[go: up one dir, main page]

WO2018181696A1 - Optical film, method for producing same, polarizing plate and liquid crystal display device - Google Patents

Optical film, method for producing same, polarizing plate and liquid crystal display device Download PDF

Info

Publication number
WO2018181696A1
WO2018181696A1 PCT/JP2018/013201 JP2018013201W WO2018181696A1 WO 2018181696 A1 WO2018181696 A1 WO 2018181696A1 JP 2018013201 W JP2018013201 W JP 2018013201W WO 2018181696 A1 WO2018181696 A1 WO 2018181696A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
resin
block
film
unit
Prior art date
Application number
PCT/JP2018/013201
Other languages
French (fr)
Japanese (ja)
Inventor
斗馬 辻野
宏晃 周
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019510115A priority Critical patent/JPWO2018181696A1/en
Priority to KR1020197027674A priority patent/KR102607190B1/en
Priority to CN201880019036.0A priority patent/CN110418988B/en
Publication of WO2018181696A1 publication Critical patent/WO2018181696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an optical film, a manufacturing method thereof, a polarizing plate, and a liquid crystal display device.
  • the polarizing plate provided in the liquid crystal display device usually includes a polarizer and a protective film for protecting the polarizer.
  • polarizing plate protective films are required to have low retardation and low water vapor transmission rate. From such a viewpoint, a polarizer protective film having a small retardation has been proposed (see Patent Document 1).
  • the polarizing plate is required to exhibit durability in an environment at the time of manufacturing and using the display device. For example, a high peel strength may be required for the protective film in the polarizing plate, for example, when reworking during manufacturing of the display device and when the polarizer contracts during use of the display device.
  • the polarizer protective film proposed in Patent Document 1 is obtained by using a resin containing a block copolymer containing a block of an aromatic vinyl compound hydride and a block of a diene compound hydride. According to such a polarizer protective film, retardation in the in-plane direction can be reduced. However, when this polarizer protective film is used, the polymer molecules contained in the polarizer protective film are aligned and the entanglement between the molecules decreases, causing cohesive failure near the surface layer, thereby protecting the polarizing plate. There was a problem that the film could have insufficient peel strength.
  • an object of the present invention is to provide an optical film having high adhesion to a polarizer, low retardation, and low water vapor transmission rate, a method for producing an optical film capable of easily obtaining such an optical film, and
  • An object of the present invention is to provide a polarizing plate and a liquid crystal display device which have the optical film and have the above performance.
  • the present inventor As a result of examining the problems in the above-described conventional polarizer protective film, it was considered that a strong alignment layer was formed on the surface of the protective film in the step of forming the protective film by a melt extrusion method. Therefore, the present inventor has intensively studied to solve the above problems. As a result, the present inventor made a laminated film comprising a core layer and a surface layer provided on the surface thereof by co-extrusion of resin A and resin B, and peeled and removed the surface layer from the laminated film. The present invention was completed by finding that an optical film having high adhesion to a product, low retardation, and low water vapor transmission rate can be obtained. That is, the present invention is as follows.
  • the block copolymer is The block [Da] includes two or more polymer blocks [Db] per molecule having a cyclic hydrocarbon group-containing compound hydride unit, One or more polymers per molecule having a chain hydrocarbon compound hydride unit or a chain hydrocarbon compound or hydride unit thereof and a cyclic hydrocarbon-containing compound or hydride unit thereof as the block [Ea]
  • a polarizing plate comprising the optical film of any one of [1] to [3] and a polarizer.
  • a liquid crystal display device comprising the polarizing plate according to [4].
  • the optical film is The absolute value of in-plane retardation is 5 nm or less, The absolute value of retardation in the thickness direction is 10 nm or less, and The manufacturing method of an optical film whose water-vapor-permeation rate is 20 g / (m ⁇ 2 > * day) or less.
  • the resin A is Two or more polymer blocks [D] per molecule having cyclic hydrocarbon group-containing compound hydride units; One or more polymer blocks [E] per molecule having a chain hydrocarbon compound hydride unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon-containing compound hydride unit;
  • the resin A is A block having a cyclic hydrocarbon group-containing compound unit; A block having a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group-containing compound unit; A block copolymer containing In the optical film, the difference in composition ratio between the surface and the center is 0 to 10%.
  • the optical film of the present invention can be an optical film having high adhesion to an object, low retardation, and low water vapor transmission rate. According to the method for producing an optical film of the present invention, an optical film having high adhesion to an object, low retardation, and low water vapor transmission rate can be easily obtained. According to the polarizing plate of this invention, the polarizing plate which has the above performances can be provided. According to the liquid crystal display device of the present invention, a liquid crystal display device having the above-described performance can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a laminated film production process in the production method of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a peeling step in the production method of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a sample used in the evaluation test in the example.
  • the cyclic hydrocarbon group is a hydrocarbon group containing a cyclic structure such as an aromatic ring, cycloalkane, or cycloalkene.
  • the chain hydrocarbon compound is a hydrocarbon compound that does not contain such a cyclic hydrocarbon group.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the optical film and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the optical film and perpendicular to the nx direction.
  • nz represents the refractive index in the thickness direction of the optical film.
  • d represents the thickness of the optical film.
  • the retardation measurement wavelength is 590 nm unless otherwise specified.
  • the “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film.
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
  • the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
  • the method for producing an optical film comprises: coextruding a resin A that forms a core layer and a resin B that forms a surface layer; It includes a step of obtaining a laminated film having a surface layer made of the provided resin B (laminated film production step) and a step of peeling the surface layer from the laminated film (peeling step).
  • a laminated film is obtained by co-extruding resin A for forming the core layer and resin B for forming the surface layer. Coextrusion can be performed using a multilayer extruder.
  • the laminated film 20 includes surface layers 11 and 12 on two surfaces of the core layer 10, respectively.
  • the laminated film 20 has a layer configuration of surface layer 11 / core layer 10 / surface layer 12.
  • M shown in FIG. 1 is an extrusion molding machine.
  • the laminated film may have a surface layer only on one surface of the core layer, and the layer structure in this case is a surface layer / core layer. From the viewpoint of curling suppression of the film, the surface layer is preferably on both sides of the core layer.
  • thermoplastic resin A As the resin A forming the core layer, a thermoplastic resin can be used.
  • the thermoplastic resin forming the core layer (hereinafter, also referred to as “thermoplastic resin A”) is not particularly limited, and a resin containing various polymers that can impart desired physical properties as an optical film is appropriately selected. And can be adopted.
  • Preferable examples of the polymer contained in the thermoplastic resin A include two or more polymer blocks [D] having a cyclic hydrocarbon group-containing compound hydride unit, a chain hydrocarbon compound hydride unit, or a chain.
  • a hydrogenated block copolymer [G] comprising one or more polymer blocks [E] having a hydrated hydrocarbon compound unit and a cyclic hydrocarbon-containing compound hydride unit.
  • the resin A contains the hydrogenated block copolymer [G]
  • an optical film having a low retardation can be obtained. Therefore, an optical film obtained by the production method of the present invention is required to have a low retardation. It can be used as a member. In addition, it is possible to obtain an optical film that has high light resistance and hardly yellows.
  • the cyclic hydrocarbon group-containing compound hydride unit contained in the block [D] and the block [E] is preferably an aromatic vinyl compound hydride unit.
  • the aromatic vinyl compound hydride unit is a structural unit having a structure formed by further hydrogenating a unit obtained by polymerizing an aromatic vinyl compound.
  • the aromatic vinyl compound hydride unit is not limited depending on the production method.
  • aromatic vinyl compounds examples include styrene; ⁇ -methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 2,4-dimethyl styrene, 2,4-diisopropyl styrene, 4-t-butyl.
  • Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent such as styrene and 5-t-butyl-2-methylstyrene; as substituents such as 4-chlorostyrene, dichlorostyrene, 4-monofluorostyrene Styrenes having a halogen atom; styrenes having an alkoxy group having 1 to 6 carbon atoms as a substituent such as 4-methoxystyrene; styrenes having an aryl group as a substituent such as 4-phenylstyrene; 1-vinyl And vinyl naphthalenes such as naphthalene and 2-vinylnaphthalene.
  • aromatic vinyl compounds that do not contain a polar group, such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, are preferable because they can reduce hygroscopicity, and are easily available industrially. Therefore, styrene is particularly preferable.
  • the chain hydrocarbon compound hydride unit contained in the block [E] is preferably a chain conjugated diene compound hydride unit.
  • the chain conjugated diene compound hydride unit is a unit obtained by polymerizing a chain conjugated diene compound or, if it has a double bond, a unit obtained by hydrogenating part or all of the double bond.
  • the chain conjugated diene compound hydride unit is not limited depending on the production method.
  • chain conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio. Among these, a chain conjugated diene compound not containing a polar group is preferable because 1,2 can be reduced hygroscopicity, and 1,3-butadiene and isoprene are particularly preferable.
  • the hydrogenated block copolymer [G] preferably has a triblock molecular structure having one block [E] per molecule and two blocks [D] per molecule linked to both ends thereof. That is, the hydrogenated block copolymer [G] has one block [E] per molecule; and one end of the block [E] and has a cyclic hydrocarbon group-containing compound hydride unit [I].
  • the weight ratio (D1 + D2) / E are preferably within a specific range. Specifically, the weight ratio (D1 + D2) / E is preferably 70/30 or more, more preferably 75/25 or more, preferably 90/10 or less, more preferably 87/13 or less.
  • the weight ratio D1 of the block [D1] and the block [D2] is obtained from the viewpoint of easily obtaining a laminated film having the above characteristics.
  • / D2 is preferably within a specific range.
  • the weight ratio D1 / D2 is preferably 5 or more, more preferably 5.2 or more, particularly preferably 5.5 or more, preferably 8 or less, more preferably 7.8 or less, particularly preferably. Is 7.5 or less.
  • the weight average molecular weight Mw of the hydrogenated block copolymer [G] is preferably 50000 or more, more preferably 55000 or more, particularly preferably 60000 or more, preferably 80000 or less, more preferably 75000 or less, and particularly preferably 70000. It is as follows. When the weight average molecular weight Mw is in the above range, a laminated film having the above characteristics can be easily obtained. In particular, by reducing the weight average molecular weight, the retardation can be effectively reduced.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the hydrogenated block copolymer [G] is preferably 2.0 or less, more preferably 1.7 or less, and particularly preferably 1.5. Or less, preferably 1.0 or more.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the weight average molecular weight Mw and the number average molecular weight Mn of the hydrogenated block copolymer [G] can be measured as values in terms of polystyrene by gel permeation chromatography using cyclohexane as a solvent.
  • the main chain and side chain carbon-carbon unsaturated bonds are preferably 90% or more, more preferably 97% or more, and still more preferably 99% or more.
  • the block copolymer hydride [G] is, for example, preferably 90% or more, more preferably 97% or more, and still more preferably 99% or more of the carbon-carbon unsaturated bond of the aromatic ring. Yes.
  • the block [D1] and the block [D2] each independently comprise only the cyclic hydrocarbon group-containing compound hydride unit [I], but other than the cyclic hydrocarbon group-containing compound hydride unit [I]. May contain any unit.
  • Examples of arbitrary structural units include structural units based on vinyl compounds other than cyclic hydrocarbon group-containing compound hydride units [I].
  • the content of any structural unit in the block [D] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
  • the block [E] is a block composed of only the chain hydrocarbon compound hydride unit [II], or has the chain hydrocarbon compound unit [II] and the cyclic hydrocarbon-containing compound hydride unit [I]. It is a block.
  • the block [E] can include any unit other than the unit [I] and the unit [II]. Examples of arbitrary structural units include structural units based on vinyl compounds other than the units [I] and [II].
  • the content of any structural unit in the block [E] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
  • the hydrogenated block copolymer [G] as the above-described triblock copolymer has low retardation. Therefore, the optical film obtained by peeling the surface layer from the laminate can easily obtain desired characteristics.
  • Specific examples and production methods of the hydrogenated block copolymer [G] include, for example, specific examples and production methods disclosed in International Publication No. WO2016 / 152871.
  • the thermoplastic resin A may consist of only the hydrogenated block copolymer [G] described above, but may contain any component other than the hydrogenated block copolymer [G].
  • Optional components include, for example, inorganic fine particles; stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers, near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments And antistatic agents.
  • these arbitrary components one type may be used alone, or two or more types may be used in combination at an arbitrary ratio. However, from the viewpoint of remarkably exhibiting the effects of the present invention, it is preferable that the content of any component is small.
  • the total ratio of the arbitrary components is preferably 10 parts by weight or less, more preferably 7 parts by weight or less, and still more preferably 5 parts by weight or less with respect to 100 parts by weight of the hydrogenated block copolymer [G].
  • the glass transition temperature of the thermoplastic resin A is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower.
  • the thermoplastic resin A having a glass transition temperature in such a range is excellent in dimensional stability and moldability.
  • Resin B As the resin B forming the surface layer, a resin capable of forming a surface layer that can be peeled off from the core layer made of the resin A is used. As the resin B, a thermoplastic resin can be used. In the following description, in order to distinguish resin B for forming two surface layers, it may be expressed as resin B1 and resin B2. The resin B1 and the resin B2 may be the same or different.
  • thermoplastic resin B is not particularly limited as long as it is a resin that can form a surface layer that can be peeled off from the core layer, and includes resins containing various polymers. It can be selected and adopted as appropriate.
  • the polymer contained in the thermoplastic resin B include alicyclic structure-containing polymers.
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit, and a polymer having an alicyclic structure in the main chain and a polymer having an alicyclic structure in the side chain. Any of these can be used.
  • the alicyclic structure-containing polymer includes a crystalline resin and an amorphous resin, and is preferably an amorphous resin from the viewpoint of surface smoothness.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
  • the number of carbon atoms constituting the repeating unit of one alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 6 to 15.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is appropriately selected according to the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight. That's it.
  • the alicyclic structure-containing polymer includes (1) a norbornene-based polymer, (2) a monocyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) a vinyl alicyclic carbonization.
  • examples thereof include hydrogen polymers and hydrides thereof.
  • norbornene polymers and hydrides thereof are more preferable from the viewpoint of moldability.
  • Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerization, and a hydride thereof; Examples thereof include addition polymers and addition copolymers with other monomers copolymerizable with norbornene monomers.
  • a ring-opening polymer hydride of a norbornene-based monomer is particularly preferable from the viewpoint of moldability.
  • the above alicyclic structure-containing polymer is selected from, for example, polymers disclosed in JP-A No. 2002-321302.
  • examples of the crystalline alicyclic structure-containing polymer include polymers disclosed in JP-A-2016-26909.
  • the weight-average molecular weight of the alicyclic structure-containing polymer was measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) using cyclohexane (toluene when the resin is not dissolved) as a solvent.
  • the weight average molecular weight (Mw) in terms of isoprene (when the solvent is toluene, in terms of polystyrene) is usually 10,000 to 100,000, preferably 25,000 to 80,000, more preferably 25,000 to 50,000. 000. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the surface layer are highly balanced.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic structure-containing polymer is usually 1 to 10, preferably 1 to 4, and more preferably 1.2 to 3.5. .
  • the glass transition temperature of the thermoplastic resin B is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower.
  • the thermoplastic resin B having a glass transition temperature in such a range is excellent in moldability.
  • the thermoplastic resin B may be composed only of the alicyclic structure-containing polymer, but may contain any component as long as the effects of the present invention are not significantly impaired.
  • an arbitrary component the thing similar to the arbitrary components of the thermoplastic resin A can be used.
  • the ratio of the alicyclic structure-containing polymer in the thermoplastic resin B is preferably 70% by weight or more, more preferably 80% by weight or more.
  • thermoplastic resin B Since various products are commercially available as the resin containing the alicyclic structure-containing polymer, those having desired characteristics can be appropriately selected and used as the thermoplastic resin B. Examples of such commercially available products include a product group having a trade name “ZEONOR” (manufactured by Nippon Zeon Co., Ltd.).
  • a laminated film can be produced by preparing resin A, resin B1, and resin B2 and performing melt extrusion molding of these resins by coextrusion. By performing such melt extrusion molding, a laminated film having a desired thickness can be efficiently produced. Moreover, according to melt extrusion molding, a long laminated film can be obtained.
  • Examples of the resin extrusion method in the coextrusion method include a coextrusion T-die method, a coextrusion inflation method, and a coextrusion lamination method. Of these, the coextrusion T-die method is preferable.
  • the coextrusion T-die method includes a feed block method and a multi-manifold method, and the multi-manifold method is particularly preferable in that variation in thickness can be reduced.
  • the temperature of the resin at the time of melt extrusion molding by co-extrusion is not particularly limited and is a temperature at which each resin can be melted and is suitable for molding.
  • the temperature can be set as appropriate.
  • the higher temperature (Ts [H]) of the heat softening temperature of the resin A forming the core layer and the heat softening temperature of the resin B forming the surface layer can be set as a reference. More specifically, it is preferably (Ts [H] +70) ° C. or higher, more preferably (Ts [H] +80) ° C. or higher, while preferably (Ts [H] +180) ° C. or lower, more preferably It is (Ts [H] +150) degrees C or less.
  • the thermal softening temperature of the resin A is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower.
  • the heat softening temperature of the resin B is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower.
  • the thermal softening temperature Ts of each resin can be measured by TMA (thermomechanical analysis) measurement.
  • TMA thermomechanical analysis
  • the layer to be measured is cut into a 5 mm ⁇ 20 mm shape and used as a sample.
  • TMA / SS7100 manufactured by SII Nano Technology Co., Ltd.
  • the temperature is adjusted in a state where a tension of 50 mN is applied in the longitudinal direction of the sample.
  • the temperature (° C.) when the linear expansion changes by 3% can be measured as the softening temperature.
  • the arithmetic average roughness Ra of the die slip of the die is preferably 0 ⁇ m to 1.0 ⁇ m, more preferably 0 ⁇ m to 0.7 ⁇ m, and particularly preferably 0 ⁇ m to 0.5 ⁇ m.
  • the arithmetic average roughness Ra can be measured based on JIS B0601: 1994 using a surface roughness meter.
  • the film-like molten resin extruded from a die slip is usually brought into close contact with a cooling roll, cooled and cured.
  • examples of the method for bringing the molten resin into close contact with the cooling roll include an air knife method, a vacuum box method, and an electrostatic contact method.
  • the thickness of the core layer is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, preferably 80 ⁇ m or less, more preferably 70 ⁇ m or less.
  • the thicknesses of the two surface layers are each preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the thickness of each layer can be measured by microscopic observation. Specifically, the thickness of each layer can be measured by slicing the laminated film using a microtome and observing the cut surface. The cut surface can be observed, for example, with a polarizing microscope (for example, “BX51” manufactured by Olympus).
  • a polarizing microscope for example, “BX51” manufactured by Olympus.
  • the peeling process in the manufacturing method of the optical film of the present invention is a process of peeling the surface layer from the laminated film.
  • An optical film can be obtained through this peeling process.
  • the two surface layers peel at the same time in the embodiment described below, but may be peeled one by one.
  • FIG. 2 is a cross-sectional view schematically showing an example of a peeling step in the method for producing an optical film of the present invention.
  • the laminated film conveyed from the extruder M (the laminated film 20 described with reference to FIG. 1) is conveyed downward in the drawing and is then subjected to a peeling process.
  • the peeling treatment in the peeling step can be performed by pulling the surface layers 11 and 12 in a direction different from the in-plane direction of the laminated film 20 to be conveyed.
  • the two surface layers 11 and 12 are pulled in directions (directions indicated by arrow Y and arrow Z) in which the angles with respect to the two surfaces 100A and 100B of the optical film 100 are ⁇ 1 and ⁇ 2, respectively.
  • the surface layers 11 and 12 are peeled from the laminated film 20.
  • ⁇ 1 and ⁇ 2 may be the same or different.
  • the range of ⁇ 1 and ⁇ 2 is preferably 45 ° or more, more preferably 55 ° or more, while preferably 135 ° or less, more preferably 125 ° or less.
  • the temperature of the peeling step is not particularly limited, but is preferably 5 ° C or higher, more preferably 15 ° C or higher from the viewpoint of transportability, and preferably 60 ° C or lower, more preferably 50 ° C or lower, from the viewpoint of peelability. It is.
  • the peeling temperature can be adjusted by heating the peeling area P of the laminated film with an appropriate heating device.
  • the manufacturing method of the optical film of this invention may include the extending
  • the stretching treatment step may be performed in the laminated film production step, may be performed after the laminated film production step and before the peeling step, may be performed in the peeling step, or may be performed after the peeling step. Also good.
  • the stretching treatment step it may be stretching in the thickness direction or stretching in the in-plane direction, and stretching in the in-plane direction may be performed in addition to stretching in the thickness direction.
  • the stretch ratio in the case of stretching in the in-plane direction in addition to stretching in the thickness direction can be appropriately adjusted according to the desired optical performance required to be imparted to the optical film.
  • the specific draw ratio is preferably 1.0 times or more, more preferably 1.05 times or more, and preferably 1.5 times or less, more preferably 1.4 times or less. When the draw ratio in the in-plane direction is within such a range, desired optical performance can be easily obtained.
  • the stretching performed in the stretching treatment step can be uniaxial stretching, biaxial stretching, or other stretching.
  • the stretching direction can be set in any direction.
  • the stretching direction may be any of the longitudinal direction of the film, the width direction, and other oblique directions.
  • the angle formed by the two stretching directions when biaxial stretching is performed can usually be an angle orthogonal to each other, but is not limited thereto, and may be an arbitrary angle.
  • Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
  • the optical film obtained by the method for producing an optical film of the present invention has an absolute value of retardation Re in the in-plane direction of 5 nm or less, an absolute value of retardation Rth in the thickness direction of 10 nm or less, and water vapor transmission.
  • the rate is 20 g / (m 2 ⁇ day) or less.
  • the absolute value of the in-plane retardation Re of the optical film obtained by the production method of the present invention is preferably 3 nm or less, more preferably 2 nm or less, ideally 0 nm.
  • the absolute value of retardation Rth in the thickness direction of the optical film obtained by the production method of the present invention is preferably 3 nm or less, more preferably 2 nm or less, and ideally 0 nm.
  • the water vapor permeability of the optical film obtained by the production method of the present invention is preferably 18 g / (m 2 ⁇ day) or less, more preferably 15 g / (m 2 ⁇ day) or less.
  • the lower limit is ideally 0 g / (m 2 ⁇ day), but may be, for example, 1 g / (m 2 ⁇ day) or more.
  • the thickness of the optical film obtained by the production method of the present invention is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, preferably 70 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the retardation in the in-plane direction and the retardation in the thickness direction of the optical film obtained by the production method of the present invention can be measured at a measurement wavelength of 590 nm using “AxoScan” manufactured by AXOMETRICS as a measuring device.
  • the retardation of the in-plane direction and thickness direction of an optical film is computed using the average refractive index of the said optical film.
  • the average refractive index refers to the refractive index in two directions perpendicular to each other in the in-plane direction of the optical film and the average value of the refractive index in the thickness direction of the optical film.
  • the water vapor transmission rate of the optical film obtained by the production method of the present invention is, for example, a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K 7129 B method using a water vapor transmission rate measuring device (“PERMATRAN-W” manufactured by MOCON). It can be measured under the following conditions.
  • the thickness of the optical film obtained by the production method of the present invention can be measured by microscopic observation in the same manner as the thickness of each layer. Specifically, the optical film can be sliced using a microtome, and the cut surface can be observed, for example, with a polarizing microscope (for example, “BX51” manufactured by Olympus).
  • a polarizing microscope for example, “BX51” manufactured by Olympus.
  • An optical film obtained by the method for producing an optical film of the present invention is an optical film obtained by peeling a surface layer from a laminated film comprising a core layer made of resin A and a surface layer made of resin B.
  • the absolute value of the retardation Re and the absolute value of the retardation Rth in the thickness direction 2 nm or less and the water vapor transmission rate 20 g / (m 2 ⁇ day) or less the adhesion with the object is high, An optical film having a small retardation and a low water vapor transmission rate can be obtained.
  • an optical film that can be usefully used as a polarizer protective film can be obtained.
  • the optical film obtained by the method for producing an optical film of the present invention is usually a transparent layer and transmits visible light.
  • the specific light transmittance can be appropriately selected according to the use of the optical film.
  • the light transmittance at a wavelength of 420 nm to 780 nm is preferably 85% or more, more preferably 88% or more.
  • the optical film comprises a block [Da] having a cyclic hydrocarbon group-containing compound unit, a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group.
  • the block copolymer containing the block [Ea] which has a compound unit is included.
  • the cyclic hydrocarbon group-containing compound unit and the chain hydrocarbon compound unit may or may not have an unsaturated bond, and are not limited by the production method. Therefore, for example, a unit obtained by hydrogenating a unit having an unsaturated bond may be used, or a unit which is not hydrogenated and has an unsaturated bond may be used.
  • the optical film contains such a block copolymer, an optical film having a low retardation can be obtained, and therefore the optical film of the present invention can be used as a member that requires a low retardation. In addition, it is possible to obtain an optical film that has high light resistance and hardly yellows.
  • the block [Da] includes two or more polymer blocks [Db] each having a cyclic hydrocarbon group-containing compound hydride unit, and the block [Ea] 1 or more of a polymer block [Eb] having a chain hydrocarbon compound hydride unit, or a chain hydrocarbon compound or hydride unit thereof and a cyclic hydrocarbon-containing compound or hydride unit thereof.
  • a copolymer is mentioned.
  • the material constituting the optical film of the present invention include the resin A described above.
  • the block copolymer contained in it the same example as the example of the hydrogenated block copolymer [G] described above is mentioned.
  • examples of the blocks [Da] and [Ea] constituting the block copolymer and examples of the blocks [Db] and [Eb] as specific examples thereof include the blocks [D] and [E] described above.
  • Examples of units constituting the block [Da] and the block [Ea] include the same examples as the units constituting the blocks [D] and [E]; and an aromatic vinyl compound unit and a chain conjugated diene compound unit Is mentioned.
  • the aromatic vinyl compound unit is a structural unit having a structure obtained by polymerizing an aromatic vinyl compound
  • the chain conjugated diene compound unit is a structural unit having a structure obtained by polymerizing a chain conjugated diene compound. is there.
  • these are not limited by the manufacturing method. Examples of the aromatic vinyl compound and the chain conjugated diene compound mentioned here are the same as those mentioned above.
  • block copolymers other than hydrogenated block copolymers [G] include aromatic vinyl compounds as hydride precursors described in International Publication No. WO2016 / 1528771 / Conjugated diene compound block copolymer.
  • the difference in the composition ratio between the volume of the block [Da] and the volume of the block [Ea] between the surface and the central portion is 0 to 10%.
  • the difference in composition ratio is preferably 8% or less, more preferably 5% or less.
  • the central part here is the central part in the thickness direction of the film.
  • the position at a depth of about 5 ⁇ m in the thickness direction usually has the same composition ratio as the central portion in the thickness direction. Therefore, when the thickness of the optical film exceeds 10 ⁇ m, the value obtained by observing the composition at a depth of about 5 ⁇ m in the thickness direction can be replaced with the value of the composition ratio at the center.
  • the composition ratio between the volume of the block [Da] and the volume of the block [Ea] can be obtained by observing the cross section of the optical film. That is, since the area ratio of the cross section is generally proportional to the volume ratio, the volume ratio can be obtained by measuring the area ratio of the surface and the cross section. Specifically, in the surface and cross section of the optical film, the area ratio of the phase derived from each block is obtained, and the ratio of the areas can be obtained to obtain the composition ratio of the block [Da] and the block [Ea]. .
  • the measurement of the area of each phase can be performed with an atomic force microscope (for example, an atomic force microscope manufactured by Bruker, Dimension Fast Scan Icon).
  • An adhesion force image of the optical film can be obtained by an atomic force microscope, and the area ratio of phases derived from each block in the image can be measured.
  • the observed phase can be attributed to the phase of the block [Da] and the phase of the block [Ea] from the information regarding the adhesion force of the observed phase.
  • the block [Da] ratio in each of the surface and the central object can be calculated by calculating the percentage of the area of the phase belonging to the block [Da] out of the total area of the two types of phase as 100%.
  • the value of (block [D] ratio in the central part) ⁇ (block [D] ratio on the surface) may be positive or negative.
  • the optical film of the present invention can be produced by extrusion film formation of a resin containing a block copolymer. By performing extrusion film formation, efficient production becomes possible. However, according to what the present inventors have found, when extrusion film formation is performed, the difference in the composition ratio between the volume of the block [D] and the volume of the block [E] at the surface and the central portion becomes large. Here, [1. By adopting the production method described in [Production method of optical film of the present invention], a film having a small difference in composition ratio can be easily obtained.
  • optical film of the present invention The dimensions and characteristics of the optical film of the present invention are described in [1.5.
  • the dimensions and characteristics of the optical film obtained by the production method of the present invention] are the same as those described above.
  • optical film of the present invention is a protective film for protecting other layers in a display device such as a liquid crystal display device. Can be suitably used.
  • the optical film of this invention is suitable as a polarizer protective film, and is especially suitable as an inner side polarizer protective film of a display apparatus.
  • the polarizing plate of the present invention includes the above-described optical film of the present invention and a polarizer.
  • the optical film can function as a polarizer protective film.
  • the polarizing plate of the present invention may further include an adhesive layer for bonding these between the optical film and the polarizer.
  • the polarizing plate of the present invention can include an arbitrary layer in addition to the optical film and the polarizer.
  • the optional layer include a hard coat layer that increases the surface hardness, a mat layer that improves the slipperiness of the film, and an antireflection layer.
  • the polarizer is not particularly limited, and any polarizer can be used.
  • the polarizer include those obtained by adsorbing a material such as iodine or a dichroic dye on a polyvinyl alcohol film and then stretching the material.
  • the adhesive constituting the adhesive layer include those using various polymers as a base polymer. Examples of such base polymers include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, and synthetic rubbers.
  • the present invention is used as a protective film used at a position closer to the light source side than a polarizer on the display surface side. It is particularly preferred to provide the inventive optical film.
  • the polarizing plate of the present invention can be manufactured by any manufacturing method.
  • the polarizing plate of this invention can be manufactured by bonding the optical film obtained by the said manufacturing method, and a polarizer.
  • Such pasting may be pasting in which these layers are brought into direct contact or pasting via an adhesive layer.
  • the liquid crystal display device of the present invention includes the polarizing plate of the present invention.
  • the liquid crystal display device suitable for providing the polarizing plate of the present invention include an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, and a continuous spin wheel alignment (CPA).
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • TN twisted nematic
  • STN super twisted nematic
  • OBC optically compensated bend
  • a liquid crystal display device including an IPS mode liquid crystal cell is particularly preferable because the optical film of the present invention is excellent in durability and the effect of suppressing color unevenness is remarkable.
  • the liquid crystal display device of the present invention can be manufactured by any manufacturing method.
  • the liquid crystal display device of the present invention can be manufactured by combining the polarizing plate obtained by the above manufacturing method with another member constituting the liquid crystal display device such as a liquid crystal cell.
  • a liquid crystal display device can be manufactured by laminating a liquid crystal cell and a polarizing plate directly or via an adhesive layer, and placing this in a display device.
  • a liquid crystal display device can be manufactured by simply stacking a liquid crystal cell and a polarizing plate and placing them in the display device.
  • block [D] The specific example of the block [D] in the above description and the specific example of the block [Da] in the above description are simply referred to as “block [D]” in the following description.
  • block [E] The specific example of the block [E] in the above description and the specific example of the block [Ea] in the above description are simply referred to as “block [E]” in the following description.
  • Thermal softening temperature of resin B Based on JIS K 7121, using a differential scanning calorimeter (manufactured by Nanotechnology, product name “DSC6220S11”), resin B was heated to a temperature 30 ° C. higher than the glass transition temperature, and then cooled at ⁇ 10 ° C. / After cooling to room temperature in minutes, the temperature was increased at a rate of temperature increase of 10 ° C./min, thereby measuring the thermal softening temperature.
  • the thickness of each layer and the thickness of the optical film were measured as follows.
  • the film to be measured was sliced using a microtome (“RV-240” manufactured by Daiwa Koki Co., Ltd.).
  • the cut surface of the sliced film was observed with a polarizing microscope (OLYMPUS "BX51”), and the thickness was measured.
  • a test film (glass transition temperature 160 ° C., thickness 100 ⁇ m, manufactured by Nippon Zeon Co., Ltd., which has not been subjected to stretching treatment) made of a resin containing a norbornene-based polymer was prepared.
  • One side of the film obtained in each example and the test film was subjected to corona treatment.
  • An adhesive was attached to the corona-treated surface of the film of each example and the corona-treated surface of the test film, and the surfaces to which the adhesive was attached were bonded together.
  • a UV adhesive (CRB series (manufactured by Toyochem Co., Ltd.) was used as the adhesive, thereby obtaining a sample film S including the film 100 and the test film 60 of each example (see FIG. 3). Thereafter, as shown in FIG. 3, the sample film S was cut into a width of 15 mm, and the film 100 side of each example was bonded to the surface of the slide glass 80 with an adhesive 70 to obtain an evaluation sample. At this time, double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number “CS9621”) was used as the adhesive 70. In FIG. 3, 50 is an adhesive.
  • a 90-degree peel test was performed by sandwiching the test film 60 at the tip of a force gauge and pulling it in the normal direction of the surface of the slide glass 80 (the direction indicated by the arrow X in FIG. 3).
  • the force measured when the test film 60 is peeled off is a force required to peel off the film 100 of each example (Example and Comparative Example) from the test film 60.
  • the size was measured as peel strength.
  • Example 1 of JP-A-2005-70140 a retardation film laminate is bonded to one surface of the polarizing film, and a triacetyl cellulose film is attached to the other surface of the polarizing film. Bonding and 90 degree peeling test were carried out. That is, first, a polarizing film and an adhesive described in Example 1 of JP-A-2005-70140 were prepared.
  • a surface of the retardation film laminate subjected to corona treatment was bonded to one surface of the prepared polarizing film via the adhesive.
  • a triacetyl cellulose film was bonded to the other surface of the polarizing film via the adhesive. Then, it was made to dry for 7 minutes at 80 degreeC, the adhesive agent was hardened, and the sample film was obtained. The sample film obtained was subjected to a 90 degree peel test. As a result of the experiment, the same result as that obtained when the test film was used instead of the polarizing plate was obtained. Therefore, the results of the following examples and comparative examples using test films instead of polarizing plates are reasonable.
  • the water vapor transmission rate of the optical film was measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to JIS K 7129 B method using a water vapor permeability measuring device (“PERMATRAN-W” manufactured by MOCON).
  • the total light transmittance of the optical film was measured according to JIS K 7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the block composition ratio is measured using a Bruker atomic force microscope Dimension Fast Scan Icon to obtain an adhesion force image of the optical film and measure the area ratio of the phase derived from each block in the image. It was done by doing.
  • AC240TS (Olympus, spring constant: 1.5 N / m, TIP radius of curvature 15 nm) was used as a cantilever for capturing an adhesion force image.
  • the measurement mode for imaging was the Scan Asyst mode, the scan rate was 2 Hz, and the adhesion force image was measured in an area of 500 nm ⁇ 500 nm.
  • the adhesion force image was measured at the film surface and at the center.
  • the measurement of the center of the film was performed at a position of a depth of 5 ⁇ m from the film surface in the cross section after the cross section of the film was taken out.
  • the image of the adhesion force image measurement result was analyzed and a histogram was drawn.
  • the horizontal axis represents the adhesion force measured at each measurement point
  • the vertical axis represents the number of measurement points at which the adhesion force was measured.
  • the area ratio of two types of phases considered to be attributable to the two types of blocks was calculated by fitting with a Gaussian function.
  • the adhesion force depends on Tg, and it is known that the adhesion force is higher when the cantilever is pulled away from the surface of the low Tg sample. For this reason, it can be determined that the phase having a high adhesive force is the block [E] and the phase having a low adhesive force is the block [D].
  • the area ratio was calculated by taking the total area of the two types of phases as 100%, and calculating the percentage of the area of the phase belonging to the block [D] as the block [D] ratio.
  • the polymer solution obtained in (P1-1) is transferred to a pressure-resistant reactor equipped with a stirrer, and diatomaceous earth-supported nickel is used as a hydrogenation catalyst.
  • 4.0 parts of a catalyst product name “E22U”, nickel loading 60%, manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • 30 parts of dehydrated cyclohexane were added and mixed.
  • the inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution.
  • a hydrogenation reaction was performed at a temperature of 190 ° C. and a pressure of 4.5 MPa for 6 hours.
  • the reaction solution obtained by the hydrogenation reaction contained the hydrogenated block copolymer [G1].
  • the hydrogenated block copolymer had a Mw [G1] of 71,800, a molecular weight distribution Mw / Mn of 1.30, and a hydrogenation rate of almost 100%.
  • the reaction solution is filtered to remove the hydrogenation catalyst, and then the phenol-based antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate] (product name “AO60”, manufactured by ADEKA) 2.0 parts of xylene solution in which 0.3 part was dissolved was added and dissolved to obtain a solution.
  • the above solution is treated at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.), and cyclohexane, xylene and other volatile components are removed from the solution.
  • the reaction solution is filtered to remove the hydrogenation catalyst, and then the phenol-based antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate] (product name “AO60”, manufactured by ADEKA) 2.0 parts of xylene solution in which 0.3 part was dissolved was added and dissolved to obtain a solution.
  • the above solution is treated at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.), and cyclohexane, xylene and other volatile components are removed from the solution.
  • the pellet-shaped resin [G1] obtained in Production Example 1 was introduced as the thermoplastic resin A, melted, and supplied to the single-layer die through the feed block.
  • the introduction of the resin A into the single screw extruder was performed through a hopper loaded in the single screw extruder.
  • the surface roughness (arithmetic mean roughness Ra) of the die slip of the single-layer die was 0.1 ⁇ m.
  • the extruder A exit temperature of the resin A was 260 ° C.
  • thermoplastic resin B resin B containing an amorphous alicyclic structure-containing polymer (resin “B-1”, manufactured by Nippon Zeon Co., Ltd., heat softening temperature: 160 ° C.)
  • the solution was introduced, dissolved, and supplied to the single-layer die through a feed block.
  • the extruder B temperature of resin B was 260 ° C.
  • Resin A and Resin B were discharged from a single layer die of an extruder in a molten state at 260 ° C. Thereby, a film-like resin including three layers of a surface layer made of resin B, a core layer made of resin A, and a surface layer made of resin B in this order was formed (coextrusion molding step).
  • the discharged film-like resin was cast on a cooling roll. In casting, edge pinning was performed to fix the widthwise end of the film-like resin to the cooling roll, and the air gap amount was set to 50 mm. Thereby, the film-like resin was cooled to obtain a laminated film having a three-layer structure.
  • the obtained laminated film was a three-layer laminated film made of two kinds of resins provided with a surface layer made of resin B, a core layer made of resin A, and a surface layer made of resin B in this order.
  • Example 2 A laminated film was produced in the same manner as in Example 1, except that the pellet-shaped resin [G2] obtained in Production Example 2 was used instead of the pellet-shaped resin [G1] obtained in Production Example 1. Later, the surface layer was peeled off to obtain a single-layer film 2 having a thickness of 40 ⁇ m. The obtained film 2 was evaluated in the same manner as in Example 1, and the results are shown in Table 1. In the evaluation of peel strength, the peel strength was not measurable because material destruction occurred before peeling of the test film. This means that the peel strength is high.
  • Resin [G1] was discharged from a single-layer die in a molten state at 260 ° C. Thereby, a film-like resin consisting only of the layer made of the resin [G1] was continuously formed.
  • the discharged film-like resin was cast on a cooling roll. In casting, edge pinning was performed to fix the widthwise end of the film-like resin to the cooling roll, and the air gap amount was set to 50 mm. Thereby, the film-like resin was cooled to obtain a film C1 having a single-layer structure made of resin [G1] and having a thickness of 40 ⁇ m.
  • the obtained resin film C1 was evaluated in the same manner as the film of Example 1, and the results are shown in Table 1.
  • G1 Hydrogenated block copolymer [G1] produced in Production Example 1.
  • G2 Hydrogenated block copolymer [G2] produced in Production Example 2.
  • B-1 A resin containing an alicyclic structure-containing polymer, a heat softening temperature of 160 ° C., one of the “ZEONOR” product group manufactured by Nippon Zeon.
  • E Optical film, “Fujitack” manufactured by FUJIFILM Corporation
  • the film obtained by the method for producing an optical film of the present invention has high adhesion to an object, low retardation, and low optical permeability. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Liquid Crystal (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is a method for producing an optical film, which comprises: a step wherein a multilayer film, which comprises a core layer that is formed from a resin A and a surface layer that is formed from a resin B and is arranged on a surface of the core layer, is obtained by co-extruding the resin A and the resin B; and a step wherein the surface layer is separated from the multilayer film. Also provided is an optical film which contains a specific block copolymer. The optical film has an absolute value of the retardation in the in-plane direction of 5 nm or less, an absolute value of the retardation in the thickness direction of 10 nm or less, and a water vapor transmission rate of 20 g/(m2·day) or less.

Description

光学フィルム、その製造方法、偏光板、及び液晶表示装置Optical film, manufacturing method thereof, polarizing plate, and liquid crystal display device
 本発明は、光学フィルム、その製造方法、偏光板、及び液晶表示装置に関する。 The present invention relates to an optical film, a manufacturing method thereof, a polarizing plate, and a liquid crystal display device.
 液晶表示装置に設けられる偏光板は、通常、偏光子と、偏光子を保護するための保護フィルムと、を備える。偏光板保護フィルムにおいては、多くの場合、レターデーションが小さく、水蒸気透過率が低いことが求められている。このような観点から、レターデーションが小さい偏光子保護フィルムが提案されている(特許文献1を参照)。また偏光板は、表示装置の製造時及び使用時の環境において耐久性を発現することが求められる。例えば、表示装置の製造時におけるリワークの際、及び表示装置の使用時に偏光子が収縮した際等、偏光板における保護フィルムには、高い剥離強度が求められることがある。 The polarizing plate provided in the liquid crystal display device usually includes a polarizer and a protective film for protecting the polarizer. In many cases, polarizing plate protective films are required to have low retardation and low water vapor transmission rate. From such a viewpoint, a polarizer protective film having a small retardation has been proposed (see Patent Document 1). Further, the polarizing plate is required to exhibit durability in an environment at the time of manufacturing and using the display device. For example, a high peel strength may be required for the protective film in the polarizing plate, for example, when reworking during manufacturing of the display device and when the polarizer contracts during use of the display device.
特開2011-013378号公報JP 2011-013378 A
 特許文献1に提案されている偏光子保護フィルムは、芳香族ビニル化合物水素化物のブロックと、ジエン化合物水素化物のブロックとを含むブロック共重合体を含む樹脂を使用して得られるものである。このような偏光子保護フィルムによれば、面内方向のレターデーションを小さくすることができる。しかしながら、この偏光子保護フィルムを用いると、偏光子保護フィルムに含まれる重合体分子が配向して分子間の絡み合いが低下することにより生じる、表層付近での凝集破壊が原因となり、偏光板における保護フィルムの剥離強度の不足が起こりうる問題があった。 The polarizer protective film proposed in Patent Document 1 is obtained by using a resin containing a block copolymer containing a block of an aromatic vinyl compound hydride and a block of a diene compound hydride. According to such a polarizer protective film, retardation in the in-plane direction can be reduced. However, when this polarizer protective film is used, the polymer molecules contained in the polarizer protective film are aligned and the entanglement between the molecules decreases, causing cohesive failure near the surface layer, thereby protecting the polarizing plate. There was a problem that the film could have insufficient peel strength.
 従って、本発明の目的は、偏光子との密着性が高く、レターデーションが小さく、かつ水蒸気透過率が低い光学フィルム、そのような光学フィルムを容易に得ることができる光学フィルムの製造方法、ならびに、当該光学フィルムを備え、前記性能を有する偏光板及び液晶表示装置を提供することにある。 Accordingly, an object of the present invention is to provide an optical film having high adhesion to a polarizer, low retardation, and low water vapor transmission rate, a method for producing an optical film capable of easily obtaining such an optical film, and An object of the present invention is to provide a polarizing plate and a liquid crystal display device which have the optical film and have the above performance.
 上述の従来の偏光子保護フィルムにおける問題につき検討した結果、当該保護フィルムを溶融押出法により成形する工程において強配向層が当該保護フィルムの表面に形成されることに起因すると考えられた。
 そこで、本発明者は上記課題を解決するべく鋭意検討を行った。その結果、本発明者は、コア層とその面上に設けた表層とを備える積層フィルムを樹脂Aと樹脂Bとの共押し出しにより作製し、該積層フィルムから表層を剥離除去することにより、対象物との密着性が高く、レターデーションが小さく、かつ、水蒸気透過率が低い光学フィルムが得られることを見出し、本発明を完成させた。
 すなわち、本発明は、下記のとおりである。
As a result of examining the problems in the above-described conventional polarizer protective film, it was considered that a strong alignment layer was formed on the surface of the protective film in the step of forming the protective film by a melt extrusion method.
Therefore, the present inventor has intensively studied to solve the above problems. As a result, the present inventor made a laminated film comprising a core layer and a surface layer provided on the surface thereof by co-extrusion of resin A and resin B, and peeled and removed the surface layer from the laminated film. The present invention was completed by finding that an optical film having high adhesion to a product, low retardation, and low water vapor transmission rate can be obtained.
That is, the present invention is as follows.
 〔1〕 環式炭化水素基含有化合物単位を有するブロック[Da]と、
 鎖状炭化水素化合物単位、又は鎖状炭化水素化合物単位及び環式炭化水素基含有化合物単位を有するブロック[Ea]と、
 を含むブロック共重合体を含み、
 表面と中央部での、前記ブロック[Da]の体積と、前記ブロック[Ea]の体積との組成比率の差が、0~10%であり、
 面内方向のレターデーションの絶対値が5nm以下であり、
 厚み方向のレターデーションの絶対値が10nm以下であり、かつ、
 水蒸気透過率が20g/(m・日)以下である、光学フィルム。
 〔2〕 前記ブロック共重合体を含む樹脂が押出製膜されてなる、〔1〕に記載の光学フィルム。
 〔3〕 前記ブロック共重合体が、
 前記ブロック[Da]として、環式炭化水素基含有化合物水素化物単位を有する、1分子あたり2つ以上の重合体ブロック[Db]を含み、
 前記ブロック[Ea]として、鎖状炭化水素化合物水素化物単位、又は鎖状炭化水素化合物またはその水素化物単位及び環式炭化水素含有化合物またはその水素化物単位を有する、1分子あたり1以上の重合体ブロック[Eb]とを含む共重合体である、〔1〕又は〔2〕に記載の光学フィルム。
 〔4〕 〔1〕~〔3〕のいずれか1項に記載の光学フィルムと、偏光子とを備える、偏光板。
 〔5〕 〔4〕に記載の偏光板を備える、液晶表示装置。
 〔6〕 樹脂Aと樹脂Bとを共押し出しすることにより、樹脂Aからなるコア層、及び前記コア層の面上に設けられた樹脂Bからなる表層を備える積層フィルムを得る工程と、
 前記積層フィルムから前記表層を剥離する工程と、を含む光学フィルムの製造方法であって、
 前記光学フィルムは、
 面内方向のレターデーションの絶対値が5nm以下であり、
 厚み方向のレターデーションの絶対値が10nm以下であり、かつ、
 水蒸気透過率が20g/(m・日)以下である、光学フィルムの製造方法。
 〔7〕 前記光学フィルムの前記面内方向のレターデーションの絶対値が2nm以下であり、前記光学フィルムの前記厚み方向のレターデーションの絶対値が2nm以下である、〔6〕に記載の光学フィルムの製造方法。
 〔8〕 前記樹脂Bが脂環式構造含有重合体を含む、〔6〕又は〔7〕に記載の光学フィルムの製造方法。
 〔9〕 前記樹脂Aが、
 環式炭化水素基含有化合物水素化物単位を有する、1分子あたり2つ以上の重合体ブロック[D]と、
 鎖状炭化水素化合物水素化物単位、又は鎖状炭化水素化合物単位及び環式炭化水素含有化合物水素化物単位を有する、1分子あたり1以上の重合体ブロック[E]と、
 を含む水素化ブロック共重合体を含む、〔6〕~〔8〕のいずれか1項に記載の光学フィルムの製造方法。
 〔10〕 前記樹脂Aが、
 環式炭化水素基含有化合物単位を有するブロックと、
 鎖状炭化水素化合物単位、又は鎖状炭化水素化合物単位及び環式炭化水素基含有化合物単位を有するブロックと、
 を含むブロック共重合体からなり、
 前記光学フィルムにおいて、その表面と中央部での組成比率の差が、0~10%である、
 〔6〕~〔8〕のいずれか1項に記載の光学フィルムの製造方法。
[1] A block [Da] having a cyclic hydrocarbon group-containing compound unit;
A block [Ea] having a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group-containing compound unit;
A block copolymer comprising
The difference in the composition ratio between the volume of the block [Da] and the volume of the block [Ea] at the surface and the central part is 0 to 10%,
The absolute value of in-plane retardation is 5 nm or less,
The absolute value of retardation in the thickness direction is 10 nm or less, and
An optical film having a water vapor transmission rate of 20 g / (m 2 · day) or less.
[2] The optical film according to [1], wherein a resin containing the block copolymer is formed by extrusion.
[3] The block copolymer is
The block [Da] includes two or more polymer blocks [Db] per molecule having a cyclic hydrocarbon group-containing compound hydride unit,
One or more polymers per molecule having a chain hydrocarbon compound hydride unit or a chain hydrocarbon compound or hydride unit thereof and a cyclic hydrocarbon-containing compound or hydride unit thereof as the block [Ea] The optical film according to [1] or [2], which is a copolymer containing a block [Eb].
[4] A polarizing plate comprising the optical film of any one of [1] to [3] and a polarizer.
[5] A liquid crystal display device comprising the polarizing plate according to [4].
[6] A step of obtaining a laminated film including a core layer made of resin A and a surface layer made of resin B provided on the surface of the core layer by co-extruding resin A and resin B;
Peeling the surface layer from the laminated film, and a method for producing an optical film comprising:
The optical film is
The absolute value of in-plane retardation is 5 nm or less,
The absolute value of retardation in the thickness direction is 10 nm or less, and
The manufacturing method of an optical film whose water-vapor-permeation rate is 20 g / (m < 2 > * day) or less.
[7] The optical film according to [6], wherein an absolute value of retardation in the in-plane direction of the optical film is 2 nm or less, and an absolute value of retardation in the thickness direction of the optical film is 2 nm or less. Manufacturing method.
[8] The method for producing an optical film according to [6] or [7], wherein the resin B includes an alicyclic structure-containing polymer.
[9] The resin A is
Two or more polymer blocks [D] per molecule having cyclic hydrocarbon group-containing compound hydride units;
One or more polymer blocks [E] per molecule having a chain hydrocarbon compound hydride unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon-containing compound hydride unit;
The method for producing an optical film according to any one of [6] to [8], comprising a hydrogenated block copolymer containing.
[10] The resin A is
A block having a cyclic hydrocarbon group-containing compound unit;
A block having a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group-containing compound unit;
A block copolymer containing
In the optical film, the difference in composition ratio between the surface and the center is 0 to 10%.
[6] The method for producing an optical film as described in any one of [8].
 本発明の光学フィルムは、対象物との密着性が高く、レターデーションが小さく、かつ水蒸気透過率が低い光学フィルムとしうる。本発明の光学フィルムの製造方法によれば、対象物との密着性が高く、レターデーションが小さく、かつ水蒸気透過率が低い光学フィルムを容易に得ることができる。本発明の偏光板によれば、前述のような性能を有する偏光板を提供することができる。本発明の液晶表示装置によれば、前述のような性能を有する液晶表示装置を提供することができる。 The optical film of the present invention can be an optical film having high adhesion to an object, low retardation, and low water vapor transmission rate. According to the method for producing an optical film of the present invention, an optical film having high adhesion to an object, low retardation, and low water vapor transmission rate can be easily obtained. According to the polarizing plate of this invention, the polarizing plate which has the above performances can be provided. According to the liquid crystal display device of the present invention, a liquid crystal display device having the above-described performance can be provided.
図1は、本発明の製造方法における積層フィルム作製工程の一例を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a laminated film production process in the production method of the present invention. 図2は、本発明の製造方法における剥離工程の一例を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a peeling step in the production method of the present invention. 図3は、実施例における評価試験で用いたサンプルを模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing a sample used in the evaluation test in the example.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and exemplifications, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 以下の説明において、環式炭化水素基とは、芳香族環、シクロアルカン、シクロアルケン等の、環状の構造を含む炭化水素の基である。また、鎖状炭化水素化合物とは、かかる環式炭化水素基を含まない炭化水素化合物である。 In the following description, the cyclic hydrocarbon group is a hydrocarbon group containing a cyclic structure such as an aromatic ring, cycloalkane, or cycloalkene. The chain hydrocarbon compound is a hydrocarbon compound that does not contain such a cyclic hydrocarbon group.
 以下の説明において、光学フィルムの面内方向のレターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、光学フィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。ここで、nxは、光学フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、光学フィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは光学フィルムの厚み方向の屈折率を表す。dは、光学フィルムの厚みを表す。レターデーションの測定波長は、別に断らない限り、590nmである。 In the following description, the retardation Re in the in-plane direction of the optical film is a value represented by Re = (nx−ny) × d unless otherwise specified. Further, the retardation Rth in the thickness direction of the optical film is a value represented by Rth = {(nx + ny) / 2−nz} × d unless otherwise specified. Here, nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the optical film and giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the optical film and perpendicular to the nx direction. nz represents the refractive index in the thickness direction of the optical film. d represents the thickness of the optical film. The retardation measurement wavelength is 590 nm unless otherwise specified.
 以下の説明において、「偏光板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, unless otherwise specified, the “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長尺のフィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll. A film having such a length that it can be wound up and stored or transported. The upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
 〔1.本発明の光学フィルムの製造方法〕
 本発明のある態様において、光学フィルムの製造方法は、コア層を形成する樹脂Aと表層を形成する樹脂Bとを共押し出しすることにより、樹脂Aからなるコア層、及びコア層の面上に設けられた樹脂Bからなる表層を備える積層フィルムを得る工程(積層フィルム作製工程)と、積層フィルムから表層を剥離する工程(剥離工程)と、を含む。
[1. Method for producing optical film of the present invention]
In one embodiment of the present invention, the method for producing an optical film comprises: coextruding a resin A that forms a core layer and a resin B that forms a surface layer; It includes a step of obtaining a laminated film having a surface layer made of the provided resin B (laminated film production step) and a step of peeling the surface layer from the laminated film (peeling step).
 〔1.1.積層フィルム作製工程の概要〕
 積層フィルム作製工程においては、コア層を形成するための樹脂Aと、表層を形成するための樹脂Bとを共押出しすることにより、積層フィルムを得る。共押出は、多層押出機を用いて行いうる。
[1.1. Overview of laminated film production process]
In the laminated film production step, a laminated film is obtained by co-extruding resin A for forming the core layer and resin B for forming the surface layer. Coextrusion can be performed using a multilayer extruder.
 図1に示す実施形態において、積層フィルム20は、コア層10の2つの面上にそれぞれ表層11,12を備えている。詳しくは、積層フィルム20は表層11/コア層10/表層12の層構成を有する。図1に示すMは、押出成形機である。積層フィルムはコア層の一方の面上のみに表層を備えていてもよく、この場合の層構成は表層/コア層である。フィルムのカール抑制の観点から表層はコア層の両面にある方が好ましい。 In the embodiment shown in FIG. 1, the laminated film 20 includes surface layers 11 and 12 on two surfaces of the core layer 10, respectively. Specifically, the laminated film 20 has a layer configuration of surface layer 11 / core layer 10 / surface layer 12. M shown in FIG. 1 is an extrusion molding machine. The laminated film may have a surface layer only on one surface of the core layer, and the layer structure in this case is a surface layer / core layer. From the viewpoint of curling suppression of the film, the surface layer is preferably on both sides of the core layer.
 〔1.1.1.樹脂A〕
 コア層を形成する樹脂Aとしては、熱可塑性樹脂を用いうる。
 コア層を形成する熱可塑性樹脂(以下、「熱可塑性樹脂A」ともいう)としては、特に限定されず、光学フィルムとしての所望の物性を付与しうる、各種の重合体を含む樹脂を適宜選択し採用しうる。熱可塑性樹脂Aに含まれる重合体の好ましい例としては、環式炭化水素基含有化合物水素化物単位を有する2つ以上の重合体ブロック[D]と、鎖状炭化水素化合物水素化物単位、又は鎖状炭化水素化合物単位及び環式炭化水素含有化合物水素化物単位を有する1つ以上の重合体ブロック[E]と、を含む水素化ブロック共重合体[G]があげられる。樹脂Aが、水素化ブロック共重合体[G]を含むものであることにより、位相差の低い光学フィルムを得ることができ、従って、本発明の製造方法により得られる光学フィルムを、低位相差が求められる部材として使用することができる。加えて、耐光性が高く、黄変しにくい光学フィルムを得ることができる。
[1.1.1. Resin A]
As the resin A forming the core layer, a thermoplastic resin can be used.
The thermoplastic resin forming the core layer (hereinafter, also referred to as “thermoplastic resin A”) is not particularly limited, and a resin containing various polymers that can impart desired physical properties as an optical film is appropriately selected. And can be adopted. Preferable examples of the polymer contained in the thermoplastic resin A include two or more polymer blocks [D] having a cyclic hydrocarbon group-containing compound hydride unit, a chain hydrocarbon compound hydride unit, or a chain. And a hydrogenated block copolymer [G] comprising one or more polymer blocks [E] having a hydrated hydrocarbon compound unit and a cyclic hydrocarbon-containing compound hydride unit. When the resin A contains the hydrogenated block copolymer [G], an optical film having a low retardation can be obtained. Therefore, an optical film obtained by the production method of the present invention is required to have a low retardation. It can be used as a member. In addition, it is possible to obtain an optical film that has high light resistance and hardly yellows.
 ブロック[D]及びブロック[E]に含まれる環式炭化水素基含有化合物水素化物単位は、好ましくは、芳香族ビニル化合物水素化物単位である。芳香族ビニル化合物水素化物単位は、芳香族ビニル化合物を重合して得られる単位を、さらに水素化して形成される構造を有する構造単位である。但し、芳香族ビニル化合物水素化物単位は、その製造方法によっては限定されない。 The cyclic hydrocarbon group-containing compound hydride unit contained in the block [D] and the block [E] is preferably an aromatic vinyl compound hydride unit. The aromatic vinyl compound hydride unit is a structural unit having a structure formed by further hydrogenating a unit obtained by polymerizing an aromatic vinyl compound. However, the aromatic vinyl compound hydride unit is not limited depending on the production method.
 芳香族ビニル化合物の例としては、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等の、置換基として炭素数1~6のアルキル基を有するスチレン類;4-クロロスチレン、ジクロロスチレン、4-モノフルオロスチレン等の、置換基としてハロゲン原子を有するスチレン類;4-メトキシスチレン等の、置換基として炭素数1~6のアルコキシ基を有するスチレン類;4-フェニルスチレン等の、置換基としてアリール基を有するスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等のビニルナフタレン類;等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも、吸湿性を低くできることから、スチレン、置換基として炭素数1~6のアルキル基を有するスチレン類等の、極性基を含有しない芳香族ビニル化合物が好ましく、工業的入手のし易さから、スチレンが特に好ましい。 Examples of aromatic vinyl compounds include styrene; α-methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 2,4-dimethyl styrene, 2,4-diisopropyl styrene, 4-t-butyl. Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, such as styrene and 5-t-butyl-2-methylstyrene; as substituents such as 4-chlorostyrene, dichlorostyrene, 4-monofluorostyrene Styrenes having a halogen atom; styrenes having an alkoxy group having 1 to 6 carbon atoms as a substituent such as 4-methoxystyrene; styrenes having an aryl group as a substituent such as 4-phenylstyrene; 1-vinyl And vinyl naphthalenes such as naphthalene and 2-vinylnaphthalene. One of these may be used alone, or two or more of these may be used in combination at any ratio. Among these, aromatic vinyl compounds that do not contain a polar group, such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, are preferable because they can reduce hygroscopicity, and are easily available industrially. Therefore, styrene is particularly preferable.
 ブロック[E]に含まれる鎖状炭化水素化合物水素化物単位は、好ましくは、鎖状共役ジエン化合物水素化物単位である。鎖状共役ジエン化合物水素化物単位は、鎖状共役ジエン化合物を重合して得られる単位、又はそれが二重結合を有する場合はかかる二重結合の一部又は全部を水素化して得られる単位の構造を有する構造単位である。但し、鎖状共役ジエン化合物水素化物単位は、その製造方法によっては限定されない。 The chain hydrocarbon compound hydride unit contained in the block [E] is preferably a chain conjugated diene compound hydride unit. The chain conjugated diene compound hydride unit is a unit obtained by polymerizing a chain conjugated diene compound or, if it has a double bond, a unit obtained by hydrogenating part or all of the double bond. A structural unit having a structure. However, the chain conjugated diene compound hydride unit is not limited depending on the production method.
 鎖状共役ジエン化合物の例としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、吸湿性を低くできることから、極性基を含有しない鎖状共役ジエン化合物が好ましく、1,3-ブタジエン、及びイソプレンが特に好ましい。 Examples of the chain conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio. Among these, a chain conjugated diene compound not containing a polar group is preferable because 1,2 can be reduced hygroscopicity, and 1,3-butadiene and isoprene are particularly preferable.
 水素化ブロック共重合体[G]は、1分子あたり1つのブロック[E]と、その両端に連結された1分子当たり2つのブロック[D]とを有するトリブロック分子構造を有することが好ましい。すなわち、水素化ブロック共重合体[G]は、1分子あたり1つのブロック[E]と;ブロック[E]の一端に連結され、環式炭化水素基含有化合物水素化物単位[I]を有する、1分子あたり1つのブロック[D1]と;ブロック[E]の他端に連結され、環式炭化水素基含有化合物水素化物単位[I]を有する、1分子あたり1つのブロック[D2]と;を含むトリブロック共重合体であることが好ましい。 The hydrogenated block copolymer [G] preferably has a triblock molecular structure having one block [E] per molecule and two blocks [D] per molecule linked to both ends thereof. That is, the hydrogenated block copolymer [G] has one block [E] per molecule; and one end of the block [E] and has a cyclic hydrocarbon group-containing compound hydride unit [I]. One block [D1] per molecule; one block [D2] per molecule having a cyclic hydrocarbon group-containing compound hydride unit [I] connected to the other end of the block [E]; It is preferable that it is a triblock copolymer containing.
 上述したトリブロック共重合体としての水素化ブロック共重合体[G]においては、好ましい特性を有する積層フィルムを容易に得る観点から、ブロック[D1]及びブロック[D2]の合計と、ブロック[E]との重量比(D1+D2)/Eが、特定の範囲に収まることが好ましい。具体的には、重量比(D1+D2)/Eは、好ましくは70/30以上、より好ましくは75/25以上であり、好ましくは90/10以下、より好ましくは87/13以下である。 In the hydrogenated block copolymer [G] as the triblock copolymer described above, the total of the block [D1] and the block [D2] and the block [E] from the viewpoint of easily obtaining a laminated film having preferable characteristics. ] And the weight ratio (D1 + D2) / E are preferably within a specific range. Specifically, the weight ratio (D1 + D2) / E is preferably 70/30 or more, more preferably 75/25 or more, preferably 90/10 or less, more preferably 87/13 or less.
 また、上述したトリブロック共重合体としての水素化ブロック共重合体[G]においては、上記特性を有する積層フィルムを容易に得る観点から、ブロック[D1]とブロック[D2]との重量比D1/D2が、特定の範囲に収まることが好ましい。具体的には、重量比D1/D2は、好ましくは5以上、より好ましくは5.2以上、特に好ましくは5.5以上であり、好ましくは8以下、より好ましくは7.8以下、特に好ましくは7.5以下である。 Further, in the hydrogenated block copolymer [G] as the triblock copolymer described above, the weight ratio D1 of the block [D1] and the block [D2] is obtained from the viewpoint of easily obtaining a laminated film having the above characteristics. / D2 is preferably within a specific range. Specifically, the weight ratio D1 / D2 is preferably 5 or more, more preferably 5.2 or more, particularly preferably 5.5 or more, preferably 8 or less, more preferably 7.8 or less, particularly preferably. Is 7.5 or less.
 水素化ブロック共重合体[G]の重量平均分子量Mwは、好ましくは50000以上、より好ましくは55000以上、特に好ましくは60000以上であり、好ましくは80000以下、より好ましくは75000以下、特に好ましくは70000以下である。重量平均分子量Mwが前記範囲にあることにより、上記特性を有する積層フィルムを容易に得ることができる。特に、重量平均分子量を小さくすることにより、レターデーションの発現性を効果的に小さくできる。 The weight average molecular weight Mw of the hydrogenated block copolymer [G] is preferably 50000 or more, more preferably 55000 or more, particularly preferably 60000 or more, preferably 80000 or less, more preferably 75000 or less, and particularly preferably 70000. It is as follows. When the weight average molecular weight Mw is in the above range, a laminated film having the above characteristics can be easily obtained. In particular, by reducing the weight average molecular weight, the retardation can be effectively reduced.
 水素化ブロック共重合体[G]の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、好ましくは2.0以下、より好ましくは1.7以下、特に好ましくは1.5以下であり、好ましくは1.0以上である。重量平均分子量Mwが前記範囲にあることにより、重合体粘度を低めて成形性を高めることができる。また、レターデーションの発現性を効果的に小さくできる。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the hydrogenated block copolymer [G] is preferably 2.0 or less, more preferably 1.7 or less, and particularly preferably 1.5. Or less, preferably 1.0 or more. When the weight average molecular weight Mw is in the above range, the polymer viscosity can be lowered and the moldability can be improved. Moreover, the expression of retardation can be effectively reduced.
 水素化ブロック共重合体[G]の重量平均分子量Mw及び数平均分子量Mnは、シクロヘキサンを溶媒としたゲル・パーミエーション・クロマトグラフィーによって、ポリスチレン換算の値として測定しうる。前記ブロック共重合体水素化物[G]は、例えば、主鎖および側鎖の炭素-炭素不飽和結合の好ましくは90%以上、より好ましくは97%以上、更に好ましくは99%以上が水素化されている。また、前記ブロック共重合体水素化物[G]は、例えば、芳香環の炭素-炭素不飽和結合の好ましくは90%以上、より好ましくは97%以上、更に好ましくは99%以上が水素化されている。水素化の程度を示す水素化率が高いほど、耐熱性、耐光性の向上が見込まれる。 The weight average molecular weight Mw and the number average molecular weight Mn of the hydrogenated block copolymer [G] can be measured as values in terms of polystyrene by gel permeation chromatography using cyclohexane as a solvent. In the block copolymer hydride [G], for example, the main chain and side chain carbon-carbon unsaturated bonds are preferably 90% or more, more preferably 97% or more, and still more preferably 99% or more. ing. The block copolymer hydride [G] is, for example, preferably 90% or more, more preferably 97% or more, and still more preferably 99% or more of the carbon-carbon unsaturated bond of the aromatic ring. Yes. The higher the hydrogenation rate indicating the degree of hydrogenation, the better the heat resistance and light resistance.
 ブロック[D1]及びブロック[D2]は、それぞれ独立に、環式炭化水素基含有化合物水素化物単位[I]のみからなることが好ましいが、環式炭化水素基含有化合物水素化物単位[I]以外に任意の単位を含みうる。任意の構造単位の例としては、環式炭化水素基含有化合物水素化物単位[I]以外のビニル化合物に基づく構造単位が挙げられる。ブロック[D]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。 It is preferable that the block [D1] and the block [D2] each independently comprise only the cyclic hydrocarbon group-containing compound hydride unit [I], but other than the cyclic hydrocarbon group-containing compound hydride unit [I]. May contain any unit. Examples of arbitrary structural units include structural units based on vinyl compounds other than cyclic hydrocarbon group-containing compound hydride units [I]. The content of any structural unit in the block [D] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
 ブロック[E]は、鎖状炭化水素化合物水素化物単位[II]のみからなるブロックであるか、又は鎖状炭化水素化合物単位[II]及び環式炭化水素含有化合物水素化物単位[I]を有するブロックである。ブロック[E]は、単位[I]及び単位[II]以外に任意の単位を含みうる。任意の構造単位の例としては、単位[I]及び単位[II]以外のビニル化合物に基づく構造単位が挙げられる。ブロック[E]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。 The block [E] is a block composed of only the chain hydrocarbon compound hydride unit [II], or has the chain hydrocarbon compound unit [II] and the cyclic hydrocarbon-containing compound hydride unit [I]. It is a block. The block [E] can include any unit other than the unit [I] and the unit [II]. Examples of arbitrary structural units include structural units based on vinyl compounds other than the units [I] and [II]. The content of any structural unit in the block [E] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
 上述したトリブロック共重合体としての水素化ブロック共重合体[G]は、レターデーションの発現性が小さい。したがって、積層体から表層を剥離して得られる光学フィルムは、所望の特性を容易に得ることができる。 The hydrogenated block copolymer [G] as the above-described triblock copolymer has low retardation. Therefore, the optical film obtained by peeling the surface layer from the laminate can easily obtain desired characteristics.
 水素化ブロック共重合体[G]の具体例及び製造方法としては、例えば国際公開第WO2016/152871号に開示される具体例及び製造方法が挙げられる。 Specific examples and production methods of the hydrogenated block copolymer [G] include, for example, specific examples and production methods disclosed in International Publication No. WO2016 / 152871.
 熱可塑性樹脂Aは、上述した水素化ブロック共重合体[G]のみからなっていてもよいが、水素化ブロック共重合体[G]以外に任意の成分を含んでいてもよい。
 任意の成分としては、例えば、無機微粒子;酸化防止剤、熱安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;及び帯電防止剤が挙げられる。これらの任意の成分としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ただし、本発明の効果を顕著に発揮させる観点からは、任意の成分の含有割合は少ないことが好ましい。例えば、任意の成分の合計の割合は、水素化ブロック共重合体[G]100重量部に対して、10重量部以下が好ましく、7重量部以下がより好ましく、5重量部以下が更に好ましい。
The thermoplastic resin A may consist of only the hydrogenated block copolymer [G] described above, but may contain any component other than the hydrogenated block copolymer [G].
Optional components include, for example, inorganic fine particles; stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers, near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments And antistatic agents. As these arbitrary components, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio. However, from the viewpoint of remarkably exhibiting the effects of the present invention, it is preferable that the content of any component is small. For example, the total ratio of the arbitrary components is preferably 10 parts by weight or less, more preferably 7 parts by weight or less, and still more preferably 5 parts by weight or less with respect to 100 parts by weight of the hydrogenated block copolymer [G].
 熱可塑性樹脂Aは、そのガラス転移温度が、好ましくは110℃以上、より好ましくは120℃以上であり、好ましくは180℃以下、より好ましくは170℃以下である。ガラス転移温度がこのような範囲にある熱可塑性樹脂Aは、寸法安定性および成形加工性に優れる。 The glass transition temperature of the thermoplastic resin A is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower. The thermoplastic resin A having a glass transition temperature in such a range is excellent in dimensional stability and moldability.
 〔1.1.2.樹脂B〕
 表層を形成する樹脂Bとしては、樹脂Aからなるコア層から剥離可能な表層を形成しうる樹脂を用いる。樹脂Bとしては熱可塑性樹脂を用いうる。以下の説明において、2つの表層を形成するための樹脂Bをそれぞれ区別するために、樹脂B1、樹脂B2と表現する場合がある。樹脂B1と樹脂B2とは同じものであってもよいし相違するものであってもよい。
[1.1.2. Resin B]
As the resin B forming the surface layer, a resin capable of forming a surface layer that can be peeled off from the core layer made of the resin A is used. As the resin B, a thermoplastic resin can be used. In the following description, in order to distinguish resin B for forming two surface layers, it may be expressed as resin B1 and resin B2. The resin B1 and the resin B2 may be the same or different.
 表層を形成する熱可塑性樹脂(以下、「熱可塑性樹脂B」ともいう)としては、コア層から剥離可能な表層を形成しうる樹脂であれば特に限定されず、各種の重合体を含む樹脂を適宜選択し採用しうる。 The thermoplastic resin that forms the surface layer (hereinafter also referred to as “thermoplastic resin B”) is not particularly limited as long as it is a resin that can form a surface layer that can be peeled off from the core layer, and includes resins containing various polymers. It can be selected and adopted as appropriate.
 熱可塑性樹脂Bに含まれる重合体の好ましい例としては、脂環式構造含有重合体が挙げられる。脂環式構造含有重合体は、繰り返し単位中に脂環式構造を有する重合体であり、主鎖中に脂環式構造を含有する重合体及び側鎖に脂環式構造を含有する重合体のいずれも用いることができる。脂環式構造含有重合体は、結晶性の樹脂及び非晶性の樹脂を含むが、表面平滑性の観点から非晶性の樹脂が好ましい。 Preferable examples of the polymer contained in the thermoplastic resin B include alicyclic structure-containing polymers. The alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit, and a polymer having an alicyclic structure in the main chain and a polymer having an alicyclic structure in the side chain. Any of these can be used. The alicyclic structure-containing polymer includes a crystalline resin and an amorphous resin, and is preferably an amorphous resin from the viewpoint of surface smoothness.
 脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。 Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
 1つの脂環式構造の繰り返し単位を構成する炭素数に特に制限はないが、通常4個~30個、好ましくは5個~20個、より好ましくは6個~15個である。 The number of carbon atoms constituting the repeating unit of one alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 6 to 15.
 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は使用目的に応じて適宜選択されるが、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。脂環式構造を有する繰り返し単位をこのように多くすることで、表層の耐熱性を高めることができる。 The proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is appropriately selected according to the purpose of use, but is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight. That's it. By increasing the number of repeating units having an alicyclic structure in this way, the heat resistance of the surface layer can be increased.
 脂環式構造含有重合体は、具体的には、(1)ノルボルネン系重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素化物などが挙げられる。これらの中でも、成形性の観点から、ノルボルネン系重合体及びこれらの水素化物がより好ましい。 Specifically, the alicyclic structure-containing polymer includes (1) a norbornene-based polymer, (2) a monocyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) a vinyl alicyclic carbonization. Examples thereof include hydrogen polymers and hydrides thereof. Among these, norbornene polymers and hydrides thereof are more preferable from the viewpoint of moldability.
 ノルボルネン系重合体としては、例えば、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素化物;ノルボルネン系モノマーの付加重合体、ノルボルネン系モノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、成形性の観点から、ノルボルネン系モノマーの開環重合体水素化物が特に好ましい。
 上記の脂環式構造含有重合体は、例えば特開2002-321302号公報に開示されている重合体から選ばれる。
Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerization, and a hydride thereof; Examples thereof include addition polymers and addition copolymers with other monomers copolymerizable with norbornene monomers. Among these, a ring-opening polymer hydride of a norbornene-based monomer is particularly preferable from the viewpoint of moldability.
The above alicyclic structure-containing polymer is selected from, for example, polymers disclosed in JP-A No. 2002-321302.
 また、結晶性の脂環式構造含有重合体の例としては、例えば特開2016-26909号公報に開示される重合体が挙げられる。 Further, examples of the crystalline alicyclic structure-containing polymer include polymers disclosed in JP-A-2016-26909.
 脂環式構造含有重合体の重量平均分子量は、溶媒としてシクロヘキサン(樹脂が溶解しない場合にはトルエン)を用いたゲル・パーミエーション・クロマトグラフィー(以下、「GPC」と略す。)で測定したポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常10,000~100,000、好ましくは25,000~80,000、より好ましくは25,000~50,000である。重量平均分子量がこのような範囲にあるときに、表層の機械的強度及び成形加工性が高度にバランスされる。 The weight-average molecular weight of the alicyclic structure-containing polymer was measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) using cyclohexane (toluene when the resin is not dissolved) as a solvent. The weight average molecular weight (Mw) in terms of isoprene (when the solvent is toluene, in terms of polystyrene) is usually 10,000 to 100,000, preferably 25,000 to 80,000, more preferably 25,000 to 50,000. 000. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the surface layer are highly balanced.
 脂環式構造含有重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、通常1~10、好ましくは1~4、より好ましくは1.2~3.5である。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic structure-containing polymer is usually 1 to 10, preferably 1 to 4, and more preferably 1.2 to 3.5. .
 熱可塑性樹脂Bは、そのガラス転移温度が、好ましくは110℃以上、より好ましくは120℃以上であり、好ましくは180℃以下、より好ましくは170℃以下である。ガラス転移温度がこのような範囲にある熱可塑性樹脂Bは、成形加工性に優れる。 The glass transition temperature of the thermoplastic resin B is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower. The thermoplastic resin B having a glass transition temperature in such a range is excellent in moldability.
 熱可塑性樹脂Bは、脂環式構造含有重合体のみからなってもよいが、本発明の効果を著しく損なわない限り、任意の成分を含んでもよい。任意の成分としては、熱可塑性樹脂Aの任意の成分と同様のものを用いることができる。熱可塑性樹脂B中の、脂環式構造含有重合体の割合は、好ましくは70重量%以上、より好ましくは80重量%以上である。 The thermoplastic resin B may be composed only of the alicyclic structure-containing polymer, but may contain any component as long as the effects of the present invention are not significantly impaired. As an arbitrary component, the thing similar to the arbitrary components of the thermoplastic resin A can be used. The ratio of the alicyclic structure-containing polymer in the thermoplastic resin B is preferably 70% by weight or more, more preferably 80% by weight or more.
 脂環式構造含有重合体を含む樹脂としては、様々な商品が市販されているので、それらのうち、所望の特性を有するものを適宜選択し、熱可塑性樹脂Bとして使用しうる。かかる市販品の例としては、商品名「ZEONOR」(日本ゼオン株式会社製)の製品群が挙げられる。 Since various products are commercially available as the resin containing the alicyclic structure-containing polymer, those having desired characteristics can be appropriately selected and used as the thermoplastic resin B. Examples of such commercially available products include a product group having a trade name “ZEONOR” (manufactured by Nippon Zeon Co., Ltd.).
 〔1.2.積層フィルム作製工程〕
 積層フィルム作製工程においては、樹脂A、樹脂B1及び樹脂B2をそれぞれ調製し、これらの樹脂を共押出による溶融押出成形を行うことによって積層フィルムを作製することができる。かかる溶融押出成形を行うことにより、所望の各層厚みを有する積層フィルムを効率的に製造することができる。また、溶融押出成形によれば、長尺の積層フィルムを得ることができる。
[1.2. (Laminated film production process)
In the laminated film production step, a laminated film can be produced by preparing resin A, resin B1, and resin B2 and performing melt extrusion molding of these resins by coextrusion. By performing such melt extrusion molding, a laminated film having a desired thickness can be efficiently produced. Moreover, according to melt extrusion molding, a long laminated film can be obtained.
 共押出法における樹脂の押出方法としては、例えば、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法等が挙げられる。中でも、共押出Tダイ法が好ましい。共押出Tダイ法には、フィードブロック方式及びマルチマニホールド方式があり、厚みのばらつきを少なくできる点で、マルチマニホールド方式が特に好ましい。 Examples of the resin extrusion method in the coextrusion method include a coextrusion T-die method, a coextrusion inflation method, and a coextrusion lamination method. Of these, the coextrusion T-die method is preferable. The coextrusion T-die method includes a feed block method and a multi-manifold method, and the multi-manifold method is particularly preferable in that variation in thickness can be reduced.
 共押出による溶融押出成形を行う際の樹脂の温度(以下、適宜「押出温度」ということがある。)は、特に限定されず、それぞれの樹脂を溶融させうる温度であって、成形に適した温度を適宜設定しうる。具体的には、コア層を形成する樹脂Aの熱軟化温度及び表層を形成する樹脂Bの熱軟化温度のうちの高い方の温度(Ts[H])を基準に設定しうる。より具体的には、好ましくは(Ts[H]+70)℃以上、より好ましくは(Ts[H]+80)℃以上であり、一方、好ましくは(Ts[H]+180)℃以下、より好ましくは(Ts[H]+150)℃以下である。 The temperature of the resin at the time of melt extrusion molding by co-extrusion (hereinafter sometimes referred to as “extrusion temperature” as appropriate) is not particularly limited and is a temperature at which each resin can be melted and is suitable for molding. The temperature can be set as appropriate. Specifically, the higher temperature (Ts [H]) of the heat softening temperature of the resin A forming the core layer and the heat softening temperature of the resin B forming the surface layer can be set as a reference. More specifically, it is preferably (Ts [H] +70) ° C. or higher, more preferably (Ts [H] +80) ° C. or higher, while preferably (Ts [H] +180) ° C. or lower, more preferably It is (Ts [H] +150) degrees C or less.
 樹脂Aの熱軟化温度は、好ましくは110℃以上、より好ましくは120℃以上であり、好ましくは180℃以下、より好ましくは170℃以下である。樹脂Bの熱軟化温度は、好ましくは110℃以上、より好ましくは120℃以上であり、好ましくは180℃以下、より好ましくは170℃以下である。 The thermal softening temperature of the resin A is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower. The heat softening temperature of the resin B is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower.
 各樹脂の熱軟化温度Tsは、TMA(熱機械的分析)測定により測定しうる。例えば、測定対象の層を5mm×20mmの形状に切り出し試料とし、TMA/SS7100(エスアイアイ・ナノテクノロジー株式会社製)を用いて、試料の長手方向に50mNの張力を加えた状態で、温度を変化させ、線膨張が3%変化した時の温度(℃)を、軟化温度として計測しうる。 The thermal softening temperature Ts of each resin can be measured by TMA (thermomechanical analysis) measurement. For example, the layer to be measured is cut into a 5 mm × 20 mm shape and used as a sample. Using TMA / SS7100 (manufactured by SII Nano Technology Co., Ltd.), the temperature is adjusted in a state where a tension of 50 mN is applied in the longitudinal direction of the sample. The temperature (° C.) when the linear expansion changes by 3% can be measured as the softening temperature.
 さらに、ダイのダイスリップの算術平均粗さRaは、好ましくは0μm~1.0μm、より好ましくは0μm~0.7μm、特に好ましくは0μm~0.5μmである。ここで、算術平均粗さRaは、表面粗さ計を用い、JIS B0601:1994に基づき測定しうる。 Furthermore, the arithmetic average roughness Ra of the die slip of the die is preferably 0 μm to 1.0 μm, more preferably 0 μm to 0.7 μm, and particularly preferably 0 μm to 0.5 μm. Here, the arithmetic average roughness Ra can be measured based on JIS B0601: 1994 using a surface roughness meter.
 共押出法では、通常、ダイスリップから押し出されたフィルム状の溶融樹脂を冷却ロールに密着させて冷却し、硬化させる。この際、溶融樹脂を冷却ロールに密着させる方法としては、例えば、エアナイフ方式、バキュームボックス方式、静電密着方式などが挙げられる。 In the coextrusion method, the film-like molten resin extruded from a die slip is usually brought into close contact with a cooling roll, cooled and cured. At this time, examples of the method for bringing the molten resin into close contact with the cooling roll include an air knife method, a vacuum box method, and an electrostatic contact method.
 〔1.2.1.積層フィルムにおける各層の寸法〕
 積層フィルム作製工程により得られる積層フィルムにおいては、コア層の厚みは、好ましくは20μm以上、より好ましくは25μm以上であり、好ましくは80μm以下、より好ましくは70μm以下である。2つの表層の厚みは、それぞれ、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは30μm以下、より好ましくは25μm以下である。
[1.2.1. Dimensions of each layer in laminated film)
In the laminated film obtained by the laminated film production step, the thickness of the core layer is preferably 20 μm or more, more preferably 25 μm or more, preferably 80 μm or less, more preferably 70 μm or less. The thicknesses of the two surface layers are each preferably 5 μm or more, more preferably 10 μm or more, preferably 30 μm or less, more preferably 25 μm or less.
 各層の厚みは、顕微鏡観察により測定しうる。具体的には、積層フィルムを、ミクロトームを用いてスライスし、切断面を観察することにより各層の厚みを測定しうる。切断面の観察は、例えば偏光顕微鏡(例えばオリンパス社製「BX51」)により行いうる。 The thickness of each layer can be measured by microscopic observation. Specifically, the thickness of each layer can be measured by slicing the laminated film using a microtome and observing the cut surface. The cut surface can be observed, for example, with a polarizing microscope (for example, “BX51” manufactured by Olympus).
 〔1.3.剥離工程〕
 本発明の光学フィルムの製造方法における剥離工程は、積層フィルムから、表層を剥離する工程である。かかる剥離工程を経ることにより、光学フィルムを得ることができる。2つの表層は、以下に説明する実施形態では同時に剥離するが、一層ずつ剥離してもよい。
[1.3. (Peeling process)
The peeling process in the manufacturing method of the optical film of the present invention is a process of peeling the surface layer from the laminated film. An optical film can be obtained through this peeling process. The two surface layers peel at the same time in the embodiment described below, but may be peeled one by one.
 図2は、本発明の光学フィルムの製造方法における剥離工程の一例を模式的に示す断面図である。押出成形機Mから搬送された積層フィルム(図1において説明した積層フィルム20)は図示下方に搬送され、その後、剥離工程に供される。 FIG. 2 is a cross-sectional view schematically showing an example of a peeling step in the method for producing an optical film of the present invention. The laminated film conveyed from the extruder M (the laminated film 20 described with reference to FIG. 1) is conveyed downward in the drawing and is then subjected to a peeling process.
 剥離工程における剥離の処理は、表層11,12を、搬送される積層フィルム20の面内方向とは異なる方向に牽引することにより行いうる。図2の例では、2つの表層11,12を、それぞれ光学フィルム100の2つの面100A,100Bに対する角度がθ1、θ2となる方向(矢線Yおよび矢線Zで示す方向)に牽引することにより、積層フィルム20から表層11,12が剥離される。θ1およびθ2は同じであっても相違していてもよい。前記θ1およびθ2の範囲は、好ましくは45°以上、より好ましくは55°以上であり、一方好ましくは135°以下、より好ましくは125°以下である。 The peeling treatment in the peeling step can be performed by pulling the surface layers 11 and 12 in a direction different from the in-plane direction of the laminated film 20 to be conveyed. In the example of FIG. 2, the two surface layers 11 and 12 are pulled in directions (directions indicated by arrow Y and arrow Z) in which the angles with respect to the two surfaces 100A and 100B of the optical film 100 are θ1 and θ2, respectively. Thus, the surface layers 11 and 12 are peeled from the laminated film 20. θ1 and θ2 may be the same or different. The range of θ1 and θ2 is preferably 45 ° or more, more preferably 55 ° or more, while preferably 135 ° or less, more preferably 125 ° or less.
 剥離工程の温度は、特に限定されないが、搬送性の観点から、好ましくは5℃以上、より好ましくは15℃以上であり、剥離性の観点から、好ましくは60℃以下、より好ましくは50℃以下である。剥離温度は、積層フィルムの剥離領域Pを適切な加熱装置により加熱することなどにより調整しうる。 The temperature of the peeling step is not particularly limited, but is preferably 5 ° C or higher, more preferably 15 ° C or higher from the viewpoint of transportability, and preferably 60 ° C or lower, more preferably 50 ° C or lower, from the viewpoint of peelability. It is. The peeling temperature can be adjusted by heating the peeling area P of the laminated film with an appropriate heating device.
 〔1.4.他の工程(延伸処理工程)〕
 本発明の光学フィルムの製造方法は、延伸処理工程を含んでいてもよい。延伸処理工程は、積層フィルム作製工程において行ってもよいし、積層フィルム作製工程を経た後で剥離工程の前に行ってもよいし、剥離工程において行ってもよいし、剥離工程の後に行ってもよい。
[1.4. Other process (stretching process)]
The manufacturing method of the optical film of this invention may include the extending | stretching process process. The stretching treatment step may be performed in the laminated film production step, may be performed after the laminated film production step and before the peeling step, may be performed in the peeling step, or may be performed after the peeling step. Also good.
 延伸処理工程を行う場合、厚み方向の延伸であっても、面内方向の延伸であってもよく、厚み方向の延伸に加えて面内方向の延伸を行ってもよい。本発明の光学フィルムの製造方法において、厚み方向延伸に加えて面内方向の延伸を行う場合の延伸倍率は、光学フィルムに付与することが求められる所望の光学性能に合わせて、適宜調整しうる。具体的な延伸倍率は、好ましくは1.0倍以上、より好ましくは1.05倍以上であり、一方好ましくは1.5倍以下、より好ましくは1.4倍以下である。面内方向の延伸倍率がかかる範囲である場合、所望の光学性能を容易に得ることができる。 When performing the stretching treatment step, it may be stretching in the thickness direction or stretching in the in-plane direction, and stretching in the in-plane direction may be performed in addition to stretching in the thickness direction. In the method for producing an optical film of the present invention, the stretch ratio in the case of stretching in the in-plane direction in addition to stretching in the thickness direction can be appropriately adjusted according to the desired optical performance required to be imparted to the optical film. . The specific draw ratio is preferably 1.0 times or more, more preferably 1.05 times or more, and preferably 1.5 times or less, more preferably 1.4 times or less. When the draw ratio in the in-plane direction is within such a range, desired optical performance can be easily obtained.
 延伸処理工程において行う延伸は、一軸延伸、二軸延伸、又はその他の延伸としうる。延伸方向は、任意の方向に設定しうる。例えば、延伸前フィルムが長尺のフィルムである場合、延伸方向は、フィルムの長手方向、幅手方向、及びそれ以外の斜め方向のいずれであってもよい。二軸延伸を行う場合の2の延伸方向がなす角度は、通常は互いに直交する角度としうるが、それに限らず任意の角度としうる。二軸延伸は、逐次二軸延伸であってもよく、同時二軸延伸であってもよい。 The stretching performed in the stretching treatment step can be uniaxial stretching, biaxial stretching, or other stretching. The stretching direction can be set in any direction. For example, when the film before stretching is a long film, the stretching direction may be any of the longitudinal direction of the film, the width direction, and other oblique directions. The angle formed by the two stretching directions when biaxial stretching is performed can usually be an angle orthogonal to each other, but is not limited thereto, and may be an arbitrary angle. Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
 〔1.5.本発明の製造方法により得られる光学フィルムの寸法及び特性〕
 本発明の光学フィルムの製造方法により得られる光学フィルムは、面内方向のレターデーションReの絶対値が5nm以下であり、厚み方向のレターデーションRthの絶対値が10nm以下であり、かつ、水蒸気透過率が20g/(m・日)以下である。
[1.5. Dimensions and characteristics of optical film obtained by the production method of the present invention]
The optical film obtained by the method for producing an optical film of the present invention has an absolute value of retardation Re in the in-plane direction of 5 nm or less, an absolute value of retardation Rth in the thickness direction of 10 nm or less, and water vapor transmission. The rate is 20 g / (m 2 · day) or less.
 本発明の製造方法により得られる光学フィルムの面内方向のレターデーションReの絶対値は、好ましくは3nm以下、より好ましくは2nm以下、理想的には0nmである。 The absolute value of the in-plane retardation Re of the optical film obtained by the production method of the present invention is preferably 3 nm or less, more preferably 2 nm or less, ideally 0 nm.
 本発明の製造方法により得られる光学フィルムの厚み方向のレターデーションRthの絶対値は、好ましくは3nm以下、より好ましくは2nm以下、理想的には0nmである。 The absolute value of retardation Rth in the thickness direction of the optical film obtained by the production method of the present invention is preferably 3 nm or less, more preferably 2 nm or less, and ideally 0 nm.
 本発明の製造方法により得られる光学フィルムの水蒸気透過率は、好ましくは18g/(m・日)以下、より好ましくは15g/(m・日)以下である。一方下限は、理想的には0g/(m・日)であるが、例えば1g/(m・日)以上としうる。 The water vapor permeability of the optical film obtained by the production method of the present invention is preferably 18 g / (m 2 · day) or less, more preferably 15 g / (m 2 · day) or less. On the other hand, the lower limit is ideally 0 g / (m 2 · day), but may be, for example, 1 g / (m 2 · day) or more.
 本発明の製造方法により得られる光学フィルムの厚みは、好ましくは20μm以上、より好ましくは25μm以上であり、好ましくは70μm以下、より好ましくは80μm以下である。 The thickness of the optical film obtained by the production method of the present invention is preferably 20 μm or more, more preferably 25 μm or more, preferably 70 μm or less, more preferably 80 μm or less.
 本発明の製造方法により得られる光学フィルムの面内方向のレターデーション及び厚み方向のレターデーションは、測定装置としてAXOMETRICS社製「AxoScan」を用いて、測定波長590nmで測定しうる。前記の測定装置を用いる場合、光学フィルムの面内方向及び厚み方向のレターデーションは、当該光学フィルムの平均屈折率を用いて算出する。ここで、平均屈折率とは、光学フィルムの面内方向であって互いに垂直な2方向の屈折率、及び、当該光学フィルムの厚み方向の屈折率の平均値をいう。 The retardation in the in-plane direction and the retardation in the thickness direction of the optical film obtained by the production method of the present invention can be measured at a measurement wavelength of 590 nm using “AxoScan” manufactured by AXOMETRICS as a measuring device. When using the said measuring apparatus, the retardation of the in-plane direction and thickness direction of an optical film is computed using the average refractive index of the said optical film. Here, the average refractive index refers to the refractive index in two directions perpendicular to each other in the in-plane direction of the optical film and the average value of the refractive index in the thickness direction of the optical film.
 本発明の製造方法により得られる光学フィルムの水蒸気透過率は、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W」)を用い、JIS K 7129 B法に従って、例えば温度40℃、湿度90%RHの条件にて測定しうる。 The water vapor transmission rate of the optical film obtained by the production method of the present invention is, for example, a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K 7129 B method using a water vapor transmission rate measuring device (“PERMATRAN-W” manufactured by MOCON). It can be measured under the following conditions.
 本発明の製造方法により得られる光学フィルムの厚みは、各層の厚みと同様に顕微鏡観察により測定しうる。具体的には、光学フィルムを、ミクロトームを用いてスライスし、切断面を、例えば偏光顕微鏡(例えばオリンパス社製「BX51」)で観察することにより行いうる。 The thickness of the optical film obtained by the production method of the present invention can be measured by microscopic observation in the same manner as the thickness of each layer. Specifically, the optical film can be sliced using a microtome, and the cut surface can be observed, for example, with a polarizing microscope (for example, “BX51” manufactured by Olympus).
 本発明の光学フィルムの製造方法により得られる光学フィルムは、樹脂Aからなるコア層、及び樹脂Bからなる表層を備える積層フィルムから表層を剥離することにより得られる光学フィルムにおいて、面内方向のレターデーションReの絶対値及び厚み方向のレターデーションRthの絶対値をそれぞれ2nm以下とし、かつ、水蒸気透過率を20g/(m・日)以下とすることにより、対象物との密着性が高く、レターデーションが小さく、かつ水蒸気透過率が低い光学フィルムを得ることができる。その結果、本発明によれば、偏光子保護フィルムとして有用に用いうる光学フィルムを得ることができる。 An optical film obtained by the method for producing an optical film of the present invention is an optical film obtained by peeling a surface layer from a laminated film comprising a core layer made of resin A and a surface layer made of resin B. By making the absolute value of the retardation Re and the absolute value of the retardation Rth in the thickness direction 2 nm or less and the water vapor transmission rate 20 g / (m 2 · day) or less, the adhesion with the object is high, An optical film having a small retardation and a low water vapor transmission rate can be obtained. As a result, according to the present invention, an optical film that can be usefully used as a polarizer protective film can be obtained.
 本発明の光学フィルムの製造方法により得られる光学フィルムは、通常、透明な層であり可視光線を透過させる。具体的な光線透過率は光学フィルムの用途に応じて適宜選択しうる。例えば、波長420nm~780nmにおける光線透過率は、好ましくは85%以上、より好ましくは88%以上である。このように高い光線透過率を有する構成とすることにより、光学フィルムを液晶表示装置などの表示装置に実装した場合に、特に長期間使用時の輝度低下を抑制できる。 The optical film obtained by the method for producing an optical film of the present invention is usually a transparent layer and transmits visible light. The specific light transmittance can be appropriately selected according to the use of the optical film. For example, the light transmittance at a wavelength of 420 nm to 780 nm is preferably 85% or more, more preferably 88% or more. By adopting such a configuration having a high light transmittance, when the optical film is mounted on a display device such as a liquid crystal display device, it is possible to suppress a decrease in luminance particularly during long-term use.
 〔2.本発明の光学フィルム〕
 本発明の別のある態様において、光学フィルムは、環式炭化水素基含有化合物単位を有するブロック[Da]と、鎖状炭化水素化合物単位、又は鎖状炭化水素化合物単位及び環式炭化水素基含有化合物単位を有するブロック[Ea]とを含むブロック共重合体を含む。環式炭化水素基含有化合物単位及び鎖状炭化水素化合物単位は、不飽和結合を有していてもよく、有していなくてもよく、さらにその製造方法によっては限定されない。したがって例えば、不飽和結合を有する単位を水素化してなる単位であってもよく、水素化されておらず不飽和結合を有する単位であってもよい。光学フィルムが、かかるブロック共重合体を含むものであることにより、位相差の低い光学フィルムを得ることができ、従って、本発明の光学フィルムを、低位相差が求められる部材として使用することができる。加えて、耐光性が高く、黄変しにくい光学フィルムを得ることができる。
[2. Optical film of the present invention]
In another certain aspect of the present invention, the optical film comprises a block [Da] having a cyclic hydrocarbon group-containing compound unit, a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group. The block copolymer containing the block [Ea] which has a compound unit is included. The cyclic hydrocarbon group-containing compound unit and the chain hydrocarbon compound unit may or may not have an unsaturated bond, and are not limited by the production method. Therefore, for example, a unit obtained by hydrogenating a unit having an unsaturated bond may be used, or a unit which is not hydrogenated and has an unsaturated bond may be used. When the optical film contains such a block copolymer, an optical film having a low retardation can be obtained, and therefore the optical film of the present invention can be used as a member that requires a low retardation. In addition, it is possible to obtain an optical film that has high light resistance and hardly yellows.
 当該ブロック共重合体の好ましい例としては、ブロック[Da]として、環式炭化水素基含有化合物水素化物単位を有する、重合体ブロック[Db]を1分子あたり2つ以上含み、ブロック[Ea]として、鎖状炭化水素化合物水素化物単位、又は鎖状炭化水素化合物またはその水素化物単位及び環式炭化水素含有化合物またはその水素化物単位を有する、重合体ブロック[Eb]とを1分子あたり1以上含む共重合体が挙げられる。 As a preferable example of the block copolymer, the block [Da] includes two or more polymer blocks [Db] each having a cyclic hydrocarbon group-containing compound hydride unit, and the block [Ea] 1 or more of a polymer block [Eb] having a chain hydrocarbon compound hydride unit, or a chain hydrocarbon compound or hydride unit thereof and a cyclic hydrocarbon-containing compound or hydride unit thereof. A copolymer is mentioned.
 本発明の光学フィルムを構成する材料の具体例としては、上に述べた樹脂Aが挙げられる。また、それに含まれるブロック共重合体の例としては、上に述べた水素化ブロック共重合体[G]の例と同じ例が挙げられる。さらに、ブロック共重合体を構成するブロック[Da]及び[Ea]の例並びにその具体例であるブロック[Db]及び[Eb]の例としては、上に述べたブロック[D]及び[E]の例と同じ例が挙げられる。ブロック[Da]及びブロック[Ea]を構成する単位の例としては、ブロック[D]及び[E]を構成する単位の例と同じ例;並びに芳香族ビニル化合物単位、及び鎖状共役ジエン化合物単位が挙げられる。芳香族ビニル化合物単位は、芳香族ビニル化合物を重合して得られる構造を有する構造単位であり、鎖状共役ジエン化合物単位は、鎖状共役ジエン化合物を重合して得られる構造を有する構造単位である。但し、これらは、その製造方法によっては限定されない。ここでいう芳香族ビニル化合物の例及び鎖状共役ジエン化合物の例としては、上に挙げたものと同様のものが挙げられる。 Specific examples of the material constituting the optical film of the present invention include the resin A described above. Moreover, as an example of the block copolymer contained in it, the same example as the example of the hydrogenated block copolymer [G] described above is mentioned. Furthermore, examples of the blocks [Da] and [Ea] constituting the block copolymer and examples of the blocks [Db] and [Eb] as specific examples thereof include the blocks [D] and [E] described above. The same example as above is given. Examples of units constituting the block [Da] and the block [Ea] include the same examples as the units constituting the blocks [D] and [E]; and an aromatic vinyl compound unit and a chain conjugated diene compound unit Is mentioned. The aromatic vinyl compound unit is a structural unit having a structure obtained by polymerizing an aromatic vinyl compound, and the chain conjugated diene compound unit is a structural unit having a structure obtained by polymerizing a chain conjugated diene compound. is there. However, these are not limited by the manufacturing method. Examples of the aromatic vinyl compound and the chain conjugated diene compound mentioned here are the same as those mentioned above.
 ブロック共重合体の例であって、水素化ブロック共重合体[G]以外のものの例としては、国際公開第WO2016/152871号に記載されている、水素化物の前駆体としての芳香族ビニル化合物/共役ジエン化合物ブロック共重合体が挙げられる。 Examples of block copolymers other than hydrogenated block copolymers [G] include aromatic vinyl compounds as hydride precursors described in International Publication No. WO2016 / 1528771 / Conjugated diene compound block copolymer.
 本発明の光学フィルムを構成するブロック共重合体においては、表面と中央部での、ブロック[Da]の体積と、ブロック[Ea]の体積との組成比率の差が、0~10%である。組成比率の差は、好ましくは8%以下、より好ましくは5%以下である。 In the block copolymer constituting the optical film of the present invention, the difference in the composition ratio between the volume of the block [Da] and the volume of the block [Ea] between the surface and the central portion is 0 to 10%. . The difference in composition ratio is preferably 8% or less, more preferably 5% or less.
 ここでいう「中央部」は、フィルムの厚み方向の中央部である。ただし、上に説明した、本発明の光学フィルムの製造方法により製造されたフィルムの場合、厚み方向に5μm程度の深さにおける位置は、通常厚み方向の中央部と同等の組成比率を有する。したがって、光学フィルムの厚みが10μmを超える場合、厚み方向に5μm程度の深さにおける組成を観察して得た値を、中央部での組成比率の値に代えうる。 "The central part" here is the central part in the thickness direction of the film. However, in the case of the film manufactured by the optical film manufacturing method of the present invention described above, the position at a depth of about 5 μm in the thickness direction usually has the same composition ratio as the central portion in the thickness direction. Therefore, when the thickness of the optical film exceeds 10 μm, the value obtained by observing the composition at a depth of about 5 μm in the thickness direction can be replaced with the value of the composition ratio at the center.
 ブロック[Da]の体積と、ブロック[Ea]の体積との組成比率は、光学フィルムの断面の観察により求めうる。即ち、断面の面積比は、通常体積比に比例するので、表面及び断面の面積比を測定することにより、体積比を求めうる。具体的には、光学フィルムの表面及び断面において、各ブロックに由来する相の面積を求め、かかる面積の比を求めることにより、ブロック[Da]と、ブロック[Ea]との組成比率を求めうる。 The composition ratio between the volume of the block [Da] and the volume of the block [Ea] can be obtained by observing the cross section of the optical film. That is, since the area ratio of the cross section is generally proportional to the volume ratio, the volume ratio can be obtained by measuring the area ratio of the surface and the cross section. Specifically, in the surface and cross section of the optical film, the area ratio of the phase derived from each block is obtained, and the ratio of the areas can be obtained to obtain the composition ratio of the block [Da] and the block [Ea]. .
 各相の面積の測定は、原子間力顕微鏡(例えばBruker社製の原子間力顕微鏡 Dimension Fast Scan Icon)により行いうる。原子間力顕微鏡により、光学フィルムの凝着力像を得て、当該像における、各ブロックに由来する相の面積比を測定しうる。また、観察された相の凝着力に関する情報から、観察された相を、ブロック[Da]の相、及びブロック[Ea]の相に帰属させうる。 The measurement of the area of each phase can be performed with an atomic force microscope (for example, an atomic force microscope manufactured by Bruker, Dimension Fast Scan Icon). An adhesion force image of the optical film can be obtained by an atomic force microscope, and the area ratio of phases derived from each block in the image can be measured. Moreover, the observed phase can be attributed to the phase of the block [Da] and the phase of the block [Ea] from the information regarding the adhesion force of the observed phase.
 2種類の相の面積の合計を100%とし、そのうちの、ブロック[Da]に帰属される相の面積の百分率を求めることにより、表面及び中央物のそれぞれにおけるブロック[Da]比率を計算しうる。表面と中央部でのブロック[D]の体積とブロック[E]の体積との組成比率の差は、下記の式により算出しうる。
 組成比率の差=|(中央部のブロック[D]比率)-(表面のブロック[D]比率)|
The block [Da] ratio in each of the surface and the central object can be calculated by calculating the percentage of the area of the phase belonging to the block [Da] out of the total area of the two types of phase as 100%. . The difference in composition ratio between the volume of the block [D] and the volume of the block [E] at the surface and the central part can be calculated by the following equation.
Difference in composition ratio = | (block [D] ratio in the center) − (block [D] ratio in the surface) |
 (中央部のブロック[D]比率)-(表面のブロック[D]比率)の値は、正であっても負であってもよい。 The value of (block [D] ratio in the central part) − (block [D] ratio on the surface) may be positive or negative.
 本発明の光学フィルムは、ブロック共重合体を含む樹脂の押出製膜により製造しうる。押出製膜を行うことにより、効率的な製造が可能となる。但し、本発明者が見出したところによると、押出製膜を行った場合、表面と中央部でのブロック[D]の体積とブロック[E]の体積との組成比率の差が大きくなる。ここで、上記〔1.本発明の光学フィルムの製造方法〕において説明した製造方法を採用することにより、かかる組成比率の差が小さいフィルムを容易に得ることができる。 The optical film of the present invention can be produced by extrusion film formation of a resin containing a block copolymer. By performing extrusion film formation, efficient production becomes possible. However, according to what the present inventors have found, when extrusion film formation is performed, the difference in the composition ratio between the volume of the block [D] and the volume of the block [E] at the surface and the central portion becomes large. Here, [1. By adopting the production method described in [Production method of optical film of the present invention], a film having a small difference in composition ratio can be easily obtained.
 本発明の光学フィルムの寸法及び特性は、〔1.5.本発明の製造方法により得られる光学フィルムの寸法及び特性〕において説明したものと同様である。 The dimensions and characteristics of the optical film of the present invention are described in [1.5. The dimensions and characteristics of the optical film obtained by the production method of the present invention] are the same as those described above.
 〔3.偏光板及びその製造方法〕
 上記〔1.本発明の光学フィルムの製造方法〕で説明した製造方法により得られる光学フィルム、及び上記〔2.本発明の光学フィルム〕で説明した本発明の光学フィルム(以下においては、これらを単に「本発明の光学フィルム」という)は、液晶表示装置などの表示装置において、他の層を保護する保護フィルムとして好適に用いうる。中でも、本発明の光学フィルムは、偏光子保護フィルムとして好適であり、表示装置の内側偏光子保護フィルムとして特に好適である。
[3. Polarizing plate and manufacturing method thereof]
[1. The optical film obtained by the production method described in [Production method of optical film of the present invention], and [2. The optical film of the present invention described below in the optical film of the present invention (hereinafter simply referred to as “optical film of the present invention”) is a protective film for protecting other layers in a display device such as a liquid crystal display device. Can be suitably used. Especially, the optical film of this invention is suitable as a polarizer protective film, and is especially suitable as an inner side polarizer protective film of a display apparatus.
 本発明の偏光板は、上述した本発明の光学フィルムと偏光子とを備える。本発明において、光学フィルムは、偏光子保護フィルムとして機能しうる。本発明の偏光板は、さらに、光学フィルムと偏光子との間に、これらを接着するための接着剤層を備えてもよい。 The polarizing plate of the present invention includes the above-described optical film of the present invention and a polarizer. In the present invention, the optical film can function as a polarizer protective film. The polarizing plate of the present invention may further include an adhesive layer for bonding these between the optical film and the polarizer.
 本発明の偏光板は、光学フィルム及び偏光子に加えて、任意の層を備えうる。任意の層としては、表面硬度を高めるハードコート層、フィルムの滑り性を良くするマット層、反射防止層等が挙げられる。 The polarizing plate of the present invention can include an arbitrary layer in addition to the optical film and the polarizer. Examples of the optional layer include a hard coat layer that increases the surface hardness, a mat layer that improves the slipperiness of the film, and an antireflection layer.
 偏光子は、特に限定されず、任意の偏光子を用いうる。偏光子の例としては、ポリビニルアルコールフィルムに、ヨウ素、二色性染料等の材料を吸着させた後、延伸加工したものが挙げられる。接着剤層を構成する接着剤としては、各種の重合体をベースポリマーとしたものが挙げられる。かかるベースポリマーの例としては、例えば、アクリル重合体、シリコーン重合体、ポリエステル、ポリウレタン、ポリエーテル、及び合成ゴムが挙げられる。 The polarizer is not particularly limited, and any polarizer can be used. Examples of the polarizer include those obtained by adsorbing a material such as iodine or a dichroic dye on a polyvinyl alcohol film and then stretching the material. Examples of the adhesive constituting the adhesive layer include those using various polymers as a base polymer. Examples of such base polymers include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, and synthetic rubbers.
 偏光板が備える偏光子と保護フィルムの数は任意であるが、本発明においては、通常は、1層の偏光子と、その両面に設けられた2層の保護フィルムを備えうる。かかる2層の保護フィルムのうち、両方が本発明の光学フィルムであってもよく、どちらか一方のみが本発明の光学フィルムであってもよい。特に、光源及び液晶セルを備え、かかる液晶セルの光源側及び表示面側の両方に偏光板を有する液晶表示装置において、表示面側の偏光子よりも光源側の位置において用いる保護フィルムとして、本発明の光学フィルムを備えることが特に好ましい。かかる構成を有することにより、耐久性に優れ色ムラの小さい良好な表示品質を有する液晶表示装置を容易に構成することができる。 Although the number of polarizers and protective films provided in the polarizing plate is arbitrary, in the present invention, usually, a single-layer polarizer and two-layer protective films provided on both sides thereof can be provided. Of these two protective films, both may be the optical film of the present invention, and only one of them may be the optical film of the present invention. In particular, in a liquid crystal display device having a light source and a liquid crystal cell and having polarizing plates on both the light source side and the display surface side of the liquid crystal cell, the present invention is used as a protective film used at a position closer to the light source side than a polarizer on the display surface side. It is particularly preferred to provide the inventive optical film. By having such a configuration, a liquid crystal display device having excellent display quality with excellent durability and small color unevenness can be easily configured.
 本発明の偏光板は、任意の製造方法により製造しうる。例えば、上記製造方法により得られた光学フィルムと偏光子とを貼合することにより、本発明の偏光板を製造しうる。かかる貼合は、これらの層を直接接触させる貼合、又は接着剤層を介した貼合としうる。 The polarizing plate of the present invention can be manufactured by any manufacturing method. For example, the polarizing plate of this invention can be manufactured by bonding the optical film obtained by the said manufacturing method, and a polarizer. Such pasting may be pasting in which these layers are brought into direct contact or pasting via an adhesive layer.
 〔4.液晶表示装置及びその製造方法〕
 本発明の液晶表示装置は、上記本発明の偏光板を備える。
 本発明の偏光板を設けるのに適した液晶表示装置としては、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなどの駆動方式の液晶セルを備える液晶表示装置が挙げられる。これらの中でも、本発明の光学フィルムによる耐久性に優れ色ムラ抑制の効果が顕著であることから、IPSモードの液晶セルを備える液晶表示装置が特に好ましい。
[4. Liquid crystal display device and manufacturing method thereof]
The liquid crystal display device of the present invention includes the polarizing plate of the present invention.
Examples of the liquid crystal display device suitable for providing the polarizing plate of the present invention include an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a multi-domain vertical alignment (MVA) mode, and a continuous spin wheel alignment (CPA). ) Mode, hybrid alignment nematic (HAN) mode, twisted nematic (TN) mode, super twisted nematic (STN) mode, optically compensated bend (OCB) mode, etc. . Among these, a liquid crystal display device including an IPS mode liquid crystal cell is particularly preferable because the optical film of the present invention is excellent in durability and the effect of suppressing color unevenness is remarkable.
 本発明の液晶表示装置は、任意の製造方法により製造しうる。例えば、上記製造方法により得られた偏光板を、液晶セル等の、液晶表示装置を構成する他の部材と組み合わせることにより、本発明の液晶表示装置を製造しうる。例えば、液晶セルと偏光板とを直接、又は接着剤層を介して貼合し、これを表示装置内に設置することにより、液晶表示装置を製造しうる。または、液晶セルと偏光板とを単に重ねて表示装置内に設置することにより、液晶表示装置を製造しうる。 The liquid crystal display device of the present invention can be manufactured by any manufacturing method. For example, the liquid crystal display device of the present invention can be manufactured by combining the polarizing plate obtained by the above manufacturing method with another member constituting the liquid crystal display device such as a liquid crystal cell. For example, a liquid crystal display device can be manufactured by laminating a liquid crystal cell and a polarizing plate directly or via an adhesive layer, and placing this in a display device. Alternatively, a liquid crystal display device can be manufactured by simply stacking a liquid crystal cell and a polarizing plate and placing them in the display device.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
 上の説明におけるブロック[D]の具体例とも、上の説明におけるブロック[Da]の具体例ともしうる具体例は、以下の説明において単に「ブロック[D]」という。また、上の説明におけるブロック[E]の具体例とも、上の説明におけるブロック[Ea]の具体例ともしうる具体例は、以下の説明において単に「ブロック[E]」という。 The specific example of the block [D] in the above description and the specific example of the block [Da] in the above description are simply referred to as “block [D]” in the following description. The specific example of the block [E] in the above description and the specific example of the block [Ea] in the above description are simply referred to as “block [E]” in the following description.
 〔評価方法〕
 〔重量平均分子量及び数平均分子量の測定方法〕
 重合体の重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはシクロヘキサンを用いた。また、測定時の温度は、40℃であった。
〔Evaluation methods〕
[Method for measuring weight average molecular weight and number average molecular weight]
The weight average molecular weight and number average molecular weight of the polymer were measured as polystyrene equivalent values using a gel permeation chromatography (GPC) system (“HLC-8320” manufactured by Tosoh Corporation). In the measurement, an H type column (manufactured by Tosoh Corporation) was used as the column, and cyclohexane was used as the solvent. Moreover, the temperature at the time of measurement was 40 degreeC.
 〔水素化ブロック共重合体[G]の水素化率の測定方法〕
 重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により算出した。
[Method for Measuring Hydrogenation Rate of Hydrogenated Block Copolymer [G]]
The hydrogenation rate of the polymer was calculated by 1 H-NMR measurement at 145 ° C. using orthodichlorobenzene-d 4 as a solvent.
 〔樹脂Aのガラス転移温度〕
 樹脂A(水素化ブロック共重合体を含む樹脂[G1]等)をプレス成形して、長さ50mm、幅10mm、厚さ1mmの試験片を作製した。この試験片を用いて、JIS-K7244-4法に基づき、粘弾性測定装置(製品名「ARES」、ティー・エイ・インスツルメント・ジャパン社製)を使用して、-100℃~+150℃の範囲で、昇温速度5℃/分で動的粘弾性特性を測定した。損失正接tanδのピークトップ温度(複数のピークが観測される場合は高温側のピーク温度)より、ガラス転移温度Tgを算出した。
[Glass transition temperature of resin A]
Resin A (resin containing hydrogenated block copolymer [G1] or the like) was press-molded to prepare a test piece having a length of 50 mm, a width of 10 mm, and a thickness of 1 mm. Using this test piece, based on JIS-K7244-4 method, using a viscoelasticity measuring device (product name “ARES”, manufactured by T.A. Instruments Japan Co., Ltd.), −100 ° C. to + 150 ° C. The dynamic viscoelastic properties were measured at a temperature rising rate of 5 ° C./min. The glass transition temperature Tg 2 was calculated from the peak top temperature of the loss tangent tan δ (when a plurality of peaks are observed, the peak temperature on the high temperature side).
 〔樹脂Bの熱軟化温度〕
 JIS K 7121に基づき、示差走査熱量分析計(ナノテクロノジー社製、製品名「DSC6220S11」)を用い、樹脂Bをガラス転移温度より30℃以上高い温度に加熱した後、冷却速度-10℃/分で室温まで冷却し、その後、昇温速度10℃/分で昇温し、それにより熱軟化温度を測定した。
[Thermal softening temperature of resin B]
Based on JIS K 7121, using a differential scanning calorimeter (manufactured by Nanotechnology, product name “DSC6220S11”), resin B was heated to a temperature 30 ° C. higher than the glass transition temperature, and then cooled at −10 ° C. / After cooling to room temperature in minutes, the temperature was increased at a rate of temperature increase of 10 ° C./min, thereby measuring the thermal softening temperature.
 〔各層厚み及び光学フィルムの厚みの測定方法〕
 各層の厚み及び光学フィルムの厚みは、次のようにして測定した。
 測定対象のフィルムを、ミクロトーム(大和光機社製「RV-240」)を用いてスライスした。スライスしたフィルムの切断面を、偏光顕微鏡(オリンパス社製「BX51」)で観察し、その厚みを測定した。
[Measurement method of thickness of each layer and thickness of optical film]
The thickness of each layer and the thickness of the optical film were measured as follows.
The film to be measured was sliced using a microtome (“RV-240” manufactured by Daiwa Koki Co., Ltd.). The cut surface of the sliced film was observed with a polarizing microscope (OLYMPUS "BX51"), and the thickness was measured.
 〔熱軟化温度Tsの測定方法〕
 測定対象のフィルムを5mm×20mmの形状に切り出し試料とした。測定装置として、TMA/SS7100(エスアイアイ・ナノテクノロジー株式会社製)を用いた。TMA(熱機械的分析)測定において、試料の長手方向に50mNの張力を加えた状態で、温度を変化させた。線膨張が3%変化した時の温度(℃)を、軟化温度とした。
[Measurement method of thermal softening temperature Ts]
A film to be measured was cut into a 5 mm × 20 mm shape and used as a sample. As a measuring device, TMA / SS7100 (manufactured by SII Nanotechnology Inc.) was used. In TMA (thermomechanical analysis) measurement, the temperature was changed with a tension of 50 mN applied in the longitudinal direction of the sample. The temperature (° C.) when the linear expansion changed by 3% was defined as the softening temperature.
 〔面内方向のレターデーション及び厚み方向のレターデーションの測定方法〕
 各例(実施例および比較例)のフィルムを、波長590nmで位相差測定装置(Axometric社製 製品名「Axoscan」)を用いて測定することにより、各例のフィルムの面内方向のレターデーションReの絶対値及び厚み方向のレターデーションRthの絶対値を求めた。
[Measurement method of in-plane direction retardation and thickness direction retardation]
By measuring the film of each example (Example and Comparative Example) using a retardation measuring device (product name “Axoscan” manufactured by Axometric) at a wavelength of 590 nm, the retardation Re in the in-plane direction of the film of each example is measured. And the absolute value of retardation Rth in the thickness direction were determined.
 〔剥離強度の測定方法〕
 偏光板の代わりのフィルムとして、ノルボルネン系重合体を含む樹脂からなる試験用フィルム(ガラス転移温度160℃、厚み100μm、日本ゼオン社製、延伸処理を施していないもの)を用意した。各例で得られたフィルム及び前記試験用フィルムの片面に、コロナ処理を施した。各例のフィルムのコロナ処理を施した面、及び試験用フィルムのコロナ処理した面に接着剤を付着させ、接着剤を付着させた面同士を貼り合わせた。この際、接着剤としてはUV接着剤(CRBシリーズ(トーヨーケム社製)を用いた。これにより各例のフィルム100及び試験用フィルム60を備えるサンプルフィルムSを得た(図3を参照)。
 その後、図3に示すように、前記サンプルフィルムSを15mmの幅に裁断して、各例のフィルム100側をスライドガラス80の表面に粘着剤70にて貼り合わせて評価サンプルを得た。この際、粘着剤70としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。図3中、50は接着剤である。
 フォースゲージの先端に前記試験用フィルム60を挟み、スライドガラス80の表面の法線方向(図3の矢線Xに示す方向)に引っ張ることにより、90度剥離試験を実施した。この際、試験用フィルム60が剥れる際に測定された力は、各例(実施例及び比較例)のフィルム100と試験用フィルム60とを剥離させるために要する力であるので、この力の大きさを剥離強度として測定した。剥離に要する力が非常に大きく試験用フィルムが剥がれる前に材料が破壊した場合は、「材料破壊のため測定不可」と記載した。
[Measurement method of peel strength]
As a film instead of a polarizing plate, a test film (glass transition temperature 160 ° C., thickness 100 μm, manufactured by Nippon Zeon Co., Ltd., which has not been subjected to stretching treatment) made of a resin containing a norbornene-based polymer was prepared. One side of the film obtained in each example and the test film was subjected to corona treatment. An adhesive was attached to the corona-treated surface of the film of each example and the corona-treated surface of the test film, and the surfaces to which the adhesive was attached were bonded together. At this time, a UV adhesive (CRB series (manufactured by Toyochem Co., Ltd.)) was used as the adhesive, thereby obtaining a sample film S including the film 100 and the test film 60 of each example (see FIG. 3).
Thereafter, as shown in FIG. 3, the sample film S was cut into a width of 15 mm, and the film 100 side of each example was bonded to the surface of the slide glass 80 with an adhesive 70 to obtain an evaluation sample. At this time, double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number “CS9621”) was used as the adhesive 70. In FIG. 3, 50 is an adhesive.
A 90-degree peel test was performed by sandwiching the test film 60 at the tip of a force gauge and pulling it in the normal direction of the surface of the slide glass 80 (the direction indicated by the arrow X in FIG. 3). At this time, the force measured when the test film 60 is peeled off is a force required to peel off the film 100 of each example (Example and Comparative Example) from the test film 60. The size was measured as peel strength. When the material was destroyed before the test film was peeled off because the force required for peeling was very large, it was described as “impossible to measure due to material destruction”.
 (剥離強度の測定方法についての補足)
 前記の剥離強度の測定方法では、偏光板の代わりに特定の試験用フィルムを用いている。このように、偏光板の代わりに試験用フィルムを用いて剥離強度の測定を行うことの妥当性を検証するため、実施例1で得られたフィルムについて、発明者は以下の実験を行った。
 試験用フィルムの代わりに、特開2005-70140号公報の実施例1に従って、偏光フィルムの片方の表面に位相差フィルム積層体を貼り合わせ、偏光フィルムのもう片方の表面にはトリアセチルセルロースフィルムを貼り合わせ、90度剥離試験を実施した。すなわち、まず、特開2005-70140号公報の実施例1に記載の偏光フィルム及び接着剤を用意した。用意した偏光フィルムの片方の表面に、位相差フィルム積層体のコロナ処理を施した面を、前記の接着剤を介して貼り合わせた。また、偏光フィルムのもう片方の表面には、前記の接着剤を介してトリアセチルセルロースフィルムを貼り合わせた。その後、80℃で7分間乾燥させて接着剤を硬化させて、サンプルフィルムを得た。得られたサンプルフィルムについて90度剥離試験を行った。
 前記の実験の結果、偏光板の代わりに試験用フィルムを用いた場合と同様の結果が得られた。したがって、偏光板の代わりに試験用フィルムを用いた下記の実施例及び比較例の結果は、妥当なものである。
(Supplementary method for measuring peel strength)
In the measurement method of the peel strength, a specific test film is used instead of the polarizing plate. Thus, in order to verify the validity of measuring the peel strength using the test film instead of the polarizing plate, the inventor conducted the following experiment on the film obtained in Example 1.
Instead of the test film, according to Example 1 of JP-A-2005-70140, a retardation film laminate is bonded to one surface of the polarizing film, and a triacetyl cellulose film is attached to the other surface of the polarizing film. Bonding and 90 degree peeling test were carried out. That is, first, a polarizing film and an adhesive described in Example 1 of JP-A-2005-70140 were prepared. A surface of the retardation film laminate subjected to corona treatment was bonded to one surface of the prepared polarizing film via the adhesive. In addition, a triacetyl cellulose film was bonded to the other surface of the polarizing film via the adhesive. Then, it was made to dry for 7 minutes at 80 degreeC, the adhesive agent was hardened, and the sample film was obtained. The sample film obtained was subjected to a 90 degree peel test.
As a result of the experiment, the same result as that obtained when the test film was used instead of the polarizing plate was obtained. Therefore, the results of the following examples and comparative examples using test films instead of polarizing plates are reasonable.
 (水蒸気透過率の測定)
 光学フィルムの水蒸気透過率は、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W」)を用い、JIS K 7129 B法に従って、温度40℃、湿度90%RHの条件にて測定した。
(Measurement of water vapor transmission rate)
The water vapor transmission rate of the optical film was measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to JIS K 7129 B method using a water vapor permeability measuring device (“PERMATRAN-W” manufactured by MOCON).
 (全光線透過率の測定)
 光学フィルムの全光線透過率は、ヘイズメーターNDH-2000(日本電色工業社製)を用い、JIS K 7136に準拠して測定した。
(Measurement of total light transmittance)
The total light transmittance of the optical film was measured according to JIS K 7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
 (ブロック組成比の測定)
 光学フィルムにおける、ブロック組成比の測定はBruker社製の原子間力顕微鏡 Dimension Fast Scan Iconを用い、光学フィルムの凝着力像を得て、当該像における、各ブロックに由来する相の面積比を測定することにより行った。
(Measurement of block composition ratio)
In the optical film, the block composition ratio is measured using a Bruker atomic force microscope Dimension Fast Scan Icon to obtain an adhesion force image of the optical film and measure the area ratio of the phase derived from each block in the image. It was done by doing.
 凝着力像の撮像のためのカンチレバーとしては、AC240TS(オリンパス社製、バネ定数:1.5N/m、TIP曲率半径15nm)を使用した。撮像のための測定モードはScanAsyst mode、スキャンレートは2Hzの条件とし、500nm×500nmの面積で凝着力像を測定した。 AC240TS (Olympus, spring constant: 1.5 N / m, TIP radius of curvature 15 nm) was used as a cantilever for capturing an adhesion force image. The measurement mode for imaging was the Scan Asyst mode, the scan rate was 2 Hz, and the adhesion force image was measured in an area of 500 nm × 500 nm.
 凝着力像の測定は、フィルム表面及び中央部において行った。フィルム中央部の測定は、フィルムの断面出しを行った上で、断面における、フィルム表面からの深さ5μmの位置において行った。 The adhesion force image was measured at the film surface and at the center. The measurement of the center of the film was performed at a position of a depth of 5 μm from the film surface in the cross section after the cross section of the film was taken out.
 凝着力像の測定結果の画像を解析し、ヒストグラムを描いた。ヒストグラムにおいては、個々の測定点において測定された凝着力を横軸にとり、当該凝着力が測定された測定点の個数を縦軸にとった。2種類のブロックに起因すると考えられる、2種類の相の面積比率をガウス関数でフィッティングして算出した。 The image of the adhesion force image measurement result was analyzed and a histogram was drawn. In the histogram, the horizontal axis represents the adhesion force measured at each measurement point, and the vertical axis represents the number of measurement points at which the adhesion force was measured. The area ratio of two types of phases considered to be attributable to the two types of blocks was calculated by fitting with a Gaussian function.
 一般的に、凝着力はTgに依存し、低Tgの試料表面からカンチレバーを引き離す方が、凝着力が高くなることが知られている。このため、凝着力が高い相がブロック[E]、凝着力が低い相がブロック[D]であると帰属を決定しうる。 Generally, the adhesion force depends on Tg, and it is known that the adhesion force is higher when the cantilever is pulled away from the surface of the low Tg sample. For this reason, it can be determined that the phase having a high adhesive force is the block [E] and the phase having a low adhesive force is the block [D].
 面積比率は、2種類の相の面積の合計を100%とし、そのうちの、ブロック[D]に帰属される相の面積の百分率を、ブロック[D]比率として計算した。 The area ratio was calculated by taking the total area of the two types of phases as 100%, and calculating the percentage of the area of the phase belonging to the block [D] as the block [D] ratio.
 表面と中央部での、ブロック[D]とブロック[E]との組成比率の差は、下記の式により算出した。
 組成比率の差=|(中央部のブロック[D]比率)-(表面のブロック[D]比率)|
The difference in composition ratio between the block [D] and the block [E] between the surface and the center was calculated by the following formula.
Difference in composition ratio = | (block [D] ratio in the center) − (block [D] ratio in the surface) |
 〔製造例1〕
 (P1-1)ブロック共重合体[F1]の製造
 攪拌装置を備え、内部が十分に窒素置換された反応器に、脱水シクロヘキサン270部、脱水スチレン75部及びジブチルエーテル7.0部を入れた。全容を60℃で攪拌しながら、n-ブチルリチウム(15%シクロヘキサン溶液)5.6部を加えて重合を開始させた。引続き全容を60℃で60分間攪拌した。反応温度は、反応停止まで60℃を維持した。この時点(重合第1段階)で反応液をガスクロマトグラフィー(以下、「GC」と記載することがある。)及びGPCにより分析した結果、重合転化率は99.4%であった。
[Production Example 1]
(P1-1) Production of Block Copolymer [F1] A reactor equipped with a stirrer and sufficiently purged with nitrogen inside was charged with 270 parts of dehydrated cyclohexane, 75 parts of dehydrated styrene and 7.0 parts of dibutyl ether. . While stirring the whole volume at 60 ° C., 5.6 parts of n-butyllithium (15% cyclohexane solution) was added to initiate polymerization. Subsequently, the whole volume was stirred at 60 ° C. for 60 minutes. The reaction temperature was maintained at 60 ° C. until the reaction was stopped. At this time (first stage of polymerization), the reaction solution was analyzed by gas chromatography (hereinafter sometimes referred to as “GC”) and GPC. As a result, the polymerization conversion rate was 99.4%.
 次に、反応液に、脱水イソプレン15部を40分間に亘って連続的に添加し、添加終了後そのまま30分間攪拌を続けた。この時点(重合第2段階)で、反応液をGC及びGPCにより分析した結果、重合転化率は99.8%であった。
 その後、更に、反応液に脱水スチレン10部を、30分間に亘って連続的に添加し、添加終了後そのまま30分攪拌した。この時点(重合第3段階)で、反応液をGC及びGPCにより分析した結果、重合転化率はほぼ100%であった。
Next, 15 parts of dehydrated isoprene was continuously added to the reaction solution over 40 minutes, and stirring was continued for 30 minutes as it was after the addition was completed. At this time (second stage of polymerization), the reaction solution was analyzed by GC and GPC. As a result, the polymerization conversion was 99.8%.
Thereafter, 10 parts of dehydrated styrene was continuously added to the reaction solution over 30 minutes, and stirred for 30 minutes as it was after completion of the addition. At this time (the third stage of polymerization), the reaction solution was analyzed by GC and GPC. As a result, the polymerization conversion was almost 100%.
 ここで、イソプロピルアルコール1.0部を加えて反応を停止させることによって、[D1]-[E]-[D2]型のブロック共重合体[F1]を含む重合体溶液を得た。得られたブロック共重合体[F1]においては、Mw[F1]=82,400、Mw/Mnは1.32であった。 Here, 1.0 part of isopropyl alcohol was added to stop the reaction, thereby obtaining a polymer solution containing a block copolymer [F1] of [D1]-[E]-[D2] type. In the obtained block copolymer [F1], Mw [F1] = 82,400 and Mw / Mn was 1.32.
 (P1-2)水素化ブロック共重合体[G1]の製造
 (P1-1)で得た重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)4.0部、及び脱水シクロヘキサン30部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応により得られた反応溶液には、水素化ブロック共重合体[G1]が含まれていた。水素化ブロック共重合体のMw[G1]は71,800、分子量分布Mw/Mnは1.30、水素化率はほぼ100%であった。
(P1-2) Production of hydrogenated block copolymer [G1] The polymer solution obtained in (P1-1) is transferred to a pressure-resistant reactor equipped with a stirrer, and diatomaceous earth-supported nickel is used as a hydrogenation catalyst. 4.0 parts of a catalyst (product name “E22U”, nickel loading 60%, manufactured by JGC Catalysts & Chemicals Co., Ltd.) and 30 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 190 ° C. and a pressure of 4.5 MPa for 6 hours.
The reaction solution obtained by the hydrogenation reaction contained the hydrogenated block copolymer [G1]. The hydrogenated block copolymer had a Mw [G1] of 71,800, a molecular weight distribution Mw / Mn of 1.30, and a hydrogenation rate of almost 100%.
 水素化反応終了後、反応溶液を濾過して水素化触媒を除去した後、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「AO60」、ADEKA社製)0.3部を溶解したキシレン溶液2.0部を添加して溶解し、溶液とした。
 次いで、上記溶液を、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で処理し、溶液からシクロヘキサン、キシレン及びその他の揮発成分を除去し、溶融した樹脂を得た。これをダイからストランド状に押出し、冷却し、ペレタイザーによりペレットに成形した。これにより、水素化ブロック共重合体[G1]を含む、樹脂[G1]のペレット95部を製造した。
 得られた樹脂[G1]における水素化ブロック共重合体[G1]は、Mw[G1]=68,500、Mw/Mn=1.30、Tg2=140℃、Ts=139℃、(D1+D2)/E=85/15、D1/D2=7.5であった。
After completion of the hydrogenation reaction, the reaction solution is filtered to remove the hydrogenation catalyst, and then the phenol-based antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate] (product name “AO60”, manufactured by ADEKA) 2.0 parts of xylene solution in which 0.3 part was dissolved was added and dissolved to obtain a solution.
Next, the above solution is treated at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.), and cyclohexane, xylene and other volatile components are removed from the solution. And a molten resin was obtained. This was extruded from a die into a strand, cooled, and formed into pellets by a pelletizer. As a result, 95 parts of a pellet of the resin [G1] containing the hydrogenated block copolymer [G1] was produced.
The obtained hydrogenated block copolymer [G1] in the resin [G1] has Mw [G1] = 68,500, Mw / Mn = 1.30, Tg 2 = 140 ° C., Ts = 139 ° C., (D1 + D2) / E = 85/15 and D1 / D2 = 7.5.
 〔製造例2〕
 (P2-1)ブロック共重合体[F2]の製造
 攪拌装置を備え、内部が十分に窒素置換された反応器に、脱水シクロヘキサン270部、脱水スチレン70部及びジブチルエーテル7.0部を入れた。全容を60℃で攪拌しながら、n-ブチルリチウム(15%シクロヘキサン溶液)5.6部を加えて重合を開始させた。引続き全容を60℃で60分間攪拌した。反応温度は、反応停止まで60℃を維持した。この時点(重合第1段階)で反応液をGC及びGPCにより分析した結果、重合転化率は99.4%であった。
[Production Example 2]
(P2-1) Production of block copolymer [F2] A reactor equipped with a stirrer and sufficiently purged with nitrogen inside was charged with 270 parts of dehydrated cyclohexane, 70 parts of dehydrated styrene and 7.0 parts of dibutyl ether. . While stirring the whole volume at 60 ° C., 5.6 parts of n-butyllithium (15% cyclohexane solution) was added to initiate polymerization. Subsequently, the whole volume was stirred at 60 ° C. for 60 minutes. The reaction temperature was maintained at 60 ° C. until the reaction was stopped. As a result of analyzing the reaction solution by GC and GPC at this time (first stage of polymerization), the polymerization conversion rate was 99.4%.
 次に、反応液に、脱水イソプレン20部を40分間に亘って連続的に添加し、添加終了後そのまま30分間攪拌を続けた。この時点(重合第2段階)で、反応液をGC及びGPCにより分析した結果、重合転化率は99.8%であった。
 その後、更に、反応液に脱水スチレン10部を、30分間に亘って連続的に添加し、添加終了後そのまま30分攪拌した。この時点(重合第3段階)で、反応液をGC及びGPCにより分析した結果、重合転化率はほぼ100%であった。
Next, 20 parts of dehydrated isoprene was continuously added to the reaction solution over 40 minutes, and stirring was continued for 30 minutes as it was after the addition was completed. At this time (second stage of polymerization), the reaction solution was analyzed by GC and GPC. As a result, the polymerization conversion was 99.8%.
Thereafter, 10 parts of dehydrated styrene was continuously added to the reaction solution over 30 minutes, and stirred for 30 minutes as it was after completion of the addition. At this time (the third stage of polymerization), the reaction solution was analyzed by GC and GPC. As a result, the polymerization conversion was almost 100%.
 ここで、イソプロピルアルコール1.0部を加えて反応を停止させることによって、[D1]-[E]-[D2]型のブロック共重合体[F2]を含む重合体溶液を得た。得られたブロック共重合体[F2]においては、Mw[F2]=83,400、Mw/Mnは1.32であった。 Here, 1.0 part of isopropyl alcohol was added to stop the reaction to obtain a polymer solution containing a block copolymer [F2] of [D1]-[E]-[D2] type. In the obtained block copolymer [F2], Mw [F2] = 83,400 and Mw / Mn was 1.32.
 (P2-2)水素化ブロック共重合体[G2]の製造
 (P2-1)で得た重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)4.0部、及び脱水シクロヘキサン30部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応により得られた反応溶液には、水素化ブロック共重合体[G2]が含まれていた。水素化ブロック共重合体[G2]のMw[G2]は72,800、分子量分布Mw/Mnは1.30、水素化率はほぼ100%であった。
(P2-2) Production of Hydrogenated Block Copolymer [G2] The polymer solution obtained in (P2-1) is transferred to a pressure resistant reactor equipped with a stirrer, and diatomaceous earth-supported nickel is used as a hydrogenation catalyst. 4.0 parts of a catalyst (product name “E22U”, nickel loading 60%, manufactured by JGC Catalysts & Chemicals Co., Ltd.) and 30 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 190 ° C. and a pressure of 4.5 MPa for 6 hours.
The reaction solution obtained by the hydrogenation reaction contained the hydrogenated block copolymer [G2]. Mw [G2] of the hydrogenated block copolymer [G2] was 72,800, the molecular weight distribution Mw / Mn was 1.30, and the hydrogenation rate was almost 100%.
 水素化反応終了後、反応溶液を濾過して水素化触媒を除去した後、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](製品名「AO60」、ADEKA社製)0.3部を溶解したキシレン溶液2.0部を添加して溶解し、溶液とした。
 次いで、上記溶液を、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で処理し、溶液からシクロヘキサン、キシレン及びその他の揮発成分を除去し、溶融した樹脂を得た。これをダイからストランド状に押出し、冷却し、ペレタイザーによりペレットに成形した。これにより、水素化ブロック共重合体[G2]を含む、樹脂[G2]のペレット95部を製造した。
 得られた樹脂[G2]における水素化ブロック共重合体[G2]は、Mw[G2]=69,500、Mw/Mn=1.30、Tg2=140℃、Ts=138℃、(D1+D2)/E=80/20、D1/D2=7.0であった。
After completion of the hydrogenation reaction, the reaction solution is filtered to remove the hydrogenation catalyst, and then the phenol-based antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate] (product name “AO60”, manufactured by ADEKA) 2.0 parts of xylene solution in which 0.3 part was dissolved was added and dissolved to obtain a solution.
Next, the above solution is treated at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.), and cyclohexane, xylene and other volatile components are removed from the solution. And a molten resin was obtained. This was extruded from a die into a strand, cooled, and formed into pellets by a pelletizer. As a result, 95 parts of a pellet of the resin [G2] containing the hydrogenated block copolymer [G2] was produced.
The obtained hydrogenated block copolymer [G2] in the resin [G2] has Mw [G2] = 69,500, Mw / Mn = 1.30, Tg 2 = 140 ° C., Ts = 138 ° C., (D1 + D2) / E = 80/20 and D1 / D2 = 7.0.
 〔実施例1〕
 (1-1.光学フィルムの製造)
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの長さLとスクリューの直径Dとの比L/D=28)を用意した。この単軸押出機に、熱可塑性樹脂Aとして、製造例1で得たペレット状の樹脂[G1]を導入し、溶融させて、フィードブロックを介して単層ダイに供給した。単軸押出機への樹脂Aの導入は、単軸押出機に装填されたホッパーを介して行った。また、前記の単層ダイのダイスリップの表面粗さ(算術平均粗さRa)は、0.1μmであった。さらに、樹脂Aの押出機出口温度は、260℃であった。
[Example 1]
(1-1. Production of optical film)
A double flight type single screw extruder (screw diameter D = 50 mm, screw length L to screw diameter D ratio L / D = 28) equipped with a leaf disk-shaped polymer filter with a mesh opening of 3 μm was prepared. . Into this single-screw extruder, the pellet-shaped resin [G1] obtained in Production Example 1 was introduced as the thermoplastic resin A, melted, and supplied to the single-layer die through the feed block. The introduction of the resin A into the single screw extruder was performed through a hopper loaded in the single screw extruder. Moreover, the surface roughness (arithmetic mean roughness Ra) of the die slip of the single-layer die was 0.1 μm. Furthermore, the extruder A exit temperature of the resin A was 260 ° C.
 他方、目開き3μmのリーフディスク形状のポリマーフィルターを備える単軸押出機(スクリューの直径D=50mm、スクリューの長さLとスクリューの直径Dとの比L/D=30)1台を用意した。この単軸押出機に、熱可塑性樹脂Bとして、非晶性の脂環式構造含有重合体を含む樹脂B(樹脂「B-1」とする、日本ゼオン社製、熱軟化温度160℃)を導入し溶解させて、フィードブロックを介して前記の単層ダイに供給した。樹脂Bの押出機出口温度は、260℃であった。 On the other hand, a single-screw extruder (screw diameter D = 50 mm, screw length L / screw diameter D ratio L / D = 30) having a leaf disk-shaped polymer filter with a mesh opening of 3 μm was prepared. . Into this single screw extruder, as thermoplastic resin B, resin B containing an amorphous alicyclic structure-containing polymer (resin “B-1”, manufactured by Nippon Zeon Co., Ltd., heat softening temperature: 160 ° C.) The solution was introduced, dissolved, and supplied to the single-layer die through a feed block. The extruder B temperature of resin B was 260 ° C.
 樹脂A及び樹脂Bを、260℃の溶融状態で押出成形機の単層ダイから吐出させた。それにより樹脂Bからなる表層、樹脂Aからなるコア層、及び樹脂Bからなる表層の3層をこの順に備えるフィルム状の樹脂を連続的に形成した(共押出成形工程)。吐出されたフィルム状の樹脂を、冷却ロールにキャストした。キャストに際しては、フィルム状の樹脂の幅方向端部を冷却ロールに固定するエッジピニングを行い、エアギャップ量は50mmに設定した。これにより、フィルム状の樹脂を冷却し、3層構造の積層フィルムを得た。得られた積層フィルムは、樹脂Bからなる表層、樹脂Aからなるコア層、及び樹脂Bからなる表層をこの順に備える、2種の樹脂からなる3層の積層フィルムであった。 Resin A and Resin B were discharged from a single layer die of an extruder in a molten state at 260 ° C. Thereby, a film-like resin including three layers of a surface layer made of resin B, a core layer made of resin A, and a surface layer made of resin B in this order was formed (coextrusion molding step). The discharged film-like resin was cast on a cooling roll. In casting, edge pinning was performed to fix the widthwise end of the film-like resin to the cooling roll, and the air gap amount was set to 50 mm. Thereby, the film-like resin was cooled to obtain a laminated film having a three-layer structure. The obtained laminated film was a three-layer laminated film made of two kinds of resins provided with a surface layer made of resin B, a core layer made of resin A, and a surface layer made of resin B in this order.
 (1-2.光学フィルムの製造及び評価)
 (1-1)で得た3層構造の積層フィルムから表層を剥離する剥離工程を行った。剥離工程は、積層フィルムの両側の表層を牽引し、コア層から表層を連続的に剥離することにより行った。2層の表層を牽引する方向は、コア層の面に対する角度が60°の方向であり、剥離速度は、5m/minであった。その結果、表層が剥離された厚みが40μmの単層のフィルム1を得た。
 得られたフィルム1について、評価を行い、結果を表1に示した。剥離強度の評価においては、試験用フィルムの剥離前に、材料破壊が起こったため剥離強度は測定不可であった。これは剥離強度が高いということを意味する。
(1-2. Production and evaluation of optical film)
A peeling step for peeling the surface layer from the laminated film having the three-layer structure obtained in (1-1) was performed. The peeling process was performed by pulling the surface layer on both sides of the laminated film and continuously peeling the surface layer from the core layer. The direction of pulling the two surface layers was such that the angle with respect to the surface of the core layer was 60 °, and the peeling speed was 5 m / min. As a result, a single-layer film 1 having a thickness of 40 μm from which the surface layer was peeled was obtained.
The obtained film 1 was evaluated and the results are shown in Table 1. In the evaluation of peel strength, the peel strength was not measurable because material destruction occurred before peeling of the test film. This means that the peel strength is high.
 〔実施例2〕
 製造例1で得たペレット状の樹脂[G1]に代えて、製造例2で得たペレット状の樹脂[G2]を用いたこと以外は、実施例1と同様にして、積層フィルムを作製した後に表層を剥離し、厚みが40μmの単層のフィルム2を得た。得られたフィルム2について実施例1と同様に評価を行い、結果を表1に示した。剥離強度の評価においては、試験用フィルムの剥離前に、材料破壊が起こったため剥離強度は測定不可であった。これは剥離強度が高いということを意味する。
[Example 2]
A laminated film was produced in the same manner as in Example 1, except that the pellet-shaped resin [G2] obtained in Production Example 2 was used instead of the pellet-shaped resin [G1] obtained in Production Example 1. Later, the surface layer was peeled off to obtain a single-layer film 2 having a thickness of 40 μm. The obtained film 2 was evaluated in the same manner as in Example 1, and the results are shown in Table 1. In the evaluation of peel strength, the peel strength was not measurable because material destruction occurred before peeling of the test film. This means that the peel strength is high.
 〔比較例1〕
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの長さLとスクリューの直径Dとの比L/D=28)を用意した。この単軸押出機に、製造例1で得たペレット状の樹脂[G1]を導入し、溶融させて、単層ダイに供給した。単軸押出機への樹脂[G1]の導入は、単軸押出機に装填されたホッパーを介して行った。また、前記の単層ダイのダイスリップの表面粗さ(算術平均粗さRa)は、0.1μmであった。さらに、樹脂[G1]の押出機出口温度は、260℃であった。
[Comparative Example 1]
A double flight type single screw extruder (screw diameter D = 50 mm, screw length L to screw diameter D ratio L / D = 28) equipped with a leaf disk-shaped polymer filter with a mesh opening of 3 μm was prepared. . The pellet-shaped resin [G1] obtained in Production Example 1 was introduced into this single-screw extruder, melted, and supplied to the single-layer die. The resin [G1] was introduced into the single screw extruder through a hopper loaded in the single screw extruder. Moreover, the surface roughness (arithmetic mean roughness Ra) of the die slip of the single-layer die was 0.1 μm. Furthermore, the extruder outlet temperature of resin [G1] was 260 ° C.
 樹脂[G1]を、260℃の溶融状態で単層ダイから吐出させた。それにより樹脂[G1]からなる層のみからなるフィルム状の樹脂を連続的に形成した。吐出されたフィルム状の樹脂を、冷却ロールにキャストした。キャストに際しては、フィルム状の樹脂の幅方向端部を冷却ロールに固定するエッジピニングを行い、エアギャップ量は50mmに設定した。これにより、フィルム状の樹脂を冷却し、樹脂[G1]からなる単層構造の、厚みが40μmのフィルムC1を得た。得られた樹脂フィルムC1について実施例1のフィルムと同様に評価し、結果を表1に示した。 Resin [G1] was discharged from a single-layer die in a molten state at 260 ° C. Thereby, a film-like resin consisting only of the layer made of the resin [G1] was continuously formed. The discharged film-like resin was cast on a cooling roll. In casting, edge pinning was performed to fix the widthwise end of the film-like resin to the cooling roll, and the air gap amount was set to 50 mm. Thereby, the film-like resin was cooled to obtain a film C1 having a single-layer structure made of resin [G1] and having a thickness of 40 μm. The obtained resin film C1 was evaluated in the same manner as the film of Example 1, and the results are shown in Table 1.
 〔比較例2〕
 製造例1で得たペレット状の樹脂[G1]に代えて、製造例2で得たペレット状の樹脂[G2]を用いたこと以外は、比較例1と同じ操作により、樹脂[G2]からなる単層構造の、厚みが40μmのフィルムC2を製造した。このフィルムC2について実施例1のフィルムと同様に評価し、結果を表1に示した。
[Comparative Example 2]
From the resin [G2], the same operation as in Comparative Example 1 was used except that the pellet-shaped resin [G2] obtained in Production Example 2 was used instead of the pellet-shaped resin [G1] obtained in Production Example 1. A film C2 having a single layer structure and a thickness of 40 μm was manufactured. This film C2 was evaluated in the same manner as the film of Example 1, and the results are shown in Table 1.
 〔比較例3〕
 光学フィルムE(富士フイルム(株)製、「フジタック」、厚み40μm)を実施例1のフィルムと同様に評価し、結果を表1に示した。剥離強度の測定には、けん化処理を施したフィルムを用いた。
[Comparative Example 3]
Optical film E (“Fujitack”, manufactured by Fuji Film Co., Ltd., thickness 40 μm) was evaluated in the same manner as the film of Example 1, and the results are shown in Table 1. For the measurement of peel strength, a saponified film was used.
 実施例及び比較例の結果を、表1にまとめて示す。 Table 1 summarizes the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中における略号の意味は、下記の通りである。
 G1:製造例1で製造した、水素化ブロック共重合体[G1]。
 G2:製造例2で製造した、水素化ブロック共重合体[G2]。
 B-1:脂環式構造含有重合体を含む樹脂、熱軟化温度160℃、日本ゼオン社製「ZEONOR」の製品群の一つ。
 E:光学フィルム、富士フイルム(株)製「フジタック」
 |Re|:面内方向のレターデーションの絶対値
 |Rth|:厚み方向のレターデーションの絶対値
The meanings of the abbreviations in the table are as follows.
G1: Hydrogenated block copolymer [G1] produced in Production Example 1.
G2: Hydrogenated block copolymer [G2] produced in Production Example 2.
B-1: A resin containing an alicyclic structure-containing polymer, a heat softening temperature of 160 ° C., one of the “ZEONOR” product group manufactured by Nippon Zeon.
E: Optical film, “Fujitack” manufactured by FUJIFILM Corporation
| Re |: Absolute value of retardation in in-plane direction | Rth |: Absolute value of retardation in thickness direction
 実施例及び比較例の結果から明らかな通り、本発明の光学フィルムの製造方法により得られたフィルムは、対象物との密着性が高く、レターデーションが小さく、かつ水蒸気透過率が低い光学フィルムとすることができる。 As is apparent from the results of the examples and comparative examples, the film obtained by the method for producing an optical film of the present invention has high adhesion to an object, low retardation, and low optical permeability. can do.
 10…コア層
 11,12…表層
 12…表層
 20…積層フィルム
 50…UV接着剤
 60…試験用フィルム
 70…粘着剤
 80…スライドガラス
 100…光学フィルム
 100A,100B…光学フィルムの面
 M…押出し成形機
 P…剥離領域
 S…サンプルフィルム
DESCRIPTION OF SYMBOLS 10 ... Core layer 11,12 ... Surface layer 12 ... Surface layer 20 ... Laminated film 50 ... UV adhesive 60 ... Test film 70 ... Adhesive 80 ... Slide glass 100 ... Optical film 100A, 100B ... Optical film surface M ... Extrusion molding Machine P ... Peeling area S ... Sample film

Claims (10)

  1.  環式炭化水素基含有化合物単位を有するブロック[Da]と、
     鎖状炭化水素化合物単位、又は鎖状炭化水素化合物単位及び環式炭化水素基含有化合物単位を有するブロック[Ea]と、
     を含むブロック共重合体を含み、
     表面と中央部での、前記ブロック[Da]の体積と、前記ブロック[Ea]の体積との組成比率の差が、0~10%であり、
     面内方向のレターデーションの絶対値が5nm以下であり、
     厚み方向のレターデーションの絶対値が10nm以下であり、かつ、
     水蒸気透過率が20g/(m・日)以下である、光学フィルム。
    A block [Da] having a cyclic hydrocarbon group-containing compound unit;
    A block [Ea] having a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group-containing compound unit;
    A block copolymer comprising
    The difference in the composition ratio between the volume of the block [Da] and the volume of the block [Ea] at the surface and the central part is 0 to 10%,
    The absolute value of in-plane retardation is 5 nm or less,
    The absolute value of retardation in the thickness direction is 10 nm or less, and
    An optical film having a water vapor transmission rate of 20 g / (m 2 · day) or less.
  2.  前記ブロック共重合体を含む樹脂が押出製膜されてなる、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the resin containing the block copolymer is formed by extrusion.
  3.  前記ブロック共重合体が、
     前記ブロック[Da]として、環式炭化水素基含有化合物水素化物単位を有する、1分子あたり2つ以上の重合体ブロック[Db]を含み、
     前記ブロック[Ea]として、鎖状炭化水素化合物水素化物単位、又は鎖状炭化水素化合物またはその水素化物単位及び環式炭化水素含有化合物またはその水素化物単位を有する、1分子あたり1以上の重合体ブロック[Eb]とを含む共重合体である、請求項1又は2に記載の光学フィルム。
    The block copolymer is
    The block [Da] includes two or more polymer blocks [Db] per molecule having a cyclic hydrocarbon group-containing compound hydride unit,
    One or more polymers per molecule having a chain hydrocarbon compound hydride unit or a chain hydrocarbon compound or hydride unit thereof and a cyclic hydrocarbon-containing compound or hydride unit thereof as the block [Ea] The optical film of Claim 1 or 2 which is a copolymer containing block [Eb].
  4.  請求項1~3のいずれか1項に記載の光学フィルムと、偏光子とを備える、偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 3 and a polarizer.
  5.  請求項4に記載の偏光板を備える、液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to claim 4.
  6.  樹脂Aと樹脂Bとを共押し出しすることにより、樹脂Aからなるコア層、及び前記コア層の面上に設けられた樹脂Bからなる表層を備える積層フィルムを得る工程と、
     前記積層フィルムから前記表層を剥離する工程と、を含む光学フィルムの製造方法であって、
     前記光学フィルムは、
     面内方向のレターデーションの絶対値が5nm以下であり、
     厚み方向のレターデーションの絶対値が10nm以下であり、かつ、
     水蒸気透過率が20g/(m・日)以下である、光学フィルムの製造方法。
    By coextruding resin A and resin B to obtain a laminated film comprising a core layer made of resin A, and a surface layer made of resin B provided on the surface of the core layer;
    Peeling the surface layer from the laminated film, and a method for producing an optical film comprising:
    The optical film is
    The absolute value of in-plane retardation is 5 nm or less,
    The absolute value of retardation in the thickness direction is 10 nm or less, and
    The manufacturing method of an optical film whose water-vapor-permeation rate is 20 g / (m < 2 > * day) or less.
  7.  前記光学フィルムの前記面内方向のレターデーションの絶対値が2nm以下であり、前記光学フィルムの前記厚み方向のレターデーションの絶対値が2nm以下である、請求項6に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 6, wherein an absolute value of retardation in the in-plane direction of the optical film is 2 nm or less, and an absolute value of retardation in the thickness direction of the optical film is 2 nm or less. .
  8.  前記樹脂Bが脂環式構造含有重合体を含む、請求項6又は7に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 6 or 7, wherein the resin B contains an alicyclic structure-containing polymer.
  9.  前記樹脂Aが、
     環式炭化水素基含有化合物水素化物単位を有する、1分子あたり2つ以上の重合体ブロック[D]と、
     鎖状炭化水素化合物水素化物単位、又は鎖状炭化水素化合物単位及び環式炭化水素含有化合物水素化物単位を有する、1分子あたり1以上の重合体ブロック[E]と、
     を含む水素化ブロック共重合体を含む、請求項6~8のいずれか1項に記載の光学フィルムの製造方法。
    The resin A is
    Two or more polymer blocks [D] per molecule having cyclic hydrocarbon group-containing compound hydride units;
    One or more polymer blocks [E] per molecule having a chain hydrocarbon compound hydride unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon-containing compound hydride unit;
    The method for producing an optical film according to any one of claims 6 to 8, comprising a hydrogenated block copolymer comprising
  10.  前記樹脂Aが、
     環式炭化水素基含有化合物単位を有するブロックと、
     鎖状炭化水素化合物単位、又は鎖状炭化水素化合物単位及び環式炭化水素基含有化合物単位を有するブロックと、
     を含むブロック共重合体からなり、
     前記光学フィルムにおいて、その表面と中央部での組成比率の差が、0~10%である、
     請求項6~8のいずれか1項に記載の光学フィルムの製造方法。
    The resin A is
    A block having a cyclic hydrocarbon group-containing compound unit;
    A block having a chain hydrocarbon compound unit, or a chain hydrocarbon compound unit and a cyclic hydrocarbon group-containing compound unit;
    A block copolymer containing
    In the optical film, the difference in composition ratio between the surface and the center is 0 to 10%.
    The method for producing an optical film according to any one of claims 6 to 8.
PCT/JP2018/013201 2017-03-30 2018-03-29 Optical film, method for producing same, polarizing plate and liquid crystal display device WO2018181696A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019510115A JPWO2018181696A1 (en) 2017-03-30 2018-03-29 Optical film, manufacturing method thereof, polarizing plate, and liquid crystal display device
KR1020197027674A KR102607190B1 (en) 2017-03-30 2018-03-29 Optical film, manufacturing method thereof, polarizer, and liquid crystal display device
CN201880019036.0A CN110418988B (en) 2017-03-30 2018-03-29 Optical film, method for producing optical film, polarizing plate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068338 2017-03-30
JP2017068338 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181696A1 true WO2018181696A1 (en) 2018-10-04

Family

ID=63676151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013201 WO2018181696A1 (en) 2017-03-30 2018-03-29 Optical film, method for producing same, polarizing plate and liquid crystal display device

Country Status (5)

Country Link
JP (1) JPWO2018181696A1 (en)
KR (1) KR102607190B1 (en)
CN (1) CN110418988B (en)
TW (1) TWI787246B (en)
WO (1) WO2018181696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054070A (en) * 2019-09-30 2021-04-08 東レ株式会社 Laminated film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000985A (en) * 2006-06-22 2008-01-10 Asahi Kasei Chemicals Corp Laminated body of polar resin layer and layer comprising modified thermoplastic copolymer and / or composition thereof
JP2009125984A (en) * 2007-11-20 2009-06-11 Mitsui Chemicals Inc Laminate
JP2010191385A (en) * 2009-02-20 2010-09-02 Nippon Zeon Co Ltd Retardation plate
JP2011013378A (en) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd Film
JP2011043602A (en) * 2009-08-20 2011-03-03 Sekisui Chem Co Ltd Method for forming retardation film
WO2016043117A1 (en) * 2014-09-16 2016-03-24 日本ゼオン株式会社 Optical film, shaping film, method for manufacturing optical film, and method for manufacturing stretched film

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN146649B (en) * 1976-06-23 1979-08-04 Johnson & Johnson
JP2619034B2 (en) * 1988-12-28 1997-06-11 三井石油化学工業株式会社 Release film composed of laminate
GB9907483D0 (en) * 1999-03-31 1999-05-26 Cpfilms Inc Film composites
WO2003076985A1 (en) * 2002-03-13 2003-09-18 Fuji Photo Film Co., Ltd. Optically compensating film, polarizing plate and apparatus for displaying images (lcd)
MX2007010249A (en) * 2005-02-23 2008-03-10 Topas Advanced Polymers Inc Multilayer films including cycloolefin copolymer and styrene-butadiene copolymer.
JP2008249896A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Protective film for polarizing plate, polarizing plate, and liquid crystal display device
JP2009053684A (en) * 2007-07-30 2009-03-12 Fujifilm Corp Retardation film, polarizing plate, and liquid crystal display device using the same
JP2011043525A (en) * 2007-12-14 2011-03-03 Denki Kagaku Kogyo Kk Composite reflective sheet
US7998888B2 (en) * 2008-03-28 2011-08-16 Kimberly-Clark Worldwide, Inc. Thermoplastic starch for use in melt-extruded substrates
DE102008035956A1 (en) * 2008-07-31 2010-02-04 Nordenia Deutschland Gronau Gmbh Process for producing a laminating composite for the formation of back-molded plastic molded parts
JP2011034069A (en) * 2009-07-09 2011-02-17 Fujifilm Corp Film and method for producing the same, polarizing plate and liquid crystal display device
CN102947406B (en) * 2010-06-04 2014-11-05 株式会社可乐丽 Adhesive composition for optical film and adhesive optical film
TW201213128A (en) * 2010-07-05 2012-04-01 Sumitomo Chemical Co Laminate and process for preparing the same
US9555442B2 (en) * 2010-08-17 2017-01-31 Mehler Texnologies Gmbh Composite material with coating material
KR101811290B1 (en) * 2010-12-28 2017-12-26 니폰 제온 가부시키가이샤 Phase difference film layered body, and method for producing phase difference film layered body
JP5887118B2 (en) * 2011-12-05 2016-03-16 日東電工株式会社 Adhesive layer for transparent conductive film, transparent conductive film with adhesive layer, transparent conductive laminate, and touch panel
WO2013161454A1 (en) * 2012-04-26 2013-10-31 Jx日鉱日石エネルギー株式会社 Method for producing mold for transferring fine pattern, method for producing substrate having uneven structure using same, and method for producing organic el element having said substrate having uneven structure
US9493688B2 (en) * 2012-11-15 2016-11-15 Zeon Corporation Resin composition and molded article comprising same
CN105359012B (en) * 2013-07-09 2017-12-15 富士胶片株式会社 Optical film, polarizer and liquid crystal display device using the optical film
JP6671289B2 (en) * 2014-09-16 2020-03-25 株式会社明治 Natural cheese having heat-resistant shape retention and method for producing the same
WO2016205091A1 (en) * 2015-06-13 2016-12-22 Ciuperca Romeo Iiarian Foam sheathing reinforced with hybrid laminated fabric impregnated with vapor permeable air barrier material
CN106515176A (en) * 2016-09-29 2017-03-22 赵其斌 Quality control method for composite optical pressed film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000985A (en) * 2006-06-22 2008-01-10 Asahi Kasei Chemicals Corp Laminated body of polar resin layer and layer comprising modified thermoplastic copolymer and / or composition thereof
JP2009125984A (en) * 2007-11-20 2009-06-11 Mitsui Chemicals Inc Laminate
JP2010191385A (en) * 2009-02-20 2010-09-02 Nippon Zeon Co Ltd Retardation plate
JP2011013378A (en) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd Film
JP2011043602A (en) * 2009-08-20 2011-03-03 Sekisui Chem Co Ltd Method for forming retardation film
WO2016043117A1 (en) * 2014-09-16 2016-03-24 日本ゼオン株式会社 Optical film, shaping film, method for manufacturing optical film, and method for manufacturing stretched film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054070A (en) * 2019-09-30 2021-04-08 東レ株式会社 Laminated film
JP7593027B2 (en) 2019-09-30 2024-12-03 東レ株式会社 Laminated Film

Also Published As

Publication number Publication date
KR102607190B1 (en) 2023-11-27
KR20190128648A (en) 2019-11-18
TWI787246B (en) 2022-12-21
TW201837072A (en) 2018-10-16
CN110418988A (en) 2019-11-05
CN110418988B (en) 2021-08-13
JPWO2018181696A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP7031587B2 (en) Laminated film and polarizing plate
TWI743256B (en) Polarizing plate and manufacturing method of polarizing plate
JP2022136086A (en) Retardation film and manufacturing method
JP6977736B2 (en) Liquid crystal display device
JP7452580B2 (en) Retardation film and manufacturing method
JP6777176B2 (en) Optical laminate and its manufacturing method, polarizing plate and display device
JP2010191385A (en) Retardation plate
WO2018181696A1 (en) Optical film, method for producing same, polarizing plate and liquid crystal display device
JP7211043B2 (en) retardation film
KR20180097590A (en) Optical laminate, polarizing plate and liquid crystal display
CN109923448B (en) Optical Films and Polarizers
JP7416066B2 (en) Method for manufacturing polarizing film and method for manufacturing display device
JP2022136084A (en) Retardation film and manufacturing method
KR102862176B1 (en) Phase difference film and method for manufacturing phase difference film
JP6891902B2 (en) Laminated film, its manufacturing method, polarizing plate, and display device
KR20200131822A (en) Phase difference film and manufacturing method of phase difference film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510115

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027674

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775867

Country of ref document: EP

Kind code of ref document: A1