の軸をその軸の中心軸回りに回転させようとする力が作用したときに、他方の軸のピニオンとラックガイドにより、その回転が阻止される。たとえば、第1軸110に対して、第1ピニオン16から中心軸O1回りの回転力が作用した場合、第2軸120の第2ピニオン23と第2ラックガイド562により、ラックシャフト12Eが中心軸O1回りに回転することが阻止される。 ∙ When rotational torque acts from the pinion to the rack teeth, a component force is generated to rotate the rack shaft along the rack teeth. However, in the present embodiment, since the first shaft 110 and the second shaft 120 are arranged eccentrically, when a force is applied to rotate one shaft around the central axis of the shaft, The shaft pinion and rack guide prevent its rotation. For example, when a rotational force around the central axis O1 is applied from the first pinion 16 to the first shaft 110, the rack shaft 12E is centered by the second pinion 23 of the second shaft 120 and the second rack guide 562. Rotation around O1 is prevented.
 このような第6実施形態によれば、第1実施形態と同様の作用効果に加え、次の作用効果を奏する。 According to the sixth embodiment, in addition to the same functions and effects as those of the first embodiment, the following functions and effects are achieved.
 (7)第1軸110の中心軸O1に対して、第2軸120の中心軸O2を偏心させたので、ラックシャフト12Eが円形断面であってもラックシャフト12Eの回り止めを行うことができる。 (7) Since the center axis O2 of the second shaft 120 is decentered with respect to the center axis O1 of the first axis 110, the rack shaft 12E can be prevented from rotating even if the rack shaft 12E has a circular cross section. .
 なお、図7では、第1軸110の中心軸O1と第2軸120の中心軸O2とがZ軸方向に偏心している例について説明したが、偏心の方向は上述した場合に限定されない。また、ラックシャフト12Eの回り止めは、ラックシャフト12Eの両端部を支持する軸受によって行ってもよい。 In FIG. 7, the example in which the central axis O1 of the first shaft 110 and the central axis O2 of the second shaft 120 are eccentric in the Z-axis direction has been described, but the direction of eccentricity is not limited to the case described above. Further, the rotation prevention of the rack shaft 12E may be performed by bearings that support both ends of the rack shaft 12E.
 以下のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、上述の異なる実施形態で説明した構成同士を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせることも可能である。 The following modified examples are also within the scope of the present invention, and the configuration shown in the modified example and the configuration described in the above-described embodiment are combined, the configurations described in the above-described different embodiments are combined, or the following different It is also possible to combine the configurations described in the modification.
 (変形例1)
 上記実施形態では、第1軸110及び第2軸120を円形断面の部材とした例について説明したが、本発明はこれに限定されない。たとえば、第1軸及び第2軸の一方または双方を楕円形状としてもよい。図9は、本発明の実施形態の変形例1に係るラックシャフト12Gの横断面図である。図9では、第1軸710の第1ラック形成部116の横断面の形状を実線で示し、第2軸720の第2ラック形成部126の横断面の形状を二点鎖線で示している。変形例1では、第1ラック形成部116の各部の寸法が、第2ラック形成部126の各部の寸法よりも小さい。上記各部の寸法には、ラックの歯幅W1,W2、ラック形成部における長軸の長さ(長径a1,a2)及び短軸の長さ(短径b1,b2)、ラック形成部の肉厚T1,T2、並びに、ラックシャフトの中心軸Oから基準ピッチ線P1,P2までのZ軸寸法Z1,Z2が含まれる。
(Modification 1)
Although the said embodiment demonstrated the example which used the 1st axis | shaft 110 and the 2nd axis | shaft 120 as the member of a circular cross section, this invention is not limited to this. For example, one or both of the first axis and the second axis may be elliptical. FIG. 9 is a cross-sectional view of a rack shaft 12G according to the first modification of the embodiment of the present invention. In FIG. 9, the shape of the cross section of the first rack forming portion 116 of the first shaft 710 is indicated by a solid line, and the shape of the cross section of the second rack forming portion 126 of the second shaft 720 is indicated by a two-dot chain line. In the first modification, the dimensions of each part of the first rack forming part 116 are smaller than the dimensions of each part of the second rack forming part 126. The dimensions of the above-mentioned parts include the rack tooth widths W1 and W2, the lengths of the long axes (long diameters a1 and a2) and the short axes (short diameters b1 and b2) in the rack forming part, and the thickness of the rack forming part. T1 and T2, and Z axis dimensions Z1 and Z2 from the center axis O of the rack shaft to the reference pitch lines P1 and P2 are included.
 なお、変形例1に係るラックシャフト12Gは、中心軸Oに直交する横断面形状における各部の寸法の全てを異ならせることに限定されることもなく、少なくとも長径a1,a2が、第1軸710と第2軸720とで異なっていればよい。 The rack shaft 12G according to the modification 1 is not limited to changing all the dimensions of each part in the cross-sectional shape orthogonal to the central axis O, and at least the major axis a1 and a2 has the first axis 710. And the second axis 720 may be different.
 (変形例2)
 上記実施形態では、ラックの歯幅W1,W2が軸の外径D1,D2よりも小さい例(W1<D1,W2<D2)について説明したが、本発明はこれに限定されない。たとえば、図10に示すように、第1ラック115の歯幅W1は、第1ラック形成部116の外径D1と同じ寸法になるようにラック歯を成形してもよい。また、ラックの歯幅W1,W2が軸の外径D1,D2よりも大きくなるように、ラック歯を成形してもよい(W1>D1,W2>D2)。
(Modification 2)
In the above embodiment, the example in which the rack tooth widths W1 and W2 are smaller than the outer diameters D1 and D2 of the shaft (W1 <D1, W2 <D2) has been described, but the present invention is not limited to this. For example, as shown in FIG. 10, the rack teeth may be formed so that the tooth width W <b> 1 of the first rack 115 is the same as the outer diameter D <b> 1 of the first rack forming portion 116. The rack teeth may be formed such that the rack tooth widths W1 and W2 are larger than the outer diameters D1 and D2 of the shaft (W1> D1, W2> D2).
 (変形例3)
 上記実施形態では、第1軸と第2軸とが同一の材料から形成される例について説明したが、本発明はこれに限定されない。第1軸と第2軸をそれぞれ異なる材料から形成してもよい。たとえば、第2軸には、第1軸の材料に比べて強度の高い材料(すなわち、引張強度の大きい材料)を用いるなどして、第2軸の強度を第1軸に比べて大きくしてもよい。この場合、第2軸の外径を第1軸の外径よりも小さくすることができる。このように、第1軸と第2軸とを結合してラックシャフトを形成する場合、第1軸と第2軸の材料を異ならせることができる。これにより、第1軸や第2軸の径、軸交角、ラックシャフトの中心軸とピニオンの中心軸との軸間距離等を調整して、車両への搭載性を向上できる。
(Modification 3)
In the said embodiment, although the 1st axis | shaft and the 2nd axis | shaft demonstrated the example formed from the same material, this invention is not limited to this. The first axis and the second axis may be formed from different materials. For example, the second shaft is made stronger than the first shaft by using a material having a higher strength than the material of the first shaft (ie, a material having a high tensile strength). Also good. In this case, the outer diameter of the second shaft can be made smaller than the outer diameter of the first shaft. As described above, when the rack shaft is formed by combining the first shaft and the second shaft, the materials of the first shaft and the second shaft can be made different. Thereby, the diameter of the first axis or the second axis, the axis crossing angle, the inter-axis distance between the center axis of the rack shaft and the center axis of the pinion, and the like can be adjusted to improve the mountability to the vehicle.
 (変形例4)
 第1実施形態及び第2実施形態では、第2軸120の連結筒部122の外径D3と第1軸110,210の本体部111,211の外径D1とが同じである例について説明した(図2A、図2B、図4A参照)。第2実施形態の変形例では、第1軸210の連結筒部212の外径と第2軸220の本体部121の外径D2とが同じである例について説明した(図4B参照)。しかしながら、本発明は、一方の軸の連結筒部の外径を他方の軸の本体部の外径と同一とする場合に限定されない。第1軸の連結筒部の外径及び第2軸の連結筒部の外径は、第1軸の本体部及び第2軸の本体部の外径と異なるようにしてもよい。第1軸及び第2軸の連結筒部を第1軸の本体部及び第2軸の本体部よりも小径とすることで、ラックシャフトを軽量化できる。第1軸及び第2軸の連結筒部を第1軸の本体部及び第2軸の本体部よりも大径とすることで、ラックシャフトの強度を向上できる。
(Modification 4)
In 1st Embodiment and 2nd Embodiment, the outer diameter D3 of the connection cylinder part 122 of the 2nd axis | shaft 120 and the outer diameter D1 of the main-body parts 111,211 of the 1st axis | shafts 110 and 210 were demonstrated. (See FIGS. 2A, 2B, and 4A). In the modification of the second embodiment, the example in which the outer diameter of the connecting cylinder portion 212 of the first shaft 210 is the same as the outer diameter D2 of the main body portion 121 of the second shaft 220 has been described (see FIG. 4B). However, the present invention is not limited to the case where the outer diameter of the connecting cylinder portion of one shaft is the same as the outer diameter of the main body portion of the other shaft. The outer diameter of the connecting cylinder portion of the first shaft and the outer diameter of the connecting cylinder portion of the second shaft may be different from the outer diameters of the main body portion of the first shaft and the main body portion of the second shaft. A rack shaft can be reduced in weight by making the connecting cylinder part of a 1st axis | shaft and a 2nd axis | shaft smaller than the main-body part of a 1st axis | shaft, and the main-body part of a 2nd axis | shaft. The strength of the rack shaft can be improved by making the connecting cylinder portion of the first shaft and the second shaft larger in diameter than the main body portion of the first shaft and the main body portion of the second shaft.
 (変形例5)
 上記実施形態では、第1ラックがCGR仕様とされ、第2ラックがVGR仕様とされている例について説明したが、本発明はこれに限定されない。第1ラック及び第2ラックの双方をCGR仕様としてもよいし、第1ラック及び第2ラックの双方をVGR仕様としてもよい。第1ラックをVGR仕様とし、第2ラックをCGR仕様としてもよい。
(Modification 5)
In the above-described embodiment, the example in which the first rack has the CGR specification and the second rack has the VGR specification has been described, but the present invention is not limited to this. Both the first rack and the second rack may be CGR specifications, and both the first rack and the second rack may be VGR specifications. The first rack may be VGR specification and the second rack may be CGR specification.
 (変形例6)
 第1実施形態では、第1軸110を中実の円柱状部材とし、第2軸120を中実の円柱状部材とする例を説明し(図2A、図2B参照)、第2実施形態及び第2実施形態の変形例では、第1軸210を中空の円筒状部材とし、第2軸120を中実の円柱状部材とする例について説明した(図4A、図4B参照)。第4実施形態では、第1軸410A,410B,410Cを中実の円柱状部材とし、第2軸420を中空の円筒状部材とする例について説明したが(図6A,図6B,図6C参照)、本発明はこれらに限定されない。たとえば、第1軸及び第2軸をそれぞれ中空の円筒状部材としてもよい。
(Modification 6)
In the first embodiment, an example in which the first shaft 110 is a solid columnar member and the second shaft 120 is a solid columnar member (see FIGS. 2A and 2B) will be described. In the modification of the second embodiment, the example in which the first shaft 210 is a hollow cylindrical member and the second shaft 120 is a solid columnar member has been described (see FIGS. 4A and 4B). In the fourth embodiment, an example in which the first shafts 410A, 410B, and 410C are solid columnar members and the second shaft 420 is a hollow cylindrical member has been described (see FIGS. 6A, 6B, and 6C). ), The present invention is not limited to these. For example, the first shaft and the second shaft may each be a hollow cylindrical member.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effect of the embodiment of the present invention will be described together.
 ラックシャフト12A,12B1,12B2,12C1,12C2,12D1,12D2,12D3,12E,12Gは、操舵力が伝達される第1ラック115が形成された第1軸110,210,310A,310B,410A,410B,410C,710と、電動モータ21の駆動力が伝達される第2ラック125が形成され、第1軸110,210,310A,310B,410A,410B,410C,710に結合された第2軸120,220,320A,320B,420A,420B,420C,720と、を備え、第1軸110,210,310A,310B,410A,410B,410C,710の外径D1と第2軸120,220,320A,320B,420A,420B,420C,720の外径D2とは異径である。 The rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G have first shafts 110, 210, 310A, 310B, 410A on which a first rack 115 to which a steering force is transmitted is formed. 410B, 410C, 710 and a second rack 125 to which the driving force of the electric motor 21 is transmitted are formed, and the second shaft is coupled to the first shaft 110, 210, 310A, 310B, 410A, 410B, 410C, 710. 120, 220, 320A, 320B, 420A, 420B, 420C, 720, the outer diameter D1 of the first shaft 110, 210, 310A, 310B, 410A, 410B, 410C, 710 and the second shaft 120, 220, Different from the outer diameter D2 of 320A, 320B, 420A, 420B, 420C, 720 It is.
 この構成では、第1軸110,210,310A,310B,410A,410B,410C,710及び第2軸120,220,320A,320B,420A,420B,420C,720のうち、一方の軸の外径が他方の軸の外径に比べて小さいので、一方の軸の外径が他方の軸の外径と同じ場合に比べて、質量を軽減できる。これにより、ラックシャフト12A,12B1,12B2,12C1,12C2,12D1,12D2,12D3,12E,12Gを軽量化できる。 In this configuration, the outer diameter of one of the first shafts 110, 210, 310A, 310B, 410A, 410B, 410C, 710 and the second shafts 120, 220, 320A, 320B, 420A, 420B, 420C, 720. Is smaller than the outer diameter of the other shaft, the mass can be reduced compared to the case where the outer diameter of one shaft is the same as the outer diameter of the other shaft. Thereby, the rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G can be reduced in weight.
 ラックシャフト12A,12B1,12B2,12C1,12D1,12D2,12D3,12E,12Gは、第1軸110,210,310A,410A,410B,410C,710の外径D1が第2軸120,220,320A,420A,420B,420C,720の外径D2よりも小さい。 The rack shafts 12A, 12B1, 12B2, 12C1, 12D1, 12D2, 12D3, 12E, and 12G have the first shafts 110, 210, 310A, 410A, 410B, 410C, and 710 having the outer diameter D1 of the second shafts 120, 220, and 320A. , 420A, 420B, 420C, 720 is smaller than the outer diameter D2.
 この構成では、第2軸120,220,320A,420A,420B,420C,720に比べて作用する負荷が小さい第1軸110,210,310A,410A,410B,410C,710の外径D1を小さくすることで、第1軸110,210,310A,410A,410B,410C,710及び第2軸120,220,320A,420A,420B,420C,720の外径D1,D2を、それぞれの軸に必要な強度を満足しつつ、軽量化を図ることができる。 In this configuration, the outer diameter D1 of the first shaft 110, 210, 310A, 410A, 410B, 410C, 710 having a smaller load acting than the second shaft 120, 220, 320A, 420A, 420B, 420C, 720 is reduced. Accordingly, the outer diameters D1 and D2 of the first shafts 110, 210, 310A, 410A, 410B, 410C, and 710 and the second shafts 120, 220, 320A, 420A, 420B, 420C, and 720 are required for the respective shafts. It is possible to reduce the weight while satisfying the required strength.
 ラックシャフト12Eは、第2軸120の中心軸O2が、第1軸110の中心軸O1に対して偏心している。 In the rack shaft 12E, the central axis O2 of the second shaft 120 is eccentric with respect to the central axis O1 of the first shaft 110.
 この構成では、ラックシャフト12Eの回転を防止できる。 In this configuration, rotation of the rack shaft 12E can be prevented.
 ラックシャフト12C1,12C2は、第1軸310A,310B及び第2軸320A,320Bのうち、単位長さ当たりの質量が小さい一方の軸が、単位長さ当たりの質量が大きい他方の軸に比べて長く形成されている。 The rack shafts 12C1 and 12C2 are configured such that one of the first shafts 310A and 310B and the second shafts 320A and 320B has a smaller mass per unit length and a larger mass per unit length. It is formed long.
 この構成では、ラックシャフト12C1,12C2をより軽量化できる。 In this configuration, the rack shafts 12C1 and 12C2 can be reduced in weight.
 ステアリング装置100は、ラックシャフト12A,12B1,12B2,12C1,12C2,12D1,12D2,12D3,12E,12Gと、電動モータ21と、を備え、電動モータ21の回転力を第2ラック125を介してラックシャフト12A,12B1,12B2,12C1,12C2,12D1,12D2,12D3,12E,12Gに伝達する電動パワーステアリング装置である。 The steering device 100 includes rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G, and an electric motor 21, and the rotational force of the electric motor 21 is passed through the second rack 125. This is an electric power steering device for transmitting to rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G.
 この構成では、軽量化が実現されたラックシャフト12A,12B1,12B2,12C1,12C2,12D1,12D2,12D3,12E,12Gを有しているので、ステアリング装置100を軽量化できる。 In this configuration, since the rack shafts 12A, 12B1, 12B2, 12C1, 12C2, 12D1, 12D2, 12D3, 12E, and 12G that have been reduced in weight are provided, the steering device 100 can be reduced in weight.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2017年3月30日に日本国特許庁に出願された特願2017-068413に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-068413 filed with the Japan Patent Office on March 30, 2017, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  ステアリングホイールの操舵に伴い回転する第1ピニオンと噛み合う第1ラックが形成された第1軸と、
     電動モータにより回転する第2ピニオンと噛み合う第2ラックが形成され、前記第1軸に結合された第2軸と、を備え、
     前記第1軸の外径と前記第2軸の外径とは異径であるラックシャフト。
    A first shaft formed with a first rack that meshes with a first pinion that rotates as the steering wheel is steered;
    A second rack that meshes with a second pinion that is rotated by an electric motor, and a second shaft that is coupled to the first shaft; and
    A rack shaft, wherein an outer diameter of the first shaft and an outer diameter of the second shaft are different from each other.
  2.  請求項1に記載のラックシャフトにおいて、
     前記第1軸の外径は、前記第2軸の外径よりも小さいラックシャフト。
    The rack shaft according to claim 1, wherein
    A rack shaft having an outer diameter of the first shaft smaller than an outer diameter of the second shaft.
  3.  請求項1に記載のラックシャフトにおいて、
     前記第2軸の中心軸は、前記第1軸の中心軸に対して偏心しているラックシャフト。
    The rack shaft according to claim 1, wherein
    The rack shaft is eccentric with respect to the central axis of the first axis.
  4.  請求項1に記載のラックシャフトにおいて、
     前記第1軸及び前記第2軸のうち、単位長さ当たりの質量が小さい一方の軸が、単位長さ当たりの質量が大きい他方の軸に比べて長く形成されているラックシャフト。
    The rack shaft according to claim 1, wherein
    A rack shaft in which one of the first shaft and the second shaft having a smaller mass per unit length is formed longer than the other shaft having a larger mass per unit length.
  5.  請求項1に記載のラックシャフトと、
     電動モータと、を備え、
     前記電動モータの回転力を前記第2ラックを介して前記ラックシャフトに伝達する電動パワーステアリング装置。
    A rack shaft according to claim 1;
    An electric motor,
    An electric power steering device for transmitting a rotational force of the electric motor to the rack shaft via the second rack.
PCT/JP2018/008566 2017-03-30 2018-03-06 Rack shaft and electric power steering device WO2018180281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068413A JP2018167780A (en) 2017-03-30 2017-03-30 Rack shaft and electric power steering device
JP2017-068413 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180281A1 true WO2018180281A1 (en) 2018-10-04

Family

ID=63677352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008566 WO2018180281A1 (en) 2017-03-30 2018-03-06 Rack shaft and electric power steering device

Country Status (2)

Country Link
JP (1) JP2018167780A (en)
WO (1) WO2018180281A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302007A (en) * 2018-12-27 2021-08-24 日本精工株式会社 Linear drive shaft for steering device, and methods for manufacturing linear drive shaft and steering device
JP2022099680A (en) * 2020-12-23 2022-07-05 日本精工株式会社 Dual pinion type electric power steering device
JP2022111600A (en) * 2021-01-20 2022-08-01 日本精工株式会社 Rack shaft for dual pinion type electric power steering device, manufacturing method thereof, and dual pinion type electric power steering device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151132A (en) * 1999-11-26 2001-06-05 Honda Motor Co Ltd Electric power steering device
JP2014046803A (en) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Steering Ltd Method for manufacturing rack bar, rack bar and electric power steering device
JP2014151833A (en) * 2013-02-12 2014-08-25 Nsk Ltd Rack shaft of dual pinion type electric power steering device and method for manufacturing the same
JP2014234882A (en) * 2013-06-03 2014-12-15 高周波熱錬株式会社 Rack manufacturing method and hollow rack bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151132A (en) * 1999-11-26 2001-06-05 Honda Motor Co Ltd Electric power steering device
JP2014046803A (en) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Steering Ltd Method for manufacturing rack bar, rack bar and electric power steering device
JP2014151833A (en) * 2013-02-12 2014-08-25 Nsk Ltd Rack shaft of dual pinion type electric power steering device and method for manufacturing the same
JP2014234882A (en) * 2013-06-03 2014-12-15 高周波熱錬株式会社 Rack manufacturing method and hollow rack bar

Also Published As

Publication number Publication date
JP2018167780A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5508243B2 (en) Steering transmission shaft and universal joint yoke coupling structure and vehicle steering device
JP2014105773A (en) Connecting structure for shaft and universal joint yoke, connecting method and intermediate shaft
JP4968114B2 (en) Universal joint
JP5843023B2 (en) Rack and pinion type steering gear unit
US10288125B2 (en) Torque transmission unit
WO2018180281A1 (en) Rack shaft and electric power steering device
US11383757B2 (en) Shaft for steering device, method of manufacturing shaft for steering device, and electric power steering device
JP5176349B2 (en) Steering device
CN101903253A (en) Steering apparatus
JP2012096681A (en) Connecting structure of shaft and yoke of universal joint and electric power steering device
JP5273103B2 (en) Connection structure of male shaft and female shaft
WO2017086013A1 (en) Power steering device and steering device with same
WO2015133167A1 (en) Electric power steering device and method for assembling same
JP2007062477A (en) Steering device
JP4234867B2 (en) Electric power steering device
JP2015168306A5 (en)
JP2008303980A (en) Fitting
JP5141160B2 (en) Joint structure of yoke and rotating shaft in steering device
JP2021063577A (en) Worm wheel with shaft, worm speed reducer, and electric power steering device
JP2015175441A (en) torque transmission unit
JP7606742B2 (en) Manufacturing method of steering shaft
JP5445660B2 (en) Steering device
JP2010149574A (en) Electric power steering device
JP5434250B2 (en) Vehicle steering damper device and steering device
JP2011220417A (en) Joint cross type universal joint yoke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777033

Country of ref document: EP

Kind code of ref document: A1