[go: up one dir, main page]

WO2018186662A2 - Organic light-emitting device - Google Patents

Organic light-emitting device Download PDF

Info

Publication number
WO2018186662A2
WO2018186662A2 PCT/KR2018/003926 KR2018003926W WO2018186662A2 WO 2018186662 A2 WO2018186662 A2 WO 2018186662A2 KR 2018003926 W KR2018003926 W KR 2018003926W WO 2018186662 A2 WO2018186662 A2 WO 2018186662A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
independently
light emitting
Prior art date
Application number
PCT/KR2018/003926
Other languages
French (fr)
Korean (ko)
Other versions
WO2018186662A3 (en
Inventor
곽지원
김진주
이성재
한수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180038119A external-priority patent/KR102088506B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880012161.9A priority Critical patent/CN110383518B/en
Publication of WO2018186662A2 publication Critical patent/WO2018186662A2/en
Publication of WO2018186662A3 publication Critical patent/WO2018186662A3/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to an organic light emitting device.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2013-073537 [Contents of the Invention]
  • the present invention provides an organic light emitting device.
  • the present invention is an anode; A cathode provided to face the anode; And at least one organic material layer provided between the anode and the cathode, wherein the organic material layer includes a hole injection layer adjacent to the anode, a hole transport layer provided on the hole injection layer, and the hole transport layer.
  • the hole injection layer comprises a compound selected from the group consisting of compounds represented by the formula 1-1 to 1-2
  • the hole transport layer is an organic light emitting device comprising a compound represented by the formula (2) To provide.
  • R 1 to R 5 are each independently a cyano group, a substituted or unsubstituted carbon number
  • Aryl group of 6 to 60, black is a heteroaryl group having 2 to 60 carbon atoms containing at least one of substituted or unsubstituted 0, N, Si and S,
  • R 15 to R 18 each independently represent a hydrogen, a halogen, a cyano group, an alkyl group having 1 to 40 carbon atoms, a haloalkyl group having 1 to 40 carbon atoms, a haloalkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted carbon group having 6 to 60 carbon atoms
  • Y 3 and Y 4 are each independently CR 19 or N,
  • Each R 19 independently represents a cyano group, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, including one or more of 0, N, Si, and S; ego,
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroarylene group having 2 or 60 carbon atoms containing at least one of 0, N, Si, and S,
  • X 1 is an unbonded, single bond, an alkylene group having 1 to 3 carbon atoms, 0 or S, and L 1 and L 2 are each independently a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, or a substituted or unsubstituted group. It is a C2-C60 hetero arylene group containing 1 or more of 0, N, Si, and S,
  • Ar 2 and Ar 3 are each independently selected from the group consisting of the following substituents
  • Ar 4 to Ar 6 are each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms including at least one of 0, N, Si, and S. ego,
  • X 2 and X 3 are each independently a single bond, 0 or S.
  • FIG. 1 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is.
  • the compound selected from the group consisting of the compounds represented by the above formulas (1-1) to 1-2 is used as a material of the hole injection layer, the compound represented by the above formula (2) is used as a material of the hole transport layer is low Driving voltage and / or life characteristics can be improved. [Specific contents to carry out invention]
  • the present invention provides an organic light emitting device in which the hole injection layer includes a compound selected from the group consisting of compounds represented by Formulas 1 to 1 to 1-2, and the hole transport layer includes a compound represented by Formula 2.
  • the non-bond means a case where there is no chemical bond in the moiety represented by X 1 .
  • a single bond means the case where no separate atom exists in the part represented by X ⁇ 1> -X ⁇ 3> .
  • X ⁇ 1> of general formula (2) is a single bond, it is represented as follows.
  • R a is heavy hydrogen, a halogen, a cyano group, a nitro group, an amino group, an alkyl group having 1 to 40 carbon atoms, 1 to 40 haloalkyl group, substituted or unsubstituted 0, N, Si and S containing at least one heteroalkyl group containing 1 to 40 carbon atoms, substituted or unsubstituted 0, N, Si and S at least one It may be a heterohaloalkyl group having 1 to 40 carbon atoms, or an alkenyl group having 2 to 40 carbon atoms.
  • Halogen herein may be fluorine, chlorine, bromine or iodine.
  • the alkyl group having 1 to 40 carbon atoms may be a straight chain, branched chain or cyclic alkyl group.
  • the alkyl group having 1 to 40 carbon atoms is a straight chain alkyl group having 1 to 40 carbon atoms; Linear alkyl groups having 1 to 20 carbon atoms; Linear alkyl groups having 1 to 10 carbon atoms; Branched or cyclic alkyl groups having 3 to 40 carbon atoms; Branched or cyclic alkyl groups having 3 to 20 carbon atoms; Or a branched or cyclic alkyl group having 3 to 10 carbon atoms.
  • the alkyl group having 1 to 40 carbon atoms is methyl group, ethyl group, n-propyl group, i so-propyl group, n-butyl group, i so-butyl group, t-butyl group, n-pentyl group, i so- Pentyl group, neo-pentyl group or cyclonuclear group.
  • the present invention is not limited thereto.
  • the heteroalkyl group having 1 to 40 carbon atoms may be one in which at least one carbon of the alkyl group is independently substituted with 0, N, Si, or S.
  • the heteroalkyl group in which carbon number 1 of the n-butyl group is substituted with 0 is n-propoxy group
  • the heteroalkyl group substituted with N is n-propylamino group
  • the heteroalkyl group substituted with Si is n- It is a propylsilyl group
  • the heteroalkyl group substituted by S is n-propylthio group.
  • examples of the branched alkyl group a heteroalkyl group in which the carbon number 1 of the neo-pentyl group is substituted with 0 is a t-subgroup, a heteroalkyl group substituted with N is a t-butylamino group, and a heteroalkyl group substituted with Si is t A butylsilyl group, wherein the heteroalkyl group substituted by S is a t-butylthio group.
  • annular As an example of the alkyl group, the heteroalkyl group in which the carbon number 2 of the cyclonuclear group is substituted with 0 is 2-tetrahydropyranyl group, and the heteroalkyl group substituted with N is substituted with 2-piperidinyl group
  • the heteroalkyl group is a 1-sil a-cyc lohexyl group
  • the heteroalkyl group substituted with S is a 2-tetrahydrothiopyranyl group.
  • the heteroalkyl group having 1 to 40 carbon atoms may be a straight, branched or cyclic hydroxyalkyl group having 1 to 40 carbon atoms; Linear, branched or cyclic alkoxy groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkoxyalkyl groups having 2 to 40 carbon atoms; Linear, branched or cyclic aminoalkyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkylamino groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkylaminoalkyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic silylalkyl (oxy) groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkyl (oxy) silyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkyl (oxy) silyl groups having 1 to 40 carbon atoms
  • the heteroalkyl group having 1 to 40 carbon atoms has a hydroxymethyl group, a meso group, an ethoxy group, an n-propoxy group, i so-propoxy group, a t-subspecial group, a cyclonucleooxy group, a hydroxymethyl group, i so -Propoxymethyl group, cyclonuclear methyl group 2-tetrahydropyranyl group, aminomethyl group, methylamino group, n-propylamino group, t-butylamino group, methylaminopropyl group, 2-piperidinyl group, n Propylsilyl group, trimethylsilyl group, dimethylmethoxysilyl group, t-butylsilyl group, 1-si la-cyc lohexyl group, n—propylthio group, t-butylthio group or 2-tetrahydrothiopyranyl (2—tetrahydrothio
  • an alkenyl group having 2 to 40 carbon atoms may be a straight chain, branched chain or cyclic alkenyl group.
  • the alkenyl group having 2 to 40 carbon atoms has a straight chain alkenyl group having 2 to 40 carbon atoms; Linear alkenyl groups having 2 to 20 carbon atoms; C2-C10 and linear alkenyl group; Branched alkenyl groups having 3 to 40 carbon atoms; Branched alkenyl groups having 3 to 20 carbon atoms; Branched alkenyl groups having 3 to 10 carbon atoms; Cyclic alkenyl groups having 5 to 40 carbon atoms; Cyclic alkenyl groups having 5 to 20 carbon atoms; Or a cyclic alkenyl group having 5 to 10 carbon atoms.
  • the alkenyl group having 2 to 40 carbon atoms may be an ethenyl group, propenyl group, butenyl group, pentenyl group, cyclonucleenyl group, or the like.
  • the aryl group having 6 to 60 carbon atoms may be a monocyclic aryl group or a polycyclic aryl group.
  • an aryl group having 6 to 60 carbon atoms has a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • the aryl group having 6 to 60 carbon atoms may be a phenyl group, a biphenyl group or a terphenyl group as a monocyclic aryl group, and as a polycyclic aryl group, a naphthyl group, anthracenyl group, phenanthryl group, triphenylenyl group, pyre Or a phenyl group, a perrylenyl group, a chrysenyl group, or a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may be
  • the heteroaryl group having 2 to 60 carbon atoms may be one or more carbons of the aryl group are each independently substituted with 0, N, Si or S.
  • the heteroaryl group substituted with 0 carbon of the fluorenyl group with 0 is a dibenzofuranyl group
  • the heteroaryl group substituted with N is a carbazolyl group
  • the heteroaryl group substituted with Si is a 9-sila-fluoroenyl group
  • the heteroaryl group substituted with S is a dibenzothiophenyl group.
  • a heteroaryl group having 2 to 60 carbon atoms is a heteroaryl group having 2 to 30 carbon atoms; Or a heteroaryl group having 2 to 20 carbon atoms. More specifically, the heteroaryl group having 2 to 60 carbon atoms may be a thiophene group, Furan group, Pyl group, imidazole group, Thiazole group, Oxazole group, Oxadiazole group, Triazole group, Pyridyl group, Bipyridyl group, Pyrimidyl group, Triazine group, Triazole group, Acridyl group, Pyridazine group, Pyrazin group Genyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxa
  • the arylene group means a divalent organic group in which any one hydrogen radical of the aryl group has been removed
  • the heteroarylene group means a divalent organic group in which any one hydrogen radical of the aforementioned heteroaryl group has been removed.
  • one of R 2 and R 3 and one of R 4 and R 5 are cyano groups, R 1 ; The other of R 2 and R 3 ; And each other of R 4 and R 5 is independently a cyano group;
  • R 2 and R 4 may be a cyano group
  • R 1 , R 3 and R 5 may each independently be a phenyl group substituted with at least one member selected from the group consisting of halogen and cyano groups.
  • the compound represented by Formula 1-1 may be the following compound.
  • one of R 15 and R 16 and one of R 17 and R 18 may be each independently halogen, cyano group, alkyl group of 1 to 5 carbon atoms, haloalkyl group of 1 to 5 carbon atoms, and 1 to 5 carbon atoms.
  • Y 3 and Y 4 are CR 19 , and R 19 is each independently a cyano group; Aryl group "of the group having 6 to 20 carbon atoms substituted with one or more selected from the group consisting of halogen and cyano; Or a heteroaryl group having 2 to 20 carbon atoms including one or more of 0, N, Si, and S substituted with one or more substituents selected from the group consisting of halogen and cyano groups.
  • the compound represented by Chemical Formula 1-2 may be selected from the group consisting of the following compounds.
  • the compound represented by Chemical Formula 1-2 may be prepared by a preparation method such as the following formula A.
  • the manufacturing method may be more specific in the production examples to be described later.
  • R 15 , R 16 , R 17 and R 18 are as described above, and further substituents may be further included.
  • Ar 1 in Formula 2 is benzene, naphthalene, biphenyl, terphenyl, triphenylene, phenylnaphthalene, 9, 9-dimethyl fluorene, 9, 9-diphenyl fluorene and spiro [fluorene— 9, 9 ' -Fluorene] may be a monovalent residue from an arene selected from the group consisting of.
  • L 1 and L 2 may each independently be a divalent residue derived from arene selected from the group consisting of benzene, naphthalene, biphenyl, and terphenyl.
  • Ar 4 and Ar 5 may each independently be a monovalent residue derived from arene selected from the group consisting of benzene, naphthalene, biphenyl, and terphenyl.
  • the compound represented by Chemical Formula 2 may be a compound represented by Chemical Formula 2-1.
  • Ar 1 to Ar 3 and X 1 is the same as in Chemical Formula 2,
  • L 3 to L 6 each independently represent a single bond, a substituted or unsubstituted arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted 0, N, Si, and S having at least one of 2 to 50 carbon atoms Heteroarylene group.
  • the compound represented by Formula 2 may be selected from the group consisting of the following compounds.
  • the compound represented by Chemical Formula 2 may be prepared by a preparation method such as the following reaction formula B.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the reaction is carried out in the presence of a palladium catalyst and a base as a Suzuki coupling reaction.
  • the kind of the reaction group and the catalyst used in the reaction system can be appropriately changed.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the organic light emitting device of the present invention includes a cathode provided with both the anode; And at least one raised layer provided between the anode and the cathode.
  • the organic material layer is composed of a multilayered structure of three or more organic material layers. Specifically, the organic material layer includes a hole main pressure layer adjacent to the anode, a hole transport layer provided on the hole injection layer, and a light emitting layer provided on the hole transport layer.
  • the hole injection layer refers to a layer in which holes are injected from an anode and transferred to another organic material layer as an organic material layer contacting the anode of the organic light emitting device. Accordingly, the hole injection layer may also be referred to as a charge generating layer.
  • the hole transport layer is an organic material layer provided on the hole injection layer of the organic light emitting diode, and refers to a layer that transfers holes transferred from the hole injection layer to the light emitting layer and suppresses electrons transferred from the light emitting layer from being transferred to the hole injection layer. Accordingly, the hole transport layer may also be referred to as an electron suppression layer.
  • the organic light emitting device may include an electron transport layer, an electron injection layer, and the like between the light emitting layer and the cathode.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is.
  • the compound selected from the group consisting of compounds represented by Formulas 1-1 to 1 ′ 2 is included in the hole injection layer 5, and the compound represented by Formula 2 is a hole transport layer 6. It can be included to improve the low driving voltage and / or life characteristics.
  • the organic light emitting device includes a compound selected from the group consisting of compounds represented by Formulas 1-1 to 1-2 in the hole injection layer, and includes a compound represented by Formula 2 in the hole transport layer. It can be prepared by materials and methods known in the art, except that In addition, the plurality of organic material layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking an electrode of any one of an anode and a cathode, an organic material layer, and another electrode of the anode and the cathode on a substrate.
  • PVD physical vapor deposition
  • An oxide or an alloy thereof may be deposited to form an anode, and an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer may be formed thereon, and then a material that may be used as a cathode may be deposited thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate (W0 2003/012890).
  • the manufacturing method is not limited thereto.
  • the compounds represented by Formulas 1-1 to 1-2 and the compound represented by Formula 2 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating and the like, but is not limited thereto.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (IT0), indium zinc oxide (IZ0); ⁇ : A1 or SN0 2 : Combination of metal and oxide, such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4— (ethylene-1,2-dioxy) thiophene] (? £ 0 1), polypyrrole and polyaniline, but only It is not limited. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, kaleum, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, the material forming the hole injection layer represented by the formula (1-1) to 1-2 Compounds selected from the group consisting of compounds are used. Since the compounds represented by Chemical Formulas 1-1 to 1-2 have been described above in detail, detailed descriptions thereof will be omitted.
  • the compounds represented by Formulas 1-1 to 1-2 have the ability to transport holes, have a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, an electron injection layer of excitons generated in the light emitting layer Alternatively, movement of the electron injection material can be prevented.
  • the compounds of Formulas 1—1 to 1-2 have excellent thin film formation ability.
  • the hole injection layer may further include a hole injection material known in the art to which the present invention pertains, in addition to the compound of Formulas 1-1 to 1-2.
  • HOMO highest occupied molecul ar orbi tal is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole-injecting materials include metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nucleated azatriphenylene-based organic material, quinacridone-based organic material, and perylene ( perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer, and the compound represented by Chemical Formula 2 is used as a material for forming the hole transport layer. Since the compound represented by Chemical Formula 2 has been described in detail above, a detailed description thereof will be omitted.
  • the compound represented by Chemical Formula 2 is suitable for transporting holes from the anode or the hole injection layer to the light emitting layer because of high mobility to the holes.
  • the hole transport layer may further include a hole transport material known in the art. Specific examples of such hole transport materials include, but are not limited to, arylamine-based organics, conductive polymers, and block copolymers having both conjugated and non-conjugated portions.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and preferably a material having a high quantum efficiency with respect to fluorescence or phosphorescence.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic compounds include carbazole derivatives, dibenzofuran derivatives, and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periplanthene having an arylamino group, and the styrylamine compound may be substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the substituted arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports the electrons to the light emitting layer.
  • the electron transporting material is a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer. Suitable.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically, they are sesame, barium, calcium, ytterbium and samarium, each followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer
  • the compound which prevents migration to a worm and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and their derivatives, Metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • metal complex compound 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc,.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • the compound represented by Chemical Formulas 1-1 to 1-2 and the compound represented by Chemical Formula 2 And manufacturing of the organic light emitting device including the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto. Sejoye
  • 1,4—Dibromo-2,5—Diiodobenzene 18.5 g (0.038 mol) to (4-trifluoromethoxy) phenylboronic acid 16.Og (0.078mol), tetrakis (triphenylphosphine) palladium ( 0) It was mixed with 2.2 g, 114 ml of 2M potassium carbonate, and 360 ml of tetrahydrofuran, and reflux stirring was performed for 8 hours on nitrogen conditions.
  • 1,4-dibromo-2, 5-difluoro-3, 6-Taiyo Goto benzene (Compound b-2) 19.9g (0.038mol) of (2-fluoro-4 'trifluoromethoxy ) 17.5 g (0.078 mol) of phenyl boronic acids, 2.2 g of tetrakis (triphenylphosphine) palladium (0), 11M1 of 2M potassium carbonate, and 360 ml of tetrahydrofuran were mixed, and reflux stirring was performed for 12 hours on nitrogen conditions.
  • a glass substrate coated with a thin film having an indium tin oxide (IT0) thickness of 1,000 A was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • IT0 indium tin oxide
  • Fischer Co. product was used as a detergent
  • distilled water filtered secondly as a filter of Mi 11 ipore Co. was used as distilled water.
  • the ultrasonic cleaning was performed twice with distilled water for 10 minutes.
  • ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • a hole transport layer was formed by vacuum depositing the following compound [HT1] (1150A), which is a material for transporting holes on the hole injection layer. Subsequently, the following compound [EB1] was vacuum deposited on the hole transport layer with a film thickness of 50 A to form an electron blocking layer.
  • the following compound [BH] and compound [BD] were vacuum-deposited at a weight ratio of 50: 1 on the electron blocking layer at 200 A to form a light emitting layer.
  • the compound [HB 1] was vacuum deposited on the hole transport layer to a film thickness of 50 A to form a hole blocking layer.
  • Compound [ET1] and Compound [LiQ] were vacuum-deposited at a weight ratio of 1: 1 on the hole blocking layer to form a layer for simultaneously injecting and transporting electrons at a thickness of 310A.
  • Lithium fluoride (LiF) and aluminum at a thickness of 2,000A were sequentially deposited on the electron injection and transport layer to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4-0.7 A / sec
  • the lithium fluoride of the cathode was maintained at 0.3 A / sec
  • the aluminum was maintained at the deposition rate of 2 A / sec.
  • the organic light emitting device was manufactured by maintaining 7 to 5 ⁇ 10 ⁇ 6 torr.
  • Comparative Example 1-1 an organic light-emitting device was manufactured in the same manner as in Comparative Example 1-1, except for using the compounds shown in Table 1 below as components for the hole injection layer and the hole transport layer.
  • the device structure used shows the characteristics of basic P-doping devices.
  • the blue organic light emitting device of Comparative Examples 1-5 to 1-16 uses a compound of 1-2-1 to 1-2-3 as the hole injection layer and a compound of compounds ⁇ to HT4 as the hole transport layer. The characteristics of the type element are shown.
  • Example 1-1 and 1-2 when the compound of 2-1 and 2-2 is used as the hole transport layer instead of the compounds of HT-1 to HT-4 in the basic p ⁇ doping device, the luminous efficiency and driving of the organic light emitting device It can be seen that the voltage and lifetime can be improved.
  • Example 1—3 to 1-8 are 2-1 and 2- instead of the compounds of HT-1 to HT-4 in a layer type device using a compound of 1-2-1 magnetic 1-2-3 as a hole injection layer.
  • the compound of 2 is used as the hole transport layer, it can be seen that the luminous efficiency, driving voltage and lifetime of the organic light emitting device can be improved.
  • HT4 has a structure connected by met a and has a relatively low efficiency.
  • the compound of Chemical Formula 1-2 (Tetracyanoquinodimethane: TCNQ core and its derivatives as a core) according to one embodiment of the present specification is used as a layer type hole injection layer material, or the compound of Chemical Formula 1-1
  • the driving voltage, luminous efficiency and lifetime characteristics of the blue organic light emitting device formed by combining the compound of Formula 2 as the hole transport layer can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

The present invention provides an organic light-emitting device.

Description

【발명의 명칭】  [Name of invention]

유기 발광 소자  Organic light emitting device

【기술분야】 Technical Field

관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)

본 출원은 2017 년 4 월 7 일자 한국 특허 출원 제 10—2017-0045389 호 및 2018 년 4 월 2 일자 한국 특허 출원 제 10-2018-0038119 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10—2017-0045389 dated April 7, 2017 and Korean Patent Application No. 10-2018-0038119 dated April 2, 2018. All content disclosed in the literature is included as part of this specification.

본 발명은 유기 발광 소자에 관한 것이다.  The present invention relates to an organic light emitting device.

【발명의 배경이 되는 기술】 [Technique to become background of invention]

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효을과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exci ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.  In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted. The organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer. When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. It will glow when the excitons fall back to the ground.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다. 【선행기술문헌】 There is a continuous demand for the development of new materials for organic materials used in such organic light emitting devices. Prior Art Documents

【특허문헌】  [Patent literature]

(특허문헌 0001) 한국특허 공개번호 제 10-2013-073537호 【발명의 내용】  (Patent Document 0001) Korean Patent Publication No. 10-2013-073537 [Contents of the Invention]

【해결하고자 하는 과제】  Problem to be solved

본 발명은 유기 발광 소자를 제공한다.  The present invention provides an organic light emitting device.

【과제의 해결 수단】 [Measures of problem]

본 발명은 양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 1 층 이상의 유기물층을 포함하는 유기 발광 소자로서 , 상기 유기물층은 양극에 인접하는 정공 주입층, 상기 정공 주입층 상에 구비된 정공 수송층 및 상기 정공 수송층 상에 구비된 발광층을 포함하고, 상기 정공 주입층은 하기 화학식 1-1 내지 1-2로 표시되는 화합물로 구성된 군에서 선택된 화합물을 포함하고, 상기 정공 수송층은 하기 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다.  The present invention is an anode; A cathode provided to face the anode; And at least one organic material layer provided between the anode and the cathode, wherein the organic material layer includes a hole injection layer adjacent to the anode, a hole transport layer provided on the hole injection layer, and the hole transport layer. Including an emission layer, The hole injection layer comprises a compound selected from the group consisting of compounds represented by the formula 1-1 to 1-2, The hole transport layer is an organic light emitting device comprising a compound represented by the formula (2) To provide.

Figure imgf000003_0001
Figure imgf000003_0001

상기 화학식 1ᅳ 1에서,  In Chemical Formula 1-1,

R1 내지 R5는 각각 독립적으로 시아노기, 치환 또는 비치환된 탄소수R 1 to R 5 are each independently a cyano group, a substituted or unsubstituted carbon number

6 내지 60의 아릴기 , 흑은 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고, Aryl group of 6 to 60, black is a heteroaryl group having 2 to 60 carbon atoms containing at least one of substituted or unsubstituted 0, N, Si and S,

상가화학식 1-2에서,  In the formula 1-2,

R15 내지 R18은 각각 독립적으로 수소, 할로겐, 시아노기, 탄소수 1 내지 40의 알킬기, 탄소수 1 내지 40의 할로알킬기, 탄소수 1 내지 40의 할로알콕시기, 치환 또는 비차환된 탄소수 6 내지 60의 아릴기, 흑은 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고, R 15 to R 18 each independently represent a hydrogen, a halogen, a cyano group, an alkyl group having 1 to 40 carbon atoms, a haloalkyl group having 1 to 40 carbon atoms, a haloalkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted carbon group having 6 to 60 carbon atoms An aryl group, black having 2 to 60 carbon atoms, including one or more of substituted, unsubstituted 0, N, Si, and S; Heteroaryl group,

Y3 및 Y4는 각각 독립적으로 C-R19 또는 N이고, Y 3 and Y 4 are each independently CR 19 or N,

R19는 각각 독립적으로 시아노기, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기, 혹은 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고, Each R 19 independently represents a cyano group, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms, including one or more of 0, N, Si, and S; ego,

Figure imgf000004_0001
Figure imgf000004_0001

상기 화학식 2에서,  In Chemical Formula 2,

Ar1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기, 혹은 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴렌기이고, Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroarylene group having 2 or 60 carbon atoms containing at least one of 0, N, Si, and S,

X1은 비결합, 단일결합, 탄소수 1 내지 3의 알킬렌기, 0또는 S이고, L1 및 L2는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기, 혹은 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴렌기이고, X 1 is an unbonded, single bond, an alkylene group having 1 to 3 carbon atoms, 0 or S, and L 1 and L 2 are each independently a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, or a substituted or unsubstituted group. It is a C2-C60 hetero arylene group containing 1 or more of 0, N, Si, and S,

Ar2 및 Ar3는 각각 독립적으로 하기 치환기로 구성된 군으로부터 선택된 Ar 2 and Ar 3 are each independently selected from the group consisting of the following substituents

Figure imgf000004_0002
Figure imgf000004_0002

Ar4 내지 Ar6는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴기, 혹은 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고, Ar 4 to Ar 6 are each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms including at least one of 0, N, Si, and S. ego,

X2 및 X3는 각각 독립적으로 단일결합, 0 또는 S이다. X 2 and X 3 are each independently a single bond, 0 or S.

【도면의 간단한 설명】 도 1 은 기판 ( 1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. [Brief Description of Drawings] FIG. 1 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is.

【발명의 효과] 【Effects of the Invention]

상술한 화학식 1-1 내지 1-2 으로 표시되는 화합물로 구성된 군에서 선택된 화합물은 정공 주입층의 재료로 사용되고, 상술한 화학식 2 로 표시되는 화합물은 정공 수송층의 재료로 사용되어 유기 발광 소자의 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 【발명을 실시하기 위한 구체적인 내용】  The compound selected from the group consisting of the compounds represented by the above formulas (1-1) to 1-2 is used as a material of the hole injection layer, the compound represented by the above formula (2) is used as a material of the hole transport layer is low Driving voltage and / or life characteristics can be improved. [Specific contents to carry out invention]

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 본 발명은 정공 주입층이 상기 화학식 1—1 내지 1-2 로 표시되는 화합물로 구성된 군에서 선택된 화합물을 포함하고, 정공 수송층이 상기 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다 . 본 명세서에서, 비결합은 X1으로 표시되는 부분에 화학적 결합이 없는 경우를 의미한다. 예컨대, 화학식 2 에서 X1 이 비결합이면 하기와 같이 '표시된다.

Figure imgf000005_0001
Hereinafter, the present invention will be described in more detail to aid in understanding the present invention. Hereinafter, in order to help the understanding of the present invention will be described in more detail. The present invention provides an organic light emitting device in which the hole injection layer includes a compound selected from the group consisting of compounds represented by Formulas 1 to 1 to 1-2, and the hole transport layer includes a compound represented by Formula 2. In the present specification, the non-bond means a case where there is no chemical bond in the moiety represented by X 1 . For example, "it is represented as follows when X 1 is uncoupled from the formula (2).
Figure imgf000005_0001

또한, 단일 결합은 X1 내지 X3 로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다. 예컨대, 화학식 2 의 X1 이 단일 결합이면 하기와 같이 표시된다 .

Figure imgf000005_0002
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 Ra로 치환 또는 비치환된 것을 의미할 수 있고, Ra 는 중수소, 할로겐, 시아노기, 니트로기, 아미노기, 탄소수 1 내지 40 의 알킬기, 탄소수 1 내지 40 의 할로알킬기, 치환 또는 비치환된 0, N, Si 및 S 중 1 개 이상을 포함하는 탄소수 1 내지 40 의 헤테로알킬기, 치환 또는 비치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 1 내지 40 의 헤테로할로알킬기, 혹은 탄소수 2 내지 40 의 알케닐기일 수 있다. 본 명세서에서 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다. 본 명세서에서 탄소수 1 내지 40 의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 40 의 알킬기는 탄소수 1 내지 40 의 직쇄 알킬기; 탄소수 1 내지 20 의 직쇄 알킬기; 탄소수 1 내지 10 의 직쇄 알킬기; 탄소수 3 내지 40 의 분지쇄 또는 고리형 알킬기; 탄소수 3 내지 20 의 분지쇄 또는 고리형 알킬기; 또는 탄소수 3 내지 10 의 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 40 의 알킬기는 메틸기, 에틸기, n-프로필기, i so-프로필기, n-부틸기, i so-부틸기, t-부틸기, n-펜틸기, i so-펜틸기, neo-펜틸기 또는 사이클로핵실기 등일 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에서 탄소수 1 내지 40 의 헤테로알킬기는 알킬기의 1 개 이상의 탄소가 각각 독립적으로 0, N, Si 또는 S 로 치환된 것일 수 았다. 예컨대, 직쇄 알킬기의 예로 n-부틸기의 1 번 탄소가 0 로 치환된 헤테로알킬기는 n-프로폭시기이고 N 으로 치환된 헤테로알킬기는 n- 프로필아미노기이며, Si 로 치환된 헤테로알킬기는 n-프로필실릴기이고, S 로 치환된 헤테로알킬기는 n-프로필티오기이다. 그리고, 분지쇄 알킬기의 예로 neo-펜틸기의 1번 탄소가 0로 치환된 헤테로알킬기는 t-부특시기이고, N으로 치환된 헤테로알킬기는 t-부틸아미노기이며, Si 로 치환된 헤테로알킬기는 t- 부틸실릴기이고, S로 치환된 헤테로알킬기는 t-부틸티오기이다. 또한, 고리형 알킬기의 예로 사이클로핵실기의 2 번 탄소가 0 로 치환된 헤테로알킬기는 2- 테트라히드로피라닐 (2-tetrahydropyranyl )기이고, N 으로 치환된 헤테로알킬기는 2-피페리디닐기이몌 Si 로 치환된 헤테로알킬기는 1-실라- 사이클로핵실 ( 1-s i l a-cyc lohexyl )기이고, S 로 치환된 헤테로알킬기는 2- 테트라히드로티오피라닐 (2-tetrahydrothiopyranyl )기이다. 구체적으로ᅳ 탄소수 1 내지 40 의 해테로알킬기는 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 히드록시알킬기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 알콕시기; 탄소수 2 내지 40 의 직쇄, 분지쇄 또는 고리형 알콕시알킬기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 아미노알킬기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 알킬아미노기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 알킬아미노알킬기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 실릴알킬 (옥시)기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 알킬 (옥시)실릴기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 알킬 (옥시)실릴알킬 (옥시)기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 머캅토알킬기; 탄소수 1 내지 40 의 직쇄, 분지쇄 또는 고리형 알킬티오기; 혹은 탄소수 2 내지 40 의 직쇄, 분지쇄 또는 고리형 알킬티오알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 40의 헤테로알킬기는 히드록시메틸기 , 메특시기, 에록시기, n-프로폭시기, i so-프로폭시기, t-부특시기, 사이클로핵록시기, 메록시메틸기, i so-프로폭시메틸기, 사이클로핵특시메틸기 2-테트라히드로피라닐 (2-tetrahydropyranyl )기, 아미노메틸기, 메틸아미노기, n-프로필아미노기, tᅳ부틸아미노기, 메틸아미노프로필기, 2-피페리디닐기, nᅳ 프로필실릴기, 트리메틸실릴기, 디메틸메톡시실릴기, t-부틸실릴기, 1-실라- 사이클로핵실 ( 1-s i la-cyc lohexyl )기, n—프로필티오기, t-부틸티오기 또는 2- 테트라히드로티오피라닐 (2— tetrahydrothiopyranyl )기 등을 들 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에서 탄소수 2 내지 40 의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, 탄소수 2 내지 40 의 알케닐기는 탄소수 2 내지 40 의 직쇄 알케닐기; 탄소수 2 내지 20 의 직쇄 알케닐기; 탄소수 2 내지 10 와 직쇄 알케닐기; 탄소수 3 내지 40 의 분지쇄 알케닐기; 탄소수 3 내지 20의 분지쇄 알케닐기 ; 탄소수 3 내지 10 의 분지쇄 알케닐기 ; 탄소수 5 내지 40의 고리형 알케닐기; 탄소수 5 내지 20 의 고리형 알케닐기; 또는 탄소수 5 내지 10 의 고리형 알께닐기일 수 있다. 보다 구체적으로, 탄소수 2 내지 40 의 알케닐기는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등일 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에서 탄소수 6 내지 60 의 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 구체적으로, 탄소수 6 내지 60 의 아릴기는 탄소수 6 내지 30 의 단환식 또는 다환식 아릴기; 또는 탄소수 6 내지 20 의 단환식 또는 다환식 아릴기일 수 있다. 보다 구체적으로, 탄소수 6 내지 60 의 아릴기는 단환식 아릴기로서 페닐기, 바이페닐기 또는 터페닐기 등일 수 있고, 다환식 아릴기로서 나프틸기, 안트라세닐기, 페난트릴기, 트리페닐레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기 또는 플루오레닐기 등일 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2 개가 서로 In addition, a single bond means the case where no separate atom exists in the part represented by X <1> -X <3> . For example, when X <1> of general formula (2) is a single bond, it is represented as follows.
Figure imgf000005_0002
In this specification the term "substituted or unsubstituted" may be substituted or means a unsubstituted by R a, R a is heavy hydrogen, a halogen, a cyano group, a nitro group, an amino group, an alkyl group having 1 to 40 carbon atoms, 1 to 40 haloalkyl group, substituted or unsubstituted 0, N, Si and S containing at least one heteroalkyl group containing 1 to 40 carbon atoms, substituted or unsubstituted 0, N, Si and S at least one It may be a heterohaloalkyl group having 1 to 40 carbon atoms, or an alkenyl group having 2 to 40 carbon atoms. Halogen herein may be fluorine, chlorine, bromine or iodine. In the present specification, the alkyl group having 1 to 40 carbon atoms may be a straight chain, branched chain or cyclic alkyl group. Specifically, the alkyl group having 1 to 40 carbon atoms is a straight chain alkyl group having 1 to 40 carbon atoms; Linear alkyl groups having 1 to 20 carbon atoms; Linear alkyl groups having 1 to 10 carbon atoms; Branched or cyclic alkyl groups having 3 to 40 carbon atoms; Branched or cyclic alkyl groups having 3 to 20 carbon atoms; Or a branched or cyclic alkyl group having 3 to 10 carbon atoms. More specifically, the alkyl group having 1 to 40 carbon atoms is methyl group, ethyl group, n-propyl group, i so-propyl group, n-butyl group, i so-butyl group, t-butyl group, n-pentyl group, i so- Pentyl group, neo-pentyl group or cyclonuclear group. However, the present invention is not limited thereto. In the present specification, the heteroalkyl group having 1 to 40 carbon atoms may be one in which at least one carbon of the alkyl group is independently substituted with 0, N, Si, or S. For example, as an example of a linear alkyl group, the heteroalkyl group in which carbon number 1 of the n-butyl group is substituted with 0 is n-propoxy group, the heteroalkyl group substituted with N is n-propylamino group, and the heteroalkyl group substituted with Si is n- It is a propylsilyl group, and the heteroalkyl group substituted by S is n-propylthio group. In addition, examples of the branched alkyl group, a heteroalkyl group in which the carbon number 1 of the neo-pentyl group is substituted with 0 is a t-subgroup, a heteroalkyl group substituted with N is a t-butylamino group, and a heteroalkyl group substituted with Si is t A butylsilyl group, wherein the heteroalkyl group substituted by S is a t-butylthio group. Also, annular As an example of the alkyl group, the heteroalkyl group in which the carbon number 2 of the cyclonuclear group is substituted with 0 is 2-tetrahydropyranyl group, and the heteroalkyl group substituted with N is substituted with 2-piperidinyl group The heteroalkyl group is a 1-sil a-cyc lohexyl group, and the heteroalkyl group substituted with S is a 2-tetrahydrothiopyranyl group. Specifically, the heteroalkyl group having 1 to 40 carbon atoms may be a straight, branched or cyclic hydroxyalkyl group having 1 to 40 carbon atoms; Linear, branched or cyclic alkoxy groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkoxyalkyl groups having 2 to 40 carbon atoms; Linear, branched or cyclic aminoalkyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkylamino groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkylaminoalkyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic silylalkyl (oxy) groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkyl (oxy) silyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkyl (oxy) silylalkyl (oxy) groups having 1 to 40 carbon atoms; Linear, branched or cyclic mercaptoalkyl groups having 1 to 40 carbon atoms; Linear, branched or cyclic alkylthio groups having 1 to 40 carbon atoms; Or a straight, branched or cyclic alkylthioalkyl group having 2 to 40 carbon atoms. More specifically, the heteroalkyl group having 1 to 40 carbon atoms has a hydroxymethyl group, a meso group, an ethoxy group, an n-propoxy group, i so-propoxy group, a t-subspecial group, a cyclonucleooxy group, a hydroxymethyl group, i so -Propoxymethyl group, cyclonuclear methyl group 2-tetrahydropyranyl group, aminomethyl group, methylamino group, n-propylamino group, t-butylamino group, methylaminopropyl group, 2-piperidinyl group, n Propylsilyl group, trimethylsilyl group, dimethylmethoxysilyl group, t-butylsilyl group, 1-si la-cyc lohexyl group, n—propylthio group, t-butylthio group or 2-tetrahydrothiopyranyl (2—tetrahydrothiopyranyl) group etc. are mentioned. However, the present invention is not limited thereto. In the present specification, an alkenyl group having 2 to 40 carbon atoms may be a straight chain, branched chain or cyclic alkenyl group. Specifically, the alkenyl group having 2 to 40 carbon atoms has a straight chain alkenyl group having 2 to 40 carbon atoms; Linear alkenyl groups having 2 to 20 carbon atoms; C2-C10 and linear alkenyl group; Branched alkenyl groups having 3 to 40 carbon atoms; Branched alkenyl groups having 3 to 20 carbon atoms; Branched alkenyl groups having 3 to 10 carbon atoms; Cyclic alkenyl groups having 5 to 40 carbon atoms; Cyclic alkenyl groups having 5 to 20 carbon atoms; Or a cyclic alkenyl group having 5 to 10 carbon atoms. More specifically, the alkenyl group having 2 to 40 carbon atoms may be an ethenyl group, propenyl group, butenyl group, pentenyl group, cyclonucleenyl group, or the like. However, the present invention is not limited thereto. In the present specification, the aryl group having 6 to 60 carbon atoms may be a monocyclic aryl group or a polycyclic aryl group. Specifically, an aryl group having 6 to 60 carbon atoms has a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms. More specifically, the aryl group having 6 to 60 carbon atoms may be a phenyl group, a biphenyl group or a terphenyl group as a monocyclic aryl group, and as a polycyclic aryl group, a naphthyl group, anthracenyl group, phenanthryl group, triphenylenyl group, pyre Or a phenyl group, a perrylenyl group, a chrysenyl group, or a fluorenyl group. However, the present invention is not limited thereto. In the present specification, a fluorenyl group may be substituted, and two substituents may be

Figure imgf000008_0001
Figure imgf000008_0001

등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에서 탄소수 2 내지 60 의 헤테로아릴기는 아릴기의 1 개 이상의 탄소가 각각 독립적으로 0, N , Si 또는 S 로 치환된 것일 수 있다. 예컨대, 플루오레닐기의 9 번 탄소가 0 로 치환된 해테로아릴기는 디벤조퓨라닐기이고, N 으로 치환된 헤테로아릴기는 카바졸리기이며, Si 로 치환된 헤테로아릴기는 9-실라-플로오레닐기이고, S로 치환된 해테로아릴기는 디벤조티오페닐기이다. 구체적으로, 탄소수 2 내지 60 의 헤테로아릴기는 탄소수 2 내지 30 의 헤테로아릴기 ; 또는 탄소수 2 내지 20의 헤테로아릴기일 수 있다. 보다 구체적으로,ᅳ탄소수 2 내지 60 의 헤테로아릴기는 티오펜기, 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰를린기 (phenanthrol ine) , 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에서 아릴렌기는 상술한 아릴기의 어느 하나의 수소 라디칼이 제거된 2 가의 유기기를 의미하고, 헤테로아릴렌기는 상술한 헤테로아릴기의 어느 하나의 수소 라디칼이 제거된 2가의 유기기를 의미한다. 상기 화학식 1-1 에서 R2 및 R3 중 하나와 R4 및 R5 중 하나는 시아노기이고, R1 ; R2 및 R3 중 다른 하나; 그리고 R4 및 R5 중 다른 하나는 각각 독립적으로 시아노기 ; 할로겐 및 시아노기로 구성된 군에서 선택된 1 종 이상으로 치환된 탄소수 6 내지 20 의 아릴기; 혹은 할로겐 및 시아노기로 구성된 군에서 선택된 1 개 이상의 치환기로 치환된 0, N, Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 20의 헤테로아릴기일 수 있다. 구체적으로, 상기 화학식 1—1 에서 R2 및 R4는 시아노기이고, R1 , R3 및 R5 는 각각 독립적으로 할로겐 및 시아노기로 구성된 군에서 선택된 1 종 이상으로 치환된 페닐기일 수 있다. 보다 구체적으로, 상기 화학식 1-1 로 표시되는 화합물은 하기 화합물일 수 있다. And so on. However, the present invention is not limited thereto. In the present specification, the heteroaryl group having 2 to 60 carbon atoms may be one or more carbons of the aryl group are each independently substituted with 0, N, Si or S. For example, the heteroaryl group substituted with 0 carbon of the fluorenyl group with 0 is a dibenzofuranyl group, the heteroaryl group substituted with N is a carbazolyl group, and the heteroaryl group substituted with Si is a 9-sila-fluoroenyl group And the heteroaryl group substituted with S is a dibenzothiophenyl group. Specifically, a heteroaryl group having 2 to 60 carbon atoms is a heteroaryl group having 2 to 30 carbon atoms; Or a heteroaryl group having 2 to 20 carbon atoms. More specifically, the heteroaryl group having 2 to 60 carbon atoms may be a thiophene group, Furan group, Pyl group, imidazole group, Thiazole group, Oxazole group, Oxadiazole group, Triazole group, Pyridyl group, Bipyridyl group, Pyrimidyl group, Triazine group, Triazole group, Acridyl group, Pyridazine group, Pyrazin group Genyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxa Drowsiness, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthrol group (phenanthrol ine), thiazolyl group, isoxazolyl group, oxadia There may be a sleepy group, a thiadiazolyl group, a benzothiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but is not limited thereto. In the present specification, the arylene group means a divalent organic group in which any one hydrogen radical of the aryl group has been removed, and the heteroarylene group means a divalent organic group in which any one hydrogen radical of the aforementioned heteroaryl group has been removed. . In Formula 1-1, one of R 2 and R 3 and one of R 4 and R 5 are cyano groups, R 1 ; The other of R 2 and R 3 ; And each other of R 4 and R 5 is independently a cyano group; An aryl group having 6 to 20 carbon atoms substituted with one or more selected from the group consisting of halogen and cyano groups; or one of 0, N, Si, and S substituted with one or more substituents selected from the group consisting of halogen and cyano groups It may be a C2-C20 heteroaryl group containing the above. Specifically, in Formula 1-1, R 2 and R 4 may be a cyano group, and R 1 , R 3 and R 5 may each independently be a phenyl group substituted with at least one member selected from the group consisting of halogen and cyano groups. . More specifically, the compound represented by Formula 1-1 may be the following compound.

Figure imgf000010_0001
상기 화학식 1-2 에서 R15 및 R16 중 하나와 R17 및 R18 중 하나는 각각 독립적으로 할로겐, 시아노기, 탄소수 1 내지 5 의 알킬기, 탄소수 1 내지 5의 할로알킬기 및 탄소수 1 내지 5의 할로알콕시기로 구성된 군에서 선택된 1 종 이상으로 치환된 탄소수 6 내지 20 의 아릴기; 혹은 할로겐, 시아노기, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 할로알킬기 및 탄소수 1 내지 5의 할로알콕시기로 구성된 군에서 선택된 1종 이상으로 치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 20 의 헤테로아릴기이고, R15 및 R16 중 다른 하나와 R17 및 R18 중 다른 하나는 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 5의 할로알킬기일 수 있다. 상기 화학식 1-2 에서 Y3 및 Y4는 C-R19이고, R19는 각각 독립적으로 시아노기; 할로겐 및 시아노기로 구성된 군에서 선택된 1 종 이상으로 치환된 탄소수 6 내지 20 의 아릴기'; 혹은 할로겐 및 시아노기로 구성된 군에서 선택된 1 개 이상의 치환기로 치환된 0, N, Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 20의 헤테로아릴기일 수 있다. 상기 화학식 1-2 로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택될 수 있다.
Figure imgf000011_0001
Figure imgf000010_0001
In Formula 1-2, one of R 15 and R 16 and one of R 17 and R 18 may be each independently halogen, cyano group, alkyl group of 1 to 5 carbon atoms, haloalkyl group of 1 to 5 carbon atoms, and 1 to 5 carbon atoms. An aryl group having 6 to 20 carbon atoms substituted with one or more selected from the group consisting of haloalkoxy groups; Or at least one of 0, N, Si, and S substituted with at least one member selected from the group consisting of halogen, cyano group, alkyl group of 1 to 5 carbon atoms, haloalkyl group of 1 to 5 carbon atoms, and haloalkoxy group of 1 to 5 carbon atoms And a heteroaryl group having 2 to 20 carbon atoms, and the other one of R 15 and R 16 and the other one of R 17 and R 18 may be each independently hydrogen, halogen, or a haloalkyl group having 1 to 5 carbon atoms. In Formula 1-2, Y 3 and Y 4 are CR 19 , and R 19 is each independently a cyano group; Aryl group "of the group having 6 to 20 carbon atoms substituted with one or more selected from the group consisting of halogen and cyano; Or a heteroaryl group having 2 to 20 carbon atoms including one or more of 0, N, Si, and S substituted with one or more substituents selected from the group consisting of halogen and cyano groups. The compound represented by Chemical Formula 1-2 may be selected from the group consisting of the following compounds.
Figure imgf000011_0001

Figure imgf000012_0001
Figure imgf000012_0001

11 11

Figure imgf000013_0001
Figure imgf000013_0001

 

Figure imgf000014_0001
l6C00/8l0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
Figure imgf000014_0001
l6C00 / 8l0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003

Figure imgf000016_0001
Figure imgf000016_0002
상기 화학식 1-2 로 표시되는 화합물은 하기 반웅식 A 와 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
Figure imgf000016_0001
Figure imgf000016_0002
The compound represented by Chemical Formula 1-2 may be prepared by a preparation method such as the following formula A. The manufacturing method may be more specific in the production examples to be described later.

[반웅식 A]  [Bungungsik A]

Figure imgf000016_0003
상기. 반웅식 A 에서, R15 , R16 , R17 및 R18 은 전술한 바와 같고, 추가적인 치환기가 더 포함될 수 있다.
Figure imgf000016_0003
Above . In reaction formula A, R 15 , R 16 , R 17 and R 18 are as described above, and further substituents may be further included.

상기 반응은 말로노니트릴 (malononi tr i le)을 도입하는 반웅으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하다. 또한, 상기 반웅식에 사용된 반웅기 및 촉매의 종류는 적절하게 변경 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 상기 화학식 2 에서 Ar1 은 벤젠, 나프탈렌, 바이페닐, 터페닐, 트리페닐렌, 페닐나프탈렌, 9 , 9-디메틸플루오렌, 9 , 9-디페닐플루오렌 및 스피로 [플루오렌— 9,9 ' -플루오렌]으로 구성된 군에서 선택된 아렌 유래의 1 가 잔기일 수 있다. 상기 화학식 2 에서 L1 및 L2 는 각각 독립적으로, 벤젠, 나프탈렌, 바이페닐 및 터페닐로 구성된 군에서 선택된 아렌 유래의 2가 잔기일 수 있다. The reaction is carried out in the presence of a palladium catalyst and a base as a reaction for introducing malononitrile. In addition, the kind of the reaction group and the catalyst used in the reaction system can be appropriately changed. The manufacturing method may be more specific in the production examples to be described later. Ar 1 in Formula 2 is benzene, naphthalene, biphenyl, terphenyl, triphenylene, phenylnaphthalene, 9, 9-dimethyl fluorene, 9, 9-diphenyl fluorene and spiro [fluorene— 9, 9 ' -Fluorene] may be a monovalent residue from an arene selected from the group consisting of. In Formula 2, L 1 and L 2 may each independently be a divalent residue derived from arene selected from the group consisting of benzene, naphthalene, biphenyl, and terphenyl.

Ar4 Ar 4

, /  , /

상기 화학식 2 에서 Ar2 및 /또는 Ar3가 Ar5일 때, Ar4 및 Ar5는 각각 독립적으로 벤젠, 나프탈렌, 바이페닐 및 터페닐로 구성된 군에서 선택된 아렌 유래의 1가 잔기일 수 있다. When Ar 2 and / or Ar 3 in Ar 2 are Ar 5 , Ar 4 and Ar 5 may each independently be a monovalent residue derived from arene selected from the group consisting of benzene, naphthalene, biphenyl, and terphenyl.

상기 화학식 2 에서 Ar2 및 /또는 Ar3

Figure imgf000017_0001
Ar 2 and / or Ar 3 in Formula 2
Figure imgf000017_0001

페닐일 수 있다. 상기 화학식 2 로 표시되는 화합물은 하기 화학식 2-1 로 표시되는 화합물일 수 있다. Phenyl. The compound represented by Chemical Formula 2 may be a compound represented by Chemical Formula 2-1.

[화학식 2-1]

Figure imgf000018_0001
[Formula 2-1]
Figure imgf000018_0001

상기 화학식 2-1에서,  In Chemical Formula 2-1,

Ar1 내지 Ar3 및 X1은 상기 화학식 2와 동일하며, Ar 1 to Ar 3 and X 1 is the same as in Chemical Formula 2,

L3 내지 L6은 각각 독립적으로 단일 결합, 치환 또는 비치환된 탄소수 6 내지 50 의 아릴렌기, 혹은 치환 또는 비치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 50의 헤테로아릴렌기이다. . 상기 화학식 2 로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택될 수 있다. L 3 to L 6 each independently represent a single bond, a substituted or unsubstituted arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted 0, N, Si, and S having at least one of 2 to 50 carbon atoms Heteroarylene group. . The compound represented by Formula 2 may be selected from the group consisting of the following compounds.

Figure imgf000019_0001
Figure imgf000019_0001



Figure imgf000020_0001

Figure imgf000020_0001

Figure imgf000020_0002
Figure imgf000020_0002

oz oz

Figure imgf000021_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000022_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV zz
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000021_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV
Figure imgf000022_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV zz
Figure imgf000023_0001
Figure imgf000023_0002

Figure imgf000023_0003
Figure imgf000023_0004
Figure imgf000023_0003
Figure imgf000023_0004

9Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV 9Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV

Figure imgf000024_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000025_0001
Figure imgf000024_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV
Figure imgf000025_0001

Figure imgf000025_0002
Figure imgf000025_0002

Z Z

Figure imgf000026_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000026_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV

Figure imgf000027_0001
상기 화학식 2 로 표시되는 화합물은 하기 반웅식 B 와 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
Figure imgf000027_0001
The compound represented by Chemical Formula 2 may be prepared by a preparation method such as the following reaction formula B. The manufacturing method may be more specific in the production examples to be described later.

[반응식 B]

Figure imgf000028_0001
상기 반웅식 B 에서, X1, L1, ΙΛ Ar1 및 Ar2 는 전술한 바와 같고, 추가적인 치환기가 더 포함될 수 있다. Scheme B
Figure imgf000028_0001
In the reaction B, X 1 , L 1 , ΙΛ Ar 1 and Ar 2 are as described above, and further substituents may be further included.

상기 반웅은 스즈키 커플링 반웅으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하다. 또한, 상기 반웅식에 사용된 반웅기 및 촉매의 종류는 적절하게 변경 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 본 발명의 유기 발광 소자는 양 상기 양극과 대 구비된 음극; 및 상기 양극과 음극 사이에 구비된 1 이상의 융기물층을 포함한다. 상기 유기물층은 3 층 이상의 유기물층。 적층된 다층 구조로 이루어진다. 구체적으로, 상기 유기물층은 양극에 인접하는 정공 주압층, 상기 정공 주입층 상에 구비된 정공 수송층 및 상기 정공 수송층 상에 구비된 발광층을 포함한다. 본 명세서에서, 정공 주입층은 유기 발광 소자의 양극에 접하는 유기물층으로 양극으로부터 정공을 주입 받아 다른 유기물층에 전달하는 층을 의미한다. 이에 따라, 상기 정공 주입층은 전하 발생층으로도 호칭될 수 있다. 정공 수송층은 유기 발광 소자의 정공 주입층 상에 구비된 유기물층으로 정공 주입층에서 전달된 정공을 발광층에 전달하고, 발광층에서 전달된 전자가 정공 주입층에 전달되지 못하도록 억제하는 층을 의미한다. 이에 따라, 상기 정공 수송층은 전자 억제층으로도 호칭될 수 있다. 이외, 상기 유기 발광 소자는 상기 발광층과 음극 사이에 전자 수송층 및 전자 주입층 등을 포함할 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다. 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1 층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1 층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일 실시예에 따른 유기 발광 소자의 구조는 도 1에 예시되어 있다. 도 1 은 기판 ( 1), 양극 (2), 정공 주입층 (5), 정공 수송층 (6) , 발광층 (7), 전자 수송층 (8) 및 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1-1 내지 1ᅳ 2 로 표시되는 화합물로 구성된 군에서 선택된 화합물은 상기 정공 주입층 (5)에 포함되고, 상기 화학식 2 로 표시되는 화합물은 정공 수송층 (6)에 포함되어 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 정공 주입층에 상기 화학식 1- 1 내지 1-2 로 표시되는 화합물로 구성된 군에서 선택된 화합물을 포함하고, 상기 정공 수송층에 상기 화학식 2 로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 복수개의 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극 및 음극 중 어느 하나의 전극, 유기물층 및 상기 양극 및 음극 중 다른 하나의 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sputter ing)이나 전자범 증발법 (e-beam evaporat ion)과 같은 PVD (phys i cal Vapor Depos i t ion)방법을 이용하여, 기판 상에 금속 또는 도전성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물 층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 또한, 상기 화학식 1-1 내지 1-2 로 표시되는 화합물과, 상기 화학식 2 로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 불레이딩, 잉크젯 프린팅 , 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( IT0) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ :Α1 또는 SN02 : Sb 와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜) , 폴리 [3 , 4—(에틸렌-1,2-디옥시)티오펜] (?£0 1), 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물 층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슴, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al 과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공 주입층은 전극으로부터 정공을 주입하는 층으로, 이러한 정공 주입층을 형성하는 재료로 상기 화학식 1-1 내지 1-2 으로 표시되는 화합물로 구성된 군에서 선택된 화합물이 사용된다. 상기 화학식 1-1 내지 1- 2으로 표시되는 화합물에 대해서는 앞서 구체적으로 설명하였으므로 여기서는 자세한 설명을 생략한다. The reaction is carried out in the presence of a palladium catalyst and a base as a Suzuki coupling reaction. In addition, the kind of the reaction group and the catalyst used in the reaction system can be appropriately changed. The manufacturing method may be more specific in the production examples to be described later. The organic light emitting device of the present invention includes a cathode provided with both the anode; And at least one raised layer provided between the anode and the cathode. The organic material layer is composed of a multilayered structure of three or more organic material layers. Specifically, the organic material layer includes a hole main pressure layer adjacent to the anode, a hole transport layer provided on the hole injection layer, and a light emitting layer provided on the hole transport layer. In the present specification, the hole injection layer refers to a layer in which holes are injected from an anode and transferred to another organic material layer as an organic material layer contacting the anode of the organic light emitting device. Accordingly, the hole injection layer may also be referred to as a charge generating layer. The hole transport layer is an organic material layer provided on the hole injection layer of the organic light emitting diode, and refers to a layer that transfers holes transferred from the hole injection layer to the light emitting layer and suppresses electrons transferred from the light emitting layer from being transferred to the hole injection layer. Accordingly, the hole transport layer may also be referred to as an electron suppression layer. In addition, the organic light emitting device may include an electron transport layer, an electron injection layer, and the like between the light emitting layer and the cathode. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers. The organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIG. 1. FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is. In such a structure, the compound selected from the group consisting of compounds represented by Formulas 1-1 to 1 ′ 2 is included in the hole injection layer 5, and the compound represented by Formula 2 is a hole transport layer 6. It can be included to improve the low driving voltage and / or life characteristics. The organic light emitting device according to the present invention includes a compound selected from the group consisting of compounds represented by Formulas 1-1 to 1-2 in the hole injection layer, and includes a compound represented by Formula 2 in the hole transport layer. It can be prepared by materials and methods known in the art, except that In addition, the plurality of organic material layers may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking an electrode of any one of an anode and a cathode, an organic material layer, and another electrode of the anode and the cathode on a substrate. At this time, the metal or the metal having conductivity on the substrate using a method of physical vapor deposition (PVD), such as sputtering or e-beam evaporat ion An oxide or an alloy thereof may be deposited to form an anode, and an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer may be formed thereon, and then a material that may be used as a cathode may be deposited thereon. have. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate (W0 2003/012890). However, the manufacturing method is not limited thereto. In addition, the compounds represented by Formulas 1-1 to 1-2 and the compound represented by Formula 2 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating and the like, but is not limited thereto. As the anode material, a material having a large work function is generally preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (IT0), indium zinc oxide (IZ0); ΖηΟ: A1 or SN0 2 : Combination of metal and oxide, such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4— (ethylene-1,2-dioxy) thiophene] (? £ 0 1), polypyrrole and polyaniline, but only It is not limited. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, kaleum, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto. The hole injection layer is a layer for injecting holes from the electrode, the material forming the hole injection layer represented by the formula (1-1) to 1-2 Compounds selected from the group consisting of compounds are used. Since the compounds represented by Chemical Formulas 1-1 to 1-2 have been described above in detail, detailed descriptions thereof will be omitted.

상기 화학식 1-1 내지 1-2 로 표시되는 화합물은 정공을 수송하는 능력을 가져 양극에서의 정공 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자 주입층 또는 전자 주입 재료의 이동을 방지할 수 있다. 또한, 상기 화학식 1—1 내지 1-2의 화합물은 박막 형성 능력이 우수하다. 한편, 상기 정공 주입층에는 상기 화학식 1-1 내지 1-2 의 화합물 외에도 본 발명이 속한 기술분야에 알려진 정공 주입 물질이 추가로 포함될 수 있다. 이러한 정공 주입 물질로는 HOMO highest occupi ed molecul ar orbi tal )가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 이러한 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공 수송층은 정공 주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 이러한 정공 수송층을 형성하는 재료로는 상기 화학식 2 로 표시되는 화합물이 사용된다. 상기 화학식 2 로 표시되는 화합물에 대해서는 앞서 구체적으로 설명하였으므로 여기서는 자세한 설명을 생략한다.  The compounds represented by Formulas 1-1 to 1-2 have the ability to transport holes, have a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, an electron injection layer of excitons generated in the light emitting layer Alternatively, movement of the electron injection material can be prevented. In addition, the compounds of Formulas 1—1 to 1-2 have excellent thin film formation ability. Meanwhile, the hole injection layer may further include a hole injection material known in the art to which the present invention pertains, in addition to the compound of Formulas 1-1 to 1-2. As the hole injection material, HOMO highest occupied molecul ar orbi tal) is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of such hole-injecting materials include metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nucleated azatriphenylene-based organic material, quinacridone-based organic material, and perylene ( perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer, and the compound represented by Chemical Formula 2 is used as a material for forming the hole transport layer. Since the compound represented by Chemical Formula 2 has been described in detail above, a detailed description thereof will be omitted.

상기 화학식 2 로 표시되는 화합물은 정공에 대한 이동성이 크기 때문에 양극이나 정공 주입층으로부터 정공을 수송 받아 발광층으로 옮겨주기에 적합하다. 한편, 상기 정공 수송층에는 상기 화학식 2 로 표시되는 화합물 외에도 본 발명이 속한 기술분야에 알려진 정공 수송 물질이 추가로 포함될 수 있다. 이러한 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송 받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 #은 물질이 바람직하다. 구체적인 예로 8—히드록시ᅳ퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAl q ; 10-히드록시벤조 퀴놀린 -금속 화합물 ; 벤족사졸 벤즈티아졸 및 벤즈이미다졸 계열의 화합물 ; 폴리 (P- 페닐렌비닐렌 KPPV) 계열의 고분자; 스피로 ( sp i ro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체 , 페난트렌 화합물, 플루오란텐 화합물 등이 있고 , 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도편트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자 수송층은 전자 주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Al 를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본—금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슴, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 .알루미늄 층 또는 실버층이 뒤따른다. 상기 전자 주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자 주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입충으로의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 둥과 그들와 유도체, 금속 착체 화합물 및 질소 함유 5 원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, . 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) (0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄, 비스 (2ᅳ메틸 -8- 퀴놀리나토) (2-나프틀라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.. 상술한 화학식 1-1 내지 1-2으로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물 그리고 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. 쎄조예 The compound represented by Chemical Formula 2 is suitable for transporting holes from the anode or the hole injection layer to the light emitting layer because of high mobility to the holes. Meanwhile, in addition to the compound represented by Formula 2, the hole transport layer may further include a hole transport material known in the art. Specific examples of such hole transport materials include, but are not limited to, arylamine-based organics, conductive polymers, and block copolymers having both conjugated and non-conjugated portions. The light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and preferably a material having a high quantum efficiency with respect to fluorescence or phosphorescence. Specific examples thereof include 8—hydroxy ᅳ quinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimer i zed styryl compounds; BAl q; 10-hydroxybenzoquinoline-metal compound; Benzoxazole benzthiazole and benzimidazole-based compounds; Poly (P-phenylenevinylene KPPV) series polymer; Spi ro compounds; Polyfluorene, rubrene and the like, but are not limited thereto. The light emitting layer may include a host material and a dopant material. The host material is a condensed aromatic ring derivative or a heterocyclic containing compound. Specifically, the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and the heterocyclic compounds include carbazole derivatives, dibenzofuran derivatives, and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Dopant materials include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periplanthene having an arylamino group, and the styrylamine compound may be substituted or unsubstituted. At least one arylvinyl group is substituted with the substituted arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, styrylamine , styryldiamine , Styryl triamine, styryl tetraamine and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto. The electron transport layer is a layer that receives electrons from the electron injection layer and transports the electrons to the light emitting layer. The electron transporting material is a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer. Suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Al; Organic radical compounds; Hydroxyflavones—metal complexes and the like, but are not limited to these. The electron transport layer can be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically, they are sesame, barium, calcium, ytterbium and samarium, each followed by an aluminum layer or a silver layer. The electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer The compound which prevents migration to a worm and is excellent in thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and their derivatives, Metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto. As said metal complex compound, 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc,. Bis (8-hydroxyquinolinato) copper, Bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, Tris (2-methyl-8-hydroxyquinolinato) Aluminum tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl -8- Quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( 0 -cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphlato) aluminum, bis ( 2 ᅳ methyl-8-quinolinato) (2-naphthlato) gallium and the like, but is not limited thereto. The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used. The compound represented by Chemical Formulas 1-1 to 1-2 and the compound represented by Chemical Formula 2 And manufacturing of the organic light emitting device including the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto. Sejoye

제조예 1 : 화합물 1-2-1의 합성  Preparation Example 1 Synthesis of Compound 1-2-1

( 1) 중간체 A의 합성  (1) Synthesis of Intermediate A

[반웅식 1-1]  [Bungungsik 1-1]

Figure imgf000034_0001
Figure imgf000034_0001

화합물 a 중간체 A  Compound a Intermediate A

1, 4—다이브로모 -2, 5—다이요오도벤젠 18.5g (0.038mol )을 (4- 트리플루오로메록시)페닐보론산 16. Og (0.078mol ) , 테트라키스 (트라이페닐포스핀)팔라듐 (0) 2.2g, 2M 탄산 칼륨 114ml , 테트라하이드로퓨란 360ml 와 흔합하고, 질소 조건에서 8 시간 환류 교반을 행하였다. 넁각 후, 물과 디클로로메탄으로 추출하고, 추가로 실리카겔 컬럼 (전개 용매: 에틸아세테이트 /핵산 = 10/1)으로 분리하여, 백색 고체 (화합물 a)를 8.0g (38.0%) 얻었다. 다음으로, 이 백색 고체 (화합물 a) 8.5g (15.3mmol), 니켈 파우더 9.0g (76.6mmol), 포타슘아이오다이드 5.0g (30.½mol), 아이오딘 0.19g (0.77醒 ol)을 디메틸포름알데히드 20tnl 와 흔합하고, 아르곤 조건에서 24 시간 환류 교반을 행하였다. 반웅 종료후, 100ml 의 3% 묽은 염산과 40ml 의 디에틸 에테르을 투입하였다. 니켈 고형물을 제거하고, 물과 디에틸 에테르로 추출하고, 실리카겔 컬럼 (전개 용매 : 에틸아세테이트 /핵산 = 10/1)으로 분리하여, 백색 고체 (중간체 A)를 5.4g (54.0%) 얻었다. 1,4—Dibromo-2,5—Diiodobenzene 18.5 g (0.038 mol) to (4-trifluoromethoxy) phenylboronic acid 16.Og (0.078mol), tetrakis (triphenylphosphine) palladium ( 0) It was mixed with 2.2 g, 114 ml of 2M potassium carbonate, and 360 ml of tetrahydrofuran, and reflux stirring was performed for 8 hours on nitrogen conditions. After the extraction, the mixture was extracted with water and dichloromethane, and further separated by a silica gel column (developing solvent: ethyl acetate / nucleic acid = 10/1) to obtain 8.0 g (38.0%) of a white solid (Compound a ). Next, this white solid (compound a) 8.5g (15.3mmol), nickel powder 9.0g (76.6mmol), potassium iodide 5.0g (30.½mol) and 0.19g (0.77 醒 ol) iodine are mixed with 20tnl of dimethylformaldehyde, Time reflux agitation was performed. After completion of reaction, 100 ml of 3% dilute hydrochloric acid and 40 ml of diethyl ether were added thereto. The nickel solid was removed, extracted with water and diethyl ether, and separated by a silica gel column (developing solvent: ethyl acetate / nucleic acid = 10/1) to obtain 5.4 g (54.0%) of a white solid (intermediate A).

(2) 화합물 1-2-1의 합성  (2) Synthesis of Compound 1-2-1

Figure imgf000035_0001
Figure imgf000035_0001

중간체 A 화합물 1-2-1 말로노나이트릴 1.7g 을 1,2-다이메특시에탄 60ml 에 녹인 후 질소조건에서 -10 ° C 로 넁각하였다. 소듐 하이드라이드 (1.3g)을 4 회로 나누어 적하하고, 상은에서 20 분간 교반한 뒤 0 °C로 재넁각하였다. 2',5'- 다이요오도 -4,4' '- 비스 (트라이플루오르메톡시) -1,1' :4',1' '-터페닐 (중간체 A) 3.60g (5.54隱01)과 테트라키스 (트리페닐포스핀)팔라듐 0.64g (0.55醒 ol)을 투입하고, 환류 조건에서 8 시간 교반하였다. 그 후, 묽은 염산과 에틸아세테이트로 분리하고, 무수황산나트륨으로 건조 및 여과하였다. 에틸아세테이트를 감압증류한 후, 실리카겔 컬럼 (전개 용매 : 에틸아세테이트)으로 분리하여, 고체를 1.8g (62.0%) 얻었다. Intermediate A compound 1-2-1 malononitrile 1.7g was dissolved in 60ml of 1,2-dimethecethane and then cooled to -10 ° C under nitrogen. Sodium hydride (1.3 g) was added dropwise into four portions, stirred for 20 minutes at phase silver, and re-cooled to 0 ° C. 2 ', 5'-diiodo-4,4'-bis (trifluoromethoxy) -1,1': 4 ', 1'-terphenyl (intermediate A) 3.60 g (5.54 隱 01) and tetra 0.64 g (0.55 Pa) of kiss (triphenylphosphine) palladium was added thereto, followed by stirring at reflux for 8 hours. Thereafter, the mixture was separated with dilute hydrochloric acid and ethyl acetate, dried over anhydrous sodium sulfate, and filtered. The ethyl acetate was distilled under reduced pressure, and then separated by silica gel column (developing solvent: ethyl acetate) to obtain 1.8 g (62.0%) of a solid.

다음으로, 상기 고체 1.8g 을 아세토니트릴 3( l 에 녹인 후, 희석한 브롬수 20ml 를 투입하였다. 20 분 교반 후, 과량의 증류수를 투입하여 석출된 고체를 여과하고, 증류수로 세정하였다. 그 후, 아세토니트릴로 재결정하여 1.20g의 고체 (화합물 1-2-1)을 얻었다. 제조예 2: 화합물 1-2-2의 합성  Next, 1.8 g of the solid was dissolved in acetonitrile 3 (l, and 20 ml of diluted bromine water was added. After stirring for 20 minutes, an excess of distilled water was added thereto, and the precipitated solid was filtered and washed with distilled water. Then, recrystallized with acetonitrile to obtain 1.20 g of solid (Compound 1-2-1) Preparation Example 2: Synthesis of Compound 1-2-2

(1) 중간체 B의 합성

Figure imgf000036_0001
(1) Synthesis of Intermediate B
Figure imgf000036_0001

화합물 b-1 화합물 b-2 화합물 b-3 중간체 B  Compound b-1 Compound b-2 Compound b-3 Intermediate B

2,2,6, 6—테트라메틸피페리다이드화 리튬 (100隱01)을 테트라하이드로퓨란 120ml 에 녹인 후 질소조건에서 -78 °C로 넁각하였다. 1,4-디브로모 -2, 5-디플루오르벤젠 27.2g (100醒 ol)을 테트라하이드로퓨란 60ml 에 녹여, 질소조건, -78 ° C 에서 삽관 투입하고, 상온으로 승온하였다. 그 후, 소듐 티오 설페이트 수용액으로 반웅을 종료하고, 에틸아세테이트로 분리하여, 무수황산나트륨으로 건조 및 여과하였다. 실리카겔 컬럼 (전개 용매: 에틸아세테이트 /핵산 = 10/1)으로 분리하여, 고체 (화합물 b-1) 26.3g (66.0%) 얻었다. 2,2,6, 6-tetramethylpiperidide lithium (100 隱0 1) was dissolved in 120 ml of tetrahydrofuran and then cooled to -78 ° C. under nitrogen. 27.2 g of 1,4-dibromo-2 and 5-difluorobenzene (100 μl) were dissolved in 60 ml of tetrahydrofuran, intubated at -78 ° C. under nitrogen, and the temperature was raised to room temperature. Thereafter, the reaction was terminated with an aqueous sodium thiosulfate solution, separated with ethyl acetate, dried over anhydrous sodium sulfate, and filtered. A silica gel column (developing solvent: ethyl acetate / nucleic acid = 10/1) was separated to give 26.3 g (66.0%) of a solid (compound b-1).

다음으로, 2,2, 6 ,6-테트라메틸피페리다이드화 리튬 (100隱01)을 테트라하이드로퓨란 120ml 에 녹인 후 질소조건에서 -78 °C로 넁각하였다. 1,4- 디브로모 -2,5-디플루오르 -3-요오도벤젠 (화합물 b-1) 39.8g (100隱 ol)을 테트라하이드로퓨란 60ml 에 녹여, 질소조건, —78 ° C 에서 삽관 투입하고, 상은으로 승온하였다. 그 후, 소듐 티오 설페이트 수용액으로 반웅을 종료하고, 에틸아세테이트로 분리하여, 무수황산나트륨으로 건조 및 여과하였다. 실리카겔 컬럼 (전개 용매 : 에틸아세테이트 /핵산 = 10/1)으로 분리하여, 고체 (화합물 b-2) 30.3g (58.0%) 얻었다. Next, 2,2, 6,6-tetramethylpiperidide lithium (100 隱0 1) was dissolved in 120 ml of tetrahydrofuran, and then cooled to -78 ° C under nitrogen. Dissolve 39.8 g (100 μl) of 1,4-dibromo-2,5-difluoro-3-iodobenzene (Compound b-1) in 60 ml of tetrahydrofuran, intubate at nitrogen conditions, —78 ° C. It put in and heated up to silver. Thereafter, the reaction was terminated with an aqueous sodium thiosulfate solution, separated with ethyl acetate, dried over anhydrous sodium sulfate, and filtered. A silica gel column (developing solvent: ethyl acetate / nucleic acid = 10/1) was separated to give 30.3 g (58.0%) of a solid (compound b-2).

다음으로, 1, 4-다이브로모 -2, 5-다이플루오로 -3, 6- 다이요오도벤젠 (화합물 b-2) 19.9g (0.038mol)을 (2—플루오르 -4- ' 트리플루오로메톡시)페닐보론산 17.5g (0.078mol), 테트라키스 (트라이페닐포스핀)팔라듐 (0) 2.2g, 2M 탄산 칼륨 11½1, 테트라하이드로퓨란 360ml 와 흔합하고, 질소 조건에서 12 시간 환류 교반을 행하몄다. 넁각 후, 물과 .디클로로메탄으로 추출하고, 추가로 실리카겔 컬럼 (전개 용매 : 에틸아세테이트 /핵산 = 10/1)으로 분리하여, 백색 고체 (화합물 b— 3)를 7.8g (34.7%) 얻었다. Next, 1,4-dibromo-2, 5-difluoro-3, 6-Taiyo Goto benzene (Compound b-2) 19.9g (0.038mol) of (2-fluoro-4 'trifluoromethoxy ) 17.5 g (0.078 mol) of phenyl boronic acids, 2.2 g of tetrakis (triphenylphosphine) palladium (0), 11M1 of 2M potassium carbonate, and 360 ml of tetrahydrofuran were mixed, and reflux stirring was performed for 12 hours on nitrogen conditions. After the extraction, the mixture was extracted with water and dichloromethane and further separated with a silica gel column (developing solvent: ethyl acetate / nucleic acid = 10/1) to obtain 7.8 g (34.7%) of a white solid (Compound b-3).

다음으로, 이 백색 고체 (화합물 b-3) 9.06g (15.3瞧01), 니켈 파우더 9.0g (76.6mmol), 포타슘아이오다이드 5.0g (30.4匪01), 아이오딘 0.19g (0.77画 ol)을 디메틸포름알데히드 20ml 와 흔합하고, 아르곤 조건에서 24시간 환류 교반을 행하였다. 반웅 종료후, 100ml 의 3%묽은 염산과 40ml 의 디에틸 에테르을 투입하였다. 니켈 고형물을 제거하고, 물과 디에틸 에테르로 추출하고, 실리카겔 컬럼 (전개 용매 : 에틸아세테이트 /핵산 = 10/1)으로 분리하여,.백색 고체 (중간체 B)를 3.2g(30.4« 얻었다. Next, this white solid (Compound b-3) 9.06g (15.3-301), nickel powder 9.0g (76.6mmol), potassium iodide 5.0g (30.4 匪0 1), iodine 0.19g (0.77 Pa) was mixed with 20 ml of dimethylformaldehyde, and reflux stirring was performed for 24 hours under argon conditions. After completion of reaction, 100 ml of 3% diluted hydrochloric acid and 40 ml of diethyl ether were added thereto. The nickel solid was removed, extracted with water and diethyl ether, and separated by a silica gel column (developing solvent: ethyl acetate / nucleic acid = 10/1) to give 3.2 g (30.4 '' of a white solid (intermediate B).

(2) 화합물 1-2-2의 합성(2) Synthesis of Compound 1-2-2

-4]  -4]

Figure imgf000037_0001
중간체 B 화합물 1-2-2 화합물 1-2-1 의 합성에서 2',5'-다이요오도 -4,4' '- 비스 (트라이플루오르메록시) -1,1' :4',1' '-터페닐 (중간체 A) 3.60g 을 2',5'- 다이플루오르 -3',6'- 다이요오도— 4,4' '-비스 (트라이플루오르메록시) -
Figure imgf000037_0001
Intermediate B Compound 1-2-2 2 ', 5'-Diiodo-4,4''-bis (trifluoromeroxy) -1,1': 4 ', 1' in the synthesis of Compound 1-2-1 3.60 g of '-terphenyl (intermediate A) is converted into 2', 5'-difluoro-3 ', 6'-diiodo— 4,4''-bis (trifluoromethoxy)-

1,1' :4',1' 'ᅳ터페닐 (중간체 B) 3.8g 으로 변경한 것 이외에는 동일하게 반웅, 정제를 행하여 고체 (화합물 1—2—2) 0.84g 을 얻었다. 얻어진 고체의 질량 스펙트럼 측정 결과, M/Z=560에서 피크가 확인되었다. 제조예 3: 화합물 1-2-3의 합성 The reaction was carried out in the same manner, except that the content was changed to 3.8 g of 1,1 ': 4' and 1''terphenyl (intermediate B), and 0.84 g of a solid (compound 1-2-2) was obtained. As a result of mass spectrum measurement of the obtained solid, a peak was confirmed at M / Z = 560. Preparation Example 3 Synthesis of Compound 1-2-3

Figure imgf000037_0002
Figure imgf000037_0002

중간체 C 화합물 1-2-3 화합물 1—2-1 의 합성에서 2' ,5'-다이요오도ᅳ 4,4' '- 비스 (트라이플루오르메록시) -1,1' :4',1' '-터페닐 (중간체 A) 3.60g 을 2,2 - (4,4' '-비스 (트라이폴루오로메톡시) -[1,1' :4',1' '-터페닐] -2',5'- 디일)비스 (2- (펜타플루오로페닐)아세토니트릴) (중간체 C) 2.2g 으로 변경한 것 이외에는 동일하게 반웅, 정제를 행하여 고체 (화합물 1-2-3) 0.8g 을 얻었다. 얻어진 고체의 질량 스펙트럼 측정 결과, M/Z=806 에서 피크가 확인되었다. 제조예 4: 화합물 2-1의 합성 Intermediate C Compound 1-2-3 2 ', 5'-Diiododo 4,4''-bis (trifluoromeroxy) -1,1': 4 ', 1''-terphenyl (Intermediate A) in the synthesis of compound 1-2 3.60 g of 2,2-(4,4 '' -bis (tripololomethoxy)-[1,1 ': 4', 1'-terphenyl] -2 ', 5'-diyl) bis ( Aside from changing to 2.2 g of 2- (pentafluorophenyl) acetonitrile) (Intermediate C), the reaction was carried out in the same manner to obtain 0.8 g of a solid (compound 1-2-3). As a result of mass spectrum measurement of the obtained solid, a peak was confirmed at M / Z = 806. Preparation Example 4 Synthesis of Compound 2-1

Figure imgf000038_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 3,6-dibromo-9- phenyl-9H-carbazole (5.67 g, 14.21 匪 ol), 및 화합물 al(8.94 g, 31.26 睡 ol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (120 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.49 g, 0.43 醒 ol)을 넣은 후 3 시간 동안 가열 교반하였다. 상은으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 260 mL로 재결정하여 화합물 2-1(6.69 g, 64%)를 제조하였다.
Figure imgf000038_0001
In a 500 mL back-bottom flask in nitrogen atmosphere, compound 3,6-dibromo-9-phenyl-9H-carbazole (5.67 g, 14.21 匪 ol), and compound al (8.94 g, 31.26 睡 ol) were added to 240 mL of tetrahydrofuran. After complete dissolution, 2M aqueous potassium carbonate solution (120 mL) was added thereto, and tetrakis- (triphenylphosphine) palladium (0.49 g, 0.43 dl) was added thereto, followed by heating and stirring for 3 hours. Lower the temperature to phase silver, remove the water layer, and dried over anhydrous magnesium sulfate, concentrated under reduced pressure and recrystallized with 260 mL of ethyl acetate to give compound 2-1 (6.69 g, 64%).

MS[M+H]+= 730 제조예 5: 화합물 2-2의 합성 MS [M + H] + = 730 Preparation Example 5 Synthesis of Compound 2-2

[반웅식 2-2] [Bungungsik 2-2]

Figure imgf000039_0001
Figure imgf000039_0001

질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 3,6-dibromo-9- (naphthalen-2-yl )-9H-carbazole (5.32 g, 11.85 誦 ol), 및 화합물 al(7.46 g, 26.07 mmol)을 테트라하이드로퓨란 240 mL 에 완전히 녹인 후 2M 탄산칼륨수용액 (120 mL)을 첨가하고, 테트라키스- In a 500 mL back-bottom flask in a nitrogen atmosphere, add compound 3,6-dibromo-9- (naphthalen-2-yl) -9H-carbazole (5.32 g, 11.85 誦 ol), and compound al (7.46 g, 26.07 mmol) in tetra After completely dissolved in 240 mL of hydrofuran, 2M aqueous potassium carbonate solution (120 mL) was added thereto, followed by tetrakis-

(트리페닐포스판)팔라듐 (0.41 g, 0.36 瞧 ol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 230 mL 로 재결정하여 화합물 2- 2(5.57 g, 60%)를 제조하였다. (Triphenylphosphane) palladium (0.41 g, 0.36 dl ol) was added thereto, followed by heating and stirring for 3 hours. The temperature was lowered to room temperature, the water layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized with 230 mL of ethyl acetate to obtain Compound 2- 2 (5.57 g, 60%).

MS[M+H]+= 780 실시예 및 비교예 MS [M + H] + = 780 Examples and Comparative Examples

(1) 비교예 1-1의 제조  (1) Preparation of Comparative Example 1-1

IT0( indium tin oxide)가 1,000A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사 (Mi 11 ipore Co.) 제품의 필터 (Filter)로 2 차로 걸러진 증류수를 사용하였다. IT0 를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.  A glass substrate coated with a thin film having an indium tin oxide (IT0) thickness of 1,000 A was placed in distilled water in which detergent was dissolved and ultrasonically cleaned. At this time, Fischer Co. product was used as a detergent, and distilled water filtered secondly as a filter of Mi 11 ipore Co. was used as distilled water. After washing IT0 for 30 minutes, the ultrasonic cleaning was performed twice with distilled water for 10 minutes. After the distilled water wash, ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.

이렇게 준비된 양극인 ΠΌ 투명 전극 위에 하기 화합물 [HI1] 및 하기 화합물 1-1-1 의 화합물을 98:2(몰비)의 비가 되도록 100A의 두께로 열 진공 증착하여 정공주입층을 형성하였다 (p-doping matrix). Thus prepared compound [HI1] and the compound of the following compound 1-1-1 were thermally vacuum-deposited at a thickness of 100 A so as to have a ratio of 98: 2 (molar ratio) on the transparent electrode as a positive electrode thus prepared to form a hole injection layer (p- doping matrix).

Figure imgf000040_0001
Figure imgf000040_0001

상기 정공주입층 위에 정공을 수송하는 물질인 하기 화합물 [HT1] (1150A)를 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 50A으로 하기 화합물 [EB1]을 진공 증착하여 전자차단층을 형성하였다.  A hole transport layer was formed by vacuum depositing the following compound [HT1] (1150A), which is a material for transporting holes on the hole injection layer. Subsequently, the following compound [EB1] was vacuum deposited on the hole transport layer with a film thickness of 50 A to form an electron blocking layer.

Figure imgf000040_0002
이어서, 상기 전자차단층 위에 막 두깨 200 A으로 아래와 같은 화합물 [BH]와 화합물 [BD]를 50 : 1 의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에.상기 정공 수송층 위에 막 두께 50 A으로 상기 화합물 [HB 1]를 진공 증착하여 정공 차단층을 형성하였다. 이어서, 상기 정공 차단층 위에 화합물 [ET1]과 상기 화합물 [LiQ] (Li thium Quinolate)를 1 : 1 의 중량비로 진공증착하여 310A의 두께로 전자 주입 및 수송을 동시에 하는 층을 형성하였다.
Figure imgf000040_0002
Subsequently, the following compound [BH] and compound [BD] were vacuum-deposited at a weight ratio of 50: 1 on the electron blocking layer at 200 A to form a light emitting layer. On the light emitting layer, the compound [HB 1] was vacuum deposited on the hole transport layer to a film thickness of 50 A to form a hole blocking layer. Subsequently, Compound [ET1] and Compound [LiQ] (Li thium Quinolate) were vacuum-deposited at a weight ratio of 1: 1 on the hole blocking layer to form a layer for simultaneously injecting and transporting electrons at a thickness of 310A.

[BH] [BD]  [BH] [BD]

Figure imgf000041_0001
상기 전자 주입 및 수송층 위에 순차적으로 12A두께로 리튬플로라이드 (LiF)와 2 ,000A 두께로 알루미늄을 증착하여 음극을 형성하였다. 상기의 과정에서 유기물의 증착속도는 0.4~ 0.7 A/sec 를 유지하였고, 음극의 리튬플로라이드는 0.3A/sec , 알루미늄은 2A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 X 10-7 ~5 x lO-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
Figure imgf000041_0001
Lithium fluoride (LiF) and aluminum at a thickness of 2,000A were sequentially deposited on the electron injection and transport layer to form a cathode. In the above process, the deposition rate of the organic material was maintained at 0.4-0.7 A / sec, the lithium fluoride of the cathode was maintained at 0.3 A / sec, and the aluminum was maintained at the deposition rate of 2 A / sec. The organic light emitting device was manufactured by maintaining 7 to 5 × 10 −6 torr.

Figure imgf000042_0001
Figure imgf000042_0001

(2) 비교예 1—2 내지 1—16 및 실시예 1-1 내지 1-8의 제조 상기 비교예 1-1 에서, 전공주입층 및 정공수송층의 성분을 하기 표 1 에 기재된 화합물을 사용한 것을 제외하고는, 비교예 1-1 과 동일한 방법으로 유기 발광 소자를 제조하였다. (2) Preparation of Comparative Examples 1 to 2 to 16 and Examples 1-1 to 1-8 In Comparative Example 1-1, an organic light-emitting device was manufactured in the same manner as in Comparative Example 1-1, except for using the compounds shown in Table 1 below as components for the hole injection layer and the hole transport layer.

【표 1】  Table 1

Figure imgf000043_0001
비교예 1-1 내지 1—4 의 청색 유기 발광 소자는 [HI1]:1-1- 1:=98:2(몰비)로 정공주입층을 사용하고, 화합물 HT1 내지 HT4 의 화합물을 정공수송층으로 사용하는 소자구조로 기본적인 P— doping 소자의 특성을 나타내고 있다. 비교예 1-5 내지 1-16 의 청색 유기 발광 소자는 1-2-1 내지 1-2-3 의 화합물을 정공주입층으로 사용하고, 화합물 ΗΊΊ 내지 HT4 의 화합물을 정공수송층으로 사용하여 기본적인 Layer type 소자의 특성을 나타내고 있다. 실시예 1-1 및 1-2 는 기본적인 pᅳ doping 소자에서 HT—1 내지 HT-4 의 화합물 대신 2-1 및 2-2의 화합물을 정공수송층으로 사용하였을 때 유기 발광 소자의 발광효율, 구동전압 및 수명을 개선할 수 있다는 것을 확인할 수 있다. 실시예 1—3 내지 1-8 는 1-2-1 내자 1-2-3 의 화합물을 정공주입층으로 사용하는 Layer type 소자에서 HT-1 내지 HT-4 의 화합물 대신 2-1 및 2-2 의 화합물을 정공수송층으로 사용하였을 때 유기 발광 소자의 발광효율, 구동전압 및 수명을 개선할 수 있다는 것을 확인할 수 있다.
Figure imgf000043_0001
In the blue organic light emitting diodes of Comparative Examples 1-1 to 1-4, a hole injection layer was used as [HI1]: 1-1-1: = 98: 2 (molar ratio), and the compounds of the compounds HT1 to HT4 were used as the hole transport layer. The device structure used shows the characteristics of basic P-doping devices. The blue organic light emitting device of Comparative Examples 1-5 to 1-16 uses a compound of 1-2-1 to 1-2-3 as the hole injection layer and a compound of compounds Η to HT4 as the hole transport layer. The characteristics of the type element are shown. In Examples 1-1 and 1-2, when the compound of 2-1 and 2-2 is used as the hole transport layer instead of the compounds of HT-1 to HT-4 in the basic p ᅳ doping device, the luminous efficiency and driving of the organic light emitting device It can be seen that the voltage and lifetime can be improved. Example 1—3 to 1-8 are 2-1 and 2- instead of the compounds of HT-1 to HT-4 in a layer type device using a compound of 1-2-1 magnetic 1-2-3 as a hole injection layer. When the compound of 2 is used as the hole transport layer, it can be seen that the luminous efficiency, driving voltage and lifetime of the organic light emitting device can be improved.

Homo값이 5.2eV 정도인 ΗΊΊ 및 5.8eV 정도인 HT— 3은 인접한 층에 대한 barr i er 가 커서 전압이 크게 상승하는 결과를 얻었다. 카바졸의 3, 6 번위치에 직접 아민기가 연결된 HT2 의 물질을 사용한 비교예는 소자의 특성이 가장 저조하게 측정되었다. HT4 는 청구항 1 의 화학식 2 와는 달리 met a로 연결된 구조이며, 상대적으로 효율이 낮게 측정되었다.  Homo values of about 5.2eV, Η— and 5.8eV, and HT–3 resulted in a large voltage increase due to large barr ier for adjacent layers. In the comparative example using the substance of HT2 having an amine group directly connected to the 3 and 6 positions of carbazole, the characteristics of the device were the lowest. Unlike Formula 2 of claim 1, HT4 has a structure connected by met a and has a relatively low efficiency.

이를 통하여 본 명세서의 일 실시상태에 따른 화학식 1- 2(Tetracyanoquinodimethane :TCNQ 코어 및 이의 유도체를 코어로 포함)의 화합물을 Layer type 정공주입층 재료로 사용하거나, 상기 화학식 1-1 의 화합물을 p-doping 정공주입층 재료로 사용한 소자구조에서 화학식 2 의 화합물을 정공수송층으로 조합하여 만들어지는 청색 유기 발광 소자의 구동전압, 발광효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.  Through this, the compound of Chemical Formula 1-2 (Tetracyanoquinodimethane: TCNQ core and its derivatives as a core) according to one embodiment of the present specification is used as a layer type hole injection layer material, or the compound of Chemical Formula 1-1 In the device structure used as the doping hole injection layer material, it can be seen that the driving voltage, luminous efficiency and lifetime characteristics of the blue organic light emitting device formed by combining the compound of Formula 2 as the hole transport layer can be improved.

【부호의 설명】 [Explanation of code]

1 : 기판 2 : 양극  1 substrate 2 anode

4: 음극 5: 정공 주입층  4: cathode 5: hole injection layer

6: 정공 수송층 7 : 발광층  6: hole transport layer 7: light emitting layer

8: 전자 수송층  8: electron transport layer

Claims

【특허청구범위】 [Patent Claims] 【청구항 1】  [Claim 1] 양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 1 층 이상의 유기물층을 포함하는 유기 발광 소자로서,  anode; A cathode provided to face the anode; And one or more organic material layers provided between the anode and the cathode. 상기 유기물층은 양극에 인접하는 정공 주입층, 상기 정공 주입층 상에 구비된 정공 수송층 및 상기 정공 수송층 상에 구비된 발광층을 포함하고,  The organic layer includes a hole injection layer adjacent to the anode, a hole transport layer provided on the hole injection layer and a light emitting layer provided on the hole transport layer, 상기 정공 주입층은 하기 화학식 1-1 내지 1-2 로 표시되는 화합물로 구성된 군에서 선택된 화합물을 포함하고,  The hole injection layer comprises a compound selected from the group consisting of compounds represented by the formula 1-1 to 1-2, 상기 정공 수송층은 하기 화학식 2 로 표시되는 화합물을 포함하는, 유기 발광 소자:  The hole transport layer comprises a compound represented by the following formula 2, an organic light emitting device:
Figure imgf000045_0001
Figure imgf000045_0001
상기 화학식 1-1에서,  In Chemical Formula 1-1, R1 내지 R5는 각각 독립적으로 시아노기, 치환 또는 비치환된 탄소수 6 내지 60 의 아릴기, 혹은 치환 또는 비치환된 0, N , Si 및 S 중 1 개 아상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고, R 1 to R 5 each independently represent a cyano group, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted C 2 to 60 carbon group containing one subphase of 0, N, Si, and S. Heteroaryl group, 상기 화학식 1-2에서 , In Chemical Formula 1-2, 15 내지 R18 은 각각 독립적으로 수소, 할로겐, 시아노기, 탄소수 1 내지 40 의 알킬기, 탄소수 1 내지 40 의 할로알킬기, 탄소수 1 내지 40 의 할로알콕시기, 치환 또는 비치환된 탄소수 6 내지 60 의 아릴기, 흑은 치환 또는 비치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 60 의 헤테로아릴기이고, 1 5 to R 18 are each independently hydrogen, halogen, cyano, C 1 -C 40 alkyl, C 1 -C 40 haloalkyl group, C 1 -C 40 haloalkoxy group, a substituted or unsubstituted C 6 -C 60 ring of the Aryl group, black is a substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms containing at least one of 0, N, Si and S, Y3 및 Y4는 각각 독립적으로 C-R19 또는 N이고, Y 3 and Y 4 are each independently CR 19 or N, R19는 각각 독립적으로 시아노기, 치환 또는 비치환된 탄소수 6 내지R 19 is each independently a cyano group, a substituted or unsubstituted carbon number 6 to 60 의 아릴기, 흑은 치환 또는 비치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고,
Figure imgf000046_0001
Aryl group of 60, black is a heteroaryl group having 2 to 60 carbon atoms containing at least one of substituted or unsubstituted 0, N, Si and S,
Figure imgf000046_0001
상기 화학식 2에서,  In Chemical Formula 2, Ar1 은 치환 또는 비치환된 탄소수 6 내지 60 의 아릴기, 혹은 치환 또는 비치환된 0, N, Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 60 의 헤테로아릴렌기이고, Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroarylene group having 2 or 60 carbon atoms containing at least one of 0, N, Si, and S, X1은 비결합, 단일결합, 탄소수 1 내지 3의 알킬렌기, 0또는 S이고,X 1 is a non-bond, a single bond, an alkylene group having 1 to 3 carbon atoms, 0 or S, L1 및 L2는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60 의 아릴렌기, 흑은 치환 또는 비치환된 으 N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴렌기이고, L 1 and L 2 each independently represent a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a black substituted or unsubstituted heteroarylene group having 2 or 60 carbon atoms containing at least one of N, Si and S; ego, Ar2 및 Ar3 는 각각 독립적으로 하기 치환기로 구성된 군으로부터 선택된 Ar 2 and Ar 3 are each independently selected from the group consisting of the following substituents
Figure imgf000046_0002
Figure imgf000046_0002
Ar4 내지 Ar6는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60 의 아릴기, 흑은 치환 또는 비치환된 0, N , Si 및 S 증 1 개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴기이고, Ar 4 to Ar 6 are each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a black or substituted or unsubstituted heteroaryl having 2 to 60 carbon atoms including at least one of 0, N, Si and S. And X2 및 X3는 각각 독립적으로 단일결합, 0또는 S이다. X 2 and X 3 are each independently a single bond, 0 or S.
【청구항 2] [Claim 2] 제 1 항에 있어서, R2 및 R3 중 하나와 R4 및 R5 중 하나 시아노기이고, The compound according to claim 1, which is one of R 2 and R 3 and one of R 4 and R 5 , R1 ; R2 및 R3 중 다른 하나; 그리고 R4 및 R5 중 다른 하나는 각각 독립적으로 시아노기; 할로겐 및 시아노기로 구성된 군에서 선택된 1 종 이상으로 치환된 탄소수 6 내지 20 의 아릴기; 흑은 할로겐 및 시아노기로 구성된 군에서 선택된 1 개 이상의 치환기로 치환된 0, N, Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 20의 헤테로아릴기인, 유기 발광 소자. R 1 ; The other of R 2 and R 3 ; And the other one of R 4 and R 5 is each independently a cyano group; An aryl group having 6 to 20 carbon atoms substituted with one or more selected from the group consisting of halogen and cyano groups; Black is halogen and cyano group An organic light-emitting device which is a heteroaryl group having 2 to 20 carbon atoms containing one or more of 0, N, Si, and S substituted with one or more substituents selected from the group consisting of. [청구항 3】 [Claim 3] 제 1 항에 있어서, R2 및 R4는 시아노기이고, According to claim 1, R 2 and R 4 is a cyano group, R1 , R3 및 R5는 각각 독립적으로 할로겐 및 시아노기로 구성된 군에서 선택된 1종 이상으로 치환된 페닐기인, 유기 발광 소자. R 1 , R 3 and R 5 are each independently a phenyl group substituted with at least one member selected from the group consisting of halogen and cyano groups. 【청구항 4】 [Claim 4] 제 1 항에 있어서, 상기 화학식 1—1 로 표시되는 화합물은 하기 화합물  According to claim 1, wherein the compound represented by Formula 1-1 is the following compound
Figure imgf000047_0001
Figure imgf000047_0001
【청구항 5】 [Claim 5] 제 1 항에. 있어서, R15 및 R16 중 하나와 R17 및 R18 중 하나는 각각 독립적으로 할로겐, 시아노기, 탄소수 1 내지 5 의 알킬기, 탄소수 1 내지 5의 할로알킬기 및 탄소수 1 내지 5의 할로알콕시기로 구성된 군에서 선택된 1 종 이상으로 치환된 탄소수 6 내지 20 의 아릴기; 흑은 할로겐, 시아노기, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 할로알킬기 및 탄소수 1 내지 5의 할로알콕시기로 구성된 군에서 선택된 1종 이상으로 치환된 0, N , Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 20의 헤테로아릴기이고, In claim 1. Wherein one of R 15 and R 16 and one of R 17 and R 18 are each independently composed of halogen, cyano group, alkyl group of 1 to 5 carbon atoms, haloalkyl group of 1 to 5 carbon atoms and haloalkoxy group of 1 to 5 carbon atoms An aryl group having 6 to 20 carbon atoms substituted with one or more selected from the group; Black is one of 0, N, Si and S substituted with one or more selected from the group consisting of halogen, cyano group, alkyl group of 1 to 5 carbon atoms, haloalkyl group of 1 to 5 carbon atoms and haloalkoxy group of 1 to 5 carbon atoms It is a C2-C20 heteroaryl group containing the above, R15 및 R16 중 다른 하나와 R17 및 R18 중 다른 하나는 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 5의 할로알킬기인, 유기 발광 소자. And the other of R 15 and R 16 and the other of R 17 and R 18 are each independently hydrogen, halogen or a haloalkyl group having 1 to 5 carbon atoms. 【청구항 6】 제 1 항에 있어서, Y3 및 Y4는 C-R19이고, [Claim 6] The compound of claim 1, wherein Y 3 and Y 4 are CR 19 , R19는 각각 독립적으로 시아노기 ; 할로겐 및 시아노기로 구성된 군에서 선택된 1 종 이상으로 치환된 탄소수 6 내지 20 의 아릴기; 흑은 할로겐 및 시아노기로 구성된 군에서 선택된 1개 이상의 치환기로 치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 20 의 헤테로아릴기인, 유기 발광 소자. Each R 19 is independently a cyano group; An aryl group having 6 to 20 carbon atoms substituted with one or more selected from the group consisting of halogen and cyano groups; Black is a C2-C20 heteroaryl group containing 1 or more of 0, N, Si, and S substituted by the 1 or more substituent chosen from the group which consists of a halogen and a cyano group, The organic light emitting element. 【청구항 7】 [Claim 7] 제 1 항에 있어서, 상기 화학식 1-2 로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는, 유기 발광 소자: The organic light emitting device of claim 1, wherein the compound represented by Chemical Formula 1-2 is selected from the group consisting of the following compounds: //:/ O 9SS08S2XI23998Ϊ8Ϊ0AV //: / O 9 SS 08 S2XI23998 Ϊ 8 Ϊ 0AV
Figure imgf000049_0001
Figure imgf000049_0001
Figure imgf000050_0001
J6C00/810ZHM/X3d 9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000050_0001
J6C00 / 810ZHM / X3d 9998Ϊ / 8Ϊ0Ζ OAV
Figure imgf000051_0001
Figure imgf000051_0001
50 19 50 19
Figure imgf000052_0001
Figure imgf000052_0001
Figure imgf000052_0002
Figure imgf000052_0002
Figure imgf000052_0003
Figure imgf000052_0003
Z6£00/8lOZHM/13d Z9998T/810Z: OAV Z6 £ 00 / 8lOZHM / 13d Z9998T / 810Z: OAV
Figure imgf000053_0001
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0002
Figure imgf000053_0003
Figure imgf000053_0003
52 52
Figure imgf000054_0001
Figure imgf000054_0001
Figure imgf000054_0002
Figure imgf000054_0002
【청구항 8】 [Claim 8] 제 1 항에 있어서, Ar1 은 벤젠, 나프탈렌, 바이페닐, 터페닐, 트리페닐렌, 페닐나프탈렌, 9 , 9—디메틸플^오렌, 9,9-디페닐플루오렌 및 스피로 [플루오렌 -9,9 '—플루오렌]으로 구성된 군에서 선택된 아렌 유래의 1 가 잔기인, 유기 발광 소자. Ar 1 is benzene, naphthalene, biphenyl, terphenyl, triphenylene, phenylnaphthalene, 9, 9-dimethyl fluorene, 9, 9-diphenyl fluorene and spiro [fluorene-9. , 9'—fluorene], an organic light-emitting device which is a monovalent residue derived from arene selected from the group consisting of. 【청구항 9】 [Claim 9] 제 1 항에 있어서, L1 및 L2 는 각각 독립적으로, 벤젠, 나프탈렌, 바이페닐 및 터페닐로 구성된 군에서 선택된 아렌 유래의 2 가 잔기인, 유기 발광 소자. The organic light emitting device according to claim 1, wherein L 1 and L 2 are each independently a divalent residue derived from arene selected from the group consisting of benzene, naphthalene, biphenyl, and terphenyl. 【청구항 10】 [Claim 10] 제 1 항에 있어서, Ar4 및 Ar5 는 각각 독립적으로 벤젠, 나프탈렌, 바이페닐 및 터페닐로 구성된 군에서 선택된 아렌 유래의 1 가 잔기인, 유기 발광 소자. The organic light emitting device of claim 1, wherein Ar 4 and Ar 5 are each independently a monovalent residue derived from arene selected from the group consisting of benzene, naphthalene, biphenyl, and terphenyl. 【청구항 11】 [Claim 11] 제 1 항에 있어서, Ar6는 페닐인, 유기 발광 소자. The organic light emitting device of claim 1, wherein Ar 6 is phenyl. 【청구항 12】 [Claim 12] 제 1 항에 있어서, 상기 화학식 2 로 표시되는 화합물은 하기 화학식 2-1로 표시되는 화합물인, 유기 발광 소자:  The organic light emitting device of claim 1, wherein the compound represented by Chemical Formula 2 is a compound represented by Chemical Formula 2-1:
Figure imgf000055_0001
Figure imgf000055_0001
상기 화학식 2-1에서,  In Chemical Formula 2-1, Ar1 내지 Ar3 및 X1은 상기 화학식 2와 동일하며, Ar 1 to Ar 3 and X 1 is the same as in Chemical Formula 2, L3 내지 L6은 각각 독립적으로 단일 결합, 치환 또는 비치환된 탄소수 6 내지 50 의 아릴렌기, 흑은 치환 또는 비치환된 0, N , Si 및 S 중 1 개 이상을 포함하는 탄소수 2 내지 50의 헤테로아릴렌기이다. L 3 to L 6 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 carbon atoms, black having 2 to 50 carbon atoms including at least one of 0, N, Si and S substituted or unsubstituted. Heteroarylene group.
[청구항 13】 [Claim 13] 제 1 항에 있어서, 상기 화학식 2 로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는, 유기 발광 소자: 99 The organic light emitting device of claim 1, wherein the compound represented by Chemical Formula 2 is selected from the group consisting of the following compounds: 99
Figure imgf000056_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000056_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV
Figure imgf000057_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000057_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV
Figure imgf000058_0001
Figure imgf000058_0001
57 57
Figure imgf000059_0001
Figure imgf000059_0001
Figure imgf000059_0002
Figure imgf000059_0003
Figure imgf000059_0002
Figure imgf000059_0003
Figure imgf000059_0004
Figure imgf000059_0004
58 58
Figure imgf000060_0001
Figure imgf000060_0001
Figure imgf000060_0002
Figure imgf000060_0002
Figure imgf000060_0003
Figure imgf000060_0004
Figure imgf000060_0003
Figure imgf000060_0004
59 09 59 09
Figure imgf000061_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV //: O 9ζ6εοοο2Μ1κίAV
Figure imgf000061_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV // : O 9 ζ 6εοο ο2Μ1κίAV
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000063_0001
Figure imgf000063_0001
£9 £ 9
Figure imgf000064_0001
Z6C00/8T0ZaM/X3d Ζ9998Ϊ/8Ϊ0Ζ OAV
Figure imgf000064_0001
Z6C00 / 8T0ZaM / X3d Ζ9998Ϊ / 8Ϊ0Ζ OAV
PCT/KR2018/003926 2017-04-07 2018-04-03 Organic light-emitting device WO2018186662A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880012161.9A CN110383518B (en) 2017-04-07 2018-04-03 Organic Light Emitting Components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0045389 2017-04-07
KR20170045389 2017-04-07
KR10-2018-0038119 2018-04-02
KR1020180038119A KR102088506B1 (en) 2017-04-07 2018-04-02 Organic light emitting device

Publications (2)

Publication Number Publication Date
WO2018186662A2 true WO2018186662A2 (en) 2018-10-11
WO2018186662A3 WO2018186662A3 (en) 2018-12-27

Family

ID=63713008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003926 WO2018186662A2 (en) 2017-04-07 2018-04-03 Organic light-emitting device

Country Status (1)

Country Link
WO (1) WO2018186662A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600612A (en) * 2019-06-11 2019-12-20 华东理工大学 P-i-n type perovskite battery hole transport layer based on self-assembly engineering

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473464B (en) * 2006-06-22 2014-04-23 出光兴产株式会社 Organic electroluminescent device using heterocycle-containing arylamine derivatives
KR20090028943A (en) * 2007-09-17 2009-03-20 (주)루디스 Hole injection layer / hole transport layer material and organic light emitting device comprising the same
EP2915199B1 (en) * 2012-10-31 2021-03-31 Merck Patent GmbH Electronic device
JP6749892B2 (en) * 2015-04-10 2020-09-02 保土谷化学工業株式会社 Organic electroluminescent device
KR101873157B1 (en) * 2016-07-26 2018-07-02 주식회사 엘지화학 Organic light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600612A (en) * 2019-06-11 2019-12-20 华东理工大学 P-i-n type perovskite battery hole transport layer based on self-assembly engineering

Also Published As

Publication number Publication date
WO2018186662A3 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR102111149B1 (en) Organic light emitting device
JP5922766B2 (en) Novel compound and organic electronic device using the same
KR102040226B1 (en) Organic light emitting device
JP5562862B2 (en) New organic light emitting device compound and organic light emitting device using the same
JP6219452B2 (en) Triphenylenesilane host
TWI555822B (en) Main material for phosphorescent organic light-emitting device
WO2018110887A1 (en) Heterocyclic compound, and organic light-emitting element comprising same
TWI540135B (en) Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
WO2011105373A1 (en) Substituted pyridyl compound and organic electroluminescent element
WO2018016898A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR100864154B1 (en) Novel anthracene derivatives, preparation method thereof and organic electronic device using same
KR102098221B1 (en) Organic light emitting device
WO2019013441A1 (en) Organic light-emitting device
WO2019098766A1 (en) Organic light-emitting device
KR102101473B1 (en) Hetero-cyclic compound and organic light emitting device comprising the same
JP2010511696A (en) Novel fluorene derivative and organic electronic device using the same
WO2018190516A1 (en) Novel heterocyclic compound and organic light-emitting element utilizing same
WO2019013435A1 (en) Organic light-emitting device
CN111032645B (en) Polycyclic compound and organic light-emitting device comprising same
TW201817707A (en) Novel compound and organic light-emitting device comprising same
CN113166176A (en) Compound and organic light-emitting element including the same
KR102088506B1 (en) Organic light emitting device
WO2018190522A1 (en) Novel compound and organic light emitting device comprising same
KR20200088772A (en) Novel compound and organic light emitting device comprising the same
KR101153095B1 (en) New cycloalkene derivatives and organic electronic diode using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781345

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781345

Country of ref document: EP

Kind code of ref document: A2