[go: up one dir, main page]

WO2018186462A1 - 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子 - Google Patents

蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2018186462A1
WO2018186462A1 PCT/JP2018/014517 JP2018014517W WO2018186462A1 WO 2018186462 A1 WO2018186462 A1 WO 2018186462A1 JP 2018014517 W JP2018014517 W JP 2018014517W WO 2018186462 A1 WO2018186462 A1 WO 2018186462A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
atom
ring
structure represented
Prior art date
Application number
PCT/JP2018/014517
Other languages
English (en)
French (fr)
Inventor
山田 哲也
じん 薛
康生 宮田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019511299A priority Critical patent/JPWO2018186462A1/ja
Publication of WO2018186462A1 publication Critical patent/WO2018186462A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/573Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with three six-membered rings
    • C07C13/58Completely or partially hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/30Phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/53Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having the nitrogen atom of at least one of the amino groups further bound to a hydrocarbon radical substituted by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a fluorescent compound, an organic material composition, a light-emitting film, an organic electroluminescent device material, and an organic electroluminescent device, and more specifically, a fluorescent compound and organic material composition that suppresses concentration quenching in a solid state.
  • the present invention relates to a material, a light-emitting film, an organic electroluminescence element material, and an organic electroluminescence element.
  • An organic electroluminescence element has a structure in which a light emitting layer containing a compound that emits light (hereinafter also referred to as “light emitting material”) is sandwiched between an anode and a cathode, and electrons and holes are included in the light emitting layer.
  • This is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when excitons are generated by injecting and recombining to generate excitons.
  • the organic EL element can emit light at a low voltage of about several V to several tens V, and is a self-luminous type, has a wide viewing angle, has high visibility, and is a thin-film type completely solid element. Therefore, it attracts attention from the viewpoints of space saving and portability.
  • Patent Document 1 discloses a technique in which a dihedral angle between two molecules is increased by introducing a naphthyl group or a fluorenyl group as a substituent into a perylene ring, thereby suppressing excimer formation.
  • this 4-substituted perylene has a problem that the fluorescence quantum yield is low when used in a single film.
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is a fluorescent compound, an organic material composition, a light-emitting film, an organic electroluminescence element material, and a material that suppress concentration quenching in a solid state.
  • An organic electroluminescence device is provided.
  • the present inventor adopts a fluorescent compound having a specific substituent in the process of examining the cause of the above-described problem, thereby suppressing the fluorescence quenching in the solid state.
  • the present inventors have found that a compound, an organic material composition, a light-emitting film, an organic electroluminescence element material, and an organic electroluminescence element can be provided, and have reached the present invention.
  • a fluorescent compound having a structure represented by the following general formula (1) having a structure represented by the following general formula (1).
  • X represents a ⁇ -conjugated condensed ring having a 14 ⁇ electron system or more.
  • Y represents a deuterium atom, halogen atom, cyano group, nitro group, hydroxy group, mercapto group, alkyl group, cycloalkyl group.
  • At least one is a group having a structure represented by the following general formula (2): Y may be the same as or different from each other when there are a plurality of Y. n is the ⁇ -conjugated condensation. Represents the number of Ys that can be substituted for hydrogen atoms on the ring, and represents an integer from 1 to the maximum number.)
  • R 1 to R 5 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, a mercapto group, an alkyl group, a cycloalkyl group, or an alkenyl group.
  • A represents a carbon atom or a silicon atom.
  • R 6 to R 8 each independently represents the same atom or substituent as R 1 to R 5 in General Formula (2). However, at least one of R 6 to R 8 is an alkyl group having 1 or more carbon atoms. * 2 represents a bonding site with an adjacent atom.
  • R 9 and R 10 each independently represent the same atom or substituent as R 1 to R 5 in General Formula (2), but at least one of them has 1 or more carbon atoms.
  • * 3 represents a bonding site with an adjacent atom
  • R 1 to R 10 in the general formulas (2) to (4) are substituted or unsubstituted aliphatic groups bonded to each other.
  • a ring may be formed, but an aromatic ring is not further condensed to the formed aliphatic ring.
  • X represents a ⁇ -conjugated condensed ring having a 14 ⁇ electron system or more.
  • Y represents a deuterium atom, a triarylsilyl group, a diarylalkylsilyl group, an aryldialkylsilyl group, a trialkylsilyl group, A phenyl group or a group having a structure represented by the following general formula (2a), which may further have a substituent, wherein at least one of Y is represented by the following general formula (2a); Y may be the same or different when there are a plurality of groups, and n is the number of Ys that can be substituted for hydrogen atoms on the ⁇ -conjugated condensed ring. Represents an integer from 1 to the maximum number.
  • R 1 to R 5 each independently represent R 1 to R 5 in the general formula (2) and an atom or a substituent, and at least one of R 1 and R 5 is carbon. It is a linear, branched or cyclic alkyl group having two or more, or at least one of R 1 and R 2 and R 4 and R 5 is bonded to each other to form a substituted or unsubstituted aliphatic ring. (The aromatic ring is not further condensed to the aliphatic ring formed at this time.)
  • R represents a hydrogen atom or a bonding site with Y in the general formula (1) or (1a), but not all of them are hydrogen atoms.
  • R may be the same as or different from each other.
  • L represents —CR 11 R 12 —, —O—, —NR 13 —, —SiR 14 R 15 —, or —S—.
  • the plurality of L may be the same as or different from each other.
  • R and R 11 to R 15 each independently represent a hydrogen atom or a bonding site with Y in the general formula (1) or (1a), but not all are hydrogen atoms.
  • Several R may mutually be same or different.
  • R represents a bonding site with Y in the general formula (1) or (1a). R may be the same or different from each other.
  • L represents —CR 11 R 12 —, —O—, —NR 13 —, —SiR 14 R 15 —, or —S—.
  • the plurality of L may be the same as or different from each other.
  • R represents a binding site with Y in the general formula (1) or (1a).
  • R 11 to R 15 each independently represent a hydrogen atom or a bonding site with Y in the general formula (1) or (1a). The plurality of R and R 11 to R 15 may be the same as or different from each other.
  • Item 6 The fluorescent compound according to Item 5, wherein all Rs in the general formulas (33) to (52) are groups having a structure represented by the general formula (2a).
  • R 1 and R 5 in the general formula (2) or (2a) are represented by the general formula (3) or (4), respectively, and have different structures.
  • An organic material composition comprising the fluorescent compound according to any one of items 1 to 8, and a phosphorescent compound or a thermally activated delayed fluorescent compound.
  • An organic material composition comprising the fluorescent compound according to any one of items 1 to 8, a phosphorescent compound or a thermally activated delayed fluorescent compound, and a host compound.
  • a luminescent film comprising the fluorescent compound according to any one of items 1 to 8.
  • X represents a ⁇ -conjugated condensed ring having a 14 ⁇ electron system or more.
  • Y represents a deuterium atom, halogen atom, cyano group, nitro group, hydroxy group, mercapto group, alkyl group, cycloalkyl group.
  • At least one is a group having a structure represented by the following general formula (2): Y may be the same as or different from each other when there are a plurality of Y. n is the ⁇ -conjugated condensation. Represents the number of Ys that can be substituted for hydrogen atoms on the ring, and represents an integer from 1 to the maximum number.)
  • R 1 to R 5 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, a mercapto group, an alkyl group, a cycloalkyl group, or an alkenyl group.
  • A represents a carbon atom or a silicon atom.
  • R 6 to R 8 each independently represents R 1 to R 5 in General Formula (2) and an atom or substituent, (At least one of R 6 to R 8 is an alkyl group having 1 or more carbon atoms. * 2 represents a bonding site with an adjacent atom.)
  • R 9 and R 10 each independently represent the same atom or substituent as R 1 to R 5 in General Formula (2), but at least one of them has 1 or more carbon atoms.
  • * 3 represents a bonding site with an adjacent atom
  • R 1 to R 10 in the general formulas (2) to (4) are substituted or unsubstituted aliphatic groups bonded to each other.
  • a ring may be formed, but an aromatic ring is not further condensed to the formed aliphatic ring.
  • X represents a ⁇ -conjugated condensed ring having a 14 ⁇ electron system or more.
  • Y represents a deuterium atom, a triarylsilyl group, a diarylalkylsilyl group, an aryldialkylsilyl group, a trialkylsilyl group, A phenyl group or a group having a structure represented by the following general formula (2a), which may further have a substituent, wherein at least one of Y is represented by the following general formula (2a); Y may be the same or different when there are a plurality of groups, and n is the number of Ys that can be substituted for hydrogen atoms on the ⁇ -conjugated condensed ring. Represents an integer from 1 to the maximum number.
  • R 1 to R 5 each independently represent the same atom or substituent as R 1 to R 5 in the general formula (2), but at least one of R 1 and R 5 Is a linear, branched or cyclic alkyl group having 2 or more carbon atoms, or at least one of R 1 and R 2 and R 4 and R 5 is bonded to each other to form a substituted or unsubstituted aliphatic ring. (The aromatic ring is not further condensed to the aliphatic ring formed at this time.)
  • R represents a hydrogen atom or a bonding site with Y in the general formula (1) or (1a), but not all of them are hydrogen atoms.
  • R may be the same as or different from each other.
  • L represents —CR 11 R 12 —, —O—, —NR 13 —, —SiR 14 R 15 —, or —S—.
  • the plurality of L may be the same as or different from each other.
  • R and R 11 to R 15 each independently represent a hydrogen atom or a bonding site with Y in the general formula (1) or (1a), but not all are hydrogen atoms.
  • Several R may mutually be same or different.
  • R represents a bonding site with Y in the general formula (1) or (1a). R may be the same or different from each other.
  • L represents —CR 11 R 12 —, —O—, —NR 13 —, —SiR 14 R 15 —, or —S—.
  • the plurality of L may be the same as or different from each other.
  • R represents a binding site with Y in the general formula (1) or (1a).
  • R 11 to R 15 each independently represent a hydrogen atom or a bonding site with Y in the general formula (1) or (1a). The plurality of R and R 11 to R 15 may be the same as or different from each other.
  • Item 17 The organic electroluminescence device material according to Item 16, wherein all Rs in the general formulas (33) to (52) are groups having a structure represented by the general formula (2a).
  • R 12 and R 5 in the general formula (2) or (2a) are represented by the general formula (3) or (4), respectively, and have different structures Organic electroluminescent element material as described in any one of these.
  • An organic electroluminescence device having an organic functional layer including at least a light emitting layer between an anode and a cathode, The organic electroluminescent element in which the organic electroluminescent element material as described in any one of Claim 12 to 19th contains in the said organic functional layer.
  • the above-described means of the present invention can provide a fluorescent compound, an organic material composition, a luminescent film, an organic electroluminescent element material, and an organic electroluminescent element that suppress concentration quenching in a solid state.
  • the present inventors have found that when a ⁇ -conjugated ring condensed ring having a 14 ⁇ electron system or more has a substituent (phenyl group), at least one ortho position of the substituent (phenyl group). It has been found that the light-emitting property in the solution state can be maintained even in the solid state by having a substituent having a bulkiness higher than that of the ethyl group.
  • ⁇ G may be controlled to be a negative value or a smaller value.
  • ⁇ G is obtained by the following relational expression (1).
  • G Gibbs free energy
  • H enthalpy
  • S entropy
  • T absolute temperature
  • ⁇ G In order to set ⁇ G to a negative value or a smaller value, it is conceivable to reduce ⁇ H or increase ⁇ S.
  • ⁇ G In the prior art, ⁇ G is controlled by introducing a group that becomes a steric hindrance to reduce intermolecular interaction and reducing ⁇ H.
  • the present invention controls ⁇ G by increasing ⁇ S in addition to decreasing ⁇ H.
  • the substituent Y of the ⁇ -conjugated condensed ring is preferably a benzene ring that does not have an aromatic substituent, and is preferably a benzene ring that is not condensed with other aromatic rings.
  • ⁇ S can be increased by the presence of various conformational isomers.
  • Japanese Patent No. 5557197 discloses a compound having a methyl group at the ortho position of the phenyl group.
  • the fluorescent compound of the present invention has a structure represented by the general formula (1), and at least one Y has a structure represented by the general formula (2). This feature is a technical feature common to the inventions according to the following embodiments.
  • At least one of R 1 and R 5 in the general formula (2) is represented by the general formula (3) or (4), and is particularly represented by the general formula (3). preferable. Further, it is preferable that R 1 and R 5 in the general formula (2) have different structures respectively.
  • the fluorescent compound having the structure represented by the general formula (1) has a structure represented by the general formula (1a) and at least one Y represented by the general formula (2a). preferable.
  • the ⁇ -conjugated condensed ring represented by X in the general formula (1) preferably has a structure represented by any one of the general formulas (5) to (21), and the general formulas (33) to (52 It is more preferable to have a structure represented by any one of Further, all R in the general formulas (33) to (52) are groups having a structure represented by the general formula (2a), or one of R in the general formulas (33) to (52) is triaryl. It is a silyl group, and other R is preferably a group having a structure represented by the general formula (2a).
  • the present invention can provide an organic material composition containing the fluorescent compound and the phosphorescent compound or the thermally activated delayed fluorescent compound.
  • the present invention can provide an organic material composition containing the above-described fluorescent compound, a phosphorescent compound or a thermally activated delayed fluorescent compound, and a host compound.
  • the present invention can provide a luminescent film containing the fluorescent compound.
  • the present invention can provide an organic electroluminescent element material containing a fluorescent compound having a structure represented by the general formula (1).
  • the present invention provides an organic electroluminescent device having an organic functional layer including at least a light emitting layer between an anode and a cathode, wherein the organic functional layer contains the organic electroluminescent device material. it can.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the fluorescent compound of the present invention has a structure represented by the following general formula (1).
  • X represents a ⁇ -conjugated condensed ring having a 14 ⁇ -electron system or more.
  • Y is a deuterium atom, halogen atom, cyano group, nitro group, hydroxy group, mercapto group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, Alkylthio group, cycloalkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group, heteroaryl Sulfonyl group, amino group, fluorinated hydrocarbon group, tri
  • At least one of Y is a group having a structure represented by the following general formula (2). When there are a plurality of Ys, they may be the same as or different from each other.
  • n represents the number of Ys that can be substituted for the hydrogen atom on the ⁇ -conjugated condensed ring, and represents an integer from 1 to the maximum number.
  • the ⁇ -conjugated condensed ring does not need to have aromaticity, but simply means that the entire ring has a conjugated structure.
  • X in the general formula (1) is not particularly limited as long as it is a ⁇ -conjugated condensed ring having 14 or more ⁇ electrons, but the following general formulas (5) to (5)-( Those having the structure represented by 32) are preferred.
  • R represents a hydrogen atom or a bonding site with Y in the general formula (1), but not all are hydrogen atoms.
  • R may mutually be same or different.
  • L represents —CR 11 R 12 —, —O—, —NR 13 —, —SiR 14 R 15 —, or —S—.
  • the plurality of L may be the same as or different from each other.
  • R and R 11 to R 15 each independently represent a hydrogen atom or a bonding site with Y in the general formula (1), but not all are hydrogen atoms.
  • R may mutually be same or different.
  • X in the general formula (1) is more preferably a ⁇ -conjugated condensed ring having a structure represented by the general formulas (5) to (21).
  • R 11 to R 15 are linear, branched or cyclic alkyl groups, and any one of R is represented by the general formula It preferably has a group having the structure represented by (2).
  • R represents a binding site with Y in the general formula (1) or (1a). R may be the same as or different from each other.
  • L represents —CR 11 R 12 —, —O—, —NR 13 —, —SiR 14 R 15 —, or —S—.
  • the plurality of L may be the same as or different from each other.
  • R represents a binding site with Y in the general formula (1) or (1a).
  • R 11 to R 15 each independently represent a hydrogen atom or a bonding site with Y in formula (1) or (1a). The plurality of R and R 11 to R 15 may be the same as or different from each other.
  • Y in the general formula (1) include a deuterium atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.), a cyano group, a nitro group, a hydroxy group, a mercapto group, an alkyl group ( For example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group) Cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.), heterocyclic group
  • R 1 to R 5 are each independently a hydrogen atom, deuterium atom, halogen atom, cyano group, nitro group, hydroxy group, mercapto group, alkyl group, cycloalkyl group, alkenyl group, Alkynyl group, heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkylthio group, cycloalkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl Group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group or heteroarylsulfonyl group, amino group, fluorinated hydrocarbon group, triarylsilyl group, diarylalkylsilyl group, aryldial
  • A represents a carbon atom or a silicon atom.
  • R 6 to R 8 each independently represents the same atom or substituent as R 1 to R 5 in formula (2), but at least one of R 6 to R 8 is an alkyl group having 1 or more carbon atoms It is.
  • * 2 represents a bonding site with an adjacent atom.
  • R 9 and R 10 each independently represent the same atom or substituent as R 1 to R 5 in general formula (2), but at least one of them is alkyl having 1 or more carbon atoms. It is a group.
  • * 3 represents a bonding site with an adjacent atom.
  • adjacent groups may be bonded to each other to form a substituted or unsubstituted aliphatic ring. The aromatic ring is not condensed.
  • R 1 to R 5 in the general formula (2), R 6 to R 8 in the general formula (3), and R 9 and R 10 in the general formula (4) are specifically hydrogen atom, deuterium atom , Halogen atoms (eg fluorine atom, chlorine atom, bromine atom etc.), cyano group, nitro group, hydroxy group, mercapto group, alkyl group (eg methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group) Pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.) , Alkynyl groups (eg ethyny
  • alkyl group having 1 or more carbon atoms in the general formula (3) or (4) examples include methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group. Group, tetradecyl group, pentadecyl group and the like.
  • adjacent atom in the description of the formula is a carbon atom constituting the phenyl group to which R 1 and R 5 are bonded in the general formula (2).
  • R 1 and R 5 in the general formula (2) are represented by the general formula (3). Further, R 1 and R 5 in the general formula (2), respectively is represented by the general formula (3) or (4), and preferably has a different structure.
  • the fluorescent compound having the structure represented by the general formula (1) preferably has a structure represented by the following general formula (1a).
  • X represents a ⁇ -conjugated condensed ring having a 14 ⁇ -electron system or more.
  • Y represents a deuterium atom, a triarylsilyl group, a diarylalkylsilyl group, an aryldialkylsilyl group, a trialkylsilyl group, a phenyl group, or a group having a structure represented by the following general formula (2a). Furthermore, you may have a substituent.
  • At least one of Y is a group having a structure represented by the following general formula (2a). When there are a plurality of Ys, they may be the same as or different from each other.
  • n represents the number of Ys that can be substituted for the hydrogen atom on the ⁇ -conjugated condensed ring, and represents an integer from 1 to the maximum number.
  • R 1 to R 5 each independently represent the same atom or substituent as R 1 to R 5 in general formula (2), but at least one of R 1 and R 5 is carbon. It is a linear, branched or cyclic alkyl group having two or more, or at least one of R 1 and R 2 and R 4 and R 5 is bonded to each other to form a substituted or unsubstituted aliphatic ring. At this time, the aromatic ring is not further condensed to the formed aliphatic ring.
  • X in the general formula (1a) has the same meaning as X in the general formula (1).
  • the group having a structure represented by the general formula (2a) preferably has a structure represented by the following general formula (2a-1) or (2a-2), and is represented by the general formula (2a-3). It is more preferable to have a structure.
  • ring Z3 represents a substituted or unsubstituted aliphatic ring, but an aromatic ring is not further condensed to the aliphatic ring.
  • C 1 represents a carbon atom.
  • R 16 and R 17 each independently represent the same atom or substituent as R 1 to R 5 in formula (2), but at least one of R 16 and R 17 is an alkyl group having 1 or more carbon atoms Represents.
  • R 18 represents a substituent.
  • a represents the number of R 18 that can be substituted for a hydrogen atom on the ring Z3, and represents an integer from 0 to the maximum number.
  • * 1 represents a binding site with X.
  • ring Z3 and ring Z4 represent a substituted or unsubstituted aliphatic ring, but an aromatic ring is not further condensed to the aliphatic ring.
  • C 1 and C 2 represent the carbon atoms.
  • R 16 and R 17 each independently represent the same atom or substituent as R 1 to R 5 in formula (2), but at least one of R 16 and R 17 is an alkyl group having 1 or more carbon atoms Represents.
  • R 21 and R 22 each independently represent the same atom or substituent as R 1 to R 5 in formula (2), but at least one of R 21 and R 22 is an alkyl group having 1 or more carbon atoms Represents.
  • R 18 and R 23 each independently represents a substituent.
  • a represents the number of R 18 that can be substituted for a hydrogen atom on the ring Z3, and represents an integer from 0 to the maximum number.
  • b represents the number of R 23 that can be substituted in place of the hydrogen atom on the ring Z4, and represents an integer from 0 to the maximum number.
  • * 1 represents a binding site with X.
  • C 1 and C 2 represent a carbon atom.
  • R 16 and R 17 each independently represent the same atom or substituent as R 1 to R 5 in formula (2), but at least one of R 16 and R 17 is an alkyl group having 1 or more carbon atoms Represents.
  • R 21 and R 22 each independently represent the same atom or substituent as R 1 to R 5 in formula (2), but at least one of R 21 and R 22 is an alkyl group having 1 or more carbon atoms Represents.
  • R 18 to R 20 and R 23 to R 25 each independently represent a substituent.
  • c and d each represents an integer of 0-2. * 1 represents a binding site with X.
  • Examples compounds of the fluorescent compound of the present invention are shown below, but are not limited thereto.
  • the fluorescent compound of the present invention can be synthesized by a known method, and an example thereof is shown below.
  • the fluorescent compound of the present invention can emit fluorescence by electric field excitation or the like. Therefore, it can be used as various luminescent materials.
  • the light emitting material may contain other components as necessary. Further, the light emitting material may be used in a powder form or may be used after being processed into a desired shape. The light emitting material can be applied to, for example, a material for forming a light emitting film described later, a fluorescent paint, and a bioimaging fluorescent dye.
  • Organic material composition contains a fluorescent compound having a structure represented by the above general formula (1), and a phosphorescent compound or a thermally activated delayed fluorescent compound, To do.
  • the organic material composition may further contain a host compound.
  • the phosphorescent compound according to the present invention is a compound containing a heavy atom and capable of emitting light from triplet excitation, and is not particularly limited as long as light emission from triplet excitation is observed.
  • a phosphorescent compound having a structure represented by the following general formula (DP) is preferable.
  • M represents Ir or Pt.
  • a 1 , A 2 , B 1 and B 2 each independently represent a carbon atom or a nitrogen atom.
  • Ring Z1 is a substituted or unsubstituted 6-membered aromatic hydrocarbon ring, substituted or unsubstituted 5-membered or 6-membered aromatic heterocycle formed together with A 1 and A 2 , or these rings
  • An aromatic condensed ring containing at least one of Ring Z2 is formed with B 1 and B 2, it represents an aromatic condensed ring containing at least one of a substituted or unsubstituted 5- or 6-membered aromatic heterocyclic ring, or the rings.
  • a carbene carbon atom may be sufficient as the carbon atom which the ring Z1 and the ring Z2 have.
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • a condensed ring structure may be formed by bonding substituents of the ring Z1 and the ring Z2.
  • the ligands represented by two or three rings Z1 and Z2 may be linked to each other directly or via a linker moiety (linking group) in ring Z1 or ring Z2.
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0-2.
  • n represents an integer of 1 to 3.
  • M + n is 3 when M is Ir, and m + n is 2 when M is Pt.
  • the ligands represented by the plurality of rings Z1 and the ring Z2 or the plurality of Ls may be the same as or different from each other.
  • the ligand represented by ring Z1 and ring Z2 and L may be linked.
  • Examples of the substituent that the ring Z1 and the ring Z2 may have include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group).
  • an alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group).
  • Aromatic hydrocarbon group also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group , Fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl Etc.), an aromatic heterocyclic group (for example, furyl group, thienyl group
  • Examples of the substituent that L may have include the same substituents that the ring Z1 and ring Z2 may have.
  • Ring Z2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
  • the phosphorescent compound having a structure represented by the general formula (DP) preferably has a structure represented by the following general formula (DP-1).
  • M, A 1 , A 2 , B 1 , B 2 , rings Z1, L, m, and n are M, A 1 , A 2 , B 1 , B 2, ring Z1, L, the same meaning as m and n.
  • B 3 to B 5 are an atomic group forming an aromatic heterocyclic ring, and each independently represents a carbon atom, nitrogen atom, oxygen atom or sulfur atom which may have a substituent.
  • substituents that B 3 to B 5 may have include the same groups as the substituents that the ring Z1 and ring Z2 in the general formula (DP) may have.
  • the aromatic heterocycle formed by B 1 to B 5 in the general formula (DP-1) is represented by any of the following general formulas (DP-1a), (DP-1b) and (DP-1c) It preferably has a structure.
  • * 4 represents a binding site with A 2 in the general formula (DP-1).
  • * 5 represents a binding site with M.
  • Rb 3 to Rb 5 represent a hydrogen atom or a substituent. Examples of the substituent represented by Rb 3 to Rb 5 include the same groups as the substituents that the ring Z1 and the ring Z2 in the general formula (DP) may have.
  • B 4 and B 5 in the general formula (DP-1a) represent a carbon atom or a nitrogen atom.
  • B 4 and B 5 are preferably at least one carbon atom.
  • B 3 to B 5 in the general formula (DP-1b) represent a carbon atom or a nitrogen atom. At least one of B 3 to B 5 is preferably a carbon atom.
  • B 3 and B 4 in the general formula (DP-1c) represent a carbon atom or a nitrogen atom.
  • B 3 and B 4 are preferably at least one carbon atom.
  • Rb 3 and Rb 4 in the general formulas (DP-1a), (DP-1b) and (DP-1c) are preferably further bonded to each other to form a condensed ring structure.
  • the condensed ring structure is more preferably an aromatic ring, and the aromatic ring is more preferably any of a benzimidazole ring, an imidazopyridine ring, an imidazopyrazine ring, or a purine ring.
  • Rb 5 is preferably an alkyl group or an aryl group, and more preferably a phenyl group.
  • exemplary compounds of the phosphorescent compound having a structure represented by the general formula (DP) are shown, but not limited thereto.
  • the phosphorescent compound that can be used in the present invention can be appropriately selected from, for example, known compounds used in the light emitting layer of the organic EL element.
  • Known phosphorescent compounds that can be used in the present invention include, but are not limited to, compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem.
  • the thermally activated delayed fluorescent compound according to the present invention utilizes a phenomenon in which reverse intersystem crossing from triplet excitons to singlet excitons (hereinafter simply referred to as “RISC”) occurs.
  • RISC reverse intersystem crossing from triplet excitons to singlet excitons
  • TADF thermally activated delayed fluorescence
  • thermally activated delayed fluorescence also referred to as “thermally activated delayed fluorescence”
  • thermally activated delayed fluorescent compound examples include:
  • thermally activated delayed fluorescent compound that can be used in the present invention, for example, it can be appropriately selected from known compounds used for the light emitting layer of the organic EL device.
  • thermally activated delayed fluorescent compounds examples include, but are not limited to, compounds described in the following documents. JP 2013-116975 A, Nature, 2012, 492, 234, Nature, Photonics, 2014, 8, 326, Adv. Mater.
  • the thermally activated delayed fluorescent compound described in 2014, 26, 7931 can be preferably used.
  • the organic material composition of the present invention may contain a host compound in addition to the fluorescent compound, the phosphorescent compound, or the thermally activated delayed fluorescent compound.
  • the host compound according to the present invention is described below.
  • host compound known host compounds may be used alone or in combination.
  • a plurality of types of host compounds for example, when an organic material composition is applied to an organic EL element or the like, it is possible to adjust the movement of charges, and high efficiency can be realized.
  • the host compound according to the present invention is not particularly limited, and for example, a compound conventionally used in an organic EL device can be used. It may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
  • the host compound according to the present invention is preferably a compound having a structure represented by the following general formula (HA) or (HB).
  • Xa represents O or S.
  • Xb, Xc, Xd and Xe each independently represent a hydrogen atom, a substituent or a group having a structure represented by the following general formula (HC), and at least one of Xb, Xc, Xd and Xe is A group having a structure represented by the following general formula (HC) is represented, and at least one of the groups having a structure represented by the following general formula (HC) is a carbazolyl group.
  • L ′ represents a divalent linking group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • n represents an integer of 0 to 3, and when n is 2 or more, a plurality of L ′ may be the same or different.
  • * Represents a binding site with the general formula (HA) or (HB).
  • Ar represents a group having a structure represented by the following general formula (HD).
  • Xf represents N (R ′), O or S.
  • E 1 to E 8 each represent C (R ′′) or N, and R ′ and R ′′ each represent a hydrogen atom, a substituent, or a bonding site with L ′ in the general formula (HC).
  • * Represents a binding site with L ′ in the general formula (HC).
  • Xb, Xc, Xd and Xe are represented by the general formula (HC), and more preferably Xc is represented by the general formula (HC).
  • Ar in the general formula (HC) represents a carbazolyl group which may have a substituent.
  • Examples of the substituents represented by Xb, Xc, Xd and Xe in the general formulas (HA) and (HB) and the substituents represented by R ′ and R ′′ in the general formula (HD) include the above general formula (DP ) And the same substituents that the ring Z1 and ring Z2 may have.
  • Examples of the aromatic hydrocarbon ring represented by L ′ in the general formula (HC) include a benzene ring, a p-chlorobenzene ring, a mesitylene ring, a toluene ring, a xylene ring, a naphthalene ring, an anthracene ring, an azulene ring, and an acenaphthene ring.
  • Examples of the aromatic heterocycle represented by L ′ in the general formula (HC) include a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • host compound according to the present invention include compounds applicable to the present invention in addition to the compound having the structure represented by the general formula (HA) or (HB). It is not specifically limited to.
  • JP-A-2015-38941 can also be suitably used.
  • the fluorescent light-emitting compound, phosphorescent light-emitting compound, heat-activated delayed fluorescent compound, and host compound contained in the organic material composition of the present invention have been described above, but any phosphorescent light-emitting compound or heat is described.
  • a combination of an activated delayed fluorescent compound and a host compound may also be used.
  • the plurality of phosphorescent compounds or thermally activated delayed fluorescent compounds described above may be used in combination, and the plurality of host compounds described above may be used in combination.
  • Organic EL element The fluorescent compound having the structure represented by the general formula (1) of the present invention can be used as an organic EL device material.
  • the organic EL device of the present invention has an organic functional layer including at least a light emitting layer between an anode and a cathode, and an organic EL device material containing the fluorescent compound of the present invention in any of the organic functional layers is provided. Contained.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
  • a layer excluding the anode and the cathode is referred to as an organic functional layer.
  • the configuration (7) is preferably used, but is not limited thereto.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers. When there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the light emitting layer according to the present invention contains two kinds of light emitting materials having different emission maximum wavelengths, the long wavelength side light emitting material is a phosphorescent compound, and the short wavelength side light emitting material is the fluorescent compound of the present invention. Preferably there is. These two kinds of light emitting materials may be contained in the same layer, or may be contained in a single light emitting layer.
  • the absorption spectrum of the phosphorescent compound and the absorption spectrum of the fluorescent compound may partially overlap.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Further, the electron transport layer may be composed of a plurality of layers.
  • the hole transport layer is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer may be composed of a plurality of layers.
  • the organic EL element of the present invention may be a so-called tandem structure element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • Examples of typical element configurations of the tandem structure include the following configurations.
  • Anode / first light emitting unit / second light emitting unit / third light emitting unit / cathode Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
  • the first light emitting unit, the second light emitting unit, and the third light emitting unit may all have the same configuration or may be different. Further, the two light emitting units may be the same, and the remaining one may be different.
  • the third light emitting unit may not be provided, while another light emitting unit or an intermediate layer may be provided between the third light emitting unit and the electrode.
  • the plurality of light emitting units may be directly stacked or may be stacked via an intermediate layer.
  • the intermediate layer is generally also called an intermediate electrode, intermediate conductive layer, charge generation layer, electron extraction layer, connection layer, or intermediate insulating layer, and electrons are transferred to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • a known material structure can be used as long as the layer has a function of supplying.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayered films, C 60 and other fullerenes, oligothiophene and other conductive materials
  • Examples include organic material layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal
  • Examples of a preferable configuration in the light emitting unit include a configuration in which the anode and the cathode are excluded from the configurations (1) to (7) described in the representative element configuration, but the present invention is not limited to these. Not.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • the light emitting layer according to the present invention provides a field in which electrons and holes injected from an electrode or an adjacent layer (hereinafter also referred to as “adjacent layer”) are recombined to emit light via excitons.
  • the layer that emits light may be within the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From the viewpoint, it is preferable to adjust within the range of 2 nm to 5 ⁇ m, more preferably within the range of 2 to 500 nm, and even more preferably within the range of 5 to 200 nm.
  • each light emitting layer is preferably adjusted within the range of 2 nm to 1 ⁇ m, more preferably adjusted within the range of 2 to 200 nm, and further preferably within the range of 3 to 150 nm. Adjusted in.
  • the light emitting layer according to the present invention preferably contains a fluorescent compound having a structure represented by the general formula (1), and in addition to the fluorescent compound, a phosphorescent compound and a host compound It is a more preferable aspect that it is comprised.
  • the light emitting layer according to the present invention may contain a material of a layer adjacent to the light emitting layer. Examples of the material of the adjacent layer include a hole transport material.
  • Luminescent dopant As the luminescent dopant, it is preferable to use a phosphorescent compound (also referred to as a phosphorescent dopant or a phosphorescent compound) and a fluorescent compound (fluorescent dopant or fluorescent compound) in combination.
  • a phosphorescent compound also referred to as a phosphorescent dopant or a phosphorescent compound
  • a fluorescent compound fluorescent dopant or fluorescent compound
  • the phosphorescent compound may be used in combination of two or more kinds, or a combination of dopants having different structures may be used. Thereby, arbitrary luminescent colors can be obtained.
  • the color emitted by the organic EL element of the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society of Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured with Minolta Co., Ltd. is applied to the CIE chromaticity coordinates.
  • the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.
  • a plurality of light emitting dopants having different emission colors and emits white light.
  • the combination of light-emitting dopants that exhibit white but examples include blue and orange, and a combination of blue, green, and red.
  • the white color in the organic EL device according to the present invention is not particularly limited, and may be white near orange or white near blue, but when the front luminance at 2 degrees viewing angle is measured by the above method.
  • Phosphorescent compound is a compound in which light emission from triplet excitation is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.).
  • the phosphorescence quantum yield is defined as a compound of 0.01 or more at 25 ° C., but the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield in the present invention can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, in the present invention, the phosphorescence emitting compound achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
  • phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is phosphorescent. By transferring to a compound, it is an energy transfer type in which light emission from the phosphorescent compound is obtained. The other is a carrier trap type in which a phosphorescent compound serves as a carrier trap and recombination of carriers occurs on the phosphorescent compound, and light emission from the phosphorescent compound is obtained. In any case, the condition is that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound that can be used in the present invention can be appropriately selected from known compounds used for the light emitting layer of the organic EL device.
  • a phosphorescent compound having a structure represented by the above general formula (DP) a known phosphorescent compound described in the above-described literature, and the like can be given.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode among metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the luminescent layer according to the present invention may contain a fluorescent compound having a structure represented by the general formula (1), or other fluorescent emission different from this.
  • An organic compound may be contained, or these may be used in combination.
  • fluorescent compounds are compounds that can emit light from singlet excitation, and are not particularly limited as long as light emission from singlet excitation is observed.
  • fluorescent compounds examples include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives. , Pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
  • fluorescent compound using delayed fluorescence include, for example, compounds described in International Publication No. 2011/156793, Japanese Unexamined Patent Application Publication No. 2011-213743, Japanese Unexamined Patent Application Publication No. 2010-93181, and the like.
  • the present invention is not limited to these.
  • the host compound is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
  • the excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
  • the host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound is not particularly limited, and a compound conventionally used in an organic EL device can be used. It may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
  • Tg glass transition temperature
  • Examples of known host compounds used in the organic EL device of the present invention include the same host compounds as those in the organic material composition described above.
  • the host compound used in the present invention may be used in an adjacent layer adjacent to the light emitting layer.
  • the electron transport layer is made of a material having a function of transporting electrons, and only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm.
  • the organic EL element when light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to cause. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer within the range of 5 nm to 1 ⁇ m.
  • the electron mobility of the electron transport layer is 1 ⁇ 10 ⁇ 5 cm 2 / Vs or more. Is preferred.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.)
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7 -Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as an electron transporting material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • Distyrylpyrazine derivatives can also be used as electron transport materials, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as electron-transport materials as well as hole-injection layers and hole-transport layers. Can do.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the above-described configuration of the electron transport layer can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
  • the thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer is preferably used, and the material used as the host compound is also preferably used for the hole blocking layer.
  • An electron injection layer (also referred to as a “cathode buffer layer”) is a layer provided between a cathode and a light emitting layer in order to reduce driving voltage or improve light emission luminance. (November 30, 1998, issued by NTS Corporation) ”, Volume 2, Chapter 2,“ Electrode Materials ”(pages 123 to 166).
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and depending on the material, the thickness is preferably in the range of 0.1 to 5 nm. Moreover, the nonuniform film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Moreover, it is also possible to use said electron transport material.
  • Metals typified by strontium and aluminum alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc.
  • alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc.
  • oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquino
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm.
  • a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive Polymer or oligomer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.)
  • triarylamine derivative examples include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as a central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • preferable hole transport materials used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents in addition to the documents listed above.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the above-described configuration of the hole transport layer can be used as an electron blocking layer as necessary.
  • the electron blocking layer is preferably provided adjacent to the anode side of the light emitting layer.
  • the thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer is preferably used, and the material used for the host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light-emitting layer in order to lower the driving voltage and improve the light emission luminance. (November 30, 1998, issued by NTS Corporation) ”, Volume 2, Chapter 2,“ Electrode Materials ”(pages 123-166).
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples of materials used for the hole injection layer include: And materials used for the hole transport layer.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc.
  • metal oxides typified by vanadium oxide
  • amorphous Conductive polymers such as carbon, polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives are preferred.
  • the materials used for the hole injection layer may be used alone or in combination of two or more.
  • the organic functional layer according to the present invention may further contain other inclusions.
  • inclusions include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals such as Pd, Ca, Na, alkaline earth metals, transition metal compounds, complexes, and salts.
  • halogen elements such as bromine, iodine and chlorine
  • halogenated compounds such as Pd, Ca, Na, alkaline earth metals, transition metal compounds, complexes, and salts.
  • the content of the inclusions can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less with respect to the total mass% of the contained layer. .
  • ⁇ Method for forming organic functional layer> As a method for forming the organic functional layer in the organic EL device of the present invention, a known method can be suitably employed. Hereinafter, a method for forming an organic functional layer (hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) will be described.
  • the method for forming the organic functional layer according to the present invention is not particularly limited, and for example, a vacuum evaporation method such as a dry process, a formation method by a wet process, etc. can be used, and a compound used for each layer can be used.
  • a method may be used in which an organic functional layer is formed by laminating properly using a wet process or a dry process.
  • the organic functional layer is preferably a layer formed by a wet process. That is, it is preferable to produce an organic EL element by a wet process.
  • membrane (coating film) here is a thing of the state dried after application
  • Examples of the wet process include spin coating, casting, ink jet, printing, die coating, blade coating, roll coating, spray coating, curtain coating, and LB (Langmuir-Blodgett). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • dry process examples include vapor deposition methods (resistance heating, EB method, etc.), sputtering methods, CVD methods, and the like.
  • the liquid medium for dissolving or dispersing the organic EL element material constituting each layer for example, ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene
  • Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene
  • a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa, and the vapor deposition rate. It is desirable to select appropriately within a range of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic functional layer it is preferable to consistently produce from the hole injection layer to the cathode by one evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode in the organic EL element a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • an electrode material include metals such as Au, and conductive transparent materials such as CuI, ITO (indium tin oxide), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of electrode material vapor deposition or sputtering.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the light transmittance be larger than 10%, and the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the anode depends on the material, but is usually selected within the range of 10 nm to 1 ⁇ m, preferably within the range of 10 to 200 nm.
  • cathode a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq. The following are preferable, and the thickness is usually selected within the range of 10 nm to 5 ⁇ m, preferably within the range of 50 to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode, By applying this, an element in which both the anode and the cathode are light transmissive can be manufactured.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic, or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • An inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129: 1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less gas barrier film, and further measured by a method according to JIS K 7126: 1987.
  • the material for forming the gas barrier film may be any material that has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the gas barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • external extraction quantum efficiency (%) (number of photons emitted to the outside of the organic EL element / number of electrons passed through the organic EL element) ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126: 1987 of 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129: 1992.
  • the measured water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • fever and chemical-curing types (2 liquid mixing), such as an epoxy type, can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature (25 degreeC) to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive. Application
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or sealing film on the side facing the support substrate with the organic functional layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic EL element emits light inside a layer having a higher refractive index than air (within a refractive index of about 1.6 to 2.1), and only about 15 to 20% of the light generated in the light emitting layer is emitted. It is generally said that it cannot be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light, the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the side surface direction of the element.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any one of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Moreover, it is more preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • Bragg diffraction such as first-order diffraction or second-order diffraction.
  • the light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode), It tries to take out light.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention can be processed to provide, for example, a structure on a microlens array on the light extraction side of a support substrate (substrate), or combined with a so-called condensing sheet, for example, in a specific direction, By condensing in the front direction with respect to the element light emitting surface, the luminance in a specific direction can be increased.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness becomes thick, which is not preferable.
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • FIG. 1 is a schematic perspective view showing an example of the configuration of a display device composed of the organic EL element of the present invention, which displays image information by light emission of the organic EL element, for example, a display such as a mobile phone FIG.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A.
  • the control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside.
  • each pixel sequentially emits light according to the image data signal for each scanning line by the scanning signal, and the image information is displayed on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A shown in FIG.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main components of the display unit A will be described below.
  • FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • Each of the scanning lines 5 and the plurality of data lines 6 in the wiring portion is made of a conductive material.
  • the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are not shown).
  • the pixel 3 When the scanning signal is transmitted from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full-color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate in parallel on the same substrate.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
  • LUX epoxy photocurable adhesive
  • FIG. 3 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere.
  • a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher).
  • reference numeral 105 denotes a cathode
  • reference numeral 106 denotes an organic functional layer (or light emitting unit)
  • reference numeral 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Example 1 For the fluorescent compounds of the present invention shown in Tables I-1 and I-2 and the following comparative compounds 1 to 30, the fluorescence quantum yields in the solution state and the film state were evaluated.
  • a quartz substrate having a size of 30 mm ⁇ 30 mm and a thickness of 0.7 mm was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • An optimum amount of each of the fluorescent light emitting compounds shown in Tables I-1 and I-2 was filled in a vapor emitting crucible in a vacuum vapor deposition apparatus.
  • As the evaporation crucible a crucible made of a resistance heating material made of molybdenum or tungsten was used.
  • each fluorescent compound was deposited at a deposition rate of 0.1 nm / second to form a single film having a thickness of 30 nm.
  • the absolute quantum yield (PLQE) of each produced fluorescent light emitting compound single film was measured.
  • the absolute quantum yield was measured using an absolute quantum yield measuring apparatus C9920-02 (manufactured by Hamamatsu Photonics).
  • Absolute quantum yield in the film state / absolute quantum yield in the solution state is 0.75 or more (best, pass)
  • Absolute quantum yield in film state / absolute quantum yield in solution state is 0.5 or more and less than 0.75 (good, pass)
  • X Absolute quantum yield in the film state / absolute quantum yield in the solution state is less than 0.5 (defective or rejected)
  • the fluorescent compound of the present invention has a smaller decrease in absolute quantum yield in the film state than the comparative compound of the comparative example, that is, even in the solid state. It can be seen that the absolute quantum yield is maintained. This is probably because the fluorescent compound of the present invention has the substituent Y, so that spontaneous aggregation of molecules is unlikely to occur, and as a result, concentration quenching did not occur even in the solid state. It is done. From the above, it was confirmed that the fluorescent compound having the structure represented by the general formula (1) is useful for suppressing concentration quenching in the solid state.
  • Lighting devices for evaluation 201 to 270 were produced as follows.
  • a surface treatment with ozone was performed on an ITO (indium tin oxide) -glass substrate (ITO film thickness 150 nm) that had been patterned and cleaned in advance.
  • ITO film thickness 150 nm ITO film thickness 150 nm
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 50 nm) as a hole injection material was deposited on the ITO film. A film was formed.
  • N, N′-di-[(1-naphthyl) -N, N′-diphenyl] -1,1 ′ ′-biphenyl) -4,4′-diamine was formed as a hole transport material. (25 nm).
  • a film in which the comparative compound 4 was doped at a ratio of 3% by mass with respect to 9,10-di (2-naphthyl) anthracene (ADN) was formed by co-evaporation. (30 nm).
  • the non-light-emitting surface of the organic EL element is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material to the periphery, and this is placed on the cathode to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed to produce an evaluation illumination device 201 having a configuration as shown in FIGS.
  • Evaluation illumination devices 202 to 270 were produced in the same manner except that the light emitting material was changed as described in Tables II-1 and II-2 in the production of the evaluation illumination device 201.
  • the lighting device containing the fluorescent compound of the present invention has higher luminous efficiency and half of the lighting device containing the comparative compound of the comparative example. It can be seen that the lifetime has been extended. This is because the fluorescent compound of the present invention has the substituent Y, so that spontaneous aggregation of molecules does not easily occur, and as a result, there is no decrease in luminous efficiency due to concentration quenching or the like. it is conceivable that.
  • Evaluation lighting devices 301 to 318 were produced as follows.
  • ITO indium tin oxide
  • a glass substrate transparent substrate
  • This ITO transparent electrode was formed after patterning.
  • the attached transparent substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • HT-1 was vapor-deposited at a vapor deposition rate of 1.0 kg / sec to form a 30 nm-thick hole transport layer.
  • the resistance heating boat containing the host compound H-1, the phosphorescent compound Dp-1 and the comparative compound 4 is energized and heated, and the host compound H-1, the phosphorescent compound Dp-1 and the fluorescence are emitted.
  • the deposition rate was 0.56 ⁇ / sec, 0.1 ⁇ / sec, and 0.006 ⁇ / sec so that the comparative compound 4 as the active compound would be 84.5 vol%, 15 vol%, and 0.5 vol%, respectively.
  • a first electron transport layer and a second electron transport layer were formed on the light emitting layer as electron transport layers.
  • HB-1 was deposited at a deposition rate of 1.0 kg / sec to form a first electron transport layer having a thickness of 30 nm.
  • ET-1 was vapor-deposited thereon at a vapor deposition rate of 1.0 kg / second to form a second electron transport layer having a thickness of 30 nm.
  • the non-light-emitting surface of the organic EL element is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material to the periphery, and this is placed on the cathode to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed to produce an evaluation illumination device 301 having a structure as shown in FIGS.
  • Evaluation illumination devices 302 to 318 were prepared in the same manner except that the fluorescent light emitting compound was changed as shown in Table III in the production of the evaluation illumination device 301.
  • Luminous efficiency was evaluated for the manufactured illumination devices for evaluation 301 to 318.
  • the evaluation results are shown in Table III.
  • the luminous efficiency is shown as a relative value.
  • the luminous efficiency of the lighting devices 302 to 306 is a relative value when the luminous efficiency of the lighting device 301 is 1.0.
  • the lighting device containing the fluorescent compound of the present invention has higher luminous efficiency than the lighting device containing the comparative compound of the comparative example. This is because the fluorescent compound of the present invention has the substituent Y, so that spontaneous aggregation of molecules does not easily occur, and as a result, there is no decrease in luminous efficiency due to concentration quenching or the like. it is conceivable that.
  • Example 4 ⁇ Production of evaluation lighting device> Illumination devices for evaluation 401 to 420 were produced in the same manner as in Example 3, except that the phosphorescent compound and the fluorescent compound were changed as described in Table IV.
  • the luminous efficiency is shown as a relative value.
  • the luminous efficiency of the lighting devices 402 to 407 is a relative value when the luminous efficiency of the lighting device 401 is 1.0.
  • the lighting device containing the fluorescent compound of the present invention has higher luminous efficiency than the lighting device containing the comparative compound of the comparative example. This is because the fluorescent compound of the present invention has the substituent Y, so that spontaneous aggregation of molecules does not easily occur, and as a result, there is no decrease in luminous efficiency due to concentration quenching or the like. it is conceivable that.
  • Evaluation lighting devices 501 to 519 were produced as follows.
  • ⁇ Production of Evaluation Lighting Device 501 As an anode, after patterning a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate is formed with ITO (indium tin oxide) 100 nm, this ITO transparent electrode is provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, and each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • a crucible made of a resistance heating material made of molybdenum or tungsten was used as the evaporation crucible.
  • ⁇ -NPD was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to form a 40 nm thick hole transport layer.
  • H-2 is used as the host compound
  • Dp-3 is used as the thermally activated delayed fluorescent compound
  • Comparative Compound 8 is used as the fluorescent compound, and the ratios are 84.5 vol%, 15 vol%, and 0.5 vol, respectively.
  • % Was co-evaporated at a deposition rate of 0.1 nm / second to form a light-emitting layer having a thickness of 30 nm.
  • TPBi (1,3,5-tris (N-phenylbenzimidazol-2-yl) was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a thickness of 30 nm.
  • the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring was installed to produce an evaluation illumination device 501.
  • Evaluation illumination devices 502 to 519 were produced in the same manner as in the production of the evaluation illumination device 501, except that the fluorescent compound was changed as described in Table V.
  • Luminous efficiency was evaluated for the manufactured illumination devices for evaluation 501 to 519.
  • the evaluation results are shown in Table V.
  • the luminous efficiency is shown as a relative value.
  • the luminous efficiency of the lighting devices 502 to 508 is a relative value when the luminous efficiency of the lighting device 501 is 1.0.
  • the lighting device containing the fluorescent compound of the present invention has higher luminous efficiency than the lighting device containing the comparative compound of the comparative example. This is because the fluorescent compound of the present invention has the substituent Y, so that spontaneous aggregation of molecules does not easily occur, and as a result, there is no decrease in luminous efficiency due to concentration quenching or the like. it is conceivable that.
  • the present invention can be particularly suitably used for providing a fluorescent compound, an organic material composition, a luminescent film, an organic electroluminescence element material, and an organic electroluminescence element that suppress concentration quenching in a solid state. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Indole Compounds (AREA)

Abstract

本発明の課題は、固体状態において濃度消光を抑制する蛍光発光性化合物を提供することである。 本発明の蛍光発光性化合物は、下記一般式(1)で表される構造を有することを特徴とする。

Description

蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
 本発明は、蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子に関し、より詳しくは、固体状態において濃度消光を抑制する蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)は、発光する化合物(以下、「発光材料」ともいう。)を含有する発光層を陽極と陰極とで挟んだ構成を有し、発光層に電子及び正孔を注入して再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子である。有機EL素子は、数V~数十V程度と低電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、また、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
 発光材料としては、これまで種々のものが開発され、Ir錯体に代表される有機金属錯体や芳香族炭化水素等が知られている。このうち、芳香族炭化水素は、溶液中で蛍光を発光するものが多いが、分子が凝集している固体状態では、濃度消光、エキシマ形成を原因として、蛍光を発しない、あるいは、溶液時よりも長波長の発光を示す傾向があった。そのため、有機EL素子やバイオイメージングでの使用には問題があった。
 例えば、特許文献1には、ペリレン環に置換基としてナフチル基やフルオレニル基を導入することにより、2分子間の2面角を大きくし、エキシマ形成の抑制を図った技術が開示されている。しかし、この4置換ペリレンは、単膜で使用した際に、蛍光量子収率が低いという問題があった。
国際公開第2010/064694号
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、固体状態において濃度消光を抑制する蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、特定の置換基を有する蛍光発光性化合物を採用することにより、固体状態において濃度消光を抑制する蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子を提供できることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.下記一般式(1)で表される構造を有する蛍光発光性化合物。
Figure JPOXMLDOC01-appb-C000021
(一般式(1)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基、ホスホノ基、フェニル基、又は下記一般式(2)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
Figure JPOXMLDOC01-appb-C000022
(一般式(2)中、R~Rは、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基若しくはヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基又はホスホノ基を表し、これらは更に置換基を有していてもよい。R及びRの少なくとも一方は、下記一般式(3)又は(4)で表される構造を有する基である。*1は、Xとの結合部位を表す。)
Figure JPOXMLDOC01-appb-C000023
(一般式(3)中、Aは、炭素原子又はケイ素原子を表す。R~Rは、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R~Rの少なくとも一つは炭素数1以上のアルキル基である。*2は、隣接原子との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000024
(一般式(4)中、R及びR10は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、少なくとも一つは炭素数1以上のアルキル基である。*3は、隣接原子との結合部位を表す。一般式(2)~(4)におけるR~R10は、隣接する基が互いに結合して置換又は無置換の脂肪族環を形成していてもよいが、形成された脂肪族環に更に芳香族環が縮環することはない。)
 2.前記一般式(2)におけるR及びRの少なくとも一方が、前記一般式(3)で表される第1項に記載の蛍光発光性化合物。
 3.前記一般式(1)で表される構造を有する蛍光発光性化合物が、下記一般式(1a)で表される構造を有する第1項又は第2項に記載の蛍光発光性化合物。
Figure JPOXMLDOC01-appb-C000025
(一般式(1a)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、フェニル基、又は下記一般式(2a)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2a)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
Figure JPOXMLDOC01-appb-C000026
(一般式(2a)中、R~Rは、それぞれ独立に、前記一般式(2)におけるR~Rと原子又は置換基を表すが、R及びRの少なくとも一方が炭素数2以上の直鎖、分岐又は環状アルキル基であるか、RとR及びRとRの少なくとも一方が互いに結合して、置換又は無置換の脂肪族環を形成している。このとき形成された脂肪族環に更に芳香族環が縮環することはない。)
 4.前記一般式(1)又は(1a)におけるXが、下記一般式(5)~(21)のいずれかで表される構造を有するπ共役縮合環である第1項から第3項までのいずれか一項に記載の蛍光発光性化合物。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(一般式(5)~(19)中、Rは、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。
 一般式(20)及び(21)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。R及びR11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。)
 5.前記一般式(1)又は(1a)におけるXが、下記一般式(33)~(52)のいずれかで表される構造を有するπ共役縮合環である第1項から第3項までのいずれか一項に記載の蛍光発光性化合物。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
(一般式(33)~(49)中、Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。Rは、互いに同じであっても異なっていてもよい。
 一般式(50)~(52)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。R11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表す。複数のR及びR11~R15は、互いに同じであっても異なっていてもよい。)
 6.前記一般式(33)~(52)におけるRが、すべて前記一般式(2a)で表される構造を有する基である第5項に記載の蛍光発光性化合物。
 7.前記一般式(33)~(52)におけるRの一つがトリアリールシリル基であり、その他のRがすべて前記一般式(2a)で表される構造を有する基である第5項に記載の蛍光発光性化合物。
 8.前記一般式(2)又は(2a)におけるR及びRが、それぞれ前記一般式(3)又は(4)で表され、かつ、異なる構造を有している第1項から第7項までのいずれか一項に記載の蛍光発光性化合物。
 9.第1項から第8項までのいずれか一項に記載の蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合物とを含有する有機材料組成物。
 10.第1項から第8項までのいずれか一項に記載の蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合物と、ホスト化合物とを含有する有機材料組成物。
 11.第1項から第8項までのいずれか一項に記載の蛍光発光性化合物を含む発光性膜。
 12.下記一般式(1)で表される構造を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子材料。
Figure JPOXMLDOC01-appb-C000031
(一般式(1)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基、ホスホノ基、フェニル基、又は下記一般式(2)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
Figure JPOXMLDOC01-appb-C000032
(一般式(2)中、R~Rは、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基若しくはヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基又はホスホノ基を表し、これらは更に置換基を有していてもよい。R及びRの少なくとも一方は、下記一般式(3)又は(4)で表される構造を有する基である。*1は、Xとの結合部位を表す。)
Figure JPOXMLDOC01-appb-C000033
(一般式(3)中、Aは、炭素原子又はケイ素原子を表す。R~Rは、それぞれ独立に、一般式(2)におけるR~Rと原子又は置換基を表すが、R~Rの少なくとも一つは炭素数1以上のアルキル基である。*2は、隣接原子との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000034
(一般式(4)中、R及びR10は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、少なくとも一つは炭素数1以上のアルキル基である。*3は、隣接原子との結合部位を表す。一般式(2)~(4)におけるR~R10は、隣接する基が互いに結合して置換又は無置換の脂肪族環を形成していてもよいが、形成された脂肪族環に更に芳香族環が縮環することはない。)
 13.前記一般式(2)におけるR及びRの少なくとも一方が、前記一般式(3)で表される第12項に記載の有機エレクトロルミネッセンス素子材料。
 14.前記一般式(1)で表される構造を有する蛍光発光性化合物が、下記一般式(1a)で表される構造を有する第12項又は第13項に記載の有機エレクトロルミネッセンス素子材料。
Figure JPOXMLDOC01-appb-C000035
(一般式(1a)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、フェニル基、又は下記一般式(2a)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2a)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
Figure JPOXMLDOC01-appb-C000036
(一般式(2a)中、R~Rは、それぞれ独立に、前記一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R及びRの少なくとも一方が炭素数2以上の直鎖、分岐又は環状アルキル基であるか、RとR及びRとRの少なくとも一方が互いに結合して、置換又は無置換の脂肪族環を形成している。このとき形成された脂肪族環に更に芳香族環が縮環することはない。)
 15.前記一般式(1)又は(1a)におけるXが、下記一般式(5)~(21)のいずれかで表される構造を有するπ共役縮合環である第12項から第14項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(一般式(5)~(19)中、Rは、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。
 一般式(20)及び(21)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。R及びR11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。)
 16.前記一般式(1)又は(1a)におけるXが、下記一般式(33)~(52)のいずれかで表される構造を有するπ共役縮合環である第12項から第14項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
(一般式(33)~(49)中、Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。Rは、互いに同じであっても異なっていてもよい。
 一般式(50)~(52)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。R11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表す。複数のR及びR11~R15は、互いに同じであっても異なっていてもよい。)
 17.前記一般式(33)~(52)におけるRが、すべて前記一般式(2a)で表される構造を有する基である第16項に記載の有機エレクトロルミネッセンス素子材料。
 18.前記一般式(33)~(52)におけるRの一つがトリアリールシリル基であり、その他のRがすべて前記一般式(2a)で表される構造を有する基である第16項に記載の有機エレクトロルミネッセンス素子材料。
 19.前記一般式(2)又は(2a)におけるR及びRが、それぞれ前記一般式(3)又は(4)で表され、かつ、異なる構造を有している第12項から第18項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
 20.陽極と陰極との間に、少なくとも発光層を含む有機機能層を有する有機エレクトロルミネッセンス素子であって、
 前記有機機能層には、第12項から第19項までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料が含有されている有機エレクトロルミネッセンス素子。
 本発明の上記手段により、固体状態において濃度消光を抑制する蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子を提供することができる。
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
 本発明者らは、鋭意検討の結果、14π電子系以上のπ共役環縮合環が置換基(フェニル基)を有している場合に、当該置換基(フェニル基)の少なくとも一方のオルト位にエチル基以上のかさ高さである置換基を有していることにより、固体状態においても、溶液状態における発光性を維持できることを見出したものである。
 固体状態における濃度消光、エキシマ形成を抑制する、すなわち、分子の自発的な凝集を抑制するには、ΔGを負の値又はより小さい値になるように制御すればよい。
 ここで、ΔGは、下記関係式(1)によって求められる。
 ΔG=ΔH-TΔS … (1)
 ここで、G:ギブス自由エネルギー、H:エンタルピー、S:エントロピー、T:絶対温度である。
 ΔGを負の値又はより小さい値とするには、ΔHを小さくする、又はΔSを大きくすることが考えられる。
 従来の技術では、立体障害となる基を導入して分子間相互作用を低減させ、ΔHを小さくすることにより、ΔGを制御していた。これに対し、本発明は、ΔHを小さくすることに加えてΔSを大きくすることにより、ΔGを制御するものである。
 まず、ΔHの寄与について考える。π共役縮合環の置換基(一般式(1)における置換基Y)として、非縮環系芳香族炭化水素であるベンゼン環を採用することで、分子間におけるベンゼン環同士の立体反発によって、π共役縮合環同士の分子間相互作用を低減させることができる。すなわち、ΔHを低減することにより、ΔGを小さくしているとみなせる。
 なお、当該ベンゼン環が芳香族置換基を有している場合や他の芳香環と縮環している場合には、π平面が拡大するために、その置換又は縮環ベンゼン環同士の分子間相互作用の寄与が大きくなり、全体としてΔHは低減されないと考えられる。そのため、π共役縮合環の置換基Yは、芳香族置換基を持たないベンゼン環であることが好ましく、かつ、他の芳香環と縮環していないベンゼン環であることが好ましい。
 続いて、ΔSの寄与について考える。フェニル基の少なくとも一方のオルト位に、エチル基以上のかさ高さを有する置換基を導入した場合、π共役縮合環とフェニル基との結合の回転を抑制しつつ、置換基の立体配座に起因した種々の配座異性体の存在によりΔSを大きくすることができる。
 例えば、特許第5557197号公報には、フェニル基のオルト位にメチル基を有する化合物が開示されている。メチル基の立体障害によりπ共役縮合環とフェニル基との結合の回転は抑制されるものの、メチル基では配座異性体が生じ得ないために、ΔGに対するΔSの寄与はほとんどなく、ΔHの寄与のみであると考えられる。
 一方で本発明のように、オルト位にエチル基以上のかさ高さを有する置換基を導入した場合には、メチル基の場合と同様にπ共役縮合環とフェニル基との結合の回転が抑制されることによるΔHの寄与に加え、ΔSの寄与が期待できる。これは、置換基の回転や振動によって無数の立体配座が生じるために構造的自由度が高いためである。
 エチル基を例に挙げて考える。エチル基の2つの炭素原子のうちフェニル基に近い側の炭素、すなわちメチレン基(-CH-)は、その立体障害によってπ共役縮合環とフェニル基との回転を抑制し、結果として、ΔHとしてΔGに寄与する。一方、末端側のメチル基は、自由に回転することができるものの、角度によって相対的に安定なコンフォメーションが発生する(ねじれ形配座)。なお、ブチル基のような更に長鎖のアルキル基の場合には、ゴーシュ、アンチペリプラナーなどの更に多くの配座異性体が存在する。実際にはこのコンフォメーションの安定度は、回転の自由度、すなわちエチル基の置かれている立体的な環境によって異なり、分光学的に観測できない配座異性のようなものから、ジアステレオマーとして区別される場合まで考えられる。いずれにせよ、エチル基以上のかさ高さを有する場合には多様な立体配座が生じ、それらの寄与によってΔSを大きくすることができる。特に、本発明においては、このΔSの増大がΔGを低減することに、大きく寄与していると考えている。
 以上のように、置換基としてベンゼン環を採用すること(ΔHの低減)、及びフェニル基の少なくとも一方のオルト位にエチル基以上のかさ高さである置換基を配置すること(ΔSの増大)により、固体状態においても溶液状態における発光性を維持できるものと推察される。
表示装置の構成の一例を示した概略斜視図 図1に示す表示部Aの模式図 照明装置の概略図 照明装置の断面図
 本発明の蛍光発光性化合物は、一般式(1)で表される構造を有し、かつ、少なくとも一つのYが一般式(2)で表される構造を有することを特徴とする。この特徴は、下記各実施形態に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、一般式(2)におけるR及びRの少なくとも一方は一般式(3)又は(4)で表されるが、特に一般式(3)で表されることが好ましい。また、一般式(2)におけるR及びRがそれぞれ異なる構造を有していることが好ましい。
 また、一般式(1)で表される構造を有する蛍光発光性化合物が、一般式(1a)で表され、かつ、少なくとも一つのYが一般式(2a)で表される構造を有することが好ましい。
 また、一般式(1)におけるXで表されるπ共役縮合環は、一般式(5)~(21)のいずれかで表される構造を有することが好ましく、一般式(33)~(52)のいずれかで表される構造を有することがより好ましい。
 さらには、一般式(33)~(52)におけるRがすべて一般式(2a)で表される構造を有する基であること、又は一般式(33)~(52)におけるRの一つがトリアリールシリル基であり、その他のRがすべて一般式(2a)で表される構造を有する基であることが好ましい。
 本発明は、上記蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合物とを含有する有機材料組成物を提供することができる。
 本発明は、上記蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合と、ホスト化合物とを含有する有機材料組成物を提供することができる。
 本発明は、上記蛍光発光性化合物を含有する発光性膜を提供することができる。
 本発明は、一般式(1)で表される構造を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子材料を提供することができる。
 本発明は、陽極と陰極との間に、少なくとも発光層を含む有機機能層を有し、有機機能層には、上記有機エレクトロルミネッセンス素子材料が含有されている有機エレクトロルミネッセンス素子を提供することができる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
《蛍光発光性化合物》
 本発明の蛍光発光性化合物は、下記一般式(1)で表される構造を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000041
 一般式(1)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基、ホスホノ基、フェニル基、又は下記一般式(2)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。
 ここで、π共役縮合環とは、芳香族性を有している必要はなく、単に環全体として共役構造を有していることを意味する。
 一般式(1)におけるXとしては、π電子を14個以上有しているπ共役縮合環であれば特に限定されないが、蛍光発光性を有している点で下記一般式(5)~(32)で表される構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 一般式(5)~(19)及び(22)~(32)中、Rは、水素原子又は一般式(1)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。
 一般式(20)及び(21)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。R及びR11~R15は、それぞれ独立に、水素原子又は一般式(1)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。
 中でも、一般式(1)におけるXとしては、一般式(5)~(21)で表される構造を有するπ共役縮合環であることがより好ましい。
 一般式(20)及び(21)において、膜状態での蛍光量子収率維持の観点から、R11~R15が直鎖、分岐又は環状アルキル基であり、かつ、Rのいずれかに一般式(2)で表される構造を有する基を有していることが好ましい。
 また、例示したXの中でも、蛍光量子収率の高さから、上記一般式(5)、(7)、(8)、(13)、(15)~(18)又は(20)で表される構造を有するπ共役縮合環がより好ましい。
 さらには、膜状態での蛍光量子収率維持の観点から、下記一般式(33)~(52)に示されるような置換形式を有するものは、特に好適に用いることができる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 一般式(33)~(49)中、Rは、一般式(1)又は(1a)におけるYとの結合部位を表す。Rは、互いに同じであっても異なっていてもよい。
 一般式(50)~(52)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。Rは、一般式(1)又は(1a)におけるYとの結合部位を表す。R11~R15は、それぞれ独立に、水素原子又は一般式(1)又は(1a)におけるYとの結合部位を表す。複数のR及びR11~R15は、互いに同じであっても異なっていてもよい。
 一般式(1)におけるYとしては、具体的には、重水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、トリアリールシリル基(例えば、トリフェニルシリル基、トリ(4-メチルフェニル)シリル基、トリ(3,5-ジメチルフェニル)シリル基等)、ジアリールアルキルシリル基(例えば、t-ブチルジフェニルシリル基、イソプロピルジフェニルシリル基等)、アリールジアルキルシリル基(例えば、ジメチルフェニルシリル基、イソプロピルジ(4-メチルフェニル)シリル基等)、トリアルキルシリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基、フェニル基等が挙げられ、これらの置換基は、同様の置換基で更に置換されていてもよい。
Figure JPOXMLDOC01-appb-C000047
 一般式(2)中、R~Rは、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基若しくはヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基又はホスホノ基を表し、これらは更に置換基を有していてもよい。R及びRの少なくとも一方は、下記一般式(3)又は(4)で表される構造を有する基である。*1は、Xとの結合部位を表す。
Figure JPOXMLDOC01-appb-C000048
 一般式(3)中、Aは、炭素原子又はケイ素原子を表す。R~Rは、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R~Rの少なくとも一つは炭素数1以上のアルキル基である。*2は、隣接原子との結合部位を表す。
Figure JPOXMLDOC01-appb-C000049
 一般式(4)中、R及びR10は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、少なくとも一つは炭素数1以上のアルキル基である。*3は、隣接原子との結合部位を表す。一般式(2)~(4)におけるR~R10は、隣接する基が互いに結合して置換又は無置換の脂肪族環を形成していてもよいが、形成された脂肪族環に更に芳香族環が縮環することはない。
 一般式(2)におけるR~R、一般式(3)におけるR~R、及び一般式(4)におけるR及びR10としては、具体的には、水素原子、重水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、トリアリールシリル基(例えば、トリフェニルシリル基、トリ(4-メチルフェニル)シリル基、トリ(3,5-ジメチルフェニル)シリル基等)、ジアリールアルキルシリル基(例えば、t-ブチルジフェニルシリル基、イソプロピルジフェニルシリル基等)、アリールジアルキルシリル基(例えば、ジメチルフェニルシリル基、イソプロピルジ(4-メチルフェニル)シリル基等)、トリアルキルシリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 一般式(3)又は(4)における炭素数1以上のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。
 一般式(3)及び(4)において、式の説明中「隣接原子」とは、一般式(2)において、R及びRが結合する、フェニル基を構成する炭素原子である。
 一般式(2)におけるR及びRの少なくとも一方は、一般式(3)で表されることが好ましい。
 また、一般式(2)におけるR及びRは、それぞれ一般式(3)又は(4)で表され、かつ、異なる構造を有していることが好ましい。
 また、一般式(1)で表される構造を有する蛍光発光性化合物は、下記一般式(1a)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000050
 一般式(1a)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、フェニル基、又は下記一般式(2a)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2a)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。
Figure JPOXMLDOC01-appb-C000051
 一般式(2a)中、R~Rは、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R及びRの少なくとも一方が炭素数2以上の直鎖、分岐又は環状アルキル基であるか、RとR及びRとRの少なくとも一方が互いに結合して、置換又は無置換の脂肪族環を形成している。このとき形成された脂肪族環に更に芳香族環が縮環することはない。
 一般式(1a)におけるXは、一般式(1)におけるXと同義である。
 また、上記した一般式(33)~(52)において、Rがすべて一般式(2a)で表される構造を有する基であること、又はRの一つがトリアリールシリル基であり、その他のRがすべて一般式(2a)で表される構造を有する基であることが好ましい。
 一般式(2a)で表される構造を有する基は、下記一般式(2a-1)又は(2a-2)で表される構造を有することが好ましく、一般式(2a-3)で表される構造を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000052
 一般式(2a-1)中、環Z3は、置換又は無置換の脂肪族環を表すが、当該脂肪族環に更に芳香族環が縮環することはない。Cは、炭素原子を表す。R16及びR17は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R16及びR17の少なくとも一方は、炭素数1以上のアルキル基を表す。R18は、置換基を表す。aは、環Z3上の水素原子に換えて置換可能なR18の数を表し、0から最大数までの整数を表す。*1は、Xとの結合部位を表す。
Figure JPOXMLDOC01-appb-C000053
 一般式(2a-2)中、環Z3及び環Z4は、置換又は無置換の脂肪族環を表すが、当該脂肪族環に更に芳香族環が縮環することはない。C及びCは、炭素原子を表す。R16及びR17は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R16及びR17の少なくとも一方は、炭素数1以上のアルキル基を表す。R21及びR22は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R21及びR22の少なくとも一方は、炭素数1以上のアルキル基を表す。R18及びR23は、それぞれ独立に、置換基を表す。aは、環Z3上の水素原子に換えて置換可能なR18の数を表し、0から最大数までの整数を表す。bは、環Z4上の水素原子に換えて置換可能なR23の数を表し、0から最大数までの整数を表す。*1は、Xとの結合部位を表す。
Figure JPOXMLDOC01-appb-C000054
 一般式(2a-3)中、C及びCは、炭素原子を表す。R16及びR17は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R16及びR17の少なくとも一方は、炭素数1以上のアルキル基を表す。R21及びR22は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R21及びR22の少なくとも一方は、炭素数1以上のアルキル基を表す。R18~R20及びR23~R25は、それぞれ独立に、置換基を表す。c及びdは、0~2の整数を表す。*1は、Xとの結合部位を表す。
 一般式(2a-1)~(2a-3)において、R18~R20及びR23~R25で表される置換基としては、後述の一般式(DP)における環Z1及び環Z2が有していてもよい置換基と同一のものが挙げられる。
 以下に、本発明の蛍光発光性化合物の例示化合物を示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
 本発明の蛍光発光性化合物は、公知の方法によって合成することができるが、以下にその一例を示す。
〈例示化合物6の合成〉
 反応容器に、ペリレンテトラボロン酸ピナコールエステル(3.0g)とトリイソプロピルブロモベンゼン(6.1g)、リン酸カリウム(13g)をとり、系内を窒素置換した。トルエン(150mL)及び水(10mL)を加えた後、酢酸パラジウム(Pd(OAc)、0.18g)及び2-ジシクロヘキシルホスフィノ-2′,6′-ジメトキシ-1,1′-ビフェニル(S phos、1.3g)を加え、加熱環流下で4時間撹拌した。反応混合物を放冷後、トルエンによる抽出操作と飽和食塩水による洗浄とを行った。粗生成物をカラムクロマトグラフィーにより精製して、例示化合物6(1.16g、収率:28%)を得た。
 得られた生成物について、ESI-MSを測定し、例示化合物6であることを同定した(分子量:1061.7、検出値:1062)。
Figure JPOXMLDOC01-appb-C000087
〈例示化合物34の合成〉
(中間体1の合成)
 反応容器に、窒素雰囲気下で[Ir(OMe)(cod)](cod=1,5-シクロオクタジエン、0.15g)、4,4′-ジ-tert-ブチル-2,2′-ビピリジル(dtbpy、0.12g)をとり、テトラヒドロフラン(THF、100mL)を加えた。続いて、ピナコールボラン(B(pin)、1.5g)を加え、40℃で撹拌した。続いて、Chem.Commun.,52巻、1124頁、2016年を参考に合成した平面化9-フェニルアントラセン(1.0g)を加え、60℃で8時間撹拌した。放冷後、ゲル浸透クロマトグラフィーにて精製し、中間体1を得た(1.4g、収率:63%)。
(中間体2の合成)
 反応容器に、中間体1(1.4g)とトリイソプロピルブロモベンゼン(2.1g)、リン酸カリウム(3.6g)をとり、系内を窒素置換した。トルエン(30mL)及び水(3mL)を加えたのち、酢酸パラジウム(Pd(OAc)、0.13g)及び2-ジシクロヘキシルホスフィノ-2′,6′-ジメトキシ-1,1′-ビフェニル(S phos、0.46g)を加え、加熱環流下で4時間撹拌した。反応混合物を放冷後、トルエンによる抽出操作と飽和食塩水による洗浄とを行った。粗生成物をカラムクロマトグラフィーにより精製して、中間体2を得た(0.81g、収率:46%)。
(中間体3の合成)
 反応容器に、中間体2(0.81g)をとり、ジクロロメタン(30mL)を加え、溶解させた。続いてN-ブロモスクシンイミド(NBS、0.31g)を加え、室温(25℃)にて2時間撹拌した。反応終了後、水を加えて撹拌した後、ジクロロメタンによる抽出操作と飽和食塩水による洗浄とを行った。粗生成物をカラムクロマトグラフィーにより精製して、中間体3を得た(0.81g、収率:92%)。
(例示化合物34の合成)
 反応容器に、中間体3(0.81g)とフェニルボロン酸(0.20g)、炭酸カリウム(0.33g)をとり、系内を窒素置換した。トルエン(20mL)及び水(2mL)を加えた後、テトラキストリフェニルホスフィンパラジウム(Pd(PPh、0.085g)を加え、加熱環流下で4時間撹拌した。反応混合物を放冷後、トルエンによる抽出操作と飽和食塩水による洗浄とを行った。粗生成物をカラムクロマトグラフィーにより精製して、例示化合物34(0.63g、収率:78%)を得た。
 得られた生成物について、ESI-MSを測定し、例示化合物34であることを同定した(分子量:1017.6、検出値:1018)。
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
《発光材料》
 本発明の蛍光発光性化合物は、電界励起等により、蛍光を放射することができる。したがって、各種発光材料として使用することができる。発光材料には、π共役系化合物以外に、必要に応じて他の成分が含まれてもよい。また、発光材料は、粉体状で用いられてもよく、所望の形状に加工されて用いられてもよい。発光材料は、例えば後述の発光性膜を形成するための材料や、蛍光塗料、バイオイメージング蛍光色素に適用することができる。
《有機材料組成物》
 本発明の有機材料組成物は、上記した一般式(1)で表される構造を有する蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合物とを含有することを特徴とする。また、有機材料組成物は、更にホスト化合物を含有していていてもよい。
〈リン光発光性化合物〉
 本発明に係るリン光発光性化合物は、重原子を含有し、三重項励起からの発光が可能な化合物であり、三重項励起からの発光が観測される限りにおいて特に限定されない。
 好ましくは、下記一般式(DP)で表される構造を有するリン光発光性化合物である。当該リン光発光性化合物を用いることにより、より励起子を安定させるだけでなく、リン光発光性化合物の発光スペクトルと一般式(1)で表される構造を有する蛍光発光性化合物の吸収スペクトルとの重なり積分値を大きくでき、この結果、励起子をより効果的に発光に用いることができ、ひいては、素子寿命をより長寿命化できる。
Figure JPOXMLDOC01-appb-C000090
 一般式(DP)中、Mは、Ir又はPtを表す。A、A、B及びBは、それぞれ独立に、炭素原子又は窒素原子を表す。環Z1は、A及びAとともに形成される、置換若しくは無置換の6員の芳香族炭化水素環、置換若しくは無置換の5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも一つを含む芳香族縮合環を表す。環Z2は、B及びBとともに形成される、置換若しくは無置換の5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも一つを含む芳香族縮合環を表す。環Z1及び環Z2が有する炭素原子は、カルベン炭素原子であってもよい。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。このとき、環Z1及び環Z2の置換基が結合することによって、縮環構造を形成していてもよい。また、二つ又は三つの環Z1と環Z2とで表される配位子同士が、環Z1又は環Z2において、直接又はリンカー部分(連結基)を介して連結していてもよい。Lは、Mに配位したモノアニオン性の2座配位子を表し、置換基を有していてもよい。mは、0~2の整数を表す。nは、1~3の整数を表す。MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、複数の環Z1と環Z2とで表される配位子又は複数のLは、互いに同じでもあっても異なっていてもよい。環Z1と環Z2とで表される配位子とLとは連結していてもよい。
 環Z1及び環Z2が有していてもよい置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 Lが有していてもよい置換基としては、環Z1及び環Z2が有していてもよい置換基と同一のものが挙げられる。
 環Z2は、好ましくは5員の芳香族複素環であり、B及びBの少なくとも一方が窒素原子であることが好ましい。
 一般式(DP)で表される構造を有するリン光発光性化合物は、好ましくは下記一般式(DP-1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000091
 一般式(DP-1)中、M、A、A、B、B、環Z1、L、m及びnは、一般式(DP)におけるM、A、A、B、B、環Z1、L、m及びnと同義である。
 B~Bは、芳香族複素環を形成する原子群であり、それぞれ独立して、置換基を有していてもよい炭素原子、窒素原子、酸素原子又は硫黄原子を表す。
 B~Bが有していてもよい置換基としては、一般式(DP)における環Z1及び環Z2が有していてもよい置換基と同一の基が挙げられる。
 一般式(DP-1)においてB~Bで形成される芳香族複素環は、下記一般式(DP-1a)、(DP-1b)及び(DP-1c)のいずれかで表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000092
 一般式(DP-1a)、(DP-1b)及び(DP-1c)中、*4は、一般式(DP-1)におけるAとの結合部位を表す。*5は、Mとの結合部位を表す。
 Rb~Rbは、水素原子又は置換基を表す。Rb~Rbで表される置換基としては、一般式(DP)における環Z1及び環Z2が有していてもよい置換基と同一の基が挙げられる。
 一般式(DP-1a)におけるB及びBは、炭素原子又は窒素原子を表す。B及びBは、好ましくは少なくとも一つが炭素原子である。
 一般式(DP-1b)におけるB~Bは、炭素原子又は窒素原子を表す。B~Bは、好ましくは少なくとも一つが炭素原子である。
 一般式(DP-1c)におけるB及びBは、炭素原子又は窒素原子を表す。B及びBは、好ましくは少なくとも一つが炭素原子である。
 一般式(DP-1a)、(DP-1b)及び(DP-1c)におけるRbとRbとは、更に互いに結合して縮環構造を形成していることが好ましく、このとき新たに形成される縮環構造が芳香族環であることがより好ましく、当該芳香族環がベンゾイミダゾール環、イミダゾピリジン環、イミダゾピラジン環又はプリン環のいずれかであることが更に好ましい。
 Rbは、アルキル基又はアリール基であることが好ましく、フェニル基であることがより好ましい。
 以下に、一般式(DP)で表される構造を有するリン光発光性化合物の例示化合物を示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
 また、本発明において使用できるリン光発光性化合物としては、例えば、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に使用できる公知のリン光発光性化合物としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されない。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等。
 また、環Z1及び環Z2が有する炭素原子がカルベン炭素原子である場合(具体的には、カルベン錯体である場合。)、例えば、国際公開第2005/019373号、国際公開第2006/056418号、国際公開第2005/113704号、国際公開第2007/115970号、国際公開第2007/115981号及び国際公開第2008/000727号に記載されるカルベン錯体を好適に使用できる。
〈熱活性化遅延蛍光性化合物〉
 本発明に係る熱活性化遅延蛍光性化合物は、三重項励起子から一重項励起子への逆項間交差(Reverse Intersystem Crossing:以下、適宜「RISC」と略記する。)が生じる現象を利用した現象(熱活性型遅延蛍光(「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:以下、適宜「TADF」と略記する。)を利用した蛍光発光が観測される限りにおいて特に限定されない。
 以下に、熱活性化遅延蛍光性化合物の例示化合物を示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000097
 また、本発明において使用できる熱活性化遅延蛍光性化合物としては、例えば、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に使用できる公知の熱活性化遅延蛍光性化合物としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されない。
 特開2013-116975号公報、Nature,2012,492,234、Nature,Photonics,2014,8,326、Adv.Mater.2014,26,7931に記載される熱活性化遅延蛍光性化合物を好適に使用できる。
〈ホスト化合物〉
 本発明の有機材料組成物は、蛍光発光性化合物、リン光発光性化合物又は熱活性化遅延蛍光性化合物以外に、ホスト化合物を含有していてもよい。
 以下に、本発明に係るホスト化合物について述べる。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数併用してもよい。ホスト化合物を複数種用いることで、例えば、有機EL素子等に有機材料組成物を適用した際に、電荷の移動を調整することが可能であり、高効率化を実現することができる。
 本発明に係るホスト化合物としては、特に制限はなく、例えば、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
 本発明に係るホスト化合物は、好ましくは下記一般式(HA)又は(HB)で表される構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
 一般式(HA)及び(HB)中、Xaは、O又はSを表す。Xb、Xc、Xd及びXeは、それぞれ独立に、水素原子、置換基又は下記一般式(HC)で表される構造を有する基を表すが、Xb、Xc、Xd及びXeのうち少なくとも一つは下記一般式(HC)で表される構造を有する基を表し、下記一般式(HC)で表される構造を有する基のうち少なくとも一つはArがカルバゾリル基を表す。
 一般式(HC)
  Ar-(L′)n-*
 一般式(HC)中、L′は、芳香族炭化水素環又は芳香族複素環から導出される2価の連結基を表す。nは0~3の整数を表し、nが2以上の場合、複数のL′は同じでもあっても異なっていてもよい。*は、一般式(HA)又は(HB)との結合部位を表す。Arは、下記一般式(HD)で表される構造を有する基を表す。
Figure JPOXMLDOC01-appb-C000100
 一般式(HD)中、Xfは、N(R′)、O又はSを表す。E~EはC(R″)又はNを表し、R′及びR″は水素原子、置換基又は一般式(HC)におけるL′との結合部位を表す。*は、一般式(HC)におけるL′との結合部位を表す。
 上記一般式(HA)で表される構造を有する化合物においては、好ましくは、Xb、Xc、Xd及びXeのうち少なくとも二つが一般式(HC)で表され、より好ましくはXcが一般式(HC)で表され、かつ、当該一般式(HC)におけるArが置換基を有していてもよいカルバゾリル基を表す。
 一般式(HA)及び(HB)におけるXb、Xc、Xd及びXeで表される置換基、並びに一般式(HD)におけるR′及びR″で表される置換基としては、上記一般式(DP)における環Z1及び環Z2が有していてもよい置換基と同様のものが挙げられる。
 一般式(HC)におけるL′で表される芳香族炭化水素環としては、例えば、ベンゼン環、p-クロロベンゼン環、メシチレン環、トルエン環、キシレン環、ナフタレン環、アントラセン環、アズレン環、アセナフテン環、フルオレン環、フェナントレン環、インデン環、ピレン環、ビフェニル環等が挙げられる。
 一般式(HC)におけるL′で表される芳香族複素環としては、例えば、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、キナゾリン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジン環等が挙げられる。
 以下に、本発明に係るホスト化合物の具体例として、上記一般式(HA)又は(HB)で表される構造を有する化合物の他、本発明に適用可能な化合物を挙げるが、本発明はこれらに特に限定されない。
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
 また、本発明の有機材料組成物に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等を挙げることができるが、本発明はこれらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等である。さらには、特開2015-38941号公報の段落[0255]~[0293]に記載の化合物H-1~H-230も好適に使用できる。
 以上、本発明の有機材料組成物に含有される蛍光発光性化合物、リン光発光性化合物又は熱活性化遅延蛍光性化合物、ホスト化合物に分けて説明したが、いずれのリン光発光性化合物又は熱活性化遅延蛍光性化合物とホスト化合物との組み合わせであってもよい。
 また、上記した複数のリン光発光性化合物又は熱活性化遅延蛍光性化合物を併用してもよいとともに、上記した複数のホスト化合物を併用してもよい。
《有機EL素子》
 本発明の一般式(1)で表される構造を有する蛍光発光性化合物は、有機EL素子材料に用いることができる。
 本発明の有機EL素子は、陽極と陰極との間に、少なくとも発光層を含む有機機能層を有し、当該有機機能層のいずれかに本発明の蛍光発光性化合物を含む有機EL素子材料が含有されている。
〈有機EL素子の構成層〉
 本発明の有機EL素子における代表的な素子構成としては、以下の構成(1)~(7)を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記代表的な素子構成において、陽極と陰極とを除いた層を有機機能層という。
 上記の中でも、構成(7)が好ましく用いられるが、これに限定されるものではない。
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は、各発光層の間に非発光性の中間層を設けてもよい。
 本発明に係る発光層は、発光極大波長の異なる2種の発光材料を含有し、長波長側発光材料がリン光発光性化合物であり、短波長側発光材料が本発明の蛍光発光性化合物であることが好ましい。これら2種の発光材料は、同一の層に含有されていてもよいし、それぞれ単独の発光層に含有されていてもよい。リン光発光性化合物の吸収スペクトルと蛍光発光性化合物の吸収スペクトルとは、一部重複していてもよい。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう。)や電子注入層(陰極バッファー層ともいう。)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう。)や正孔注入層(陽極バッファー層ともいう。)を設けてもよい。
 電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、電子輸送層は、複数層で構成されていてもよい。
 正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、正孔輸送層は、複数層で構成されていてもよい。
(タンデム構造)
 本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば、以下の構成を挙げることができる。
 陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、第1発光ユニット、第2発光ユニット及び第3発光ユニットは、全て同じ構成であってもよいし、異なっていてもよい。また、二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 また、第3発光ユニットはなくてもよく、一方で第3発光ユニットと電極の間に更に他の発光ユニットや中間層を設けてもよい。
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよい。
 中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、また、C60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば、上記代表的な素子構成で挙げた構成(1)~(7)から、陽極と陰極とを除いたもの等が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
〈発光層〉
 本発明に係る発光層は、電極又は隣接する層(以下、「隣接層」ともいう。)から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。
 発光層の厚さの総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲内に調整することが好ましく、より好ましくは2~500nmの範囲内に調整され、更に好ましくは5~200nmの範囲内に調整される。
 また、本発明において、個々の発光層の厚さとしては、2nm~1μmの範囲内に調整することが好ましく、より好ましくは2~200nmの範囲内に調整され、更に好ましくは3~150nmの範囲内に調整される。
(発光ドーパント、ホスト化合物)
 本発明に係る発光層は、一般式(1)で表される構造を有する蛍光発光性化合物を含有していることが好ましく、当該蛍光発光性化合物に加えて、リン光発光性化合物及びホスト化合物を含有して構成されていることがより好ましい態様である。
 また、本発明に係る発光層は、当該発光層に隣接する層の材料を含有していてもよい。隣接する層の材料としては、例えば、正孔輸送材料等が挙げられる。
(1)発光ドーパント
 発光ドーパントとしては、リン光発光性化合物(リン光ドーパント、リン光性化合物ともいう。)、蛍光発光性化合物(蛍光ドーパント、蛍光性化合物)を併用することが好ましい。
 また、本発明において、リン光発光性化合物は、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせを用いてもよい。これにより、任意の発光色を得ることができる。
 本発明の有機EL素子の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば、青と橙や、青と緑と赤との組み合わせ等が挙げられる。
 本発明に係る有機EL素子における白色とは、特に限定はなく、橙色寄りの白色であっても青色寄りの白色であってもよいが、2度視野角正面輝度を上述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
(1.1)リン光発光性化合物
 リン光発光性化合物は、三重項励起からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 本発明におけるリン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明において、リン光発光性化合物は、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性化合物の発光原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることで、リン光発光性化合物からの発光を得るというエネルギー移動型である。
 もう一つはリン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が起こり、リン光発光性化合物からの発光が得られるというキャリアトラップ型である。
 いずれの場合においても、リン光発光性化合物の励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 本発明において使用できるリン光発光性化合物としては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。具体的には、上記した一般式(DP)で表される構造を有するリン光発光性化合物や、上記例示した文献に記載されている公知のリン光発光性化合物等が挙げられる。
 中でも、好ましいリン光発光性化合物としては、Irを中心金属とする有機金属錯体が挙げられる。更に好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合のうち、少なくとも一つの配位様式を含む錯体が好ましい。
(1.2)蛍光発光性化合物
 本発明に係る発光層は、一般式(1)で表される構造を有する蛍光発光性化合物を含有していてもよいし、これとは異なるその他の蛍光発光性化合物を含有していてもよいし、また、これらを併用することもできる。
 その他の蛍光発光性化合物は、一重項励起からの発光が可能な化合物であり、一重項励起からの発光が観測される限り特に限定されない。
 その他の蛍光発光性化合物としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、希土類錯体系化合物等が挙げられる。
 また、近年では、遅延蛍光を利用した蛍光発光性化合物も開発されており、これらを用いてもよい。
 遅延蛍光を利用した蛍光発光性化合物の具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
(2)ホスト化合物
 ホスト化合物は、発光層において、主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、更に好ましくはリン光量子収率が0.01未満の化合物である。
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 ホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
 公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。
 本発明の有機EL素子に用いられる、公知のホスト化合物としては、上記した有機材料組成物におけるホスト化合物と同様のものを挙げることができる。
 また、本発明に用いられるホスト化合物は、発光層に隣接する隣接層に用いてもよい。
〈電子輸送層〉
 電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 電子輸送層の総厚については特に制限はないが、通常は2nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、更に好ましくは5~200nmの範囲内である。
 また、有機EL素子においては、発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総厚を5nm~1μmの範囲内で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の厚さを厚くすると電圧が上昇しやすくなるため、特に厚さが厚い場合においては、電子輸送層の電子移動度は1×10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、ジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 より好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
 電子輸送材料は、単独で用いてもよく、また複数種を併用して用いてもよい。
〈正孔阻止層〉
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、上記した電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 正孔阻止層の厚さとしては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
 正孔阻止層に用いられる材料としては、上記した電子輸送層に用いられる材料が好ましく用いられ、また、上記したホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
〈電子注入層〉
 電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、上記したように陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるが、その厚さは0.1~5nmの範囲内が好ましい。また、構成材料が断続的に存在する不均一な膜であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、上記の電子輸送材料を用いることも可能である。
 電子注入層に用いられる材料は、単独で用いてもよく、複数種を併用して用いてもよい。
〈正孔輸送層〉
 正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 正孔輸送層の総厚については特に制限はないが、通常は5nm~5μmの範囲内であり、より好ましくは2~500nmの範囲内であり、更に好ましくは5~200nmの範囲内である。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらに、Ir(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。
 正孔輸送材料は、単独で用いてもよく、また複数種を併用して用いてもよい。
〈電子阻止層〉
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、上記した正孔輸送層の構成を必要に応じて、電子阻止層として用いることができる。
 電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 電子阻止層の厚さとしては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。
 電子阻止層に用いられる材料としては、上記の正孔輸送層に用いられる材料が好ましく用いられ、また、上記のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
〈正孔注入層〉
 正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、上記のように陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、上記の正孔輸送層に用いられる材料等が挙げられる。
 中でも、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 正孔注入層に用いられる材料は、単独で用いてもよく、また複数種を併用して用いてもよい。
〈含有物〉
 本発明に係る有機機能層は、更に他の含有物が含まれていてもよい。
 含有物としては、例えば、臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、更に好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によってはこの範囲内ではない。
〈有機機能層の形成方法〉
 本発明の有機EL素子における有機機能層の形成方法としては、公知の方法を好適に採用することができる。
 以下に、有機機能層(正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明に係る有機機能層の形成方法としては、特に制限はなく、例えば、ドライプロセスなどの真空蒸着法、ウェットプロセス等による形成方法を用いることができ、また、各層に使用される化合物等の材料に合わせて、ウェットプロセスやドライプロセスを使い分けて積層し、有機機能層を形成する方法であってもよい。ここで、有機機能層が、ウェットプロセスで形成された層であることが好ましい。すなわち、ウェットプロセスで有機EL素子を作製することが好ましい。有機EL素子をウェットプロセスで作製することで、均質な膜(塗膜)が得られやすく、かつピンホールが生成しにくい等の効果を奏することができる。なお、ここでの膜(塗膜)とは、ウェットプロセスによる塗布後に乾燥させた状態のものである。
 ウェットプロセスとしては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式適性の高い方法が好ましい。
 なお、ドライプロセスとしては、蒸着法(抵抗加熱、EB法など)、スパッタリング法、CVD法などが挙げられる。
 本発明において、各層を構成する有機EL素子材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 さらに、層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、厚さ0.1nm~5μmの範囲内、好ましくは5~200nmの範囲内で適宜選ぶことが望ましい。
 本発明に係る有機機能層の形成は、1回の真空引きで一貫して正孔注入層から陰極まで作製することが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際は、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
〈陽極〉
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO(インジウム・スズ酸化物)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度をあまり必要としない場合は(100μm以上程度)、電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、光透過率を10%より大きくすることが望ましく、また、陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。
 陽極の厚さは、材料にもよるが、通常10nm~1μmの範囲内、好ましくは10~200nmの範囲内で選ばれる。
〈陰極〉
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、厚さは通常10nm~5μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの厚さで作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極との両方が光透過性を有する素子を作製することができる。
〈支持基板〉
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、又はポリアリレート類、アートン(商品名、JSR社製)若しくはアペル(商品名、三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129:1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126:1987に準拠した方法で測定された酸素透過度が、1×10-3mL/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。
 ガスバリアー膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層との積層構造を持たせることがより好ましい。無機層と有機層との積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 ガスバリアー膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミニウム、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であることがより好ましい。
 ここで、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数/有機EL素子に流した電子数)×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
《封止》
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムはJIS K 7126:1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下、JIS K 7129:1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(2液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温(25℃)から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機機能層を挟み支持基板と対向する側の電極の外側に該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層との積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
 有機機能層を挟み支持基板と対向する側の封止膜又は封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜又は保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、上記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し向上技術》
 有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15~20%程度の光しか取り出せないと一般的にいわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極又は発光層と透明基板との間で光が全反射を起こし、光が透明電極又は発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法(特開平11-283751号公報)等が挙げられる。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。また、1.35以下であることがより好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む厚さになると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面、又はいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間又は媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、2次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を2次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間又は媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
《集光シート》
 本発明の有機EL素子は、支持基板(基板)の光取り出し側に、例えば、マイクロレンズアレイ上の構造を設けるように加工したり、又は、いわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
《表示装置》
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は、本発明の有機EL素子から構成される表示装置の構成の一例を示した概略斜視図であって、有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。図1に示すとおり、ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは、表示部Aと電気的に接続されている。制御部Bは、複数の画素それぞれに対し、外部からの画像情報に基づいて走査信号と画像データ信号とを送る。その結果、各画素が走査信号により走査線ごとに画像データ信号に応じて順次発光し、画像情報が表示部Aに表示される。
 図2は、図1に記載の表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。
 表示部Aの主要な部材の説明を以下に行う。
 図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は互いに格子状に直交して、その直交する位置で画素3に接続されている(詳細は図示していない。)。
 画素3は、走査線5から走査信号が送信されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並列配置することによって、フルカラー表示が可能となる。
《照明装置》
 本発明の有機EL素子を具備した、照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図3及び4に示すような照明装置を形成することができる。
 図3は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行う。)。
 図4は、照明装置の断面図を示し、図4において、符号105は陰極、符号106は有機機能層(あるいは発光ユニット)、符号107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 表I-1及びI-2に示す本発明の蛍光発光性化合物及び下記比較化合物1~30について、溶液状態と膜状態での蛍光量子収率を評価した。
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
《溶液状態での絶対量子収率の測定》
 表I-1及びI-2に示す化合物を、それぞれ2-メチルテトラヒドロフランに溶解させ、絶対量子収率を測定した。なお、絶対量子収率の測定は、絶対量子収率測定装置C9920-02(浜松ホトニクス社製)を用いた。
《膜状態での絶対量子収率測定》
 30mm×30mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼに、表I-1及びI-2に示す各蛍光発光性化合物を蛍光発光性化合物単膜に最適の量を充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、各蛍光発光性化合物を蒸着速度0.1nm/秒で蒸着し、厚さ30nmの単膜を形成した。
 作製した各蛍光発光性化合物単膜の絶対量子収率(PLQE)の測定を行った。なお、絶対量子収率の測定は、絶対量子収率測定装置C9920-02(浜松ホトニクス社製)を用いた。
《評価結果》
 各蛍光発光性化合物について、測定した溶液状態での絶対量子収率と、膜状態での絶対量子収率との比の値(膜状態での絶対量子収率/溶液状態での絶対量子収率)を、下記評価基準に従って評価した。
 評価結果を表I-1及びI-2に示す。
 ◎:膜状態での絶対量子収率/溶液状態での絶対量子収率が0.75以上(最良、合格)
 ○:膜状態での絶対量子収率/溶液状態での絶対量子収率が0.5以上、0.75未満(良、合格)
 ×:膜状態での絶対量子収率/溶液状態での絶対量子収率が0.5未満(不良、不合格)
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
 表I-1及びI-2から明らかなように、本発明の蛍光発光性化合物が、比較例の比較化合物と比べて、膜状態における絶対量子収率の低下幅が小さく、すなわち、固体状態でも絶対量子収率を維持していることがわかる。これは、本発明の蛍光発光性化合物が、置換基Yを有しているために分子同士の自発的な凝集等が起きにくく、その結果、固体状態でも濃度消光を起こさなかったためであると考えられる。
 以上から、一般式(1)で表される構造を有する蛍光発光性化合物が、固体状態において濃度消光を抑制することに有用であることが確認された。
[実施例2]
《評価用照明装置の作製》
 以下のようにして、評価用照明装置201~270を作製した。
〈評価用照明装置201の作製〉
 まず、あらかじめパターニングして洗浄処理を施したITO(インジウム・スズ酸化物)-ガラス基板(ITO膜厚150nm)に、オゾンによる表面処理を行った。オゾン処理後、すぐに正孔注入材料として4,4′,4″-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚50nm)をITO膜上に成膜した。
 次に、正孔輸送材料として、N,N′-ジ-[(1-ナフチル)-N,N′-ジフェニル]-1,1’′-ビフェニル)-4,4′-ジアミンを成膜し(25nm)した。
 次に、発光材料(蛍光発光性化合物)として、比較化合物4を9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3質量%の割合でドープした膜を共蒸着によって成膜した(30nm)。
 次に、電子輸送材料として、トリス(8-キノリノラト)アルミニウム(Alq)を成膜し(30nm)、次に、電子注入材料として、フッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、評価用の有機EL素子を作製した。
 有機EL素子の作製後、有機EL素子の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて封止し、図3及び4に示すような構成からなる評価用照明装置201を作製した。
〈評価用照明装置202~270の作製〉
 評価用照明装置201の作製において、発光材料を表II-1及びII-2に記載のとおりに変更した以外は同様にして、評価用照明装置202~270を作製した。
《評価》
 作製した評価用照明装置201~270について、発光効率及び半減寿命を評価した。
 評価結果を表II-1及びII-2に示す。
〈発光効率の測定〉
 作製した各評価用照明装置について、室温(25℃)で2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、発光輝度を測定し、当該電流値における発光効率(外部取り出し量子効率)を求めた。
 なお、表II-1及びII-2中、発光効率は相対値で示しており、例えば、照明装置201、202及び204~219の発光効率は、照明装置203の発光効率を1.0としたときの相対値である。
〈半減寿命の測定〉
 作製した各評価用照明装置について、分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を半減寿命として求めた。駆動条件は、15mA/cmとなる電流値とした。
 なお、表II-1及びII-2中、半減寿命は相対値で示しており、例えば、照明装置201、202及び204~219の半減寿命は、照明装置203の半減寿命を1.0としたときの相対値である。
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
 表II-1及びII-2から明らかなように、本発明の蛍光発光性化合物を含有する照明装置は、比較例の比較化合物を含有する照明装置と比べて、発光効率が高く、また、半減寿命が伸長していることがわかる。これは、本発明の蛍光発光性化合物が、置換基Yを有しているために分子同士の自発的な凝集等が起きにくく、その結果、濃度消光等による発光効率の低下がなかったためであると考えられる。
[実施例3]
《評価用照明装置の作製》
 以下のようにして、評価用照明装置301~318を作製した。
〈評価用照明装置301の作製〉
(陽極の形成)
 50mm×50mm、厚さ0.7mmのガラス基板(透明基板)上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。抵抗加熱ボートは、モリブデン製又はタングステン製を用いた。
(正孔注入層の形成)
 真空度1×10-4Paまで減圧した後、HI-1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、厚さ10nmの正孔注入層を形成した。
Figure JPOXMLDOC01-appb-C000123
(正孔輸送層の形成)
 次いで、HT-1を蒸着速度1.0Å/秒で蒸着し、厚さ30nmの正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000124
(発光層の形成)
 次いで、ホスト化合物H-1、リン光発光性化合物Dp-1及び比較化合物4の入った抵抗加熱ボートに通電して加熱し、ホスト化合物H-1、リン光発光性化合物Dp-1及び蛍光発光性化合物としての比較化合物4が、それぞれ84.5体積%、15体積%、0.5体積%になるように、それぞれ蒸着速度0.56Å/秒、0.1Å/秒、0.006Å/秒で正孔輸送層上に共蒸着し、厚さ30nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000125
(電子輸送層の形成)
 次いで、発光層上に電子輸送層として、第1電子輸送層及び第2電子輸送層を形成した。具体的には、HB-1を蒸着速度1.0Å/秒で蒸着し、厚さ30nmの第1電子輸送層を形成した。さらにその上に、ET-1を蒸着速度1.0Å/秒で蒸着し、厚さ30nmの第2電子輸送層を形成した。
Figure JPOXMLDOC01-appb-C000126
(陰極の形成)
 その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウムを厚さ100nmとなるよう蒸着して陰極を形成し、評価用の有機EL素子を作製した。
 有機EL素子の作製後、有機EL素子の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて封止し、図3及び4に示すような構成からなる評価用照明装置301を作製した。
〈評価用照明装置302~318の作製〉
 評価用照明装置301の作製において、蛍光発光性化合物を表IIIに記載のとおりに変更した以外は同様にして、評価用照明装置302~318を作製した。
《評価》
 作製した評価用照明装置301~318について、発光効率を評価した。
 評価結果を表IIIに示す。
〈発光効率の測定〉
 作製した各評価用照明装置について、室温(25℃)で2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、発光輝度を測定し、当該電流値における発光効率(外部取り出し量子効率)を求めた。
 なお、表III中、発光効率は相対値で示しており、例えば、照明装置302~306の発光効率は、照明装置301の発光効率を1.0としたときの相対値である。
Figure JPOXMLDOC01-appb-T000127
 表IIIから明らかなように、本発明の蛍光発光性化合物を含有する照明装置は、比較例の比較化合物を含有する照明装置と比べて、発光効率が高いことがわかる。これは、本発明の蛍光発光性化合物が、置換基Yを有しているために分子同士の自発的な凝集等が起きにくく、その結果、濃度消光等による発光効率の低下がなかったためであると考えられる。
[実施例4]
《評価用照明装置の作製》
 実施例3において、リン光発光性化合物及び蛍光発光性化合物を表IVに記載のとおりに変更した以外は同様にして、評価用照明装置401~420を作製した。
Figure JPOXMLDOC01-appb-C000128
《評価》
 作製した評価用照明装置401~420について、発光効率を評価した。
 評価結果を表IVに示す。
〈発光効率の測定〉
 作製した各評価用照明装置について、室温(25℃)で2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、発光輝度を測定し、当該電流値における発光効率(外部取り出し量子効率)を求めた。
 なお、表IV中、発光効率は相対値で示しており、例えば、照明装置402~407の発光効率は、照明装置401の発光効率を1.0としたときの相対値である。
Figure JPOXMLDOC01-appb-T000129
 表IVから明らかなように、本発明の蛍光発光性化合物を含有する照明装置は、比較例の比較化合物を含有する照明装置と比べて、発光効率が高いことがわかる。これは、本発明の蛍光発光性化合物が、置換基Yを有しているために分子同士の自発的な凝集等が起きにくく、その結果、濃度消光等による発光効率の低下がなかったためであると考えられる。
[実施例5]
《評価用照明装置の作製》
 以下のようにして、評価用照明装置501~519を作製した。
《評価用照明装置501の作製》
 陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウム・スズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70質量%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、厚さ20nmの正孔注入層を設けた。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、α-NPDを蒸着速度0.1nm/秒で正孔注入層上に蒸着し、厚さ40nmの正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000130
 次に、ホスト化合物としてH-2、熱活性化遅延蛍光化合物としてDp-3、蛍光発光性化合物として比較化合物8を用い、それぞれの比率が84.5体積%、15体積%、0.5体積%となるように蒸着速度0.1nm/秒で共蒸着し、厚さ30nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000131
 その後、TPBi(1,3,5-トリス(N-フェニルベンゾイミダゾール-2-イル)を蒸着速度0.1nm/秒で蒸着し、厚さ30nmの電子輸送層を形成した。
 さらに、フッ化ナトリウムを厚さ1nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、評価用照明装置501を作製した。
〈評価用照明装置502~519の作製〉
 評価用照明装置501の作製において、蛍光発光性化合物を表Vに記載のとおりに変更した以外は同様にして、評価用照明装置502~519を作製した。
《評価》
 作製した評価用照明装置501~519について、発光効率を評価した。
 評価結果を表Vに示す。
〈発光効率の測定〉
 作製した各評価用照明装置について、室温(25℃)で2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、発光輝度を測定し、当該電流値における発光効率(外部取り出し量子効率)を求めた。
 なお、表V中、発光効率は相対値で示しており、例えば、照明装置502~508の発光効率は、照明装置501の発光効率を1.0としたときの相対値である。
Figure JPOXMLDOC01-appb-T000132
 表Vから明らかなように、本発明の蛍光発光性化合物を含有する照明装置は、比較例の比較化合物を含有する照明装置と比べて、発光効率が高いことがわかる。これは、本発明の蛍光発光性化合物が、置換基Yを有しているために分子同士の自発的な凝集等が起きにくく、その結果、濃度消光等による発光効率の低下がなかったためであると考えられる。
 本発明は、固体状態において濃度消光を抑制する蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子を提供することに、特に好適に利用することができる。
1 ディスプレイ
3 画素
5 走査線
6 データ線
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機機能層(発光ユニット)
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部

Claims (20)

  1.  下記一般式(1)で表される構造を有する蛍光発光性化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基、ホスホノ基、フェニル基、又は下記一般式(2)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R~Rは、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基若しくはヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基又はホスホノ基を表し、これらは更に置換基を有していてもよい。R及びRの少なくとも一方は、下記一般式(3)又は(4)で表される構造を有する基である。*1は、Xとの結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、Aは、炭素原子又はケイ素原子を表す。R~Rは、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R~Rの少なくとも一つは炭素数1以上のアルキル基である。*2は、隣接原子との結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、R及びR10は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、少なくとも一つは炭素数1以上のアルキル基である。*3は、隣接原子との結合部位を表す。一般式(2)~(4)におけるR~R10は、隣接する基が互いに結合して置換又は無置換の脂肪族環を形成していてもよいが、形成された脂肪族環に更に芳香族環が縮環することはない。)
  2.  前記一般式(2)におけるR及びRの少なくとも一方が、前記一般式(3)で表される請求項1に記載の蛍光発光性化合物。
  3.  前記一般式(1)で表される構造を有する蛍光発光性化合物が、下記一般式(1a)で表される構造を有する請求項1又は請求項2に記載の蛍光発光性化合物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1a)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、フェニル基、又は下記一般式(2a)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2a)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (一般式(2a)中、R~Rは、それぞれ独立に、前記一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R及びRの少なくとも一方が炭素数2以上の直鎖、分岐又は環状アルキル基であるか、RとR及びRとRの少なくとも一方が互いに結合して、置換又は無置換の脂肪族環を形成している。このとき形成された脂肪族環に更に芳香族環が縮環することはない。)
  4.  前記一般式(1)又は(1a)におけるXが、下記一般式(5)~(21)のいずれかで表される構造を有するπ共役縮合環である請求項1から請求項3までのいずれか一項に記載の蛍光発光性化合物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (一般式(5)~(19)中、Rは、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。
     一般式(20)及び(21)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。R及びR11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。)
  5.  前記一般式(1)又は(1a)におけるXが、下記一般式(33)~(52)のいずれかで表される構造を有するπ共役縮合環である請求項1から請求項3までのいずれか一項に記載の蛍光発光性化合物。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    (一般式(33)~(49)中、Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。Rは、互いに同じであっても異なっていてもよい。
     一般式(50)~(52)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。R11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表す。複数のR及びR11~R15は、互いに同じであっても異なっていてもよい。)
  6.  前記一般式(33)~(52)におけるRが、すべて前記一般式(2a)で表される構造を有する基である請求項5に記載の蛍光発光性化合物。
  7.  前記一般式(33)~(52)におけるRの一つがトリアリールシリル基であり、その他のRがすべて前記一般式(2a)で表される構造を有する基である請求項5に記載の蛍光発光性化合物。
  8.  前記一般式(2)又は(2a)におけるR及びRが、それぞれ前記一般式(3)又は(4)で表され、かつ、異なる構造を有している請求項1から請求項7までのいずれか一項に記載の蛍光発光性化合物。
  9.  請求項1から請求項8までのいずれか一項に記載の蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合物とを含有する有機材料組成物。
  10.  請求項1から請求項8までのいずれか一項に記載の蛍光発光性化合物と、リン光発光性化合物又は熱活性化遅延蛍光性化合物と、ホスト化合物とを含有する有機材料組成物。
  11.  請求項1から請求項8までのいずれか一項に記載の蛍光発光性化合物を含む発光性膜。
  12.  下記一般式(1)で表される構造を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子材料。
    Figure JPOXMLDOC01-appb-C000011
    (一般式(1)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基、ホスホノ基、フェニル基、又は下記一般式(2)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
    Figure JPOXMLDOC01-appb-C000012
    (一般式(2)中、R~Rは、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基若しくはヘテロアリールスルホニル基、アミノ基、フッ化炭化水素基、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、リン酸エステル基、亜リン酸エステル基又はホスホノ基を表し、これらは更に置換基を有していてもよい。R及びRの少なくとも一方は、下記一般式(3)又は(4)で表される構造を有する基である。*1は、Xとの結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000013
    (一般式(3)中、Aは、炭素原子又はケイ素原子を表す。R~Rは、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R~Rの少なくとも一つは炭素数1以上のアルキル基である。*2は、隣接原子との結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (一般式(4)中、R及びR10は、それぞれ独立に、一般式(2)におけるR~Rと同一の原子又は置換基を表すが、少なくとも一つは炭素数1以上のアルキル基である。*3は、隣接原子との結合部位を表す。一般式(2)~(4)におけるR~R10は、隣接する基が互いに結合して置換又は無置換の脂肪族環を形成していてもよいが、形成された脂肪族環に更に芳香族環が縮環することはない。)
  13.  前記一般式(2)におけるR及びRの少なくとも一方が、前記一般式(3)で表される請求項12に記載の有機エレクトロルミネッセンス素子材料。
  14.  前記一般式(1)で表される構造を有する蛍光発光性化合物が、下記一般式(1a)で表される構造を有する請求項12又は請求項13に記載の有機エレクトロルミネッセンス素子材料。
    Figure JPOXMLDOC01-appb-C000015
    (一般式(1a)中、Xは、14π電子系以上のπ共役縮合環を表す。Yは、重水素原子、トリアリールシリル基、ジアリールアルキルシリル基、アリールジアルキルシリル基、トリアルキルシリル基、フェニル基、又は下記一般式(2a)で表される構造を有する基を表し、これらは更に置換基を有していてもよい。Yの少なくとも一つは、下記一般式(2a)で表される構造を有する基である。Yは、複数ある場合には、互いに同じであっても異なっていてもよい。nは、前記π共役縮合環上の水素原子に換えて置換可能なYの数を表し、1から最大数までの整数を表す。)
    Figure JPOXMLDOC01-appb-C000016
    (一般式(2a)中、R~Rは、それぞれ独立に、前記一般式(2)におけるR~Rと同一の原子又は置換基を表すが、R及びRの少なくとも一方が炭素数2以上の直鎖、分岐又は環状アルキル基であるか、RとR及びRとRの少なくとも一方が互いに結合して、置換又は無置換の脂肪族環を形成している。このとき形成された脂肪族環に更に芳香族環が縮環することはない。)
  15.  前記一般式(1)又は(1a)におけるXが、下記一般式(5)~(21)のいずれかで表される構造を有するπ共役縮合環である請求項12から請求項14までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    (一般式(5)~(19)中、Rは、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。
     一般式(20)及び(21)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。R及びR11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表すが、すべてが水素原子であることはない。複数のRは、互いに同じであっても異なっていてもよい。)
  16.  前記一般式(1)又は(1a)におけるXが、下記一般式(33)~(52)のいずれかで表される構造を有するπ共役縮合環である請求項12から請求項14までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    (一般式(33)~(49)中、Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。Rは、互いに同じであっても異なっていてもよい。
     一般式(50)~(52)中、Lは、-CR1112-、-O-、-NR13-、-SiR1415-又は-S-を表す。複数のLは、互いに同じであっても異なっていてもよい。Rは、前記一般式(1)又は(1a)におけるYとの結合部位を表す。R11~R15は、それぞれ独立に、水素原子又は前記一般式(1)又は(1a)におけるYとの結合部位を表す。複数のR及びR11~R15は、互いに同じであっても異なっていてもよい。)
  17.  前記一般式(33)~(52)におけるRが、すべて前記一般式(2a)で表される構造を有する基である請求項16に記載の有機エレクトロルミネッセンス素子材料。
  18.  前記一般式(33)~(52)におけるRの一つがトリアリールシリル基であり、その他のRがすべて前記一般式(2a)で表される構造を有する基である請求項16に記載の有機エレクトロルミネッセンス素子材料。
  19.  前記一般式(2)又は(2a)におけるR及びRが、それぞれ前記一般式(3)又は(4)で表され、かつ、異なる構造を有している請求項12から請求項18までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料。
  20.  陽極と陰極との間に、少なくとも発光層を含む有機機能層を有する有機エレクトロルミネッセンス素子であって、
     前記有機機能層には、請求項12から請求項19までのいずれか一項に記載の有機エレクトロルミネッセンス素子材料が含有されている有機エレクトロルミネッセンス素子。
PCT/JP2018/014517 2017-04-07 2018-04-05 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子 WO2018186462A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511299A JPWO2018186462A1 (ja) 2017-04-07 2018-04-05 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017076428 2017-04-07
JP2017-076428 2017-04-07
JP2017200885 2017-10-17
JP2017-200885 2017-10-17

Publications (1)

Publication Number Publication Date
WO2018186462A1 true WO2018186462A1 (ja) 2018-10-11

Family

ID=63712654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014517 WO2018186462A1 (ja) 2017-04-07 2018-04-05 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2018186462A1 (ja)
WO (1) WO2018186462A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183315A (zh) * 2019-06-10 2019-08-30 南京邮电大学 一种芘衍生物材料及其制备方法与应用
WO2019215535A1 (ja) * 2018-05-11 2019-11-14 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
CN110452210A (zh) * 2019-08-27 2019-11-15 镇江博润新材料有限公司 一种稠环类蓝光主体材料、其应用及应用器件的制备
WO2020012304A1 (en) * 2018-07-11 2020-01-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, electronic device, organic compound, and lighting device
WO2020095141A1 (ja) * 2018-11-09 2020-05-14 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
WO2020183264A1 (ja) * 2019-03-08 2020-09-17 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
WO2020229918A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
WO2021034089A1 (ko) * 2019-08-21 2021-02-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113234100A (zh) * 2021-05-06 2021-08-10 吉林奥来德光电材料股份有限公司 一种含硅单体、封装组合物、封装结构及光电器件
US20210300845A1 (en) * 2020-03-25 2021-09-30 Samsung Electronics Co., Ltd. Functionalized polycyclic aromatic hydrocarbon compound and light-emitting device including the same
JPWO2020171199A1 (ja) * 2019-02-22 2021-12-23 コニカミノルタ株式会社 赤外発光化合物、それを含有する発光性薄膜、発光性粒子、波長変換膜及び赤外発光面光源
JP2022500866A (ja) * 2018-09-12 2022-01-04 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の材料
WO2022055123A1 (en) * 2020-09-11 2022-03-17 LG Display Co.,Ltd. Organic compound and organic light emitting diode and organic light emitting device including the same
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US12319688B2 (en) 2019-04-25 2025-06-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting apparatus, electronic device, and lighting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004248B (zh) * 2019-11-28 2021-06-29 北京燕化集联光电技术有限公司 一种新型有机材料及其应用
CN113105474A (zh) * 2021-04-13 2021-07-13 南京邮电大学 一种非掺杂空穴传输材料及其应用

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587268A (zh) * 2004-07-21 2005-03-02 友达光电股份有限公司 蒽化合物以及包含此蒽化合物的有机电致发光装置
JP2006028175A (ja) * 2004-07-06 2006-02-02 Au Optronics Corp アントラセン化合物及びこれを用いた有機エレクトロルミネセントデバイス
CN101161764A (zh) * 2006-12-13 2008-04-16 上海拓引数码技术有限公司 一种取代五并苯类红色有机电致发光材料及其制备方法
JP2009001784A (ja) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd 有機デバイス用材料および有機デバイス用材料を用いた発光素子、発光装置、電子機器、電界効果トランジスタ、半導体装置
WO2010114262A2 (en) * 2009-03-31 2010-10-07 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2010270103A (ja) * 2009-04-23 2010-12-02 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2013049663A (ja) * 2011-08-04 2013-03-14 Canon Inc 有機化合物およびこれを有する有機発光素子
JP2013049640A (ja) * 2011-08-30 2013-03-14 Canon Inc 新規有機化合物及びそれを用いた有機発光素子
JP2013139426A (ja) * 2011-12-06 2013-07-18 Canon Inc 新規有機化合物、有機発光素子及び画像表示装置
WO2014185655A1 (ko) * 2013-05-13 2014-11-20 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP2014218435A (ja) * 2013-04-30 2014-11-20 キヤノン株式会社 新規縮合多環化合物およびそれを有する有機発光素子
US20140346456A1 (en) * 2013-05-23 2014-11-27 Gyeongsang National University Industry-Academic Cooperation Foundation Organic light-emitting device
US20140374717A1 (en) * 2013-06-19 2014-12-25 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
WO2015033559A1 (ja) * 2013-09-06 2015-03-12 出光興産株式会社 アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2015216245A (ja) * 2014-05-12 2015-12-03 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
WO2016017514A1 (ja) * 2014-07-31 2016-02-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
US20160049590A1 (en) * 2014-08-14 2016-02-18 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2017146192A1 (ja) * 2016-02-24 2017-08-31 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
WO2018088472A1 (ja) * 2016-11-09 2018-05-17 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028175A (ja) * 2004-07-06 2006-02-02 Au Optronics Corp アントラセン化合物及びこれを用いた有機エレクトロルミネセントデバイス
CN1587268A (zh) * 2004-07-21 2005-03-02 友达光电股份有限公司 蒽化合物以及包含此蒽化合物的有机电致发光装置
CN101161764A (zh) * 2006-12-13 2008-04-16 上海拓引数码技术有限公司 一种取代五并苯类红色有机电致发光材料及其制备方法
JP2009001784A (ja) * 2007-05-18 2009-01-08 Semiconductor Energy Lab Co Ltd 有機デバイス用材料および有機デバイス用材料を用いた発光素子、発光装置、電子機器、電界効果トランジスタ、半導体装置
WO2010114262A2 (en) * 2009-03-31 2010-10-07 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2010270103A (ja) * 2009-04-23 2010-12-02 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2013049663A (ja) * 2011-08-04 2013-03-14 Canon Inc 有機化合物およびこれを有する有機発光素子
JP2013049640A (ja) * 2011-08-30 2013-03-14 Canon Inc 新規有機化合物及びそれを用いた有機発光素子
JP2013139426A (ja) * 2011-12-06 2013-07-18 Canon Inc 新規有機化合物、有機発光素子及び画像表示装置
JP2014218435A (ja) * 2013-04-30 2014-11-20 キヤノン株式会社 新規縮合多環化合物およびそれを有する有機発光素子
WO2014185655A1 (ko) * 2013-05-13 2014-11-20 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20140346456A1 (en) * 2013-05-23 2014-11-27 Gyeongsang National University Industry-Academic Cooperation Foundation Organic light-emitting device
US20140374717A1 (en) * 2013-06-19 2014-12-25 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
WO2015033559A1 (ja) * 2013-09-06 2015-03-12 出光興産株式会社 アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2015216245A (ja) * 2014-05-12 2015-12-03 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
WO2016017514A1 (ja) * 2014-07-31 2016-02-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
US20160049590A1 (en) * 2014-08-14 2016-02-18 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2017146192A1 (ja) * 2016-02-24 2017-08-31 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
WO2018088472A1 (ja) * 2016-11-09 2018-05-17 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IIDA, AZUSA ET AL.: "Intense solide-state blue emission with a small Stokes' shift: n-stacking protection of the diphenylanthracene skeleton", CHEMICAL COMMUNICATIONS, no. 21, 2009, pages 3002 - 3004, XP055558200, Retrieved from the Internet <URL:http://dx.doi.org/10.1039/B901794A> *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330176B2 (ja) 2018-05-11 2023-08-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
WO2019215535A1 (ja) * 2018-05-11 2019-11-14 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
JPWO2019215535A1 (ja) * 2018-05-11 2021-07-15 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
WO2020012304A1 (en) * 2018-07-11 2020-01-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, electronic device, organic compound, and lighting device
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
JP7459065B2 (ja) 2018-09-12 2024-04-01 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の材料
JP2022500866A (ja) * 2018-09-12 2022-01-04 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の材料
WO2020095141A1 (ja) * 2018-11-09 2020-05-14 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
JP7573082B2 (ja) 2018-11-09 2024-10-24 株式会社半導体エネルギー研究所 発光デバイス、電子機器及び照明装置
JP2023158197A (ja) * 2018-11-09 2023-10-26 株式会社半導体エネルギー研究所 発光デバイス、電子機器及び照明装置
JP7349448B2 (ja) 2018-11-09 2023-09-22 株式会社半導体エネルギー研究所 発光デバイス、電子機器及び照明装置
JPWO2020095141A1 (ja) * 2018-11-09 2021-12-02 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
US12178119B2 (en) 2018-11-09 2024-12-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JPWO2020171199A1 (ja) * 2019-02-22 2021-12-23 コニカミノルタ株式会社 赤外発光化合物、それを含有する発光性薄膜、発光性粒子、波長変換膜及び赤外発光面光源
JP7517322B2 (ja) 2019-02-22 2024-07-17 コニカミノルタ株式会社 赤外発光化合物、それを含有する発光性薄膜、発光性粒子、波長変換膜及び赤外発光面光源
WO2020183264A1 (ja) * 2019-03-08 2020-09-17 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
US12295255B2 (en) 2019-03-08 2025-05-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting appliance, display device, electronic appliance, and lighting device
JPWO2020183264A1 (ja) * 2019-03-08 2020-09-17
JP2024144481A (ja) * 2019-03-08 2024-10-11 株式会社半導体エネルギー研究所 発光デバイス
US12319688B2 (en) 2019-04-25 2025-06-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting apparatus, electronic device, and lighting device
WO2020229918A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置
JPWO2020229918A1 (ja) * 2019-05-10 2020-11-19
CN110183315A (zh) * 2019-06-10 2019-08-30 南京邮电大学 一种芘衍生物材料及其制备方法与应用
WO2021034089A1 (ko) * 2019-08-21 2021-02-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN110452210A (zh) * 2019-08-27 2019-11-15 镇江博润新材料有限公司 一种稠环类蓝光主体材料、其应用及应用器件的制备
US12122732B2 (en) * 2020-03-25 2024-10-22 Samsung Electronics Co., Ltd. Functionalized polycyclic aromatic hydrocarbon compound and light-emitting device including the same
US20210300845A1 (en) * 2020-03-25 2021-09-30 Samsung Electronics Co., Ltd. Functionalized polycyclic aromatic hydrocarbon compound and light-emitting device including the same
WO2022055123A1 (en) * 2020-09-11 2022-03-17 LG Display Co.,Ltd. Organic compound and organic light emitting diode and organic light emitting device including the same
CN113234100A (zh) * 2021-05-06 2021-08-10 吉林奥来德光电材料股份有限公司 一种含硅单体、封装组合物、封装结构及光电器件
CN113234100B (zh) * 2021-05-06 2022-08-12 吉林奥来德光电材料股份有限公司 一种含硅单体、封装组合物、封装结构及光电器件

Also Published As

Publication number Publication date
JPWO2018186462A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018186462A1 (ja) 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
KR102241439B1 (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 소자의 제조 방법, 표시 장치 및 조명 장치
JP6754185B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び電子デバイス用有機機能性材料
JP5458890B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6128180B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
WO2017170812A1 (ja) 発光性薄膜及び有機エレクトロルミネッセンス素子
JP5560517B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2017119203A1 (ja) 薄膜、及び有機エレクトロルミネッセンス素子
JP5900001B2 (ja) 有機エレクトロルミネッセンス素子、それが具備された表示装置及び照明装置
JP5652083B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5692011B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP2012175025A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017108006A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016219487A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、有機エレクトロルミネッセンス素子材料及び新規化合物
JPWO2016143508A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子材料
JP2018006700A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
WO2018008442A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
JP2017079267A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP6593114B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP2013093431A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016213312A (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び有機金属錯体
JP2017103436A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP2017103437A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
WO2016194865A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781560

Country of ref document: EP

Kind code of ref document: A1