[go: up one dir, main page]

WO2018185410A1 - Dispositif d'échange thermique pour véhicule automobile - Google Patents

Dispositif d'échange thermique pour véhicule automobile Download PDF

Info

Publication number
WO2018185410A1
WO2018185410A1 PCT/FR2018/050803 FR2018050803W WO2018185410A1 WO 2018185410 A1 WO2018185410 A1 WO 2018185410A1 FR 2018050803 W FR2018050803 W FR 2018050803W WO 2018185410 A1 WO2018185410 A1 WO 2018185410A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
substrate
heat exchange
exchange device
memory layer
Prior art date
Application number
PCT/FR2018/050803
Other languages
English (en)
Inventor
Kamel Azzouz
Cédric DE VAULX
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to DE112018001846.6T priority Critical patent/DE112018001846T5/de
Publication of WO2018185410A1 publication Critical patent/WO2018185410A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/04Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes comprising shape memory alloys or bimetallic elements

Definitions

  • the invention relates to a heat exchange device for a motor vehicle, comprising at least one heat exchange portion delimiting a heat exchange surface between a first fluid and a second fluid.
  • the heat exchange surface is generally defined for a specific engine speed, said full load, which is only rarely or never reached during the life of the vehicle.
  • the heat exchange surface is oversized relative to the normal conditions of use, which has the effect of reducing the efficiency of a thermodynamic loop associated with the heat exchange device (since the exchange surface oversized thermal causes a significant loss of load) and increase the energy consumption of the motor vehicle.
  • the object of the invention is to overcome these disadvantages.
  • the invention relates to a heat exchange device for a motor vehicle, comprising a heat exchange surface between a first fluid and a second fluid, said heat exchange surface being provided with a substrate and a a layer made of a shape memory alloy material applied to the substrate, said shape memory layer, the shape memory alloy having a phase transition between austenite phase and a martensite phase and an associated phase transition temperature within a temperature range of one of the first fluid and the second fluid in an operating state of the heat exchange device, the substrate having a Young's modulus greater than a Young's modulus of the shape memory layer and a coefficient of expansion of the substrate different from a coefficient of expansion of the shape memory layer.
  • the memory layer of form undergoes a phase transition as a function of the temperature of one of the fluids during use of the heat exchange device, which, due to the rearrangement of the crystal lattice and the mentioned criteria relating to the Young's modulus and coefficient of expansion thermal, causes a change in the heat exchange surface, making it adaptable to temperature variations of the engine of the motor vehicle.
  • the shape memory alloy comprises nickel, and / or titanium, and / or copper, and / or aluminum, and / or carbon monoxide, and / or or manganese, and / or styrene maleic anhydride (SMA) plastic.
  • SMA styrene maleic anhydride
  • the substrate is metallic, for example based on aluminum.
  • the Young's modulus of the substrate is of the order of or greater than 60 GPa.
  • the shape memory layer has a thickness between 2 ⁇ and 200 ⁇ , preferably between 20 ⁇ and 40 ⁇ .
  • the substrate has a thickness of the order of or greater than 50 ⁇ .
  • the transition temperature is between 80 ° C and 100 ° C, for example between 80 ° C and 95 ° C, or between 40 ° C and 60 ° C.
  • the coefficient of thermal expansion of the substrate is less than or equal to a value of the order of 75% of the thermal expansion coefficient of the shape memory layer or greater than or equal to 125% of the coefficient of thermal expansion of the shape memory layer.
  • the memory layer of shape is discontinuous so as to form a plurality of shape memory elements.
  • the shape memory layer is at least one fin louver and / or at least one fin and / or at least one turbulator.
  • the subject of the invention is also a method for manufacturing a heat exchange device, the device comprising a heat exchange surface between a first fluid and a second fluid, the method comprising a step of producing a substrate and a step of depositing on the substrate a layer made of a material based on a shape memory alloy, called a shape memory layer, the shape memory alloy having a phase transition between a phase austenite and a martensite phase and an associated phase transition temperature within a temperature range of one of the first fluid and the second fluid in an operating state of the heat exchange device, the substrate having a Young's modulus greater than a Young's modulus of the shape memory layer and a coefficient of expansion of the substrate being different from a coefficient of expansion of the shape memory layer .
  • the method comprises a step of heating the substrate and the shape-memory layer at a temperature greater than the phase transition temperature, called the recrystallization step, followed by a cooling step of the substrate and the shape memory layer at a temperature below the phase transition temperature.
  • the step of depositing the shape memory layer comprises a step of depositing a plurality of shape memory elements, the method further comprising a step of cutting the edges of the shape memory layer. each shape memory element so that each stack of shape memory element and substrate is at less partially disjointed from the substrate.
  • FIG. 1 illustrates a profile of a heat exchange device according to the present invention for a first temperature, said low temperature
  • FIG. 2 illustrates a profile of the heat exchange device of FIG. 1 for a second temperature, higher than the low temperature, and said high temperature;
  • FIG. 3 illustrates a view from above of a part of the heat exchange device according to one embodiment of the invention
  • FIG. 4 and 5 illustrate a profile of the device of Figure 3 respectively at low temperature and high temperature
  • FIG. 6 and 7 illustrate a method according to the present invention for the manufacture of the heat exchange device of Figure 3;
  • FIG. 8 and 9 illustrate a shutter according to the present invention respectively at low temperature and high temperature
  • FIG. 10 and 1 1 illustrate a fin according to the present invention respectively low temperature and high temperature
  • FIG. 12 and 13 illustrate a turbulator according to the present invention respectively low temperature and high temperature.
  • the invention relates to a heat exchange device for a motor vehicle, referenced 1 in the figures.
  • the heat exchange device comprises at least one heat exchange portion 2 delimiting a heat exchange surface 3 between a first fluid and a second fluid.
  • the first fluid may be ambient air for example, and the second fluid may be a coolant or water.
  • Portion 2 comprises a substrate 4 and a layer made of a material based on a shape memory alloy applied to the substrate, called a shape memory layer, and referenced 5 in the figures.
  • the substrate 4 is advantageously metallic, and preferably aluminum.
  • the shape memory layer 5 is a thin layer, that is to say having a thickness of between 2 ⁇ and 200 ⁇ , preferably between 20 ⁇ and 40 ⁇ .
  • the substrate 4 has a thickness greater than the shape memory layer 5, advantageously of the order of or greater than 50 ⁇ .
  • the alloy constituting the shape memory layer 5 has a phase transition between an austenite phase and a martensite phase.
  • the shape memory alloy advantageously comprises nickel, and / or titanium, and / or copper, and / or aluminum, and / or carbon monoxide, and / or manganese, and / or styrene maleic anhydride (SMA) plastic.
  • SMA styrene maleic anhydride
  • An associated phase transition temperature is within a temperature range of one of the first fluid and the second fluid in an operating state of the heat exchange device 1.
  • the heat exchange device works under conditions of use in the motor vehicle, with the first and second fluids circulating in the device 1 at the temperatures provided.
  • the shape memory layer is likely to undergo a phase transition, and to be in either the austenite phase or the martensite phase.
  • the phase transition temperature can be adapted according to the composition of the shape memory layer 5.
  • the transition temperature is between 80 ° C and 100 ° C, for example between 80 ° C and 95 ° C, or between 40 ° C and 60 ° C.
  • the temperature range between 80 ° C and 100 ° C ensures that the device 1 is suitable for a high temperature radiator application.
  • the temperature range between 40 ° C and 60 ° C ensures that the device 1 is suitable for a low temperature radiator application.
  • the device 1 is such that the substrate 4 has a Young's modulus greater than a Young's modulus of the shape memory layer 5 and a coefficient of expansion of the substrate 4 different from a coefficient of expansion of the shape memory layer 5.
  • the difference in coefficient of expansion makes it possible to induce a bimetallic effect, allowing a curvature of the shape memory layer 5 on the substrate 4, as will be detailed later.
  • the difference in expansion coefficients between the substrate 4 and the shape memory layer 5 thus ensures that a stress is applied to the shape memory alloy, so as to allow the austenite-martensite phase transition.
  • the Young's modulus of the substrate 4 greater than the Young's modulus of the shape memory layer 5 (in particular greater than the Young's modulus of the shape memory layer in its martensite phase) also makes it possible to force the bimetal to return to a flat shape when the shape memory layer changes phase again.
  • the shape-memory layer 5 in its martensite phase, has a generally flat shape, placed on the substrate 4.
  • the shape memory layer 5 in its austenite phase, is positioned at a distance from the substrate 4.
  • the heat exchange surface at high temperature is greater than the heat exchange surface at low temperature, the additional heat exchange area provided by the shape memory layer contributing to increase heat exchange in addition to the area of the substrate.
  • the heat exchange surface has a small value area, reducing the pressure losses.
  • the heat exchange surface In a high load engine regime, corresponding to a high temperature, higher than the temperature Tp, the heat exchange surface has a larger value area, allowing better cooling performance, and thus optimum operation of the motor vehicle.
  • the Young's modulus of the substrate 4 is of the order of or greater than 60 GPa, in particular if it is based on aluminum.
  • the coefficient of thermal expansion of the substrate 4 is strictly greater or less than the coefficient of thermal expansion of the shape memory layer 5.
  • the coefficient of thermal expansion of the substrate 4 is less than or equal to a value of the order of 75% of the thermal expansion coefficient of the shape memory layer 5 or greater than or equal to 125% of the coefficient of thermal expansion. of the shape memory layer 5.
  • the shape memory layer 4 may be discontinuous so as to form a plurality of shape memory elements 6.
  • each shape memory element 6 may have a generally trapezoidal shape.
  • the shape memory elements can take any other suitable form, such as a rectangular or semicircular shape.
  • each trapezium has a large base 7 and a small base 8, opposite and parallel.
  • the large base 7 and the small base 8 are connected to one another by two slightly rounded sides 9.
  • Trapezes 6 are isosceles on the embodiment illustrated in FIG.
  • the shape memory elements 6 are aligned in a band 10.
  • the shape memory elements 6 follow each other in the band 10 so that the large base 7 of one of the shape memory elements 6 faces the large base 7 of the shape memory element 6 following in the band 10.
  • the small base 8 of one of the shape memory elements 6 faces the small base 8 of the shaped element 6 preceding it in the strip 10.
  • the shape memory elements 6 are of identical thickness, which ensures that the shape memory elements undergo phase transitions at the same temperature.
  • the shape memory elements have different thicknesses.
  • the shape memory elements have different phase transitions.
  • each shape memory element 6 is bordered by a blank 1 1.
  • the cut 1 1 delimits the small base 8 and the sides 9 of each shape memory element 6.
  • the cutout 1 1 is also made at least partly in the thickness of the substrate 4, so as to release a portion 4 '( see FIG. 5) of the substrate on which the shape memory element 6 is applied.
  • a profile at a temperature lower than the transition temperature Tp of the entire substrate 4 and of the shape memory layer 5 is flat.
  • each shape memory element 6 is in the martensite phase. In this phase, each shape memory element is plane, placed on the substrate 4.
  • FIG. 5 illustrates a profile with a temperature greater than the transition temperature Tp of the whole of the substrate 4 and of the shape memory layer 5.
  • each shape memory element 6 is in the austenite phase.
  • each shape memory element stack 6 with the substrate 4 curves, so that the shape memory element 6 raises at least the portion 4 'of the substrate.
  • the small base 8 rises while the large base 7 (which has not been cut from the substrate) remains on the substrate 4, causing the curvature of the sides 9 between the two bases 7 and 8.
  • Two adjacent shape memory elements 6 have symmetrical profiles relative to a z direction orthogonal to the band 10.
  • the high temperature exchange surface is greater than the low temperature heat exchange surface, the area of the substrate part 4 'peeled off and the area of each shape memory element contributing to the heat exchange.
  • the substrate 4 takes several forms. According to a first possible alternative, the substrate is formed by a wall of the heat exchange device, in particular if the wall is made of aluminum, on which the shape memory layer 5 is applied.
  • the substrate may be an additional substrate which is soldered (by brazing for example when the substrate is based on aluminum) or adhered to at least a part of the heat exchange device.
  • the invention also relates to a method of manufacturing the heat exchange device 1.
  • the method comprises a step of producing the substrate 4.
  • the substrate 4 is a metal strip consisting of an alloy based on aluminum.
  • the manufacturing process is not limited to this type of alloy and any metal substrate may optionally be used.
  • the manufacturing method also comprises a step of depositing on the substrate 4 of the shape memory layer 5.
  • the deposition can be carried out by a known thin film deposition method, for example of the physical type (physical vapor phase deposition, plasma, epitaxy), chemical (chemical vapor deposition, autocatalytic deposition, often called “electroless”), or electrochemical (electroplating).
  • a known thin film deposition method for example of the physical type (physical vapor phase deposition, plasma, epitaxy), chemical (chemical vapor deposition, autocatalytic deposition, often called “electroless”), or electrochemical (electroplating).
  • the deposition of the alloy is performed by means of a mask, which makes it possible to delimit the application surface of the shape-memory layer 5 on the substrate, in particular to form each trapezium of shape-memory elements 6, as illustrated in FIG. 7 .
  • the manufacturing method comprises a step of heating the substrate 4 and the shape memory layer 5 at a temperature greater than the phase transition temperature Tp, called the recrystallization step, followed by a step of cooling the substrate 4 and of the shape memory layer 5 at a temperature below the phase transition temperature Tp.
  • the heating step under stress the stress being applied by the substrate 4, makes it possible to show the martensite, in order to initiate the shape memory effect.
  • this step may for example be performed during brazing of the radiator.
  • the method comprises a step of forming the blank 1 1 of each shape memory element 6.
  • the cut 1 1 follows the sides 9 and the small base 8, as already indicated.
  • the cutting step can take place before the recrystallization step, but it is preferable that it be subsequent to the recrystallization step, to avoid any deformation.
  • the shape memory layer 5 is cut with at least a portion 4 'of the thickness of the substrate to which it is applied.
  • the shape memory layer 5 may be at least one fin louver 12 of the heat exchange device 1.
  • the shape memory layer 5 may be at least one fin.
  • the shape memory elements 6 are applied to the walls of the heat-exchange tubes 15, so as to form fins for heat exchange between the two fluids. .
  • the shape memory elements are applied to the outer walls of the tubes.
  • the shape memory elements can be applied to the inner walls of the tubes.
  • the substrate 4 and the shape memory layer 5 are soldered to a tube wall 15.
  • the coefficient of expansion of the substrate is strictly greater than the expansion coefficient of the shape memory layer, and preferably greater than or equal to 125% of the thermal expansion coefficient of the memory layer. of form.
  • the shape memory layer 5 is at least one fluid flow turbulator.
  • the shape memory elements 6 form circular arcs inside the tube 15, and thus disrupt the flow of fluid inside the tube when the transition temperature Tp is exceeded by one of the first and second fluids.
  • the invention is not limited to this embodiment, and the turbulators 6 can be configured to take any suitable form (sinusoid, nipple, slot, etc.).
  • the coefficient of expansion of the substrate is strictly greater than the expansion coefficient of the shape memory layer, and preferably greater than or equal to 125% of the thermal expansion coefficient of the memory layer. of form.
  • the pressure drops on the hot and cold fluid side can be reduced when the operating point does not require maximum thermal performance. This greatly improves the overall performance of the heat exchanger.
  • the shape memory layer is applied only to the areas that will have an additional heat exchange role at high temperature, which allows a substantial saving of shape memory material by relative to a shape memory material that would be applied more widely over the entire exchanger, or at least over the entire substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Micromachines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

L'invention a pour objet un dispositif d'échange thermique pour véhicule automobile, comprenant une surface d'échange thermique (3) entre un premier fluide et un deuxième fluide, ladite surface (3) étant munie d'un substrat (4) et d'une couche (5) constituée d'un matériau à base d'un alliage à mémoire de forme appliquée sur le substrat, dite couche à mémoire de forme, l'alliage à mémoire de forme présentant une transition de phase austénite-martensite et une température de transition de phase associée étant comprise dans un intervalle de températures de l'un du premier fluide et du deuxième fluide dans un état de fonctionnement du dispositif d'échange thermique, le substrat (4) présentant un module de Young supérieur à un module de Young de la couche à mémoire de forme (5) et un coefficient de dilatation du substrat (4) différent d'un coefficient de dilatation de la couche à mémoire de forme (5).

Description

DISPOSITIF D'ECHANGE THERMIQUE POUR VEHICULE AUTOMOBILE
L'invention concerne un dispositif d'échange thermique pour véhicule automobile, comprenant au moins une portion d'échange thermique délimitant une surface d'échange thermique entre un premier fluide et un deuxième fluide.
La surface d'échange thermique est généralement définie pour un régime moteur spécifique, dit de pleine charge, qui n'est que très rarement voire jamais atteint pendant la durée de vie du véhicule.
De ce fait, la surface d'échange thermique est surdimensionnée par rapport aux conditions normales d'utilisation, ce qui a pour conséquence de réduire l'efficacité d'une boucle thermodynamique associée au dispositif d'échange thermique (puisque la surface d'échange thermique surdimensionnée provoque une perte de charge importante) et d'augmenter la consommation d'énergie du véhicule automobile.
Le but de l'invention est de remédier à ces inconvénients.
A cet effet, l'invention a pour objet un dispositif d'échange thermique pour véhicule automobile, comprenant une surface d'échange thermique entre un premier fluide et un deuxième fluide, ladite surface d'échange thermique étant munie d'un substrat et d'une couche constituée d'un matériau à base d'un alliage à mémoire de forme appliquée sur le substrat, dite couche à mémoire de forme, l'alliage à mémoire de forme présentant une transition de phase entre une phase austénite et une phase martensite et une température de transition de phase associée comprise dans un intervalle de températures de l'un du premier fluide et du deuxième fluide dans un état de fonctionnement du dispositif d'échange thermique, le substrat présentant un module de Young supérieur à un module de Young de la couche à mémoire de forme et un coefficient de dilatation du substrat différent d'un coefficient de dilatation de la couche à mémoire de forme.
Grâce au dispositif selon la présente invention, la couche à mémoire de forme subit une transition de phase en fonction de la température de l'un des fluides pendant l'utilisation du dispositif d'échange thermique, qui, du fait du réarrangement du réseau cristallin et des critères mentionnés relatifs aux module de Young et coefficient de dilatation thermique, engendre un changement de la surface d'échange thermique, rendant celle-ci adaptable aux variations de températures du moteur du véhicule automobile.
Selon une autre caractéristique de l'invention, l'alliage à mémoire de forme comprend du nickel, et/ou du titane, et/ou du cuivre, et/ou de l'aluminium, et/ou du monoxyde de carbone, et/ou du manganèse, et/ou du styrène anhydride maléique (SMA) plastique.
Selon une autre caractéristique de l'invention, le substrat est métallique, par exemple à base d'aluminium.
Selon une autre caractéristique de l'invention, le module de Young du substrat est de l'ordre de ou supérieur à 60 GPa.
Selon une autre caractéristique de l'invention, la couche à mémoire de forme présente une épaisseur entre 2 μιη et 200 μιτι, de préférence entre 20 μιη et 40 μιτι.
Selon une autre caractéristique de l'invention, le substrat présente une épaisseur de l'ordre de ou supérieure à 50 μιτι.
Selon une autre caractéristique de l'invention, la température de transition est comprise entre 80 °C et 100°C, par exemple entre 80 °C et 95 °C, ou entre 40 °C et 60 °C.
Selon une autre caractéristique de l'invention, le coefficient de dilatation thermique du substrat est inférieur ou égal à une valeur de l'ordre de 75% du coefficient de dilatation thermique de la couche à mémoire de forme ou supérieur ou égal à 125% du coefficient de dilatation thermique de la couche à mémoire de forme.
Selon une autre caractéristique de l'invention, la couche à mémoire de forme est discontinue de sorte à former une pluralité d'éléments à mémoire de forme.
Selon une autre caractéristique de l'invention, la couche à mémoire de forme est au moins une persienne d'ailette et/ou au moins une ailette et/ou au moins un turbulateur.
L'invention a également pour objet un procédé de fabrication d'un dispositif d'échange thermique, le dispositif comprenant une surface d'échange thermique entre un premier fluide et un deuxième fluide, le procédé comprenant une étape de réalisation d'un substrat et une étape de dépôt sur le substrat d'une couche constituée d'un matériau à base d'un alliage à mémoire de forme, dite couche à mémoire de forme, l'alliage à mémoire de forme présentant une transition de phase entre une phase austénite et une phase martensite et une température de transition de phase associée comprise dans un intervalle de températures de l'un du premier fluide et du deuxième fluide dans un état de fonctionnement du dispositif d'échange thermique, le substrat présentant un module de Young supérieur à un module de Young de la couche à mémoire de forme et un coefficient de dilatation du substrat étant différent d'un coefficient de dilatation de la couche à mémoire de forme.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de chauffage du substrat et de la couche à mémoire de forme à une température supérieure à la température de transition de phase, dite étape de recristallisation, suivie d'une étape de refroidissement du substrat et de la couche à mémoire de forme à une température inférieure à la température de transition de phase.
Selon une autre caractéristique de l'invention, l'étape de dépôt de la couche à mémoire de forme comprend une étape de dépôt d'une pluralité d'éléments à mémoire de forme, le procédé comprenant en outre une étape de découpe de bords de chaque élément à mémoire de forme de sorte que chaque empilement d'élément à mémoire de forme et de substrat est au moins partiellement disjoint du substrat.
D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 illustre un profil d'un dispositif d'échange thermique selon la présente invention pour une première température, dite basse température ;
- la figure 2 illustre un profil du dispositif d'échange thermique de la figure 1 pour une deuxième température, supérieure à la température basse, et dite température haute ;
- la figure 3 illustre une vue de dessus d'une partie du dispositif d'échange thermique selon un mode de réalisation de l'invention ;
- la figure 4 et 5 illustrent un profil du dispositif de la figure 3 respectivement à basse température et haute température ;
- les figures 6 et 7 illustrent un procédé selon la présente invention pour la fabrication du dispositif d'échange thermique de la figure 3 ;
- les figures 8 et 9 illustrent une persienne selon la présente invention respectivement à basse température et haute température ;
- les figures 10 et 1 1 illustrent une ailette selon la présente invention respectivement à basse température et haute température ; et
- les figures 12 et 13 illustrent un turbulateur selon la présente invention respectivement à basse température et haute température.
Dispositif d'échange thermique
L'invention a pour objet un dispositif d'échange thermique pour véhicule automobile, référencé 1 sur les figures. Le dispositif d'échange thermique comprend au moins une portion d'échange thermique 2 délimitant une surface d'échange thermique 3 entre un premier fluide et un deuxième fluide. Le premier fluide peut être l'air ambiant par exemple, et le deuxième fluide peut être un liquide de refroidissement ou de l'eau.
La portion 2 comprend un substrat 4 et une couche constituée d'un matériau à base d'un alliage à mémoire de forme appliquée sur le substrat, dite couche à mémoire de forme, et référencée 5 sur les figures.
Le substrat 4 est avantageusement métallique, et de préférence en aluminium.
La couche à mémoire de forme 5 est une couche mince, c'est-à-dire ayant une épaisseur comprise entre 2 μιη et 200 μιτι, de préférence entre 20 μιτι et 40 μιτι.
Le substrat 4 présente une épaisseur supérieure à la couche à mémoire de forme 5, avantageusement de l'ordre de ou supérieure à 50 μιτι.
L'alliage constituant la couche à mémoire de forme 5 présente une transition de phase entre une phase austénite et une phase martensite.
L'alliage à mémoire de forme comprend avantageusement du nickel, et/ou du titane, et/ou du cuivre, et/ou de l'aluminium, et/ou du monoxyde de carbone, et/ou du manganèse, et/ou du styrène anhydride maléique (SMA) plastique.
Une température de transition de phase associée, notée Tp, est comprise dans un intervalle de températures de l'un du premier fluide et du deuxième fluide dans un état de fonctionnement du dispositif d'échange thermique 1 .
Par état de fonctionnement du dispositif d'échange thermique, on entend que le dispositif d'échange thermique travaille en conditions d'utilisation dans le véhicule automobile, avec les premier et deuxième fluides circulant dans le dispositif 1 aux températures prévues. Ainsi, selon la température du fluide, la couche à mémoire de forme est susceptible de subir une transition de phase, et de se trouver soit dans la phase austénite soit dans la phase martensite.
La température de transition de phase peut être adaptée selon la composition de la couche à mémoire de forme 5.
Avantageusement, la température de transition est comprise entre 80 °C et 100°C, par exemple entre 80 °C et 95 °C, ou entre 40 °C et 60 °C.
L'intervalle de températures entre 80 °C et 100°C permet d'assurer que le dispositif 1 est adapté à une application radiateur haute température.
L'intervalle de températures entre 40 °C et 60 °C permet d'assurer que le dispositif 1 est adapté à une application radiateur basse température.
Le dispositif 1 est tel que le substrat 4 présente un module de Young supérieur à un module de Young de la couche à mémoire de forme 5 et un coefficient de dilatation du substrat 4 différent d'un coefficient de dilatation de la couche à mémoire de forme 5.
La différence de coefficient de dilatation permet d'induire un effet bilame, permettant une courbure de la couche à mémoire de forme 5 sur le substrat 4, comme il sera détaillé ultérieurement. La différence de coefficients de dilatation entre le substrat 4 et la couche à mémoire de forme 5 assure ainsi qu'une contrainte est appliquée sur l'alliage à mémoire de forme, de sorte à permettre la transition de phase austénite-martensite.
Le module de Young du substrat 4 supérieur au module de Young de la couche à mémoire de forme 5 (notamment supérieur au module de Young de la couche à mémoire de forme dans sa phase martensite) permet en outre de forcer le bilame à revenir à une forme plane lorsque la couche à mémoire de forme change de phase à nouveau.
Comme visible sur la figure 1 , à basse température, c'est-à-dire à une température inférieure à la température de transition de phase Tp, la couche à mémoire de forme 5, dans sa phase martensite, présente une forme générale plane, posée sur le substrat 4.
Comme visible sur la figure 2, à haute température, c'est-à-dire à une température supérieure à la température de transition de phase Tp, la couche à mémoire de forme 5, dans sa phase austénite, est positionnée à distance du substrat 4.
Ainsi, la surface d'échange thermique à haute température est supérieure à la surface d'échange thermique à basse température, l'aire d'échange thermique supplémentaire apportée par la couche à mémoire de forme contribuant à augmenter l'échange thermique en plus de l'aire du substrat.
De ce fait, dans un régime moteur de faible charge, correspondant à une température basse, inférieure à la température Tp, la surface d'échange thermique présente une aire de petite valeur, réduisant les pertes de charge.
Dans un régime moteur de forte charge, correspondant à une température haute, supérieure à la température Tp, la surface d'échange thermique présente une aire de plus grande valeur, permettant de meilleures performances de refroidissement, et ainsi un fonctionnement optimal du véhicule automobile.
Avantageusement, le module de Young du substrat 4 est de l'ordre de ou supérieur à 60 GPa, en particulier s'il est à base d'aluminium.
Comme déjà indiqué, le coefficient de dilatation thermique du substrat 4 est strictement supérieur ou strictement inférieur au coefficient de dilatation thermique de la couche à mémoire de forme 5.
De préférence, le coefficient de dilatation thermique du substrat 4 est inférieur ou égal à une valeur de l'ordre de 75% du coefficient de dilatation thermique de la couche à mémoire de forme 5 ou supérieur ou égal à 125% du coefficient de dilatation thermique de la couche à mémoire de forme 5. Comme illustré sur la figure 3, la couche à mémoire de forme 4 peut être discontinue de sorte à former une pluralité d'éléments à mémoire de forme 6.
Chaque élément à mémoire de forme 6 peut par exemple présenter une forme générale trapézoïdale. Selon d'autres réalisations possibles, les éléments à mémoire de forme peuvent prendre toute autre forme adaptée, telle qu'une forme rectangulaire ou semi-circulaire.
Comme visible sur la figure 3, chaque trapèze présente une grande base 7 et une petite base 8, opposées et parallèles.
La grande base 7 et la petite base 8 sont reliées l'une à l'autre par deux côtés légèrement arrondis 9.
Les trapèzes 6 sont isocèles sur le mode de réalisation illustré à la figure
3.
Sur la figure 3, les éléments à mémoire de forme 6 sont alignés dans une bande 10.
Comme il ressort également de la figure 3, les éléments à mémoire de forme 6 se succèdent dans la bande 10 de sorte que la grande base 7 de l'un des éléments à mémoire de forme 6 fait face à la grande base 7 de l'élément à mémoire de forme 6 le suivant dans la bande 10.
De même, la petite base 8 de l'un des éléments à mémoire de forme 6 fait face à la petite base 8 de l'élément de forme 6 le précédant dans la bande 10.
Sur la figure 3, les éléments à mémoire de forme 6 sont d'une épaisseur identique, ce qui assure que les éléments à mémoire de forme subissent les transitions de phase à la même température.
Selon une variante non illustrée, les éléments à mémoire de forme présentent des épaisseurs différentes. Dans ce cas, les éléments à mémoire de forme présentent des transitions de phase différentes. Comme visible sur la figure 3, chaque élément à mémoire de forme 6 est bordé par une découpe 1 1 .
La découpe 1 1 délimite la petite base 8 et les côtés 9 de chaque élément à mémoire de forme 6. La découpe 1 1 est également pratiquée au moins en partie dans l'épaisseur du substrat 4, de sorte à libérer une partie 4' (voir figure 5) du substrat sur laquelle est appliquée l'élément de à mémoire de forme 6.
Comme visible sur la figure 4, un profil à température inférieure à la température de transition Tp de l'ensemble du substrat 4 et de la couche à mémoire de forme 5 est plat.
A cette température basse, chaque élément à mémoire de forme 6 est dans la phase martensite. Dans cette phase, chaque élément à mémoire de forme est plan, posé sur le substrat 4.
La figure 5 illustre un profil à température supérieure à la température de transition Tp de l'ensemble du substrat 4 et de la couche à mémoire de forme 5.
A cette température haute, chaque élément à mémoire de forme 6 est dans la phase austénite. Dans cette phase, chaque empilement d'élément à mémoire de forme 6 avec le substrat 4 se courbe, de telle sorte que l'élément à mémoire de forme 6 soulève au moins la partie 4' du substrat.
Du fait de la découpe 1 1 , la petite base 8 se soulève tandis que la grande base 7 (laquelle n'a pas été découpée du substrat) reste posée sur le substrat 4, engendrant la courbure des côtés 9 entre les deux bases 7 et 8.
Deux éléments à mémoire de forme 6 adjacents présentent des profils symétriques relativement à une direction z orthogonale à la bande 10.
Grâce au décollement des éléments 6 du substrat 4, la surface d'échange à haute température est supérieure à la surface d'échange thermique à basse température, l'aire de la partie 4' de substrat décollée et l'aire de chaque élément à mémoire de forme contribuant à l'échange thermique.
Le substrat 4 prendre plusieurs formes. Selon un première alternative possible, le substrat est formé par une paroi du dispositif d'échange de chaleur, notamment si la paroi est en aluminium, sur laquelle on applique la couche à mémoire de forme 5.
Selon une deuxième alternative, le substrat peut être un substrat additionnel qui est soudé (par brasage par exemple quand le substrat est à base d'aluminium) ou collé sur une partie au moins du dispositif d'échange de chaleur.
Procédé de fabrication
L'invention a également pour objet un procédé de fabrication du dispositif d'échange thermique 1 .
Le procédé comprend une étape de réalisation du substrat 4.
Sur la figure 6, le substrat 4 est un feuillard métallique constitué d'un alliage à base d'aluminium.
Bien entendu, le procédé de fabrication n'est pas limité à ce type d'alliage et tout substrat métallique peut éventuellement être utilisé.
Le procédé de fabrication comprend également une étape de dépôt sur le substrat 4 de la couche à mémoire de forme 5.
Le dépôt peut être effectué par une méthode connue de dépôt de film mince, par exemple de type physique (dépôt physique en phase vapeur, plasma, épitaxie), chimique (dépôt chimique en phase vapeur, dépôt autocatalytique, souvent appelé « electroless »), ou électrochimique (électrodéposition).
Pour former les éléments à mémoire de forme 6, le dépôt de l'alliage est effectué à l'aide d'un masque, ce qui permet de délimiter la surface d'application la couche à mémoire de forme 5 sur le substrat, notamment pour former chaque trapèze des éléments à mémoire de forme 6, comme illustré sur la figure 7.
Le procédé de fabrication comprend une étape de chauffage du substrat 4 et de la couche à mémoire de forme 5 à une température supérieure à la température de transition de phase Tp, dite étape de recristallisation, suivie d'une étape de refroidissement du substrat 4 et de la couche à mémoire de forme 5 à une température inférieure à la température de transition de phase Tp.
L'étape de chauffage sous contrainte, la contrainte étant appliquée par le substrat 4, permet de faire apparaître la martensite, afin d'amorcer l'effet mémoire de forme.
On chauffe par exemple à une température supérieure à 500 °C, par exemple de l'ordre de 600 °C. Dans le cadre d'un dispositif d'échange de chaleur de type radiateur brasé, cette étape peut par exemple être effectuée lors du brasage du radiateur.
Puis le refroidissement permet de retrouver un profil plat des éléments à mémoire de forme 6.
Le procédé comprend une étape de formation de la découpe 1 1 de chaque élément à mémoire de forme 6.
La découpe 1 1 suit les côtés 9 et la petite base 8, comme déjà indiqué.
L'étape de découpe peut avoir lieu avant l'étape de recristallisation, mais il est préférable qu'elle soit ultérieure à l'étape de recristallisation, pour éviter toute déformation.
De préférence, au cours de l'étape de découpe, la couche à mémoire de forme 5 est découpée avec au moins une partie 4' de l'épaisseur du substrat sur laquelle elle est appliquée. Applications
Comme visible sur les figures 8 et 9, la couche à mémoire de forme 5 peut être au moins une persienne d'ailette 12 du dispositif d'échange thermique 1 .
Comme visible sur les figures 10 et 1 1 , la couche à mémoire de forme 5 peut être au moins une ailette.
Sur le mode de réalisation illustré sur les figures 10 et 1 1 , les éléments à mémoire de forme 6 sont appliquées sur les parois de tubes d'échange de chaleur 15, de sorte à former des ailettes d'échange de chaleur entre les deux fluides.
Sur cet exemple, les éléments à mémoire de forme sont appliqués sur les parois extérieures des tubes. Toutefois, selon une autre réalisation possible, les éléments à mémoire de forme peuvent être appliqués sur les parois intérieures des tubes.
Avantageusement, le substrat 4 et la couche à mémoire de forme 5 sont brasés sur une paroi de tube 15.
On note que de préférence, dans cette application, le coefficient de dilatation du substrat est strictement supérieur au coefficient de dilatation de la couche à mémoire de forme, et de préférence supérieur ou égal à 125% du coefficient de dilatation thermique de la couche à mémoire de forme.
Comme visible sur les figures 12 et 13, la couche à mémoire de forme 5 est au moins un turbulateur d'écoulement de fluide.
Sur le mode de réalisation illustré sur les figures 12 et 13, les éléments à mémoire de forme 6 forment des arcs de cercle à l'intérieur du tube 15, et viennent ainsi perturber l'écoulement de fluide à l'intérieur du tube lorsque la température de transition Tp est dépassé par un des premier et deuxième fluides.
Bien entendu, l'invention ne se limite pas à ce mode de réalisation, et les turbulateurs 6 peuvent être configurés pour prendre toute forme adaptée (sinusoïde, téton, créneau, etc.).
On note que de préférence, dans cette application, le coefficient de dilatation du substrat est strictement supérieur au coefficient de dilatation de la couche à mémoire de forme, et de préférence supérieur ou égal à 125% du coefficient de dilatation thermique de la couche à mémoire de forme.
Avantages
Comme il ressort de la description qui précède, grâce à l'invention, les pertes de charge côté fluide chaud et froid peuvent être diminuées quand le point de fonctionnement ne nécessite pas des performances thermiques maximales. On améliore ainsi fortement la performance globale de l'échangeur de chaleur.
En outre, dans les exemples illustrés ci-dessus, la couche à mémoire de forme est appliquée uniquement sur les zones qui auront un rôle d'échange de chaleur supplémentaire à haute température, ce qui permet une économie substantielle de matériau à mémoire de forme par rapport à un matériau à mémoire de forme qui serait appliqué plus largement sur l'ensemble de l'échangeur, ou tout au moins sur l'ensemble du substrat.

Claims

REVENDICATIONS
1 . Dispositif d'échange thermique pour véhicule automobile, comprenant une surface d'échange thermique (3) entre un premier fluide et un deuxième fluide, ladite surface d'échange thermique (3) étant munie d'un substrat (4) et d'une couche (5) constituée d'un matériau à base d'un alliage à mémoire de forme appliquée sur le substrat, dite couche à mémoire de forme, l'alliage à mémoire de forme présentant une transition de phase entre une phase austénite et une phase martensite et une température de transition de phase associée comprise dans un intervalle de températures de l'un du premier fluide et du deuxième fluide dans un état de fonctionnement du dispositif d'échange thermique, le substrat (4) présentant un module de Young supérieur à un module de Young de la couche à mémoire de forme (5) et un coefficient de dilatation du substrat (4) étant différent d'un coefficient de dilatation de la couche à mémoire de forme (5).
2. Dispositif d'échange thermique selon la revendication précédente, dans lequel l'alliage à mémoire de forme comprend du nickel, et/ou du titane, et/ou du cuivre, et/ou de l'aluminium, et/ou du monoxyde de carbone, et/ou du manganèse, et/ou du styrène anhydride maléique (SMA) plastique.
3. Dispositif d'échange thermique selon l'une des revendications précédentes, dans lequel le substrat (4) est métallique, par exemple à base d'aluminium.
4. Dispositif d'échange thermique selon l'une des revendications précédentes, dans lequel le module de Young du substrat (4) est de l'ordre de ou supérieur à 60 GPa.
5. Dispositif d'échange thermique selon l'une des revendications précédentes, dans lequel la température de transition est comprise entre 80 °C et 100°C, par exemple entre 80 °C et 95 °C, ou entre 40 °C et 60 °C.
6. Dispositif d'échange thermique selon l'une des revendications précédentes, dans lequel le coefficient de dilatation thermique du substrat (4) est inférieur ou égal à une valeur de l'ordre de 75% du coefficient de dilatation thermique de la couche à mémoire de forme (5) ou supérieur ou égal à 125% du coefficient de dilatation thermique de la couche à mémoire de forme (5).
7. Dispositif d'échange thermique selon l'une des revendications précédentes, dans lequel la couche à mémoire de forme (5) est discontinue de sorte à former une pluralité d'éléments à mémoire de forme (6).
8. Dispositif d'échange thermique selon l'une des revendications précédentes, dans lequel la couche à mémoire de forme est au moins une persienne d'ailette et/ou au moins une ailette et/ou au moins un turbulateur.
9. Procédé de fabrication d'un dispositif d'échange thermique, le dispositif comprenant une surface d'échange thermique (3) entre un premier fluide et un deuxième fluide, le procédé comprenant une étape de réalisation d'un substrat (4) et une étape de dépôt sur le substrat (4) d'une couche (5) constituée d'un matériau à base d'un alliage à mémoire de forme, dite couche à mémoire de forme, l'alliage à mémoire de forme présentant une transition de phase entre une phase austénite et une phase martensite et une température de transition de phase associée comprise dans un intervalle de températures de l'un du premier fluide et du deuxième fluide dans un état de fonctionnement du dispositif d'échange thermique, le substrat (4) présentant un module de Young supérieur à un module de Young de la couche à mémoire de forme (5) et un coefficient de dilatation du substrat (4) différent d'un coefficient de dilatation de la couche à mémoire de forme (5).
10. Procédé de fabrication selon la revendication précédente, dans lequel l'étape de dépôt de la couche à mémoire de forme (5) comprend une étape de dépôt d'une pluralité d'éléments à mémoire de forme (6), le procédé comprenant en outre une étape de découpe au moins partielle de bords (8, 9) de chaque élément à mémoire de forme (6).
PCT/FR2018/050803 2017-04-03 2018-03-30 Dispositif d'échange thermique pour véhicule automobile WO2018185410A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018001846.6T DE112018001846T5 (de) 2017-04-03 2018-03-30 Wärmeaustauschvorrichtung für ein kraftfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752833A FR3064735B1 (fr) 2017-04-03 2017-04-03 Dispositif d’echange thermique pour vehicule automobile
FR1752833 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018185410A1 true WO2018185410A1 (fr) 2018-10-11

Family

ID=58739245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050803 WO2018185410A1 (fr) 2017-04-03 2018-03-30 Dispositif d'échange thermique pour véhicule automobile

Country Status (3)

Country Link
DE (1) DE112018001846T5 (fr)
FR (1) FR3064735B1 (fr)
WO (1) WO2018185410A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878217A (zh) * 2020-07-13 2020-11-03 哈尔滨工业大学(深圳) 利用记忆合金强化传热的内燃机的冷却系统及装置和设备
US20200408473A1 (en) * 2018-03-01 2020-12-31 Universitat De Lleida Deformable fin heat exchanger
CN114111122A (zh) * 2021-11-19 2022-03-01 合肥天鹅制冷科技有限公司 翅片式冷凝器结构
US20220196350A1 (en) * 2020-12-21 2022-06-23 Hamilton Sundstrand Corporation Adaptive heat exchanger
US20230243605A1 (en) * 2022-01-28 2023-08-03 Hamilton Sundstrand Corporation Smart additively manufactured heat exchanger with adaptive profile and turbulator
US12074081B2 (en) * 2021-05-28 2024-08-27 Cisco Technology, Inc. Use of bimetals in a heat sink to benefit heat transfer from high temperature integrated circuit components on a circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120375U (ja) * 1983-01-26 1984-08-14 日産自動車株式会社 熱交換器
FR2930324A1 (fr) * 2008-04-17 2009-10-23 Snecma Sa Dispositif de refroidissement d'une paroi
US20090314265A1 (en) * 2008-06-24 2009-12-24 Gm Global Technology Operations, Inc. Heat Exchanger with Variable Turbulence Generators
EP2860401A2 (fr) * 2013-08-20 2015-04-15 Ingersoll-Rand Company Système de compresseur avec échangeur de chaleur thermiquement actif
WO2017030089A1 (fr) * 2015-08-20 2017-02-23 いすゞ自動車株式会社 Échangeur de chaleur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120375U (ja) * 1983-01-26 1984-08-14 日産自動車株式会社 熱交換器
FR2930324A1 (fr) * 2008-04-17 2009-10-23 Snecma Sa Dispositif de refroidissement d'une paroi
US20090314265A1 (en) * 2008-06-24 2009-12-24 Gm Global Technology Operations, Inc. Heat Exchanger with Variable Turbulence Generators
EP2860401A2 (fr) * 2013-08-20 2015-04-15 Ingersoll-Rand Company Système de compresseur avec échangeur de chaleur thermiquement actif
WO2017030089A1 (fr) * 2015-08-20 2017-02-23 いすゞ自動車株式会社 Échangeur de chaleur

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200408473A1 (en) * 2018-03-01 2020-12-31 Universitat De Lleida Deformable fin heat exchanger
US11946705B2 (en) * 2018-03-01 2024-04-02 Universitat De Lleida Deformable fin heat exchanger
US12332003B2 (en) 2018-03-01 2025-06-17 Universitat De Lleida Deformable fin heat exchanger
CN111878217A (zh) * 2020-07-13 2020-11-03 哈尔滨工业大学(深圳) 利用记忆合金强化传热的内燃机的冷却系统及装置和设备
US20220196350A1 (en) * 2020-12-21 2022-06-23 Hamilton Sundstrand Corporation Adaptive heat exchanger
US12074081B2 (en) * 2021-05-28 2024-08-27 Cisco Technology, Inc. Use of bimetals in a heat sink to benefit heat transfer from high temperature integrated circuit components on a circuit board
CN114111122A (zh) * 2021-11-19 2022-03-01 合肥天鹅制冷科技有限公司 翅片式冷凝器结构
US20230243605A1 (en) * 2022-01-28 2023-08-03 Hamilton Sundstrand Corporation Smart additively manufactured heat exchanger with adaptive profile and turbulator

Also Published As

Publication number Publication date
FR3064735B1 (fr) 2021-01-01
DE112018001846T5 (de) 2019-12-19
FR3064735A1 (fr) 2018-10-05

Similar Documents

Publication Publication Date Title
WO2018185410A1 (fr) Dispositif d'échange thermique pour véhicule automobile
EP1424531B1 (fr) Echangeur de chaleur à inertie thermique pour circuit de fluide caloporteur, notamment de véhicule automobile
EP2369226B1 (fr) Dispositif d'éclairage comprenant au moins une diode électroluminescente et un système de refroidissement à ailettes
EP2032928B1 (fr) Echangeurs thermiques a plaquettes creuses
EP2208955B1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur.
EP2379977B1 (fr) Échangeur de chaleur comprenant des tubes a ailettes rainurées
EP2090747B1 (fr) Bord d'attaque de pièce de turbomachine constitué de matériau superélastique
FR2941522A1 (fr) Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
FR2899960A1 (fr) Dispositif de recuperation de chaleur d'echappement
FR2944590A1 (fr) Echangeur de chaleur a microcanaux
WO2018109368A1 (fr) Echangeur de chaleur à plaques, dispositif de stockage d'énergie et leur procédé de fabrication
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
FR2795811A1 (fr) Dispositif d'echange de chaleur pour gaz d'echappement
EP2056054B1 (fr) Tube pour échangeur thermique
FR2770632A1 (fr) Echangeur de chaleur a collecteur renforce, notamment pour vehicule automobile
WO2014076405A2 (fr) Module de refroidissement de panneau thermique
WO2003046456A1 (fr) Profils de tube pour echangeur thermique
WO2004065872A1 (fr) Procede de fabrication d’un module d’echange de chaleur
FR2991034A1 (fr) Intercalaire pour echangeur thermique et echangeur thermique associe
WO2015169808A1 (fr) Tube plat pour échangeur de chaleur
FR2884308A1 (fr) Plaque laterale a utiliser avec un echangeur de chaleur et procede de realisation de cet echangeur
FR3056720A1 (fr) Echangeur thermique comprenant un materiau a changement de phase
WO2020043960A1 (fr) Dispositif de régulation thermique, notamment de refroidissement
FR3056721A1 (fr) Echangeur thermique comprenant un materiau a changement de phase
FR2890731A1 (fr) Echangeur de chaleur comportant des ailettes secondaires inserees entre des ailettes primaires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18722665

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18722665

Country of ref document: EP

Kind code of ref document: A1