WO2018181281A1 - Low-temperature fluid pump and low-temperature fluid transfer device - Google Patents
Low-temperature fluid pump and low-temperature fluid transfer device Download PDFInfo
- Publication number
- WO2018181281A1 WO2018181281A1 PCT/JP2018/012376 JP2018012376W WO2018181281A1 WO 2018181281 A1 WO2018181281 A1 WO 2018181281A1 JP 2018012376 W JP2018012376 W JP 2018012376W WO 2018181281 A1 WO2018181281 A1 WO 2018181281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- cryogenic fluid
- shaft
- base portion
- magnetic bearing
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 153
- 238000012546 transfer Methods 0.000 title claims abstract description 37
- 230000002093 peripheral effect Effects 0.000 claims description 23
- 230000008016 vaporization Effects 0.000 abstract description 8
- 238000009834 vaporization Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 13
- 230000004907 flux Effects 0.000 description 9
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000828 alnico Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/048—Bearings magnetic; electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D7/00—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04D7/02—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
Definitions
- the present invention relates to a cryogenic fluid pump and a cryogenic fluid transfer device.
- low temperature fluid pumps for feeding low temperature liquefied gas and the like are known.
- a pump used for an application where the pump cannot be stopped due to a failure or maintenance such as a pump used for cooling a superconducting device that requires continuous operation for a long period of time.
- a magnetic bearing requiring no maintenance is adopted.
- Patent Document 1 discloses a cryogenic fluid pump having a configuration in which a magnetic bearing requiring no maintenance is employed as a bearing.
- the bias current applied to the electromagnetic coil of the magnetic bearing in this manner causes heat generation in the magnetic bearing, resulting in problems such as vaporization of low temperature fluid and reduced pump efficiency.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cryogenic fluid pump and a cryogenic fluid transfer device capable of suppressing vaporization of cryogenic fluid. It is.
- the pump for cryogenic fluid includes an impeller, a rotating shaft, a housing, and a magnetic bearing.
- the rotating shaft is connected to the impeller.
- the housing holds the rotating shaft inside.
- a magnetic bearing supports a rotating shaft rotatably with respect to a housing
- the magnetic bearing includes a yoke and at least one coil.
- the yoke constitutes at least a part of the magnetic circuit. At least one coil surrounds a portion of the yoke.
- the yoke includes at least one permanent magnet disposed at a position constituting a part of the magnetic circuit.
- the cryogenic fluid transfer device includes a container that accommodates cryogenic fluid, the cryogenic fluid pump, and a flow conduit.
- the cryogenic fluid pump is installed in the container such that the impeller is disposed inside the container.
- the circulation pipe is connected to the container and is used for circulating a low-temperature fluid to which kinetic energy is imparted by a low-temperature fluid pump.
- the generated force with respect to the control current in the magnetic bearing can be linearized without flowing a bias current.
- a cryogenic fluid pump and a cryogenic fluid transfer device capable of suppressing vaporization of the cryogenic fluid are obtained.
- FIG. 3 is a partial schematic cross-sectional view along the rotation axis direction of the cryogenic fluid pump shown in FIG. 2.
- FIG. 4 is a schematic sectional view taken along line IV-IV in FIG. 3.
- It is a partial cross-sectional schematic diagram of the pump for low temperature fluids as a comparative example. It is a schematic diagram for demonstrating control of the magnetic bearing of the pump for low temperature fluids concerning this embodiment.
- FIG. 6 is a schematic cross-sectional view for explaining a magnetic bearing according to a modification of the first embodiment.
- FIG. It is a partial cross section schematic diagram along the rotating shaft direction of the cryogenic fluid pump which concerns on Embodiment 2 of this invention.
- FIG. 13 is a schematic cross-sectional view taken along line XIII-XIII in FIG. It is a partial cross section schematic diagram of the pump for low temperature fluids as a reference example.
- FIG. 10 is a partial cross-sectional schematic diagram of a cryogenic fluid pump according to a modification of the second embodiment.
- FIG. 16 is a schematic cross-sectional view taken along line XVI-XVI in FIG. 15. It is a schematic diagram of the cryogenic fluid transfer apparatus which concerns on Embodiment 3 of this invention. It is a cross-sectional schematic diagram of the pump for low temperature fluids used for the low temperature fluid transfer apparatus shown in FIG.
- the cryogenic fluid transfer apparatus 1 mainly includes a cryogenic fluid pump 100, a container 2, an inflow portion 3, and an outflow portion 4.
- the cryogenic fluid pump 100 includes a portion disposed outside the container 2 and a portion disposed inside the container 2.
- the cryogenic fluid pump 100 is attached to the pressure wall 5 of the container 2. Details of the cryogenic fluid pump 100 will be described later.
- the container 2 is for storing therein a low-temperature fluid such as a low-temperature liquefied gas.
- the cryogenic fluid is, for example, liquid nitrogen (LN 2 ).
- the container 2 is configured as a pressure-resistant container, and includes a main body that stores a low-temperature fluid therein and a pressure wall 5.
- the main body has an opening at the top.
- the pressure wall 5 is connected to the main body so as to close the opening of the main body.
- the pressure wall 5 faces the internal space that stores the cryogenic fluid in the container 2.
- the pressure wall 5 is disposed, for example, above the internal space of the container 2.
- a through hole 5 a is formed in the pressure wall 5.
- the hole axis of the through hole 5a is, for example, arranged coaxially with the central axis of the first axis constituting the shaft 9 of the pump 100 described later.
- a concave portion that is recessed toward the inner peripheral surface side with respect to the outer peripheral surface 5b of the pressure wall 5 is disposed.
- the said recessed part is a part into which the fixing member 14 mentioned later is screwed.
- the material that constitutes the pressure wall 5 is a material that is approved for use as a constituent material of a high-pressure gas container by laws and regulations, and includes, for example, stainless steel (SUS) or aluminum (Al).
- the inflow part 3 includes a pipe line connected to the internal space of the container 2.
- the cryogenic fluid flows into the container 2 through the pipe line of the inflow portion 3.
- the outflow part 4 includes a pipe line connected to the internal space of the container 2. The cryogenic fluid flows out of the container 2 through the pipe line of the outflow portion 4.
- the inflow part 3 and the outflow part 4 are configured as a part of a distribution pipe through which a low-temperature fluid flows.
- the distribution pipe includes a reservoir tank (not shown) and a refrigerator (not shown).
- the inflow part 3 is connected to a reservoir tank, for example.
- the outflow part 4 is connected with the refrigerator, for example.
- the above-described cryogenic fluid transfer device includes the container 2 for housing the cryogenic fluid, the cryogenic fluid pump 100, and the flow pipe including the inflow portion 3 and the outflow portion 4.
- the cryogenic fluid pump 100 is installed in the container 2 such that the impeller 8 is disposed inside the container 2 as shown in FIG.
- the distribution pipe is connected to the container 2 and is used for circulating the low-temperature fluid LG to which kinetic energy is given by the low-temperature fluid pump 100.
- a cryogenic fluid pump 100 (hereinafter also simply referred to as a pump) according to Embodiment 1 shown in FIGS. 2 to 4 is applied to the cryogenic fluid transfer apparatus 1 shown in FIG. It arrange
- the pump 100 includes a first housing portion 6 disposed inside the container 2 and a second housing portion 7 disposed outside the container 2 as a housing that is an outer member.
- the inside of the container 2 means a portion located inside the outer peripheral surface 5 b of the pressure wall 5 of the container 2.
- the outside of the container 2 means a portion located outside the outer peripheral surface 5 b of the pressure wall 5 of the container 2.
- the first housing part 6 and the second housing part 7 are configured separately from the pressure wall 5 of the container 2.
- the first housing portion 6 accommodates the impeller 8 and the first portion 9 a of the shaft 9 inside.
- the first housing 6 is provided with an inlet 6a and an outlet 6b as openings.
- the inflow port 6a is disposed at a lower end portion of the first housing portion 6 and opens downward.
- the outlet 6 b opens in the tangential direction of the outer peripheral surface of the impeller 8 as viewed from the extending direction of the central axis of the impeller 8 (extending direction of the central axis of the shaft 9).
- the upper end portion of the first housing portion 6 is connected to and fixed to the lower end portion of the second housing portion 7. Specifically, a portion located on the outer peripheral side in the upper surface of the upper end portion of the first housing portion 6 is connected and fixed to the lower surface of the lower end portion of the second housing portion 7.
- the lower end portion of the second housing portion 7 is disposed in the through hole 5 a disposed in the pressure wall 5 of the container 2.
- the lower end portion of the second housing portion 7 is configured to block most of the through hole 5a.
- the lower end portion of the second housing portion 7 has an outer peripheral side surface facing the inner peripheral end surface of the through hole 5a in the radial direction (radial direction) perpendicular to the extending direction.
- the second housing part 7 accommodates the second part 9b of the shaft 9, the motor 10, the radial magnetic bearing 11, and the thrust magnetic bearing 12 therein.
- the detailed configuration of the radial magnetic bearing 11 will be described later.
- the second housing portion 7 includes a flange portion 7a that protrudes outward in the radial direction above the lower end portion thereof.
- the flange portion 7a is continuous in the circumferential direction.
- a plurality of fixing through holes are arranged in the flange portion 7a.
- Each of the plurality of fixing through holes is disposed at a distance from each other in the circumferential direction with respect to the central axis of the shaft 9.
- the hole axis of each fixing through hole is, for example, along the central axis.
- One end of each fixing through hole is disposed on the lower surface of the flange portion 7a, and the other end of each fixing through hole is disposed on the upper surface of the flange portion 7a.
- the lower surface of the flange portion 7a is opposed to a portion surrounding the entire periphery of the through hole 5a on the outer peripheral surface 5b of the pressure wall 5 in the direction along the central axis.
- a recess is formed on the outer peripheral surface 5b of the pressure wall 5 facing one end of the fixing through hole.
- a screw as a fixing member 14 is inserted and fixed in the fixing through hole and the recess. In this way, the flange portion 7 a is connected to the outer peripheral surface 5 b of the pressure wall 5.
- the second housing part 7 includes, for example, a third housing part 7c and a fourth housing part 7d.
- casing part 7c is a cylindrical member.
- casing part 7d is a lid-shaped member comprised so that the upper edge part of the 3rd housing
- the lower end portion of the third housing portion 7 c constitutes the lower end portion of the second housing portion 7.
- the upper end portion of the third housing portion 7c is in contact with and fixed to the lower end portion of the fourth housing portion 7d.
- a flange portion is formed at each of the upper end portion of the third housing portion 7c and the lower end portion of the fourth housing portion 7d.
- the flange portion of the third housing portion 7c and the flange portion of the fourth housing portion 7d are arranged so as to overlap each other. Through holes are formed in these flange portions. A screw as a fixing member is inserted and fixed in the through hole.
- casing part 7 is exposed to air
- the material constituting the first housing part 6 and the second housing part 7 is a material that is permitted to be used as a constituent material of a high-pressure gas container by laws and regulations, for example, stainless steel (SUS) or aluminum. (Al) is included.
- the impeller 8 rotates when the shaft 9 rotates, and imparts kinetic energy to the low temperature fluid LG in the container 2.
- the impeller 8 is configured as a centrifugal impeller, for example.
- the impeller 8 is connected to one end of the first portion 9 a of the shaft 9.
- the shaft 9 includes a first part 9a and a second part 9b. In the extending direction, one end of the first portion 9a is connected to the impeller 8, and the other end of the first portion 9a is connected to one end of the second portion 9b.
- the central axis of the first part 9a is arranged coaxially with the central axis of the second part 9b.
- the central axis of the shaft 9 is the central axis of the first part 9 a and the second part 9 b and is arranged coaxially with the central axis of the impeller 8.
- the shaft 9 is rotationally driven by a motor 10.
- the second portion 9 b of the shaft 9 is supported in a non-contact manner by the radial magnetic bearing 11 and the thrust magnetic bearing 12.
- the shaft 9 is supported so that its central axis is coaxial with the rotation axis of the motor 10.
- the extending direction of the central axis of the shaft 9 is, for example, along the vertical direction.
- two radial magnetic bearings 11 are arranged on both sides of the motor 10 in the extending direction.
- the thrust magnetic bearing 12 is disposed above the other end of the second portion 9b of the shaft 9.
- the shaft 9, the motor 10, the radial magnetic bearing 11, and the thrust magnetic bearing 12 constitute a drive unit that drives the impeller 8 to rotate.
- the cryogenic fluid pump 100 includes an impeller 8, a shaft 9 as a rotation shaft, first housing 6 and second housing 7 as housings, and magnetic bearings.
- the radial magnetic bearing 11 is mainly provided.
- the shaft 9 is connected to the impeller 8.
- the radial magnetic bearing 11 supports the shaft 9 so as to be rotatable with respect to the second housing part 7.
- the radial magnetic bearing 11 includes a yoke and at least one coil 11b.
- the yoke constitutes at least a part of the magnetic circuit 11e. At least one coil 11b surrounds a part of the yoke.
- the yoke includes at least one permanent magnet 11c arranged at a position constituting a part of the magnetic circuit 11e.
- the yoke in the cryogenic fluid pump, includes a base portion 11a and a plurality of protrusions 11d having first to fourth protrusions 11d1 to 11d4.
- the base portion 11 a is disposed on the outer peripheral side of the shaft 9 so as to extend along the circumferential direction of the shaft 9 with a space from the surface of the shaft 9. From another viewpoint, the base portion 11a has an annular shape that surrounds the outer periphery of the shaft 9 in the circumferential direction.
- the plurality of projecting portions 11 d are arranged at equal intervals in the circumferential direction of the shaft 9.
- the at least one permanent magnet 11c includes a first permanent magnet 11c1 and a second permanent magnet 11c2.
- the 1st permanent magnet 11c1 is arrange
- the permanent magnet 11c is arrange
- the 1st permanent magnet 11c1 and the 2nd permanent magnet 11c2 are arrange
- the adjacent end portions of the first permanent magnet 11c1 and the second permanent magnet 11c2 have the same N pole.
- the end portions adjacent in the circumferential direction have the same polarity as the end portions of the adjacent permanent magnets 11c in the circumferential direction.
- Magnets that can be used as the permanent magnet 11c are mainly neodymium (Nd—Fe—B) magnets, Samakoba (Sm—Co) magnets, and Alnico (Al—Ni—Co) magnets.
- the radial magnetic bearing 11 has a permanent magnet combined system in which a part of the magnetic circuit 11e includes the permanent magnet 11c.
- the generated force with respect to the control current in the magnetic bearing 11 can be linearized. For this reason, it is possible to prevent the generation of heat in the radial magnetic bearing 11 due to the flow of the bias current.
- the low-temperature fluid LG to which the low-temperature fluid pump 100 is applied from being vaporized by the heat, and the efficiency of the low-temperature fluid pump 100 from being reduced due to the vaporization of the low-temperature fluid LG.
- FIG. 6 is a schematic diagram showing an example of a control mechanism for explaining the control of the radial magnetic bearing 11 shown in FIGS.
- the control mechanism includes amplifiers 41 and 42 connected to the coil 11b to supply control currents ic1 and ic2 to the coil 11b of the radial magnetic bearing 11, and a control unit 40 that controls the amplifiers 41 and 42. Including mainly.
- the amplifier 41 supplies a control current ic1 to one coil 11b.
- the amplifier 42 supplies the control current ic2 to the other coil 11b by the control signal from the control unit 40.
- the permanent magnet 11c in the radial magnetic bearing 11, it is not necessary to flow a bias current as described above.
- the amplifiers 41 and 42 an amplifier having an H bridge circuit that allows a bidirectional current to flow can be used.
- FIG. 5 is a partial cross-sectional schematic diagram of a cryogenic fluid pump as a comparative example.
- the radial magnetic bearing 11 does not include a permanent magnet
- FIG. 4 is different from the cryogenic fluid pump 100 shown in FIGS. 1 to 4 in that it has a control mechanism for supplying a bias current to the coil 11b.
- the bias current ib output from the power supply unit 23 is added to the currents ic1 and ic2 from the amplifiers 51 and 52 and supplied to the coil 11b.
- the generated force with respect to the control current is linearized by the bias current ib.
- linearization of the generated force by the bias current will be described with reference to FIGS.
- FIG. 8 is a schematic diagram for explaining the relationship between the coil current and the magnetic force in the electromagnet.
- FIG. 8A is a schematic diagram showing a state in which an electromagnet corresponding to a radial magnetic bearing is disposed opposite to the shaft 9.
- FIG. 8B is a graph showing the relationship between the current i flowing through the coil 11b and the magnetic force F generated in the electromagnet in the configuration shown in FIG.
- the horizontal axis indicates the current i
- the vertical axis indicates the magnetic force F.
- the relationship between the current i and the magnetic force F is a quadratic function as shown by the following mathematical formula (1).
- Equation (1) B is the magnetic flux density
- S is the magnetic path cross-sectional area
- N is the number of coil turns
- i is the current supplied to the coil
- x is the gap between the electromagnet and the shaft 9 shown in FIG. Means each.
- FIG. 9 is a schematic diagram showing a case where the electromagnets used for the radial magnetic bearing are arranged to face each other with the shaft 9 interposed therebetween.
- FIG. 9A is a schematic diagram showing a state in which the electromagnets are arranged to face each other with the shaft 9 interposed therebetween.
- FIG. 9B is a graph showing the relationship between the current i flowing through the coil 11b and the magnetic force F generated in the electromagnet in the configuration shown in FIG. 9A.
- the vertical axis and the horizontal axis in the graph of FIG. 9B are the same as those of the graph of FIG.
- the permanent magnet 11c is applied to the radial magnetic bearing 11 in this embodiment.
- the magnetomotive force in the magnetic circuit in the permanent magnet combination method employed in the present embodiment is expressed by the following mathematical formula (2).
- l i represents the magnetic path length
- l p represents the length of the permanent magnet 11c shown in FIG. 6
- H represents the strength of the magnetic field inside the permanent magnet.
- the magnetomotive force of the permanent magnet is added, and the magnetic flux density is a function of (Ni-Hlp). That is, in the radial magnetic bearing 11 according to the present embodiment, the magnetic force can be controlled by the coil current i.
- FIG. 10 shows a linearized state of the coil current i and the magnetic force F due to the bias magnetic flux generated by the permanent magnet 11c.
- the relationship between the coil current i and the magnetic force F can be linearized up to a region twice the magnetic force F generated by the bias magnetic flux.
- first permanent magnet 11c1 to the part of the base portion 11a, the first magnetic circuit that circulates around the first protrusion 11d1 and the second protrusion 11d2, and the second permanent magnet 11c2 to the base portion 11a.
- the third protrusion 11d3 and the fourth protrusion 11d4 and the second magnetic circuit that circulates can be formed.
- the first permanent magnet 11c1 and the second permanent magnet 11c2 have the same poles at the ends adjacent to each other in the circumferential direction.
- the polarity of the inner peripheral portion facing the shaft 9 is It is the same.
- the magnetic poles are not switched between the second protrusion 11d2 and the third protrusion 11d3 when the shaft 9 rotates.
- the end portions adjacent to each other in the circumferential direction of the first permanent magnet 11c1 and the second permanent magnet 11c2 are different poles (that is, in the second protrusion 11d2 and the third protrusion 11d3).
- the number of switching of the magnetic poles in the yoke that is, the number of switching of the magnetic poles of the yoke in the circumferential direction of the shaft 9 when the shaft 9 rotates can be reduced.
- the loss in the shaft 9 that is the rotor due to the switching of the magnetic poles can be reduced, so that a reduction in the efficiency of the cryogenic fluid pump 100 can be suppressed.
- the cryogenic fluid transfer device 1 using the cryogenic fluid pump 100 as described above since the inflow of heat from the radial magnetic bearing 11 of the cryogenic fluid pump 100 to the cryogenic fluid can be suppressed, vaporization and efficiency of the cryogenic fluid can be suppressed. Is suppressed.
- the cryogenic fluid pump shown in FIG. 11 is applied to the cryogenic fluid transfer device shown in FIG. 1, and basically has the same configuration as the cryogenic fluid pump shown in FIGS.
- the shapes of the base portion 11a and the permanent magnet 11c are different from those of the cryogenic fluid pump shown in FIGS. That is, in the cryogenic fluid pump shown in FIG. 11, a plurality of permanent magnets 11 c including the first and second permanent magnets 11 c 1 and 11 c 2 are cross sections along a radial direction that is a direction perpendicular to the circumferential direction.
- the cross-sectional area of the base portion 11a is larger than the cross-sectional area in the cross section along the radial direction of the region where the plurality of projecting portions 11d including the first to fourth projecting portions 11d1 to 11d4 are connected. Further, the base portion 11a has a cross-sectional area in a radial direction that approaches at least one of the first and second permanent magnets 11c1 and 11c2, or at least one of the plurality of permanent magnets 11c. It is comprised so that it may become large as it approaches. From another point of view, the inner circumferential surface facing the shaft 9 in the portion adjacent to the permanent magnet 11c in the base portion 11a is closer to the inner circumferential side (shaft 9 side) closer to the permanent magnet 11c. It is inclined with respect to. The shape of the outer peripheral surface of the base portion 11a viewed from the extending direction of the shaft 9 is circular as shown in FIG.
- the cross-sectional area in the cross section along the radial direction of at least one permanent magnet 11c including the first and second permanent magnets 11c1 and 11c2 is relative to the cross-sectional area of the permanent magnet 11c in the configuration shown in FIG. Therefore, the thickness of the permanent magnet 11c in the circumferential direction can be relatively reduced while maintaining the magnetic flux generated by the permanent magnet 11c.
- the magnetic resistance in the magnetic circuit of the permanent magnet 11c can be reduced as compared with the case where the thickness of the permanent magnet 11c in the circumferential direction is relatively thick as shown in FIG.
- the controllability of the radial magnetic bearing 11 can be improved, and the control current value of the radial magnetic bearing 11 when a load is applied can be reduced.
- the cryogenic fluid pump including the radial magnetic bearing 11 shown in FIGS. 12 and 13 is a pump that can be applied to the cryogenic fluid transfer device shown in FIG. 1 and basically includes the cryogenic fluid shown in FIGS.
- the shape of the yoke constituting the radial magnetic bearing 11 is different from that of the cryogenic fluid pump shown in FIGS. That is, in the cryogenic fluid pump shown in FIGS. 12 and 13, the yoke includes a plurality of portions arranged at intervals in the circumferential direction of the shaft 9 so as to surround the outer periphery of the shaft 9.
- the yoke includes a plurality of base portions 11a including the first and second base portions 11a1 and 11a2, and the first to fourth projecting portions 11d1 to 11d4.
- the plurality of base portions 11a including the first and second base portions 11a1 and 11a2 are arranged at intervals along the circumferential direction of the shaft 9 on the outer peripheral side of the shaft 9 as shown in FIG.
- the first and second projecting portions 11d1 and 11d2 project from the first base portion 11a1 toward the shaft 9 and are spaced from each other in the axial direction of the shaft 9.
- the third protruding portion 11d3 protrudes from the second base portion 11a2 toward the shaft 9 and is on the same side as the first protruding portion 11d1 when viewed from the center of the first base portion 11a1 in the axial direction of the shaft 9. Placed in.
- the 4th protrusion part 11d4 is arrange
- the fourth projecting portion 11d4 is formed so as to project from the second base portion 11a2 toward the shaft 9.
- a coil 11b is wound around the first to fourth protrusions 11d1 to 11d4.
- the at least one permanent magnet 11c includes first and second permanent magnets 11c1 and 11c2.
- the first permanent magnet 11c1 is disposed between the first protruding portion 11d1 and the second protruding portion 11d2 in the first base portion 11a1.
- the second permanent magnet 11c2 is disposed between the third projecting portion 11d3 and the fourth projecting portion 11d4 in the second base portion 11a2.
- the first permanent magnet 11c1 and the second permanent magnet 11c2 are arranged such that the same pole (N pole in FIG. 12) is located at the end on the first protrusion 11d1 side in the axial direction.
- the base part 11a in which the permanent magnet 11c as described above is disposed at the center part, the two projecting parts 11d disposed at both ends in the axial direction of the base part 11a, and the two projecting parts 11d are respectively wound.
- a plurality of units composed of two coils 11b arranged so as to rotate are arranged so as to be arranged along the outer periphery of the shaft 9 at intervals in the circumferential direction as shown in FIG.
- the cryogenic fluid pump provided with the radial magnetic bearing 11 and the cryogenic fluid transfer device provided with the cryogenic fluid pump shown in FIGS. 12 and 13 basically have the cryogenic fluid transfer device and the cryogenic temperature shown in FIGS. The same effect as the fluid pump can be obtained. Further, a plurality of units are arranged at intervals along the outer periphery of the shaft 9, and as shown in FIG. 12, the first protrusion 11d1 and the third protrusion 11d3 have the same polarity (for example, N pole). It is a magnetic pole. That is, the radial magnetic bearing 11 is a so-called homopolar radial magnetic bearing.
- the permanent magnet combined use system is applicable also to the homopolar type radial magnetic bearing 11.
- FIG. 14 That is, in the homopolar type radial magnetic bearing as the reference example shown in FIG. 14, the permanent magnet is not arranged on the base portion 11a of the yoke, so that it is the same as the radial magnetic bearing shown in FIG. In addition, it is necessary to pass a bias current for linearizing the generated force.
- the radial magnetic bearing shown in FIG. 14 has the same configuration as the radial magnetic bearing shown in FIGS. 12 and 13 except that it does not include a permanent magnet.
- the bias current in the radial magnetic bearing shown in FIG. 14 causes heat generation and can cause vaporization of the low temperature fluid.
- the use of the permanent magnet 11c eliminates the need for the bias current as described above, and the same effect as in the first embodiment can be obtained.
- the cryogenic fluid pump provided with the radial magnetic bearing 11 shown in FIGS. 15 and 16 is a pump applicable to the cryogenic fluid transfer device shown in FIG. 1, and is a pump of the cryogenic fluid pump shown in FIGS. 12 and 13. It is a modification.
- the cryogenic fluid pump shown in FIGS. 15 and 16 basically has the same configuration as the cryogenic fluid pump shown in FIGS. 12 and 13, but the arrangement of the coil 11b in the radial magnetic bearing 11 is as shown in FIG. And, it is different from the cryogenic fluid pump shown in FIG. That is, in the cryogenic fluid pump shown in FIGS.
- At least one coil 11b includes a first coil 11b1 and a second coil 11b2.
- the first coil 11b1 is disposed so as to surround the first permanent magnet 11c1.
- the second coil 11b2 is arranged so as to surround the periphery of the second permanent magnet 11c2.
- a coil 11b is arranged so as to surround the permanent magnet 11c in each unit of the radial magnetic bearing 11 arranged so as to surround the outer periphery of the shaft 9, so as to surround the permanent magnet 11c.
- the same effect as the cryogenic fluid pump shown in FIGS. 12 and 13 can be obtained.
- the magnetic resistance (also referred to as magnetic path resistance) of the portion where the first and second permanent magnets 11c1 and 11c2 are arranged is substantially the same as the magnetic resistance of air, and compared with other portions of the base portion 11a.
- the leakage flux in the first and second permanent magnets 11c1 and 11c2 is provided by arranging the first and second coils 11b1 and 11b2 so as to surround the first and second permanent magnets 11c1 and 11c2. Can be suppressed.
- the cryogenic fluid transfer device 1 shown in FIGS. 17 and 18 basically has the same configuration as the cryogenic fluid transfer device 1 shown in FIG. 1, but the configuration of the cryogenic fluid pump 100 is shown in FIG. Different from the cryogenic fluid transfer device 1. That is, in the cryogenic fluid transfer apparatus 1 shown in FIGS. 17 and 18, the motor 30 of the cryogenic fluid pump 100 is disposed outside the pressure wall 5, and the shaft 9 as the first shaft is the second of the motor 30. The shaft 31 and the magnetic coupling 20 are coupled so as to transmit the rotational force. A shaft 9 supported by two radial magnetic bearings 11 is disposed inside the container 2.
- the cryogenic fluid pump 100 according to the third embodiment shown in FIG. 17 and FIG. 18 is similar to the cryogenic fluid pump 100 shown in FIGS. 1 to 4 and penetrates the pressure wall 5 of the container 2. It arrange
- the cryogenic fluid pump 100 rotationally drives the impeller 8, a rotating shaft including the shaft 9 and the second shaft 31 as a first shaft, a housing, a radial magnetic bearing 11 as a magnetic bearing, and the second shaft 31.
- the motor 30 is mainly provided.
- the shaft 9 constituting the rotating shaft and the second shaft 31 are coupled by the magnetic coupling 20 so as to be able to transmit the rotational force in a non-contact manner.
- the two radial magnetic bearings 11 support the shaft 9 so as to be rotatable with respect to the housing.
- the two radial magnetic bearings 11 are spaced apart from each other in the extending direction of the shaft 9.
- the magnetic coupling 20 includes a first coupling member 22 fixed to the end of the shaft 9 and a second coupling member 21 fixed to the end of the second shaft 31.
- the second joint member 21 has a cup shape.
- the first joint member 22 is disposed inside the second joint member 21. Magnets are arranged in the opposing portions of the first joint member 22 and the second joint member 21. Due to the magnetic force generated by the magnet, the first joint member 22 and the second joint member 21 can transmit the rotational force without contact.
- the thrust magnetic bearing 12 is disposed at a position adjacent to the first joint member 22 in the shaft 9. Further, in the shaft 9, the radial magnetic bearing 11 is disposed at a portion located on the opposite side of the first joint member 22 when viewed from the thrust magnetic bearing 12.
- the housing includes a first housing portion, a second housing portion 7 and a lid 18.
- the first housing part includes a housing part 6f, a flange part 6c, an impeller shaft cover 6d, and an impeller cover 6e.
- the upper end portion of the housing portion 6 f is disposed in the through hole 5 b of the pressure wall 5.
- the flange portion 6c is connected to the upper end portion of the housing portion 6f.
- the first housing part is arranged such that the flange part 6 c extends on the outer peripheral surface 5 b of the pressure wall 5.
- the second housing portion 7 has a cylindrical shape, and a flange portion is formed at an end portion on the impeller 8 side.
- casing part 7 is arrange
- Through holes for passing the fixing member 14 are formed in the flange portion of the second housing portion 7 and the flange portion 6c of the first housing portion, respectively. This through hole is arranged so as to overlap with a recess formed in the outer peripheral surface 5 b of the pressure wall 5. Then, the fixing member 14 is screwed and fixed into the through hole and the recess, whereby the first housing portion and the second housing portion 7 are fixed to the pressure wall 5.
- An opening is formed above the second housing part 7.
- a lid 18 is disposed so as to close the opening of the second housing part 7.
- a magnetic coupling 20 is disposed in an inner region of the casing surrounded by the lid 18 and the second casing portion 7.
- a motor 30 is installed on the outer peripheral side of the lid 18.
- a second shaft 31 is connected to the motor 30.
- An opening for inserting a part of the motor 30 is formed in the lid 18.
- a part of the motor 30 is inserted and fixed in the opening.
- the second shaft 31 is disposed so as to protrude toward the inner peripheral side of the second housing portion 7 from the portion inserted into the opening.
- the housing portion 6f, the impeller shaft cover 6d, and the impeller cover 6e of the first housing portion are disposed inside the container 2.
- the housing portion 6f has a cylindrical shape.
- the impeller shaft cover 6d is located on the side of the housing portion 6f facing the impeller 8, and is connected to the housing portion 6f.
- the impeller cover 6e is connected to the impeller shaft cover 6d and is disposed so as to surround the impeller 8.
- the impeller cover 6e is provided with an inlet 6a and an outlet 6b as openings.
- a radial magnetic bearing 11 is connected to the housing portion 6f.
- the rotating shaft is for driving the impeller 8 to rotate.
- the portion of the shaft 9 that is surrounded by the impeller shaft cover 6 d is connected to the impeller 8.
- the extending direction of the shaft 9 is, for example, the gravitational direction (vertical direction).
- the housing holds the shaft 9 and the second shaft 31 as the rotation shaft inside.
- the radial magnetic bearing 11 supports the shaft 9 constituting the rotating shaft so as to be rotatable with respect to the housing portion 6f which is a housing.
- the rotating shaft, the motor 30, the radial magnetic bearing 11 and the thrust magnetic bearing 12 constitute a drive unit that rotationally drives the impeller 8.
- cryogenic fluid transfer device 1 and the cryogenic fluid pump 100 shown in FIGS. 17 and 18 the same effects as those of the cryogenic fluid transfer device 1 and the cryogenic fluid pump 100 shown in FIGS. 1 to 4 can be obtained. Furthermore, in the cryogenic fluid transfer apparatus 1 shown in FIGS. 17 and 18, the radial magnetic bearing 11 of the cryogenic fluid pump 100 is disposed inside the container 2. In such a configuration, since the radial magnetic bearing 11 according to the first embodiment or the second embodiment of the present invention described above is applied to the radial magnetic bearing 11, a bias current is applied to the coil of the radial magnetic bearing 11 as in the past. The generated force with respect to the control current of the radial magnetic bearing 11 can be linearized without flowing, and the heat generation due to the bias current can be prevented, so the effect of suppressing the vaporization of the low-temperature fluid inside the container 2 is remarkable.
- the present invention can be applied to a pump or a transfer device for transferring a low-temperature fluid used for cooling a superconducting device.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Provided are a low-temperature fluid pump and a low-temperature fluid transfer device with which vaporization of the low-temperature fluid can be reduced. The low-temperature fluid pump is equipped with an impeller, a rotary shaft (9), a case, and a magnetic bearing (11). The rotary shaft (9) is connected to the impeller. The rotary shaft (9) is held inside the case. The magnetic bearing (11) supports the rotary shaft (9) so as to be capable of rotating with respect to the case. The magnetic bearing (11) includes a yoke and one or more coils (11b). The yoke constitutes at least a part of a magnetic circuit (11e). The one or more coils (11b) surround a portion of the yoke. The yoke includes one or more permanent magnets (11c) arranged at a position constituting a portion of the magnetic circuit (11e).
Description
この発明は、低温流体用ポンプおよび低温流体移送装置に関する。
The present invention relates to a cryogenic fluid pump and a cryogenic fluid transfer device.
従来、低温液化ガスなどを送液する低温流体用ポンプが知られている。このような低温流体用ポンプにおいて、特に長期間連続運転が要求される超電導機器の冷却用に使用するポンプのように、故障やメンテナンス等でポンプを停止させることができない用途に使用されるポンプでは、軸受としてメンテナンス不要な磁気軸受が採用される。たとえば、特開2013-57250号公報(特許文献1)では、軸受としてメンテナンスが不要な磁気軸受を採用した構成の低温流体用ポンプが開示されている。当該特許文献1に開示された低温流体用ポンプでは、発熱源であるモータの上部シャフトと下部シャフトとを磁気継手によって非接触状態で磁気結合することにより、モータからシャフトを通してインペラ側への熱侵入を抑制している。これは、インペラ側へ熱侵入があると、低温液化ガスに熱が伝わり当該低温液化ガスが気化することや、当該気化したガスがポンプのインペラ側へ逆流して送液される低温液化ガスに脈動が発生するといった問題が発生するためである。
Conventionally, low temperature fluid pumps for feeding low temperature liquefied gas and the like are known. In such a cryogenic fluid pump, in particular, a pump used for an application where the pump cannot be stopped due to a failure or maintenance, such as a pump used for cooling a superconducting device that requires continuous operation for a long period of time. As a bearing, a magnetic bearing requiring no maintenance is adopted. For example, Japanese Patent Laying-Open No. 2013-57250 (Patent Document 1) discloses a cryogenic fluid pump having a configuration in which a magnetic bearing requiring no maintenance is employed as a bearing. In the cryogenic fluid pump disclosed in Patent Document 1, heat intrusion from the motor to the impeller side through the shaft is performed by magnetically coupling the upper shaft and the lower shaft of the motor, which are heat sources, in a non-contact state by a magnetic coupling. Is suppressed. This is because if heat enters the impeller side, heat is transferred to the low-temperature liquefied gas, and the low-temperature liquefied gas is vaporized, or the vaporized gas flows back to the impeller side of the pump and is sent to the low-temperature liquefied gas. This is because problems such as pulsation occur.
上述した従来の低温流体用ポンプでは、インペラにおいて低温流体の圧力変動などの外乱が発生する場合がある。特に、高吐出圧が得られるような低温流体用ポンプでは、インペラ周囲の圧力バランスの変動によりインペラに大きな負荷(外乱)が作用することがあった。従来、磁気軸受の制御安定性を向上させるために、磁気軸受を構成する電磁石コイルに一定の電流(バイアス電流)を印加しておく構成が多く採用されていた。そして、上記のような大きな外乱が想定される場合には、当該負荷に対応するため上記バイアス電流の値を大きくする必要があった。
In the conventional cryogenic fluid pump described above, disturbance such as pressure fluctuation of the cryogenic fluid may occur in the impeller. In particular, in a low-temperature fluid pump that can obtain a high discharge pressure, a large load (disturbance) may act on the impeller due to a change in pressure balance around the impeller. Conventionally, in order to improve the control stability of a magnetic bearing, many configurations have been adopted in which a constant current (bias current) is applied to an electromagnet coil constituting the magnetic bearing. When such a large disturbance is assumed, it is necessary to increase the value of the bias current in order to cope with the load.
しかし、このように磁気軸受の電磁石コイルに印加されるバイアス電流は、磁気軸受における発熱の原因となり、結果的に低温流体の気化やポンプの効率低下といった問題を発生させていた。
However, the bias current applied to the electromagnetic coil of the magnetic bearing in this manner causes heat generation in the magnetic bearing, resulting in problems such as vaporization of low temperature fluid and reduced pump efficiency.
この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、低温流体の気化を抑制することが可能な低温流体用ポンプおよび低温流体移送装置を提供することである。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cryogenic fluid pump and a cryogenic fluid transfer device capable of suppressing vaporization of cryogenic fluid. It is.
本開示に従った低温流体用ポンプは、インペラと、回転軸と、筐体と、磁気軸受とを備える。回転軸はインペラに接続される。筐体は、回転軸を内部に保持する。磁気軸受は、回転軸を筐体に対して回転可能に支持する。磁気軸受は、ヨークと少なくとも1つのコイルとを含む。ヨークは磁気回路の少なくとも一部を構成する。少なくとも1つのコイルはヨークの一部を囲む。ヨークは、磁気回路の一部を構成する位置に配置された少なくとも1つの永久磁石を含む。
The pump for cryogenic fluid according to the present disclosure includes an impeller, a rotating shaft, a housing, and a magnetic bearing. The rotating shaft is connected to the impeller. The housing holds the rotating shaft inside. A magnetic bearing supports a rotating shaft rotatably with respect to a housing | casing. The magnetic bearing includes a yoke and at least one coil. The yoke constitutes at least a part of the magnetic circuit. At least one coil surrounds a portion of the yoke. The yoke includes at least one permanent magnet disposed at a position constituting a part of the magnetic circuit.
本開示に従った低温流体移送装置は、低温流体を収容する容器と、上記低温流体用ポンプと、流通管路とを備える。上記低温流体用ポンプは、インペラが容器の内部に配置されるように、容器に設置される。流通管路は、容器と接続されており、低温流体用ポンプにより運動エネルギーが付与された低温流体を流通させるためのものである。
The cryogenic fluid transfer device according to the present disclosure includes a container that accommodates cryogenic fluid, the cryogenic fluid pump, and a flow conduit. The cryogenic fluid pump is installed in the container such that the impeller is disposed inside the container. The circulation pipe is connected to the container and is used for circulating a low-temperature fluid to which kinetic energy is imparted by a low-temperature fluid pump.
上記によれば、磁気軸受のヨークにおける磁気回路を構成する部分に永久磁石を配置することで、バイアス電流を流すことなく、磁気軸受における制御電流に対する発生力を線形化することができる。この結果、低温流体の気化を抑制することが可能な低温流体用ポンプおよび低温流体移送装置が得られる。
According to the above, by arranging the permanent magnet in the portion constituting the magnetic circuit in the yoke of the magnetic bearing, the generated force with respect to the control current in the magnetic bearing can be linearized without flowing a bias current. As a result, a cryogenic fluid pump and a cryogenic fluid transfer device capable of suppressing vaporization of the cryogenic fluid are obtained.
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
(実施の形態1)
<低温流体移送装置の構成>
図1に示されるように、低温流体移送装置1は、低温流体用ポンプ100と、容器2と、流入部3と、流出部4とを主に備える。 (Embodiment 1)
<Configuration of cryogenic fluid transfer device>
As shown in FIG. 1, the cryogenicfluid transfer apparatus 1 mainly includes a cryogenic fluid pump 100, a container 2, an inflow portion 3, and an outflow portion 4.
<低温流体移送装置の構成>
図1に示されるように、低温流体移送装置1は、低温流体用ポンプ100と、容器2と、流入部3と、流出部4とを主に備える。 (Embodiment 1)
<Configuration of cryogenic fluid transfer device>
As shown in FIG. 1, the cryogenic
低温流体用ポンプ100は、容器2の外部に配置されている部分と、容器2の内部に配置されている部分とを含む。低温流体用ポンプ100は、容器2の圧力壁5に取り付けられている。低温流体用ポンプ100の詳細は後述する。
The cryogenic fluid pump 100 includes a portion disposed outside the container 2 and a portion disposed inside the container 2. The cryogenic fluid pump 100 is attached to the pressure wall 5 of the container 2. Details of the cryogenic fluid pump 100 will be described later.
容器2は、低温液化ガスなどの低温流体を内部に貯留するためのものである。低温流体は、例えば液体窒素(LN2)である。容器2は、耐圧容器として構成されており、内部に低温流体を貯留する本体部と、圧力壁5とを含む。本体部はたとえば上部に開口部が形成されている。圧力壁5は本体部の開口部を塞ぐように、本体部に接続されている。圧力壁5は、容器2において低温流体を貯留する内部空間に面している。圧力壁5は、図1に示すように例えば容器2の上記内部空間の上方に配置されている。図2に示すように、圧力壁5には、貫通孔5aが形成されている。圧力壁5の当該貫通孔5aには、低温流体用ポンプ100において容器2の内部に配置されている部分が挿通されている。貫通孔5aの孔軸は、例えば後述するポンプ100のシャフト9を構成する第1軸の中心軸と同軸状に配置されている。
The container 2 is for storing therein a low-temperature fluid such as a low-temperature liquefied gas. The cryogenic fluid is, for example, liquid nitrogen (LN 2 ). The container 2 is configured as a pressure-resistant container, and includes a main body that stores a low-temperature fluid therein and a pressure wall 5. For example, the main body has an opening at the top. The pressure wall 5 is connected to the main body so as to close the opening of the main body. The pressure wall 5 faces the internal space that stores the cryogenic fluid in the container 2. As shown in FIG. 1, the pressure wall 5 is disposed, for example, above the internal space of the container 2. As shown in FIG. 2, a through hole 5 a is formed in the pressure wall 5. In the through hole 5 a of the pressure wall 5, a portion disposed inside the container 2 in the cryogenic fluid pump 100 is inserted. The hole axis of the through hole 5a is, for example, arranged coaxially with the central axis of the first axis constituting the shaft 9 of the pump 100 described later.
貫通孔5aの周囲に位置する圧力壁5の部分には、圧力壁5の外周面5bに対して内周面側に向かって凹んでいる凹部が配置されている。当該凹部は、後述する固定部材14がねじ込まれる部分である。圧力壁5を構成する材料は、法令等によって高圧ガスの収容容器の構成材料としての使用が認められている材料であり、例えばステンレス鋼(SUS)またはアルミニウム(Al)を含む。
In the portion of the pressure wall 5 positioned around the through hole 5a, a concave portion that is recessed toward the inner peripheral surface side with respect to the outer peripheral surface 5b of the pressure wall 5 is disposed. The said recessed part is a part into which the fixing member 14 mentioned later is screwed. The material that constitutes the pressure wall 5 is a material that is approved for use as a constituent material of a high-pressure gas container by laws and regulations, and includes, for example, stainless steel (SUS) or aluminum (Al).
流入部3は、容器2の上記内部空間と接続されている管路を含む。低温流体は、流入部3の当該管路を通って容器2内に流入する。流出部4は、容器2の上記内部空間と接続されている管路を含む。低温流体は、流出部4の当該管路を通って容器2内から流出する。
The inflow part 3 includes a pipe line connected to the internal space of the container 2. The cryogenic fluid flows into the container 2 through the pipe line of the inflow portion 3. The outflow part 4 includes a pipe line connected to the internal space of the container 2. The cryogenic fluid flows out of the container 2 through the pipe line of the outflow portion 4.
流入部3および流出部4は、低温流体が流通する流通管路の一部として構成されている。当該流通管路は、図示しないリザーバタンクおよび図示しない冷凍機を含む。流入部3は、例えばリザーバタンクに接続されている。流出部4は、例えば冷凍機と接続されている。
The inflow part 3 and the outflow part 4 are configured as a part of a distribution pipe through which a low-temperature fluid flows. The distribution pipe includes a reservoir tank (not shown) and a refrigerator (not shown). The inflow part 3 is connected to a reservoir tank, for example. The outflow part 4 is connected with the refrigerator, for example.
また、異なる観点から言えば、上述した低温流体移送装置は、低温流体を収容する容器2と、上記低温流体用ポンプ100と、流入部3および流出部4を含む流通管路とを備える。低温流体用ポンプ100は、図2に示すようにインペラ8が容器2の内部に配置されるように、容器2に設置される。流通管路は、容器2と接続されており、低温流体用ポンプ100により運動エネルギーが付与された低温流体LGを流通させるためのものである。
Further, from a different point of view, the above-described cryogenic fluid transfer device includes the container 2 for housing the cryogenic fluid, the cryogenic fluid pump 100, and the flow pipe including the inflow portion 3 and the outflow portion 4. The cryogenic fluid pump 100 is installed in the container 2 such that the impeller 8 is disposed inside the container 2 as shown in FIG. The distribution pipe is connected to the container 2 and is used for circulating the low-temperature fluid LG to which kinetic energy is given by the low-temperature fluid pump 100.
<低温流体用ポンプの構成>
図2~図4に示す、実施の形態1に係る低温流体用ポンプ100(以下、単にポンプとも呼ぶ)は、図1に示した低温流体移送装置1に適用されたものであって、容器2の圧力壁5に配置された貫通孔5aを塞ぐように配置される。ポンプ100は、外郭部材である筐体として、容器2の内部に配置される第1筐体部6と、容器2の外部に配置される第2筐体部7とを備えている。ここで、容器2の内部とは、容器2の圧力壁5の外周面5bに対して内側に位置する部分を意味する。また、容器2の外部とは、容器2の圧力壁5の外周面5bに対して外側に位置する部分を意味する。第1筐体部6および第2筐体部7は、容器2の圧力壁5と別体として構成されている。 <Configuration of pump for cryogenic fluid>
A cryogenic fluid pump 100 (hereinafter also simply referred to as a pump) according toEmbodiment 1 shown in FIGS. 2 to 4 is applied to the cryogenic fluid transfer apparatus 1 shown in FIG. It arrange | positions so that the through-hole 5a arrange | positioned at this pressure wall 5 may be plugged up. The pump 100 includes a first housing portion 6 disposed inside the container 2 and a second housing portion 7 disposed outside the container 2 as a housing that is an outer member. Here, the inside of the container 2 means a portion located inside the outer peripheral surface 5 b of the pressure wall 5 of the container 2. Further, the outside of the container 2 means a portion located outside the outer peripheral surface 5 b of the pressure wall 5 of the container 2. The first housing part 6 and the second housing part 7 are configured separately from the pressure wall 5 of the container 2.
図2~図4に示す、実施の形態1に係る低温流体用ポンプ100(以下、単にポンプとも呼ぶ)は、図1に示した低温流体移送装置1に適用されたものであって、容器2の圧力壁5に配置された貫通孔5aを塞ぐように配置される。ポンプ100は、外郭部材である筐体として、容器2の内部に配置される第1筐体部6と、容器2の外部に配置される第2筐体部7とを備えている。ここで、容器2の内部とは、容器2の圧力壁5の外周面5bに対して内側に位置する部分を意味する。また、容器2の外部とは、容器2の圧力壁5の外周面5bに対して外側に位置する部分を意味する。第1筐体部6および第2筐体部7は、容器2の圧力壁5と別体として構成されている。 <Configuration of pump for cryogenic fluid>
A cryogenic fluid pump 100 (hereinafter also simply referred to as a pump) according to
図2に示されるように、第1筐体部6は、インペラ8、シャフト9の第1部9aを内部に収容している。第1筐体部6には、開口部としての流入口6aおよび流出口6bが配置されている。流入口6aは、第1筐体部6の下方端部に配置され、下方に開口している。流出口6bは、インペラ8の中心軸の延在方向(シャフト9の中心軸の延在方向)から見たインペラ8の外周面の接線方向に開口している。
As shown in FIG. 2, the first housing portion 6 accommodates the impeller 8 and the first portion 9 a of the shaft 9 inside. The first housing 6 is provided with an inlet 6a and an outlet 6b as openings. The inflow port 6a is disposed at a lower end portion of the first housing portion 6 and opens downward. The outlet 6 b opens in the tangential direction of the outer peripheral surface of the impeller 8 as viewed from the extending direction of the central axis of the impeller 8 (extending direction of the central axis of the shaft 9).
第1筐体部6の上方端部は、第2筐体部7の下方端部と接続され、固定されている。具体的には、第1筐体部6の上方端部の上面において外周側に位置する部分が、第2筐体部7の下方端部の下面に接続され、固定されている。
The upper end portion of the first housing portion 6 is connected to and fixed to the lower end portion of the second housing portion 7. Specifically, a portion located on the outer peripheral side in the upper surface of the upper end portion of the first housing portion 6 is connected and fixed to the lower surface of the lower end portion of the second housing portion 7.
第2筐体部7の下方端部は、容器2の圧力壁5に配置された貫通孔5a内に配置される。第2筐体部7の下方端部は、貫通孔5aの大部分を塞ぐように構成されている。第2筐体部7の下方端部は、上記延在方向に垂直な径方向(ラジアル方向)において、貫通孔5aの内周端面と対向する外周側面を有している。
The lower end portion of the second housing portion 7 is disposed in the through hole 5 a disposed in the pressure wall 5 of the container 2. The lower end portion of the second housing portion 7 is configured to block most of the through hole 5a. The lower end portion of the second housing portion 7 has an outer peripheral side surface facing the inner peripheral end surface of the through hole 5a in the radial direction (radial direction) perpendicular to the extending direction.
図2に示されるように、第2筐体部7は、シャフト9の第2部9b、モータ10、ラジアル磁気軸受11、およびスラスト磁気軸受12を内部に収容している。なお、ラジアル磁気軸受11の詳細な構成は後述する。第2筐体部7は、その下方端部よりも上方において、上記径方向の外側に突出しているフランジ部7aを含む。フランジ部7aは、上記周方向に連なっている。フランジ部7aには、複数の固定用貫通孔が配置されている。
As shown in FIG. 2, the second housing part 7 accommodates the second part 9b of the shaft 9, the motor 10, the radial magnetic bearing 11, and the thrust magnetic bearing 12 therein. The detailed configuration of the radial magnetic bearing 11 will be described later. The second housing portion 7 includes a flange portion 7a that protrudes outward in the radial direction above the lower end portion thereof. The flange portion 7a is continuous in the circumferential direction. A plurality of fixing through holes are arranged in the flange portion 7a.
複数の固定用貫通孔の各々は、シャフト9の中心軸に対する周方向に互いに間隔を隔てて配置されている。各固定用貫通孔の孔軸は、例えば上記中心軸に沿っている。各固定用貫通孔の一端はフランジ部7aの下面に配置されており、各固定用貫通孔の他端はフランジ部7aの上面に配置されている。フランジ部7aの下面は、圧力壁5の外周面5bにおいて貫通孔5aの全周を囲む部分と、上記中心軸に沿った方向において対向している。固定用貫通孔の一端と対向する圧力壁5の外周面5bには、凹部が形成されている。固定用貫通孔と凹部とに固定部材14としてのネジが挿入・固定されている。このようにして、フランジ部7aは、圧力壁5の外周面5bと接続されている。
Each of the plurality of fixing through holes is disposed at a distance from each other in the circumferential direction with respect to the central axis of the shaft 9. The hole axis of each fixing through hole is, for example, along the central axis. One end of each fixing through hole is disposed on the lower surface of the flange portion 7a, and the other end of each fixing through hole is disposed on the upper surface of the flange portion 7a. The lower surface of the flange portion 7a is opposed to a portion surrounding the entire periphery of the through hole 5a on the outer peripheral surface 5b of the pressure wall 5 in the direction along the central axis. A recess is formed on the outer peripheral surface 5b of the pressure wall 5 facing one end of the fixing through hole. A screw as a fixing member 14 is inserted and fixed in the fixing through hole and the recess. In this way, the flange portion 7 a is connected to the outer peripheral surface 5 b of the pressure wall 5.
第2筐体部7は、例えば第3筐体部7cと第4筐体部7dとを含む。第3筐体部7cは筒状部材である。第4筐体部7dは、第3筐体部7cの上方端部を覆うように構成された、蓋状部材である。第3筐体部7cの下方端部が、第2筐体部7の下方端部を構成している。第3筐体部7cの上方端部は、第4筐体部7dの下方端部と接触され、固定されている。第3筐体部7cの上方端部および第4筐体部7dの下方端部には、それぞれフランジ部が形成されている。第3筐体部7cのフランジ部と第4筐体部7dのフランジ部とは重なるように配置されている。これらのフランジ部には、貫通孔が形成されている。当該貫通孔に固定部材としてのネジが挿入・固定されている。第2筐体部7の外周面は、例えば大気に曝されている。
The second housing part 7 includes, for example, a third housing part 7c and a fourth housing part 7d. The 3rd housing | casing part 7c is a cylindrical member. The 4th housing | casing part 7d is a lid-shaped member comprised so that the upper edge part of the 3rd housing | casing part 7c might be covered. The lower end portion of the third housing portion 7 c constitutes the lower end portion of the second housing portion 7. The upper end portion of the third housing portion 7c is in contact with and fixed to the lower end portion of the fourth housing portion 7d. A flange portion is formed at each of the upper end portion of the third housing portion 7c and the lower end portion of the fourth housing portion 7d. The flange portion of the third housing portion 7c and the flange portion of the fourth housing portion 7d are arranged so as to overlap each other. Through holes are formed in these flange portions. A screw as a fixing member is inserted and fixed in the through hole. The outer peripheral surface of the 2nd housing | casing part 7 is exposed to air | atmosphere, for example.
第1筐体部6および第2筐体部7を構成する材料は、法令等によって高圧ガスの収容容器の構成材料としての使用が認められている材料であり、例えばステンレス鋼(SUS)またはアルミニウム(Al)を含む。
The material constituting the first housing part 6 and the second housing part 7 is a material that is permitted to be used as a constituent material of a high-pressure gas container by laws and regulations, for example, stainless steel (SUS) or aluminum. (Al) is included.
インペラ8は、シャフト9が回転することにより回転し、容器2内の低温流体LGに運動エネルギーを付与する。インペラ8は、例えば遠心羽根車として構成されている。インペラ8は、シャフト9の第1部9aの一端に接続されている。
The impeller 8 rotates when the shaft 9 rotates, and imparts kinetic energy to the low temperature fluid LG in the container 2. The impeller 8 is configured as a centrifugal impeller, for example. The impeller 8 is connected to one end of the first portion 9 a of the shaft 9.
シャフト9は、第1部9aおよび第2部9bを含む。上記延在方向において、第1部9aの一端はインペラ8に接続されており、第1部9aの他端は第2部9bの一端に接続されている。第1部9aの中心軸は、第2部9bの中心軸と同軸状に配置されている。シャフト9の中心軸は、第1部9aおよび第2部9bの中心軸であって、インペラ8の中心軸と同軸状に配置されている。シャフト9は、モータ10により回転駆動される。シャフト9の第2部9bは、ラジアル磁気軸受11およびスラスト磁気軸受12により非接触で支持されている。シャフト9は、その中心軸がモータ10の回転軸と同軸となるように支持されている。シャフト9の中心軸の上記延在方向は、例えば鉛直方向に沿っている。
The shaft 9 includes a first part 9a and a second part 9b. In the extending direction, one end of the first portion 9a is connected to the impeller 8, and the other end of the first portion 9a is connected to one end of the second portion 9b. The central axis of the first part 9a is arranged coaxially with the central axis of the second part 9b. The central axis of the shaft 9 is the central axis of the first part 9 a and the second part 9 b and is arranged coaxially with the central axis of the impeller 8. The shaft 9 is rotationally driven by a motor 10. The second portion 9 b of the shaft 9 is supported in a non-contact manner by the radial magnetic bearing 11 and the thrust magnetic bearing 12. The shaft 9 is supported so that its central axis is coaxial with the rotation axis of the motor 10. The extending direction of the central axis of the shaft 9 is, for example, along the vertical direction.
ラジアル磁気軸受11は、例えば上記延在方向においてモータ10の両側に2つ配置されている。スラスト磁気軸受12は、シャフト9の第2部9bの他端よりも上方に配置されている。シャフト9、モータ10、ラジアル磁気軸受11およびスラスト磁気軸受12は、インペラ8を回転駆動する駆動部を構成している。
For example, two radial magnetic bearings 11 are arranged on both sides of the motor 10 in the extending direction. The thrust magnetic bearing 12 is disposed above the other end of the second portion 9b of the shaft 9. The shaft 9, the motor 10, the radial magnetic bearing 11, and the thrust magnetic bearing 12 constitute a drive unit that drives the impeller 8 to rotate.
また、異なる観点から言えば、上記低温流体用ポンプ100は、インペラ8と、回転軸としてのシャフト9と、筐体としての第1筐体部6および第2筐体部7と、磁気軸受としてのラジアル磁気軸受11とを主に備える。シャフト9はインペラ8に接続される。第1筐体部6および第2筐体部7は、シャフト9を内部に保持する。ラジアル磁気軸受11は、シャフト9を第2筐体部7に対して回転可能に支持する。ラジアル磁気軸受11は、ヨークと、少なくとも1つのコイル11bとを含む。ヨークは磁気回路11eの少なくとも一部を構成する。少なくとも1つのコイル11bはヨークの一部を囲む。ヨークは、磁気回路11eの一部を構成する位置に配置された少なくとも1つの永久磁石11cを含む。
From a different point of view, the cryogenic fluid pump 100 includes an impeller 8, a shaft 9 as a rotation shaft, first housing 6 and second housing 7 as housings, and magnetic bearings. The radial magnetic bearing 11 is mainly provided. The shaft 9 is connected to the impeller 8. The 1st housing | casing part 6 and the 2nd housing | casing part 7 hold | maintain the shaft 9 inside. The radial magnetic bearing 11 supports the shaft 9 so as to be rotatable with respect to the second housing part 7. The radial magnetic bearing 11 includes a yoke and at least one coil 11b. The yoke constitutes at least a part of the magnetic circuit 11e. At least one coil 11b surrounds a part of the yoke. The yoke includes at least one permanent magnet 11c arranged at a position constituting a part of the magnetic circuit 11e.
図3および図4に示すように、上記低温流体用ポンプにおいて、ヨークは、ベース部11aと、第1~第4の突出部11d1~11d4を有する複数の突出部11dとを含む。ベース部11aは、シャフト9の外周側においてシャフト9の表面から間隔を隔てて、シャフト9の周方向に沿って延びるように配置される。また異なる観点から言えば、ベース部11aはシャフト9の外周を周方向に囲むような円環形状である。
As shown in FIGS. 3 and 4, in the cryogenic fluid pump, the yoke includes a base portion 11a and a plurality of protrusions 11d having first to fourth protrusions 11d1 to 11d4. The base portion 11 a is disposed on the outer peripheral side of the shaft 9 so as to extend along the circumferential direction of the shaft 9 with a space from the surface of the shaft 9. From another viewpoint, the base portion 11a has an annular shape that surrounds the outer periphery of the shaft 9 in the circumferential direction.
第1~第4の突出部11d1~11d4を含む複数の突出部11dは、ベース部11aからシャフト9に向けて突出するとともに、シャフト9の周方向において互いに間隔を隔てて配置される。複数の突出部11dはシャフト9の周方向において等間隔に配置されている。少なくとも1つの永久磁石11cは、第1の永久磁石11c1と第2の永久磁石11c2とを含む。第1の永久磁石11c1は、ベース部11aにおいて第1の突出部と第2の突出部との間に配置される。第2の永久磁石11c2は、ベース部11aにおいて第3の突出部11d3と第4の突出部11d4との間に配置される。図4に示すように、複数の突出部11dのうちの隣接する突出部11dの間に、それぞれ永久磁石11cが配置されている。第1の永久磁石11c1と第2の永久磁石11c2とは、周方向において隣り合う端部に同じ極が位置するように配置されている。図4では、第1の永久磁石11c1と第2の永久磁石11c2との隣り合う端部は同じN極となっている。また、周方向において間隔を隔ててベース部11aに配置された複数の永久磁石11cでは、周方向において隣り合う端部が当該周方向において隣り合う永久磁石11cの端部と同じ極性になっている。なお、永久磁石11cとして使用出来る磁石は、主にネオジム(Nd-Fe-B)磁石、サマコバ(Sm-Co)磁石、アルニコ(Al-Ni-Co)磁石である。
The plurality of projecting portions 11d including the first to fourth projecting portions 11d1 to 11d4 project from the base portion 11a toward the shaft 9 and are spaced apart from each other in the circumferential direction of the shaft 9. The plurality of projecting portions 11 d are arranged at equal intervals in the circumferential direction of the shaft 9. The at least one permanent magnet 11c includes a first permanent magnet 11c1 and a second permanent magnet 11c2. The 1st permanent magnet 11c1 is arrange | positioned between the 1st protrusion part and the 2nd protrusion part in the base part 11a. The 2nd permanent magnet 11c2 is arrange | positioned between the 3rd protrusion part 11d3 and the 4th protrusion part 11d4 in the base part 11a. As shown in FIG. 4, the permanent magnet 11c is arrange | positioned between the adjacent protrusion parts 11d among the some protrusion parts 11d. The 1st permanent magnet 11c1 and the 2nd permanent magnet 11c2 are arrange | positioned so that the same pole may be located in the edge part adjacent in the circumferential direction. In FIG. 4, the adjacent end portions of the first permanent magnet 11c1 and the second permanent magnet 11c2 have the same N pole. Further, in the plurality of permanent magnets 11c arranged on the base portion 11a at intervals in the circumferential direction, the end portions adjacent in the circumferential direction have the same polarity as the end portions of the adjacent permanent magnets 11c in the circumferential direction. . Magnets that can be used as the permanent magnet 11c are mainly neodymium (Nd—Fe—B) magnets, Samakoba (Sm—Co) magnets, and Alnico (Al—Ni—Co) magnets.
<低温流体移送装置および低温流体用ポンプの作用効果>
この場合、ラジアル磁気軸受11が磁気回路11eの一部に永久磁石11cを含む永久磁石併用方式となっているため、ラジアル磁気軸受11の電磁石コイルであるコイル11bにバイアス電流を流すことなく、ラジアル磁気軸受11における制御電流に対する発生力を線形化することができる。このため、上記バイアス電流を流すことに起因するラジアル磁気軸受11での熱の発生を防止できる。この結果、低温流体用ポンプ100が適用される低温流体LGが当該熱によって気化することや、当該低温流体LGの気化に伴い低温流体用ポンプ100の効率が低下することを防止できる。 <Operation effect of cryogenic fluid transfer device and cryogenic fluid pump>
In this case, the radialmagnetic bearing 11 has a permanent magnet combined system in which a part of the magnetic circuit 11e includes the permanent magnet 11c. The generated force with respect to the control current in the magnetic bearing 11 can be linearized. For this reason, it is possible to prevent the generation of heat in the radial magnetic bearing 11 due to the flow of the bias current. As a result, it is possible to prevent the low-temperature fluid LG to which the low-temperature fluid pump 100 is applied from being vaporized by the heat, and the efficiency of the low-temperature fluid pump 100 from being reduced due to the vaporization of the low-temperature fluid LG.
この場合、ラジアル磁気軸受11が磁気回路11eの一部に永久磁石11cを含む永久磁石併用方式となっているため、ラジアル磁気軸受11の電磁石コイルであるコイル11bにバイアス電流を流すことなく、ラジアル磁気軸受11における制御電流に対する発生力を線形化することができる。このため、上記バイアス電流を流すことに起因するラジアル磁気軸受11での熱の発生を防止できる。この結果、低温流体用ポンプ100が適用される低温流体LGが当該熱によって気化することや、当該低温流体LGの気化に伴い低温流体用ポンプ100の効率が低下することを防止できる。 <Operation effect of cryogenic fluid transfer device and cryogenic fluid pump>
In this case, the radial
具体的には、上述した本実施の形態に係るラジアル磁気軸受11については、図6に示すような構成により制御を行うことが考えられる。図6は、図2~図4に示したラジアル磁気軸受11の制御を説明するための制御機構の一例を示す模式図である。制御機構は、ラジアル磁気軸受11のコイル11bへ制御用の電流ic1、ic2を供給するためにコイル11bへ接続されたアンプ41、42と、これらのアンプ41、42を制御する制御部40とを主に含む。制御部40からの制御信号により、アンプ41は1つのコイル11bへ制御用の電流ic1を供給する。また、制御部40からの制御信号により、アンプ42は他のコイル11bへ制御用の電流ic2を供給する。本発明の実施の形態1では、ラジアル磁気軸受11において永久磁石11cを配置することで、上述のようにバイアス電流を流す必要がない。なお、アンプ41、42としては、双方向の電流を流すHブリッジ回路を備えるアンプを用いることができる。
Specifically, it can be considered that the radial magnetic bearing 11 according to the present embodiment described above is controlled by a configuration as shown in FIG. FIG. 6 is a schematic diagram showing an example of a control mechanism for explaining the control of the radial magnetic bearing 11 shown in FIGS. The control mechanism includes amplifiers 41 and 42 connected to the coil 11b to supply control currents ic1 and ic2 to the coil 11b of the radial magnetic bearing 11, and a control unit 40 that controls the amplifiers 41 and 42. Including mainly. In response to the control signal from the control unit 40, the amplifier 41 supplies a control current ic1 to one coil 11b. Further, the amplifier 42 supplies the control current ic2 to the other coil 11b by the control signal from the control unit 40. In the first embodiment of the present invention, by arranging the permanent magnet 11c in the radial magnetic bearing 11, it is not necessary to flow a bias current as described above. As the amplifiers 41 and 42, an amplifier having an H bridge circuit that allows a bidirectional current to flow can be used.
一方、本実施の形態のように永久磁石11cを用いない場合、たとえば図5に示すようにヨークのベース部11aに永久磁石を配置しない構成のラジアル磁気軸受を用いる場合を考える。ここで、図5は比較例としての低温流体用ポンプの部分断面模式図であって、当該比較例としての低温流体用ポンプは、ラジアル磁気軸受11が永久磁石を備えていない点、および図7に示すようにバイアス電流をコイル11bに供給するような制御機構を有する点が図1~図4に示した低温流体用ポンプ100と異なっている。図7に示した比較例としての低温流体用ポンプのラジアル磁気軸受の制御機構は、基本的には図6に示した制御機構と同様の構成を備えるが、バイアス電流の電源部23がアンプ51、52の出力線に接続されている点が図6に示した制御機構と異なっている。図7に示した制御機構では、電源部23から出力されたバイアス電流ibがアンプ51、52からの電流ic1、ic2に加えられてコイル11bへ供給されている。このバイアス電流ibにより比較例の低温流体用ポンプのラジアル磁気軸受では、制御電流に対する発生力を線形化している。以下、当該バイアス電流による発生力の線形化について、図8~図10を用いて説明する。
On the other hand, in the case where the permanent magnet 11c is not used as in the present embodiment, for example, a case where a radial magnetic bearing having a configuration in which the permanent magnet is not disposed on the base portion 11a of the yoke as shown in FIG. Here, FIG. 5 is a partial cross-sectional schematic diagram of a cryogenic fluid pump as a comparative example. In the cryogenic fluid pump as the comparative example, the radial magnetic bearing 11 does not include a permanent magnet, and FIG. 4 is different from the cryogenic fluid pump 100 shown in FIGS. 1 to 4 in that it has a control mechanism for supplying a bias current to the coil 11b. The control mechanism of the radial magnetic bearing of the cryogenic fluid pump as the comparative example shown in FIG. 7 basically has the same configuration as the control mechanism shown in FIG. , 52 is different from the control mechanism shown in FIG. In the control mechanism shown in FIG. 7, the bias current ib output from the power supply unit 23 is added to the currents ic1 and ic2 from the amplifiers 51 and 52 and supplied to the coil 11b. In the radial magnetic bearing of the cryogenic fluid pump of the comparative example, the generated force with respect to the control current is linearized by the bias current ib. Hereinafter, linearization of the generated force by the bias current will be described with reference to FIGS.
図8は、電磁石においてコイル電流と磁気力の関係を説明するための模式図である。図8(a)はシャフト9にラジアル磁気軸受に相当する電磁石を対向配置した状態を示す模式図である。図8(b)は、図8(a)に示した構成においてコイル11bに流される電流iと当該電磁石において発生する磁気力Fとの関係を示すグラフである。図8(b)において、横軸は電流iを示し、縦軸は磁気力Fを示す。電流iと磁気力Fとの関係は、下記の数式(1)で示すように2次の関数である。
FIG. 8 is a schematic diagram for explaining the relationship between the coil current and the magnetic force in the electromagnet. FIG. 8A is a schematic diagram showing a state in which an electromagnet corresponding to a radial magnetic bearing is disposed opposite to the shaft 9. FIG. 8B is a graph showing the relationship between the current i flowing through the coil 11b and the magnetic force F generated in the electromagnet in the configuration shown in FIG. In FIG. 8B, the horizontal axis indicates the current i, and the vertical axis indicates the magnetic force F. The relationship between the current i and the magnetic force F is a quadratic function as shown by the following mathematical formula (1).
なお、上記数式(1)において、Bは磁束密度、Sは磁路断面積、Nはコイル巻き数、iはコイルに供給される電流、xは図6に示した電磁石とシャフト9とのギャップをそれぞれ意味する。
In Equation (1), B is the magnetic flux density, S is the magnetic path cross-sectional area, N is the number of coil turns, i is the current supplied to the coil, and x is the gap between the electromagnet and the shaft 9 shown in FIG. Means each.
図9は、ラジアル磁気軸受に用いられる電磁石を、シャフト9を挟むように、対向して配置した場合を示す模式図である。図9(a)は、電磁石をシャフト9を挟むようにして対向配置した状態を示す模式図である。図9(b)は、図9(a)に示した構成において、コイル11bに流れる電流iと電磁石において発生する磁気力Fとの関係を示すグラフである。図9(b)のグラフにおける縦軸及び横軸は図8(b)のグラフと同様である。
FIG. 9 is a schematic diagram showing a case where the electromagnets used for the radial magnetic bearing are arranged to face each other with the shaft 9 interposed therebetween. FIG. 9A is a schematic diagram showing a state in which the electromagnets are arranged to face each other with the shaft 9 interposed therebetween. FIG. 9B is a graph showing the relationship between the current i flowing through the coil 11b and the magnetic force F generated in the electromagnet in the configuration shown in FIG. 9A. The vertical axis and the horizontal axis in the graph of FIG. 9B are the same as those of the graph of FIG.
図9(b)からわかるように、図9(a)の構成では、電流iがゼロ付近での磁気力Fの傾きが小さいため磁気軸受としての剛性が相対的に低くなっている。また、電流iと磁気力Fとの関係が非線形のため、制御系の安定性検証に用いられるボード線図が利用できないなどの問題がある。さらに、磁気軸受に対して負荷が発生した際、コイル11bに制御電流が流れると、磁気軸受と磁気軸受で支持されたシャフト9とからなる制御対象において作用する力の状態が大きく変化してしまうため、制御上の安定性を確保することが困難である。
As can be seen from FIG. 9 (b), in the configuration of FIG. 9 (a), the rigidity of the magnetic bearing is relatively low because the gradient of the magnetic force F when the current i is near zero is small. In addition, since the relationship between the current i and the magnetic force F is non-linear, there is a problem that a Bode diagram used for verifying the stability of the control system cannot be used. In addition, when a load is generated on the magnetic bearing, if a control current flows through the coil 11b, the state of the force acting on the controlled object composed of the magnetic bearing and the shaft 9 supported by the magnetic bearing is greatly changed. Therefore, it is difficult to ensure control stability.
このような問題を回避するため、本実施形態では、永久磁石11cをラジアル磁気軸受11に適用している。本実施の形態において採用した永久磁石併用方式での磁気回路における起磁力は、下記の数式(2)で示される。
In order to avoid such a problem, the permanent magnet 11c is applied to the radial magnetic bearing 11 in this embodiment. The magnetomotive force in the magnetic circuit in the permanent magnet combination method employed in the present embodiment is expressed by the following mathematical formula (2).
ここで、上記数式(2)において、liは磁路長、lpは図6に示す永久磁石11cの長さ、Hは永久磁石内部の磁界の強さをそれぞれ意味する。
Here, in the above formula (2), l i represents the magnetic path length, l p represents the length of the permanent magnet 11c shown in FIG. 6, and H represents the strength of the magnetic field inside the permanent magnet.
上記数式(2)からわかるように、永久磁石の起磁力が加算され、磁束密度は(Ni-Hlp)の関数となる。つまり、本実施の形態に係るラジアル磁気軸受11においては、コイルの電流iで磁気力を制御することができる。
As can be seen from the above formula (2), the magnetomotive force of the permanent magnet is added, and the magnetic flux density is a function of (Ni-Hlp). That is, in the radial magnetic bearing 11 according to the present embodiment, the magnetic force can be controlled by the coil current i.
上記のような永久磁石併用方式の効果を図10に示す。図10のグラフにおける横軸および縦軸は、図8(b)のグラフと同様である。図10では、永久磁石11cによって発生するバイアス磁束による、コイルの電流iと磁気力Fの線形化の状態が示されている。本実施の形態に係るラジアル磁気軸受11では、たとえばバイアス磁束により発生する磁気力Fの2倍の領域までコイルの電流iと磁気力Fの関係を線形化することができる。
The effect of the permanent magnet combination method as described above is shown in FIG. The horizontal and vertical axes in the graph of FIG. 10 are the same as those of the graph of FIG. FIG. 10 shows a linearized state of the coil current i and the magnetic force F due to the bias magnetic flux generated by the permanent magnet 11c. In the radial magnetic bearing 11 according to the present embodiment, for example, the relationship between the coil current i and the magnetic force F can be linearized up to a region twice the magnetic force F generated by the bias magnetic flux.
また、第1の永久磁石11c1からベース部11aの一部、第1の突出部11d1および第2の突出部11d2と周回する第1の磁気回路と、第2の永久磁石11c2からベース部11aの一部、第3の突出部11d3および第4の突出部11d4と周回する第2の磁気回路とを形成できる。さらに、上記のように第1の永久磁石11c1と第2の永久磁石11c2とは周方向において隣り合う端部が同じ極となっているため、第1の永久磁石11c1の上記端部と第2の永久磁石11c2の上記端部との間に位置する突出部の組(たとえば第2の突出部11d2と第3の突出部11d3との組)では、シャフト9に対向する内周部の極性が同じになっている。この結果、シャフト9が回転したときに第2の突出部11d2と第3の突出部11d3とで磁極が切り替わることがない。この結果、第1の永久磁石11c1と第2の永久磁石11c2との周方向において隣り合う端部が異なる極となっている場合(つまり第2の突出部11d2と第3の突出部11d3とで極性が異なる場合)に比べて、ヨークでの磁極の切り替わり回数、つまりシャフト9が回転したときにシャフト9の周方向におけるヨークの磁極の切り替わり回数を低減できる。この結果、当該磁極の切り替わりに起因するロータであるシャフト9での損失を低減できるので、低温流体用ポンプ100の効率の低下を抑制できる。また、上記のような低温流体用ポンプ100を用いた低温流体移送装置1では、低温流体用ポンプ100のラジアル磁気軸受11から低温流体への熱の流入を抑制できるので、低温流体の気化や効率の低下が抑制される。
Further, the first permanent magnet 11c1 to the part of the base portion 11a, the first magnetic circuit that circulates around the first protrusion 11d1 and the second protrusion 11d2, and the second permanent magnet 11c2 to the base portion 11a. In part, the third protrusion 11d3 and the fourth protrusion 11d4 and the second magnetic circuit that circulates can be formed. Further, as described above, the first permanent magnet 11c1 and the second permanent magnet 11c2 have the same poles at the ends adjacent to each other in the circumferential direction. In the set of protrusions located between the end portions of the permanent magnet 11c2 (for example, the set of the second protrusion portion 11d2 and the third protrusion portion 11d3), the polarity of the inner peripheral portion facing the shaft 9 is It is the same. As a result, the magnetic poles are not switched between the second protrusion 11d2 and the third protrusion 11d3 when the shaft 9 rotates. As a result, when the end portions adjacent to each other in the circumferential direction of the first permanent magnet 11c1 and the second permanent magnet 11c2 are different poles (that is, in the second protrusion 11d2 and the third protrusion 11d3). Compared to the case where the polarities are different, the number of switching of the magnetic poles in the yoke, that is, the number of switching of the magnetic poles of the yoke in the circumferential direction of the shaft 9 when the shaft 9 rotates can be reduced. As a result, the loss in the shaft 9 that is the rotor due to the switching of the magnetic poles can be reduced, so that a reduction in the efficiency of the cryogenic fluid pump 100 can be suppressed. Further, in the cryogenic fluid transfer device 1 using the cryogenic fluid pump 100 as described above, since the inflow of heat from the radial magnetic bearing 11 of the cryogenic fluid pump 100 to the cryogenic fluid can be suppressed, vaporization and efficiency of the cryogenic fluid can be suppressed. Is suppressed.
<低温流体移送装置および低温流体用ポンプの変形例の構成および作用効果>
図11に示す低温流体用ポンプは、図1に示した低温流体移送装置に適用されるとともに、基本的には図2~図4に示した低温流体用ポンプと同様の構成を備えるが、ヨークのベース部11aおよび永久磁石11cの形状が図2~図4に示した低温流体用ポンプと異なっている。すなわち、図11に示した低温流体用ポンプでは、第1および第2の永久磁石11c1、11c2を含む複数の永久磁石11cの、周方向に対して垂直な方向である径方向に沿った断面での断面積が、ベース部11aにおいて第1~第4の突出部11d1~11d4を含む複数の突出部11dが接続された領域の、径方向に沿った断面での断面積より大きくなっている。また、ベース部11aは、径方向に沿った断面での断面積が、第1および第2の永久磁石11c1、11c2の少なくともいずれか一方に近づくにつれて、あるいは複数の永久磁石11cの少なくとも1つに近づくにつれて大きくなるように構成されている。また異なる観点から言えば、ベース部11aにおいて永久磁石11cに隣接する部分のシャフト9に面する内周面は、永久磁石11cに近づくにつれて内周側(シャフト9側)へ近づくように、周方向に対して傾斜している。なお、ベース部11aの外周面の、シャフト9の延在方向から見た形状は図11に示すように円形状である。 <Configuration and operation effect of modified examples of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump shown in FIG. 11 is applied to the cryogenic fluid transfer device shown in FIG. 1, and basically has the same configuration as the cryogenic fluid pump shown in FIGS. The shapes of thebase portion 11a and the permanent magnet 11c are different from those of the cryogenic fluid pump shown in FIGS. That is, in the cryogenic fluid pump shown in FIG. 11, a plurality of permanent magnets 11 c including the first and second permanent magnets 11 c 1 and 11 c 2 are cross sections along a radial direction that is a direction perpendicular to the circumferential direction. The cross-sectional area of the base portion 11a is larger than the cross-sectional area in the cross section along the radial direction of the region where the plurality of projecting portions 11d including the first to fourth projecting portions 11d1 to 11d4 are connected. Further, the base portion 11a has a cross-sectional area in a radial direction that approaches at least one of the first and second permanent magnets 11c1 and 11c2, or at least one of the plurality of permanent magnets 11c. It is comprised so that it may become large as it approaches. From another point of view, the inner circumferential surface facing the shaft 9 in the portion adjacent to the permanent magnet 11c in the base portion 11a is closer to the inner circumferential side (shaft 9 side) closer to the permanent magnet 11c. It is inclined with respect to. The shape of the outer peripheral surface of the base portion 11a viewed from the extending direction of the shaft 9 is circular as shown in FIG.
図11に示す低温流体用ポンプは、図1に示した低温流体移送装置に適用されるとともに、基本的には図2~図4に示した低温流体用ポンプと同様の構成を備えるが、ヨークのベース部11aおよび永久磁石11cの形状が図2~図4に示した低温流体用ポンプと異なっている。すなわち、図11に示した低温流体用ポンプでは、第1および第2の永久磁石11c1、11c2を含む複数の永久磁石11cの、周方向に対して垂直な方向である径方向に沿った断面での断面積が、ベース部11aにおいて第1~第4の突出部11d1~11d4を含む複数の突出部11dが接続された領域の、径方向に沿った断面での断面積より大きくなっている。また、ベース部11aは、径方向に沿った断面での断面積が、第1および第2の永久磁石11c1、11c2の少なくともいずれか一方に近づくにつれて、あるいは複数の永久磁石11cの少なくとも1つに近づくにつれて大きくなるように構成されている。また異なる観点から言えば、ベース部11aにおいて永久磁石11cに隣接する部分のシャフト9に面する内周面は、永久磁石11cに近づくにつれて内周側(シャフト9側)へ近づくように、周方向に対して傾斜している。なお、ベース部11aの外周面の、シャフト9の延在方向から見た形状は図11に示すように円形状である。 <Configuration and operation effect of modified examples of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump shown in FIG. 11 is applied to the cryogenic fluid transfer device shown in FIG. 1, and basically has the same configuration as the cryogenic fluid pump shown in FIGS. The shapes of the
この場合、第1および第2の永久磁石11c1、11c2を含む少なくとも1つの永久磁石11cの径方向に沿った断面における断面積を、図4に示した構成における永久磁石11cの断面積よりも相対的に大きくできるので、永久磁石11cの発生磁束を維持したまま周方向における永久磁石11cの厚みを相対的に薄くできる。この結果、永久磁石11cにおける磁気回路での磁気抵抗を、当該永久磁石11cの周方向における厚みが図4に示すように相対的に厚い場合より低減できる。この結果、ラジアル磁気軸受11の制御性を向上させることができるとともに、負荷が加えられたときのラジアル磁気軸受11の制御電流値を低減できる。
In this case, the cross-sectional area in the cross section along the radial direction of at least one permanent magnet 11c including the first and second permanent magnets 11c1 and 11c2 is relative to the cross-sectional area of the permanent magnet 11c in the configuration shown in FIG. Therefore, the thickness of the permanent magnet 11c in the circumferential direction can be relatively reduced while maintaining the magnetic flux generated by the permanent magnet 11c. As a result, the magnetic resistance in the magnetic circuit of the permanent magnet 11c can be reduced as compared with the case where the thickness of the permanent magnet 11c in the circumferential direction is relatively thick as shown in FIG. As a result, the controllability of the radial magnetic bearing 11 can be improved, and the control current value of the radial magnetic bearing 11 when a load is applied can be reduced.
(実施の形態2)
<低温流体移送装置および低温流体用ポンプの構成>
図12および図13に示したラジアル磁気軸受11を含む低温流体用ポンプは、図1に示す低温流体移送装置に適用され得るポンプであって、基本的に図1~図4に示した低温流体用ポンプ100と同様の構成を備えるが、ラジアル磁気軸受11(図2参照)を構成するヨークの形状が図1~図4に示した低温流体用ポンプと異なっている。すなわち、図12および図13に示した低温流体用ポンプでは、ヨークが、シャフト9の外周を囲むように、シャフト9の周方向に間隔を隔てて配置された複数の部分を含んでいる。つまり、ヨークは、第1および第2のベース部11a1、11a2を含む複数のベース部11aと、第1~第4の突出部11d1~11d4とを含む。第1および第2のベース部11a1、11a2を含む複数のベース部11aは、図13に示すようにシャフト9の外周側においてシャフト9の周方向に沿って間隔を隔てて配置される。 (Embodiment 2)
<Configuration of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump including the radialmagnetic bearing 11 shown in FIGS. 12 and 13 is a pump that can be applied to the cryogenic fluid transfer device shown in FIG. 1 and basically includes the cryogenic fluid shown in FIGS. However, the shape of the yoke constituting the radial magnetic bearing 11 (see FIG. 2) is different from that of the cryogenic fluid pump shown in FIGS. That is, in the cryogenic fluid pump shown in FIGS. 12 and 13, the yoke includes a plurality of portions arranged at intervals in the circumferential direction of the shaft 9 so as to surround the outer periphery of the shaft 9. That is, the yoke includes a plurality of base portions 11a including the first and second base portions 11a1 and 11a2, and the first to fourth projecting portions 11d1 to 11d4. The plurality of base portions 11a including the first and second base portions 11a1 and 11a2 are arranged at intervals along the circumferential direction of the shaft 9 on the outer peripheral side of the shaft 9 as shown in FIG.
<低温流体移送装置および低温流体用ポンプの構成>
図12および図13に示したラジアル磁気軸受11を含む低温流体用ポンプは、図1に示す低温流体移送装置に適用され得るポンプであって、基本的に図1~図4に示した低温流体用ポンプ100と同様の構成を備えるが、ラジアル磁気軸受11(図2参照)を構成するヨークの形状が図1~図4に示した低温流体用ポンプと異なっている。すなわち、図12および図13に示した低温流体用ポンプでは、ヨークが、シャフト9の外周を囲むように、シャフト9の周方向に間隔を隔てて配置された複数の部分を含んでいる。つまり、ヨークは、第1および第2のベース部11a1、11a2を含む複数のベース部11aと、第1~第4の突出部11d1~11d4とを含む。第1および第2のベース部11a1、11a2を含む複数のベース部11aは、図13に示すようにシャフト9の外周側においてシャフト9の周方向に沿って間隔を隔てて配置される。 (Embodiment 2)
<Configuration of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump including the radial
第1および第2の突出部11d1、11d2は、第1のベース部11a1からシャフト9に向けて突出するとともに、シャフト9の軸方向において互いに間隔を隔てて配置される。第3の突出部11d3は、第2のベース部11a2からシャフト9に向けて突出するとともに、シャフト9の軸方向において第1のベース部11a1の中央から見て第1の突出部11d1と同じ側に配置される。第4の突出部11d4は、第3の突出部11d3からシャフト9の軸方向において間隔を隔てて配置される。第4の突出部11d4は、第2のベース部11a2からシャフト9に向けて突出するように形成される。第1~第4の突出部11d1~11d4には、コイル11bが巻回されている。
The first and second projecting portions 11d1 and 11d2 project from the first base portion 11a1 toward the shaft 9 and are spaced from each other in the axial direction of the shaft 9. The third protruding portion 11d3 protrudes from the second base portion 11a2 toward the shaft 9 and is on the same side as the first protruding portion 11d1 when viewed from the center of the first base portion 11a1 in the axial direction of the shaft 9. Placed in. The 4th protrusion part 11d4 is arrange | positioned at intervals in the axial direction of the shaft 9 from the 3rd protrusion part 11d3. The fourth projecting portion 11d4 is formed so as to project from the second base portion 11a2 toward the shaft 9. A coil 11b is wound around the first to fourth protrusions 11d1 to 11d4.
少なくとも1つの永久磁石11cは、第1および第2の永久磁石11c1、11c2を含む。第1の永久磁石11c1は、第1のベース部11a1において第1の突出部11d1と第2の突出部11d2との間に配置される。第2の永久磁石11c2は、第2のベース部11a2において第3の突出部11d3と第4の突出部11d4との間に配置される。第1の永久磁石11c1と第2の永久磁石11c2とは、軸方向において第1の突出部11d1側の端部に同じ極(図12ではN極)が位置するように配置されている。また、上記のような永久磁石11cが中央部に配置されたベース部11aと、当該ベース部11aの軸方向における両端に配置された2つの突出部11dと、当該2つの突出部11dをそれぞれ巻回するように配置された2つのコイル11bとからなるユニットは、図13に示すようにシャフト9の外周に沿って周方向に間隔を隔てて並ぶように複数個配置されている。
The at least one permanent magnet 11c includes first and second permanent magnets 11c1 and 11c2. The first permanent magnet 11c1 is disposed between the first protruding portion 11d1 and the second protruding portion 11d2 in the first base portion 11a1. The second permanent magnet 11c2 is disposed between the third projecting portion 11d3 and the fourth projecting portion 11d4 in the second base portion 11a2. The first permanent magnet 11c1 and the second permanent magnet 11c2 are arranged such that the same pole (N pole in FIG. 12) is located at the end on the first protrusion 11d1 side in the axial direction. Further, the base part 11a in which the permanent magnet 11c as described above is disposed at the center part, the two projecting parts 11d disposed at both ends in the axial direction of the base part 11a, and the two projecting parts 11d are respectively wound. A plurality of units composed of two coils 11b arranged so as to rotate are arranged so as to be arranged along the outer periphery of the shaft 9 at intervals in the circumferential direction as shown in FIG.
<低温流体移送装置および低温流体用ポンプの作用効果>
図12および図13に示したラジアル磁気軸受11を備える低温流体用ポンプおよび当該低温流体用ポンプを備えた低温流体移送装置では、基本的に図1~図4に示した低温流体移送装置および低温流体用ポンプと同様の効果を得ることができる。また、シャフト9に外周に沿って複数のユニットが間隔を隔てて配置され、また図12に示すように第1の突出部11d1と第3の突出部11d3とが同じ極性(たとえばN極)の磁極となっている。つまりラジアル磁気軸受11がいわゆるホモポーラ型のラジアル磁気軸受となっている。そして、上記のような構成とすることで、ホモポーラ型のラジアル磁気軸受11についても永久磁石併用方式を適用することができる。つまり、図14に示す参考例としてのホモポーラ型のラジアル磁気軸受では、永久磁石がヨークのベース部11aに配置されていないので、上述した実施の形態1の図5に示したラジアル磁気軸受と同様に、発生力の線形化のためバイアス電流を流す必要がある。なお、図14に示したラジアル磁気軸受は、永久磁石を備えていない点を除いて図12および図13に示したラジアル磁気軸受と同様の構成を備える。図14に示したラジアル磁気軸受におけるバイアス電流は、発熱の原因となり、低温流体の気化の要因となり得る。しかし、本実施の形態では、永久磁石11cを用いることで上記のようなバイアス電流を不要としており、実施の形態1と同様の効果をえることができる。 <Operation effect of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump provided with the radialmagnetic bearing 11 and the cryogenic fluid transfer device provided with the cryogenic fluid pump shown in FIGS. 12 and 13 basically have the cryogenic fluid transfer device and the cryogenic temperature shown in FIGS. The same effect as the fluid pump can be obtained. Further, a plurality of units are arranged at intervals along the outer periphery of the shaft 9, and as shown in FIG. 12, the first protrusion 11d1 and the third protrusion 11d3 have the same polarity (for example, N pole). It is a magnetic pole. That is, the radial magnetic bearing 11 is a so-called homopolar radial magnetic bearing. And by setting it as the above structures, the permanent magnet combined use system is applicable also to the homopolar type radial magnetic bearing 11. FIG. That is, in the homopolar type radial magnetic bearing as the reference example shown in FIG. 14, the permanent magnet is not arranged on the base portion 11a of the yoke, so that it is the same as the radial magnetic bearing shown in FIG. In addition, it is necessary to pass a bias current for linearizing the generated force. The radial magnetic bearing shown in FIG. 14 has the same configuration as the radial magnetic bearing shown in FIGS. 12 and 13 except that it does not include a permanent magnet. The bias current in the radial magnetic bearing shown in FIG. 14 causes heat generation and can cause vaporization of the low temperature fluid. However, in the present embodiment, the use of the permanent magnet 11c eliminates the need for the bias current as described above, and the same effect as in the first embodiment can be obtained.
図12および図13に示したラジアル磁気軸受11を備える低温流体用ポンプおよび当該低温流体用ポンプを備えた低温流体移送装置では、基本的に図1~図4に示した低温流体移送装置および低温流体用ポンプと同様の効果を得ることができる。また、シャフト9に外周に沿って複数のユニットが間隔を隔てて配置され、また図12に示すように第1の突出部11d1と第3の突出部11d3とが同じ極性(たとえばN極)の磁極となっている。つまりラジアル磁気軸受11がいわゆるホモポーラ型のラジアル磁気軸受となっている。そして、上記のような構成とすることで、ホモポーラ型のラジアル磁気軸受11についても永久磁石併用方式を適用することができる。つまり、図14に示す参考例としてのホモポーラ型のラジアル磁気軸受では、永久磁石がヨークのベース部11aに配置されていないので、上述した実施の形態1の図5に示したラジアル磁気軸受と同様に、発生力の線形化のためバイアス電流を流す必要がある。なお、図14に示したラジアル磁気軸受は、永久磁石を備えていない点を除いて図12および図13に示したラジアル磁気軸受と同様の構成を備える。図14に示したラジアル磁気軸受におけるバイアス電流は、発熱の原因となり、低温流体の気化の要因となり得る。しかし、本実施の形態では、永久磁石11cを用いることで上記のようなバイアス電流を不要としており、実施の形態1と同様の効果をえることができる。 <Operation effect of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump provided with the radial
<低温流体移送装置および低温流体用ポンプの変形例の構成および作用効果>
図15および図16に示すラジアル磁気軸受11を備える低温流体用ポンプは、図1に示した低温流体移送装置に適用可能なポンプであって、図12および図13に示した低温流体用ポンプの変形例である。図15および図16に示した低温流体用ポンプは、基本的には図12および図13に示した低温流体用ポンプと同様の構成を備えるが、ラジアル磁気軸受11におけるコイル11bの配置が図12および図13に示した低温流体用ポンプと異なっている。すなわち、図15および図16に示した低温流体用ポンプにおいて、少なくとも1つのコイル11bは、第1のコイル11b1と第2のコイル11b2とを含む。第1のコイル11b1は、第1の永久磁石11c1の周囲を囲むように配置される。第2のコイル11b2は、第2の永久磁石11c2の周囲を囲むように配置される。また、図16に示すように、シャフト9の外周を囲むように配置されたラジアル磁気軸受11の各ユニットでは、永久磁石11cの周囲を囲むようにコイル11bが配置されている。 <Configuration and operation effect of modified examples of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump provided with the radialmagnetic bearing 11 shown in FIGS. 15 and 16 is a pump applicable to the cryogenic fluid transfer device shown in FIG. 1, and is a pump of the cryogenic fluid pump shown in FIGS. 12 and 13. It is a modification. The cryogenic fluid pump shown in FIGS. 15 and 16 basically has the same configuration as the cryogenic fluid pump shown in FIGS. 12 and 13, but the arrangement of the coil 11b in the radial magnetic bearing 11 is as shown in FIG. And, it is different from the cryogenic fluid pump shown in FIG. That is, in the cryogenic fluid pump shown in FIGS. 15 and 16, at least one coil 11b includes a first coil 11b1 and a second coil 11b2. The first coil 11b1 is disposed so as to surround the first permanent magnet 11c1. The second coil 11b2 is arranged so as to surround the periphery of the second permanent magnet 11c2. Further, as shown in FIG. 16, in each unit of the radial magnetic bearing 11 arranged so as to surround the outer periphery of the shaft 9, a coil 11b is arranged so as to surround the permanent magnet 11c.
図15および図16に示すラジアル磁気軸受11を備える低温流体用ポンプは、図1に示した低温流体移送装置に適用可能なポンプであって、図12および図13に示した低温流体用ポンプの変形例である。図15および図16に示した低温流体用ポンプは、基本的には図12および図13に示した低温流体用ポンプと同様の構成を備えるが、ラジアル磁気軸受11におけるコイル11bの配置が図12および図13に示した低温流体用ポンプと異なっている。すなわち、図15および図16に示した低温流体用ポンプにおいて、少なくとも1つのコイル11bは、第1のコイル11b1と第2のコイル11b2とを含む。第1のコイル11b1は、第1の永久磁石11c1の周囲を囲むように配置される。第2のコイル11b2は、第2の永久磁石11c2の周囲を囲むように配置される。また、図16に示すように、シャフト9の外周を囲むように配置されたラジアル磁気軸受11の各ユニットでは、永久磁石11cの周囲を囲むようにコイル11bが配置されている。 <Configuration and operation effect of modified examples of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic fluid pump provided with the radial
この場合、図12および図13に示した低温流体用ポンプと同様の効果が得られる。さらに、第1および第2の永久磁石11c1、11c2が配置された部分の磁気抵抗(磁路抵抗とも呼ぶ)は、実質的に空気の磁気抵抗と同様となり、ベース部11aにおける他の部分と比較して漏れ磁束が発生しやすい。このため、第1および第2の永久磁石11c1、11c2の周囲を囲むように第1および第2のコイル11b1、11b2を配置することで、第1および第2の永久磁石11c1、11c2における漏れ磁束を抑制できる。この結果、漏れ磁束に起因するラジアル磁気軸受11の特性の劣化を抑制できる。
In this case, the same effect as the cryogenic fluid pump shown in FIGS. 12 and 13 can be obtained. Further, the magnetic resistance (also referred to as magnetic path resistance) of the portion where the first and second permanent magnets 11c1 and 11c2 are arranged is substantially the same as the magnetic resistance of air, and compared with other portions of the base portion 11a. As a result, magnetic flux leakage is likely to occur. For this reason, the leakage flux in the first and second permanent magnets 11c1 and 11c2 is provided by arranging the first and second coils 11b1 and 11b2 so as to surround the first and second permanent magnets 11c1 and 11c2. Can be suppressed. As a result, it is possible to suppress the deterioration of the characteristics of the radial magnetic bearing 11 due to the leakage magnetic flux.
(実施の形態3)
<低温流体移送装置および低温流体用ポンプの構成>
図17および図18に示した低温流体移送装置1は、基本的には図1に示した低温流体移送装置1と同様の構成を備えるが、低温流体用ポンプ100の構成が図1に示した低温流体移送装置1と異なっている。すなわち、図17および図18に示した低温流体移送装置1では、低温流体用ポンプ100のモータ30が圧力壁5の外側に配置されるとともに、第1軸としてのシャフト9がモータ30の第2軸31と磁気継手20により回転力を伝達可能に結合されている。また、2つのラジアル磁気軸受11により支持されたシャフト9が容器2の内部に配置されている。 (Embodiment 3)
<Configuration of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenicfluid transfer device 1 shown in FIGS. 17 and 18 basically has the same configuration as the cryogenic fluid transfer device 1 shown in FIG. 1, but the configuration of the cryogenic fluid pump 100 is shown in FIG. Different from the cryogenic fluid transfer device 1. That is, in the cryogenic fluid transfer apparatus 1 shown in FIGS. 17 and 18, the motor 30 of the cryogenic fluid pump 100 is disposed outside the pressure wall 5, and the shaft 9 as the first shaft is the second of the motor 30. The shaft 31 and the magnetic coupling 20 are coupled so as to transmit the rotational force. A shaft 9 supported by two radial magnetic bearings 11 is disposed inside the container 2.
<低温流体移送装置および低温流体用ポンプの構成>
図17および図18に示した低温流体移送装置1は、基本的には図1に示した低温流体移送装置1と同様の構成を備えるが、低温流体用ポンプ100の構成が図1に示した低温流体移送装置1と異なっている。すなわち、図17および図18に示した低温流体移送装置1では、低温流体用ポンプ100のモータ30が圧力壁5の外側に配置されるとともに、第1軸としてのシャフト9がモータ30の第2軸31と磁気継手20により回転力を伝達可能に結合されている。また、2つのラジアル磁気軸受11により支持されたシャフト9が容器2の内部に配置されている。 (Embodiment 3)
<Configuration of cryogenic fluid transfer device and cryogenic fluid pump>
The cryogenic
すなわち、図17および図18に示した実施の形態3に係る低温流体用ポンプ100は、図1~図4に示した低温流体用ポンプ100と同様に容器2の圧力壁5に配置された貫通孔5aを塞ぐように配置される。低温流体用ポンプ100は、インペラ8と、第1軸としてのシャフト9および第2軸31を含む回転軸と、筐体と、磁気軸受としてのラジアル磁気軸受11と、第2軸31を回転駆動するモータ30とを主に備える。
That is, the cryogenic fluid pump 100 according to the third embodiment shown in FIG. 17 and FIG. 18 is similar to the cryogenic fluid pump 100 shown in FIGS. 1 to 4 and penetrates the pressure wall 5 of the container 2. It arrange | positions so that the hole 5a may be plugged up. The cryogenic fluid pump 100 rotationally drives the impeller 8, a rotating shaft including the shaft 9 and the second shaft 31 as a first shaft, a housing, a radial magnetic bearing 11 as a magnetic bearing, and the second shaft 31. The motor 30 is mainly provided.
回転軸を構成するシャフト9と第2軸31とは磁気継手20により非接触で回転力を伝達可能に結合されている。2つのラジアル磁気軸受11はシャフト9を筐体に対して回転可能に支持する。2つのラジアル磁気軸受11は、シャフト9の延在方向において互いに間隔を隔てて配置されている。磁気継手20は、シャフト9の端部に固定された第1継手部材22と、第2軸31の端部に固定された第2継手部材21とを含む。第2継手部材21はカップ状の形状を有している。第1継手部材22は第2継手部材21の内側に配置されている。第1継手部材22と第2継手部材21との対向する部分には磁石が配置されている。この磁石が発生させる磁力により、第1継手部材22と第2継手部材21とは非接触で回転力を伝達できる。
The shaft 9 constituting the rotating shaft and the second shaft 31 are coupled by the magnetic coupling 20 so as to be able to transmit the rotational force in a non-contact manner. The two radial magnetic bearings 11 support the shaft 9 so as to be rotatable with respect to the housing. The two radial magnetic bearings 11 are spaced apart from each other in the extending direction of the shaft 9. The magnetic coupling 20 includes a first coupling member 22 fixed to the end of the shaft 9 and a second coupling member 21 fixed to the end of the second shaft 31. The second joint member 21 has a cup shape. The first joint member 22 is disposed inside the second joint member 21. Magnets are arranged in the opposing portions of the first joint member 22 and the second joint member 21. Due to the magnetic force generated by the magnet, the first joint member 22 and the second joint member 21 can transmit the rotational force without contact.
シャフト9において第1継手部材22に隣接する位置にスラスト磁気軸受12が配置されている。また、シャフト9において、スラスト磁気軸受12から見て第1継手部材22と反対側に位置する部分にラジアル磁気軸受11が配置されている。
The thrust magnetic bearing 12 is disposed at a position adjacent to the first joint member 22 in the shaft 9. Further, in the shaft 9, the radial magnetic bearing 11 is disposed at a portion located on the opposite side of the first joint member 22 when viewed from the thrust magnetic bearing 12.
筐体は、第1筐体部と第2筐体部7と蓋体18とを含む。第1筐体部は、筐体部分6fとフランジ部6cとインペラ軸カバー6dとインペラカバー6eとを含む。筐体部分6fの上方端部は、圧力壁5の貫通穴5b内に配置される。フランジ部6cは筐体部分6fの上方端部に接続されている。第1筐体部は、フランジ部6cが圧力壁5の外周面5b上に延在するように配置される。第2筐体部7は筒状の形状を有するとともに、インペラ8側の端部にフランジ部が形成されている。第2筐体部7のフランジ部は、第1筐体部のフランジ部6cと重なるように配置される。第2筐体部7のフランジ部と第1筐体部のフランジ部6cとには、それぞれ固定部材14を通すための貫通穴が形成されている。この貫通穴は、圧力壁5の外周面5bに形成された凹部と重なるように配置される。そして、この貫通穴および凹部に固定部材14がねじ込まれて固定されることにより、第1筐体部と第2筐体部7とが圧力壁5に対して固定される。
The housing includes a first housing portion, a second housing portion 7 and a lid 18. The first housing part includes a housing part 6f, a flange part 6c, an impeller shaft cover 6d, and an impeller cover 6e. The upper end portion of the housing portion 6 f is disposed in the through hole 5 b of the pressure wall 5. The flange portion 6c is connected to the upper end portion of the housing portion 6f. The first housing part is arranged such that the flange part 6 c extends on the outer peripheral surface 5 b of the pressure wall 5. The second housing portion 7 has a cylindrical shape, and a flange portion is formed at an end portion on the impeller 8 side. The flange part of the 2nd housing | casing part 7 is arrange | positioned so that the flange part 6c of a 1st housing | casing part may overlap. Through holes for passing the fixing member 14 are formed in the flange portion of the second housing portion 7 and the flange portion 6c of the first housing portion, respectively. This through hole is arranged so as to overlap with a recess formed in the outer peripheral surface 5 b of the pressure wall 5. Then, the fixing member 14 is screwed and fixed into the through hole and the recess, whereby the first housing portion and the second housing portion 7 are fixed to the pressure wall 5.
第2筐体部7の上方には開口部が形成されている。第2筐体部7の開口部を塞ぐように蓋体18が配置されている。蓋体18と第2筐体部7とにより囲まれた筐体の内部領域には磁気継手20が配置されている。蓋体18の外周側にはモータ30が設置されている。モータ30には第2軸31が接続されている。蓋体18にはモータ30の一部を挿入する開口部が形成されている。当該開口部にモータ30の一部が挿入固定されている。モータ30において上記開口部に挿入された部分から第2軸31が第2筐体部7の内周側に向けて突出するように配置されている。
An opening is formed above the second housing part 7. A lid 18 is disposed so as to close the opening of the second housing part 7. A magnetic coupling 20 is disposed in an inner region of the casing surrounded by the lid 18 and the second casing portion 7. A motor 30 is installed on the outer peripheral side of the lid 18. A second shaft 31 is connected to the motor 30. An opening for inserting a part of the motor 30 is formed in the lid 18. A part of the motor 30 is inserted and fixed in the opening. In the motor 30, the second shaft 31 is disposed so as to protrude toward the inner peripheral side of the second housing portion 7 from the portion inserted into the opening.
第1筐体部の筐体部分6fとインペラ軸カバー6dとインペラカバー6eとは、容器2の内部に配置されている。筐体部分6fは筒状の形状を有する。インペラ軸カバー6dは筐体部分6fにおいてインペラ8に対向する側に位置し、筐体部分6fに接続される。インペラカバー6eはインペラ軸カバー6dに接続されるとともに、インペラ8を囲むように配置されている。インペラカバー6eには、図2に示した低温流体用ポンプ100と同様に、開口部としての流入口6aおよび流出口6bが配置されている。
The housing portion 6f, the impeller shaft cover 6d, and the impeller cover 6e of the first housing portion are disposed inside the container 2. The housing portion 6f has a cylindrical shape. The impeller shaft cover 6d is located on the side of the housing portion 6f facing the impeller 8, and is connected to the housing portion 6f. The impeller cover 6e is connected to the impeller shaft cover 6d and is disposed so as to surround the impeller 8. As with the cryogenic fluid pump 100 shown in FIG. 2, the impeller cover 6e is provided with an inlet 6a and an outlet 6b as openings.
筐体部分6fにはラジアル磁気軸受11が接続される。ラジアル磁気軸受11としては、上述した実施の形態1または実施の形態2におけるラジアル磁気軸受11を適用できる。回転軸はインペラ8を回転駆動するためのものである。シャフト9の先端部であってインペラ軸カバー6dに囲まれた部分はインペラ8に接続されている。シャフト9の延在方向はたとえば重力方向(鉛直方向)である。筐体は、回転軸としてのシャフト9と第2軸31とを内部に保持する。ラジアル磁気軸受11は、回転軸を構成するシャフト9を筐体である筐体部分6fに対して回転可能に支持する。回転軸、モータ30、ラジアル磁気軸受11およびスラスト磁気軸受12は、インペラ8を回転駆動する駆動部を構成している。
A radial magnetic bearing 11 is connected to the housing portion 6f. As the radial magnetic bearing 11, the radial magnetic bearing 11 in the first embodiment or the second embodiment described above can be applied. The rotating shaft is for driving the impeller 8 to rotate. The portion of the shaft 9 that is surrounded by the impeller shaft cover 6 d is connected to the impeller 8. The extending direction of the shaft 9 is, for example, the gravitational direction (vertical direction). The housing holds the shaft 9 and the second shaft 31 as the rotation shaft inside. The radial magnetic bearing 11 supports the shaft 9 constituting the rotating shaft so as to be rotatable with respect to the housing portion 6f which is a housing. The rotating shaft, the motor 30, the radial magnetic bearing 11 and the thrust magnetic bearing 12 constitute a drive unit that rotationally drives the impeller 8.
<低温流体移送装置および低温流体用ポンプの作用効果>
図17および図18に示した低温流体移送装置1および低温流体用ポンプ100によれば、図1~図4に示した低温流体移送装置1および低温流体用ポンプ100と同様の効果を得られる。さらに、図17および図18に示した低温流体移送装置1では、低温流体用ポンプ100のラジアル磁気軸受11が容器2の内部に配置されている。このような構成では、ラジアル磁気軸受11に上述した本発明の実施の形態1または実施の形態2に係るラジアル磁気軸受11を適用するので、従来のようにラジアル磁気軸受11のコイルにバイアス電流を流すことなく、ラジアル磁気軸受11の制御電流に対する発生力を線形化できるとともに、バイアス電流に起因する発熱を防止できるので、容器2内部の低温流体の気化を抑制する効果が顕著である。 <Operation effect of cryogenic fluid transfer device and cryogenic fluid pump>
According to the cryogenicfluid transfer device 1 and the cryogenic fluid pump 100 shown in FIGS. 17 and 18, the same effects as those of the cryogenic fluid transfer device 1 and the cryogenic fluid pump 100 shown in FIGS. 1 to 4 can be obtained. Furthermore, in the cryogenic fluid transfer apparatus 1 shown in FIGS. 17 and 18, the radial magnetic bearing 11 of the cryogenic fluid pump 100 is disposed inside the container 2. In such a configuration, since the radial magnetic bearing 11 according to the first embodiment or the second embodiment of the present invention described above is applied to the radial magnetic bearing 11, a bias current is applied to the coil of the radial magnetic bearing 11 as in the past. The generated force with respect to the control current of the radial magnetic bearing 11 can be linearized without flowing, and the heat generation due to the bias current can be prevented, so the effect of suppressing the vaporization of the low-temperature fluid inside the container 2 is remarkable.
図17および図18に示した低温流体移送装置1および低温流体用ポンプ100によれば、図1~図4に示した低温流体移送装置1および低温流体用ポンプ100と同様の効果を得られる。さらに、図17および図18に示した低温流体移送装置1では、低温流体用ポンプ100のラジアル磁気軸受11が容器2の内部に配置されている。このような構成では、ラジアル磁気軸受11に上述した本発明の実施の形態1または実施の形態2に係るラジアル磁気軸受11を適用するので、従来のようにラジアル磁気軸受11のコイルにバイアス電流を流すことなく、ラジアル磁気軸受11の制御電流に対する発生力を線形化できるとともに、バイアス電流に起因する発熱を防止できるので、容器2内部の低温流体の気化を抑制する効果が顕著である。 <Operation effect of cryogenic fluid transfer device and cryogenic fluid pump>
According to the cryogenic
以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
Although the embodiments of the present invention have been described above, the above-described embodiments can be variously modified. The scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
本発明は、超電導機器の冷却用に用いる低温流体を移送するためのポンプや移送装置に適用することができる。
The present invention can be applied to a pump or a transfer device for transferring a low-temperature fluid used for cooling a superconducting device.
1 低温流体移送装置、2 容器、3 流入部、4 流出部、5 圧力壁、5a 貫通孔、5b 外周面、6 第1筐体部、6a 流入口、6b 流出口、6c,6d インペラ軸カバー、6e インペラカバー、6f 筐体部分、7 第2筐体部、7a フランジ部、7c 第3筐体部、7d 第4筐体部、8 インペラ、9 シャフト、9a 第1部、9b 第2部、10,30 モータ、11d 突出部、11 ラジアル磁気軸受、11a1 第1のベース部、11a2 第2のベース部、11a ベース部、11b コイル、11b1 第1のコイル、11b2 第2のコイル、11c1 第1の永久磁石、11c2 第2の永久磁石、11c 永久磁石、11d3 第3の突出部、11d4 第4の突出部、11d1 第1の突出部、11d2 第2の突出部、11e 磁気回路、12 スラスト磁気軸受、14 固定部材、18 蓋体、20 磁気継手、21 第2継手部材、22 第1継手部材、23 電源部、31 第2軸、40 制御部、41,42 アンプ、100 低温流体用ポンプ。
1 cryogenic fluid transfer device, 2 container, 3 inflow part, 4 outflow part, 5 pressure wall, 5a through hole, 5b outer peripheral surface, 6 first housing part, 6a inflow port, 6b outflow port, 6c, 6d impeller shaft cover , 6e impeller cover, 6f housing part, 7 second housing part, 7a flange part, 7c third housing part, 7d fourth housing part, 8 impeller, 9 shaft, 9a first part, 9b second part 10, 30 motor, 11d protrusion, 11 radial magnetic bearing, 11a1, first base, 11a2, second base, 11a base, 11b coil, 11b1, first coil, 11b2, second coil, 11c1, second coil 1 permanent magnet, 11c2, second permanent magnet, 11c permanent magnet, 11d3, third protrusion, 11d4, fourth protrusion, 11d1, first protrusion Part, 11d2, second projecting part, 11e magnetic circuit, 12 thrust magnetic bearing, 14 fixing member, 18 lid, 20 magnetic joint, 21 second joint member, 22 first joint member, 23 power supply part, 31 second shaft , 40 control unit, 41, 42 amplifier, 100 cryogenic fluid pump.
Claims (6)
- インペラと、
前記インペラに接続された回転軸と、
前記回転軸を内部に保持する筐体と、
前記回転軸を前記筐体に対して回転可能に支持する磁気軸受とを備え、
前記磁気軸受は、
磁気回路の少なくとも一部を構成するヨークと、
前記ヨークの一部を囲む少なくとも1つのコイルとを含み、
前記ヨークは、前記磁気回路の一部を構成する位置に配置された少なくとも1つの永久磁石を含む、低温流体用ポンプ。 Impeller,
A rotating shaft connected to the impeller;
A housing that holds the rotating shaft inside;
A magnetic bearing that rotatably supports the rotating shaft with respect to the housing;
The magnetic bearing is
A yoke constituting at least a part of the magnetic circuit;
Including at least one coil surrounding a portion of the yoke;
The yoke for a cryogenic fluid, wherein the yoke includes at least one permanent magnet disposed at a position constituting a part of the magnetic circuit. - 前記ヨークは、
前記回転軸の外周側において前記回転軸の周方向に沿って配置されたベース部と、
前記ベース部から前記回転軸に向けて突出するとともに、前記回転軸の前記周方向において互いに間隔を隔てて配置された第1~第4の突出部とを含み、
前記少なくとも1つの永久磁石は、前記ベース部において前記第1の突出部と前記第2の突出部との間に配置された第1の永久磁石と、前記ベース部において前記第3の突出部と前記第4の突出部との間に配置された第2の永久磁石とを含み、
前記第1の永久磁石と前記第2の永久磁石とは、前記周方向において対向する端部に同じ極が位置するように配置されている、請求項1に記載の低温流体用ポンプ。 The yoke is
A base portion disposed along the circumferential direction of the rotary shaft on the outer peripheral side of the rotary shaft;
First to fourth protrusions protruding from the base portion toward the rotation shaft and spaced apart from each other in the circumferential direction of the rotation shaft,
The at least one permanent magnet includes a first permanent magnet disposed between the first projecting portion and the second projecting portion in the base portion, and the third projecting portion in the base portion. A second permanent magnet disposed between the fourth protrusion and the fourth protrusion,
2. The cryogenic fluid pump according to claim 1, wherein the first permanent magnet and the second permanent magnet are arranged so that the same pole is located at an end portion facing in the circumferential direction. - 前記第1および第2の永久磁石の、前記周方向に対して垂直な方向である径方向に沿った断面での断面積は、前記ベース部において前記第1~第4の突出部が接続された領域の、前記径方向に沿った断面での断面積より大きくなっている、請求項2に記載の低温流体用ポンプ。 A cross-sectional area of the first and second permanent magnets in a cross section along a radial direction that is a direction perpendicular to the circumferential direction is such that the first to fourth projecting portions are connected to the base portion. The pump for cryogenic fluid according to claim 2, wherein the area is larger than the cross-sectional area of the region along the radial direction.
- 前記ヨークは、
前記回転軸の外周側において前記回転軸の周方向に沿って間隔を隔てて配置された第1および第2のベース部と、
前記第1のベース部から前記回転軸に向けて突出するとともに、前記回転軸の軸方向において互いに間隔を隔てて配置された第1および第2の突出部と、
前記第2のベース部から前記回転軸に向けて突出するとともに、前記回転軸の軸方向において前記第1のベース部の中央から見て前記第1の突出部と同じ側に配置された第3の突出部と、前記第3の突出部から前記軸方向において間隔を隔てて配置された第4の突出部と、を含み、
前記少なくとも1つの永久磁石は、前記第1のベース部において前記第1の突出部と前記第2の突出部との間に配置された第1の永久磁石と、前記第2のベース部において前記第3の突出部と前記第4の突出部との間に配置された第2の永久磁石とを含み、
前記第1の永久磁石と前記第2の永久磁石とは、前記軸方向において前記第1の突出部側の端部に同じ極が位置するように配置されている、請求項1に記載の低温流体用ポンプ。 The yoke is
A first base portion and a second base portion arranged at intervals along the circumferential direction of the rotating shaft on the outer peripheral side of the rotating shaft;
First and second protrusions that protrude from the first base portion toward the rotation shaft and are spaced from each other in the axial direction of the rotation shaft;
A third protruding from the second base portion toward the rotating shaft and disposed on the same side as the first protruding portion when viewed from the center of the first base portion in the axial direction of the rotating shaft. And a fourth protrusion disposed at a distance from the third protrusion in the axial direction,
The at least one permanent magnet includes a first permanent magnet disposed between the first projecting portion and the second projecting portion in the first base portion, and the second base portion including the first permanent magnet. A second permanent magnet disposed between a third protrusion and the fourth protrusion,
2. The low temperature according to claim 1, wherein the first permanent magnet and the second permanent magnet are arranged such that the same pole is located at an end portion on the first protruding portion side in the axial direction. Pump for fluid. - 前記少なくとも1つのコイルは、前記第1の永久磁石の周囲を囲むように配置された第1のコイルと、前記第2の永久磁石の周囲を囲むように配置された第2のコイルとを含む、請求項4に記載の低温流体用ポンプ。 The at least one coil includes a first coil arranged so as to surround the first permanent magnet and a second coil arranged so as to surround the second permanent magnet. The cryogenic fluid pump according to claim 4.
- 低温流体を収容する容器と、
前記インペラが前記容器の内部に配置されるように、前記容器に設置された請求項1~5のいずれか1項に記載の低温流体用ポンプと、
前記容器と接続されており、前記低温流体用ポンプにより運動エネルギーが付与された前記低温流体を流通させるための流通管路とを備える、低温流体移送装置。 A container containing a cryogenic fluid;
The cryogenic fluid pump according to any one of claims 1 to 5, installed in the container such that the impeller is disposed inside the container;
A cryogenic fluid transfer apparatus, comprising: a circulation pipe connected to the container and configured to circulate the cryogenic fluid to which kinetic energy is applied by the cryogenic fluid pump.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-061418 | 2017-03-27 | ||
JP2017061418A JP2018162865A (en) | 2017-03-27 | 2017-03-27 | Pump for low temperature fluid and low temperature fluid transfer device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181281A1 true WO2018181281A1 (en) | 2018-10-04 |
Family
ID=63677144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012376 WO2018181281A1 (en) | 2017-03-27 | 2018-03-27 | Low-temperature fluid pump and low-temperature fluid transfer device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018162865A (en) |
WO (1) | WO2018181281A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143640A (en) * | 2020-03-12 | 2021-09-24 | Ntn株式会社 | Low-temperature fluid pump and low-temperature fluid transfer device |
JP2021143645A (en) * | 2020-03-13 | 2021-09-24 | Ntn株式会社 | Low-temperature fluid pump |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021015034A1 (en) * | 2019-07-19 | 2021-01-28 | 株式会社イワキ | Pump |
JP7471976B2 (en) * | 2020-09-23 | 2024-04-22 | Ntn株式会社 | Fluid pump and fluid transfer device |
CN115263923B (en) * | 2022-09-20 | 2022-12-23 | 山东天瑞重工有限公司 | Permanent magnet biased radial magnetic bearing |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001041238A (en) * | 1999-07-28 | 2001-02-13 | Seiko Seiki Co Ltd | Composite type electromagnet and radial magnetic bearing |
JP2007120635A (en) * | 2005-10-28 | 2007-05-17 | Iwaki Co Ltd | Hybrid magnetic bearing |
WO2009050767A1 (en) * | 2007-10-18 | 2009-04-23 | Iwaki Co., Ltd. | Magnetically-levitated motor and pump |
JP2010106908A (en) * | 2008-10-29 | 2010-05-13 | Oitaken Sangyo Sozo Kiko | Magnetic bearing |
JP2013057250A (en) * | 2011-09-07 | 2013-03-28 | Taiyo Nippon Sanso Corp | Low-temperature liquefied gas pump |
KR101343879B1 (en) * | 2013-07-24 | 2013-12-20 | 한국기계연구원 | Magnetic bearing combined radial auxiliary bearing |
CN106402159A (en) * | 2016-12-06 | 2017-02-15 | 中国工程物理研究院材料研究所 | Permanent magnet bias magnetic suspension rotating shaft |
-
2017
- 2017-03-27 JP JP2017061418A patent/JP2018162865A/en active Pending
-
2018
- 2018-03-27 WO PCT/JP2018/012376 patent/WO2018181281A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001041238A (en) * | 1999-07-28 | 2001-02-13 | Seiko Seiki Co Ltd | Composite type electromagnet and radial magnetic bearing |
JP2007120635A (en) * | 2005-10-28 | 2007-05-17 | Iwaki Co Ltd | Hybrid magnetic bearing |
WO2009050767A1 (en) * | 2007-10-18 | 2009-04-23 | Iwaki Co., Ltd. | Magnetically-levitated motor and pump |
JP2010106908A (en) * | 2008-10-29 | 2010-05-13 | Oitaken Sangyo Sozo Kiko | Magnetic bearing |
JP2013057250A (en) * | 2011-09-07 | 2013-03-28 | Taiyo Nippon Sanso Corp | Low-temperature liquefied gas pump |
KR101343879B1 (en) * | 2013-07-24 | 2013-12-20 | 한국기계연구원 | Magnetic bearing combined radial auxiliary bearing |
CN106402159A (en) * | 2016-12-06 | 2017-02-15 | 中国工程物理研究院材料研究所 | Permanent magnet bias magnetic suspension rotating shaft |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143640A (en) * | 2020-03-12 | 2021-09-24 | Ntn株式会社 | Low-temperature fluid pump and low-temperature fluid transfer device |
JP2021143645A (en) * | 2020-03-13 | 2021-09-24 | Ntn株式会社 | Low-temperature fluid pump |
JP7374029B2 (en) | 2020-03-13 | 2023-11-06 | Ntn株式会社 | Pump for cryogenic fluids |
Also Published As
Publication number | Publication date |
---|---|
JP2018162865A (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018181281A1 (en) | Low-temperature fluid pump and low-temperature fluid transfer device | |
US8058758B2 (en) | Apparatus for magnetic bearing of rotor shaft with radial guidance and axial control | |
JP3121819B2 (en) | Magnetic bearing device with permanent magnet that receives radial force applied to the shaft | |
JP4767488B2 (en) | Magnetic levitation pump | |
US4948348A (en) | Immersion pump, especially for low-boiling fluids | |
US6833643B2 (en) | Magnetic bearing with damping | |
Masuzawa et al. | An ultradurable and compact rotary blood pump with a magnetically suspended impeller in the radial direction | |
EP3135933B1 (en) | Active magnetic bearing | |
US20210404473A1 (en) | High-efficiency magnetic coupling and levitation pump | |
US20160312826A1 (en) | Protective bearing, bearing unit, and vacuum pump | |
JP6249905B2 (en) | Cryogenic liquid pump | |
KR20200144465A (en) | A fan | |
US8110955B2 (en) | Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements | |
WO2009104376A1 (en) | Thrust force generator and elecromagnetic machine with use of the generator | |
WO2017077813A1 (en) | Axial-gap rotating electric machine | |
JP2004254437A (en) | Cooling device employing magnetic fluid | |
JP2009030702A (en) | Non-sliding agitation tank | |
JP2010041742A (en) | Axially levitated rotating motor, and turbo-type pump using axially levitated rotating motor | |
JP7658582B2 (en) | X-ray source with electromagnetic pump | |
JP2017157768A (en) | Superconducting electromagnet apparatus, and magnetic resonance imaging apparatus | |
JP2021143640A (en) | Low-temperature fluid pump and low-temperature fluid transfer device | |
EP1056171B2 (en) | Discharge-pumped excimer laser device | |
US6813301B2 (en) | Structure of reflux fan for excimer laser apparatus | |
JP7374029B2 (en) | Pump for cryogenic fluids | |
JP2011129433A (en) | Induction heating device and power generation system equipped with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18774600 Country of ref document: EP Kind code of ref document: A1 |