[go: up one dir, main page]

WO2018181265A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2018181265A1
WO2018181265A1 PCT/JP2018/012335 JP2018012335W WO2018181265A1 WO 2018181265 A1 WO2018181265 A1 WO 2018181265A1 JP 2018012335 W JP2018012335 W JP 2018012335W WO 2018181265 A1 WO2018181265 A1 WO 2018181265A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
wiring
pixels
liquid crystal
electrode
Prior art date
Application number
PCT/JP2018/012335
Other languages
French (fr)
Japanese (ja)
Inventor
諒 米林
隆之 西山
示寛 横野
耕平 田中
吉田 圭介
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018181265A1 publication Critical patent/WO2018181265A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present invention relates to a liquid crystal display device.
  • Japanese Patent Application Laid-Open No. 2002-107730 discloses a technique for arranging a wiring at a position that becomes a boundary between domains in a liquid crystal display device having pixels composed of a plurality of domains having different alignment directions of liquid crystal molecules when a voltage is applied to the liquid crystal molecules. Is disclosed. Since a dark line is generated at the domain boundary, a decrease in transmittance when the wiring is arranged in the pixel is reduced by arranging the wiring at the domain boundary.
  • the wiring arranged in the non-light-shielding region (opening) of the pixel may vary in wiring width and wiring position in the process of forming the wiring.
  • the width and position of the wiring vary, the transmittance varies between pixels in which such a wiring is arranged.
  • the transmittance of the pixel in which the wiring is arranged varies, resulting in a color different from the original color and a phenomenon such as color shift may occur.
  • the transmittance of the pixels in which the wiring is arranged varies, so that the balance of the transmittance of the entire pixel is lost and the display quality is deteriorated.
  • An object of the present invention is to provide a technique capable of suppressing a reduction in display quality even when wiring is arranged in a non-light-shielding region of a pixel.
  • a liquid crystal display device includes an active matrix substrate, a counter substrate disposed opposite to the active matrix substrate and including a light shielding member, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate.
  • a pixel electrode having a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, and having a slit in the non-light shielding region.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate shown in FIG.
  • FIG. 3 is an enlarged schematic view of a part of the active matrix substrate 10 shown in FIG.
  • FIG. 4A is an enlarged view of the pixel electrode shown in FIG. 4B is a schematic diagram illustrating the alignment direction of the liquid crystal molecules of the pixel illustrated in FIG. 3.
  • FIG. 5 is a schematic diagram of pixel electrodes of installed pixels and non-installed pixels in the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a pixel according to a modified example of the first embodiment.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate shown in FIG.
  • FIG. 3 is an enlarged schematic view of a part of the active matrix substrate 10 shown in FIG
  • FIG. 7A is a schematic diagram illustrating a schematic configuration of a part of pixels according to the second embodiment.
  • FIG. 7B is a schematic diagram showing a low transmission region in the pixel shown in FIG. 7A.
  • FIG. 8A is a schematic diagram of pixel electrodes of installed pixels and non-installed pixels in the second embodiment.
  • FIG. 8B is a schematic diagram illustrating a non-installed pixel and a low transmission region of the installed pixel illustrated in FIG. 8A.
  • FIG. 9A is an enlarged schematic view of a part of pixels of an active matrix substrate in a modification of the second embodiment.
  • FIG. 9B is a schematic diagram showing an example of wiring arrangement different from FIG. 9A.
  • FIG. 10 is an enlarged schematic view of a part of the pixels of the active matrix substrate in the third embodiment.
  • FIG. 11 is a schematic diagram illustrating a schematic arrangement example of gate drivers provided on the active matrix substrate according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating an equivalent circuit of the gate driver shown in FIG.
  • FIG. 13 is a timing chart when the gate driver shown in FIG. 12 drives the gate line.
  • FIG. 14 is a schematic diagram showing an arrangement example of circuit elements of the gate driver shown in FIG.
  • FIG. 15 is a schematic diagram illustrating a configuration example of a pixel provided with the circuit element, internal wiring, and control wiring of the gate driver illustrated in FIG.
  • FIG. 16 is a schematic diagram of a part of pixels in the first modification, and illustrates the case where the wiring is a source line.
  • FIG. 17 is a schematic diagram of some pixels in the second modification.
  • a liquid crystal display device includes an active matrix substrate, a counter substrate disposed opposite to the active matrix substrate and including a light shielding member, and sandwiched between the active matrix substrate and the counter substrate.
  • the active matrix substrate includes a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, and a slit is formed in the non-light shielding region.
  • a plurality of pixels each provided with a pixel electrode and a wiring arranged in the pixel region, wherein liquid crystal molecules in the liquid crystal layer are driven in a horizontal alignment mode, and a part of the plurality of pixels is
  • Each pixel has a low transmission region in which the transmittance in the slit in the pixel is lower than the transmittance in the slit in other pixels A, the wiring, the in the part of the pixels are arranged in the low transmission region (first configuration).
  • the pixel electrode includes a pixel electrode having a slit in the non-light-shielding region, and the liquid crystal molecules are driven in the horizontal alignment mode.
  • Some pixels have a low transmission region in which the transmittance in the slit of the pixel electrode of the pixel is lower than the transmittance in the slit of the pixel electrode of another pixel.
  • the wiring is arranged in a low transmission region in some pixels. Therefore, even if there are variations in the width and position of the wiring, the transmittance between the pixels where the wiring is arranged is less likely to vary than in the case where the transmittance in the slits of the pixel electrodes of all the pixels is uniform. It is possible to reduce the deterioration of the overall display quality.
  • the pixel electrode includes a first electrode and a second electrode, the slit is provided between the first electrode and the second electrode, and the wiring is It is substantially parallel to the extending direction, and the width of the slit in the some pixels is wider than the width of the slit in the other pixels, and the low transmission region in the some pixels is the first of the pixels. It is good also as including the area
  • the low transmission region includes a region in which the distance from the first electrode and the second electrode is substantially in the middle.
  • the alignment regulating force due to the voltage applied to the liquid crystal molecules is weaker than the vicinity of the first electrode and the second electrode, and the first electrode and the second electrode
  • the transmittance tends to be lower than in the vicinity of the second electrode.
  • an active matrix substrate In the first configuration, an active matrix substrate, a counter substrate disposed opposite to the active matrix substrate and including a light shielding member, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate are provided.
  • the active matrix substrate includes a plurality of pixels each provided with a pixel electrode and having a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, and a pixel region.
  • a liquid crystal molecule in the liquid crystal layer is driven in a vertical alignment mode, and each of the plurality of pixels is aligned when the liquid crystal molecules are driven in the non-light-shielding region of the pixel.
  • a plurality of alignment division regions having different directions, and a boundary between the plurality of alignment division regions is substantially parallel to a direction in which the wiring extends.
  • the width of the boundary portion in some of the plurality of pixels is wider than the width of the boundary portion in other pixels, and the wiring is the non-light-shielding region of the some pixels. It is good also as arrange
  • each pixel includes a boundary portion that is a boundary between a plurality of alignment division regions in the pixel and substantially parallel to the extending direction of the wiring.
  • a dark line is generated at the boundary portion of the alignment division region, and the transmittance tends to decrease.
  • the transmittance between the pixels in which the wiring is arranged is less likely to vary, and display such as a color shift is displayed. Degradation can be reduced.
  • the active matrix substrate or the counter substrate further includes a common electrode disposed to face the pixel electrode in the plurality of pixels, and in the partial pixel
  • the common electrode may have an opening substantially parallel to a direction in which the wiring extends in a position overlapping the wiring (fourth configuration).
  • the common electrode in some pixels is provided with an opening at a position overlapping the wiring.
  • no voltage is applied to the portion where the opening is provided, and the alignment regulating force on the liquid crystal molecules is weakened. Therefore, the transmittance is likely to be lower in the portion where the opening is provided than in the other portions.
  • the transmittance between the pixels in which the wiring is arranged is difficult to vary, and a reduction in display quality such as a color shift can be reduced.
  • the active matrix substrate further includes a plurality of gate lines, a plurality of source lines intersecting with the plurality of gate lines, and each of the plurality of gate lines. And a drive circuit that switches a corresponding one gate line to a selected state or a non-selected state according to a supplied control signal, and the drive circuit includes a drive circuit element including a plurality of switching elements.
  • the drive circuit element may be disposed in the part of the pixels and connected to the wiring, and the wiring may supply the control signal to the drive circuit element connected to the wiring. Good (fifth configuration).
  • the drive circuit element of the drive circuit that drives the gate line and the wiring that supplies the control signal to the drive circuit element can be arranged in some pixels. And reduction in display quality can be reduced.
  • the active matrix substrate further includes a plurality of gate lines and a plurality of source lines intersecting the plurality of gate lines, and the pixel electrode of each pixel is , Connected to one gate line and one source line, and the wiring may be the one source line connected to a pixel electrode of a pixel in which the wiring is arranged (sixth configuration).
  • the source line connected to the pixel electrode of the pixel in which the wiring is arranged can be arranged in the pixel, the degree of freedom of arrangement of the elements provided in the pixel is increased, and the display Degradation can be reduced.
  • FIG. 1 is a schematic diagram showing a schematic configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 1 includes an active matrix substrate 10, a counter substrate 20, and a liquid crystal layer 30 sandwiched between these substrates.
  • the liquid crystal display device 1 includes a pair of polarizing plates that sandwich the active matrix substrate 10 and the counter substrate 20, and includes a backlight on the active matrix substrate 10 side.
  • the liquid crystal molecules in the liquid crystal layer 30 are driven in a VA mode or a TN mode that is vertically aligned according to a voltage applied between the active matrix substrate 10 and the counter substrate 20.
  • the counter substrate 20 includes a common electrode, a black matrix (BM), and three color filters of red (R), green (G), and blue (B) (all not shown).
  • FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate 10.
  • M M: natural number
  • gate lines G (1) to G (M) are formed substantially in parallel at regular intervals from one end to the other end in the X-axis direction.
  • gate lines G are referred to as gate lines G.
  • a plurality of source lines S are formed so as to intersect with the gate lines G.
  • FIG. 3 is an enlarged schematic view of a part of the active matrix substrate 10. As shown in FIG. 3, a plurality of pixels PIX each having a pixel electrode 11 are formed on the active matrix substrate 10.
  • the pixel PIX corresponds to one of the colors R, G, and B of the color filter in the counter substrate 20 and is arranged in the order of R, G, and B along the extending direction of the gate line G, for example.
  • Each pixel PIX has a light shielding region Pb covered with a black matrix provided on the counter substrate 20 and a non-light shielding region Pa (also referred to as an opening).
  • the pixel electrode 11 is connected to the gate line G and the source line S through a thin film transistor 12 (TFT: Thin Film Transistor) (hereinafter referred to as a pixel TFT).
  • TFT Thin Film Transistor
  • the gate line G, the source line S, and the pixel TFT 12 are provided in the light shielding region Pb.
  • the data signal voltage supplied to the source line S is input to the pixel electrode 11 via the pixel TFT 12.
  • a predetermined voltage is applied to the common electrode (not shown) in the counter substrate 20.
  • the potential of the pixel PIX corresponds to the potential of the source line S, the capacitance between the pixel electrode 11 and the gate line G, and the pixel electrode 11 and the common electrode (not shown) according to the potential change of the gate line G. Controlled by the capacity of
  • the structure of the pixel electrode 11 in this embodiment will be described.
  • the pixel electrode 11a of the left pixel PIXa shown in FIG. 3 will be described as an example, but the pixel electrodes 11 of other pixels also have the same structure.
  • 4A is an enlarged view of the pixel electrode 11a shown in FIG.
  • the pixel electrode 11a has a so-called fishbone shape including a trunk portion 111, a plurality of branch portions 112, a plurality of slits 113, and a contact portion 114.
  • the trunk portion 111 has a cross shape including a first trunk portion 111y parallel to the Y axis and a second trunk portion 111x parallel to the X axis.
  • the plurality of branch portions 112 are non-parallel to the trunk portion 111 and are arranged so as to be substantially line symmetric with respect to the trunk portion 111. Specifically, the branch portions 112 provided in the four regions (A to D) divided by the first trunk portion 111y and the second trunk portion 111x are branched portions 112 provided in the same region in the direction extending from the trunk portion 111. Is different from the branch portion 122 provided in another region.
  • the slit 113 is formed between the branch part 112 and the branch part 112 for each region.
  • the orientation of the liquid crystal molecules in the pixel PIX is four directions (Da, Db, Dc, Dd) toward the trunk 111 along each slit 113, as shown in FIG. 4B. It has four domains with different directions.
  • a wiring 13 passing through the non-light-shielding region Pa is arranged in the pixel PIXb.
  • the wiring 13 is disposed so as to be substantially parallel to the source line S in the non-light-shielding region Pa.
  • the wiring 13 is, for example, a wiring used for a drive circuit that drives the gate line G, an auxiliary wiring connected to the common electrode, or the like. A specific example of the wiring 13 will be described later.
  • the transmittance of the portion where the wiring 13 is arranged is lowered. If the wirings 13 are arranged in all the R, G, and B pixels, the change in the transmittance of the entire pixel becomes large. Therefore, in this embodiment, the wirings 13 are connected to pixels of a specific color (for example, B (blue)). Deploy. Further, the transmittance of a pixel in which the wiring 13 is disposed (hereinafter referred to as an installed pixel) and a pixel in which the wiring 13 is not disposed (hereinafter referred to as a non-installed pixel) excluding the contribution due to the difference in color of the color filter is equal.
  • the width of the installed pixel and the width of the non-light-shielding area Pa are adjusted to be larger than those of the non-installed pixel.
  • the pixel width L2 and the non-light-shielding region Pa width L12 in the installation pixel PIXb are larger than the pixel width L1 and the non-light-shielding region Pa width L11 in the non-installation pixel PIXa. It has become.
  • the trunk portion 111 is a boundary between four domains, and the boundary portion is such that the orientation direction of liquid crystal molecules to which a voltage is applied is parallel or perpendicular to the transmission axis of a polarizing plate (not shown). Therefore, the transmittance is lowered and dark lines are generated.
  • the wiring 13 is arranged in a region where a dark line is generated in the pixel (hereinafter referred to as a dark line region). Since the dark line region in the pixel has lower transmittance than the other regions of the pixel, the transmittance of the pixel hardly changes even if the wiring 13 is arranged in the dark line region.
  • the installed pixel is configured so that the dark line region in the installed pixel is wider than the dark line region in the non-installed pixel. This will be specifically described below.
  • FIG. 5 is a schematic diagram showing the pixel electrodes 11a and 11b of the non-installed pixel PIXa and the installed pixel PIXb.
  • the pixel electrode 11b of the installed pixel PIXb has a width W2 of the first trunk 111y substantially parallel to the extending direction of the wiring 13, and a width W1 of the first trunk 111y of the pixel electrode 11a of the non-installed pixel PIXa. Wider than.
  • a dark line is generated in the area where the trunk 111 is provided in both the installed pixel PIXb and the non-installed pixel PIXa.
  • the dark line region is expanded in the first trunk 111y of the installation pixel PIXb. Therefore, even if there is some variation in the width of the wiring 13 and the position of the wiring 13, it is easy to arrange the wiring 13 in the dark line region of the installation pixel PIXb, and variation in transmittance between the installation pixels PIXb is reduced. As a result, even if the wirings 13 having different widths, positions, and the like are arranged in the pixels of a specific color, the display quality such as a color shift is unlikely to deteriorate.
  • the wiring 13 described above is disposed at the approximate center in the X-axis direction of the first trunk portion 111y of the installed pixel. With this configuration, the parasitic capacitance between the wiring 13 and another signal line provided in the same layer can be reduced. In addition, it is possible to minimize the variation in the transmittance of the installed pixels due to the variation in the width and position of the wiring 13.
  • the width of the second trunk 111x that is substantially parallel to the extending direction of the wiring 130 is set to be the second of the non-installed pixel in which the wiring 130 is not provided. It is wider than the trunk 111x.
  • the area where the second trunk 111x is provided is a dark line area where a dark line is generated. Therefore, by making the width of the second trunk portion 111x in the installed pixel in which the wiring 130 is arranged wider than that in the non-installed pixel, in the installed pixel in which the wiring 130 is arranged, a dark line region substantially parallel to the extending direction of the wiring 130 is formed. Can be spread. As a result, even when the width, position, and the like of the wiring 130 vary, it is easy to arrange the wiring 130 in the dark line region, and variation in transmittance between installed pixels where the wiring 130 is arranged can be reduced.
  • FIG. 7A is an enlarged schematic view of a part of the pixels of the active matrix substrate 10 in the present embodiment.
  • the source line S is bent and the pixel PIX has a non-rectangular shape.
  • the pixel PIX has two domains having different alignment directions (arrows P1 and P2) of liquid crystal molecules.
  • the pixel electrode 210 includes two electrode portions 211 (hereinafter referred to as a long side electrode portion), two electrode portions 212 (hereinafter referred to as short side electrode portions) connected to the long side electrode portion 211, a contact portion 213, and a slit. 214.
  • the two long side electrode portions 211 are bent and spaced apart so as to be substantially parallel to the source line S, and have a slit 214 between the two long side electrode portions 211.
  • the two short side electrode portions 212 are substantially parallel to the X axis, and one short side electrode portion 212 is connected to one long side electrode portion 211 and the contact portion 213.
  • the active matrix substrate 10 is provided with a common electrode through an insulating film so as to face the pixel electrode 210.
  • the liquid crystal molecules in the liquid crystal layer 30 rotate in the horizontal direction with respect to the direction of the electric field in accordance with a lateral electric field (fringe electric field) generated between the common electrode and the pixel electrode 210.
  • an electric field in a direction substantially perpendicular to the extending direction of the long side electrode portion 211 is formed along the edge of the slit 214, but in the slit 214, the long side electrode portion 211 is formed.
  • FIG. 8A is a schematic diagram illustrating a configuration example of a pixel of an installed pixel PIXb in which the wiring 13 is installed and a non-installed pixel PIXa in which the wiring 13 is not arranged.
  • the width of the installed pixel PIXb in the X-axis direction is wider than the width of the non-installed pixel PIXa in the X-axis direction.
  • FIG. 8B is a diagram showing only the pixel electrode 210a of the non-installed pixel PIXa and the pixel electrode 210b of the installed pixel PIXb shown in FIG. 8A.
  • the width W3 of the slit 214a is set so that the transmittance in the slit 214a of the pixel electrode 210a is substantially the same as the transmittance in the vicinity of the long side electrode portion 211.
  • the width W4 of the slit 214b is set so that the transmittance of the region overlapping the wiring 13 in the slit 214b of the pixel electrode 210b is lower than that of the non-installed pixel PIXa. That is, as shown in FIG.
  • the width W4 of the slit 214b in the pixel electrode 210b of the installed pixel PIXb is wider than the width W3 of the slit 214a in the pixel electrode 210a of the non-installed pixel PIXa.
  • the width W41 of the region 2141b in the slit 214b is wider than the width W31 of the region 2141a in the slit 214a in the non-installed pixel PIXa.
  • the installed pixel PIXb has a region 2141b (hereinafter referred to as a low transmission region) having a lower transmittance than that in the slit 214a in the non-installed pixel PIXa in the slit 214b.
  • the wiring 13 is arranged along the region 2141b in the slit 214 of the pixel electrode 210b in the installation pixel PIXb.
  • the width of the wiring 13 is compared with the case where the transmittance in the slit 214 of the pixel electrode 210 of all the pixels is uniform. Even when the positions and the positions are different, it is possible to reduce the variation in transmittance between the installed pixels. As a result, even if the wiring 13 having a different shape or the like is arranged in a pixel of a specific color, it is possible to make it difficult for display quality deterioration such as color shift to occur.
  • FIG. 9A is an enlarged schematic view of a part of the pixels of the active matrix substrate 10a in the present modification.
  • the gate lines G in the active matrix substrate 10a are bent in the Y-axis direction.
  • Two electrode portions 221 (hereinafter referred to as long side electrode portions) of the pixel electrode 220 are bent in the same manner as the gate line G in the non-light-shielding region Pa.
  • the pixel electrode 220 has a slit 224 between the long side electrode portions 221.
  • the pixels are arranged in the order of R, G, and B along the extending direction of the source line S.
  • a wiring 131 passing through the non-light-shielding region Pa is arranged.
  • the wiring 131 is a wiring used for a drive circuit for driving the gate line G, an auxiliary wiring connected to the common electrode, or the like, similar to the wiring 13 described above.
  • the wiring 131 is bent in the same manner as the gate line G, and is disposed substantially parallel to the extending direction of the gate line G.
  • the width of the installed pixel PIXb in the Y-axis direction is wider than that of the non-installed pixel PIXa and The axial width is also wider than that of the non-installed pixel PIXa.
  • the width W5 of the slit 224 is set so that the transmittance in the slit 224 of the pixel electrode 220 is substantially the same as the transmittance in the vicinity of the long side electrode portion 221. Is set.
  • the width W6 of the slit 224 of the pixel electrode 220 in the installed pixel PIXb is larger than the width W5 of the slit 224 of the pixel electrode 220 in the non-installed pixel PIXa.
  • the width 61 of the region 2241b in the vicinity of the center of the slit 224b in which the orientation regulating force is weakened in the installed pixel PIXb is wider than the width 51 of the region 2241a of the non-installed pixel PIXa. That is, the installation pixel PIXb has the low transmission region 2241b in the slit 224b.
  • the wiring 13 is arranged in the low transmission region 2241b in the installation pixel PIXb. Therefore, even if the width, position, and the like of the wiring 131 vary, it is possible to reduce variation in transmittance between the installed pixels PIXb as compared with the case where the transmittance in the slits 224 of all the pixels is uniform.
  • the wiring 131 that is substantially parallel to the extending direction of the gate line G is disposed in the pixel.
  • the wiring 132 that is substantially parallel to the source line S is further provided. May be arranged in the pixel.
  • the wiring 132 cannot be completely overlapped with the regions 2241a and 2241b even if the width of the slit 224 of each pixel is increased. Therefore, when the width, position, and the like of the wiring 132 are varied, variation in transmittance between installed pixels provided with the wiring 132 is not suppressed. However, since at least the variation in the transmittance between the installed pixels in which the wiring 131 is disposed can be suppressed, it is possible to reduce deterioration in display quality.
  • the shape of the pixel electrode of the installed pixel that overlaps the wiring is different from the pixel electrode of the non-installed pixel, so that the dark line region or the low transmission region in the installed pixel is more than the non-installed pixel. Increased to suppress variation in transmittance between installed pixels.
  • variation in transmittance between installed pixels is further suppressed by using a common electrode will be described.
  • FIG. 10 is an enlarged schematic view of a part of the pixels of the active matrix substrate 10b in the present embodiment.
  • the same components as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment.
  • the illustration of the light shielding region Pb covered with the black matrix is omitted.
  • the common electrode 15 shown in FIG. 10 is arranged to face the pixel electrode 210 with an insulating film interposed therebetween.
  • the common electrode 15 has a slit (opening) 151 at a position overlapping the wiring 13 in the non-light-shielding region Pa of the installation pixel PIXb.
  • the width 151 of the slit 151 in the X-axis direction is wider than that of the wiring 13.
  • the transmittance is lower than that of the portion where the slit 151 is not provided. Therefore, even if the width, position, and the like of the wiring 13 arranged in the installation pixel PIXb vary, the variation in transmittance between the installation pixels PIXb can be further reduced as compared with the second embodiment.
  • the wiring 13 is disposed at substantially the center of the width of the slit 151. With this configuration, the parasitic capacitance between the wiring 13 and other signal lines can be reduced. In addition, it is possible to reduce variations in the transmittance of installed pixels due to variations in the width and position of the wiring 13.
  • the slit width of the pixel electrode 210 in the installed pixel PIXb is wider than the slit of the pixel electrode 210 in the non-installed pixel PIXa, but the slit of the pixel electrode 210 of the installed pixel PIXb and the non-installed pixel PIXa. May be equal in width. Even when the slit 151 is provided only at the position where the common electrode 15 overlaps the wiring 13 in the installation pixel PIXb, when a voltage is applied to the liquid crystal molecules, the alignment regulating force on the liquid crystal molecules at the position of the slits 151 is weakened. The transmittance decreases.
  • the installed pixel has a low transmission region having a lower transmittance than the non-installed pixel in the region where the slit 151 is provided. Therefore, by arranging the wiring 13 in the low transmission region provided in the common electrode 15, it is possible to reduce variation in transmittance between installed pixels due to variation in the width and position of the wiring 13.
  • the pixel electrode 210 similar to that of the second embodiment has been described as an example, but the shape of the pixel electrode is not limited thereto.
  • a pixel electrode having the same fishbone shape as in the first embodiment may be used, or a pixel electrode in which no slit is formed may be used.
  • FIG. 11 is a schematic diagram showing a schematic arrangement example of gate drivers provided on the active matrix substrate 10c in the present embodiment.
  • the source line S is not shown for convenience.
  • each gate driver 40 that switches the gate line G to a selected state or a non-selected state is provided.
  • the gate driver 40 is disposed between adjacent gate lines G. That is, in this example, the gate driver 40 is disposed in the pixel.
  • each gate driver 40 is arranged between the corresponding gate line G and the gate line G adjacent to the gate line G.
  • the gate drivers 40 provided for the odd-numbered gate lines G (G (1), (3), (5)%) Are connected to each other via the control wiring 411.
  • the gate drivers 40 provided for the even-numbered gate lines G (G (2), (4), (6)%) Are connected to each other via the control wiring 411.
  • terminal portions 71 and 72 are provided in the frame region on the side where the source driver 42 is provided.
  • the terminal unit 71 is connected to the display control circuit 50 and the power supply 60.
  • the terminal portion 72 is connected to the display control circuit 50, the source driver 42, and the source line S (see FIG. 2).
  • the display control circuit 50 has, as a control signal, a signal that repeats an H level (VDD) potential and an L level (VSS) potential alternately (hereinafter referred to as a clock signal) at a constant cycle, and the same potential as the H level of the clock signal.
  • a signal (hereinafter, reset signal) is supplied to the terminal unit 71.
  • the power supply 60 supplies a power supply voltage signal to the source driver 42 and the terminal unit 71.
  • the terminal unit 71 receives signals such as a supplied control signal and a power supply voltage signal, and supplies each signal to each gate driver 40 via the control wiring 411.
  • the gate driver 40 outputs a voltage signal indicating one of the selected state and the non-selected state to the corresponding gate line G in accordance with the supplied signal.
  • the source driver 42 outputs a data signal to each source line S (see FIG. 2) via the terminal unit 72 in accordance with a signal input from the display control circuit 50.
  • FIG. 12 is a diagram illustrating an equivalent circuit of the gate driver 40 (n) that drives the gate line G (n).
  • the gate driver 40 (n) includes thin film transistors (TFT: Thin Film Transistor) (hereinafter referred to as TFT-A to TFT-E) denoted by alphabets A to E as switching elements, a capacitor Cbst, , NetA which is an internal wiring of the gate driver 40.
  • TFT Thin Film Transistor
  • the drain terminal of the TFT-B is connected to the previous gate line G (n ⁇ 1), the gate terminal is connected to the control wiring 411 that supplies the clock signal CKB, and the source terminal is connected to netA.
  • the TFT-B controls the raising and lowering of the potential of the netA according to the clock signal CKB and the potential of the gate line G (n ⁇ 1).
  • the drain terminal of TFT-A is connected to netA, the gate terminal is connected to a control wiring 411 that supplies a reset signal CLR, and the source terminal is connected to a control wiring 411 that supplies a power supply voltage signal VSS.
  • the TFT-A sets the potential of netA to the level of the power supply voltage signal VSS at the timing specified by the reset signal CLR.
  • the gate terminal of the TFT-E is connected to netA, the drain terminal is connected to the control wiring 411 that supplies the clock signal CKA, and the source terminal is connected to the gate line G (n).
  • the drain terminal of the TFT-D is connected to the gate line G (n), the gate terminal is connected to the control wiring 411 that supplies the reset signal CLR, and the source terminal is connected to the control wiring 411 that supplies the power supply voltage signal VSS. Connected.
  • the drain terminal of the TFT-C is connected to the gate line G (n), the gate terminal is connected to the control wiring 411 that supplies the clock signal CKB, and the source terminal is connected to the control wiring 411 that supplies the power supply voltage signal VSS. Connected.
  • the capacitor Cbst has one electrode connected to netA (n) and the other electrode connected to the gate line G (n).
  • the capacitor Cbst boosts the potential of netA (n) in accordance with the potential of the clock signal CKA output from the TFT-E.
  • connection of the clock signals CKA and CKB is switched in the gate lines G (n + 1) and G (n ⁇ 1) of the next stage and the previous stage.
  • the drain terminal of the TFT-E is connected to the control wiring 411 that supplies the clock signal CKB
  • the gate terminals of the TFT-B and TFT-C are the control wiring 411 that supplies the clock signal CKA. Connected.
  • the reset signal CLR is, for example, a signal that becomes H level for a certain period before the scanning of the gate line G is started. In this case, the reset signal CLR becomes H level for each vertical scanning period. When the reset signal CLR becomes H level, the netA and the gate line G are reset to L level (the level of the power supply voltage signal VSS).
  • GSP gate start pulse gate start pulse
  • GSP gate start pulse gate start pulse
  • FIG. 13 is a timing chart when the gate driver 40 (n) drives the gate line G (n).
  • the clock signals CKA and CKB alternately repeat the potentials at the H level and the L level every horizontal scanning period (1H) so as to have opposite phases to each other.
  • the previous gate line G (n ⁇ 1) is in a selected state, and the clock signal CKA becomes L level and the clock signal CKB becomes H level.
  • the TFT-B is turned on, the H-level potential of the gate line G (n ⁇ 1) is input to the drain terminal of the TFT-B, and netA is charged to the H level.
  • TFT-E is turned off, the potential of netA is maintained without being lowered.
  • the potential of the gate line G (n) is at the L level.
  • the TFT-E is turned on and the TFT-C is turned off. Since the capacitor Cbst is provided between the netA and the gate line G (n), the netA is charged to a potential higher than the H level of the clock signal CKA as the potential of the drain of the TFT-F increases. .
  • the H level potential of the clock signal CKA is output to the gate line G (n).
  • the gate line G (n) is selected, and the gate driver 40 (n + 1) that drives the next-stage gate line G (n + 1) receives the H of the gate line G (n) as the set signal St. A level potential is output.
  • the TFT-B is turned on, and netA is charged to L level. Further, since the TFT-E is turned off and the TFT-C is turned on, the gate line G (n) is charged to the L level and switched to the non-selected state. Thereafter, the gate line G (n) is maintained at the L level potential by the clock signal CKB and the TFT-C.
  • FIG. 14 is an equivalent circuit diagram illustrating an arrangement example of circuit elements of the gate driver 40.
  • FIG. 14 shows an arrangement example of circuit elements of the gate drivers 40 (n ⁇ 2) to 40 (n + 1) for driving the gate lines G (n ⁇ 2) to G (n + 1), respectively. .
  • each gate driver 40 is arranged in a row between the gate line G driven by the gate driver 40 and the previous gate line G.
  • the gate driver 40 (n ⁇ 2) and the gate driver 40 (n) are connected to each other through a common control wiring 411.
  • circuit elements such as TFT-A to TFT-E indicated by alphabets A to E and the capacitor Cbst and the internal wiring such as netA for connecting the circuit elements are distributed in different pixels in the same row.
  • the configuration of the pixel in which the circuit element, the internal wiring, and the control wiring 411 of the gate driver 40 are arranged will be specifically described.
  • FIG. 15 is an enlarged schematic view of a part of pixels including a pixel in which circuit elements, internal wirings, and control wirings 411 of the gate driver 40 are arranged.
  • the same reference numerals as those in the first embodiment are given to the same configurations as those in the first embodiment.
  • the circuit element 410 of the gate driver 40 is arranged in the light shielding region of the pixel PIXb.
  • the internal wiring 412 is connected to the circuit element 410 and is arranged substantially in parallel with the gate line G in a light shielding region of a plurality of pixels adjacent in the extending direction of the gate line G.
  • the control wiring 411 is connected to the circuit element 410, and a part of the control wiring 411 is disposed so as to be substantially parallel to the source line S in the non-light-shielding region Pa of the pixel PIXb. That is, in this example, the control wiring 411 corresponds to the wiring 13 in the first embodiment described above, and the pixel PIXb is an installed pixel in which the wiring 13 is arranged.
  • the pixel electrode 11 has the same fishbone shape as in the first embodiment.
  • the control wiring 411 is disposed so as to overlap the first trunk portion 111y of the pixel electrode 11 in the installation pixel PIXb.
  • the width of the first trunk portion 111y of the pixel electrode 11 of the installed pixel PIXb is wider than the pixel electrode 11 of the non-installed pixel PIXa, as in the first embodiment. Therefore, it is easy to arrange the control wiring 411 in the dark line region in the installation pixel PIXb, and even if the width, position, etc. of the control wiring 411 vary, the transmittance between the installation pixels PIXb hardly varies.
  • a fishbone-shaped pixel electrode is used, but a pixel electrode similar to the pixel electrode 210 of the second embodiment may be used.
  • a slit may be formed at a position overlapping the control wiring 411.
  • the internal wiring 412 of the gate driver 40 may be arranged as the wirings 130 and 131 in the (modification) of the first embodiment and the second embodiment described above.
  • the use and type of the wiring arranged in the non-light-shielding region of the pixel are not limited.
  • the control wiring 411 is arranged in the light shielding region between the adjacent pixels PIXa and PIXb, and is connected to the pixel electrode 11 of one pixel PIXb.
  • the source line S (Sb) may be arranged in the non-light-shielding region Pa of the pixel PIXb. That is, in this case, the wiring arranged in the non-light-shielding region Pa of the pixel is the source line S. With this configuration, the region between the source lines Sa and Sb is widened, and the circuit element 410 of the gate driver 40 can be easily arranged.
  • FIG. 17 is an enlarged schematic diagram of a part of pixels of the active matrix substrate in the present modification.
  • the same reference numerals as those in the second embodiment are assigned to the same configurations as those in the second embodiment.
  • each pixel electrode 2301 As shown in FIG. 17, two electrode portions 2301 (hereinafter, long-side electrode portions) of each pixel electrode 2301 are substantially parallel to each other and have a linear shape.
  • Each pixel electrode 230 has a slit 2340 between two long-side electrode portions 2301 of the pixel electrode 230.
  • the long side electrode portion 2301 constituting the pixel electrodes 231a and 231b connected to the gate line G (n) via the pixel TFT 12 is inclined to the X axis positive direction side, whereas the gate line G (n ⁇ 1) ) And the pixel electrodes 232a and 232b connected via the pixel TFT 12 are inclined to the X-axis negative direction side.
  • the liquid crystal molecules of the pixel PIX provided with each pixel electrode 230 connected to the same gate line G are aligned along the extending direction of the slit 2340 of the pixel electrode 230 of the pixel when a voltage is applied.
  • the alignment direction of the liquid crystal molecules in the pixel adjacent to the extending direction of the source line S is different. That is, for example, the alignment direction of the liquid crystal molecules of the upper pixels PIX1a and PIX1b in FIG. 17 is the arrow P11 direction toward the gate line G (n) along the extending direction of the slits 2340 of the pixels.
  • the alignment direction of the liquid crystal molecules of the lower pixels PIX2a and PIX2b in FIG. 17 is an arrow P12 direction toward the gate line G (n) along the extending direction of the slits 2340 of the pixels.
  • the non-installed pixels PIX1a and PIX2a in which the wiring 13 is not provided have slits so that the transmittance in the region in which the slit 2340 is provided is equal to the transmittance in the vicinity of the long side electrode portion 2301.
  • a width of 2340 in the X-axis direction is set.
  • the width in the X-axis direction of the slits 2340 of the installed pixels PIX1b and PIX2b provided with the wiring 13 is wider than the slits 2340 of the non-installed pixels PIX1a and PIX2a.
  • the region 2341 in which the orientation of liquid crystal molecules is weakened when a voltage is applied becomes wider than the region 2341 of the pixels PIX1a and PIX2a. That is, the installation pixels PIX1b and PIX2b have the low transmission region 2341 in the slit 2340. Therefore, even if there is a variation in the width, position, etc. of the wiring 13, the variation in the transmittance between the installed pixels is suppressed as compared with the case where the transmittance in the slits 2340 of all the pixels is uniform. Can be reduced.
  • the viewing angle of the entire pixel is improved by forming two domains having different orientation directions in one pixel. However, in each pixel, a dark line is generated at the domain boundary. In this modification, since there is one domain in one pixel, no dark line is generated. Moreover, in this modification, since the orientation directions of the pixels in adjacent rows are different from each other, the viewing angle of the entire pixels can be improved.
  • the configuration in which a plurality of domains are formed in one pixel is difficult to apply to a high-definition pixel, but the configuration of this modification is easy to apply to a high-definition pixel.
  • the pixel TFT 12 is preferably formed using an oxide semiconductor containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
  • oxide semiconductor containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
  • a-Si amorphous silicon
  • LTPS Low Temperature Poly-silicon
  • the slit 151 may be provided at a position overlapping the wiring 13 in the common electrode 15 (see FIG. 10) in the pixel where the wiring 13 is installed.
  • the pixel in which the wiring is arranged may not be a pixel of the specific color.
  • the transmittance varies between the installed pixels where the wiring is arranged due to variations in the width and position of the wiring. Since the transmittance between the installed pixels varies, the balance between the transmittance of the non-installed pixels and the installed pixels is lost, so that the display quality is deteriorated.
  • the width of the installed pixel and the width of the non-light-shielding area in the installed pixel are configured wider than the non-installed pixel in order to make the transmittance of the installed pixel and the non-installed pixel uniform.
  • the width of the pixel and the width of the opening in the non-installed pixel may be the same. Even in such a configuration, the configuration of the above-described embodiment suppresses the variation in transmittance between the installed pixels, and the balance between the transmittance of the non-installed pixels and the installed pixels is not easily lost. The reduction can be reduced.
  • the shape of the pixel electrode provided in each pixel of the above-described embodiment is an example, and the shape of the pixel electrode is not limited to this. In short, it is sufficient that at least some of the pixels are configured so that a dark line region or a low transmission region extending substantially parallel to the wiring extending direction is formed.
  • the configuration of the gate driver 40 used in the above-described embodiment is an example, and is not limited to this as long as the configuration includes a plurality of switching elements.
  • amorphous silicon (a-Si) or LTPS Low Temperature Poly-silicon
  • indium (In ) An oxide semiconductor containing gallium (Ga), zinc (Zn), and oxygen (O) is more preferable.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a technique by which decrease of the display quality is able to be suppressed even in cases where a wiring line is arranged within a pixel. A liquid crystal display device according to the present invention is provided with: an active matrix substrate 10; a counter substrate that is arranged so as to face the active matrix substrate 10; and a liquid crystal layer that is held between the active matrix substrate and the counter substrate. The active matrix substrate 10 is provided with: a plurality of pixels PIX, each of which has a light-blocking region Pb and a non-light-blocking region Pa, while being provided with pixel electrodes 210a, 210b that have a slit 214 in the non-light-blocking region Pa; and a wiring line 13 which is arranged in a pixel region. The liquid crystal molecules in the liquid crystal layer are driven in a horizontal alignment mode. Each one of some pixels PIXb among the plurality of pixels has a low transmission region 2141b in which the transmittance within a slit 214b in the pixel is lower than the transmittance within a slit 214a in each of the other pixels PIXa. The wiring line 13 is arranged in the low transmission regions 2141b of the some pixels PIXb.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関する。 The present invention relates to a liquid crystal display device.
 特開2002-107730号公報では、液晶分子に電圧を印加した際の液晶分子の配向方向が異なる複数のドメインからなる画素を有する液晶表示装置において、ドメインの境界となる位置に配線を配置する技術が開示されている。ドメインの境界は暗線が生じるため、ドメインの境界に配線を配置することで、画素内に配線を配置する際の透過率の低下が軽減される。 Japanese Patent Application Laid-Open No. 2002-107730 discloses a technique for arranging a wiring at a position that becomes a boundary between domains in a liquid crystal display device having pixels composed of a plurality of domains having different alignment directions of liquid crystal molecules when a voltage is applied to the liquid crystal molecules. Is disclosed. Since a dark line is generated at the domain boundary, a decrease in transmittance when the wiring is arranged in the pixel is reduced by arranging the wiring at the domain boundary.
 ところで、画素の非遮光領域(開口部)に配置される配線は、配線を形成する際のプロセスにおいて、配線の幅や配線の位置がばらつくことがある。配線の幅や位置がばらつくことにより、このような配線が配置される画素の間で透過率がばらつく。例えば、配線を特定の色の画素に配置する場合、配線が配置された画素の透過率がばらつくことで、本来の色味と異なる色味となり色ずれ等の現象が生じ得る。また、配線が異なる色の画素に配置された場合であっても、配線が配置された画素の透過率がばらつくことで、画素全体の透過率のバランスが崩れ、表示品位が低下する。 By the way, the wiring arranged in the non-light-shielding region (opening) of the pixel may vary in wiring width and wiring position in the process of forming the wiring. As the width and position of the wiring vary, the transmittance varies between pixels in which such a wiring is arranged. For example, when the wiring is arranged in a pixel of a specific color, the transmittance of the pixel in which the wiring is arranged varies, resulting in a color different from the original color and a phenomenon such as color shift may occur. Even when the wiring is arranged in pixels of different colors, the transmittance of the pixels in which the wiring is arranged varies, so that the balance of the transmittance of the entire pixel is lost and the display quality is deteriorated.
 本発明は、画素の非遮光領域に配線を配置した場合であっても、表示品位の低下を抑制し得る技術を提供することを目的とする。 An object of the present invention is to provide a technique capable of suppressing a reduction in display quality even when wiring is arranged in a non-light-shielding region of a pixel.
 本発明に係る液晶表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して配置され、遮光部材を備える対向基板と、前記アクティブマトリクス基板と前記対向基板との間に挟持された液晶層とを備える液晶表示装置であって、前記アクティブマトリクス基板は、前記遮光部材によって遮光された遮光領域と、前記遮光領域を除く非遮光領域とを有し、前記非遮光領域にスリットを有する画素電極がそれぞれ設けられた複数の画素と、画素領域に配置される配線と、を備え、前記液晶層における液晶分子は水平配向モードで駆動され、前記複数の画素のうちの一部の画素のそれぞれは、当該画素における前記スリット内の透過率が、他の画素における前記スリット内の透過率よりも低い低透過領域を有し、前記配線は、前記一部の画素における前記低透過領域に配置される。 A liquid crystal display device according to the present invention includes an active matrix substrate, a counter substrate disposed opposite to the active matrix substrate and including a light shielding member, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. A pixel electrode having a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, and having a slit in the non-light shielding region. A plurality of pixels each provided with a wiring disposed in a pixel region, the liquid crystal molecules in the liquid crystal layer are driven in a horizontal alignment mode, and each of some of the plurality of pixels is The transmittance in the slit of the pixel is lower than the transmittance in the slit of other pixels, Line is placed in the low transmission region at the part of the pixels.
 本発明の構成によれば、画素内に配線を配置した場合であっても、表示品位の低下を抑制することができる。 According to the configuration of the present invention, it is possible to suppress deterioration in display quality even when wiring is arranged in a pixel.
図1は、第1の実施形態に係る液晶表示装置の概略構成を示した模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of the liquid crystal display device according to the first embodiment. 図2は、図1に示すアクティブマトリクス基板の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate shown in FIG. 図3は、図2に示すアクティブマトリクス基板10の一部を拡大した模式図である。FIG. 3 is an enlarged schematic view of a part of the active matrix substrate 10 shown in FIG. 図4Aは、図3に示す画素電極を拡大した図である。FIG. 4A is an enlarged view of the pixel electrode shown in FIG. 図4Bは、図3に示す画素の液晶分子の配向方向を示す模式図である。4B is a schematic diagram illustrating the alignment direction of the liquid crystal molecules of the pixel illustrated in FIG. 3. 図5は、第1の実施形態における設置画素と非設置画素の画素電極の模式図である。FIG. 5 is a schematic diagram of pixel electrodes of installed pixels and non-installed pixels in the first embodiment. 図6は、第1の実施形態における変形例の画素を示す模式図である。FIG. 6 is a schematic diagram illustrating a pixel according to a modified example of the first embodiment. 図7Aは、第2の実施形態における一部の画素の概略構成を示す模式図である。FIG. 7A is a schematic diagram illustrating a schematic configuration of a part of pixels according to the second embodiment. 図7Bは、図7Aに示す画素における低透過領域を示す模式図である。FIG. 7B is a schematic diagram showing a low transmission region in the pixel shown in FIG. 7A. 図8Aは、第2の実施形態における設置画素と非設置画素の画素電極の模式図である。FIG. 8A is a schematic diagram of pixel electrodes of installed pixels and non-installed pixels in the second embodiment. 図8Bは、図8Aに示す非設置画素と設置画素の低透過領域を示す模式図である。FIG. 8B is a schematic diagram illustrating a non-installed pixel and a low transmission region of the installed pixel illustrated in FIG. 8A. 図9Aは、第2の実施形態の変形例におけるアクティブマトリクス基板の一部の画素を拡大した模式図である。FIG. 9A is an enlarged schematic view of a part of pixels of an active matrix substrate in a modification of the second embodiment. 図9Bは、図9Aとは異なる配線の配置例を示す模式図である。FIG. 9B is a schematic diagram showing an example of wiring arrangement different from FIG. 9A. 図10は、第3の実施形態におけるアクティブマトリクス基板の一部の画素を拡大した模式図である。FIG. 10 is an enlarged schematic view of a part of the pixels of the active matrix substrate in the third embodiment. 図11は、第4の実施形態におけるアクティブマトリクス基板に設けられるゲートドライバの概略配置例を示す模式図である。FIG. 11 is a schematic diagram illustrating a schematic arrangement example of gate drivers provided on the active matrix substrate according to the fourth embodiment. 図12は、図11に示すゲートドライバの等価回路を例示した図である。FIG. 12 is a diagram illustrating an equivalent circuit of the gate driver shown in FIG. 図13は、図12に示すゲートドライバがゲート線を駆動する際のタイミングチャートである。FIG. 13 is a timing chart when the gate driver shown in FIG. 12 drives the gate line. 図14は、図13に示すゲートドライバの回路素子の配置例を示す模式図である。FIG. 14 is a schematic diagram showing an arrangement example of circuit elements of the gate driver shown in FIG. 図15は、図14に示すゲートドライバの回路素子、内部配線及び制御配線が設けられた画素の構成例を示す模式図である。FIG. 15 is a schematic diagram illustrating a configuration example of a pixel provided with the circuit element, internal wiring, and control wiring of the gate driver illustrated in FIG. 図16は、変形例1における一部の画素の模式図であって、配線がソース線である場合を例示した図である。FIG. 16 is a schematic diagram of a part of pixels in the first modification, and illustrates the case where the wiring is a source line. 図17は、変形例2における一部の画素の模式図である。FIG. 17 is a schematic diagram of some pixels in the second modification.
 本発明の一実施形態に係る液晶表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して配置され、遮光部材を備える対向基板と、前記アクティブマトリクス基板と前記対向基板との間に挟持された液晶層とを備える液晶表示装置であって、前記アクティブマトリクス基板は、前記遮光部材によって遮光された遮光領域と、前記遮光領域を除く非遮光領域とを有し、前記非遮光領域にスリットを有する画素電極がそれぞれ設けられた複数の画素と、画素領域に配置される配線と、を備え、前記液晶層における液晶分子は水平配向モードで駆動され、前記複数の画素のうちの一部の画素のそれぞれは、当該画素における前記スリット内の透過率が、他の画素における前記スリット内の透過率よりも低い低透過領域を有し、前記配線は、前記一部の画素における前記低透過領域に配置される(第1の構成)。 A liquid crystal display device according to an embodiment of the present invention includes an active matrix substrate, a counter substrate disposed opposite to the active matrix substrate and including a light shielding member, and sandwiched between the active matrix substrate and the counter substrate. The active matrix substrate includes a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, and a slit is formed in the non-light shielding region. A plurality of pixels each provided with a pixel electrode and a wiring arranged in the pixel region, wherein liquid crystal molecules in the liquid crystal layer are driven in a horizontal alignment mode, and a part of the plurality of pixels is Each pixel has a low transmission region in which the transmittance in the slit in the pixel is lower than the transmittance in the slit in other pixels A, the wiring, the in the part of the pixels are arranged in the low transmission region (first configuration).
 第1の構成によれば、画素電極は、非遮光領域にスリットを有する画素電極を備え、液晶分子は水平配向モードで駆動される。一部の画素は、当該画素の画素電極のスリット内の透過率が他の画素の画素電極のスリット内の透過率よりも低い低透過領域を有する。配線は、一部の画素における低透過領域に配置される。そのため、配線の幅や位置等にばらつきがあっても、全ての画素の画素電極のスリット内の透過率が均一である場合と比べ、配線が配置される画素間の透過率がばらつきにくく、画素全体の表示品位の低下を軽減す
ることができる。
According to the first configuration, the pixel electrode includes a pixel electrode having a slit in the non-light-shielding region, and the liquid crystal molecules are driven in the horizontal alignment mode. Some pixels have a low transmission region in which the transmittance in the slit of the pixel electrode of the pixel is lower than the transmittance in the slit of the pixel electrode of another pixel. The wiring is arranged in a low transmission region in some pixels. Therefore, even if there are variations in the width and position of the wiring, the transmittance between the pixels where the wiring is arranged is less likely to vary than in the case where the transmittance in the slits of the pixel electrodes of all the pixels is uniform. It is possible to reduce the deterioration of the overall display quality.
 第1の構成において、前記画素電極は、第1の電極及び第2の電極とを有し、前記スリットは、前記第1の電極と前記第2の電極との間に設けられ、前記配線が延伸する方向と略平行であり、前記一部の画素における前記スリットの幅は、他の画素における前記スリットの幅よりも広く、前記一部の画素における前記低透過領域は、当該画素の前記第1の電極と前記第2の電極からの距離が略中間となる領域を含むこととしてもよい(第2の構成)。 In the first configuration, the pixel electrode includes a first electrode and a second electrode, the slit is provided between the first electrode and the second electrode, and the wiring is It is substantially parallel to the extending direction, and the width of the slit in the some pixels is wider than the width of the slit in the other pixels, and the low transmission region in the some pixels is the first of the pixels. It is good also as including the area | region where the distance from 1 electrode and said 2nd electrode becomes a substantially intermediate | middle (2nd structure).
 第1の構成によれば、低透過領域は、第1の電極と第2の電極からの距離が略中間となる領域を含む。第1の電極と第2の電極の略中間となる領域は、第1の電極と第2の電極の近傍よりも、液晶分子への印加電圧による配向規制力が弱まり、第1の電極と第2の電極の近傍よりも透過率が低下しやすい。一部の画素のスリットの幅を、他の画素のスリットの幅よりも広くすることで、一部の画素において、液晶分子への印加電圧による配向規制力が弱まる低透過領域を広げることができる。その結果、配線の幅や位置等にばらつきがあっても、配線が配置される画素間の透過率がばらつきにくく、色ずれ等の表示品位の低下を軽減することができる。 According to the first configuration, the low transmission region includes a region in which the distance from the first electrode and the second electrode is substantially in the middle. In the region that is approximately between the first electrode and the second electrode, the alignment regulating force due to the voltage applied to the liquid crystal molecules is weaker than the vicinity of the first electrode and the second electrode, and the first electrode and the second electrode The transmittance tends to be lower than in the vicinity of the second electrode. By making the slit width of some pixels wider than the slit width of other pixels, it is possible to widen the low transmission region where the alignment regulating force due to the voltage applied to the liquid crystal molecules is weakened in some pixels. . As a result, even if there is a variation in the width, position, etc. of the wiring, the transmittance between the pixels in which the wiring is arranged is difficult to vary, and a reduction in display quality such as a color shift can be reduced.
 第1の構成において、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して配置され、遮光部材を備える対向基板と、前記アクティブマトリクス基板と前記対向基板との間に挟持された液晶層とを備える液晶表示装置であって、前記アクティブマトリクス基板は、画素電極がそれぞれ設けられ、前記遮光部材によって遮光された遮光領域と、前記遮光領域を除く非遮光領域とを有する複数の画素と、画素領域に配置される配線と、を備え、前記液晶層における液晶分子は垂直配向モードで駆動され、前記複数の画素のそれぞれは、当該画素の前記非遮光領域において、前記液晶分子が駆動された際の配向方向が異なる複数の配向分割領域を有し、前記複数の配向分割領域の境界は、前記配線が延伸する方向と略平行な境界部分を有し、前記複数の画素のうち一部の画素における前記境界部分の幅は、他の画素における前記境界部分の幅よりも広く、前記配線は、前記一部の画素の前記非遮光領域における前記境界部分に配置されることとしてもよい(第3の構成)。 In the first configuration, an active matrix substrate, a counter substrate disposed opposite to the active matrix substrate and including a light shielding member, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate are provided. In the liquid crystal display device, the active matrix substrate includes a plurality of pixels each provided with a pixel electrode and having a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, and a pixel region. A liquid crystal molecule in the liquid crystal layer is driven in a vertical alignment mode, and each of the plurality of pixels is aligned when the liquid crystal molecules are driven in the non-light-shielding region of the pixel. A plurality of alignment division regions having different directions, and a boundary between the plurality of alignment division regions is substantially parallel to a direction in which the wiring extends. The width of the boundary portion in some of the plurality of pixels is wider than the width of the boundary portion in other pixels, and the wiring is the non-light-shielding region of the some pixels. It is good also as arrange | positioning in the said boundary part in (3rd structure).
 第3の構成によれば、各画素は、当該画素における複数の配向分割領域の境界であって、配線の延伸方向と略平行な境界部分を含む。配向分割領域の境界部分は暗線が生じ、透過率が低下しやすい。一部の画素における、配線の延伸方向と略平行な境界部分の幅を他の画素よりも広くすることで、他の画素よりも暗線が生じる領域が広くなる。配線は、一部の画素の暗線が生じる領域に配置される。そのため、全ての画素において暗線が生じる領域が均一である場合と比べ、配線の幅や位置等にばらつきがあっても、配線が配置される画素間の透過率がばらつきにくく、色ずれ等の表示品位の低下を軽減することができる。 According to the third configuration, each pixel includes a boundary portion that is a boundary between a plurality of alignment division regions in the pixel and substantially parallel to the extending direction of the wiring. A dark line is generated at the boundary portion of the alignment division region, and the transmittance tends to decrease. By making the width of the boundary portion of some pixels substantially parallel to the extending direction of the wiring wider than that of the other pixels, the region where the dark line is generated becomes wider than the other pixels. The wiring is arranged in a region where dark lines of some pixels are generated. Therefore, compared to the case where the area where the dark line is generated in all pixels is uniform, even if the width and position of the wiring are varied, the transmittance between the pixels in which the wiring is arranged is less likely to vary, and display such as a color shift is displayed. Degradation can be reduced.
 第1から第3のいずれかの構成において、前記アクティブマトリクス基板又は前記対向基板は、さらに、前記複数の画素における前記画素電極に対向して配置された共通電極を備え、前記一部の画素における前記共通電極は、前記配線と重なる位置に、当該配線が延伸する方向と略平行な開口を有することとしてもよい(第4の構成)。 In any one of the first to third configurations, the active matrix substrate or the counter substrate further includes a common electrode disposed to face the pixel electrode in the plurality of pixels, and in the partial pixel The common electrode may have an opening substantially parallel to a direction in which the wiring extends in a position overlapping the wiring (fourth configuration).
 第4の構成によれば、一部の画素における共通電極には配線と重なる位置に開口が設けられる。一部の画素において開口が設けられた部分は電圧が印加されず、液晶分子への配向規制力が弱まるため、開口が設けられた部分は他の部分よりも透過率が低下しやすい。その結果、配線の幅や位置等にばらつきがあっても、配線が配置される画素間の透過率がばらつきにくく、色ずれ等の表示品位の低下を軽減することができる。 According to the fourth configuration, the common electrode in some pixels is provided with an opening at a position overlapping the wiring. In some pixels, no voltage is applied to the portion where the opening is provided, and the alignment regulating force on the liquid crystal molecules is weakened. Therefore, the transmittance is likely to be lower in the portion where the opening is provided than in the other portions. As a result, even if there is a variation in the width, position, etc. of the wiring, the transmittance between the pixels in which the wiring is arranged is difficult to vary, and a reduction in display quality such as a color shift can be reduced.
 第1から第4のいずれかの構成において、前記アクティブマトリクス基板は、さらに、複数のゲート線と、前記複数のゲート線と交差する複数のソース線と、前記複数のゲート線のそれぞれに対して設けられ、供給される制御信号に応じて、対応する一のゲート線を選択状態又は非選択状態に切り替える駆動回路と、を備え、前記駆動回路は、複数のスイッチング素子を含む駆動回路用素子を有し、前記駆動回路用素子は、前記一部の画素に配置されて前記配線と接続され、前記配線は、当該配線と接続された前記駆動回路用素子に前記制御信号を供給することとしてもよい(第5の構成)。 In any one of the first to fourth configurations, the active matrix substrate further includes a plurality of gate lines, a plurality of source lines intersecting with the plurality of gate lines, and each of the plurality of gate lines. And a drive circuit that switches a corresponding one gate line to a selected state or a non-selected state according to a supplied control signal, and the drive circuit includes a drive circuit element including a plurality of switching elements. The drive circuit element may be disposed in the part of the pixels and connected to the wiring, and the wiring may supply the control signal to the drive circuit element connected to the wiring. Good (fifth configuration).
 第5の構成によれば、ゲート線を駆動する駆動回路の駆動回路用素子と、当該駆動回路用素子に制御信号を供給する配線とを一部の画素に配置することができるので、狭額縁化を図るとともに、表示品位の低下を軽減することができる。 According to the fifth configuration, the drive circuit element of the drive circuit that drives the gate line and the wiring that supplies the control signal to the drive circuit element can be arranged in some pixels. And reduction in display quality can be reduced.
 第1から第4のいずれかの構成において、前記アクティブマトリクス基板は、さらに、複数のゲート線と、前記複数のゲート線と交差する複数のソース線と、を備え、各画素の前記画素電極は、一のゲート線と一のソース線とに接続され、前記配線は、当該配線が配置された画素の画素電極と接続される前記一のソース線であることとしてもよい(第6の構成)。 In any one of the first to fourth configurations, the active matrix substrate further includes a plurality of gate lines and a plurality of source lines intersecting the plurality of gate lines, and the pixel electrode of each pixel is , Connected to one gate line and one source line, and the wiring may be the one source line connected to a pixel electrode of a pixel in which the wiring is arranged (sixth configuration). .
 第6の構成によれば、配線が配置される画素の画素電極と接続されるソース線を当該画素内に配置することができるので、画素に設けられる素子の配置の自由度を高めるとともに、表示品位の低下を軽減することができる。 According to the sixth configuration, since the source line connected to the pixel electrode of the pixel in which the wiring is arranged can be arranged in the pixel, the degree of freedom of arrangement of the elements provided in the pixel is increased, and the display Degradation can be reduced.
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
<第1の実施形態>
 図1は、本実施形態に係る液晶表示装置の概略構成を示した模式図である。液晶表示装置1は、アクティブマトリクス基板10と、対向基板20と、これら基板に挟持された液晶層30とを備える。また、図示を省略するが、液晶表示装置1は、アクティブマトリクス基板10と対向基板20とを挟む一対の偏光板を備えるとともに、アクティブマトリクス基板10の側にはバックライトを備える。
<First Embodiment>
FIG. 1 is a schematic diagram showing a schematic configuration of the liquid crystal display device according to the present embodiment. The liquid crystal display device 1 includes an active matrix substrate 10, a counter substrate 20, and a liquid crystal layer 30 sandwiched between these substrates. Although not shown, the liquid crystal display device 1 includes a pair of polarizing plates that sandwich the active matrix substrate 10 and the counter substrate 20, and includes a backlight on the active matrix substrate 10 side.
 本実施形態において、液晶層30における液晶分子は、アクティブマトリクス基板10と対向基板20との間に印加される電圧に応じて垂直に配向するVAモードやTNモードで駆動される。 In the present embodiment, the liquid crystal molecules in the liquid crystal layer 30 are driven in a VA mode or a TN mode that is vertically aligned according to a voltage applied between the active matrix substrate 10 and the counter substrate 20.
 対向基板20は、共通電極と、ブラックマトリクス(BM)と、赤(R)、緑(G)、青(B)の3色のカラーフィルタ(いずれも図示略)を備える。 The counter substrate 20 includes a common electrode, a black matrix (BM), and three color filters of red (R), green (G), and blue (B) (all not shown).
 図2は、アクティブマトリクス基板10の概略構成を示す模式図である。アクティブマトリクス基板10において、X軸方向の一端から他端までM(M:自然数)本のゲート線G(1)~G(M)が一定の間隔で略平行に形成されている。以下、ゲート線を区別しないときは、ゲート線Gと称する。また、アクティブマトリクス基板10には、各ゲート線Gと交差するように複数のソース線Sが形成されている。 FIG. 2 is a schematic diagram showing a schematic configuration of the active matrix substrate 10. In the active matrix substrate 10, M (M: natural number) gate lines G (1) to G (M) are formed substantially in parallel at regular intervals from one end to the other end in the X-axis direction. Hereinafter, when the gate lines are not distinguished, they are referred to as gate lines G. In the active matrix substrate 10, a plurality of source lines S are formed so as to intersect with the gate lines G.
 図3は、アクティブマトリクス基板10の一部を拡大した模式図である。図3に示すように、アクティブマトリクス基板10には、画素電極11をそれぞれ有する複数の画素PIXが形成されている。画素PIXは、対向基板20におけるカラーフィルタのR,G,Bのいずれかの色に対応し、例えば、ゲート線Gの延伸方向に沿ってR,G,Bの順に配列されている。 FIG. 3 is an enlarged schematic view of a part of the active matrix substrate 10. As shown in FIG. 3, a plurality of pixels PIX each having a pixel electrode 11 are formed on the active matrix substrate 10. The pixel PIX corresponds to one of the colors R, G, and B of the color filter in the counter substrate 20 and is arranged in the order of R, G, and B along the extending direction of the gate line G, for example.
 各画素PIXは、対向基板20に設けられたブラックマトリクスによって覆われた遮光領域Pbと、非遮光領域Pa(開口部ともいう)とを有する。画素電極11は、薄膜トランジスタ12(TFT:Thin Film Transistor)(以下、画素用TFT)を介して、ゲート線G及びソース線Sと接続されている。ゲート線G、ソース線S、及び画素用TFT12は、遮光領域Pbに設けられる。 Each pixel PIX has a light shielding region Pb covered with a black matrix provided on the counter substrate 20 and a non-light shielding region Pa (also referred to as an opening). The pixel electrode 11 is connected to the gate line G and the source line S through a thin film transistor 12 (TFT: Thin Film Transistor) (hereinafter referred to as a pixel TFT). The gate line G, the source line S, and the pixel TFT 12 are provided in the light shielding region Pb.
 画素用TFT12がオンになると、ソース線Sに供給されるデータ信号電圧が画素用TFT12を介して画素電極11に入力される。対向基板20における共通電極(図示略)には所定の電圧が印加される。画素PIXの電位は、ゲート線Gの電位変化に応じて、ソース線Sの電位と、画素電極11とゲート線Gとの間の容量と、画素電極11と共通電極(図示略)との間の容量によって制御される。 When the pixel TFT 12 is turned on, the data signal voltage supplied to the source line S is input to the pixel electrode 11 via the pixel TFT 12. A predetermined voltage is applied to the common electrode (not shown) in the counter substrate 20. The potential of the pixel PIX corresponds to the potential of the source line S, the capacitance between the pixel electrode 11 and the gate line G, and the pixel electrode 11 and the common electrode (not shown) according to the potential change of the gate line G. Controlled by the capacity of
 ここで、本実施形態における画素電極11の構造について説明する。以下では、図3に示す左側の画素PIXaの画素電極11aを例に説明するが、他の画素の画素電極11も同様の構造を有する。図4Aは、図3に示す画素電極11aを拡大した図である。図4Aに示すように、画素電極11aは、幹部111と、複数の枝部112と、複数のスリット113と、コンタクト部114とからなる、いわゆるフィッシュボーン形状を有する。 Here, the structure of the pixel electrode 11 in this embodiment will be described. Hereinafter, the pixel electrode 11a of the left pixel PIXa shown in FIG. 3 will be described as an example, but the pixel electrodes 11 of other pixels also have the same structure. 4A is an enlarged view of the pixel electrode 11a shown in FIG. As shown in FIG. 4A, the pixel electrode 11a has a so-called fishbone shape including a trunk portion 111, a plurality of branch portions 112, a plurality of slits 113, and a contact portion 114.
 幹部111は、Y軸に平行な第1幹部111yと、X軸に平行な第2幹部111xとからなる十字形状を有する。 The trunk portion 111 has a cross shape including a first trunk portion 111y parallel to the Y axis and a second trunk portion 111x parallel to the X axis.
 複数の枝部112は、幹部111に対して非平行であり、幹部111に対して略線対称となるように配置される。具体的には、第1幹部111y及び第2幹部111xによって区切られた4つの領域(A~D)に設けられる枝部112は、幹部111から延伸する方向が、同じ領域に設けられる枝部112と同じであるが、他の領域に設けられる枝部122と異なる。 The plurality of branch portions 112 are non-parallel to the trunk portion 111 and are arranged so as to be substantially line symmetric with respect to the trunk portion 111. Specifically, the branch portions 112 provided in the four regions (A to D) divided by the first trunk portion 111y and the second trunk portion 111x are branched portions 112 provided in the same region in the direction extending from the trunk portion 111. Is different from the branch portion 122 provided in another region.
 スリット113は、領域ごとに、枝部112と枝部112の間に形成される。この場合、画素PIXにおける液晶分子の配向は、図4Bに示すように、各スリット113に沿って、幹部111に向かう4つの方向(Da、Db、Dc、Dd)であり、画素PIXは、配向方向が異なる4つのドメインを有する。 The slit 113 is formed between the branch part 112 and the branch part 112 for each region. In this case, the orientation of the liquid crystal molecules in the pixel PIX is four directions (Da, Db, Dc, Dd) toward the trunk 111 along each slit 113, as shown in FIG. 4B. It has four domains with different directions.
 図3に戻り、画素PIXbには、非遮光領域Paを通る配線13が配置されている。配線13は、非遮光領域Paにおいてソース線Sと略平行となるように配置されている。本実施形態において、配線13は、例えば、ゲート線Gを駆動する駆動回路に用いる配線や、共通電極と接続された補助配線等である。配線13の具体例は後述するものとする。 Referring back to FIG. 3, a wiring 13 passing through the non-light-shielding region Pa is arranged in the pixel PIXb. The wiring 13 is disposed so as to be substantially parallel to the source line S in the non-light-shielding region Pa. In the present embodiment, the wiring 13 is, for example, a wiring used for a drive circuit that drives the gate line G, an auxiliary wiring connected to the common electrode, or the like. A specific example of the wiring 13 will be described later.
 配線13が画素の非遮光領域Paに配置されると、配線13が配置された部分の透過率が低下する。R,G,Bの全ての画素に配線13を配置すると、画素全体における透過率の変化が大きくなるため、本実施形態では、特定の色(例えば、B(青))の画素に配線13を配置する。また、配線13が配置される画素(以下、設置画素)と、配線13が配置されていない画素(以下、非設置画素)の、カラーフィルタの色の違いによる寄与を除いた透過率が同等となるように、設置画素の幅及び非遮光領域Paの幅が非設置画素よりも大きくなるように調整されている。具体的には、図3に示すように、非設置画素PIXaにおける画素の幅L1と非遮光領域Paの幅L11よりも、設置画素PIXbにおける画素の幅L2と非遮光領域Paの幅L12が大きくなっている。 When the wiring 13 is arranged in the non-light-shielding area Pa of the pixel, the transmittance of the portion where the wiring 13 is arranged is lowered. If the wirings 13 are arranged in all the R, G, and B pixels, the change in the transmittance of the entire pixel becomes large. Therefore, in this embodiment, the wirings 13 are connected to pixels of a specific color (for example, B (blue)). Deploy. Further, the transmittance of a pixel in which the wiring 13 is disposed (hereinafter referred to as an installed pixel) and a pixel in which the wiring 13 is not disposed (hereinafter referred to as a non-installed pixel) excluding the contribution due to the difference in color of the color filter is equal. Thus, the width of the installed pixel and the width of the non-light-shielding area Pa are adjusted to be larger than those of the non-installed pixel. Specifically, as illustrated in FIG. 3, the pixel width L2 and the non-light-shielding region Pa width L12 in the installation pixel PIXb are larger than the pixel width L1 and the non-light-shielding region Pa width L11 in the non-installation pixel PIXa. It has become.
 各画素PIXにおいて、幹部111は、4つのドメインの境界であり、その境界部分は
、電圧が印加された液晶分子の配向方向が、偏光板(図示略)の透過軸に対して平行又は垂直となるため透過率が低下し、暗線が生じる。本実施形態では、画素において暗線が生じる領域(以下、暗線領域)に配線13を配置する。画素における暗線領域は、当該画素の他の領域よりも透過率が低いため、暗線領域に配線13を配置しても当該画素の透過率は殆ど変わらない。さらに、本実施形態では、特に、設置画素における暗線領域が非設置画素における暗線領域よりも広くなるように設置画素を構成する。以下、具体的に説明する。
In each pixel PIX, the trunk portion 111 is a boundary between four domains, and the boundary portion is such that the orientation direction of liquid crystal molecules to which a voltage is applied is parallel or perpendicular to the transmission axis of a polarizing plate (not shown). Therefore, the transmittance is lowered and dark lines are generated. In the present embodiment, the wiring 13 is arranged in a region where a dark line is generated in the pixel (hereinafter referred to as a dark line region). Since the dark line region in the pixel has lower transmittance than the other regions of the pixel, the transmittance of the pixel hardly changes even if the wiring 13 is arranged in the dark line region. Furthermore, in the present embodiment, the installed pixel is configured so that the dark line region in the installed pixel is wider than the dark line region in the non-installed pixel. This will be specifically described below.
 図5は、非設置画素PIXaと設置画素PIXbの画素電極11a、11bを示す模式図である。図5に示すように、設置画素PIXbの画素電極11bは、配線13の延伸方向と略平行な第1幹部111yの幅W2が、非設置画素PIXaの画素電極11aにおける第1幹部111yの幅W1よりも広い。上述したように、設置画素PIXb及び非設置画素PIXaともに、幹部111が設けられた領域には暗線が生じる。設置画素PIXbの第1幹部111yの幅を広くすることで、設置画素PIXbにおける第1幹部111yにおいて暗線領域が広がる。そのため、配線13の幅や配線13の位置に多少のばらつきがあっても、設置画素PIXbの暗線領域に配線13を配置しやすく、設置画素PIXb間の透過率のばらつきが低減される。その結果、特定の色の画素に、幅や位置等が異なる配線13を配置しても色ずれ等の表示品位の低下が生じにくい。 FIG. 5 is a schematic diagram showing the pixel electrodes 11a and 11b of the non-installed pixel PIXa and the installed pixel PIXb. As shown in FIG. 5, the pixel electrode 11b of the installed pixel PIXb has a width W2 of the first trunk 111y substantially parallel to the extending direction of the wiring 13, and a width W1 of the first trunk 111y of the pixel electrode 11a of the non-installed pixel PIXa. Wider than. As described above, a dark line is generated in the area where the trunk 111 is provided in both the installed pixel PIXb and the non-installed pixel PIXa. By increasing the width of the first trunk 111y of the installation pixel PIXb, the dark line region is expanded in the first trunk 111y of the installation pixel PIXb. Therefore, even if there is some variation in the width of the wiring 13 and the position of the wiring 13, it is easy to arrange the wiring 13 in the dark line region of the installation pixel PIXb, and variation in transmittance between the installation pixels PIXb is reduced. As a result, even if the wirings 13 having different widths, positions, and the like are arranged in the pixels of a specific color, the display quality such as a color shift is unlikely to deteriorate.
 上記した配線13は、設置画素の第1幹部111yのX軸方向の略中央に配置されることが好ましい。このように構成することで、配線13と同層に設けられる他の信号線との間の寄生容量を低減することができる。また、配線13の幅や位置等のばらつきによる設置画素の透過率のばらつきを最小化することができる。 It is preferable that the wiring 13 described above is disposed at the approximate center in the X-axis direction of the first trunk portion 111y of the installed pixel. With this configuration, the parasitic capacitance between the wiring 13 and another signal line provided in the same layer can be reduced. In addition, it is possible to minimize the variation in the transmittance of the installed pixels due to the variation in the width and position of the wiring 13.
(変形例)
 なお、上記の例では、画素の非遮光領域Paに、ソース線Sと略平行な1つの配線13が設けられている例を説明したが、図6に示すように、画素の非遮光領域Paに、ゲート線Gと略平行な配線130がさらに設けられていてもよい。
(Modification)
In the above example, an example in which one wiring 13 substantially parallel to the source line S is provided in the non-light-shielding region Pa of the pixel has been described. However, as illustrated in FIG. In addition, a wiring 130 substantially parallel to the gate line G may be further provided.
 この場合、画素PIXa、PIXbに配線130が配置されるため、両画素において、配線130の延伸方向と略平行な第2幹部111xの幅を、配線130が設けられていない非設置画素の第2幹部111xより広くする。第2幹部111xが設けられた領域は暗線が生じる暗線領域である。そのため、配線130が配置された設置画素における第2幹部111xの幅を非設置画素よりも広くすることで、配線130が配置された設置画素において、配線130の延伸方向と略平行な暗線領域を広げることができる。その結果、配線130の幅や位置等がばらついている場合であっても、暗線領域に配線130を配置しやすく、配線130が配置された設置画素間の透過率のばらつきを低減できる。 In this case, since the wiring 130 is disposed in the pixels PIXa and PIXb, the width of the second trunk 111x that is substantially parallel to the extending direction of the wiring 130 is set to be the second of the non-installed pixel in which the wiring 130 is not provided. It is wider than the trunk 111x. The area where the second trunk 111x is provided is a dark line area where a dark line is generated. Therefore, by making the width of the second trunk portion 111x in the installed pixel in which the wiring 130 is arranged wider than that in the non-installed pixel, in the installed pixel in which the wiring 130 is arranged, a dark line region substantially parallel to the extending direction of the wiring 130 is formed. Can be spread. As a result, even when the width, position, and the like of the wiring 130 vary, it is easy to arrange the wiring 130 in the dark line region, and variation in transmittance between installed pixels where the wiring 130 is arranged can be reduced.
 <第2の実施形態>
 上記第1の実施形態では、液晶層30(図1参照)を垂直配向モードで駆動させる場合の例を説明したが、水平配向モードで駆動させてもよい。本実施形態では、例えば、FFSモードの場合における表示パネル2の構成について説明する。
<Second Embodiment>
In the first embodiment, the example in which the liquid crystal layer 30 (see FIG. 1) is driven in the vertical alignment mode has been described. However, the liquid crystal layer 30 may be driven in the horizontal alignment mode. In the present embodiment, for example, the configuration of the display panel 2 in the FFS mode will be described.
 図7Aは、本実施形態におけるアクティブマトリクス基板10の画素の一部を拡大した模式図である。 FIG. 7A is an enlarged schematic view of a part of the pixels of the active matrix substrate 10 in the present embodiment.
 図7Aに示すように、ソース線Sは屈曲し、画素PIXは非矩形形状を有する。画素PIXは、液晶分子の配向方向(矢印P1、P2)が異なる2つのドメインを有する。 As shown in FIG. 7A, the source line S is bent and the pixel PIX has a non-rectangular shape. The pixel PIX has two domains having different alignment directions (arrows P1 and P2) of liquid crystal molecules.
 画素電極210は、2つの電極部分211(以下、長辺電極部)と、長辺電極部211と接続された2つの電極部分212(以下、短辺電極部)と、コンタクト部213と、スリット214とを有する。2つの長辺電極部211は、ソース線Sと略平行となるように屈曲し、離間して配置されており、2つの長辺電極部211の間にスリット214を有する。2つの短辺電極部212は、X軸に略平行であり、一方の短辺電極部212は、一方の長辺電極部211とコンタクト部213とに接続されている。 The pixel electrode 210 includes two electrode portions 211 (hereinafter referred to as a long side electrode portion), two electrode portions 212 (hereinafter referred to as short side electrode portions) connected to the long side electrode portion 211, a contact portion 213, and a slit. 214. The two long side electrode portions 211 are bent and spaced apart so as to be substantially parallel to the source line S, and have a slit 214 between the two long side electrode portions 211. The two short side electrode portions 212 are substantially parallel to the X axis, and one short side electrode portion 212 is connected to one long side electrode portion 211 and the contact portion 213.
 また、図7Aでは図示を省略するが、アクティブマトリクス基板10には、画素電極210と対向するように、絶縁膜を介して共通電極が設けられている。 Although not shown in FIG. 7A, the active matrix substrate 10 is provided with a common electrode through an insulating film so as to face the pixel electrode 210.
 液晶層30における液晶分子は、共通電極と、画素電極210との間において発生する横電界(フリンジ電界)に応じて、電界の向きに対して水平方向に回転する。 The liquid crystal molecules in the liquid crystal layer 30 rotate in the horizontal direction with respect to the direction of the electric field in accordance with a lateral electric field (fringe electric field) generated between the common electrode and the pixel electrode 210.
 スリット214が設けられた領域では、スリット214のエッジに沿って、長辺電極部211の延伸方向に対して略垂直な方向の電界が形成されるが、スリット214内において、長辺電極部211から離れるほど電界が弱まり、液晶分子への配向規制力が弱まる。よって、図7Bに示すように、スリット214の中央付近における直上の領域、すなわち、長辺電極部211からの距離が略中間となる位置を含む領域2141は、透過率が低下しやすい。 In the region where the slit 214 is provided, an electric field in a direction substantially perpendicular to the extending direction of the long side electrode portion 211 is formed along the edge of the slit 214, but in the slit 214, the long side electrode portion 211 is formed. The further away from the field, the weaker the electric field and the weaker the alignment regulating force on the liquid crystal molecules. Therefore, as shown in FIG. 7B, the transmittance is likely to decrease in a region immediately above the center of the slit 214, that is, a region 2141 including a position where the distance from the long-side electrode portion 211 is substantially intermediate.
 ここで、本実施形態において、配線13を配置する場合の画素の構成について説明する。 Here, in the present embodiment, the configuration of the pixel when the wiring 13 is arranged will be described.
 図8Aは、配線13が設置された設置画素PIXbと、配線13が配置されていない非設置画素PIXaの画素の構成例を示す模式図である。なお、本実施形態においても、第1の実施形態と同様、設置画素PIXbのX軸方向の幅は、非設置画素PIXaのX軸方向の幅よりも広くなっている。 FIG. 8A is a schematic diagram illustrating a configuration example of a pixel of an installed pixel PIXb in which the wiring 13 is installed and a non-installed pixel PIXa in which the wiring 13 is not arranged. In the present embodiment as well, as in the first embodiment, the width of the installed pixel PIXb in the X-axis direction is wider than the width of the non-installed pixel PIXa in the X-axis direction.
 図8Bは、図8Aに示す非設置画素PIXaの画素電極210aと、設置画素PIXbの画素電極210bのみを示す図である。 FIG. 8B is a diagram showing only the pixel electrode 210a of the non-installed pixel PIXa and the pixel electrode 210b of the installed pixel PIXb shown in FIG. 8A.
 本実施形態において、非設置画素PIXaでは、画素電極210aのスリット214a内の透過率が、長辺電極部211の近傍の透過率と略同じになるように、スリット214aの幅W3が設定されている。一方、設置画素PIXbでは、画素電極210bのスリット214b内において、配線13と重なる領域の透過率が非設置画素PIXaよりも低くなるようにスリット214bの幅W4が設定されている。つまり、図8Bに示すように、設置画素PIXbの画素電極210bにおけるスリット214bの幅W4は、非設置画素PIXaの画素電極210aにおけるスリット214aの幅W3よりも広い。 In this embodiment, in the non-installed pixel PIXa, the width W3 of the slit 214a is set so that the transmittance in the slit 214a of the pixel electrode 210a is substantially the same as the transmittance in the vicinity of the long side electrode portion 211. Yes. On the other hand, in the installed pixel PIXb, the width W4 of the slit 214b is set so that the transmittance of the region overlapping the wiring 13 in the slit 214b of the pixel electrode 210b is lower than that of the non-installed pixel PIXa. That is, as shown in FIG. 8B, the width W4 of the slit 214b in the pixel electrode 210b of the installed pixel PIXb is wider than the width W3 of the slit 214a in the pixel electrode 210a of the non-installed pixel PIXa.
 上述したように、画素電極210のスリット214内において、長辺電極部211からの距離が遠いほど液晶分子への配向規制力が弱まり、透過率が低下しやすい。そのため、設置画素PIXbにおける画素電極210bのスリット214bの幅を広げることにより、配向規制力が弱まる領域2141bも広くなる。つまり、設置画素PIXbにおいて、スリット214b内の領域2141bの幅W41は、非設置画素PIXaにおけるスリット214a内の領域2141aの幅W31よりも広くなる。よって、設置画素PIXbは、そのスリット214b内に、非設置画素PIXaにおけるスリット214a内よりも透過率が低い領域2141b(以下、低透過領域)が存在する。 As described above, in the slit 214 of the pixel electrode 210, the longer the distance from the long-side electrode portion 211, the weaker the alignment regulating force on the liquid crystal molecules and the lower the transmittance. Therefore, by increasing the width of the slit 214b of the pixel electrode 210b in the installation pixel PIXb, the region 2141b where the alignment regulation force is weakened is also widened. That is, in the installed pixel PIXb, the width W41 of the region 2141b in the slit 214b is wider than the width W31 of the region 2141a in the slit 214a in the non-installed pixel PIXa. Therefore, the installed pixel PIXb has a region 2141b (hereinafter referred to as a low transmission region) having a lower transmittance than that in the slit 214a in the non-installed pixel PIXa in the slit 214b.
 本実施形態において、配線13は、設置画素PIXbにおける画素電極210bのスリット214内の領域2141bに沿って配置される。 In the present embodiment, the wiring 13 is arranged along the region 2141b in the slit 214 of the pixel electrode 210b in the installation pixel PIXb.
 このように、設置画素は、画素電極210bのスリット214b内に低透過領域2141bを有するため、全ての画素の画素電極210のスリット214内の透過率が均一である場合と比べ、配線13の幅や位置等が異なる場合であっても、設置画素間の透過率のばらつきを低減できる。その結果、特定の色の画素に、形状等が異なる配線13を配置しても色ずれ等の表示品位の低下を生じにくくすることができる。 Thus, since the installed pixel has the low transmission region 2141b in the slit 214b of the pixel electrode 210b, the width of the wiring 13 is compared with the case where the transmittance in the slit 214 of the pixel electrode 210 of all the pixels is uniform. Even when the positions and the positions are different, it is possible to reduce the variation in transmittance between the installed pixels. As a result, even if the wiring 13 having a different shape or the like is arranged in a pixel of a specific color, it is possible to make it difficult for display quality deterioration such as color shift to occur.
(変形例)
 上述した第2の実施形態では、ソース線Sと、画素電極210の一部とが屈曲している例を説明したが、ゲート線Gと、画素電極210の一部とが屈曲していてもよい。
(Modification)
In the above-described second embodiment, the example in which the source line S and a part of the pixel electrode 210 are bent has been described, but the gate line G and a part of the pixel electrode 210 may be bent. Good.
 図9Aは、本変形例におけるアクティブマトリクス基板10aの一部の画素を拡大した模式図である。図9Aに示すように、アクティブマトリクス基板10aにおけるゲート線Gは、Y軸方向に屈曲している。画素電極220の2つの電極部分221(以下、長辺電極部)は、非遮光領域Paにおいて、ゲート線Gと同様に屈曲している。画素電極220は、長辺電極部221の間にスリット224を有する。 FIG. 9A is an enlarged schematic view of a part of the pixels of the active matrix substrate 10a in the present modification. As shown in FIG. 9A, the gate lines G in the active matrix substrate 10a are bent in the Y-axis direction. Two electrode portions 221 (hereinafter referred to as long side electrode portions) of the pixel electrode 220 are bent in the same manner as the gate line G in the non-light-shielding region Pa. The pixel electrode 220 has a slit 224 between the long side electrode portions 221.
 本変形例では、例えば、ソース線Sの延伸方向に沿って各画素がR,G,Bの順に配列されるように設けられている。 In this modification, for example, the pixels are arranged in the order of R, G, and B along the extending direction of the source line S.
 図9Aに示す下側の画素PIXには、非遮光領域Paを通る配線131が配置されている。配線131は、上述した配線13と同様、ゲート線Gを駆動する駆動回路に用いられる配線や、共通電極と接続された補助配線等である。配線131は、ゲート線Gと同様に屈曲し、ゲート線Gの延伸方向と略平行に配置されている。 In the lower pixel PIX shown in FIG. 9A, a wiring 131 passing through the non-light-shielding region Pa is arranged. The wiring 131 is a wiring used for a drive circuit for driving the gate line G, an auxiliary wiring connected to the common electrode, or the like, similar to the wiring 13 described above. The wiring 131 is bent in the same manner as the gate line G, and is disposed substantially parallel to the extending direction of the gate line G.
 この例においても、設置画素PIXbと、非設置画素PIXaの透過率を揃えるため、設置画素PIXbのY軸方向の幅は、非設置画素PIXaよりも広く、設置画素PIXbの非遮光領域PaのY軸方向の幅も、非設置画素PIXaよりも広い。 Also in this example, in order to make the transmittance of the installed pixel PIXb and the non-installed pixel PIXa uniform, the width of the installed pixel PIXb in the Y-axis direction is wider than that of the non-installed pixel PIXa and The axial width is also wider than that of the non-installed pixel PIXa.
 また、図9Aに示すように、非設置画素PIXaでは、画素電極220のスリット224内の透過率が、長辺電極部221の近傍の透過率と略同じになるように、スリット224の幅W5が設定されている。そして、設置画素PIXbにおける画素電極220のスリット224の幅W6は、非設置画素PIXaにおける画素電極220のスリット224の幅W5よりも広くなっている。このように構成することで、設置画素PIXbにおいて、配向規制力が弱まる、スリット224bの中央付近の領域2241bの幅61が、非設置画素PIXaの領域2241aの幅51よりも広がる。つまり、設置画素PIXbは、スリット224b内に低透過領域2241bを有する。配線13は、設置画素PIXbにおける低透過領域2241bに配置される。そのため、配線131の幅や位置等がばらついていても、全画素のスリット224内の透過率が均一である場合と比べ、設置画素PIXb間の透過率のばらつきを低減することができる。 9A, in the non-installed pixel PIXa, the width W5 of the slit 224 is set so that the transmittance in the slit 224 of the pixel electrode 220 is substantially the same as the transmittance in the vicinity of the long side electrode portion 221. Is set. The width W6 of the slit 224 of the pixel electrode 220 in the installed pixel PIXb is larger than the width W5 of the slit 224 of the pixel electrode 220 in the non-installed pixel PIXa. With this configuration, the width 61 of the region 2241b in the vicinity of the center of the slit 224b in which the orientation regulating force is weakened in the installed pixel PIXb is wider than the width 51 of the region 2241a of the non-installed pixel PIXa. That is, the installation pixel PIXb has the low transmission region 2241b in the slit 224b. The wiring 13 is arranged in the low transmission region 2241b in the installation pixel PIXb. Therefore, even if the width, position, and the like of the wiring 131 vary, it is possible to reduce variation in transmittance between the installed pixels PIXb as compared with the case where the transmittance in the slits 224 of all the pixels is uniform.
 なお、図9Aの例では、ゲート線Gの延伸方向に略平行な配線131が画素内に配置される例であるが、図9Bに示すように、さらに、ソース線Sに略平行な配線132が画素内に配置されていてもよい。この場合、領域2241a、2241bは、配線132の延伸方向と交差するため、各画素のスリット224の幅を広げても、領域2241a、2241bに配線132を完全に重ねることはできない。そのため、配線132の幅や位置等がばらついている場合、配線132が設けられた設置画素間の透過率のばらつきは抑制されない。しかしながら、少なくとも、配線131が配置された設置画素間の透過率のばらつきを抑制することできるので、表示品位の低下を低減することができる。 In the example of FIG. 9A, the wiring 131 that is substantially parallel to the extending direction of the gate line G is disposed in the pixel. However, as shown in FIG. 9B, the wiring 132 that is substantially parallel to the source line S is further provided. May be arranged in the pixel. In this case, since the regions 2241a and 2241b intersect the extending direction of the wiring 132, the wiring 132 cannot be completely overlapped with the regions 2241a and 2241b even if the width of the slit 224 of each pixel is increased. Therefore, when the width, position, and the like of the wiring 132 are varied, variation in transmittance between installed pixels provided with the wiring 132 is not suppressed. However, since at least the variation in the transmittance between the installed pixels in which the wiring 131 is disposed can be suppressed, it is possible to reduce deterioration in display quality.
 <第3の実施形態>
 上述した第1及び第2の実施形態では、配線と重なる設置画素の画素電極の形状を非設置画素の画素電極と異ならせることで、設置画素における暗線領域又は低透過領域を非設置画素よりも大きくし、設置画素間の透過率のばらつきを抑制した。本実施の形態では、さらに、共通電極によって、設置画素間の透過率のばらつきを抑制する例を説明する。
<Third Embodiment>
In the first and second embodiments described above, the shape of the pixel electrode of the installed pixel that overlaps the wiring is different from the pixel electrode of the non-installed pixel, so that the dark line region or the low transmission region in the installed pixel is more than the non-installed pixel. Increased to suppress variation in transmittance between installed pixels. In this embodiment, an example in which variation in transmittance between installed pixels is further suppressed by using a common electrode will be described.
 図10は、本実施の形態におけるアクティブマトリクス基板10bの一部の画素を拡大した模式図である。なお、図10において、第2の実施形態と同様の構成には、第2の実施形態と同じ符号が付されている。また、図10では、便宜上、ブラックマトリクスによって覆われる遮光領域Pbの図示は省略している。 FIG. 10 is an enlarged schematic view of a part of the pixels of the active matrix substrate 10b in the present embodiment. In FIG. 10, the same components as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment. Further, in FIG. 10, for the sake of convenience, the illustration of the light shielding region Pb covered with the black matrix is omitted.
 図10に示す共通電極15は、絶縁膜を介して画素電極210と対向して配置されている。共通電極15は、設置画素PIXbの非遮光領域Paにおける配線13と重なる位置にスリット(開口)151を有する。スリット151のX軸方向の幅W7は、配線13よりも広い。 The common electrode 15 shown in FIG. 10 is arranged to face the pixel electrode 210 with an insulating film interposed therebetween. The common electrode 15 has a slit (opening) 151 at a position overlapping the wiring 13 in the non-light-shielding region Pa of the installation pixel PIXb. The width 151 of the slit 151 in the X-axis direction is wider than that of the wiring 13.
 設置画素PIXbにおいて、スリット151が設けられた領域は液晶分子に電圧が印加されないため、スリット151が設けられていない部分よりも透過率が低下する。そのため、設置画素PIXbに配置される配線13の幅や位置等がばらついても、第2の実施形態と比べ、設置画素PIXb間における透過率のばらつきをさらに軽減することができる。 In the installed pixel PIXb, since the voltage is not applied to the liquid crystal molecules in the region where the slit 151 is provided, the transmittance is lower than that of the portion where the slit 151 is not provided. Therefore, even if the width, position, and the like of the wiring 13 arranged in the installation pixel PIXb vary, the variation in transmittance between the installation pixels PIXb can be further reduced as compared with the second embodiment.
 配線13は、スリット151の幅の略中央に配置されることが好ましい。このように構成することで、配線13と他の信号線との間の寄生容量を低減することができる。また、配線13の幅や位置等のばらつきによる設置画素の透過率のばらつきを軽減することができる。 It is preferable that the wiring 13 is disposed at substantially the center of the width of the slit 151. With this configuration, the parasitic capacitance between the wiring 13 and other signal lines can be reduced. In addition, it is possible to reduce variations in the transmittance of installed pixels due to variations in the width and position of the wiring 13.
 また、この例では、設置画素PIXbにおける画素電極210のスリットの幅が非設置画素PIXaにおける画素電極210のスリットよりも広くなっているが、設置画素PIXbと非設置画素PIXaの画素電極210のスリットの幅が同等であってもよい。共通電極15において、設置画素PIXbにおける配線13と重なる位置にスリット151が設けられているだけでも、液晶分子に電圧が印加された際、スリット151の位置における液晶分子への配向規制力が弱まり、透過率が低下する。つまり、設置画素は、スリット151が設けられた領域において、非設置画素よりも透過率が低い低透過領域を有する。よって、共通電極15に設けられた低透過領域に配線13が配置されることで、配線13の幅や位置等のばらつきによる設置画素間の透過率のばらつきを軽減することができる。 In this example, the slit width of the pixel electrode 210 in the installed pixel PIXb is wider than the slit of the pixel electrode 210 in the non-installed pixel PIXa, but the slit of the pixel electrode 210 of the installed pixel PIXb and the non-installed pixel PIXa. May be equal in width. Even when the slit 151 is provided only at the position where the common electrode 15 overlaps the wiring 13 in the installation pixel PIXb, when a voltage is applied to the liquid crystal molecules, the alignment regulating force on the liquid crystal molecules at the position of the slits 151 is weakened. The transmittance decreases. That is, the installed pixel has a low transmission region having a lower transmittance than the non-installed pixel in the region where the slit 151 is provided. Therefore, by arranging the wiring 13 in the low transmission region provided in the common electrode 15, it is possible to reduce variation in transmittance between installed pixels due to variation in the width and position of the wiring 13.
 また、この例では、第2の実施形態と同様の画素電極210を例に説明したが、画素電極の形状はこれに限定されない。画素電極は、第1の実施形態と同様のフィッシュボーン形状を有する画素電極を用いてもよいし、スリットが形成されていない画素電極を用いてもよい。 In this example, the pixel electrode 210 similar to that of the second embodiment has been described as an example, but the shape of the pixel electrode is not limited thereto. As the pixel electrode, a pixel electrode having the same fishbone shape as in the first embodiment may be used, or a pixel electrode in which no slit is formed may be used.
 <第4の実施形態>
 次に、上述した第1から第3の実施形態における配線の具体例を説明する。
<Fourth Embodiment>
Next, specific examples of the wiring in the first to third embodiments described above will be described.
 図11は、本実施形態におけるアクティブマトリクス基板10c上に設けられるゲートドライバの概略配置例を示す模式図である。図11では、便宜上、ソース線Sの図示を省略している。 FIG. 11 is a schematic diagram showing a schematic arrangement example of gate drivers provided on the active matrix substrate 10c in the present embodiment. In FIG. 11, the source line S is not shown for convenience.
 図11に例示するように、ゲート線Gごとに、当該ゲート線Gを選択状態又は非選択状態に切り替える一のゲートドライバ40が設けられている。ゲートドライバ40は、隣接するゲート線Gの間に配置される。つまり、この例において、ゲートドライバ40は、画素内に配置される。 As illustrated in FIG. 11, for each gate line G, one gate driver 40 that switches the gate line G to a selected state or a non-selected state is provided. The gate driver 40 is disposed between adjacent gate lines G. That is, in this example, the gate driver 40 is disposed in the pixel.
 1行目のゲート線G(1)に対して設けられるゲートドライバ40を除き、各ゲートドライバ40は、対応するゲート線Gと、当該ゲート線Gに隣接するゲート線Gとの間に配置される。 Except for the gate driver 40 provided for the gate line G (1) in the first row, each gate driver 40 is arranged between the corresponding gate line G and the gate line G adjacent to the gate line G. The
 また、この例では、奇数番目のゲート線G(G(1)、(3)、(5)・・・)に対して設けられたゲートドライバ40は、制御配線411を介して互いに接続され、偶数番目のゲート線G(G(2)、(4)、(6)・・・)に対して設けられたゲートドライバ40は、制御配線411を介して互いに接続されている。 In this example, the gate drivers 40 provided for the odd-numbered gate lines G (G (1), (3), (5)...) Are connected to each other via the control wiring 411. The gate drivers 40 provided for the even-numbered gate lines G (G (2), (4), (6)...) Are connected to each other via the control wiring 411.
 アクティブマトリクス基板10cにおいて、ソースドライバ42が設けられている辺の額縁領域には、端子部71,72が設けられている。端子部71は、表示制御回路50及び電源60と接続されている。また、端子部72は、表示制御回路50、ソースドライバ42、及びソース線S(図2参照)と接続されている。 In the active matrix substrate 10c, terminal portions 71 and 72 are provided in the frame region on the side where the source driver 42 is provided. The terminal unit 71 is connected to the display control circuit 50 and the power supply 60. The terminal portion 72 is connected to the display control circuit 50, the source driver 42, and the source line S (see FIG. 2).
 表示制御回路50は、制御信号として、一定の周期で、Hレベル(VDD)とLレベル(VSS)の電位を交互に繰り返す信号(以下、クロック信号)と、クロック信号のHレベルと同じ電位の信号(以下、リセット信号)とを端子部71へ供給する。 The display control circuit 50 has, as a control signal, a signal that repeats an H level (VDD) potential and an L level (VSS) potential alternately (hereinafter referred to as a clock signal) at a constant cycle, and the same potential as the H level of the clock signal. A signal (hereinafter, reset signal) is supplied to the terminal unit 71.
 電源60は、電源電圧信号をソースドライバ42及び端子部71に供給する。 The power supply 60 supplies a power supply voltage signal to the source driver 42 and the terminal unit 71.
 端子部71は、供給される制御信号及び電源電圧信号等の信号を受け取り、制御配線411を介して、各ゲートドライバ40に各信号を供給する。ゲートドライバ40は、供給される信号に応じて、対応するゲート線Gに対し、選択状態と非選択状態の一方を示す電圧信号を出力する。ソースドライバ42は、表示制御回路50から入力される信号に応じて、端子部72を介し、各ソース線S(図2参照)にデータ信号を出力する。 The terminal unit 71 receives signals such as a supplied control signal and a power supply voltage signal, and supplies each signal to each gate driver 40 via the control wiring 411. The gate driver 40 outputs a voltage signal indicating one of the selected state and the non-selected state to the corresponding gate line G in accordance with the supplied signal. The source driver 42 outputs a data signal to each source line S (see FIG. 2) via the terminal unit 72 in accordance with a signal input from the display control circuit 50.
 次に、ゲートドライバ40の構成について説明する。図12は、ゲート線G(n)を駆動するゲートドライバ40(n)の等価回路を例示した図である。 Next, the configuration of the gate driver 40 will be described. FIG. 12 is a diagram illustrating an equivalent circuit of the gate driver 40 (n) that drives the gate line G (n).
 図12に示すように、ゲートドライバ40(n)は、スイッチング素子として、アルファベットのA~Eで示す薄膜トランジスタ(TFT:Thin Film Transistor)(以下、TFT-A~TFT-E)と、キャパシタCbstと、ゲートドライバ40の内部配線であるnetAとを有する。 As shown in FIG. 12, the gate driver 40 (n) includes thin film transistors (TFT: Thin Film Transistor) (hereinafter referred to as TFT-A to TFT-E) denoted by alphabets A to E as switching elements, a capacitor Cbst, , NetA which is an internal wiring of the gate driver 40.
 TFT-Bのドレイン端子は前段のゲート線G(n-1)に接続され、ゲート端子は、クロック信号CKBを供給する制御配線411に接続され、ソース端子は、netAに接続される。TFT-Bは、クロック信号CKB及びゲート線G(n-1)の電位に応じて、netAの電位の上げ下げを制御する。 The drain terminal of the TFT-B is connected to the previous gate line G (n−1), the gate terminal is connected to the control wiring 411 that supplies the clock signal CKB, and the source terminal is connected to netA. The TFT-B controls the raising and lowering of the potential of the netA according to the clock signal CKB and the potential of the gate line G (n−1).
 TFT-Aのドレイン端子はnetAに接続され、ゲート端子は、リセット信号CLRを供給する制御配線411に接続され、ソース端子は電源電圧信号VSSを供給する制御配線411に接続される。TFT-Aは、リセット信号CLRにより指定されるタイミングで、netAの電位を電源電圧信号VSSのレベルにする。 The drain terminal of TFT-A is connected to netA, the gate terminal is connected to a control wiring 411 that supplies a reset signal CLR, and the source terminal is connected to a control wiring 411 that supplies a power supply voltage signal VSS. The TFT-A sets the potential of netA to the level of the power supply voltage signal VSS at the timing specified by the reset signal CLR.
 TFT-Eのゲート端子は、netAに接続され、ドレイン端子は、クロック信号CKAを供給する制御配線411に接続され、ソース端子は、ゲート線G(n)に接続される。 The gate terminal of the TFT-E is connected to netA, the drain terminal is connected to the control wiring 411 that supplies the clock signal CKA, and the source terminal is connected to the gate line G (n).
 TFT-Dのドレイン端子は、ゲート線G(n)に接続され、ゲート端子は、リセット信号CLRを供給する制御配線411に接続され、ソース端子は、電源電圧信号VSSを供給する制御配線411に接続される。 The drain terminal of the TFT-D is connected to the gate line G (n), the gate terminal is connected to the control wiring 411 that supplies the reset signal CLR, and the source terminal is connected to the control wiring 411 that supplies the power supply voltage signal VSS. Connected.
 TFT-Cのドレイン端子は、ゲート線G(n)に接続され、ゲート端子は、クロック信号CKBを供給する制御配線411に接続され、ソース端子は、電源電圧信号VSSを供給する制御配線411に接続される。 The drain terminal of the TFT-C is connected to the gate line G (n), the gate terminal is connected to the control wiring 411 that supplies the clock signal CKB, and the source terminal is connected to the control wiring 411 that supplies the power supply voltage signal VSS. Connected.
 キャパシタCbstは、一方の電極がnetA(n)と接続され、他方の電極がゲート線G(n)と接続されている。キャパシタCbstは、TFT-Eから出力されるクロック信号CKAの電位に応じて、netA(n)の電位を昇圧させる。 The capacitor Cbst has one electrode connected to netA (n) and the other electrode connected to the gate line G (n). The capacitor Cbst boosts the potential of netA (n) in accordance with the potential of the clock signal CKA output from the TFT-E.
 なお、次段及び前段のゲート線G(n+1)、G(n-1)では、クロック信号CKAとCKBの接続が入れ替わる。例えば、次段及び前段では、TFT-Eのドレイン端子は、クロック信号CKBを供給する制御配線411と接続され、TFT-B及びTFT-Cのゲート端子は、クロック信号CKAを供給する制御配線411と接続される。 Note that the connection of the clock signals CKA and CKB is switched in the gate lines G (n + 1) and G (n−1) of the next stage and the previous stage. For example, in the next stage and the previous stage, the drain terminal of the TFT-E is connected to the control wiring 411 that supplies the clock signal CKB, and the gate terminals of the TFT-B and TFT-C are the control wiring 411 that supplies the clock signal CKA. Connected.
 リセット信号CLRは、例えば、ゲート線Gの走査開始前に一定期間、Hレベルとなる信号であり、この場合、1垂直走査期間ごとに、リセット信号CLRはHレベルとなる。リセット信号CLRがHレベルになることにより、netA及びゲート線GをLレベル(電源電圧信号VSSのレベル)にリセットする。また、1垂直走査期間の初め、1段目のゲート線G(1)に対しては、セット信号Stとして、GSP(ゲートスタートパルスgate start pulse)が表示制御回路50から入力される。 The reset signal CLR is, for example, a signal that becomes H level for a certain period before the scanning of the gate line G is started. In this case, the reset signal CLR becomes H level for each vertical scanning period. When the reset signal CLR becomes H level, the netA and the gate line G are reset to L level (the level of the power supply voltage signal VSS). In addition, GSP (gate start pulse gate start pulse) is input from the display control circuit 50 as the set signal St to the first stage gate line G (1) at the beginning of one vertical scanning period.
 ここで、ゲートドライバ40(n)がゲート線G(n)を駆動する際の動作を説明する。図13は、ゲートドライバ40(n)がゲート線G(n)を駆動する際のタイミングチャートである。図13に示すように、クロック信号CKA、CKBは、互いに逆位相となるように、1水平走査期間(1H)ごとに、HレベルとLレベルの電位を交互に繰り返す。 Here, the operation when the gate driver 40 (n) drives the gate line G (n) will be described. FIG. 13 is a timing chart when the gate driver 40 (n) drives the gate line G (n). As shown in FIG. 13, the clock signals CKA and CKB alternately repeat the potentials at the H level and the L level every horizontal scanning period (1H) so as to have opposite phases to each other.
 時刻t1において、前段のゲート線G(n-1)が選択状態となり、クロック信号CKAがLレベル、クロック信号CKBがHレベルとなる。これにより、TFT-Bがオン状態となり、ゲート線G(n-1)のHレベルの電位がTFT-Bのドレイン端子に入力され、netAがHレベルに充電される。また、TFT-Eはオフ状態となるため、netAの電位は下がらずに維持される。この間、TFT-Cはオン状態となっているため、ゲート線G(n)の電位はLレベルとなる。 At time t1, the previous gate line G (n−1) is in a selected state, and the clock signal CKA becomes L level and the clock signal CKB becomes H level. As a result, the TFT-B is turned on, the H-level potential of the gate line G (n−1) is input to the drain terminal of the TFT-B, and netA is charged to the H level. Further, since TFT-E is turned off, the potential of netA is maintained without being lowered. During this time, since the TFT-C is in the on state, the potential of the gate line G (n) is at the L level.
 時刻t2において、クロック信号CKAがHレベルとなり、クロック信号CKBがLレベルとなると、TFT-Eがオン状態となり、TFT-Cがオフ状態となる。netAとゲート線G(n)との間にはキャパシタCbstが設けられているため、TFT-Fのドレインの電位の上昇に伴って、netAはクロック信号CKAのHレベルより高い電位まで充電される。この間、クロック信号CKAのHレベルの電位がゲート線G(n)に出力される。これにより、ゲート線G(n)は、選択された状態となり、次段のゲート線G(n+1)を駆動するゲートドライバ40(n+1)に、セット信号Stとして、ゲート線G(n)のHレベルの電位が出力される。 At time t2, when the clock signal CKA becomes H level and the clock signal CKB becomes L level, the TFT-E is turned on and the TFT-C is turned off. Since the capacitor Cbst is provided between the netA and the gate line G (n), the netA is charged to a potential higher than the H level of the clock signal CKA as the potential of the drain of the TFT-F increases. . During this period, the H level potential of the clock signal CKA is output to the gate line G (n). As a result, the gate line G (n) is selected, and the gate driver 40 (n + 1) that drives the next-stage gate line G (n + 1) receives the H of the gate line G (n) as the set signal St. A level potential is output.
 時刻t3において、クロック信号CKAがLレベルとなり、クロック信号CKBがHレベルになると、TFT-Bがオン状態となり、netAは、Lレベルに充電される。また、TFT-Eがオフ状態、TFT-Cがオン状態になるので、ゲート線G(n)は、Lレベルに充電され、非選択状態に切り替えられる。その後、クロック信号CKBとTFT-Cにより、ゲート線G(n)はLレベルの電位に維持される。 At time t3, when the clock signal CKA becomes L level and the clock signal CKB becomes H level, the TFT-B is turned on, and netA is charged to L level. Further, since the TFT-E is turned off and the TFT-C is turned on, the gate line G (n) is charged to the L level and switched to the non-selected state. Thereafter, the gate line G (n) is maintained at the L level potential by the clock signal CKB and the TFT-C.
 次に、ゲートドライバ40の回路素子の配置例について説明する。図14は、ゲートドライバ40の回路素子の配置例を示す等価回路図である。 Next, an arrangement example of circuit elements of the gate driver 40 will be described. FIG. 14 is an equivalent circuit diagram illustrating an arrangement example of circuit elements of the gate driver 40.
 図14では、ゲート線G(n-2)~ゲート線G(n+1)のそれぞれを駆動するゲートドライバ40(n-2)~ゲートドライバ40(n+1)の回路素子の配置例が示されている。 FIG. 14 shows an arrangement example of circuit elements of the gate drivers 40 (n−2) to 40 (n + 1) for driving the gate lines G (n−2) to G (n + 1), respectively. .
 図14に示すように、各ゲートドライバ40は、当該ゲートドライバ40が駆動するゲート線Gと、その前段のゲート線Gとの間の行に配置される。また、ゲートドライバ40(n-2)とゲートドライバ40(n)、ゲートドライバ40(n-1)とゲートドライバ40(n+1)は、それぞれ共通の制御配線411を介して互いに接続されている。 As shown in FIG. 14, each gate driver 40 is arranged in a row between the gate line G driven by the gate driver 40 and the previous gate line G. In addition, the gate driver 40 (n−2) and the gate driver 40 (n), and the gate driver 40 (n−1) and the gate driver 40 (n + 1) are connected to each other through a common control wiring 411.
 アルファベットA~Eで示すTFT-A~TFT-E、及びキャパシタCbst等の回路素子と、回路素子を接続するnetA等の内部配線は、同じ行の異なる画素に分散して配置されている。ここで、ゲートドライバ40の回路素子、内部配線及び制御配線411が配置される画素の構成を具体的に説明する。 The circuit elements such as TFT-A to TFT-E indicated by alphabets A to E and the capacitor Cbst and the internal wiring such as netA for connecting the circuit elements are distributed in different pixels in the same row. Here, the configuration of the pixel in which the circuit element, the internal wiring, and the control wiring 411 of the gate driver 40 are arranged will be specifically described.
 図15は、ゲートドライバ40の回路素子、内部配線及び制御配線411が配置された画素を含む一部の画素を拡大した模式図である。図15において、第1の実施形態と同様の構成には、第1の実施形態と同じ符号が付されている。 FIG. 15 is an enlarged schematic view of a part of pixels including a pixel in which circuit elements, internal wirings, and control wirings 411 of the gate driver 40 are arranged. In FIG. 15, the same reference numerals as those in the first embodiment are given to the same configurations as those in the first embodiment.
 図15に示すように、画素PIXbの遮光領域には、ゲートドライバ40の回路素子410が配置される。内部配線412は、回路素子410と接続され、ゲート線Gの延伸方向に隣接する複数の画素の遮光領域においてゲート線Gと略平行に配置されている。制御配線411は、回路素子410と接続され、制御配線411の一部は、画素PIXbの非遮光領域Paにおいてソース線Sと略平行となるように配置されている。つまり、この例において、制御配線411は、上述した第1の実施形態における配線13に相当し、画素PIXbは、配線13が配置された設置画素である。 As shown in FIG. 15, the circuit element 410 of the gate driver 40 is arranged in the light shielding region of the pixel PIXb. The internal wiring 412 is connected to the circuit element 410 and is arranged substantially in parallel with the gate line G in a light shielding region of a plurality of pixels adjacent in the extending direction of the gate line G. The control wiring 411 is connected to the circuit element 410, and a part of the control wiring 411 is disposed so as to be substantially parallel to the source line S in the non-light-shielding region Pa of the pixel PIXb. That is, in this example, the control wiring 411 corresponds to the wiring 13 in the first embodiment described above, and the pixel PIXb is an installed pixel in which the wiring 13 is arranged.
 画素電極11は、第1の実施形態と同様のフィッシュボーン形状を有する。制御配線411は、設置画素PIXbにおける画素電極11の第1幹部111yと重なって配置されている。設置画素PIXbの画素電極11の第1幹部111yの幅は、第1の実施形態と同様、非設置画素PIXaにおける画素電極11よりも広い。そのため、設置画素PIXbにおける暗線領域に制御配線411を配置しやすく、制御配線411の幅や位置等がばらついていても、設置画素PIXb間の透過率がばらつきにくい。 The pixel electrode 11 has the same fishbone shape as in the first embodiment. The control wiring 411 is disposed so as to overlap the first trunk portion 111y of the pixel electrode 11 in the installation pixel PIXb. The width of the first trunk portion 111y of the pixel electrode 11 of the installed pixel PIXb is wider than the pixel electrode 11 of the non-installed pixel PIXa, as in the first embodiment. Therefore, it is easy to arrange the control wiring 411 in the dark line region in the installation pixel PIXb, and even if the width, position, etc. of the control wiring 411 vary, the transmittance between the installation pixels PIXb hardly varies.
 なお、この例では、フィッシュボーン形状の画素電極を用いたが、第2の実施形態の画素電極210と同様の画素電極を用いてもよい。また、第3の実施形態のように、画素電極11に対向して配置される共通電極15(図10参照)において、制御配線411と重なる位置にスリットを形成してもよい。また、上述した第1の実施形態及び第2の実施形態の(変形例)における配線130、131として、ゲートドライバ40の内部配線412が配置されてもよい。 In this example, a fishbone-shaped pixel electrode is used, but a pixel electrode similar to the pixel electrode 210 of the second embodiment may be used. Further, as in the third embodiment, in the common electrode 15 (see FIG. 10) arranged to face the pixel electrode 11, a slit may be formed at a position overlapping the control wiring 411. Moreover, the internal wiring 412 of the gate driver 40 may be arranged as the wirings 130 and 131 in the (modification) of the first embodiment and the second embodiment described above.
 <変形例>
 (1)上述した実施形態において、画素の非遮光領域に配置される配線は、その用途や種類を問わない。例えば、図16に示すように、上述した第4の実施形態において、隣接する画素PIXaと画素PIXbの間の遮光領域に、制御配線411を配置し、一方の画素PIXbの画素電極11と接続されるソース線S(Sb)が画素PIXbの非遮光領域Paに配置されていてもよい。つまり、この場合、画素の非遮光領域Paに配置される配線は、ソース線Sである。このように構成することで、ソース線SaとSbの間の領域が広がり、ゲートドライバ40の回路素子410を配置しやすくなる。
<Modification>
(1) In the embodiment described above, the use and type of the wiring arranged in the non-light-shielding region of the pixel are not limited. For example, as shown in FIG. 16, in the above-described fourth embodiment, the control wiring 411 is arranged in the light shielding region between the adjacent pixels PIXa and PIXb, and is connected to the pixel electrode 11 of one pixel PIXb. The source line S (Sb) may be arranged in the non-light-shielding region Pa of the pixel PIXb. That is, in this case, the wiring arranged in the non-light-shielding region Pa of the pixel is the source line S. With this configuration, the region between the source lines Sa and Sb is widened, and the circuit element 410 of the gate driver 40 can be easily arranged.
 (2)本変形例では、上述した第2の実施形態と異なる画素の構成例について説明する。図17は、本変形例におけるアクティブマトリクス基板の一部の画素を拡大した模式図である。なお、図17において、第2の実施形態と同様の構成には、第2の実施形態と同じ符号が付されている。 (2) In this modification, a configuration example of a pixel different from the above-described second embodiment will be described. FIG. 17 is an enlarged schematic diagram of a part of pixels of the active matrix substrate in the present modification. In FIG. 17, the same reference numerals as those in the second embodiment are assigned to the same configurations as those in the second embodiment.
 図17に示すように、各画素電極2301の2つの電極部分2301(以下、長辺電極部)は、互いに略平行であり、直線状を有する。また、各画素電極230は、当該画素電極230の2つの長辺電極部2301の間にスリット2340を有する。 As shown in FIG. 17, two electrode portions 2301 (hereinafter, long-side electrode portions) of each pixel electrode 2301 are substantially parallel to each other and have a linear shape. Each pixel electrode 230 has a slit 2340 between two long-side electrode portions 2301 of the pixel electrode 230.
 ゲート線G(n)と画素用TFT12を介して接続された画素電極231a、231bを構成する長辺電極部2301はX軸正方向側に傾いているのに対し、ゲート線G(n-1)と画素用TFT12を介して接続された画素電極232a、232bを構成する長辺電極部2301はX軸負方向側に傾いている。 The long side electrode portion 2301 constituting the pixel electrodes 231a and 231b connected to the gate line G (n) via the pixel TFT 12 is inclined to the X axis positive direction side, whereas the gate line G (n−1) ) And the pixel electrodes 232a and 232b connected via the pixel TFT 12 are inclined to the X-axis negative direction side.
 本変形例では、同じゲート線Gと接続された各画素電極230が設けられた画素PIXの液晶分子は、電圧が印加された際、当該画素の画素電極230のスリット2340の延伸方向に沿って同じ方向に配向するが、ソース線Sの延伸方向に隣接する画素における液晶分子の配向方向とは異なる。つまり、例えば、図17における上段の画素PIX1a、PIX1bの液晶分子の配向方向は、当該画素のスリット2340の延伸方向に沿ってゲート線G(n)に向かう矢印P11方向である。一方、図17における下段の画素PIX2a、PIX2bの液晶分子の配向方向は、当該画素のスリット2340の延伸方向に沿ってゲート線G(n)に向かう矢印P12方向である。 In this modification, the liquid crystal molecules of the pixel PIX provided with each pixel electrode 230 connected to the same gate line G are aligned along the extending direction of the slit 2340 of the pixel electrode 230 of the pixel when a voltage is applied. Although aligned in the same direction, the alignment direction of the liquid crystal molecules in the pixel adjacent to the extending direction of the source line S is different. That is, for example, the alignment direction of the liquid crystal molecules of the upper pixels PIX1a and PIX1b in FIG. 17 is the arrow P11 direction toward the gate line G (n) along the extending direction of the slits 2340 of the pixels. On the other hand, the alignment direction of the liquid crystal molecules of the lower pixels PIX2a and PIX2b in FIG. 17 is an arrow P12 direction toward the gate line G (n) along the extending direction of the slits 2340 of the pixels.
 各画素電極230におけるスリット2340の幅の略中間となる領域部分2341は、電圧が印加された際、液晶分子の配向が弱まり、透過率が低下しやすい。そのため、この例においても、配線13が設けられていない非設置画素PIX1a、PIX2aは、スリット2340が設けられた領域における透過率が長辺電極部2301近傍の透過率と同等となるように、スリット2340のX軸方向の幅が設定されている。 In the region portion 2341 that is approximately in the middle of the width of the slit 2340 in each pixel electrode 230, when a voltage is applied, the alignment of the liquid crystal molecules is weakened, and the transmittance tends to decrease. Therefore, also in this example, the non-installed pixels PIX1a and PIX2a in which the wiring 13 is not provided have slits so that the transmittance in the region in which the slit 2340 is provided is equal to the transmittance in the vicinity of the long side electrode portion 2301. A width of 2340 in the X-axis direction is set.
 一方、配線13が設けられる設置画素PIX1b、PIX2bのスリット2340のX軸方向の幅は、非設置画素PIX1a、PIX2aのスリット2340よりも広い。このように構成することで、設置画素PIX1b、PIX2bにおいて、電圧印加時の液晶分子の配向が弱まる領域2341が、画素PIX1a、PIX2aの領域2341よりも広くなる。つまり、設置画素PIX1b、PIX2bはスリット2340内に低透過領域2341を有する。よって、配線13の幅や位置等にばらつきがあっても、全画素のスリット2340内の透過率が均一である場合と比べ、設置画素間の透過率のばらつきが抑制され、画素全体の表示品位の低下を軽減することができる。 On the other hand, the width in the X-axis direction of the slits 2340 of the installed pixels PIX1b and PIX2b provided with the wiring 13 is wider than the slits 2340 of the non-installed pixels PIX1a and PIX2a. With this configuration, in the installed pixels PIX1b and PIX2b, the region 2341 in which the orientation of liquid crystal molecules is weakened when a voltage is applied becomes wider than the region 2341 of the pixels PIX1a and PIX2a. That is, the installation pixels PIX1b and PIX2b have the low transmission region 2341 in the slit 2340. Therefore, even if there is a variation in the width, position, etc. of the wiring 13, the variation in the transmittance between the installed pixels is suppressed as compared with the case where the transmittance in the slits 2340 of all the pixels is uniform. Can be reduced.
 上述した第2の実施形態では、1つの画素に配向方向が異なる2つのドメインを形成することにより、画素全体の視野角を向上させているが、各画素において、ドメインの境界に暗線が生じる。本変形例では、1つの画素におけるドメインは1つであるため、暗線が生じない。また、本変形例では、隣接する行の画素の配向方向が互いに異なるため、画素全体の視野角を向上させることができる。 In the second embodiment described above, the viewing angle of the entire pixel is improved by forming two domains having different orientation directions in one pixel. However, in each pixel, a dark line is generated at the domain boundary. In this modification, since there is one domain in one pixel, no dark line is generated. Moreover, in this modification, since the orientation directions of the pixels in adjacent rows are different from each other, the viewing angle of the entire pixels can be improved.
 第2の実施形態のように、1つの画素に複数のドメインを形成する構成は、高精細な画素に適用しにくいが、本変形例の構成は、高精細の画素に適用しやすい。この場合、画素用TFT12は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び酸素(O)を含む酸化物半導体を用いることが好ましい。このような酸化物半導体を適用することで、アモルファスシリコン(a-Si)、LTPS(Low Temperature Poly-silicon)を用いる場合と比べ、画素を高精細化しやすい。また、本変形例においても、第3の実施形態と同様、配線13の設置画素における共通電極15(図10参照)において、配線13と重なる位置にスリット151を設けるようにしてもよい。 As in the second embodiment, the configuration in which a plurality of domains are formed in one pixel is difficult to apply to a high-definition pixel, but the configuration of this modification is easy to apply to a high-definition pixel. In this case, the pixel TFT 12 is preferably formed using an oxide semiconductor containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O). By using such an oxide semiconductor, pixels can be easily made high-definition as compared with the case where amorphous silicon (a-Si) or LTPS (Low Temperature Poly-silicon) is used. Also in this modification, similarly to the third embodiment, the slit 151 may be provided at a position overlapping the wiring 13 in the common electrode 15 (see FIG. 10) in the pixel where the wiring 13 is installed.
 (3)上述した実施形態では、配線を特定の色(B(青))の画素に配置する例を説明したが、配線が配置される画素は特定の色の画素でなくてもよい。配線が異なる色の画素に配置されている場合であっても、配線の幅や位置等のばらつきによって、配線が配置された設置画素間で透過率がばらつく。設置画素間の透過率がばらつくことで、非設置画素と設置画素の透過率のバランスが崩れるため、表示品位が低下する。上述した実施形態のように、設置画素における、配線の延伸方向と略平行に延伸する暗線領域又は低透過領域を、非設置画素よりも広げることで、設置画素の透過率のばらつきが抑制され、画素全体としての表示品位の低下を軽減することができる。 (3) In the above-described embodiment, the example in which the wiring is arranged in the pixel of the specific color (B (blue)) has been described, but the pixel in which the wiring is arranged may not be a pixel of the specific color. Even when the wiring is arranged in pixels of different colors, the transmittance varies between the installed pixels where the wiring is arranged due to variations in the width and position of the wiring. Since the transmittance between the installed pixels varies, the balance between the transmittance of the non-installed pixels and the installed pixels is lost, so that the display quality is deteriorated. As in the above-described embodiment, by setting the dark line region or the low transmission region extending substantially parallel to the wiring extension direction in the installation pixel more than the non-installation pixel, variation in transmittance of the installation pixel is suppressed, It is possible to reduce the deterioration of display quality as a whole pixel.
 (4)上述した実施形態では、設置画素と非設置画素の透過率を揃えるべく、設置画素の幅と、設置画素における非遮光領域の幅を、非設置画素よりも広く構成したが、設置画素と非設置画素における画素の幅及び開口部の幅が同等であってもよい。このように構成した場合であっても、上述した実施形態の構成により、設置画素間の透過率のばらつきが抑制され、非設置画素と設置画素の透過率のバランスが崩れにくいため、表示品位の低下を軽減できる。 (4) In the above-described embodiment, the width of the installed pixel and the width of the non-light-shielding area in the installed pixel are configured wider than the non-installed pixel in order to make the transmittance of the installed pixel and the non-installed pixel uniform. The width of the pixel and the width of the opening in the non-installed pixel may be the same. Even in such a configuration, the configuration of the above-described embodiment suppresses the variation in transmittance between the installed pixels, and the balance between the transmittance of the non-installed pixels and the installed pixels is not easily lost. The reduction can be reduced.
 (5)上述した実施形態の各画素に設けられる画素電極の形状は一例であって、画素電極の形状はこれに限定されない。要は、少なくとも一部の画素において、配線の延伸方向と略平行に延伸する暗線領域又は低透過領域が形成されるよう構成されていればよい。 (5) The shape of the pixel electrode provided in each pixel of the above-described embodiment is an example, and the shape of the pixel electrode is not limited to this. In short, it is sufficient that at least some of the pixels are configured so that a dark line region or a low transmission region extending substantially parallel to the wiring extending direction is formed.
 (6)上述した実施形態で用いたゲートドライバ40の構成は一例であり、複数のスイッチング素子を含む構成であればこれに限定されない。 (6) The configuration of the gate driver 40 used in the above-described embodiment is an example, and is not limited to this as long as the configuration includes a plurality of switching elements.
 (7)上述した実施形態における画素用TFT12及びゲートドライバ40を構成するTFTの半導体材料として、アモルファスシリコン(a-Si)、LTPS(Low Temperature Poly-silicon)を用いてもよいが、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び酸素(O)を含む酸化物半導体がより好ましい。インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び酸素(O)を含む酸化物半導体を適用することで、アモルファスシリコン、LTPSを用いる場合より高精細化及び高開口率化を実現しやすい。 (7) As the semiconductor material of the TFTs constituting the pixel TFT 12 and the gate driver 40 in the above-described embodiment, amorphous silicon (a-Si) or LTPS (Low Temperature Poly-silicon) may be used, but indium (In ), An oxide semiconductor containing gallium (Ga), zinc (Zn), and oxygen (O) is more preferable. By applying an oxide semiconductor containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O), higher definition and higher aperture ratio can be achieved than when amorphous silicon and LTPS are used. Cheap.

Claims (6)

  1.  アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して配置され、遮光部材を備える対向基板と、前記アクティブマトリクス基板と前記対向基板との間に挟持された液晶層とを備える液晶表示装置であって、
     前記アクティブマトリクス基板は、
     前記遮光部材によって遮光された遮光領域と、前記遮光領域を除く非遮光領域とを有し、前記非遮光領域にスリットを有する画素電極がそれぞれ設けられた複数の画素と、
     画素領域に配置される配線と、を備え、
     前記液晶層における液晶分子は水平配向モードで駆動され、
     前記複数の画素のうちの一部の画素のそれぞれは、当該画素における前記スリット内の透過率が、他の画素における前記スリット内の透過率よりも低い低透過領域を有し、
     前記配線は、前記一部の画素における前記低透過領域に配置される、液晶表示装置。
    A liquid crystal display device comprising: an active matrix substrate; a counter substrate disposed opposite to the active matrix substrate and including a light shielding member; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. ,
    The active matrix substrate is
    A plurality of pixels each having a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region, each provided with a pixel electrode having a slit in the non-light shielding region;
    Wiring disposed in the pixel region,
    Liquid crystal molecules in the liquid crystal layer are driven in a horizontal alignment mode,
    Each of some of the plurality of pixels has a low transmission region in which the transmittance in the slit in the pixel is lower than the transmittance in the slit in the other pixels,
    The liquid crystal display device, wherein the wiring is arranged in the low transmission region in the partial pixel.
  2.  前記画素電極は、第1の電極及び第2の電極とを有し、
     前記スリットは、前記第1の電極と前記第2の電極との間に設けられ、前記配線が延伸する方向と略平行であり、
     前記一部の画素における前記スリットの幅は、他の画素における前記スリットの幅よりも広く、
     前記一部の画素における前記低透過領域は、当該画素の前記第1の電極と前記第2の電極からの距離が略中間となる領域を含む、請求項1に記載の液晶表示装置。
    The pixel electrode has a first electrode and a second electrode,
    The slit is provided between the first electrode and the second electrode, and is substantially parallel to a direction in which the wiring extends.
    The width of the slit in the some pixels is wider than the width of the slit in the other pixels,
    2. The liquid crystal display device according to claim 1, wherein the low transmission region in the partial pixel includes a region in which a distance from the first electrode and the second electrode of the pixel is substantially intermediate.
  3.  アクティブマトリクス基板と、前記アクティブマトリクス基板に対向して配置され、遮光部材を備える対向基板と、前記アクティブマトリクス基板と前記対向基板との間に挟持された液晶層とを備える液晶表示装置であって、
     前記アクティブマトリクス基板は、
     画素電極がそれぞれ設けられ、前記遮光部材によって遮光された遮光領域と、前記遮光領域を除く非遮光領域とを有する複数の画素と、
     画素領域に配置される配線と、を備え、
     前記液晶層における液晶分子は垂直配向モードで駆動され、
     前記複数の画素のそれぞれは、当該画素の前記非遮光領域において、前記液晶分子が駆動された際の配向方向が異なる複数の配向分割領域を有し、
     前記複数の配向分割領域の境界は、前記配線が延伸する方向と略平行な境界部分を有し、
     前記複数の画素のうち一部の画素における前記境界部分の幅は、他の画素における前記境界部分の幅よりも広く、
     前記配線は、前記一部の画素の前記非遮光領域における前記境界部分に配置される、液晶表示装置。
    A liquid crystal display device comprising: an active matrix substrate; a counter substrate disposed opposite to the active matrix substrate and including a light shielding member; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. ,
    The active matrix substrate is
    A plurality of pixels each provided with a pixel electrode and having a light shielding region shielded by the light shielding member and a non-light shielding region excluding the light shielding region;
    Wiring disposed in the pixel region,
    Liquid crystal molecules in the liquid crystal layer are driven in a vertical alignment mode,
    Each of the plurality of pixels has a plurality of alignment division regions having different alignment directions when the liquid crystal molecules are driven in the non-light-shielding region of the pixels,
    The boundary between the plurality of alignment division regions has a boundary portion substantially parallel to the direction in which the wiring extends,
    The width of the boundary portion in some of the plurality of pixels is wider than the width of the boundary portion in other pixels,
    The liquid crystal display device, wherein the wiring is disposed at the boundary portion in the non-light-shielding region of the some pixels.
  4.  前記アクティブマトリクス基板又は前記対向基板は、さらに、前記複数の画素における前記画素電極に対向して配置された共通電極を備え、
     前記一部の画素における前記共通電極は、前記配線と重なる位置に、当該配線が延伸する方向と略平行な開口を有する、請求項1から3のいずれか一項に記載の液晶表示装置。
    The active matrix substrate or the counter substrate further includes a common electrode disposed to face the pixel electrode in the plurality of pixels,
    4. The liquid crystal display device according to claim 1, wherein the common electrode in the partial pixel has an opening substantially parallel to a direction in which the wiring extends at a position overlapping the wiring. 5.
  5.  前記アクティブマトリクス基板は、さらに、
     複数のゲート線と、
     前記複数のゲート線と交差する複数のソース線と、
     前記複数のゲート線のそれぞれに対して設けられ、供給される制御信号に応じて、対応する一のゲート線を選択状態又は非選択状態に切り替える駆動回路と、を備え、
     前記駆動回路は、複数のスイッチング素子を含む駆動回路用素子を有し、
     前記駆動回路用素子は、前記一部の画素に配置されて前記配線と接続され、
     前記配線は、当該配線と接続された前記駆動回路用素子に前記制御信号を供給する、請求項1から4のいずれか一項に記載の液晶表示装置。
    The active matrix substrate further includes:
    Multiple gate lines,
    A plurality of source lines intersecting the plurality of gate lines;
    A driving circuit that is provided for each of the plurality of gate lines and switches a corresponding one gate line to a selected state or a non-selected state in accordance with a supplied control signal;
    The drive circuit has a drive circuit element including a plurality of switching elements,
    The drive circuit element is disposed in the part of the pixels and connected to the wiring,
    5. The liquid crystal display device according to claim 1, wherein the wiring supplies the control signal to the drive circuit element connected to the wiring. 6.
  6.  前記アクティブマトリクス基板は、さらに、
     複数のゲート線と、
     前記複数のゲート線と交差する複数のソース線と、を備え、
     各画素の前記画素電極は、一のゲート線と一のソース線とに接続され、
     前記配線は、当該配線が配置された画素の画素電極と接続される前記一のソース線である、請求項1から4のいずれか一項に記載の液晶表示装置。
    The active matrix substrate further includes:
    Multiple gate lines,
    A plurality of source lines intersecting with the plurality of gate lines,
    The pixel electrode of each pixel is connected to one gate line and one source line,
    The liquid crystal display device according to claim 1, wherein the wiring is the one source line connected to a pixel electrode of a pixel in which the wiring is arranged.
PCT/JP2018/012335 2017-03-30 2018-03-27 Liquid crystal display device WO2018181265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068854 2017-03-30
JP2017-068854 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181265A1 true WO2018181265A1 (en) 2018-10-04

Family

ID=63676962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012335 WO2018181265A1 (en) 2017-03-30 2018-03-27 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2018181265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115885212A (en) * 2021-06-18 2023-03-31 京东方科技集团股份有限公司 Display substrate, preparation method thereof, display device and mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121303A1 (en) * 2007-08-08 2011-05-26 Dong-Gyu Kim Thin film transistor and liquid crystal display having the same
WO2011115194A1 (en) * 2010-03-19 2011-09-22 シャープ株式会社 Liquid crystal display device
JP2013076880A (en) * 2011-09-30 2013-04-25 Japan Display Central Co Ltd Liquid crystal display device
JP2015187619A (en) * 2012-08-09 2015-10-29 シャープ株式会社 liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121303A1 (en) * 2007-08-08 2011-05-26 Dong-Gyu Kim Thin film transistor and liquid crystal display having the same
WO2011115194A1 (en) * 2010-03-19 2011-09-22 シャープ株式会社 Liquid crystal display device
JP2013076880A (en) * 2011-09-30 2013-04-25 Japan Display Central Co Ltd Liquid crystal display device
JP2015187619A (en) * 2012-08-09 2015-10-29 シャープ株式会社 liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115885212A (en) * 2021-06-18 2023-03-31 京东方科技集团股份有限公司 Display substrate, preparation method thereof, display device and mask

Similar Documents

Publication Publication Date Title
WO2018062023A1 (en) Display panel
JP4938032B2 (en) Liquid crystal panel, liquid crystal display device, and television device
US8325286B2 (en) Active matrix substrate and display device including the same
US7936323B2 (en) Liquid crystal display device
US7656372B2 (en) Method for driving liquid crystal display device having a display pixel region and a dummy pixel region
TWI657301B (en) Active-matrix substrate and display panel
US20090009449A1 (en) Display device, active matrix substrate, liquid crystald display device and television receiver
US9620533B2 (en) Liquid crystal display having white pixels
WO2010021210A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
JP4911793B2 (en) Liquid crystal display
JP5268051B2 (en) Array substrate and display device using the same
US20080180372A1 (en) Display device
JP5384633B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
WO2009130919A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
CN105580065A (en) Display panel and display device having same
WO2011048843A1 (en) Display apparatus
WO2009130922A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
KR102764289B1 (en) Liquid crystal display panel
JP4987987B2 (en) Liquid crystal display
WO2010024049A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit and television receiving apparatus
US9007284B2 (en) Liquid crystal display element, liquid crystal display device, and display method employed in liquid crystal display element
WO2018181435A1 (en) Liquid crystal display device
US10935859B2 (en) Active matrix substrate and display device including same
JP5299407B2 (en) Liquid crystal display
WO2018181265A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP