WO2018181989A1 - カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 - Google Patents
カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 Download PDFInfo
- Publication number
- WO2018181989A1 WO2018181989A1 PCT/JP2018/013879 JP2018013879W WO2018181989A1 WO 2018181989 A1 WO2018181989 A1 WO 2018181989A1 JP 2018013879 W JP2018013879 W JP 2018013879W WO 2018181989 A1 WO2018181989 A1 WO 2018181989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- underlayer film
- formula
- resist underlayer
- resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- VITKQZYWILRMFQ-UHFFFAOYSA-N CC(C)(C)CS(NC)(=O)=O Chemical compound CC(C)(C)CS(NC)(=O)=O VITKQZYWILRMFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
- H01L21/0276—Photolithographic processes using an anti-reflective coating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/16—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/80—Etching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0042—Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
- G03F7/0043—Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0752—Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2014—Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
- G03F7/2016—Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/80—Siloxanes having aromatic substituents, e.g. phenyl side groups
Definitions
- the present invention relates to a composition for forming a lower layer film between a substrate used for manufacturing a semiconductor device and a resist (for example, a photoresist or an electron beam resist). More specifically, the present invention relates to a resist underlayer film forming composition for lithography for forming an underlayer film used as a lower layer of a photoresist in a lithography process for manufacturing a semiconductor device. Moreover, it is related with the formation method of the resist pattern using the said lower layer film formation composition.
- microfabrication by lithography using a photoresist has been performed in the manufacture of semiconductor devices.
- the microfabrication is obtained by forming a thin film of photoresist on a semiconductor substrate such as a silicon wafer, irradiating it with an actinic ray such as ultraviolet rays through a mask pattern on which a semiconductor device pattern is drawn, and developing it.
- an actinic ray such as ultraviolet rays
- fine irregularities corresponding to the pattern are formed on the substrate surface by etching the substrate using the photoresist pattern as a protective film.
- a film known as a hard mask containing a metal element such as silicon or titanium is used as a lower layer film between the semiconductor substrate and the photoresist.
- the rate of removal by dry etching largely depends on the type of gas used for dry etching.
- the gas type it is possible to remove the hard mask by dry etching without greatly reducing the thickness of the photoresist.
- a resist underlayer film has been arranged between a semiconductor substrate and a photoresist in order to achieve various effects including an antireflection effect.
- Patent Document 1 a resist underlayer film containing polysiloxane using a silane having an ester bond has been proposed (see Patent Document 1, Patent Document 2, and Patent Document 3).
- An object of the present invention is to provide a resist underlayer film forming composition for lithography that can be used in the manufacture of semiconductor devices. Specifically, it is to provide a resist underlayer film forming composition for lithography for forming a resist underlayer film that can be used as a hard mask. Moreover, it is providing the resist underlayer film forming composition for lithography for forming the resist underlayer film which can be used as an antireflection film. Another object of the present invention is to provide a resist underlayer film for lithography that does not cause intermixing with the resist and has a higher dry etching rate than the resist, and a resist underlayer film forming composition for forming the underlayer film.
- a first aspect of the present invention is a composition for forming a silicon-containing resist underlayer film, wherein the silicon-containing resist underlayer film is masked with a chemical solution containing hydrogen peroxide after a pattern is transferred to the lower layer by a lithography process.
- a silicon-containing resist underlayer film forming composition characterized in that it is a film used as the mask layer in the step of removing the layer, and the composition contains polysiloxane containing a unit structure containing a carbonyl group-containing functional group object
- the silicon-containing resist underlayer film forming composition according to the first aspect wherein the unit structure containing a carbonyl group-containing functional group is a unit structure containing a cyclic acid anhydride group, a cyclic diester group, or a diester group
- the silicon-containing resist underlayer film forming composition according to the first aspect in which the polysiloxane is a hydrolytic condensate of a hydrolyzable silane containing a silane represented by the following formula (1):
- N is an integer of 1 or 2.
- T 11 , T 15 , and T 18 represents an alkylene group, a cyclic alkylene group, an alkenylene group, an arylene group, a sulfur atom, an oxygen atom, an oxycarbonyl group, an amide group, a secondary amino group, or a combination thereof
- T 12 , T 13 , T 14 , T 16 , T 17 , T 19, and T 20 each represent a hydrogen atom or an alkyl group
- T 21 represents an alkylene group
- * represents a bonding site with a silicon atom directly or through a linking group. And bonded to a silicon atom by a Si—C bond.
- R 2 is an organic group having an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, an alkenyl group, or an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, or a cyano group. And bonded to a silicon atom by a Si—C bond.
- R 3 represents an alkoxy group, an acyloxy group, or a halogen atom.
- a represents an integer of 1
- b represents an integer of 0 or 1
- a + b represents an integer of 1 or 2.
- the silicon-containing resist underlayer film forming composition according to the fourth aspect, in which the amide group is a sulfonamide group or a diallyl isocyanurate group is a cohydrolyzed condensate of a hydrolyzable silane containing a silane represented by the above formula (1) and a silane represented by the following formula (2).
- R 5 represents an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, an alkenyl group, or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, or a cyano group. And bonded to a silicon atom by a Si—C bond.
- R 6 represents an alkoxy group, an acyloxy group, or a halogen atom.
- a represents an integer of 1
- b represents an integer of 0 or 1
- a + b represents an integer of 1 or 2.
- the polysiloxane is a cohydrolyzed condensate of a hydrolyzable silane containing the silane represented by the above formula (1), the silane represented by the above formula (2), and other silanes, 2.
- object (In formula (3), R 7 is an organic group having an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, an alkenyl group, or an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, or a cyano group; (It is bonded to a silicon atom by a Si—C bond, R 8 represents an alkoxy group, an acyloxy group, or a halogen atom, and a represents an integer of 0 to 3.)
- R 9 is an alkyl group and bonded to a silicon atom by a Si—C bond
- R 10 represents an alkoxy group, an acyloxy group
- the silicon-containing resist underlayer film forming composition according to any one of the first aspect to the seventh aspect further including a photoacid generator
- the silicon-containing resist underlayer film forming composition according to any one of the first aspect to the eighth aspect further including a metal oxide
- the chemical solution containing hydrogen peroxide contains an aqueous solution containing ammonia and hydrogen peroxide, an aqueous solution containing hydrochloric acid and hydrogen peroxide, an aqueous solution containing sulfuric acid and hydrogen peroxide, or hydrofluoric acid and hydrogen peroxide.
- the silicon-containing resist underlayer film forming composition according to any one of the first to ninth aspects which is an aqueous solution
- a method for producing a resist underlayer film obtained by applying and baking the resist underlayer film forming composition according to any one of the first to tenth aspects on a semiconductor substrate As a twelfth aspect, a step of applying the resist underlayer film forming composition according to any one of the first to tenth aspects on a semiconductor substrate and baking to form a resist underlayer film, on the underlayer film
- a method of manufacturing a semiconductor device including a step of processing a semiconductor substrate with a resist and a resist underlayer film, and a step of removing a mask layer with a chemical solution containing hydrogen peroxide, As a
- the present application is a silicon-based mask residue such as a silicon-containing resist underlayer film, which can remove a residue of a mask after processing a substrate, for example, an organic underlayer film including a resist and a resist underlayer film with a chemical solution. Also, it is to manufacture a semiconductor device with little substrate damage by a resist underlayer film that can be easily removed by a chemical solution.
- the chemical solution is a chemical solution containing hydrogen peroxide, an aqueous solution containing ammonia and hydrogen peroxide (SC-1 chemical solution), an aqueous solution containing hydrochloric acid and hydrogen peroxide (SC-2 chemical solution), and an aqueous solution containing sulfuric acid and hydrogen peroxide.
- SC-1 chemical solution an aqueous solution containing ammonia and hydrogen peroxide
- SC-2 chemical solution an aqueous solution containing hydrochloric acid and hydrogen peroxide
- SPM chemical solution or an aqueous solution (FPM chemical solution) containing hydrofluoric acid and hydrogen peroxide, and a resist underlayer film forming composition excellent in removability of these chemical solutions.
- the resist underlayer film of the present invention is effective in the step of removing the organic underlayer film containing the resist or resist underlayer film as a mask layer with a chemical solution containing hydrogen peroxide after the step of etching or ion implantation of the semiconductor substrate. is there.
- the present invention provides a composition for forming a silicon-containing resist underlayer film for use in a step of removing a mask layer including a silicon-containing resist underlayer film with a chemical solution containing hydrogen peroxide after the pattern is transferred to the lower layer by a lithography process.
- the composition is a silicon-containing resist underlayer film forming composition containing polysiloxane containing a unit structure containing a carbonyl group-containing functional group.
- the resist underlayer film forming composition of the present invention contains a hydrolyzable condensate (polymer) of the hydrolyzable silane of formula (1) and a solvent.
- the hydrolyzable silane is a combination of a hydrolyzable silane of formula (1) and a hydrolyzable silane of formula (2), or a hydrolyzable silane of formula (1) and a hydrolyzable silane of formula (2).
- hydrolyzable silane of formula (3) a combination of a hydrolyzable silane of formula (1) and a hydrolyzable silane of formula (3), a hydrolyzable silane of formula (1), a formula
- the hydrolyzable silane of (2), the hydrolyzable silane of formula (3), and the hydrolyzable condensate of hydrolyzable silane comprising the combination of hydrolyzable silane of formula (4) can be used.
- acid water, alcohol, curing catalyst, acid generator, other organic polymer, light-absorbing compound, surfactant and the like can be included.
- the solid content in the resist underlayer film forming composition of the present invention is, for example, 0.1% by mass to 50% by mass, or 0.1% by mass to 30% by mass, and 0.1% by mass to 25% by mass.
- the solid content is obtained by removing the solvent component from all the components of the resist underlayer film forming composition.
- the ratio of the hydrolyzable silane, its hydrolyzate, and its hydrolysis condensate in the solid content is 20% by mass or more, for example, 50% by mass to 100% by mass, 60% by mass to 100% by mass, 70%. % By mass to 100% by mass.
- a hydrolysis-condensation product a partial hydrolysis product or a silane compound in which hydrolysis is not completely completed are mixed with the hydrolysis-condensation product, and the mixture can also be used.
- This condensate is a polymer having a polysiloxane structure.
- the hydrolyzable silane used in the present invention can contain a silane of the above formula (1).
- R 1 includes the above formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), or formula (1-6). It is an organic group and is bonded to a silicon atom by a Si—C bond.
- T 1 and T 4 are alkylene groups or cyclic alkylene groups
- T 2 is an alkyl group
- T 3 is a cyclic alkylene group.
- n represents an integer of 1 or 2. And is bonded to a silicon atom by a Si—C bond.
- T 11 , T 15 , and T 18 are an alkylene group, a cyclic alkylene group, an alkenylene group, an arylene group, a sulfur atom, oxygen An atom, an oxycarbonyl group, an amide group, a secondary amino group, or a combination thereof, and T 12 , T 13 , T 14 , T 16 , T 17 , T 19 and T 20 are each a hydrogen atom or an alkyl group.
- T 21 is an alkylene group.
- R 2 is an alkyl group, aryl group, halogenated alkyl group, halogenated aryl group, alkenyl group, or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, or a cyano group, and Si—C It is bonded to a silicon atom by a bond.
- R 3 represents an alkoxy group, an acyloxy group, or a halogen group.
- a represents an integer of 1
- b represents an integer of 0 or 1
- a + b represents an integer of 1 or 2. * A bonding site with a silicon atom directly or through a linking group.
- the hydrolyzable silane used in the present invention can be a hydrolyzable silane containing a silane of formula (1) and a silane of formula (2).
- R 4 is an organic group containing the above formula (2-1) or (2-2), and is bonded to a silicon atom by a Si—C bond.
- R 5 is an alkyl group, aryl group, halogenated alkyl group, halogenated aryl group, alkenyl group, or an organic group having an epoxy group, acryloyl group, methacryloyl group, mercapto group, amino group, or cyano group, and Si—C It is bonded to a silicon atom by a bond.
- R 6 represents an alkoxy group, an acyloxy group, or a halogen group.
- a represents an integer of 1
- b represents an integer of 0 or 1
- a + b represents an integer of 1 or 2. * Indicates a bonding site with a silicon atom directly or through a coupler.
- the hydrolyzable silane used in the present invention is a hydrolyzable silane containing a silane of formula (1), a silane of formula (2), and other silanes, and the other silanes are represented by formula (3) and formula (4). At least one silane selected from the group consisting of:
- R 7 has an alkyl group, aryl group, halogenated alkyl group, halogenated aryl group, alkenyl group, or epoxy group, acryloyl group, methacryloyl group, mercapto group, or cyano group. It is an organic group and bonded to a silicon atom by a Si—C bond, R 8 represents an alkoxy group, an acyloxy group, or a halogen atom, and a represents an integer of 0 to 3.
- R 9 is an alkyl group and bonded to a silicon atom by a Si—C bond
- R 10 represents an alkoxy group, an acyloxy group, or a halogen group
- Y is Represents an alkylene group or an arylene group
- b represents an integer of 0 or 1
- c represents an integer of 0 or 1;
- the alkyl group is a linear or branched alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, s-butyl, t-butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n- Propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, n-hexyl, 1-methyl-n-pentyl group, 2-methyl -N-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n
- a cyclic alkyl group can also be used.
- a cyclic alkyl group having 1 to 10 carbon atoms includes a cyclopropyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group, a 2-methyl-cyclopropyl group, a cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2 -Ethyl-cyclopropyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl Group, 1,2-di
- alkylene group examples include an alkylene group derived from the above alkyl group.
- a methyl group includes a methylene group
- an ethyl group includes an ethylene group
- a propyl group includes a propylene group.
- the alkenyl group is an alkenyl group having 2 to 10 carbon atoms, and includes an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, a 1-butenyl group, a 2-butenyl group, and a 3-butenyl group.
- alkenylene groups include alkenylene groups derived from the above alkenyl groups.
- aryl group examples include aryl groups having 6 to 20 carbon atoms, such as a phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, o-fluorophenyl group, p-mercaptophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-aminophenyl group, p-cyanophenyl group, ⁇ -naphthyl group, ⁇ -naphthyl Group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phen
- the arylene group includes an arylene group derived from the aryl group. Moreover, the organic group which these halogen atoms, such as fluorine, chlorine, bromine, or iodine substituted, is mentioned.
- a sulfide bond can be formed by using a sulfur atom.
- An ether bond can be formed by using an oxygen atom.
- An ester bond can be formed by using an oxycarbonyl group.
- An amide bond can be formed by using an amide group.
- An amino group can be formed by using a secondary amino group.
- organic group having an epoxy group examples include glycidoxymethyl, glycidoxyethyl, glycidoxypropyl, glycidoxybutyl, and epoxycyclohexyl.
- Examples of the organic group having an acryloyl group include acryloylmethyl, acryloylethyl, acryloylpropyl, and the like.
- Examples of the organic group having a methacryloyl group include methacryloylmethyl, methacryloylethyl, methacryloylpropyl, and the like.
- Examples of the organic group having a mercapto group include ethyl mercapto, butyl mercapto, hexyl mercapto and octyl mercapto.
- Examples of the organic group having a cyano group include cyanoethyl and cyanopropyl.
- alkoxy group having 1 to 20 carbon atoms examples include alkoxy groups having a linear, branched, and cyclic alkyl moiety having 1 to 20 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxy group.
- the acyloxy group having 2 to 20 carbon atoms is, for example, methylcarbonyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, i-propylcarbonyloxy group, n-butylcarbonyloxy group, i-butylcarbonyloxy group, s-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3-methyl-n-butyl Carbonyloxy group, 1,1-dimethyl-n-propylcarbonyloxy group, 1,2-dimethyl-n-propylcarbonyloxy group, 2,2-dimethyl-n-propylcarbonyloxy group, 1-ethyl-n-propyl Carbonyloxy group, n-hexylcarbonyloxy group, 1- Tyl-n-p
- halogen atom examples include fluorine, chlorine, bromine and iodine.
- hydrolyzable silane of the formula (1) examples are as follows.
- hydrolyzable silane of Formula (2) can be illustrated below.
- T is an alkyl group, and examples of the above-mentioned alkyl group can be given.
- a methyl group and an ethyl group are preferable.
- Examples of the silicon-containing compound represented by the formula (3) include tetramethoxysilane, tetrachlorosilane, tetraacetoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraacetoxysilane, Methyltrimethoxysilane, methyltrichlorosilane, methyltriacetoxysilane, methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxy Silane, methyltriphenethyloxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, ⁇ -glycidoxye
- the aryl group of R 7 in the formula (3) is preferably a substituted aryl group, for example, a substituted phenyl group, and examples thereof include an alkoxyphenyl group, an acyloxyphenyl group, and silanes exemplified as an organic group containing the same. It is done.
- Examples of the silicon-containing compound represented by the formula (4) include methylene bistrimethoxysilane, methylene bistrichlorosilane, methylene bistriacetoxysilane, ethylene bistriethoxysilane, ethylene bistrichlorosilane, ethylene bistriacetoxysilane, propylene bistriethoxysilane, and butylene bistrimethoxysilane.
- the hydrolysis condensate (polyorganosiloxane) of the hydrolyzable silane can obtain a condensate having a weight average molecular weight of 1,000 to 1,000,000 or 1,000 to 100,000. These molecular weights are molecular weights obtained in terms of polystyrene by GPC analysis.
- GPC measurement conditions are, for example, GPC apparatus (trade name HLC-8220 GPC, manufactured by Tosoh Corporation), GPC column (trade names Shodex KF803L, KF802, KF801, Showa Denko), column temperature is 40 ° C., and eluent (elution solvent) Is tetrahydrofuran, the flow rate (flow rate) is 1.0 ml / min, and the standard sample is polystyrene (manufactured by Showa Denko KK).
- acyloxysilyl group For hydrolysis of the alkoxysilyl group, acyloxysilyl group, or halogenated silyl group, 0.5 to 100 mol, preferably 1 to 10 mol of water is used per mol of the hydrolyzable group.
- hydrolysis catalyst 0.001 mol to 10 mol, preferably 0.001 mol to 1 mol of hydrolysis catalyst can be used per mol of the hydrolyzable group.
- the reaction temperature during the hydrolysis and condensation is usually 20 ° C to 80 ° C.
- Hydrolysis may be performed completely or partially. That is, a hydrolyzate or a monomer may remain in the hydrolysis condensate.
- a catalyst can be used in the hydrolysis and condensation.
- hydrolysis catalyst examples include metal chelate compounds, organic acids, inorganic acids, organic bases, and inorganic bases.
- metal chelate compound as a hydrolysis catalyst examples include titanium chelate compounds such as triethoxy mono (acetylacetonato) titanium, zirconium chelate compounds such as triethoxy mono (acetylacetonato) zirconium, and tris (acetylacetonato) aluminum.
- titanium chelate compounds such as triethoxy mono (acetylacetonato) titanium
- zirconium chelate compounds such as triethoxy mono (acetylacetonato) zirconium
- tris (acetylacetonato) aluminum examples of the metal chelate compound as a hydrolysis catalyst.
- aluminum chelate compound is mentioned.
- Organic acids as hydrolysis catalysts are, for example, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacin Acid, gallic acid, butyric acid, merit acid, arachidonic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Examples include acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthal
- Examples of the inorganic acid as the hydrolysis catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid and the like.
- Organic bases as hydrolysis catalysts include, for example, pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, trimethylamine, triethylamine, monoethanolamine, diethanolamine, dimethylmonoethanolamine, monomethyldiethanolamine, triethanolamine, diazabicyclooctane, diazine.
- Examples include zabicyclononane, diazabicycloundecene, and tetramethylammonium hydroxide.
- the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like. Of these catalysts, metal chelate compounds, organic acids, and inorganic acids are preferred, and these may be used alone or in combination of two or more.
- organic solvent used in the hydrolysis examples include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i- Aliphatic hydrocarbon solvents such as octane, cyclohexane and methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propyl benzene, i-propyl benzene, diethylbenzene, i-butylbenzene, triethylbenzene, di -Aromatic hydrocarbon solvents such as i-propyl benzene, n-amyl naphthalene, trimethylbenzene; methanol, ethanol, ethanol
- acetone methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, di- Ketone solvents such as i-butyl ketone, trimethylnonanone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, and fenchon are preferred from the viewpoint of storage stability of the solution.
- bisphenol S or a bisphenol S derivative can be added as an additive.
- the bisphenol S or the bisphenol S derivative is 0.01 to 20 parts by mass, 0.01 to 10 parts by mass, or 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyorganosiloxane. is there.
- Preferred bisphenol S or bisphenol S derivatives are exemplified below.
- the resist underlayer film forming composition of the present invention can contain a curing catalyst.
- the curing catalyst functions as a curing catalyst when a coating film containing polyorganosiloxane composed of a hydrolysis condensate is heated and cured.
- ammonium salts As the curing catalyst, ammonium salts, phosphines, phosphonium salts, and sulfonium salts can be used.
- the formula (D-1) Wherein m is an integer of 2 to 11, n d is an integer of 2 to 3, R 21 is an alkyl group or an aryl group, and Y d - is an anion.
- a quaternary ammonium salt having the structure Formula (D-3) A quaternary ammonium salt having the structure (wherein R 26 and R 27 represent an alkyl group or an aryl group, and Y d ⁇ represents an anion), Formula (D-4): A quaternary ammonium salt having the structure (wherein R 28 represents an alkyl group or an aryl group, and Y d ⁇ represents an anion), Formula (D-5): A quaternary ammonium salt having the structure (wherein R 29 and R 30 represent an alkyl group or an aryl group, and Y d - represents an anion), Formula (D-6): And tertiary ammonium salts having the structure (wherein m is an integer of 2 to 11, n is an integer of 2 to 3, H is a hydrogen atom, and Y d - is an anion).
- the formula (D-7) (However, R 31 , R 32 , R 33 , and R 34 represent an alkyl group or an aryl group, P represents a phosphorus atom, Y d ⁇ represents an anion, and R 31 , R 32 , R 33 , and R 34 are each bonded to a phosphorus atom by a CP bond).
- the formula (D-8) (However, R 15 , R 16 and R 17 represent an alkyl group or an aryl group, S represents a sulfur atom, Y d ⁇ represents an anion, and R 15 , R 16 and R 17 represent C—S, respectively. And a tertiary sulfonium salt which is bonded to a sulfur atom by a bond).
- R 21 of this quaternary ammonium salt represents an alkyl group or aryl group having 1 to 18 carbon atoms, preferably 2 to 10 carbon atoms, such as a linear alkyl group such as an ethyl group, a propyl group or a butyl group, benzyl Group, cyclohexyl group, cyclohexylmethyl group, dicyclopentadienyl group and the like.
- Anions (Y d ⁇ ) include halide ions such as chloride ions (Cl ⁇ ), bromide ions (Br ⁇ ), iodide ions (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate ( ⁇ An acid group such as SO 3 ⁇ ) or alcoholate (—O ⁇ ) can be mentioned.
- R 22 R 23 R 24 R 25 N + Y d - is a quaternary ammonium salt represented by.
- R 22 , R 23 , R 24 and R 25 are an alkyl group or aryl group having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom by a Si—C bond.
- the anion (Y d ⁇ ) includes halide ions such as chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate (—SO 4).
- This quaternary ammonium salt can be obtained commercially, for example, tetramethylammonium acetate, tetrabutylammonium acetate, triethylbenzylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzyl chloride. Examples include ammonium and trimethylbenzylammonium chloride.
- the compound represented by the above formula (D-3) is a quaternary ammonium salt derived from 1-substituted imidazole
- R 26 and R 27 are an alkyl group or an aryl group having 1 to 18 carbon atoms
- the total number of carbon atoms of R 26 and R 27 is preferably 7 or more.
- R 26 can be exemplified by methyl group, ethyl group, propyl group, phenyl group and benzyl group
- R 27 can be exemplified by benzyl group, octyl group and octadecyl group.
- the anion (Y d ⁇ ) includes halide ions such as chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate (—SO 4). And acid groups such as 3 ⁇ ) and alcoholate (—O ⁇ ).
- This compound can be obtained as a commercial product.
- imidazole compounds such as 1-methylimidazole and 1-benzylimidazole are reacted with alkyl halides and aryl halides such as benzyl bromide and methyl bromide. Can be manufactured.
- the compound represented by the above formula (D-4) is a quaternary ammonium salt derived from pyridine, and R 28 is an alkyl group or aryl having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms. Examples thereof include a butyl group, an octyl group, a benzyl group, and a lauryl group.
- the anion (Y d ⁇ ) includes halide ions such as chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate (—SO 4).
- this compound can be obtained as a commercial product, it is produced, for example, by reacting pyridine with an alkyl halide such as lauryl chloride, benzyl chloride, benzyl bromide, methyl bromide, octyl bromide, or an aryl halide. I can do it. Examples of this compound include N-laurylpyridinium chloride and N-benzylpyridinium bromide.
- the compound represented by the above formula (D-5) is a quaternary ammonium salt derived from a substituted pyridine represented by picoline or the like, and R 29 has 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms.
- R 29 has 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms.
- the alkyl group or aryl group include a methyl group, an octyl group, a lauryl group, and a benzyl group.
- R 30 is an alkyl group having 1 to 18 carbon atoms or an aryl group. For example, in the case of quaternary ammonium derived from picoline, R 30 is a methyl group.
- the anion (Y d ⁇ ) includes halide ions such as chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate (—SO 4). And acid groups such as 3 ⁇ ) and alcoholate (—O ⁇ ).
- This compound can also be obtained as a commercial product.
- a substituted pyridine such as picoline is reacted with an alkyl halide such as methyl bromide, octyl bromide, lauryl chloride, benzyl chloride or benzyl bromide, or an aryl halide.
- alkyl halide such as methyl bromide, octyl bromide, lauryl chloride, benzyl chloride or benzyl bromide, or an aryl halide.
- Examples of this compound include N-benz
- Compounds represented by the above formula (D-6) is a tertiary ammonium salt derived from an amine, m is 2 to 11, n d represents an integer of 2 to 3.
- Anions (Y d ⁇ ) include halide ions such as chloride ions (Cl ⁇ ), bromide ions (Br ⁇ ), iodide ions (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate ( ⁇
- An acid group such as SO 3 ⁇ ) or alcoholate (—O ⁇ ) can be mentioned. It can be produced by reacting an amine with a weak acid such as carboxylic acid or phenol. Examples of the carboxylic acid include formic acid and acetic acid.
- the anion (Y d ⁇ ) When formic acid is used, the anion (Y d ⁇ ) is (HCOO ⁇ ), and when acetic acid is used, the anion (Y d ⁇ ) is (CH 3 COO ⁇ ). When phenol is used, the anion (Y d ⁇ ) is (C 6 H 5 O ⁇ ).
- R 31 R 32 R 33 R 34 P + Y d - is a quaternary phosphonium salt having the structure.
- R 31 , R 32 , R 33 , and R 34 are an alkyl group or aryl group having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom by a Si—C bond, preferably R 31 to Of the four substituents of R 34 , three are phenyl groups or substituted phenyl groups, and examples thereof include phenyl groups and tolyl groups, and the remaining one is an alkyl group having 1 to 18 carbon atoms.
- Anions (Y d ⁇ ) include halide ions such as chloride ions (Cl ⁇ ), bromide ions (Br ⁇ ), iodide ions (I ⁇ ), carboxylate (—COO ⁇ ), sulfonate ( ⁇ An acid group such as SO 3 ⁇ ) or alcoholate (—O ⁇ ) can be mentioned.
- This compound can be obtained as a commercial product, for example, a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide.
- a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide.
- Triphenylmonoalkylphosphonium halides such as phosphonium, triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylbenzylphosphonium halide, tetraphenylphosphonium halide, tritolylmonoarylphosphonium halide, or tritolyl monohalogenate Examples thereof include alkylphosphonium (the halogen atom is a chlorine atom or a bromine atom).
- halogens such as triphenylmonoalkylphosphonium halides such as triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylmonoarylphosphonium halides such as triphenylbenzylphosphonium halide, and halogens such as tritolylmonophenylphosphonium halide.
- Preferred is a tolylyl monoarylphosphonium halide, or a tolyl monoalkylphosphonium halide such as a tolyl monomethylphosphonium halide (the halogen atom is a chlorine atom or a bromine atom).
- the phosphines include methylphosphine, ethylphosphine, propylphosphine, isopropylphosphine, isobutylphosphine, phenylphosphine and the like first phosphine, dimethylphosphine, diethylphosphine, diisopropylphosphine, diisoamylphosphine, diphenylphosphine and the like.
- tertiary phosphines such as trimethylphosphine, triethylphosphine, triphenylphosphine, methyldiphenylphosphine, and dimethylphenylphosphine.
- the compound represented by the above formula (D-8) is a tertiary sulfonium salt having a structure of R 15 R 16 R 17 S + Y d — .
- R 15 , R 16 , and R 17 are alkyl or aryl groups having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom through a Si—C bond, preferably R 15 to R 17 .
- R 15 , R 16 , and R 17 are alkyl or aryl groups having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom through a Si—C bond, preferably R 15 to R 17 .
- three are phenyl groups or substituted phenyl groups, and examples thereof include phenyl groups and tolyl groups, and the remaining one is an alkyl group having 1 to 18 carbon atoms, or An aryl group.
- Anions (Y d ⁇ ) include halogen ions such as chloride ions (Cl ⁇ ), bromide ions (Br ⁇ ), iodide ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 2). And acid groups such as 3 ⁇ ) and alcoholate (—O ⁇ ).
- This compound is available as a commercial product.
- halogenated tetraalkylsulfonium such as tri-n-butylsulfonium halide and tri-n-propylsulfonium halide
- trialkylbenzyl halide such as diethylbenzylsulfonium halide.
- Halogenated diphenylmonoalkylsulfonium such as sulfonium, halogenated diphenylmethylsulfonium, halogenated diphenylethylsulfonium, halogenated triphenylsulfonium, (halogen atom is chlorine or bromine atom), tri-n-butylsulfonium carboxylate, tri-n- Tetraalkylphosphonium carboxylates such as propylsulfonium carboxylate and trialkylbenzines such as diethylbenzylsulfonium carboxylate Sulfonium carboxylate, diphenylmethyl sulfonium carboxylate, diphenyl monoalkyl sulfonium carboxylates such as diphenylethyl sulfonium carboxylate include triphenylsulfonium carboxylate.
- triphenylsulfonium halide and triphenylsulfonium carboxylate
- the curing catalyst is 0.01 to 10 parts by mass, 0.01 to 5 parts by mass, or 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyorganosiloxane.
- Hydrolyzable silane is hydrolyzed using a catalyst in a solvent to condense, and the resulting hydrolyzed condensate (polymer) simultaneously removes by-product alcohol, used hydrolysis catalyst, and water by distillation under reduced pressure. be able to.
- the acid and base catalyst used for hydrolysis can be removed by neutralization or ion exchange.
- an organic acid, water, alcohol, or a combination thereof can be added to the resist underlayer film forming composition containing the hydrolysis condensate for stabilization. .
- organic acid examples include oxalic acid, malonic acid, methylmalonic acid, succinic acid, maleic acid, malic acid, tartaric acid, phthalic acid, citric acid, glutaric acid, citric acid, lactic acid, and salicylic acid. Of these, oxalic acid and maleic acid are preferred.
- the organic acid to be added is 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the condensate (polyorganosiloxane).
- pure water, ultrapure water, ion exchange water, etc. can be used for the water to add, and the addition amount can be 1 mass part thru
- the alcohol to be added is preferably one that is easily scattered by heating after coating, and examples thereof include methanol, ethanol, propanol, isopropanol, and butanol.
- the added alcohol can be 1 to 20 parts by mass with respect to 100 parts by mass of the resist underlayer film forming composition.
- the underlayer film forming composition for lithography of the present invention can contain an organic polymer compound, a photoacid generator, a surfactant, and the like as necessary in addition to the above components.
- the dry etching rate (thickness reduction per unit time), attenuation coefficient, refractive index, etc. of the resist underlayer film formed from the underlayer film forming composition for lithography of the present invention are adjusted. can do.
- the organic polymer compound is not particularly limited, and various organic polymers can be used. Polycondensation polymers and addition polymerization polymers can be used. Addition polymerization polymers and condensation polymerization polymers such as polyester, polystyrene, polyimide, acrylic polymer, methacrylic polymer, polyvinyl ether, phenol novolak, naphthol novolak, polyether, polyamide, and polycarbonate can be used.
- An organic polymer having an aromatic ring structure such as a benzene ring, a naphthalene ring, an anthracene ring, a triazine ring, a quinoline ring, and a quinoxaline ring that functions as a light absorption site is preferably used.
- organic polymer compounds include addition polymerizable monomers such as benzyl acrylate, benzyl methacrylate, phenyl acrylate, naphthyl acrylate, anthryl methacrylate, anthryl methyl methacrylate, styrene, hydroxystyrene, benzyl vinyl ether, and N-phenylmaleimide.
- addition-polymerized polymers containing as a structural unit, and polycondensation polymers such as phenol novolac and naphthol novolak.
- the polymer compound When an addition polymerization polymer is used as the organic polymer compound, the polymer compound may be a homopolymer or a copolymer.
- An addition polymerizable monomer is used for the production of the addition polymerization polymer.
- examples of such addition polymerizable monomers include acrylic acid, methacrylic acid, acrylic ester compounds, methacrylic ester compounds, acrylamide compounds, methacrylamide compounds, vinyl compounds, styrene compounds, maleimide compounds, maleic anhydride, acrylonitrile and the like. It is done.
- examples of such a polymer include a polycondensation polymer of a glycol compound and a dicarboxylic acid compound.
- examples of the glycol compound include diethylene glycol, hexamethylene glycol, butylene glycol and the like.
- examples of the dicarboxylic acid compound include succinic acid, adipic acid, terephthalic acid, maleic anhydride and the like.
- examples thereof include polyesters such as polypyromellitimide, poly (p-phenylene terephthalamide), polybutylene terephthalate, polyethylene terephthalate, polyamide, and polyimide.
- the organic polymer compound contains a hydroxyl group
- the hydroxyl group can form a crosslinking reaction with the polyorganosiloxane.
- organic polymer compound a polymer compound having a weight average molecular weight of, for example, 1,000 to 1,000,000, 3,000 to 300,000, 5,000 to 200,000, or 10,000 to 100,000 can be used.
- the proportion thereof is 1 to 200 parts by mass, 5 to 100 parts by mass, or 10 to 50 parts by mass, or 20 with respect to 100 parts by mass of the condensate (polyorganosiloxane). Thru
- the resist underlayer film forming composition of the present invention may contain an acid generator.
- the acid generator include a thermal acid generator and a photoacid generator.
- the photoacid generator generates an acid upon exposure of the resist. Therefore, the acidity of the lower layer film can be adjusted. This is a method for matching the acidity of the lower layer film with the acidity of the upper layer resist. Further, the pattern shape of the resist formed in the upper layer can be adjusted by adjusting the acidity of the lower layer film.
- Examples of the photoacid generator contained in the resist underlayer film forming composition of the present invention include onium salt compounds, sulfonimide compounds, and disulfonyldiazomethane compounds.
- onium salt compounds include diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoronormalbutanesulfonate, diphenyliodonium perfluoronormaloctanesulfonate, diphenyliodonium camphorsulfonate, bis (4-tert-butylphenyl) iodonium camphor.
- Iodonium salt compounds such as sulfonate and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoronormal butanesulfonate, triphenylsulfonium camphorsulfonate, and triphenyls Sulfonium salt compounds such as phosphonium trifluoromethanesulfonate, and the like.
- sulfonimide compound examples include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoronormalbutanesulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (trifluoromethanesulfonyloxy) naphthalimide, and the like. Can be mentioned.
- disulfonyldiazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, and bis (2,4-dimethylbenzenesulfonyl). And diazomethane, and methylsulfonyl-p-toluenesulfonyldiazomethane.
- photoacid generator Only one type of photoacid generator can be used, or two or more types can be used in combination.
- the proportion thereof is 0.01 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the condensate (polyorganosiloxane). Or 0.5 mass part thru
- the surfactant is effective in suppressing the occurrence of pinholes and installations when the resist underlayer film forming composition for lithography of the present invention is applied to a substrate.
- Examples of the surfactant contained in the resist underlayer film forming composition of the present invention include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether.
- surfactants may be used alone or in combination of two or more.
- the ratio is 0.0001 to 5 parts by mass, or 0.001 to 1 part by mass, or 0.01 to 0 with respect to 100 parts by mass of the condensate (polyorganosiloxane). .5 parts by mass.
- a rheology adjusting agent, an adhesion aid and the like can be added to the resist underlayer film forming composition of the present invention.
- the rheology modifier is effective for improving the fluidity of the underlayer film forming composition.
- the adhesion aid is effective for improving the adhesion between the semiconductor substrate or resist and the lower layer film.
- any solvent can be used without particular limitation as long as it can dissolve the solid content.
- solvents include methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol mono Ether ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate , Ethyl
- the resist underlayer film forming composition of the present invention is applied by an appropriate application method such as a spinner or a coater, and then baked to form a resist underlayer film.
- the conditions for firing are appropriately selected from firing temperatures of 80 ° C. to 250 ° C. and firing times of 0.3 minutes to 60 minutes.
- the firing temperature is 150 ° C. to 250 ° C.
- the firing time is 0.5 minutes to 2 minutes.
- the thickness of the formed lower layer film is, for example, 10 nm to 1000 nm, 20 nm to 500 nm, 50 nm to 300 nm, or 100 nm to 200 nm.
- a photoresist layer is formed on the resist underlayer film. Formation of the photoresist layer can be performed by a well-known method, that is, by applying a photoresist composition solution onto the lower layer film and baking.
- the film thickness of the photoresist is, for example, 50 nm to 10,000 nm, 100 nm to 2000 nm, or 200 nm to 1000 nm.
- a resist underlayer film can be formed thereon with the composition of the present invention, and a photoresist can be further coated thereon.
- the substrate can be processed by selecting an appropriate etching gas.
- the organic underlayer film can be processed using an oxygen-based gas as an etching gas, and the substrate can be processed using a fluorine-based gas that provides a sufficiently high etching rate for the organic underlayer film as an etching gas.
- the photoresist formed on the resist underlayer film of the present invention is not particularly limited as long as it is sensitive to light used for exposure. Either a negative photoresist or a positive photoresist can be used.
- a positive photoresist comprising a novolac resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemically amplified photoresist comprising a binder having a group that decomposes with an acid to increase the alkali dissolution rate and a photoacid generator, an acid
- a chemically amplified photoresist comprising a low-molecular compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate
- a chemically amplified photoresist composed of a low molecular weight compound that de
- Examples include trade name APEX-E manufactured by Shipley, trade name PAR710 manufactured by Sumitomo Chemical Co., Ltd., and trade name SEPR430 manufactured by Shin-Etsu Chemical Co., Ltd. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), Proc. SPIE, Vol. 3999, 365-374 (2000), and fluorine-containing polymer-based photoresists.
- post-exposure heating is performed as necessary.
- the post-exposure heating is performed under conditions appropriately selected from a heating temperature of 70 ° C. to 150 ° C. and a heating time of 0.3 minutes to 10 minutes.
- a resist for electron beam lithography or a resist for EUV lithography can be used instead of a photoresist as a resist.
- the electron beam resist either a negative type or a positive type can be used.
- Chemically amplified resist comprising a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist
- a chemically amplified resist comprising: a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate; and a chemically amplified resist comprising a low-molecular compound that decomposes with an acid to change the alkali dissolution rate of the resist,
- non-chemically amplified resists composed of a binder having a group that changes the alkali dissolution rate by being
- a methacrylate resin resist can be used as the EUV resist.
- a developer for example, an alkali developer.
- a developer for example, an alkali developer.
- Developers include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, ethanolamine, propylamine, An alkaline aqueous solution such as an aqueous amine solution such as ethylenediamine can be mentioned as an example. Further, a surfactant or the like can be added to these developers.
- the development conditions are appropriately selected from a temperature of 5 ° C. to 50 ° C. and a time of 10 seconds to 600 seconds.
- an organic solvent can be used as a developer. After the exposure, development is performed with a developer (solvent). As a result, for example, when a positive photoresist is used, a portion of the photoresist that is not exposed is removed, and a photoresist pattern is formed.
- Developers include, for example, methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, isoamyl acetate, ethyl methoxyacetate, ethyl ethoxy acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl Ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monophenyl ether acetate, diethylene glycol monobutyl ether acetate, 2-methoxybutyl Cetate, 3-methoxybutyl acetate, 4-methoxybutyl acetate, 3-methyl-3-me
- the resist underlayer film (intermediate layer) of the present invention is removed using the photoresist (upper layer) pattern thus formed as a protective film, and then the patterned photoresist and the resist underlayer film of the present invention are removed.
- the organic underlayer film (lower layer) is removed using the film made of (intermediate layer) as a protective film.
- the semiconductor substrate is processed using the patterned resist underlayer film (intermediate layer) and organic underlayer film (lower layer) of the present invention as a protective film.
- the resist underlayer film (intermediate layer) of the present invention in a portion where the photoresist has been removed is removed by dry etching to expose the semiconductor substrate.
- dry etching of the resist underlayer film of the present invention tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, Gases such as nitrogen, sulfur hexafluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride, chlorine, trichloroborane and dichloroborane can be used.
- a halogen-based gas for dry etching of the resist underlayer film.
- a photoresist made of an organic substance is basically difficult to remove.
- the resist underlayer film of the present invention containing a large amount of silicon atoms is quickly removed by the halogen-based gas. Therefore, it is possible to suppress a decrease in the thickness of the photoresist accompanying dry etching of the resist underlayer film. As a result, the photoresist can be used as a thin film.
- the dry etching of the resist underlayer film is preferably performed using a fluorine-based gas.
- fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), and perfluoropropane (C 3 F 8 ). , Trifluoromethane, and difluoromethane (CH 2 F 2 ).
- the organic underlayer film is removed using the patterned photoresist and the film made of the resist underlayer film of the present invention as a protective film.
- the organic underlayer film (underlayer) is preferably formed by dry etching with an oxygen-based gas. This is because the resist underlayer film of the present invention containing a large amount of silicon atoms is difficult to remove by dry etching with an oxygen-based gas.
- the processing of the semiconductor substrate is preferably performed by dry etching with a fluorine-based gas.
- fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
- ion implantation can be performed as processing of the substrate.
- the semiconductor device is manufactured through a process in which the mask layer is removed with a chemical solution containing hydrogen peroxide.
- the mask layer is a resist or an organic underlayer film including a resist underlayer film.
- an organic antireflection film can be formed on the resist underlayer film of the present invention before the formation of the photoresist.
- the antireflective coating composition used there is not particularly limited, and can be arbitrarily selected from those conventionally used in the lithography process, and can be used by a conventional method such as a spinner.
- the antireflection film can be formed by coating and baking with a coater.
- the substrate to which the resist underlayer film forming composition of the present invention is applied may have an organic or inorganic antireflection film formed on its surface by a CVD method or the like.
- the underlayer film of the invention can also be formed.
- the resist underlayer film formed from the resist underlayer film forming composition of the present invention may also absorb light depending on the wavelength of light used in the lithography process. In such a case, it can function as an antireflection film having an effect of preventing reflected light from the substrate. Further, the underlayer film of the present invention has a function for preventing an adverse effect on a substrate of a layer for preventing an interaction between the substrate and the photoresist, a material used for the photoresist or a substance generated upon exposure to the photoresist.
- a layer having a function of preventing diffusion of a substance generated from a substrate upon heating and baking into an upper layer photoresist It is also possible.
- the resist underlayer film formed from the resist underlayer film forming composition is applied to a substrate on which via holes used in the dual damascene process are formed, and can be used as a filling material that can fill the holes without any gaps. Moreover, it can also be used as a planarizing material for planarizing the surface of an uneven semiconductor substrate.
- the EUV resist underlayer film can be used for the following purposes in addition to the function as a hard mask. Without intermixing with the EUV resist, it is possible to prevent reflection of unwanted exposure light such as UV and DUV (ArF light, KrF light) from the substrate or interface during EUV exposure (wavelength 13.5 nm).
- the resist underlayer film forming composition can be used as a resist underlayer antireflection film. Reflection can be efficiently prevented in the lower layer of the EUV resist.
- the process can be performed in the same manner as the photoresist underlayer film.
- ⁇ Synthesis Example 5> Put 20.6 g of tetraethoxysilane, 1.5 g of phenyltrimethoxysilane, 13.9 g of 3- (3- (triethoxysilyl) propyl) dihydrofuran-2,5-dione, and 54.0 g of acetone in a 300 ml flask. While stirring the mixed solution with a magnetic stirrer, 10.0 g of 0.01 M hydrochloric acid aqueous solution was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C. and refluxed for 240 minutes.
- ⁇ Synthesis Example 9 300 ml of 17.2 g of tetraethoxysilane, 13.6 g of 5- (triethoxysilyl) hexahydro-4,7-methanoisobenzofuran-1,3-dione, 5.7 g of diallyl isocyanatepropyltriethoxysilane, and 54.7 g of acetone 8.9 g of 0.01M hydrochloric acid aqueous solution was added dropwise to the mixed solution while stirring the mixed solution with a magnetic stirrer. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C. and refluxed for 240 minutes.
- MA maleic acid
- TPSNO3 triphenylsulfonium nitrate
- TPSTFA triphenylsulfonium trifluoroacetate
- TPSML triphenylsulfonium maleate
- BPS bisphenolsulfone
- PGEE propylene glycol monoethyl ether
- PGMEA Propylene glycol monomethyl ether acetate is shown. Each addition amount was shown in parts by mass.
- the film thickness of the Si-containing resist underlayer film (B layer) was 40 nm.
- a commercially available ArF resist solution (trade name: AR2772JN, manufactured by JSR Corporation) was applied onto the B layer with a spinner and heated on a hot plate at 110 ° C. for 1 minute to form a 120 nm-thick photoresist film. (C layer) was formed.
- a commercially available photoresist solution (trade name FAiRS-9521NT05, manufactured by FUJIFILM Corporation) was applied onto the B layer with a spinner and heated on a hot plate at 100 ° C. for 1 minute to form a 85 nm thick photoresist.
- a film (C layer) was formed.
- the substrate was baked on a hot plate at 100 ° C. for 60 seconds, cooled, and developed with a 2.38% aqueous alkali solution for 60 seconds to form a positive pattern on the resist underlayer film (B layer).
- produce a big pattern peeling, undercut, and the thickness of a line bottom part (footing) was evaluated as favorable.
- the present invention is useful for forming a good pattern as a resist underlayer film of ArF, KrF, and EUV, and the mask residue after lithography can be removed only by a chemical solution without etching, and damage to the substrate is small. Etching is performed through a mask in order to transfer the pattern to the lower layer in the lithography process, but even a mask after etching can be removed with a chemical solution when the residual mask is removed.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- High Energy & Nuclear Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Metallurgy (AREA)
- Toxicology (AREA)
- Materials For Photolithography (AREA)
- Silicon Polymers (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
第2観点として、カルボニル基含有官能基を含む単位構造が、環状酸無水物基、環状ジエステル基、又はジエステル基を含む単位構造である第1観点に記載のシリコン含有レジスト下層膜形成組成物、
第3観点として、上記ポリシロキサンが、下記式(1)で表されるシランを含む加水分解性シランの加水分解縮合物である第1観点に記載のシリコン含有レジスト下層膜形成組成物、
式(1):
式(1)中R2はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものである。
式(1)中R3はアルコキシ基、アシルオキシ基、又はハロゲン原子を示す。aは1の整数を示し、bは0又は1の整数を示し、a+bは1又は2の整数を示す。]
第4観点として、上記ポリシロキサンが、更にアミド基含有有機基を含む単位構造を含む第1観点又は第2観点に記載のシリコン含有レジスト下層膜形成組成物、
第5観点として、アミド基が、スルホンアミド基、又はジアリルイソシアヌレート基である第4観点に記載のシリコン含有レジスト下層膜形成組成物、
第6観点として、上記ポリシロキサンが、上記式(1)で表されるシラン及び下記式(2)で表されるシランを含む加水分解性シランの共加水分解縮合物である第1観点に記載のシリコン含有レジスト下層膜形成組成物、
式(2):
式(2)中R5はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものである。
式(2)中R6はアルコキシ基、アシルオキシ基、又はハロゲン原子を示す。aは1の整数を示し、bは0又は1の整数を示し、a+bは1又は2の整数を示す。※は直接または連結基を通じてシリコン原子との結合部位である。]、
第7観点として、上記ポリシロキサンが、上記式(1)で表されるシランと上記式(2)で表されるシランとその他のシランを含む加水分解性シランの共加水分解縮合物であり、その他のシランが式(3)で表されるシラン及び式(4)で表されるシランからなる群より選ばれた少なくとも1種のシランである請求項1に記載のシリコン含有レジスト下層膜形成組成物、
第8観点として、更に光酸発生剤を含む第1観点乃至第7観点のいずれか一つに記載のシリコン含有レジスト下層膜形成組成物、
第9観点として、更に金属酸化物を含む第1観点乃至第8観点のいずれか一つに記載のシリコン含有レジスト下層膜形成組成物、
第10観点として、上記過酸化水素を含む薬液が、アンモニアと過酸化水素を含む水溶液、塩酸と過酸化水素を含む水溶液、硫酸と過酸化水素を含む水溶液、又は弗酸と過酸化水素を含む水溶液である第1観点乃至第9観点のいずれか一つに記載のシリコン含有レジスト下層膜形成組成物、
第11観点として、第1観点乃至第10観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜の製造方法、
第12観点として、第1観点乃至第10観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、及びパターン化されたレジストとレジスト下層膜により半導体基板を加工する工程、マスク層を過酸化水素を含む薬液で除去する工程を含む半導体装置の製造方法、
第13観点として、半導体基板上に有機下層膜を形成する工程、その上に第1観点乃至第10観点のいずれか一つに記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト層を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、パターン化されたレジスト下層膜により有機下層膜をエッチングする工程、及びパターン化された有機下層膜により半導体基板を加工する工程、マスク層を過酸化水素を含む薬液で除去する工程を含む半導体装置の製造方法、
第14観点として、上記基板の加工が、エッチング、又はイオン注入である第12観点又は第13観点に記載の半導体装置の製造方法、及び
第15観点として、マスク層が、レジスト又はレジスト下層膜を含む有機下層膜である第12観点乃至第13観点のいずれか一つに記載の半導体装置の製造方法である。
加水分解縮合物を得る際に加水分解が完全に完了しない部分加水分解物やシラン化合物が加水分解縮合物に混合されて、その混合物を用いることもできる。この縮合物はポリシロキサン構造を有するポリマーである。
式中R1は上記式(1-1)、式(1-2)、式(1-3)、式(1-4)、式(1-5)、又は式(1-6)を含む有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。
式(1-4)、式(1-5)、式(1-6)中で、T11、T15、及びT18はアルキレン基、環状アルキレン基、アルケニレン基、アリーレン基、イオウ原子、酸素原子、オキシカルボニル基、アミド基、2級アミノ基、又はそれらの組み合わせであり、T12、T13、T14、T16、T17、T19及びT20はそれぞれ水素原子又はアルキル基であり、T21はアルキレン基である。
またこれらのフッ素、塩素、臭素、又はヨウ素等のハロゲン原子が置換した有機基が挙げられる。
加水分解し縮合させる際に触媒を用いることができる。
式(D-3):
式(D-4):
式(D-5):
式(D-6):
また、ホスホニウム塩としては、式(D-7):
また、スルホニウム塩としては、式(D-8):
酸発生剤としては、熱酸発生剤や光酸発生剤が挙げられる。
光酸発生剤は、レジストの露光時に酸を生ずる。そのため、下層膜の酸性度の調整ができる。これは、下層膜の酸性度を上層のレジストとの酸性度に合わせるための一方法である。また、下層膜の酸性度の調整によって、上層に形成されるレジストのパターン形状の調整ができる。
基板の加工後にマスク層が過酸化水素を含む薬液で除去する工程を経て半導体装置が製造される。マスク層はレジスト又はレジスト下層膜を含む有機下層膜である。
テトラエトキシシラン20.0g、フェニルトリメトキシシラン1.5g、5-(トリエトキシシリル)ヘキサヒドロ-4,7-メタノイソベンゾフラン-1,3-ジオン14.6g、アセトン54.2gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液9.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテルアセテート72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノエチルエーテル80%プロピレングリコールモノメチルエーテルアセテート20%の溶媒比率として140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-1)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン20.0g、フェニルトリメトキシシラン1.5g、5-(トリエトキシシリル)ヘキサヒドロ-4,7-メタノイソベンゾフラン-1,3-ジオン14.6g、アセトン54.2gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液9.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテルアセテート72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノメチルエーテルを加え、140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-1)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン19.3g、フェニルトリメトキシシラン1.4g、2,2,5-トリメチル-5-(3-(トリエトキシシリル)プロピル)-1,3-ジオキサン-4,6-ジオン15.5g、アセトン54.4gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液9.4gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテルアセテート72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノエチルエーテルアセテートを加え、プロピレングリコールモノエチルエーテル80%プロピレングリコールモノメチルエーテルアセテート20%の溶媒比率として140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-2)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン18.2g、フェニルトリメトキシシラン1.3g、ジターシャルブチル2-(3-(トリエトキシシリル)プロピル)マロネート16.9g、アセトン54.4gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液8.8gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテルアセテート72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノエチルエーテル80%プロピレングリコールモノメチルエーテルアセテート20%の溶媒比率として140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-3)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン20.6g、フェニルトリメトキシシラン1.5g、3-(3-(トリエトキシシリル)プロピル)ジヒドロフラン-2,5-ジオン13.9g、アセトン54.0gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液10.0gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテルアセテート72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノエチルエーテル80%プロピレングリコールモノメチルエーテルアセテート20%の溶媒比率として140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-4)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン24.1g、フェニルトリメトキシシラン1.6g、トリエトキシメチルシラン4.42g、5-(トリエトキシシリル)ヘキサヒドロ-4,7-メタノイソベンゾフラン-1,3-ジオン5.4g、アセトン53.4gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液11.0gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテル72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノメチルエーテルを加え、140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-5)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン12.1g、フェニルトリメトキシシラン1.3g、2,2,5-トリメチル-5-(3-(トリエトキシシリル)プロピル)-1,3-ジオキサン-4,6-ジオン23.4g、アセトン55.2gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液8.0gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテル74gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノメチルエーテルを加え、140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-2)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン19.5g、5-(トリエトキシシリル)ヘキサヒドロ-4,7-メタノイソベンゾフラン-1,3-ジオン14.2g、フェニルスルホニルアミドプロピルトリエトキシシラン2.6g、アセトン54.3gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液9.5gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテル72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノメチルエーテルを加え、140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-6)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン17.2g、5-(トリエトキシシリル)ヘキサヒドロ-4,7-メタノイソベンゾフラン-1,3-ジオン13.6g、ジアリルイソシアネートプロピルトリエトキシシラン5.7g、アセトン54.7gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液8.9gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテル72gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノメチルエーテルを加え、140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(3-7)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
テトラエトキシシラン24.1g、フェニルトリメトキシシラン1.8g、トリエトキシメチルシラン9.5g、アセトン53.0gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01M塩酸水溶液11.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、240分間、還流させた。その後、プロピレングリコールモノメチルエーテル70gを加え、アセトン、メタノール、エタノール、水を減圧留去し、濃縮して加水分解縮合物(ポリマー)水溶液を得た。さらにプロピレングリコールモノメチルエーテルを加え、140℃における固形残物換算で13質量パーセントとなるように調整した。得られたポリマーは式(4-1)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1400であった。
上記合成例1乃至合成例9、比較合成例1で得られたケイ素含有ポリマー、酸、溶媒を表1に示す割合で混合し、0.1μmのフッ素樹脂製のフィルターで濾過することによって、ポリマー含有塗布液をそれぞれ調製した。表1中のポリマーの添加割合はポリマー溶液の添加量ではなく、ポリマー自体の添加量を示した。
窒素下、100mL四口フラスコにカルバゾール(6.69g、0.040mol、東京化成工業(株)製)、9-フルオレノン(7.28g、0.040mol、東京化成工業(株)製)、パラトルエンスルホン酸一水和物(0.76g、0.0040mol、東京化成工業(株)製)を加え、1,4-ジオキサン(6.69g、関東化学(株)製)を仕込み撹拌し、100℃まで昇温し溶解させ重合を開始した。24時間後60℃まで放冷後、クロロホルム(34g、関東化学(株)製)を加え希釈し、メタノール(168g、関東化学(株)製)へ再沈殿させた。得られた沈殿物をろ過し、減圧乾燥機で80℃、24時間乾燥し、目的とするポリマー(式(5-1)、以下PCzFLと略す)9.37gを得た。
1H-NMR(400MHz,DMSO-d6):δ7.03-7.55(br,12H),δ7.61-8.10(br,4H),δ11.18(br,1H)
PCzFLのGPCによるポリスチレン換算で測定される重量平均分子量Mwは2800、多分散度Mw/Mnは1.77であった。
得られた樹脂20gに、架橋剤としてテトラメトキシメチルグリコールウリル(三井サイテック(株)製、商品名パウダーリンク1174)3.0g、触媒としてピリジニウムパラトルエンスルホネート0.30g、界面活性剤としてメガファックR-30(大日本インキ化学(株)製、商品名)0.06gを混合し、プロピレングリコールモノメチルエーテルアセテート88gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、多層膜によるリソグラフィープロセスに用いる有機下層膜(A層)形成組成物の溶液を調製した。
<レジストパターニング評価:アルカリ現像を行うPTD工程を経由した評価>
上記式で得られた有機下層膜(A層)形成組成物をシリコンウエハー上に塗布し、ホットプレート上で240℃、60秒間ベークし、膜厚200nmの有機下層膜(A層)を得た。その上に、実施例3,実施例4,実施例6乃至実施例10、比較例1で得られたSi含有レジスト下層膜(B層)形成組成物を塗布し、ホットプレート上で180℃、60秒間ベークし、Si含有レジスト下層膜(B層)を得た。Si含有レジスト下層膜(B層)の膜厚は40nmであった。
B層の上に市販のArF用レジスト溶液(JSR(株)製、商品名:AR2772JN)をスピナーによりそれぞれ塗布し、ホットプレート上で110℃にて1分間加熱し、膜厚120nmのフォトレジスト膜(C層)を形成した。
(株)ニコン製NSR-S307Eスキャナー(波長193nm、NA、σ:0.85、0.93/0.85)を用い、現像後にフォトレジストのライン幅及びそのライン間の幅が0.062μm、すなわち0.062μmのラインアンドスペース(L/S)=1/1のデンスラインが形成されるように設定されたマスクにそれぞれを通して露光を行った。その後、ホットプレート上100℃で60秒間ベークし、冷却後、2.38%アルカリ水溶液を用いて60秒現像し、レジスト下層膜(B層)上にポジ型のパターンを形成した。得られたフォトレジストパターンについて、大きなパターン剥がれやアンダーカット、ライン底部の太り(フッティング)が発生しないものを良好として評価した。
<レジストパターニング評価:溶剤現像を行うNTD工程を経由した評価>
上記式で得られた有機下層膜(A層)形成組成物をシリコンウエハー上に塗布し、ホットプレート上で240℃で60秒間ベークし、膜厚200nmの有機下層膜(A層)を得た。その上に、実施例1乃至実施例7、比較例1で得られたSi含有レジスト下層膜(B層)形成組成物を塗布し、ホットプレート上で180℃で60秒間ベークし、Si含有レジスト下層膜(B層)を得た。Si含有レジスト下層膜(B層)の膜厚は40nmであった。
B層の上に市販のフォトレジスト溶液(富士フイルム(株)製、商品名FAiRS-9521NT05)をスピナーによりそれぞれ塗布し、ホットプレート上で100℃にて1分間加熱し、膜厚85nmのフォトレジスト膜(C層)を形成した。
(株)ニコン製NSR-S307Eスキャナー(波長193nm、NA、σ:0.85、0.93/0.85)を用い、現像後にフォトレジストのライン幅及びそのライン間の幅が0.062μm、すなわち0.062μmのラインアンドスペース(L/S)=1/1のデンスラインが形成されるように設定されたマスクにそれぞれを通して露光を行った。その後、ホットプレート上100℃で60秒間ベークし、冷却後、2.38%アルカリ水溶液を用いて60秒現像し、レジスト下層膜(B層)上にポジ型のパターンを形成した。得られたフォトレジストパターンについて、大きなパターン剥がれやアンダーカット、ライン底部の太り(フッティング)が発生しないものを良好として評価した。
実施例1乃至実施例10、比較例1で調製したSi含有塗布液をスピナーを用い、シリコンウェハー上に塗布した。ホットプレート上で180℃1分間加熱し、Si含有レジスト下層膜をそれぞれ形成した。その後、60℃に調整したSC-1薬液(28%アンモニア水/33%過酸化水素水/水=1/1/40)をSi含有レジスト下層膜上に3分間塗布、1分間水リンス、さらに30秒スピン乾燥し、溶剤塗布前後での膜厚の変化の有無を評価した。膜厚変化が90%以上のものを「良好」、膜厚変化が90%以下のものを「溶解せず」とした。
実施例1乃至実施例10、比較例1で調製したSi含有塗布液をスピナーを用い、シリコンウェハー上に塗布した。ホットプレート上で180℃1分間加熱し、Si含有レジスト下層膜をそれぞれ形成した。その後、サムコ製ドライエッチャー(RIE-10NR)を用いて、酸素エッチングを5秒行った。その後、60℃に調整したSC-1薬液(28%アンモニア水/33%過酸化水素水/水=1/1/40)をSi含有レジスト下層膜上に3分間塗布、1分間水リンス、さらに30秒スピン乾燥し、溶剤塗布前後での膜厚の変化の有無を評価した。膜厚変化が90%以上のものを「良好」、膜厚変化が90%以下のものを「溶解せず」とした。
Claims (15)
- シリコン含有レジスト下層膜を形成するための組成物であって、該シリコン含有レジスト下層膜は、リソグラフィープロセスでパターンを下層に転写した後に過酸化水素を含む薬液でマスク層の除去を行う工程において該マスク層として使用される膜であり、前記組成物は、カルボニル基含有官能基を含む単位構造を含むポリシロキサンを含むことを特徴とするシリコン含有レジスト下層膜形成組成物。
- カルボニル基含有官能基を含む単位構造が、環状酸無水物基、環状ジエステル基、又はジエステル基を含む単位構造である請求項1に記載のシリコン含有レジスト下層膜形成組成物。
- 前記ポリシロキサンが、下記式(1)で表されるシランを含む加水分解性シランの加水分解縮合物である請求項1に記載のシリコン含有レジスト下層膜形成組成物。
式(1):
式(1)中R2はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものである。
式(1)中R3はアルコキシ基、アシルオキシ基、又はハロゲン原子を示す。aは1の整数を示し、bは0又は1の整数を示し、a+bは1又は2の整数を示す。] - 前記ポリシロキサンが、更にアミド基含有有機基を含む単位構造を含む請求項1又は請求項2に記載のシリコン含有レジスト下層膜形成組成物。
- アミド基が、スルホンアミド基、又はジアリルイソシアヌレート基である請求項4に記載のシリコン含有レジスト下層膜形成組成物。
- 前記ポリシロキサンが、前記式(1)で表されるシラン及び下記式(2)で表されるシランを含む加水分解性シランの共加水分解縮合物である請求項1に記載のシリコン含有レジスト下層膜形成組成物。
式(2):
式(2)中R5はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基で且つSi-C結合によりケイ素原子と結合しているものである。
式(2)中R6はアルコキシ基、アシルオキシ基、又はハロゲン原子を示す。aは1の整数を示し、bは0又は1の整数を示し、a+bは1又は2の整数を示す。※は直接または連結基を通じてシリコン原子との結合部位である。] - 前記ポリシロキサンが、前記式(1)で表されるシランと前記式(2)で表されるシランとその他のシランを含む加水分解性シランの共加水分解縮合物であり、その他のシランが式(3)で表されるシラン及び式(4)で表されるシランからなる群より選ばれた少なくとも1種のシランである請求項1に記載のシリコン含有レジスト下層膜形成組成物。
- 更に光酸発生剤を含む請求項1乃至請求項7のいずれか1項に記載のシリコン含有レジスト下層膜形成組成物。
- 更に金属酸化物を含む請求項1乃至請求項8のいずれか1項に記載のシリコン含有レジスト下層膜形成組成物。
- 前記過酸化水素を含む薬液が、アンモニアと過酸化水素を含む水溶液、塩酸と過酸化水素を含む水溶液、硫酸と過酸化水素を含む水溶液、又は弗酸と過酸化水素を含む水溶液である請求項1乃至請求項9のいずれか1項に記載のシリコン含有レジスト下層膜形成組成物。
- 請求項1乃至請求項10のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜の製造方法。
- 請求項1乃至請求項10のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、及びパターン化されたレジストとレジスト下層膜により半導体基板を加工する工程、マスク層を過酸化水素を含む薬液で除去する工程を含む半導体装置の製造方法。
- 半導体基板上に有機下層膜を形成する工程、その上に請求項1乃至請求項10のいずれか1項に記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト層を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、パターン化されたレジスト下層膜により有機下層膜をエッチングする工程、及びパターン化された有機下層膜により半導体基板を加工する工程、マスク層を過酸化水素を含む薬液で除去する工程を含む半導体装置の製造方法。
- 前記基板の加工が、エッチング、又はイオン注入である請求項12又は請求項13に記載の半導体装置の製造方法。
- マスク層が、レジスト又はレジスト下層膜を含む有機下層膜である請求項12乃至請求項13のいずれか1項に記載の半導体装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197031759A KR102577038B1 (ko) | 2017-03-31 | 2018-03-30 | 카르보닐구조를 갖는 실리콘함유 레지스트 하층막 형성 조성물 |
US16/499,533 US20200041906A1 (en) | 2017-03-31 | 2018-03-30 | Composition for forming silicon-containing resist underlayer film having carbonyl structure |
JP2019509407A JP7208590B2 (ja) | 2017-03-31 | 2018-03-30 | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
CN201880023369.0A CN110494807A (zh) | 2017-03-31 | 2018-03-30 | 具有羰基结构的含有硅的抗蚀剂下层膜形成用组合物 |
US18/910,475 US20250044697A1 (en) | 2017-03-31 | 2024-10-09 | Composition for forming silicon-containing resist underlayer film having carbonyl structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072076 | 2017-03-31 | ||
JP2017-072076 | 2017-03-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/499,533 A-371-Of-International US20200041906A1 (en) | 2017-03-31 | 2018-03-30 | Composition for forming silicon-containing resist underlayer film having carbonyl structure |
US18/910,475 Continuation US20250044697A1 (en) | 2017-03-31 | 2024-10-09 | Composition for forming silicon-containing resist underlayer film having carbonyl structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181989A1 true WO2018181989A1 (ja) | 2018-10-04 |
Family
ID=63676226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013879 Ceased WO2018181989A1 (ja) | 2017-03-31 | 2018-03-30 | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20200041906A1 (ja) |
JP (1) | JP7208590B2 (ja) |
KR (1) | KR102577038B1 (ja) |
CN (1) | CN110494807A (ja) |
TW (1) | TWI842671B (ja) |
WO (1) | WO2018181989A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020184062A (ja) * | 2019-04-26 | 2020-11-12 | 信越化学工業株式会社 | ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 |
TWI725712B (zh) * | 2019-01-22 | 2021-04-21 | 日商信越化學工業股份有限公司 | 含矽光阻下層膜形成用組成物及圖案形成方法 |
WO2022210901A1 (ja) * | 2021-03-31 | 2022-10-06 | 日産化学株式会社 | シリコン含有レジスト下層膜形成用組成物 |
KR20230003058A (ko) | 2020-04-30 | 2023-01-05 | 닛산 가가쿠 가부시키가이샤 | 레지스트 하층막 형성용 조성물 |
WO2023074777A1 (ja) * | 2021-10-28 | 2023-05-04 | 日産化学株式会社 | 添加剤含有シリコン含有レジスト下層膜形成組成物 |
KR20230112660A (ko) | 2020-11-27 | 2023-07-27 | 닛산 가가쿠 가부시키가이샤 | 실리콘 함유 레지스트 하층막 형성용 조성물 |
KR20240130780A (ko) | 2022-01-12 | 2024-08-29 | 닛산 가가쿠 가부시키가이샤 | 실리콘함유 레지스트 하층막 형성용 조성물, 및 실리콘함유 레지스트 하층막 |
KR20250073136A (ko) | 2022-09-21 | 2025-05-27 | 닛산 가가쿠 가부시키가이샤 | 실리콘함유 레지스트 하층막 형성용 조성물 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12106961B2 (en) * | 2021-07-16 | 2024-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Humidity control or aqueous treatment for EUV metallic resist |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014069329A1 (ja) * | 2012-10-31 | 2014-05-08 | 日産化学工業株式会社 | エステル基を有するシリコン含有レジスト下層膜形成組成物 |
WO2016009965A1 (ja) * | 2014-07-15 | 2016-01-21 | 日産化学工業株式会社 | 脂肪族多環構造含有有機基を有するシリコン含有レジスト下層膜形成組成物 |
WO2016009939A1 (ja) * | 2014-07-15 | 2016-01-21 | 日産化学工業株式会社 | ハロゲン化スルホニルアルキル基を有するシリコン含有レジスト下層膜形成組成物 |
JP2016074772A (ja) * | 2014-10-03 | 2016-05-12 | 信越化学工業株式会社 | 塗布型ケイ素含有膜形成用組成物、基板、及びパターン形成方法 |
WO2016080217A1 (ja) * | 2014-11-19 | 2016-05-26 | 日産化学工業株式会社 | 湿式除去が可能なシリコン含有レジスト下層膜形成組成物 |
WO2016093172A1 (ja) * | 2014-12-08 | 2016-06-16 | 日産化学工業株式会社 | ハロゲン含有カルボン酸アミド基を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物 |
JP2017020000A (ja) * | 2015-06-15 | 2017-01-26 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 湿式剥離性シリコン含有反射防止剤 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4369203B2 (ja) | 2003-03-24 | 2009-11-18 | 信越化学工業株式会社 | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
CN100351309C (zh) * | 2003-07-30 | 2007-11-28 | 日产化学工业株式会社 | 含有具有被保护的羧基的化合物的形成光刻用下层膜的组合物 |
US7320855B2 (en) | 2004-11-03 | 2008-01-22 | International Business Machines Corporation | Silicon containing TARC/barrier layer |
JP4638380B2 (ja) | 2006-01-27 | 2011-02-23 | 信越化学工業株式会社 | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
CN101910949B (zh) * | 2008-01-11 | 2013-07-24 | 日产化学工业株式会社 | 具有脲基且含有硅的形成抗蚀剂下层膜的组合物 |
US8828879B2 (en) * | 2009-09-16 | 2014-09-09 | Nissan Chemical Industries, Ltd. | Silicon-containing composition having sulfonamide group for forming resist underlayer film |
KR102182360B1 (ko) * | 2012-12-19 | 2020-11-24 | 닛산 가가쿠 가부시키가이샤 | 환상 디에스테르기를 갖는 실리콘 함유 레지스트 하층막 형성 조성물 |
US8759220B1 (en) * | 2013-02-28 | 2014-06-24 | Shin-Etsu Chemical Co., Ltd. | Patterning process |
-
2018
- 2018-03-30 US US16/499,533 patent/US20200041906A1/en not_active Abandoned
- 2018-03-30 JP JP2019509407A patent/JP7208590B2/ja active Active
- 2018-03-30 CN CN201880023369.0A patent/CN110494807A/zh active Pending
- 2018-03-30 KR KR1020197031759A patent/KR102577038B1/ko active Active
- 2018-03-30 WO PCT/JP2018/013879 patent/WO2018181989A1/ja not_active Ceased
- 2018-03-30 TW TW107111382A patent/TWI842671B/zh active
-
2024
- 2024-10-09 US US18/910,475 patent/US20250044697A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014069329A1 (ja) * | 2012-10-31 | 2014-05-08 | 日産化学工業株式会社 | エステル基を有するシリコン含有レジスト下層膜形成組成物 |
WO2016009965A1 (ja) * | 2014-07-15 | 2016-01-21 | 日産化学工業株式会社 | 脂肪族多環構造含有有機基を有するシリコン含有レジスト下層膜形成組成物 |
WO2016009939A1 (ja) * | 2014-07-15 | 2016-01-21 | 日産化学工業株式会社 | ハロゲン化スルホニルアルキル基を有するシリコン含有レジスト下層膜形成組成物 |
JP2016074772A (ja) * | 2014-10-03 | 2016-05-12 | 信越化学工業株式会社 | 塗布型ケイ素含有膜形成用組成物、基板、及びパターン形成方法 |
WO2016080217A1 (ja) * | 2014-11-19 | 2016-05-26 | 日産化学工業株式会社 | 湿式除去が可能なシリコン含有レジスト下層膜形成組成物 |
WO2016093172A1 (ja) * | 2014-12-08 | 2016-06-16 | 日産化学工業株式会社 | ハロゲン含有カルボン酸アミド基を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物 |
JP2017020000A (ja) * | 2015-06-15 | 2017-01-26 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | 湿式剥離性シリコン含有反射防止剤 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI725712B (zh) * | 2019-01-22 | 2021-04-21 | 日商信越化學工業股份有限公司 | 含矽光阻下層膜形成用組成物及圖案形成方法 |
US11385544B2 (en) | 2019-01-22 | 2022-07-12 | Shin-Etsu Chemical Co., Ltd. | Composition for forming silicon-containing resist underlayer film and patterning process |
JP2020184062A (ja) * | 2019-04-26 | 2020-11-12 | 信越化学工業株式会社 | ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 |
JP7307004B2 (ja) | 2019-04-26 | 2023-07-11 | 信越化学工業株式会社 | ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 |
KR20230003058A (ko) | 2020-04-30 | 2023-01-05 | 닛산 가가쿠 가부시키가이샤 | 레지스트 하층막 형성용 조성물 |
KR20230112660A (ko) | 2020-11-27 | 2023-07-27 | 닛산 가가쿠 가부시키가이샤 | 실리콘 함유 레지스트 하층막 형성용 조성물 |
WO2022210901A1 (ja) * | 2021-03-31 | 2022-10-06 | 日産化学株式会社 | シリコン含有レジスト下層膜形成用組成物 |
WO2023074777A1 (ja) * | 2021-10-28 | 2023-05-04 | 日産化学株式会社 | 添加剤含有シリコン含有レジスト下層膜形成組成物 |
JP2024109670A (ja) * | 2021-10-28 | 2024-08-14 | 日産化学株式会社 | 添加剤含有シリコン含有レジスト下層膜形成組成物 |
KR20240130780A (ko) | 2022-01-12 | 2024-08-29 | 닛산 가가쿠 가부시키가이샤 | 실리콘함유 레지스트 하층막 형성용 조성물, 및 실리콘함유 레지스트 하층막 |
KR20250073136A (ko) | 2022-09-21 | 2025-05-27 | 닛산 가가쿠 가부시키가이샤 | 실리콘함유 레지스트 하층막 형성용 조성물 |
Also Published As
Publication number | Publication date |
---|---|
CN110494807A (zh) | 2019-11-22 |
TWI842671B (zh) | 2024-05-21 |
US20250044697A1 (en) | 2025-02-06 |
TW201900735A (zh) | 2019-01-01 |
JPWO2018181989A1 (ja) | 2020-02-06 |
US20200041906A1 (en) | 2020-02-06 |
KR102577038B1 (ko) | 2023-09-12 |
KR20190135026A (ko) | 2019-12-05 |
JP7208590B2 (ja) | 2023-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6150088B2 (ja) | スルホン構造を有する新規シラン化合物 | |
JP6319580B2 (ja) | スルホン酸オニウム塩を含有するケイ素含有euvレジスト下層膜形成組成物 | |
JP6436301B2 (ja) | エステル基を有するシリコン含有レジスト下層膜形成組成物 | |
JP6597980B2 (ja) | ハロゲン化スルホニルアルキル基を有するシリコン含有レジスト下層膜形成組成物 | |
JP7208590B2 (ja) | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 | |
JP6882724B2 (ja) | フェニル基含有クロモファーを有するシラン化合物 | |
JP6217940B2 (ja) | 環状ジエステル基を有するシリコン含有レジスト下層膜形成組成物 | |
WO2016080226A1 (ja) | 架橋反応性シリコン含有膜形成組成物 | |
WO2016009965A1 (ja) | 脂肪族多環構造含有有機基を有するシリコン含有レジスト下層膜形成組成物 | |
KR102462194B1 (ko) | 할로겐함유 카르본산아미드기를 가지는 가수분해성 실란을 포함하는 리소그래피용 레지스트 하층막 형성 조성물 | |
JP6754098B2 (ja) | カーボネート骨格を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物 | |
JP7602212B2 (ja) | 保護されたフェノール基と硝酸を含むシリコン含有レジスト下層膜形成組成物 | |
JP7157392B2 (ja) | アルカリ性現像液可溶性シリコン含有レジスト下層膜形成組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777320 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019509407 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197031759 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18777320 Country of ref document: EP Kind code of ref document: A1 |