WO2018186922A2 - Alliage-mère de titane pour alliages à base de titane-aluminium - Google Patents
Alliage-mère de titane pour alliages à base de titane-aluminium Download PDFInfo
- Publication number
- WO2018186922A2 WO2018186922A2 PCT/US2018/013813 US2018013813W WO2018186922A2 WO 2018186922 A2 WO2018186922 A2 WO 2018186922A2 US 2018013813 W US2018013813 W US 2018013813W WO 2018186922 A2 WO2018186922 A2 WO 2018186922A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- aluminum
- cathode
- anode
- master alloy
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 95
- 239000000956 alloy Substances 0.000 title claims abstract description 95
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 239000010936 titanium Substances 0.000 title claims abstract description 84
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 80
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 85
- 230000008569 process Effects 0.000 claims abstract description 66
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 65
- 239000003792 electrolyte Substances 0.000 claims abstract description 59
- 229910021324 titanium aluminide Inorganic materials 0.000 claims abstract description 51
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 20
- -1 halide salts Chemical class 0.000 claims abstract description 10
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical class Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 7
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 7
- 229910052784 alkaline earth metal Chemical class 0.000 claims abstract description 7
- 238000007670 refining Methods 0.000 claims description 42
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 16
- 239000000047 product Substances 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000002243 precursor Substances 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- BUKHSQBUKZIMLB-UHFFFAOYSA-L potassium;sodium;dichloride Chemical compound [Na+].[Cl-].[Cl-].[K+] BUKHSQBUKZIMLB-UHFFFAOYSA-L 0.000 description 7
- 229910004349 Ti-Al Inorganic materials 0.000 description 6
- 229910004692 Ti—Al Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910001069 Ti alloy Inorganic materials 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 229910000979 O alloy Inorganic materials 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000001636 atomic emission spectroscopy Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000003923 scrap metal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910020549 KCl—NaCl Inorganic materials 0.000 description 1
- 229910020096 MgCl2—NaCl Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/36—Alloys obtained by cathodic reduction of all their ions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
- C25C3/12—Anodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/26—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
- C25C3/28—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C5/00—Electrolytic production, recovery or refining of metal powders or porous metal masses
- C25C5/04—Electrolytic production, recovery or refining of metal powders or porous metal masses from melts
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/007—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least a movable electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
Definitions
- the present disclosure relates to a method to produce titanium master alloy for titanium- aluminum based metal alloys.
- titanium alloys are produced from titanium "sponge", the product of a process known as the "Kroll Process”. In subsequent steps, aluminum and other alloying metals must be added to the sponge by using various melting processes. Therefore, the cost of titanium alloys is several times higher than the original cost of titanium. For example, in one 2015 publication, titanium production cost is indicated to be $9.00/kg (Ma Qian and Francis H. Froes, ed., Titanium Powder Metallurgy Science, Technology and Application (Elsevier Inc., 2015), p. 37)) whereas the cost of Ti-Al-V is $17.00/kg.
- titanium and its alloys are the only choice for many engineering applications. 90% of titanium that is used in the aerospace industry is used as titanium alloys. Accordingly, there is a need for a new titanium alloy production process that reduces the cost significantly.
- titanium-aluminum alloys e.g. master alloys
- the methods provide a simple and more economical way to produce titanium-aluminum based alloys. With one or more embodiments of the instant disclosure, these methods do not require the addition of any soluble titanium (such as titanium chlorides) to the electrolyte, which thereby further reduces production cost. Also, the present disclosure provides for alloy products (e.g. Ti-Al master alloys) that are lightweight and "wool-like" or powdery products. As detailed in paragraph [0068] below, the temperature and composition of the electrolyte bath appears to influence the physical form of the titanium-aluminum master alloy formed on the cathode.
- alloy products e.g. Ti-Al master alloys
- the temperature and composition of the electrolyte bath appears to influence the physical form of the titanium-aluminum master alloy formed on the cathode.
- Temperatures in the range of 550-650°C tend to result in a fine powdery texture, while temperatures in the range of 650-750°C produce a product with a wool-like morphology, and temperatures in the range of 750-850°C produce a crystalline product.
- titanium master alloy Ti-(1-10)%A1
- a method for the production of titanium-aluminum based alloy products, including titanium master alloy products, directly from a variety of titanium bearing ores.
- One or more of the present methods significantly reduce the processing steps relative to traditional Ti-Al alloy production and result in reduced production costs.
- the method of refining titanium-aluminides provides: placing the titanium-aluminide precursor into a reaction vessel having an anode, a cathode, and an electrolyte, which may include halide salts of alkali metals or alkali-earth metals or a combination of both, and heating the reaction vessel to a temperature between 500 to 900°C to create a molten mixture.
- An electric current is applied while maintaining an electrical differential between the anode and the cathode to deposit titanium master alloy on the cathode.
- the current is terminated and the molten mixture is allowed to cool, and the refined titanium master alloy product is collected.
- This refined titanium master alloy product contains up to 10 wt.% Al (not more than 10 wt.% Al). Indeed, the refined master alloy resulting from the process can contain less than 5 wt.% or 2.5 wt.% Al or even less despite the substantial amount of aluminum present in the titanium aluminide starting material.
- the method of refining titanium-aluminides provides: placing the titanium-aluminide precursor into a reaction vessel, the reaction vessel configured with an anode, a cathode, and an electrolyte, which may include halide salts of alkali metals or alkali-earth metals or a combination of both; heating the electrolyte to a temperature sufficient to create a molten electrolyte mixture (e.g.
- the Ti-Al master alloy contains up to 10 wt. % Al.
- the reducing step further comprises depositing the Ti-Al master alloy onto a surface of the cathode.
- directing an electrical current comprises maintaining an electrical differential between the anode and the cathode.
- the anode is configured to contact and electrically communicate with the electrolyte.
- the cathode is configured to contact and electrically communicate with the electrolyte.
- the anode is positioned in the reaction vessel at a distance from the cathode to prevent electrical shorting of the cell (the anode-cathode distance is variable, but always >0).
- the method comprises terminating the electrical current and turning off the furnace, thereby allowing cooling of the molten electrolyte mixture (e.g. solidifying the electrolyte).
- the Ti-Al master alloy is recovered from the cell prior to solidification (e.g. tapping, draining, withdrawal of the cathode while the bath is cooling but not solidified, or a combination thereof).
- the anode is in the form of a non-consumable mesh container that holds the titanium- aluminum-oxygen precursor during the refining process.
- the position of the anode is adjustable; the distance between the anode and the cathode is between 1 and 6 cm.
- the titanium aluminides to be electro-refined may be obtained by reducing titanium- bearing ores with aluminum (e.g., by using the UTRS Process) or by melting titanium and aluminum scrap metal under oxidizing conditions to produce a product that contains 10 to 25 wt.% Al and at least 10 wt.% oxygen.
- the method for electro-refining titanium- aluminides to produce titanium master alloys provides: placing titanium-aluminide comprising more than ten weight percent aluminum, and at least ten weight percent oxygen, into a reaction vessel, the reaction vessel configured with an anode, a cathode, and an electrolyte, the electrolyte including halide salts of alkali metals or alkali-earth metals or a combination thereof; heating the electrolyte to a temperature of 500°C - 900°C sufficient to create a molten electrolyte mixture; directing an electrical current from the anode through the molten electrolyte mixture to the cathode; and dissolving the titanium-aluminide from the anode to deposit a titanium-aluminum master alloy at the cathode.
- the anode includes a non-consumable mesh container in which the titanium aluminide is placed, the titanium aluminide being consumable during the refining process.
- the titanium-aluminide comprises 10%-25% aluminum and at least 10% oxygen by weight.
- the titanium-aluminide comprises 15%-25% aluminum and at least 10% oxygen by weight.
- the titanium-aluminide comprises 20%-25% aluminum and at least 10%) oxygen by weight.
- the titanium aluminum master alloy comprises about 99.0% titanium and about 1.0% aluminum by weight.
- the titanium aluminum master alloy comprises about 98.0%> titanium and about 2.0% aluminum by weight.
- the titanium aluminum master alloy comprises about 97.0%> titanium and about 3.0%> aluminum by weight.
- the titanium aluminum master alloy comprises about 96.0% titanium and about 4.0% aluminum by weight.
- the titanium aluminum master alloy comprises about 95.0% titanium and about 5.0% aluminum by weight.
- the titanium aluminum master alloy comprises about 94.0% titanium and about 6.0% aluminum by weight.
- the titanium aluminum master alloy comprises about 93.0% titanium and about 7.0% aluminum by weight.
- the titanium aluminum master alloy comprises about 92.0% titanium and about 8.0%> aluminum by weight.
- the titanium aluminum master alloy comprises about 91.0% titanium and about 9.0%> aluminum by weight.
- the titanium aluminum master alloy comprises about 90.0% titanium and about 10.0%> aluminum by weight.
- the electrolyte is substantially free of added titanium chlorides.
- the electrolyte is substantially free of added forms of soluble titanium.
- the temperature range is between 550°C and 650°C and the titanium master alloy product is a powder.
- the temperature range is between 650°C and 750°C and the titanium master alloy product is wool-like.
- the temperature range is between 750°C and 850°C and the titanium master alloy product is crystalline.
- the electrical current density of the cathode is between 0.01A/cm 2 and 0.05A/cm 2 .
- the electrical current density of the cathode is between 0.05A/cm 2 and 0.1 A/cm 2 .
- the electrical current density of the cathode is between 0.1 A/cm 2 and 0.5A/cm 2 .
- the electrical current density of the cathode is between 0.5A/cm 2 and 1.0 A/cm 2 .
- a reference electrode is used to monitor electrical differentials wherein the electrical differential between the anode and the reference electrode is 0.2V - 0.4V.
- a reference electrode is used to monitor electrical differentials wherein the electrical differential between the anode and the reference electrode is 0.4V - 0.6V.
- a reference electrode is used to monitor electrical differentials wherein the electrical differential between the anode and the reference electrode is 0.6V - 0.8V.
- the electrical differential between the anode and the cathode is 0.4V - 0.8V.
- the electrical differential between the anode and the cathode is 0.8V-1.2V.
- the electrical differential between the anode and the cathode is 1.2V-1.6V.
- the electrical differential between the anode and the cathode is 1.6V-2.0V.
- the distance between the anode and the cathode is adjusted to prevent short circuiting of the current flow through the electrolyte between the anode and the cathode.
- the distance between the anode and the cathode is 2.0cm -4.0cm.
- the distance between the anode and the cathode is 4.0cm-6.0cm.
- the method for refining titanium aluminides into master titanium-aluminum alloys provides: placing a titanium aluminide comprising more than ten weight percent aluminum, and at least ten weight percent oxygen, into a reaction vessel, the reaction vessel configured with an anode, a cathode, and an electrolyte, the electrolyte including halide salts of alkali metals or alkali-earth metals or a combination of both; heating the electrolyte to a temperature sufficient to create a molten electrolyte mixture; directing an electrical current from the anode through the molten electrolyte mixture to the cathode; and dissolving the titanium aluminide from the anode to deposit a titanium-aluminum master alloy at the cathode, said master alloy containing up to 10 wt.% aluminum.
- the electrolyte is substantially free of added titanium chlorides or other added forms of soluble titanium.
- the electrolyte is allowed to cool and the titanium-aluminum master alloy is recovered from the reaction vessel prior to solidification of the electrolyte.
- the titanium-aluminum master alloy contains 2.5wt.% or less aluminum.
- One embodiment of the present disclosure provides a method for the refining of titanium-aluminide products from titanium-bearing ores.
- refining of the titanium-aluminide products is done via electrochemical refining.
- a titanium-aluminide product is placed in a reaction vessel having a cathode and an anode.
- the anode is embodied as a movable perforated basket/container made from quartz or metals that are more noble than titanium (e.g. nickel or iron) to hold the titanium aluminide to be refined.
- the cathode is at or near the bottom of the reaction vessel, with the anode suspended above the cathode. Having the ability to adjust the distance between the cathode and the anode provides a means of maintaining an optimum distance between the cathode and the anode throughout the refining operation.
- This optimum distance ranges between 1 and 6 cm.
- the electrical differential between the anode and the cathode is between 0.4 and 2.0 volts, and the cathode current density is between 0.01 and lA/cm 2 .
- master alloy is deposited on the cathode as dendrites. Growth of the dendrites throughout the process decreases the distance between the cathode and the anode. Thus, some adjustment in distance may be necessary to maintain current density and to avoid short circuiting the current flow. Without adjusting the anode-cathode distance throughout the process, the dendrites could touch the anode which would produce an electrical short-circuit.
- the reaction vessel also holds an electrolyte capable of transporting titanium and aluminum ions.
- This electrolyte is placed in the reaction vessel and heated to subject the titanium-aluminum product to an electro-refining process.
- the electrolyte used during the refining operation may be a mixture of MgCl 2 -NaCl - suitable for a temperature range of 550°C- 650°C, KCl-NaCl - suitable for a temperature range of 650°C to 750°C, or NaCl - suitable for a temperature range of 750°C-850°C.
- the refining operation is performed under an inert atmosphere.
- a resistive element furnace or an induction furnace can be used to heat the electrolyte.
- both types of furnaces resistive element and induction
- a molybdenum susceptor crucible was used to couple with the induction field in order to generate heat that was transmitted to the electrolyte blend.
- the perforated basket holding the titanium aluminides to be refined is used as the anode in the electronic circuit by connecting a lead to the positive (+) side of an electric power supply.
- Metal foil can be placed around the inside of the reaction vessel and used as the cathode by connecting it to the negative (-) side of the electric power supply.
- the titanium-aluminide is oxidized (ionized) and titanium and aluminum ions migrate to the cathode where they are reduced to form titanium master alloy crystals or a wool layer of the refined titanium-aluminum alloy product. Impurities are concentrated (left behind) in the anode basket or remain in the molten electrolyte.
- a cathode in the form of a metal plate can be placed parallel to the bottom of the reaction vessel with the anode basket suspended above the plate.
- the optimum distance between the cathode plate and the anode basket can be maintained by moving the anode basket vertically throughout the refining operation.
- the cathode is connected to the negative (-) side of the power supply by the lead and the anode is connected to the positive (+) side of the power supply.
- the cathode to anode distance is between 2cm and 6cm.
- Other configurations for the electro-purification cell are possible as well.
- Titanium-aluminides to be electro-refined can be produced by reducing titanium bearing ores with Al (e.g., by using the UTRS Process).
- Ti0 2 content in titanium bearing ore can be anywhere between 75-98% by weight.
- Desired composition of titanium-aluminide can be achieved by varying the Ti0 2 : Al ratio.
- mixing 559 g of a Rutile ore (-94% Ti0 2 content) with 232 g of Al powder and 455 g of CaF 2 will produce an acceptable blend. Charging the blend into a graphite vessel, ramping the temperature at 10°C/min. (in an argon atmosphere) to ⁇ 1725°C and soaking for ⁇ 15 min.
- Titanium-aluminides to be electro-refined can also be produced by melting titanium and aluminum scrap metals according to appropriate ratios.
- the cathode deposit refers to the master alloy produced via the various methods, as outlined in each Example. The percentages of various components are in weight percent. Unless otherwise specified, the cathode deposit (alloy product) refers to a wt. % Aluminum, the balance being Titanium and if present, any unavoidable impurities.
- Example 1 Titanium-aluminide used in this example was produced by melting appropriate amounts of titanium and aluminum to produce Ti-36 %A1 alloy. Oxygen content of this alloy was 0.2%. The alloy was cut into small pieces and 29. Og of this material was electro- refined at a constant DC current of 1.0A. The refining process was carried out in NaCl-KCl (44: 56 wt.%) electrolyte at 750°C. Nine grams (9.0g) of cathode deposit was harvested and contained 33 wt.% Al.
- Example 2 Titanium-aluminide used in this example was produced by melting appropriate amounts of titanium and aluminum to produce a Ti-10 %A1 alloy. Oxygen content of this alloy was 0.2%. The alloy was cut into small pieces and 31.0g of this material was electro- refined at a constant DC current of 1.0A. The refining process was carried out in NaCl-KCl (44: 56 wt.%)) electrolyte at 750°C. 14. Og of cathode deposit was harvested and contained 7.0% Al.
- Example 3 Titanium-aluminide used in this example was produced by aluminothermic reduction of Ti0 2 with Al to produce a Ti-13 %>A1-11%>0 alloy. The alloy was broken into small pieces and 31.0g of this material was electro-refined at a constant DC current of 1.0A. The refining process was carried out in NaCl-KCl (44: 56 wt.%) electrolyte at 750°C. 18.0g of cathode deposit was harvested and contained 2.5% Al.
- Example 4 Titanium-aluminide used in this example was produced by aluminothermic reduction of Ti0 2 to produce a Ti-10%Al-13%O alloy. The alloy was broken into small pieces and 276. Og of this material was electro-refined at a constant DC current of 6. OA. The refining process was carried out in NaCl-KCl (44: 56 wt.%) electrolyte at 750°C. 96. Og of cathode deposit was harvested and contained 1.1% Al.
- Example 5 Titanium-aluminide used in this example was produced by aluminothermic reduction of Ti0 2 to produce Ti-13 %A1-11%0 alloy. The alloy was broken into small pieces and 70. Og of this material was electro-refined at a constant voltage of 0.8V. The voltage of the anode was controlled by using a titanium rod as pseudo-reference electrode. The refining process was carried out in NaCl-KCl (44: 56 wt.%) electrolyte at 750°C. 25. Og of cathode deposit was harvested and contained 2.8% Al.
- Titanium-aluminide used in this example was produced by aluminothermic reduction of Ti0 2 to produce Ti-15 %A1 alloy and electro-refined to produce a Ti-13%A1-O.7%0 alloy. This alloy had wool-like morphology. The alloy was pressed into small pieces and 40. Og of this material was electro-refined a second time at a constant voltage of 0.8V. The voltage of the anode was controlled by using a titanium rod as pseudo-reference electrode. The refining process was carried out in NaCl-KCl (44: 56 wt.%) electrolyte at 750°C. 30. Og of cathode deposit was harvested and contained 7.5% Al.
- Example 7 Titanium-aluminide used in this example was produced by melting appropriate amounts of titanium, aluminum and iron to produce Ti-10%Al-48%Fe alloy. The alloy was cut into small pieces and 29. Og of this material was electro-refined at a constant DC current of l .OA. The refining process was carried out in NaCl-KCl (44: 56 wt.%) electrolyte at 750°C. 9.0g of cathode deposit was harvested and contained 17% Al and 1.6% Fe.
- Example 8 Titanium-aluminide with a composition of Ti-10%Al-12%O was electro- refined to obtain the composition of Ti-2.7%Al-l . l%0. The refined material was then once again electro-refined to obtain final product with 99.0% of Ti.
- Examples 3, 4, 5, and 8 demonstrate that if the precursor material contains more than 10%) oxygen, a very good separation of titanium and aluminum can be achieved during the electro-refining process.
- the titanium master alloy products in these examples illustrate that more than 78% of the aluminum in the initial precursor material was removed.
- Examples 1, 2 and 6 demonstrate that not more than 42% of the aluminum contained in the precursor material can be removed during electro-refining without the presence of a substantial amount of oxygen.
- the resulting refined titanium master alloy product can be further processed into a final alloy product by adding additional elements.
- the resulting refined titanium master alloy can be ground or milled with vanadium and converted into Ti-Al-V powder.
- Example 9 56.4 g of Ti-4.6%A1 master alloy mixed with 2.8 g of V-Al alloy, 0.55 g Al and melted in VAR. Resulting final alloy had a composition of Ti-6.3A1-3.8V.
- the refining operation produces a refined titanium master alloy product with a finely structured, dendritic morphology.
- the titanium master alloy product may comprise titanium crystallites that have deposited on the cathode during the electro-refining operation.
- the fine dendritic structure of the titanium master alloy product uniquely provides a pathway for near-net shaped parts through hydraulic compression and subsequent sintering without the aid of a binding agent.
- Surface area in the refined titanium-aluminum alloy product ranged between 0.1m 2 /g and 2.5m 2 /g.
- near-net-shaped products can be compressed for further processing.
- the dendritic form of the refined titanium master alloy product titanium master alloy wool
- the dendritic form of the refined titanium master alloy product can be compressed by using hydraulic pressure.
- the titanium master alloy wool is placed into a compression mold of desired shape.
- the mold is then placed into a hydraulic press where, between 35 to 65 tons/in 2 is applied.
- This procedure can produce near-net shaped titanium parts that can then be sintered, used as consumable electrodes in a vacuum arc remelt (VAR) process, melted or further processed depending on the product application.
- VAR vacuum arc remelt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3049769A CA3049769C (fr) | 2017-01-13 | 2018-01-16 | Alliage-mere de titane pour alliages a base de titane-aluminium |
JP2019538203A JP7139337B2 (ja) | 2017-01-13 | 2018-01-16 | チタン-アルミニウム基合金のためのチタン母合金 |
AU2018249909A AU2018249909B2 (en) | 2017-01-13 | 2018-01-16 | Titanium master alloy for titanium-aluminum based alloys |
RU2019125198A RU2763465C2 (ru) | 2017-01-13 | 2018-01-16 | Титановая лигатура для сплавов на основе ti-al |
ZA201904523A ZA201904523B (en) | 2017-01-13 | 2019-07-10 | Titanium master alloy for titanium-aluminum based alloys |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762446205P | 2017-01-13 | 2017-01-13 | |
US62/446,205 | 2017-01-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018186922A2 true WO2018186922A2 (fr) | 2018-10-11 |
WO2018186922A3 WO2018186922A3 (fr) | 2018-12-27 |
Family
ID=62838809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/013813 WO2018186922A2 (fr) | 2017-01-13 | 2018-01-16 | Alliage-mère de titane pour alliages à base de titane-aluminium |
Country Status (7)
Country | Link |
---|---|
US (2) | US20180202058A1 (fr) |
JP (1) | JP7139337B2 (fr) |
AU (1) | AU2018249909B2 (fr) |
CA (1) | CA3049769C (fr) |
RU (1) | RU2763465C2 (fr) |
WO (1) | WO2018186922A2 (fr) |
ZA (1) | ZA201904523B (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10400305B2 (en) | 2016-09-14 | 2019-09-03 | Universal Achemetal Titanium, Llc | Method for producing titanium-aluminum-vanadium alloy |
US10731264B2 (en) | 2011-12-22 | 2020-08-04 | Universal Achemetal Titanium, Llc | System and method for extraction and refining of titanium |
US11959185B2 (en) | 2017-01-13 | 2024-04-16 | Universal Achemetal Titanium, Llc | Titanium master alloy for titanium-aluminum based alloys |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2754424C2 (ru) * | 2019-12-24 | 2021-09-02 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Способ получения интерметаллидных сплавов на основе алюминида титана |
JPWO2023276440A1 (fr) | 2021-06-30 | 2023-01-05 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2734856A (en) | 1956-02-14 | Electrolytic method for refining titanium metal | ||
US2817631A (en) | 1956-03-23 | 1957-12-24 | Chicago Dev Corp | Refining titanium alloys |
US2909473A (en) | 1956-09-04 | 1959-10-20 | Chicago Dev Corp | Process for producing titanium group metals |
US2913378A (en) | 1956-12-18 | 1959-11-17 | Chicago Dev Corp | Two-step electrorefining of titanium alloys |
US6309595B1 (en) | 1997-04-30 | 2001-10-30 | The Altalgroup, Inc | Titanium crystal and titanium |
US9816192B2 (en) | 2011-12-22 | 2017-11-14 | Universal Technical Resource Services, Inc. | System and method for extraction and refining of titanium |
Family Cites Families (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US910394A (en) | 1907-06-11 | 1909-01-19 | Titan Gmbh | Process for the reduction of refractory oxids. |
US1089773A (en) | 1911-12-08 | 1914-03-10 | Gen Electric | Method of making titanium and other alloys. |
US1562041A (en) | 1918-09-26 | 1925-11-17 | Gen Electric | Metal and its manufacture |
US1533505A (en) | 1923-05-03 | 1925-04-14 | Lubowsky Simon Joseph | Method of producing metallic titanium or its alloys |
US1593660A (en) | 1924-04-12 | 1926-07-27 | Metal & Thermit Corp | Process for reducing refractory ores |
US2148345A (en) | 1936-09-10 | 1939-02-21 | Degussa | Preparation of metallic titanium |
US2205854A (en) | 1937-07-10 | 1940-06-25 | Kroll Wilhelm | Method for manufacturing titanium and alloys thereof |
US2395286A (en) | 1941-07-19 | 1946-02-19 | Joseph M Merle | Processes for chemically purifying and refining metals |
US2337314A (en) | 1943-04-08 | 1943-12-21 | Metal & Thermit Corp | Aluminothermic method and articles of manufacture |
US2714564A (en) | 1948-04-12 | 1955-08-02 | Chilean Nitrate Sales Corp | Production of metallic titanium |
US2684653A (en) | 1949-01-04 | 1954-07-27 | Nashville Bridge Company | Tow coupling |
US3137641A (en) | 1949-08-10 | 1964-06-16 | Timax Associates | Electrolytic process for the production of titanium metal |
US2647826A (en) | 1950-02-08 | 1953-08-04 | Jordan James Fernando | Titanium smelting process |
US2921890A (en) | 1950-03-27 | 1960-01-19 | Chicago Dev Corp | Electrolytic method for the production of pure titanium |
US2707679A (en) | 1951-01-04 | 1955-05-03 | Westinghouse Electric Corp | Methods of producing zirconium and titanium |
US2864749A (en) | 1951-05-09 | 1958-12-16 | Timax Corp | Process for the production of titanium metal |
US2780593A (en) | 1951-09-01 | 1957-02-05 | New Jersey Zinc Co | Production of metallic titanium |
US2766111A (en) | 1951-10-18 | 1956-10-09 | Nat Res Corp | Method of producing refractory metals |
US2757135A (en) | 1951-11-23 | 1956-07-31 | Ici Ltd | Electrolytic manufacture of titanium |
US2951021A (en) | 1952-03-28 | 1960-08-30 | Nat Res Corp | Electrolytic production of titanium |
US2848395A (en) | 1952-04-29 | 1958-08-19 | Du Pont | Electrolytic process for production of titanium |
US2745802A (en) | 1952-09-18 | 1956-05-15 | Reynolds Metals Co | Inorganic molten electrolyte for the electrolysis of titanium |
US2753254A (en) | 1952-10-29 | 1956-07-03 | Du Pont | Method of producing refractory metal |
US2917440A (en) | 1953-07-24 | 1959-12-15 | Du Pont | Titanium metal production |
US2846304A (en) | 1953-08-11 | 1958-08-05 | Nat Res Corp | Method of producing titanium |
US2846303A (en) | 1953-08-11 | 1958-08-05 | Nat Res Corp | Method of producing titanium |
US2830893A (en) | 1954-04-06 | 1958-04-15 | Chicago Dev Corp | Processes for making titanium |
US2823991A (en) | 1954-06-23 | 1958-02-18 | Nat Distillers Chem Corp | Process for the manufacture of titanium metal |
US2904428A (en) | 1954-09-22 | 1959-09-15 | Chicago Dev Corp | Method of reducing titanium oxide |
US2890112A (en) | 1954-10-15 | 1959-06-09 | Du Pont | Method of producing titanium metal |
US2838393A (en) | 1954-11-23 | 1958-06-10 | Chicago Dev Corp | Process for producing titanium and zirconium |
US2915383A (en) | 1955-01-03 | 1959-12-01 | Nat Res Corp | Method of producing refractory metals |
US2789943A (en) | 1955-05-05 | 1957-04-23 | New Jersey Zinc Co | Production of titanium |
US2777763A (en) | 1955-09-14 | 1957-01-15 | Ethyl Corp | Method of producing titanium |
US2893935A (en) | 1955-11-18 | 1959-07-07 | Monsanto Chemicals | Electrolytic process for producing metallic titanium |
US2929473A (en) | 1956-01-27 | 1960-03-22 | Jeffrey B Lindsay | Structural framework |
US2876094A (en) | 1956-02-17 | 1959-03-03 | Du Pont | Production of refractory metals |
US2789896A (en) | 1956-03-15 | 1957-04-23 | Climax Molybdenum Co | Process for reducing metal oxides |
US2889218A (en) | 1956-04-30 | 1959-06-02 | Transition Metals & Chemicals | Continuous process for metallothermic reactions |
US2901410A (en) | 1956-08-02 | 1959-08-25 | Chicago Dev Corp | Electro-refining titanium |
US2833704A (en) | 1956-08-16 | 1958-05-06 | Horizons Titanium Corp | Production of titanium |
US2857264A (en) | 1957-02-08 | 1958-10-21 | Armour Res Found | Method for the production of titanium |
US2922710A (en) | 1957-02-19 | 1960-01-26 | Du Pont | Production of refractory metals |
US3114626A (en) | 1957-03-28 | 1963-12-17 | Du Pont | Production of refractory metals |
US2913380A (en) * | 1957-06-20 | 1959-11-17 | Chicago Dev Corp | Refining titanium-vanadium alloys |
US2986462A (en) | 1957-10-10 | 1961-05-30 | Cons Mining & Smelting Co | Process for the production of metals |
US2915382A (en) | 1957-10-16 | 1959-12-01 | Nat Res Corp | Production of metals |
US3047477A (en) | 1957-10-30 | 1962-07-31 | Gen Am Transport | Reduction of titanium dioxide |
US3036961A (en) | 1958-02-24 | 1962-05-29 | Herasymenko Anna | Electrolytic refinement of metals |
US2944949A (en) | 1958-05-09 | 1960-07-12 | Ici Ltd | Process for the electrolytic separation of titanium from titanium scrap |
US3085872A (en) | 1958-07-01 | 1963-04-16 | Griffiths Kenneth Frank | Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium |
US2908619A (en) | 1958-08-01 | 1959-10-13 | New Jersey Zinc Co | Production of titanium |
US3085873A (en) | 1958-11-07 | 1963-04-16 | Griffiths Kenneth Frank | Method for collecting and separating the refractory metal component from the reaction products in the production of the refractory metals titanium, zirconium, vanadium, hafnium, silicon, thorium, chromium, or columbium |
US3098805A (en) | 1959-06-25 | 1963-07-23 | Norton Co | Process for the extraction of relatively pure titanium and of relatively pure zirconium and hafnium |
US3098021A (en) | 1960-04-15 | 1963-07-16 | Union Carbide Corp | Process for producing ductile vanadium |
FR1439859A (fr) | 1964-11-17 | 1966-05-27 | Heurtey Sa | Perfectionnements apportés aux procédés et aux dispositifs de purification des métaux à point de fusion élevé |
US3386817A (en) | 1965-09-10 | 1968-06-04 | Dow Chemical Co | Process for the reduction of metal oxides |
SU419571A1 (ru) * | 1967-11-06 | 1974-03-15 | И. П. Бардина | Способ электролитического рафинирования металлов и сплавов |
DE1946246C3 (de) | 1968-10-08 | 1985-06-20 | Voest-Alpine Ag, Wien | Konverter mit einseitig offenem oder teilbarem Tragrahmen |
US3625676A (en) | 1969-03-28 | 1971-12-07 | Frederick H Perfect | Vanadium-aluminum-titanium master alloys |
FR2052082A5 (fr) | 1969-07-11 | 1971-04-09 | Commissariat Energie Atomique | |
CA950204A (en) | 1970-06-08 | 1974-07-02 | Hans G. Brandstatter | Direct reduction process for making titanium |
US3794482A (en) | 1971-02-05 | 1974-02-26 | Parlee Anderson Corp | Carbothermic reduction method for converting metal oxides to metal form |
GB1355433A (en) | 1971-07-28 | 1974-06-05 | Electricity Council | Production of titanium |
US3736132A (en) | 1971-12-17 | 1973-05-29 | Steel Corp | Method for producing refractory metals |
US3801307A (en) | 1972-07-26 | 1974-04-02 | F Hurd | Metal reduction process |
US3977866A (en) | 1973-12-10 | 1976-08-31 | Othmer Donald F | Method for producing titanium |
US3966455A (en) | 1974-02-19 | 1976-06-29 | Paul Franklin Taylor | Process for ilmenite ore reduction |
US4169722A (en) | 1975-05-28 | 1979-10-02 | Atomic Energy Board | Aluminothermic process |
FR2494725A1 (fr) | 1980-11-27 | 1982-05-28 | Armand Marcel | Nouveau dispositif et procede pour l'alimentation en ticl4 des cellules d'electrolyse pour la preparation du titane |
US4390365A (en) | 1980-12-15 | 1983-06-28 | Occidental Research Corporation | Process for making titanium metal from titanium ore |
US4401467A (en) | 1980-12-15 | 1983-08-30 | Jordan Robert K | Continuous titanium process |
US4468248A (en) | 1980-12-22 | 1984-08-28 | Occidental Research Corporation | Process for making titanium metal from titanium ore |
BR8402087A (pt) | 1984-05-04 | 1985-12-10 | Vale Do Rio Doce Co | Processo de obtencao de titanio metalico a partir de um concentrado de anastasio,por aluminotermia e magnesiotermia |
FR2582019B1 (fr) | 1985-05-17 | 1987-06-26 | Extramet Sa | Procede pour la production de metaux par reduction de sels metalliques, metaux ainsi obtenus et dispositif pour sa mise en oeuvre |
JPH0512057Y2 (fr) | 1985-08-01 | 1993-03-26 | ||
FR2592664B1 (fr) | 1986-01-06 | 1990-03-30 | Pechiney Sa | Procede d'elaboration de poudres de metaux de transition par electrolyse en bains de sels fondus |
FR2595101A1 (fr) | 1986-02-28 | 1987-09-04 | Rhone Poulenc Chimie | Procede de preparation par lithiothermie de poudres metalliques |
JPS62280335A (ja) | 1986-05-30 | 1987-12-05 | Toshiba Corp | 薄膜形成用高純度チタン材、それを用いて形成されてなるターゲットおよび薄膜、および薄膜形成用高純度チタン材の製造方法 |
US5071472A (en) | 1986-09-15 | 1991-12-10 | The United States Of America, As Represented By The Secretary Of The Interior | Induction slag reduction process for purifying metals |
US4985069A (en) | 1986-09-15 | 1991-01-15 | The United States Of America As Represented By The Secretary Of The Interior | Induction slag reduction process for making titanium |
US4999097A (en) | 1987-01-06 | 1991-03-12 | Massachusetts Institute Of Technology | Apparatus and method for the electrolytic production of metals |
JPH0412219Y2 (fr) | 1987-07-30 | 1992-03-25 | ||
US4923577A (en) | 1988-09-12 | 1990-05-08 | Westinghouse Electric Corp. | Electrochemical-metallothermic reduction of zirconium in molten salt solutions |
US4964973A (en) | 1988-10-14 | 1990-10-23 | Brunswick Corporation | Method and apparatus for producing titanium |
US4875985A (en) | 1988-10-14 | 1989-10-24 | Brunswick Corporation | Method and appparatus for producing titanium |
US5397375A (en) | 1991-02-21 | 1995-03-14 | The University Of Melbourne | Process for the production of metallic titanium and intermediates useful in the processing of ilmenite and related minerals |
US5254232A (en) | 1992-02-07 | 1993-10-19 | Massachusetts Institute Of Technology | Apparatus for the electrolytic production of metals |
US5404929A (en) | 1993-05-18 | 1995-04-11 | Liquid Air Corporation | Casting of high oxygen-affinity metals and their alloys |
DE69411662T2 (de) | 1993-10-22 | 1998-12-24 | Ishihara Sangyo Kaisha | Dendrit- oder sternförmige Titandioxid-Mikropartikel und Verfahren zur seiner Herstellung |
US5503655A (en) | 1994-02-23 | 1996-04-02 | Orbit Technologies, Inc. | Low cost titanium production |
US20080187455A1 (en) | 1996-08-02 | 2008-08-07 | International Titanium Powder, Llc | Titanium and titanium alloys |
BR9711581A (pt) | 1996-09-30 | 2000-10-31 | Claude Fortin | Processo para a obtenção de titânio ou outros metais usando ligas lançadeira |
ITTO970080A1 (it) | 1997-02-04 | 1998-08-04 | Marco Vincenzo Ginatta | Procedimento per la produzione elettrolitica di metalli |
US6063254A (en) | 1997-04-30 | 2000-05-16 | The Alta Group, Inc. | Method for producing titanium crystal and titanium |
US6117208A (en) | 1998-04-23 | 2000-09-12 | Sharma; Ram A. | Molten salt process for producing titanium or zirconium powder |
GB9812169D0 (en) * | 1998-06-05 | 1998-08-05 | Univ Cambridge Tech | Purification method |
US6136706A (en) | 1998-07-27 | 2000-10-24 | Idaho Research Foundation | Process for making titanium |
GB2376241B (en) | 2000-02-22 | 2004-03-03 | Qinetiq Ltd | Method for the manufacture of metal foams by electrolytic reduction of porous oxidic preforms |
JP4803902B2 (ja) | 2001-05-25 | 2011-10-26 | 株式会社 日立ディスプレイズ | 表示装置 |
AU2002349216B2 (en) | 2001-11-22 | 2006-04-27 | Qit-Fer Et Titane Inc. | A method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state |
AUPS107102A0 (en) | 2002-03-13 | 2002-04-11 | Bhp Billiton Innovation Pty Ltd | Electrolytic reduction of metal oxides |
JP3718691B2 (ja) * | 2002-04-18 | 2005-11-24 | 財団法人生産技術研究奨励会 | チタンの製造方法、純金属の製造方法、及び純金属の製造装置 |
JP2004156130A (ja) | 2002-09-11 | 2004-06-03 | Sumitomo Titanium Corp | 直接電解法による金属チタン製造用酸化チタン多孔質焼結体およびその製造方法 |
US6799344B2 (en) | 2002-10-10 | 2004-10-05 | Dreamwell Ltd. | Titanium mattress member |
RU2334024C2 (ru) | 2002-12-12 | 2008-09-20 | Би Эйч Пи БИЛЛИТОН ИННОВЕЙШН ПТИ ЛТД | Электрохимическое восстановление оксидов металлов |
US6958115B2 (en) | 2003-06-24 | 2005-10-25 | The United States Of America As Represented By The Secretary Of The Navy | Low temperature refining and formation of refractory metals |
US7794580B2 (en) | 2004-04-21 | 2010-09-14 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
US7410562B2 (en) | 2003-08-20 | 2008-08-12 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
US6851896B1 (en) | 2003-09-18 | 2005-02-08 | Kerr-Mcgee Chemical, Llc | Fluid barriers |
US7527669B2 (en) | 2003-12-10 | 2009-05-05 | Babcock & Wilcox Technical Services Y-12, Llc | Displacement method and apparatus for reducing passivated metal powders and metal oxides |
US7381366B2 (en) | 2003-12-31 | 2008-06-03 | General Electric Company | Apparatus for the production or refining of metals, and related processes |
JP4277080B2 (ja) | 2004-01-05 | 2009-06-10 | 東邦チタニウム株式会社 | 金属チタンの製造装置 |
JP2005264320A (ja) | 2004-02-20 | 2005-09-29 | Sumitomo Titanium Corp | Ca還元によるTi又はTi合金の製造方法 |
WO2006022858A2 (fr) | 2004-03-22 | 2006-03-02 | Lanxide Technology Company | Methodes servant a extraire du titane et des alliages utiles d'oxydes de titane |
US7354472B2 (en) | 2004-06-21 | 2008-04-08 | H.C. Starck Inc. | Metalothermic reduction of refractory metal oxides |
BRPI0513992A (pt) | 2004-07-30 | 2008-05-20 | Bhp Billiton Innovation Pty | processo para minimização da re-oxidação de material reduzido e processo para redução eletroquìmica de um material de alimentação de óxido metálico |
WO2006010229A1 (fr) | 2004-07-30 | 2006-02-02 | Bhp Billiton Innovation Pty Ltd | Reduction electrochimique d'oxydes metalliques |
JP4813205B2 (ja) | 2006-02-20 | 2011-11-09 | 三菱電機株式会社 | 映像監視システム及び映像集信装置 |
US7901561B2 (en) | 2006-03-10 | 2011-03-08 | Elkem As | Method for electrolytic production and refining of metals |
US20080023321A1 (en) | 2006-07-31 | 2008-01-31 | Donald Sadoway | Apparatus for electrolysis of molten oxides |
RU2338805C2 (ru) | 2006-10-27 | 2008-11-20 | Алексей Игоревич Носенков | Способ алюминотермического получения ферротитана |
US9150943B2 (en) | 2007-01-22 | 2015-10-06 | Materials & Electrochemical Research Corp. | Metallothermic reduction of in-situ generated titanium chloride |
US8372179B2 (en) | 2007-10-15 | 2013-02-12 | E I Du Pont De Nemours And Company | Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom |
DE102008051784B4 (de) | 2008-10-17 | 2012-02-02 | H.C. Starck Gmbh | Verfahren zur Herstellung von Molybdän-Metallpulver, Molybdän-Metallpulver und dessen Verwendung |
CN101519789A (zh) | 2009-03-30 | 2009-09-02 | 攀钢集团研究院有限公司 | 一种钛循环熔盐电解制取金属钛的方法 |
GB0913736D0 (en) | 2009-08-06 | 2009-09-16 | Chinuka Ltd | Treatment of titanium ores |
AU2010333714B2 (en) | 2009-12-18 | 2016-06-23 | Commonwealth Scientific And Industrial Research Organisation | Method for producing low aluminium titanium-aluminium alloys |
JP4966406B2 (ja) | 2010-12-17 | 2012-07-04 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置 |
AU2012214847B2 (en) * | 2011-01-15 | 2015-04-23 | Scott Richard Holloway | Electric power transmission cable comprising continuously synthesized titanium aluminide intermetallic composite wire |
CN103031577B (zh) | 2011-09-30 | 2015-07-08 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种金属钛的制备方法及由该方法得到的金属钛 |
RU2485194C1 (ru) | 2012-02-13 | 2013-06-20 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Способ получения титаноалюминиевого сплава из оксидного титансодержащего материала |
WO2014004610A1 (fr) * | 2012-06-27 | 2014-01-03 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University | Système et procédé pour l'électroraffinage de silicium |
RU2537676C1 (ru) * | 2013-06-18 | 2015-01-10 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов |
WO2017190245A1 (fr) * | 2016-05-04 | 2017-11-09 | Lumiant Corporation | Composite à matrice métallique présentant une matrice en alliage d'aluminure de titane à haute résistance et renfort d'oxyde de titane formé in situ |
RU2750608C2 (ru) | 2016-09-14 | 2021-06-29 | ЮНИВЕРСАЛ АКЕМЕТАЛ ТИТАНИУМ, ЭлЭлСи | Способ производства сплава титан-алюминий-ванадий |
US20180202058A1 (en) | 2017-01-13 | 2018-07-19 | Universal Technical Resource Services, Inc. | Titanium master alloy for titanium-aluminum based alloys |
-
2018
- 2018-01-16 US US15/872,328 patent/US20180202058A1/en not_active Abandoned
- 2018-01-16 CA CA3049769A patent/CA3049769C/fr active Active
- 2018-01-16 JP JP2019538203A patent/JP7139337B2/ja active Active
- 2018-01-16 AU AU2018249909A patent/AU2018249909B2/en active Active
- 2018-01-16 RU RU2019125198A patent/RU2763465C2/ru active
- 2018-01-16 WO PCT/US2018/013813 patent/WO2018186922A2/fr active Application Filing
-
2019
- 2019-07-10 ZA ZA201904523A patent/ZA201904523B/en unknown
-
2022
- 2022-07-01 US US17/856,594 patent/US11959185B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2734856A (en) | 1956-02-14 | Electrolytic method for refining titanium metal | ||
US2817631A (en) | 1956-03-23 | 1957-12-24 | Chicago Dev Corp | Refining titanium alloys |
US2909473A (en) | 1956-09-04 | 1959-10-20 | Chicago Dev Corp | Process for producing titanium group metals |
US2913378A (en) | 1956-12-18 | 1959-11-17 | Chicago Dev Corp | Two-step electrorefining of titanium alloys |
US6309595B1 (en) | 1997-04-30 | 2001-10-30 | The Altalgroup, Inc | Titanium crystal and titanium |
US9816192B2 (en) | 2011-12-22 | 2017-11-14 | Universal Technical Resource Services, Inc. | System and method for extraction and refining of titanium |
Non-Patent Citations (1)
Title |
---|
"Titanium Powder Metallurgy Science, Technology and Application", 2015, ELSEVIER INC., pages: 37 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10731264B2 (en) | 2011-12-22 | 2020-08-04 | Universal Achemetal Titanium, Llc | System and method for extraction and refining of titanium |
US11280013B2 (en) | 2011-12-22 | 2022-03-22 | Universal Achemetal Titanium, Llc | System and method for extraction and refining of titanium |
US10400305B2 (en) | 2016-09-14 | 2019-09-03 | Universal Achemetal Titanium, Llc | Method for producing titanium-aluminum-vanadium alloy |
US11959185B2 (en) | 2017-01-13 | 2024-04-16 | Universal Achemetal Titanium, Llc | Titanium master alloy for titanium-aluminum based alloys |
Also Published As
Publication number | Publication date |
---|---|
US20220349079A1 (en) | 2022-11-03 |
US11959185B2 (en) | 2024-04-16 |
CA3049769A1 (fr) | 2018-10-11 |
RU2019125198A (ru) | 2021-02-15 |
RU2019125198A3 (fr) | 2021-07-05 |
AU2018249909B2 (en) | 2023-04-06 |
RU2763465C2 (ru) | 2021-12-29 |
ZA201904523B (en) | 2020-11-25 |
AU2018249909A1 (en) | 2019-07-25 |
US20180202058A1 (en) | 2018-07-19 |
JP7139337B2 (ja) | 2022-09-20 |
WO2018186922A3 (fr) | 2018-12-27 |
CA3049769C (fr) | 2023-11-21 |
JP2020507011A (ja) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11959185B2 (en) | Titanium master alloy for titanium-aluminum based alloys | |
EP3512970B1 (fr) | Procédé de production d'alliage de titane-aluminium-vanadium | |
US11280013B2 (en) | System and method for extraction and refining of titanium | |
EP2322693B1 (fr) | Procédé électrochimique pour la production de titane | |
CN113481393A (zh) | 一种钒铬钛合金及其制备方法 | |
US12435438B2 (en) | System and method for extraction and refining of titanium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 3049769 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019538203 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018249909 Country of ref document: AU Date of ref document: 20180116 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18749604 Country of ref document: EP Kind code of ref document: A2 |