WO2018189403A1 - Methods and pharmaceutical compositions for the treatment of cancer - Google Patents
Methods and pharmaceutical compositions for the treatment of cancer Download PDFInfo
- Publication number
- WO2018189403A1 WO2018189403A1 PCT/EP2018/059613 EP2018059613W WO2018189403A1 WO 2018189403 A1 WO2018189403 A1 WO 2018189403A1 EP 2018059613 W EP2018059613 W EP 2018059613W WO 2018189403 A1 WO2018189403 A1 WO 2018189403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vegf
- cancer
- cells
- patient
- radiotherapy
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 210
- 201000011510 cancer Diseases 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 101
- 238000011282 treatment Methods 0.000 title claims abstract description 90
- 239000008194 pharmaceutical composition Substances 0.000 title description 8
- 108010073923 Vascular Endothelial Growth Factor C Proteins 0.000 claims abstract description 146
- 230000014509 gene expression Effects 0.000 claims abstract description 130
- 238000001959 radiotherapy Methods 0.000 claims abstract description 89
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 claims abstract description 56
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 claims abstract description 56
- 239000003112 inhibitor Substances 0.000 claims abstract description 53
- 239000007787 solid Substances 0.000 claims abstract description 42
- 102000009520 Vascular Endothelial Growth Factor C Human genes 0.000 claims abstract description 32
- 238000010837 poor prognosis Methods 0.000 claims abstract description 22
- 150000001875 compounds Chemical class 0.000 claims description 58
- 108090000994 Catalytic RNA Proteins 0.000 claims description 14
- 102000053642 Catalytic RNA Human genes 0.000 claims description 14
- 230000001772 anti-angiogenic effect Effects 0.000 claims description 14
- 108091092562 ribozyme Proteins 0.000 claims description 14
- 108091023037 Aptamer Proteins 0.000 claims description 13
- 238000004393 prognosis Methods 0.000 claims description 13
- 108091034117 Oligonucleotide Proteins 0.000 claims description 12
- 208000000172 Medulloblastoma Diseases 0.000 claims description 11
- 239000002147 L01XE04 - Sunitinib Substances 0.000 claims description 9
- 239000012472 biological sample Substances 0.000 claims description 9
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 8
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 claims description 7
- 239000003798 L01XE11 - Pazopanib Substances 0.000 claims description 6
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 claims description 6
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 claims description 6
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 claims description 6
- 229960001796 sunitinib Drugs 0.000 claims description 6
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 claims description 6
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 229960000241 vandetanib Drugs 0.000 claims description 5
- 230000001093 anti-cancer Effects 0.000 claims description 4
- 229960000639 pazopanib Drugs 0.000 claims description 4
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 claims description 3
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000002118 L01XE12 - Vandetanib Substances 0.000 claims description 3
- 229960002412 cediranib Drugs 0.000 claims description 3
- 229920001184 polypeptide Polymers 0.000 claims description 3
- 108091033409 CRISPR Proteins 0.000 claims description 2
- 238000010354 CRISPR gene editing Methods 0.000 claims description 2
- 239000005511 L01XE05 - Sorafenib Substances 0.000 claims description 2
- 229960003787 sorafenib Drugs 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 105
- 241000282414 Homo sapiens Species 0.000 abstract description 62
- 230000001965 increasing effect Effects 0.000 abstract description 45
- 102000004169 proteins and genes Human genes 0.000 abstract description 32
- 230000005855 radiation Effects 0.000 abstract description 25
- 230000001926 lymphatic effect Effects 0.000 abstract description 14
- 230000001225 therapeutic effect Effects 0.000 abstract description 14
- 230000035168 lymphangiogenesis Effects 0.000 abstract description 10
- 230000002018 overexpression Effects 0.000 abstract description 10
- 238000001574 biopsy Methods 0.000 abstract description 8
- 206010061818 Disease progression Diseases 0.000 abstract description 5
- 230000004071 biological effect Effects 0.000 abstract description 5
- 230000005750 disease progression Effects 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 202
- 102100038232 Vascular endothelial growth factor C Human genes 0.000 description 122
- 108020004999 messenger RNA Proteins 0.000 description 50
- 239000000427 antigen Substances 0.000 description 49
- 108091007433 antigens Proteins 0.000 description 46
- 102000036639 antigens Human genes 0.000 description 46
- 230000000694 effects Effects 0.000 description 45
- 230000004083 survival effect Effects 0.000 description 42
- 230000001105 regulatory effect Effects 0.000 description 35
- 239000011324 bead Substances 0.000 description 33
- 239000000090 biomarker Substances 0.000 description 32
- 239000000523 sample Substances 0.000 description 30
- 102100037265 Podoplanin Human genes 0.000 description 25
- 101710118150 Podoplanin Proteins 0.000 description 25
- 239000000203 mixture Substances 0.000 description 25
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 23
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 22
- 239000003814 drug Substances 0.000 description 22
- 210000001365 lymphatic vessel Anatomy 0.000 description 22
- 238000002560 therapeutic procedure Methods 0.000 description 22
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 21
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 21
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 20
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 18
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 18
- 230000003247 decreasing effect Effects 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 17
- 230000033115 angiogenesis Effects 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 17
- 108060003951 Immunoglobulin Proteins 0.000 description 15
- 102000018358 immunoglobulin Human genes 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 230000035755 proliferation Effects 0.000 description 15
- -1 MUM-3 Proteins 0.000 description 14
- 206010027476 Metastases Diseases 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 14
- 230000008901 benefit Effects 0.000 description 14
- 229940079593 drug Drugs 0.000 description 14
- 239000002955 immunomodulating agent Substances 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 230000006698 induction Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 206010061218 Inflammation Diseases 0.000 description 12
- 102000004890 Interleukin-8 Human genes 0.000 description 12
- 108090001007 Interleukin-8 Proteins 0.000 description 12
- 230000004054 inflammatory process Effects 0.000 description 12
- 230000009401 metastasis Effects 0.000 description 12
- 230000002105 relative biological effectiveness Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 210000004881 tumor cell Anatomy 0.000 description 12
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 12
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 102000004127 Cytokines Human genes 0.000 description 11
- 108090000695 Cytokines Proteins 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 238000002512 chemotherapy Methods 0.000 description 11
- 229940127089 cytotoxic agent Drugs 0.000 description 11
- 239000012636 effector Substances 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 10
- 101000742596 Homo sapiens Vascular endothelial growth factor C Proteins 0.000 description 10
- 108010050904 Interferons Proteins 0.000 description 10
- 102000014150 Interferons Human genes 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 101001054921 Homo sapiens Lymphatic vessel endothelial hyaluronic acid receptor 1 Proteins 0.000 description 9
- 101001069749 Homo sapiens Prospero homeobox protein 1 Proteins 0.000 description 9
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 9
- 102100033880 Prospero homeobox protein 1 Human genes 0.000 description 9
- 108091008605 VEGF receptors Proteins 0.000 description 9
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 9
- 239000002246 antineoplastic agent Substances 0.000 description 9
- 230000002596 correlated effect Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 210000000987 immune system Anatomy 0.000 description 9
- 238000009169 immunotherapy Methods 0.000 description 9
- 210000002751 lymph Anatomy 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000011002 quantification Methods 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 8
- 102100026849 Lymphatic vessel endothelial hyaluronic acid receptor 1 Human genes 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 8
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 229940047124 interferons Drugs 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 8
- 238000004949 mass spectrometry Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 7
- 241000702421 Dependoparvovirus Species 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 7
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 7
- 102000004889 Interleukin-6 Human genes 0.000 description 7
- 108090001005 Interleukin-6 Proteins 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 108050002561 Telomeric repeat-binding factor 2 Proteins 0.000 description 7
- 239000000074 antisense oligonucleotide Substances 0.000 description 7
- 238000012230 antisense oligonucleotides Methods 0.000 description 7
- 210000003719 b-lymphocyte Anatomy 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 7
- 210000004204 blood vessel Anatomy 0.000 description 7
- 230000004663 cell proliferation Effects 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000003364 immunohistochemistry Methods 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000002285 radioactive effect Effects 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 7
- 241001430294 unidentified retrovirus Species 0.000 description 7
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108090000031 Hedgehog Proteins Proteins 0.000 description 6
- 102000003693 Hedgehog Proteins Human genes 0.000 description 6
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 6
- 210000004322 M2 macrophage Anatomy 0.000 description 6
- 241001529936 Murinae Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 102100031463 Serine/threonine-protein kinase PLK1 Human genes 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 6
- 102000012044 Telomeric repeat-binding factor 2 Human genes 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 210000003690 classically activated macrophage Anatomy 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 230000003053 immunization Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 108010056274 polo-like kinase 1 Proteins 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000000770 proinflammatory effect Effects 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 238000011285 therapeutic regimen Methods 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 5
- 108010074708 B7-H1 Antigen Proteins 0.000 description 5
- 102000008096 B7-H1 Antigen Human genes 0.000 description 5
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 5
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 5
- 108090000770 Neuropilin-2 Proteins 0.000 description 5
- 102000004213 Neuropilin-2 Human genes 0.000 description 5
- 108010073919 Vascular Endothelial Growth Factor D Proteins 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229940047120 colony stimulating factors Drugs 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000000684 flow cytometry Methods 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 238000007918 intramuscular administration Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000001394 metastastic effect Effects 0.000 description 5
- 206010061289 metastatic neoplasm Diseases 0.000 description 5
- 238000002493 microarray Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000003753 real-time PCR Methods 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000007920 subcutaneous administration Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 4
- 102100024633 Carbonic anhydrase 2 Human genes 0.000 description 4
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 102000015696 Interleukins Human genes 0.000 description 4
- 108010063738 Interleukins Proteins 0.000 description 4
- 108090000772 Neuropilin-1 Proteins 0.000 description 4
- 102000004207 Neuropilin-1 Human genes 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 102100038234 Vascular endothelial growth factor D Human genes 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 4
- 229960004562 carboplatin Drugs 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 230000000973 chemotherapeutic effect Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 229940047122 interleukins Drugs 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 4
- 210000000822 natural killer cell Anatomy 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 3
- 108020005544 Antisense RNA Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108010074604 Epoetin Alfa Proteins 0.000 description 3
- 102000003951 Erythropoietin Human genes 0.000 description 3
- 108090000394 Erythropoietin Proteins 0.000 description 3
- 102000009109 Fc receptors Human genes 0.000 description 3
- 108010087819 Fc receptors Proteins 0.000 description 3
- 108010008177 Fd immunoglobulins Proteins 0.000 description 3
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 3
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 101000760643 Homo sapiens Carbonic anhydrase 2 Proteins 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 3
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 108091008606 PDGF receptors Proteins 0.000 description 3
- 108010004729 Phycoerythrin Proteins 0.000 description 3
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 108700008625 Reporter Genes Proteins 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000002870 angiogenesis inducing agent Substances 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000008512 biological response Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 3
- 229930195731 calicheamicin Natural products 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 3
- 229940105423 erythropoietin Drugs 0.000 description 3
- 229960005420 etoposide Drugs 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 229960002949 fluorouracil Drugs 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 3
- 229960002411 imatinib Drugs 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 230000006058 immune tolerance Effects 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 230000001024 immunotherapeutic effect Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 102000006495 integrins Human genes 0.000 description 3
- 108010044426 integrins Proteins 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000005073 lymphatic endothelial cell Anatomy 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 3
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 3
- 230000001023 pro-angiogenic effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000011127 radiochemotherapy Methods 0.000 description 3
- 229960004641 rituximab Drugs 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 229940034785 sutent Drugs 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 229960005267 tositumomab Drugs 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 108010032595 Antibody Binding Sites Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010029961 Filgrastim Proteins 0.000 description 2
- 101000889345 Homo sapiens Cancer/testis antigen 2 Proteins 0.000 description 2
- 101000893526 Homo sapiens Leucine-rich repeat transmembrane protein FLRT2 Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 102100026720 Interferon beta Human genes 0.000 description 2
- 108090000467 Interferon-beta Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 2
- 102100040899 Leucine-rich repeat transmembrane protein FLRT2 Human genes 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 101000893525 Mus musculus Leucine-rich repeat transmembrane protein FLRT2 Proteins 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 206010061309 Neoplasm progression Diseases 0.000 description 2
- 102000002111 Neuropilin Human genes 0.000 description 2
- 108050009450 Neuropilin Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102100025648 PDZK1-interacting protein 1 Human genes 0.000 description 2
- 102000038030 PI3Ks Human genes 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 2
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 2
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000011256 aggressive treatment Methods 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 238000011122 anti-angiogenic therapy Methods 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 230000005809 anti-tumor immunity Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 2
- 238000011319 anticancer therapy Methods 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 229940120638 avastin Drugs 0.000 description 2
- 229960003005 axitinib Drugs 0.000 description 2
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 229960000397 bevacizumab Drugs 0.000 description 2
- 238000001815 biotherapy Methods 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- OMZCMEYTWSXEPZ-UHFFFAOYSA-N canertinib Chemical compound C1=C(Cl)C(F)=CC=C1NC1=NC=NC2=CC(OCCCN3CCOCC3)=C(NC(=O)C=C)C=C12 OMZCMEYTWSXEPZ-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 description 2
- 230000008045 co-localization Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000000779 depleting effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- TUJWIYZCAPMHSA-UHFFFAOYSA-N dipentylphosphoryloxybenzene Chemical compound CCCCCP(=O)(CCCCC)OC1=CC=CC=C1 TUJWIYZCAPMHSA-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229960001433 erlotinib Drugs 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 201000003115 germ cell cancer Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 201000011066 hemangioma Diseases 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 229940022353 herceptin Drugs 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 239000000568 immunological adjuvant Substances 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 229940096397 interleukin-8 Drugs 0.000 description 2
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 2
- 229960004891 lapatinib Drugs 0.000 description 2
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000000492 lymphangiogenic effect Effects 0.000 description 2
- 231100000682 maximum tolerated dose Toxicity 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 2
- 229960002450 ofatumumab Drugs 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000000920 organ at risk Anatomy 0.000 description 2
- 229940127084 other anti-cancer agent Drugs 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000004091 panning Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 210000003668 pericyte Anatomy 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000003439 radiotherapeutic effect Effects 0.000 description 2
- 229960004622 raloxifene Drugs 0.000 description 2
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 108010038379 sargramostim Proteins 0.000 description 2
- WUWDLXZGHZSWQZ-WQLSENKSSA-N semaxanib Chemical compound N1C(C)=CC(C)=C1\C=C/1C2=CC=CC=C2NC\1=O WUWDLXZGHZSWQZ-WQLSENKSSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 230000005751 tumor progression Effects 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 2
- 229950000578 vatalanib Drugs 0.000 description 2
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 2
- 229940069559 votrient Drugs 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- WCWUXEGQKLTGDX-LLVKDONJSA-N (2R)-1-[[4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-5-methyl-6-pyrrolo[2,1-f][1,2,4]triazinyl]oxy]-2-propanol Chemical compound C1=C2NC(C)=CC2=C(F)C(OC2=NC=NN3C=C(C(=C32)C)OC[C@H](O)C)=C1 WCWUXEGQKLTGDX-LLVKDONJSA-N 0.000 description 1
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 1
- FLWWDYNPWOSLEO-HQVZTVAUSA-N (2s)-2-[[4-[1-(2-amino-4-oxo-1h-pteridin-6-yl)ethyl-methylamino]benzoyl]amino]pentanedioic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1C(C)N(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FLWWDYNPWOSLEO-HQVZTVAUSA-N 0.000 description 1
- CGMTUJFWROPELF-YPAAEMCBSA-N (3E,5S)-5-[(2S)-butan-2-yl]-3-(1-hydroxyethylidene)pyrrolidine-2,4-dione Chemical compound CC[C@H](C)[C@@H]1NC(=O)\C(=C(/C)O)C1=O CGMTUJFWROPELF-YPAAEMCBSA-N 0.000 description 1
- KCOYQXZDFIIGCY-CZIZESTLSA-N (3e)-4-amino-5-fluoro-3-[5-(4-methylpiperazin-1-yl)-1,3-dihydrobenzimidazol-2-ylidene]quinolin-2-one Chemical compound C1CN(C)CCN1C1=CC=C(N\C(N2)=C/3C(=C4C(F)=CC=CC4=NC\3=O)N)C2=C1 KCOYQXZDFIIGCY-CZIZESTLSA-N 0.000 description 1
- TVIRNGFXQVMMGB-OFWIHYRESA-N (3s,6r,10r,13e,16s)-16-[(2r,3r,4s)-4-chloro-3-hydroxy-4-phenylbutan-2-yl]-10-[(3-chloro-4-methoxyphenyl)methyl]-6-methyl-3-(2-methylpropyl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetrone Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H](O)[C@@H](Cl)C=2C=CC=CC=2)C/C=C/C(=O)N1 TVIRNGFXQVMMGB-OFWIHYRESA-N 0.000 description 1
- XRBSKUSTLXISAB-XVVDYKMHSA-N (5r,6r,7r,8r)-8-hydroxy-7-(hydroxymethyl)-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydrobenzo[f][1,3]benzodioxole-6-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H](CO)[C@@H]2C(O)=O)=C1 XRBSKUSTLXISAB-XVVDYKMHSA-N 0.000 description 1
- XRBSKUSTLXISAB-UHFFFAOYSA-N (7R,7'R,8R,8'R)-form-Podophyllic acid Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C(CO)C2C(O)=O)=C1 XRBSKUSTLXISAB-UHFFFAOYSA-N 0.000 description 1
- AESVUZLWRXEGEX-DKCAWCKPSA-N (7S,9R)-7-[(2S,4R,5R,6R)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione iron(3+) Chemical compound [Fe+3].COc1cccc2C(=O)c3c(O)c4C[C@@](O)(C[C@H](O[C@@H]5C[C@@H](N)[C@@H](O)[C@@H](C)O5)c4c(O)c3C(=O)c12)C(=O)CO AESVUZLWRXEGEX-DKCAWCKPSA-N 0.000 description 1
- JXVAMODRWBNUSF-KZQKBALLSA-N (7s,9r,10r)-7-[(2r,4s,5s,6s)-5-[[(2s,4as,5as,7s,9s,9ar,10ar)-2,9-dimethyl-3-oxo-4,4a,5a,6,7,9,9a,10a-octahydrodipyrano[4,2-a:4',3'-e][1,4]dioxin-7-yl]oxy]-4-(dimethylamino)-6-methyloxan-2-yl]oxy-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2 Chemical compound O([C@@H]1C2=C(O)C=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C2[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O[C@@H]3O[C@@H](C)[C@H]4O[C@@H]5O[C@@H](C)C(=O)C[C@@H]5O[C@H]4C3)[C@H](C2)N(C)C)C[C@]1(O)CC)[C@H]1C[C@H](N(C)C)[C@H](O)[C@H](C)O1 JXVAMODRWBNUSF-KZQKBALLSA-N 0.000 description 1
- INAUWOVKEZHHDM-PEDBPRJASA-N (7s,9s)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[(2r,4s,5s,6s)-5-hydroxy-6-methyl-4-morpholin-4-yloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1 INAUWOVKEZHHDM-PEDBPRJASA-N 0.000 description 1
- RCFNNLSZHVHCEK-IMHLAKCZSA-N (7s,9s)-7-(4-amino-6-methyloxan-2-yl)oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound [Cl-].O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)C1CC([NH3+])CC(C)O1 RCFNNLSZHVHCEK-IMHLAKCZSA-N 0.000 description 1
- NOPNWHSMQOXAEI-PUCKCBAPSA-N (7s,9s)-7-[(2r,4s,5s,6s)-4-(2,3-dihydropyrrol-1-yl)-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCC=C1 NOPNWHSMQOXAEI-PUCKCBAPSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 1
- IEXUMDBQLIVNHZ-YOUGDJEHSA-N (8s,11r,13r,14s,17s)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(3-hydroxypropyl)-13-methyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(O)CCCO)[C@@]2(C)C1 IEXUMDBQLIVNHZ-YOUGDJEHSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 1
- FONKWHRXTPJODV-DNQXCXABSA-N 1,3-bis[2-[(8s)-8-(chloromethyl)-4-hydroxy-1-methyl-7,8-dihydro-3h-pyrrolo[3,2-e]indole-6-carbonyl]-1h-indol-5-yl]urea Chemical compound C1([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C4=CC(O)=C5NC=C(C5=C4[C@H](CCl)C3)C)=C2C=C(O)C2=C1C(C)=CN2 FONKWHRXTPJODV-DNQXCXABSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 1
- BOMZMNZEXMAQQW-UHFFFAOYSA-N 2,5,11-trimethyl-6h-pyrido[4,3-b]carbazol-2-ium-9-ol;acetate Chemical compound CC([O-])=O.C[N+]1=CC=C2C(C)=C(NC=3C4=CC(O)=CC=3)C4=C(C)C2=C1 BOMZMNZEXMAQQW-UHFFFAOYSA-N 0.000 description 1
- QCXJFISCRQIYID-IAEPZHFASA-N 2-amino-1-n-[(3s,6s,7r,10s,16s)-3-[(2s)-butan-2-yl]-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-10-propan-2-yl-8-oxa-1,4,11,14-tetrazabicyclo[14.3.0]nonadecan-6-yl]-4,6-dimethyl-3-oxo-9-n-[(3s,6s,7r,10s,16s)-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-3,10-di(propa Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N=C2C(C(=O)N[C@@H]3C(=O)N[C@H](C(N4CCC[C@H]4C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]3C)=O)[C@@H](C)CC)=C(N)C(=O)C(C)=C2O2)C2=C(C)C=C1 QCXJFISCRQIYID-IAEPZHFASA-N 0.000 description 1
- VNBAOSVONFJBKP-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)propan-1-amine;hydrochloride Chemical compound Cl.CC(Cl)CN(CCCl)CCCl VNBAOSVONFJBKP-UHFFFAOYSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- YIMDLWDNDGKDTJ-QLKYHASDSA-N 3'-deamino-3'-(3-cyanomorpholin-4-yl)doxorubicin Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1C#N YIMDLWDNDGKDTJ-QLKYHASDSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- AXRCEOKUDYDWLF-UHFFFAOYSA-N 3-(1-methyl-3-indolyl)-4-[1-[1-(2-pyridinylmethyl)-4-piperidinyl]-3-indolyl]pyrrole-2,5-dione Chemical compound C12=CC=CC=C2N(C)C=C1C(C(NC1=O)=O)=C1C(C1=CC=CC=C11)=CN1C(CC1)CCN1CC1=CC=CC=N1 AXRCEOKUDYDWLF-UHFFFAOYSA-N 0.000 description 1
- FGTCROZDHDSNIO-UHFFFAOYSA-N 3-(4-quinolinylmethylamino)-N-[4-(trifluoromethoxy)phenyl]-2-thiophenecarboxamide Chemical compound C1=CC(OC(F)(F)F)=CC=C1NC(=O)C1=C(NCC=2C3=CC=CC=C3N=CC=2)C=CS1 FGTCROZDHDSNIO-UHFFFAOYSA-N 0.000 description 1
- HXHAJRMTJXHJJZ-UHFFFAOYSA-N 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-(4-pyrrolidin-1-ylbutylcarbamoylamino)-1,2-thiazole-4-carboxamide Chemical compound S1N=C(OCC=2C(=CC(Br)=CC=2F)F)C(C(=O)N)=C1NC(=O)NCCCCN1CCCC1 HXHAJRMTJXHJJZ-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 1
- QFCXANHHBCGMAS-UHFFFAOYSA-N 4-[[4-(4-chloroanilino)furo[2,3-d]pyridazin-7-yl]oxymethyl]-n-methylpyridine-2-carboxamide Chemical compound C1=NC(C(=O)NC)=CC(COC=2C=3OC=CC=3C(NC=3C=CC(Cl)=CC=3)=NN=2)=C1 QFCXANHHBCGMAS-UHFFFAOYSA-N 0.000 description 1
- HHFBDROWDBDFBR-UHFFFAOYSA-N 4-[[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1NC1=NC=C(CN=C(C=2C3=CC=C(Cl)C=2)C=2C(=CC=CC=2F)F)C3=N1 HHFBDROWDBDFBR-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- WYXSYVWAUAUWLD-SHUUEZRQSA-N 6-azauridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=N1 WYXSYVWAUAUWLD-SHUUEZRQSA-N 0.000 description 1
- 229960005538 6-diazo-5-oxo-L-norleucine Drugs 0.000 description 1
- YCWQAMGASJSUIP-YFKPBYRVSA-N 6-diazo-5-oxo-L-norleucine Chemical compound OC(=O)[C@@H](N)CCC(=O)C=[N+]=[N-] YCWQAMGASJSUIP-YFKPBYRVSA-N 0.000 description 1
- 102100040881 60S acidic ribosomal protein P0 Human genes 0.000 description 1
- UFGQWTWQNIGAEB-UHFFFAOYSA-N 7-chloroquinoline-3-carboxylic acid Chemical compound C1=C(Cl)C=CC2=CC(C(=O)O)=CN=C21 UFGQWTWQNIGAEB-UHFFFAOYSA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- OONFNUWBHFSNBT-HXUWFJFHSA-N AEE788 Chemical compound C1CN(CC)CCN1CC1=CC=C(C=2NC3=NC=NC(N[C@H](C)C=4C=CC=CC=4)=C3C=2)C=C1 OONFNUWBHFSNBT-HXUWFJFHSA-N 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- CEIZFXOZIQNICU-UHFFFAOYSA-N Alternaria alternata Crofton-weed toxin Natural products CCC(C)C1NC(=O)C(C(C)=O)=C1O CEIZFXOZIQNICU-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 102000009840 Angiopoietins Human genes 0.000 description 1
- 108010009906 Angiopoietins Proteins 0.000 description 1
- 244000303258 Annona diversifolia Species 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 102000014654 Aromatase Human genes 0.000 description 1
- 108010078554 Aromatase Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- MBABCNBNDNGODA-LTGLSHGVSA-N Bullatacin Natural products O=C1C(C[C@H](O)CCCCCCCCCC[C@@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)=C[C@H](C)O1 MBABCNBNDNGODA-LTGLSHGVSA-N 0.000 description 1
- KGGVWMAPBXIMEM-ZRTAFWODSA-N Bullatacinone Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@H]2OC(=O)[C@H](CC(C)=O)C2)CC1 KGGVWMAPBXIMEM-ZRTAFWODSA-N 0.000 description 1
- KGGVWMAPBXIMEM-JQFCFGFHSA-N Bullatacinone Natural products O=C(C[C@H]1C(=O)O[C@H](CCCCCCCCCC[C@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)C1)C KGGVWMAPBXIMEM-JQFCFGFHSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 229940124292 CD20 monoclonal antibody Drugs 0.000 description 1
- LLVZBTWPGQVVLW-SNAWJCMRSA-N CP-724714 Chemical compound C12=CC(/C=C/CNC(=O)COC)=CC=C2N=CN=C1NC(C=C1C)=CC=C1OC1=CC=C(C)N=C1 LLVZBTWPGQVVLW-SNAWJCMRSA-N 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 239000005461 Canertinib Substances 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 101710167917 Carbonic anhydrase 2 Proteins 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- AOCCBINRVIKJHY-UHFFFAOYSA-N Carmofur Chemical compound CCCCCCNC(=O)N1C=C(F)C(=O)NC1=O AOCCBINRVIKJHY-UHFFFAOYSA-N 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 241001227713 Chiron Species 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- XCDXSSFOJZZGQC-UHFFFAOYSA-N Chlornaphazine Chemical compound C1=CC=CC2=CC(N(CCCl)CCCl)=CC=C21 XCDXSSFOJZZGQC-UHFFFAOYSA-N 0.000 description 1
- MKQWTWSXVILIKJ-LXGUWJNJSA-N Chlorozotocin Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)NC(=O)N(N=O)CCCl MKQWTWSXVILIKJ-LXGUWJNJSA-N 0.000 description 1
- 208000010126 Chondromatosis Diseases 0.000 description 1
- 208000019591 Chondromyxoid fibroma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102100027995 Collagenase 3 Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 101150073133 Cpt1a gene Proteins 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 235000015655 Crocus sativus Nutrition 0.000 description 1
- 229930188224 Cryptophycin Natural products 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- AUGQEEXBDZWUJY-ZLJUKNTDSA-N Diacetoxyscirpenol Chemical compound C([C@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)C)O2 AUGQEEXBDZWUJY-ZLJUKNTDSA-N 0.000 description 1
- AUGQEEXBDZWUJY-UHFFFAOYSA-N Diacetoxyscirpenol Natural products CC(=O)OCC12CCC(C)=CC1OC1C(O)C(OC(C)=O)C2(C)C11CO1 AUGQEEXBDZWUJY-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 229930193152 Dynemicin Natural products 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- AFMYMMXSQGUCBK-UHFFFAOYSA-N Endynamicin A Natural products C1#CC=CC#CC2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3C34OC32C(C)C(C(O)=O)=C(OC)C41 AFMYMMXSQGUCBK-UHFFFAOYSA-N 0.000 description 1
- SAMRUMKYXPVKPA-VFKOLLTISA-N Enocitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 SAMRUMKYXPVKPA-VFKOLLTISA-N 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 102100031968 Ephrin type-B receptor 2 Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- OBMLHUPNRURLOK-XGRAFVIBSA-N Epitiostanol Chemical compound C1[C@@H]2S[C@@H]2C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 OBMLHUPNRURLOK-XGRAFVIBSA-N 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 229930189413 Esperamicin Natural products 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 108010003471 Fetal Proteins Proteins 0.000 description 1
- 102000004641 Fetal Proteins Human genes 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 240000008168 Ficus benjamina Species 0.000 description 1
- 208000004057 Focal Nodular Hyperplasia Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 201000004066 Ganglioglioma Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101001070329 Geobacillus stearothermophilus 50S ribosomal protein L18 Proteins 0.000 description 1
- 208000000527 Germinoma Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 108010091938 HLA-B7 Antigen Proteins 0.000 description 1
- 241000713858 Harvey murine sarcoma virus Species 0.000 description 1
- 206010019629 Hepatic adenoma Diseases 0.000 description 1
- 102100030634 Homeobox protein OTX2 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000673456 Homo sapiens 60S acidic ribosomal protein P0 Proteins 0.000 description 1
- 101000627872 Homo sapiens 72 kDa type IV collagenase Proteins 0.000 description 1
- 101000929319 Homo sapiens Actin, aortic smooth muscle Proteins 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000577887 Homo sapiens Collagenase 3 Proteins 0.000 description 1
- 101000935587 Homo sapiens Flavin reductase (NADPH) Proteins 0.000 description 1
- 101000584400 Homo sapiens Homeobox protein OTX2 Proteins 0.000 description 1
- 101001011886 Homo sapiens Matrix metalloproteinase-16 Proteins 0.000 description 1
- 101000627861 Homo sapiens Matrix metalloproteinase-28 Proteins 0.000 description 1
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 description 1
- 101001057156 Homo sapiens Melanoma-associated antigen C2 Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101000693231 Homo sapiens PDZK1-interacting protein 1 Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 101000821981 Homo sapiens Sarcoma antigen 1 Proteins 0.000 description 1
- 101000648075 Homo sapiens Trafficking protein particle complex subunit 1 Proteins 0.000 description 1
- 101000742579 Homo sapiens Vascular endothelial growth factor B Proteins 0.000 description 1
- 101000851030 Homo sapiens Vascular endothelial growth factor receptor 3 Proteins 0.000 description 1
- 238000012450 HuMAb Mouse Methods 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102000003815 Interleukin-11 Human genes 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 1
- 206010073094 Intraductal proliferative breast lesion Diseases 0.000 description 1
- 208000005125 Invasive Hydatidiform Mole Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 1
- 239000005536 L01XE08 - Nilotinib Substances 0.000 description 1
- 239000002145 L01XE14 - Bosutinib Substances 0.000 description 1
- 239000002176 L01XE26 - Cabozantinib Substances 0.000 description 1
- UIARLYUEJFELEN-LROUJFHJSA-N LSM-1231 Chemical compound C12=C3N4C5=CC=CC=C5C3=C3C(=O)NCC3=C2C2=CC=CC=C2N1[C@]1(C)[C@](CO)(O)C[C@H]4O1 UIARLYUEJFELEN-LROUJFHJSA-N 0.000 description 1
- JLERVPBPJHKRBJ-UHFFFAOYSA-N LY 117018 Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCC3)=CC=2)C2=CC=C(O)C=C2S1 JLERVPBPJHKRBJ-UHFFFAOYSA-N 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 206010073099 Lobular breast carcinoma in situ Diseases 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 102000016200 MART-1 Antigen Human genes 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 229940124640 MK-2206 Drugs 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- VJRAUFKOOPNFIQ-UHFFFAOYSA-N Marcellomycin Natural products C12=C(O)C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C=C2C(C(=O)OC)C(CC)(O)CC1OC(OC1C)CC(N(C)C)C1OC(OC1C)CC(O)C1OC1CC(O)C(O)C(C)O1 VJRAUFKOOPNFIQ-UHFFFAOYSA-N 0.000 description 1
- 102100030200 Matrix metalloproteinase-16 Human genes 0.000 description 1
- 102100026799 Matrix metalloproteinase-28 Human genes 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 229930126263 Maytansine Natural products 0.000 description 1
- 241000219823 Medicago Species 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 1
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 1
- 102100027252 Melanoma-associated antigen C2 Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- IVDYZAAPOLNZKG-KWHRADDSSA-N Mepitiostane Chemical compound O([C@@H]1[C@]2(CC[C@@H]3[C@@]4(C)C[C@H]5S[C@H]5C[C@@H]4CC[C@H]3[C@@H]2CC1)C)C1(OC)CCCC1 IVDYZAAPOLNZKG-KWHRADDSSA-N 0.000 description 1
- 241001436793 Meru Species 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 206010028116 Mucosal inflammation Diseases 0.000 description 1
- 201000010927 Mucositis Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000204795 Muraena helena Species 0.000 description 1
- 101100344216 Mus musculus Lyve1 gene Proteins 0.000 description 1
- 101600105505 Mus musculus Vascular endothelial growth factor C (isoform 1) Proteins 0.000 description 1
- OUSFTKFNBAZUKL-UHFFFAOYSA-N N-(5-{[(5-tert-butyl-1,3-oxazol-2-yl)methyl]sulfanyl}-1,3-thiazol-2-yl)piperidine-4-carboxamide Chemical compound O1C(C(C)(C)C)=CN=C1CSC(S1)=CN=C1NC(=O)C1CCNCC1 OUSFTKFNBAZUKL-UHFFFAOYSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- SYNHCENRCUAUNM-UHFFFAOYSA-N Nitrogen mustard N-oxide hydrochloride Chemical compound Cl.ClCC[N+]([O-])(C)CCCl SYNHCENRCUAUNM-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000000160 Olfactory Esthesioneuroblastoma Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 229930187135 Olivomycin Natural products 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000001715 Osteoblastoma Diseases 0.000 description 1
- 206010031264 Osteonecrosis Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- SUDAHWBOROXANE-VIFPVBQESA-N PD 0325901-Cl Chemical compound OC[C@H](O)CONC(=O)C1=CC=C(F)C(F)=C1NC1=CC=C(I)C=C1F SUDAHWBOROXANE-VIFPVBQESA-N 0.000 description 1
- 108050009474 PDZK1-interacting protein 1 Proteins 0.000 description 1
- PBBRWFOVCUAONR-UHFFFAOYSA-N PP2 Chemical compound C12=C(N)N=CN=C2N(C(C)(C)C)N=C1C1=CC=C(Cl)C=C1 PBBRWFOVCUAONR-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 1
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- VREZDOWOLGNDPW-ALTGWBOUSA-N Pancratistatin Chemical compound C1=C2[C@H]3[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)[C@@H]3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-ALTGWBOUSA-N 0.000 description 1
- VREZDOWOLGNDPW-MYVCAWNPSA-N Pancratistatin Natural products O=C1N[C@H]2[C@H](O)[C@H](O)[C@H](O)[C@H](O)[C@@H]2c2c1c(O)c1OCOc1c2 VREZDOWOLGNDPW-MYVCAWNPSA-N 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 241000920340 Pion Species 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 241001510071 Pyrrhocoridae Species 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 208000003386 Radiation-Induced Neoplasms Diseases 0.000 description 1
- AHHFEZNOXOZZQA-ZEBDFXRSSA-N Ranimustine Chemical compound CO[C@H]1O[C@H](CNC(=O)N(CCCl)N=O)[C@@H](O)[C@H](O)[C@H]1O AHHFEZNOXOZZQA-ZEBDFXRSSA-N 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- 108010073443 Ribi adjuvant Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 102100021466 Sarcoma antigen 1 Human genes 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920000519 Sizofiran Polymers 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 206010065769 Soft tissue necrosis Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- BXFOFFBJRFZBQZ-QYWOHJEZSA-N T-2 toxin Chemical compound C([C@@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@H]1[C@]3(COC(C)=O)C[C@@H](C(=C1)C)OC(=O)CC(C)C)O2 BXFOFFBJRFZBQZ-QYWOHJEZSA-N 0.000 description 1
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 1
- 108700042805 TRU-015 Proteins 0.000 description 1
- 239000005463 Tandutinib Substances 0.000 description 1
- CGMTUJFWROPELF-UHFFFAOYSA-N Tenuazonic acid Natural products CCC(C)C1NC(=O)C(=C(C)/O)C1=O CGMTUJFWROPELF-UHFFFAOYSA-N 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 238000012338 Therapeutic targeting Methods 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- IWEQQRMGNVVKQW-OQKDUQJOSA-N Toremifene citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 IWEQQRMGNVVKQW-OQKDUQJOSA-N 0.000 description 1
- 102100025256 Trafficking protein particle complex subunit 1 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- UMILHIMHKXVDGH-UHFFFAOYSA-N Triethylene glycol diglycidyl ether Chemical compound C1OC1COCCOCCOCCOCC1CO1 UMILHIMHKXVDGH-UHFFFAOYSA-N 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 206010046799 Uterine leiomyosarcoma Diseases 0.000 description 1
- 201000005969 Uveal melanoma Diseases 0.000 description 1
- 229940091171 VEGFR-2 tyrosine kinase inhibitor Drugs 0.000 description 1
- 229940127432 VEGFR3 Inhibitors Drugs 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 1
- 102100038217 Vascular endothelial growth factor B Human genes 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 230000004156 Wnt signaling pathway Effects 0.000 description 1
- 238000012452 Xenomouse strains Methods 0.000 description 1
- 208000005946 Xerostomia Diseases 0.000 description 1
- ZYVSOIYQKUDENJ-ASUJBHBQSA-N [(2R,3R,4R,6R)-6-[[(6S,7S)-6-[(2S,4R,5R,6R)-4-[(2R,4R,5R,6R)-4-[(2S,4S,5S,6S)-5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-[(3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6H-anthracen-2-yl]oxy]-4-[(2R,4R,5R,6R)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy-2-methyloxan-3-yl] acetate Chemical class COC([C@@H]1Cc2cc3cc(O[C@@H]4C[C@@H](O[C@@H]5C[C@@H](O)[C@@H](OC)[C@@H](C)O5)[C@H](OC(C)=O)[C@@H](C)O4)c(C)c(O)c3c(O)c2C(=O)[C@H]1O[C@H]1C[C@@H](O[C@@H]2C[C@@H](O[C@H]3C[C@](C)(O)[C@@H](OC(C)=O)[C@H](C)O3)[C@H](O)[C@@H](C)O2)[C@H](O)[C@@H](C)O1)C(=O)[C@@H](O)[C@@H](C)O ZYVSOIYQKUDENJ-ASUJBHBQSA-N 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- LUJZZYWHBDHDQX-QFIPXVFZSA-N [(3s)-morpholin-3-yl]methyl n-[4-[[1-[(3-fluorophenyl)methyl]indazol-5-yl]amino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamate Chemical compound C=1N2N=CN=C(NC=3C=C4C=NN(CC=5C=C(F)C=CC=5)C4=CC=3)C2=C(C)C=1NC(=O)OC[C@@H]1COCCN1 LUJZZYWHBDHDQX-QFIPXVFZSA-N 0.000 description 1
- SPJCRMJCFSJKDE-ZWBUGVOYSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 2-[4-[bis(2-chloroethyl)amino]phenyl]acetate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 SPJCRMJCFSJKDE-ZWBUGVOYSA-N 0.000 description 1
- IFJUINDAXYAPTO-UUBSBJJBSA-N [(8r,9s,13s,14s,17s)-17-[2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]acetyl]oxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl] benzoate Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@H]4OC(=O)COC(=O)CCCC=1C=CC(=CC=1)N(CCCl)CCCl)C)CC2=CC=3OC(=O)C1=CC=CC=C1 IFJUINDAXYAPTO-UUBSBJJBSA-N 0.000 description 1
- IHGLINDYFMDHJG-UHFFFAOYSA-N [2-(4-methoxyphenyl)-3,4-dihydronaphthalen-1-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]methanone Chemical compound C1=CC(OC)=CC=C1C(CCC1=CC=CC=C11)=C1C(=O)C(C=C1)=CC=C1OCCN1CCCC1 IHGLINDYFMDHJG-UHFFFAOYSA-N 0.000 description 1
- XZSRRNFBEIOBDA-CFNBKWCHSA-N [2-[(2s,4s)-4-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracen-2-yl]-2-oxoethyl] 2,2-diethoxyacetate Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)C(OCC)OCC)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 XZSRRNFBEIOBDA-CFNBKWCHSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- ZOZKYEHVNDEUCO-XUTVFYLZSA-N aceglatone Chemical compound O1C(=O)[C@H](OC(C)=O)[C@@H]2OC(=O)[C@@H](OC(=O)C)[C@@H]21 ZOZKYEHVNDEUCO-XUTVFYLZSA-N 0.000 description 1
- 229950002684 aceglatone Drugs 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229950004955 adozelesin Drugs 0.000 description 1
- BYRVKDUQDLJUBX-JJCDCTGGSA-N adozelesin Chemical compound C1=CC=C2OC(C(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C[C@H]4C[C@]44C5=C(C(C=C43)=O)NC=C5C)=CC2=C1 BYRVKDUQDLJUBX-JJCDCTGGSA-N 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 206010065867 alveolar rhabdomyosarcoma Diseases 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000013059 antihormonal agent Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 229960003852 atezolizumab Drugs 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 229950011321 azaserine Drugs 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 229960003270 belimumab Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000004791 biological behavior Effects 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 229950006844 bizelesin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 201000011143 bone giant cell tumor Diseases 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229960003736 bosutinib Drugs 0.000 description 1
- UBPYILGKFZZVDX-UHFFFAOYSA-N bosutinib Chemical compound C1=C(Cl)C(OC)=CC(NC=2C3=CC(OC)=C(OCCCN4CCN(C)CC4)C=C3N=CC=2C#N)=C1Cl UBPYILGKFZZVDX-UHFFFAOYSA-N 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000000220 brain stem cancer Diseases 0.000 description 1
- 201000005389 breast carcinoma in situ Diseases 0.000 description 1
- 229950005993 brivanib alaninate Drugs 0.000 description 1
- LTEJRLHKIYCEOX-UHFFFAOYSA-N brivanib alaninate Chemical compound C1=C2NC(C)=CC2=C(F)C(OC2=NC=NN3C=C(C(=C32)C)OCC(C)OC(=O)C(C)N)=C1 LTEJRLHKIYCEOX-UHFFFAOYSA-N 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- MBABCNBNDNGODA-LUVUIASKSA-N bullatacin Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-LUVUIASKSA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229960001292 cabozantinib Drugs 0.000 description 1
- ONIQOQHATWINJY-UHFFFAOYSA-N cabozantinib Chemical compound C=12C=C(OC)C(OC)=CC2=NC=CC=1OC(C=C1)=CC=C1NC(=O)C1(C(=O)NC=2C=CC(F)=CC=2)CC1 ONIQOQHATWINJY-UHFFFAOYSA-N 0.000 description 1
- 108700002839 cactinomycin Proteins 0.000 description 1
- 229950009908 cactinomycin Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229950009823 calusterone Drugs 0.000 description 1
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 description 1
- 229940112129 campath Drugs 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 229950002826 canertinib Drugs 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229960003261 carmofur Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229950007509 carzelesin Drugs 0.000 description 1
- BBZDXMBRAFTCAA-AREMUKBSSA-N carzelesin Chemical compound C1=2NC=C(C)C=2C([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)C3=CC4=CC=C(C=C4O3)N(CC)CC)=C2C=C1OC(=O)NC1=CC=CC=C1 BBZDXMBRAFTCAA-AREMUKBSSA-N 0.000 description 1
- 108010047060 carzinophilin Proteins 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- AEULIVPVIDOLIN-UHFFFAOYSA-N cep-11981 Chemical compound C1=C2C3=C4CNC(=O)C4=C4C5=CN(C)N=C5CCC4=C3N(CC(C)C)C2=CC=C1NC1=NC=CC=N1 AEULIVPVIDOLIN-UHFFFAOYSA-N 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- USVCWSAJUAARAL-MEMLXQNLSA-N chembl551064 Chemical compound C1=2C(N)=NC=NC=2N([C@@H]2C[C@H](C2)N2CCC2)C=C1C(C=1)=CC=CC=1OCC1=CC=CC=C1 USVCWSAJUAARAL-MEMLXQNLSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 208000012191 childhood neoplasm Diseases 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229950008249 chlornaphazine Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960001480 chlorozotocin Drugs 0.000 description 1
- 230000007665 chronic toxicity Effects 0.000 description 1
- 231100000160 chronic toxicity Toxicity 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229940030792 clinac Drugs 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000005025 clonogenic survival Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 108010044493 collagen type XVII Proteins 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000006552 constitutive activation Effects 0.000 description 1
- 238000011340 continuous therapy Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 108010089438 cryptophycin 1 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-VVCTWANISA-N cryptophycin 1 Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H]2[C@H](O2)C=2C=CC=CC=2)C/C=C/C(=O)N1 PSNOPSMXOBPNNV-VVCTWANISA-N 0.000 description 1
- 108010090203 cryptophycin 8 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-UHFFFAOYSA-N cryptophycin-327 Natural products C1=C(Cl)C(OC)=CC=C1CC1C(=O)NCC(C)C(=O)OC(CC(C)C)C(=O)OC(C(C)C2C(O2)C=2C=CC=CC=2)CC=CC(=O)N1 PSNOPSMXOBPNNV-UHFFFAOYSA-N 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000000120 cytopathologic effect Effects 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229950006418 dactolisib Drugs 0.000 description 1
- JOGKUKXHTYWRGZ-UHFFFAOYSA-N dactolisib Chemical compound O=C1N(C)C2=CN=C3C=CC(C=4C=C5C=CC=CC5=NC=4)=CC3=C2N1C1=CC=C(C(C)(C)C#N)C=C1 JOGKUKXHTYWRGZ-UHFFFAOYSA-N 0.000 description 1
- 229960002448 dasatinib Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 229960005052 demecolcine Drugs 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 229950003913 detorubicin Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- WVYXNIXAMZOZFK-UHFFFAOYSA-N diaziquone Chemical compound O=C1C(NC(=O)OCC)=C(N2CC2)C(=O)C(NC(=O)OCC)=C1N1CC1 WVYXNIXAMZOZFK-UHFFFAOYSA-N 0.000 description 1
- 229950002389 diaziquone Drugs 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 201000009777 distal biliary tract carcinoma Diseases 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 1
- 229930188854 dolastatin Natural products 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 229950005778 dovitinib Drugs 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229950004683 drostanolone propionate Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 1
- 201000007273 ductal carcinoma in situ Diseases 0.000 description 1
- 229960005501 duocarmycin Drugs 0.000 description 1
- VQNATVDKACXKTF-XELLLNAOSA-N duocarmycin Chemical compound COC1=C(OC)C(OC)=C2NC(C(=O)N3C4=CC(=O)C5=C([C@@]64C[C@@H]6C3)C=C(N5)C(=O)OC)=CC2=C1 VQNATVDKACXKTF-XELLLNAOSA-N 0.000 description 1
- 229930184221 duocarmycin Natural products 0.000 description 1
- 229950009791 durvalumab Drugs 0.000 description 1
- AFMYMMXSQGUCBK-AKMKHHNQSA-N dynemicin a Chemical compound C1#C\C=C/C#C[C@@H]2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3[C@@]34O[C@]32[C@@H](C)C(C(O)=O)=C(OC)[C@H]41 AFMYMMXSQGUCBK-AKMKHHNQSA-N 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- XOPYFXBZMVTEJF-PDACKIITSA-N eleutherobin Chemical compound C(/[C@H]1[C@H](C(=CC[C@@H]1C(C)C)C)C[C@@H]([C@@]1(C)O[C@@]2(C=C1)OC)OC(=O)\C=C\C=1N=CN(C)C=1)=C2\CO[C@@H]1OC[C@@H](O)[C@@H](O)[C@@H]1OC(C)=O XOPYFXBZMVTEJF-PDACKIITSA-N 0.000 description 1
- XOPYFXBZMVTEJF-UHFFFAOYSA-N eleutherobin Natural products C1=CC2(OC)OC1(C)C(OC(=O)C=CC=1N=CN(C)C=1)CC(C(=CCC1C(C)C)C)C1C=C2COC1OCC(O)C(O)C1OC(C)=O XOPYFXBZMVTEJF-UHFFFAOYSA-N 0.000 description 1
- 229950000549 elliptinium acetate Drugs 0.000 description 1
- 201000009409 embryonal rhabdomyosarcoma Diseases 0.000 description 1
- 201000003908 endometrial adenocarcinoma Diseases 0.000 description 1
- 208000029382 endometrium adenocarcinoma Diseases 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229950011487 enocitabine Drugs 0.000 description 1
- 229950002189 enzastaurin Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 1
- 229950002973 epitiostanol Drugs 0.000 description 1
- 229960003388 epoetin alfa Drugs 0.000 description 1
- 229940089118 epogen Drugs 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- 150000003883 epothilone derivatives Chemical class 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- ITSGNOIFAJAQHJ-BMFNZSJVSA-N esorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)C[C@H](C)O1 ITSGNOIFAJAQHJ-BMFNZSJVSA-N 0.000 description 1
- 229950002017 esorubicin Drugs 0.000 description 1
- LJQQFQHBKUKHIS-WJHRIEJJSA-N esperamicin Chemical compound O1CC(NC(C)C)C(OC)CC1OC1C(O)C(NOC2OC(C)C(SC)C(O)C2)C(C)OC1OC1C(\C2=C/CSSSC)=C(NC(=O)OC)C(=O)C(OC3OC(C)C(O)C(OC(=O)C=4C(=CC(OC)=C(OC)C=4)NC(=O)C(=C)OC)C3)C2(O)C#C\C=C/C#C1 LJQQFQHBKUKHIS-WJHRIEJJSA-N 0.000 description 1
- 208000032099 esthesioneuroblastoma Diseases 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- QSRLNKCNOLVZIR-KRWDZBQOSA-N ethyl (2s)-2-[[2-[4-[bis(2-chloroethyl)amino]phenyl]acetyl]amino]-4-methylsulfanylbutanoate Chemical compound CCOC(=O)[C@H](CCSC)NC(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 QSRLNKCNOLVZIR-KRWDZBQOSA-N 0.000 description 1
- 229960005237 etoglucid Drugs 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 229940043168 fareston Drugs 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 229960004177 filgrastim Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 201000000079 gynecomastia Diseases 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000048701 human ACTA2 Human genes 0.000 description 1
- 102000050506 human LYVE1 Human genes 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 229940015872 ibandronate Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- DBIGHPPNXATHOF-UHFFFAOYSA-N improsulfan Chemical compound CS(=O)(=O)OCCCNCCCOS(C)(=O)=O DBIGHPPNXATHOF-UHFFFAOYSA-N 0.000 description 1
- 229950008097 improsulfan Drugs 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 208000014899 intrahepatic bile duct cancer Diseases 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229940065638 intron a Drugs 0.000 description 1
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 1
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 238000003368 label free method Methods 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229960000681 leflunomide Drugs 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 229950001845 lestaurtinib Drugs 0.000 description 1
- 229940087875 leukine Drugs 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- MPVGZUGXCQEXTM-UHFFFAOYSA-N linifanib Chemical compound CC1=CC=C(F)C(NC(=O)NC=2C=CC(=CC=2)C=2C=3C(N)=NNC=3C=CC=2)=C1 MPVGZUGXCQEXTM-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 201000011059 lobular neoplasia Diseases 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 229960003538 lonidamine Drugs 0.000 description 1
- WDRYRZXSPDWGEB-UHFFFAOYSA-N lonidamine Chemical compound C12=CC=CC=C2C(C(=O)O)=NN1CC1=CC=C(Cl)C=C1Cl WDRYRZXSPDWGEB-UHFFFAOYSA-N 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- MQXVYODZCMMZEM-ZYUZMQFOSA-N mannomustine Chemical compound ClCCNC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CNCCCl MQXVYODZCMMZEM-ZYUZMQFOSA-N 0.000 description 1
- 229950008612 mannomustine Drugs 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 210000002418 meninge Anatomy 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 229950009246 mepitiostane Drugs 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VJRAUFKOOPNFIQ-TVEKBUMESA-N methyl (1r,2r,4s)-4-[(2r,4s,5s,6s)-5-[(2s,4s,5s,6s)-5-[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-(dimethylamino)-6-methyloxan-2-yl]oxy-2-ethyl-2,5,7,10-tetrahydroxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylat Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1C[C@H](O)[C@H](O)[C@H](C)O1 VJRAUFKOOPNFIQ-TVEKBUMESA-N 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000010208 microarray analysis Methods 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 229950010895 midostaurin Drugs 0.000 description 1
- BMGQWWVMWDBQGC-IIFHNQTCSA-N midostaurin Chemical compound CN([C@H]1[C@H]([C@]2(C)O[C@@H](N3C4=CC=CC=C4C4=C5C(=O)NCC5=C5C6=CC=CC=C6N2C5=C43)C1)OC)C(=O)C1=CC=CC=C1 BMGQWWVMWDBQGC-IIFHNQTCSA-N 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229960003539 mitoguazone Drugs 0.000 description 1
- MXWHMTNPTTVWDM-NXOFHUPFSA-N mitoguazone Chemical compound NC(N)=N\N=C(/C)\C=N\N=C(N)N MXWHMTNPTTVWDM-NXOFHUPFSA-N 0.000 description 1
- VFKZTMPDYBFSTM-GUCUJZIJSA-N mitolactol Chemical compound BrC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-GUCUJZIJSA-N 0.000 description 1
- 229950010913 mitolactol Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- FOYWNSCCNCUEPU-UHFFFAOYSA-N mopidamol Chemical compound C12=NC(N(CCO)CCO)=NC=C2N=C(N(CCO)CCO)N=C1N1CCCCC1 FOYWNSCCNCUEPU-UHFFFAOYSA-N 0.000 description 1
- 229950010718 mopidamol Drugs 0.000 description 1
- 108010087908 mouse alpha-smooth muscle actin Proteins 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- ZTFBIUXIQYRUNT-MDWZMJQESA-N mubritinib Chemical compound C1=CC(C(F)(F)F)=CC=C1\C=C\C1=NC(COC=2C=CC(CCCCN3N=NC=C3)=CC=2)=CO1 ZTFBIUXIQYRUNT-MDWZMJQESA-N 0.000 description 1
- 201000010879 mucinous adenocarcinoma Diseases 0.000 description 1
- 229940124303 multikinase inhibitor Drugs 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000004457 myocytus nodalis Anatomy 0.000 description 1
- WPOXAFXHRJYEIC-UHFFFAOYSA-N n-(2-chloro-5-methoxyphenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine Chemical compound COC1=CC=C(Cl)C(NC=2C3=CC(OC)=C(OCC4CCN(C)CC4)C=C3N=CN=2)=C1 WPOXAFXHRJYEIC-UHFFFAOYSA-N 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- 208000018795 nasal cavity and paranasal sinus carcinoma Diseases 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 229950008835 neratinib Drugs 0.000 description 1
- ZNHPZUKZSNBOSQ-BQYQJAHWSA-N neratinib Chemical compound C=12C=C(NC\C=C\CN(C)C)C(OCC)=CC2=NC=C(C#N)C=1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZNHPZUKZSNBOSQ-BQYQJAHWSA-N 0.000 description 1
- 229940071846 neulasta Drugs 0.000 description 1
- 229940082926 neumega Drugs 0.000 description 1
- 229940029345 neupogen Drugs 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HHZIURLSWUIHRB-UHFFFAOYSA-N nilotinib Chemical compound C1=NC(C)=CN1C1=CC(NC(=O)C=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)=CC(C(F)(F)F)=C1 HHZIURLSWUIHRB-UHFFFAOYSA-N 0.000 description 1
- 229960001346 nilotinib Drugs 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- YMVWGSQGCWCDGW-UHFFFAOYSA-N nitracrine Chemical compound C1=CC([N+]([O-])=O)=C2C(NCCCN(C)C)=C(C=CC=C3)C3=NC2=C1 YMVWGSQGCWCDGW-UHFFFAOYSA-N 0.000 description 1
- 229950008607 nitracrine Drugs 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 102000037979 non-receptor tyrosine kinases Human genes 0.000 description 1
- 108091008046 non-receptor tyrosine kinases Proteins 0.000 description 1
- 239000012740 non-selective inhibitor Substances 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229950005751 ocrelizumab Drugs 0.000 description 1
- CZDBNBLGZNWKMC-MWQNXGTOSA-N olivomycin Chemical class O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1)O[C@H]1O[C@@H](C)[C@H](O)[C@@H](OC2O[C@@H](C)[C@H](O)[C@@H](O)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@H](O)[C@H](OC)[C@H](C)O1 CZDBNBLGZNWKMC-MWQNXGTOSA-N 0.000 description 1
- 229950011093 onapristone Drugs 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 108010046821 oprelvekin Proteins 0.000 description 1
- 201000005443 oral cavity cancer Diseases 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- VYNDHICBIRRPFP-UHFFFAOYSA-N pacific blue Chemical compound FC1=C(O)C(F)=C2OC(=O)C(C(=O)O)=CC2=C1 VYNDHICBIRRPFP-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229960004390 palbociclib Drugs 0.000 description 1
- AHJRHEGDXFFMBM-UHFFFAOYSA-N palbociclib Chemical compound N1=C2N(C3CCCC3)C(=O)C(C(=O)C)=C(C)C2=CN=C1NC(N=C1)=CC=C1N1CCNCC1 AHJRHEGDXFFMBM-UHFFFAOYSA-N 0.000 description 1
- VREZDOWOLGNDPW-UHFFFAOYSA-N pancratistatine Natural products C1=C2C3C(O)C(O)C(O)C(O)C3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-UHFFFAOYSA-N 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 201000005163 papillary serous adenocarcinoma Diseases 0.000 description 1
- 208000024641 papillary serous cystadenocarcinoma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000003068 pathway analysis Methods 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 108010044644 pegfilgrastim Proteins 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 229960002087 pertuzumab Drugs 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 238000009522 phase III clinical trial Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- NUKCGLDCWQXYOQ-UHFFFAOYSA-N piposulfan Chemical compound CS(=O)(=O)OCCC(=O)N1CCN(C(=O)CCOS(C)(=O)=O)CC1 NUKCGLDCWQXYOQ-UHFFFAOYSA-N 0.000 description 1
- 229950001100 piposulfan Drugs 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- 201000002511 pituitary cancer Diseases 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 201000009463 pleomorphic rhabdomyosarcoma Diseases 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 1
- 230000003651 pro-proliferative effect Effects 0.000 description 1
- 230000001566 pro-viral effect Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 229940029359 procrit Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000092 prognostic biomarker Substances 0.000 description 1
- 229940087463 proleukin Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- ZYHMJXZULPZUED-UHFFFAOYSA-N propargite Chemical compound C1=CC(C(C)(C)C)=CC=C1OC1C(OS(=O)OCC#C)CCCC1 ZYHMJXZULPZUED-UHFFFAOYSA-N 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000002661 proton therapy Methods 0.000 description 1
- WOLQREOUPKZMEX-UHFFFAOYSA-N pteroyltriglutamic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(=O)NC(CCC(=O)NC(CCC(O)=O)C(O)=O)C(O)=O)C(O)=O)C=C1 WOLQREOUPKZMEX-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000003537 radioprotector Effects 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 229960002185 ranimustine Drugs 0.000 description 1
- BMKDZUISNHGIBY-UHFFFAOYSA-N razoxane Chemical compound C1C(=O)NC(=O)CN1C(C)CN1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-UHFFFAOYSA-N 0.000 description 1
- 229960000460 razoxane Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229940124617 receptor tyrosine kinase inhibitor Drugs 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 229950004892 rodorubicin Drugs 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- MBABCNBNDNGODA-WPZDJQSSSA-N rolliniastatin 1 Natural products O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@H]1[C@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-WPZDJQSSSA-N 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 239000004248 saffron Substances 0.000 description 1
- 235000013974 saffron Nutrition 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 229950009919 saracatinib Drugs 0.000 description 1
- OUKYUETWWIPKQR-UHFFFAOYSA-N saracatinib Chemical compound C1CN(C)CCN1CCOC1=CC(OC2CCOCC2)=C(C(NC=2C(=CC=C3OCOC3=2)Cl)=NC=N2)C2=C1 OUKYUETWWIPKQR-UHFFFAOYSA-N 0.000 description 1
- 229930182947 sarcodictyin Natural products 0.000 description 1
- 229960002530 sargramostim Drugs 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- BTIHMVBBUGXLCJ-OAHLLOKOSA-N seliciclib Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)CC)=NC=1NCC1=CC=CC=C1 BTIHMVBBUGXLCJ-OAHLLOKOSA-N 0.000 description 1
- 229950000055 seliciclib Drugs 0.000 description 1
- 229950003647 semaxanib Drugs 0.000 description 1
- 210000005005 sentinel lymph node Anatomy 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229950001403 sizofiran Drugs 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 210000001154 skull base Anatomy 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 150000003384 small molecules Chemical group 0.000 description 1
- 230000008410 smoothened signaling pathway Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- IVDHYUQIDRJSTI-UHFFFAOYSA-N sorafenib tosylate Chemical compound [H+].CC1=CC=C(S([O-])(=O)=O)C=C1.C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 IVDHYUQIDRJSTI-UHFFFAOYSA-N 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- VIDRYROWYFWGSY-UHFFFAOYSA-N sotalol hydrochloride Chemical compound Cl.CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 VIDRYROWYFWGSY-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- ICXJVZHDZFXYQC-UHFFFAOYSA-N spongistatin 1 Natural products OC1C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC2(O2)CC(OC)CC2CC(=O)C(C)C(OC(C)=O)C(C)C(=C)CC(O2)CC(C)(O)CC2(O2)CC(OC(C)=O)CC2CC(=O)OC2C(O)C(CC(=C)CC(O)C=CC(Cl)=C)OC1C2C ICXJVZHDZFXYQC-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000010741 sumoylation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- UXXQOJXBIDBUAC-UHFFFAOYSA-N tandutinib Chemical compound COC1=CC2=C(N3CCN(CC3)C(=O)NC=3C=CC(OC(C)C)=CC=3)N=CN=C2C=C1OCCCN1CCCCC1 UXXQOJXBIDBUAC-UHFFFAOYSA-N 0.000 description 1
- 229950009893 tandutinib Drugs 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229950004186 telatinib Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 201000009377 thymus cancer Diseases 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000006016 thyroid dysfunction Effects 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- YFTWHEBLORWGNI-UHFFFAOYSA-N tiamiprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC(N)=NC2=C1NC=N2 YFTWHEBLORWGNI-UHFFFAOYSA-N 0.000 description 1
- 229950011457 tiamiprine Drugs 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229950001353 tretamine Drugs 0.000 description 1
- IUCJMVBFZDHPDX-UHFFFAOYSA-N tretamine Chemical compound C1CN1C1=NC(N2CC2)=NC(N2CC2)=N1 IUCJMVBFZDHPDX-UHFFFAOYSA-N 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 229960004560 triaziquone Drugs 0.000 description 1
- PXSOHRWMIRDKMP-UHFFFAOYSA-N triaziquone Chemical compound O=C1C(N2CC2)=C(N2CC2)C(=O)C=C1N1CC1 PXSOHRWMIRDKMP-UHFFFAOYSA-N 0.000 description 1
- 229930013292 trichothecene Natural products 0.000 description 1
- 150000003327 trichothecene derivatives Chemical class 0.000 description 1
- 229960001670 trilostane Drugs 0.000 description 1
- KVJXBPDAXMEYOA-CXANFOAXSA-N trilostane Chemical compound OC1=C(C#N)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@@]32O[C@@H]31 KVJXBPDAXMEYOA-CXANFOAXSA-N 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- 229950000212 trioxifene Drugs 0.000 description 1
- 229960000875 trofosfamide Drugs 0.000 description 1
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-LITAXDCLSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO)[C@H](O)[C@H]1O HDZZVAMISRMYHH-LITAXDCLSA-N 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 208000010576 undifferentiated carcinoma Diseases 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- LLDWLPRYLVPDTG-UHFFFAOYSA-N vatalanib succinate Chemical compound OC(=O)CCC(O)=O.C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 LLDWLPRYLVPDTG-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229960004449 vismodegib Drugs 0.000 description 1
- BPQMGSKTAYIVFO-UHFFFAOYSA-N vismodegib Chemical compound ClC1=CC(S(=O)(=O)C)=CC=C1C(=O)NC1=CC=C(Cl)C(C=2N=CC=CC=2)=C1 BPQMGSKTAYIVFO-UHFFFAOYSA-N 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229940053867 xeloda Drugs 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to methods and pharmaceutical compositions for the treatment of cancer.
- radiotherapy Approximately 50% of all cancer patients are subject to radiotherapy during the course of their illness with an estimation that radiotherapy contributes to approximately 40% towards curative treatment (1).
- the goal of radiotherapy is to deliver loco-regionally a specific dose of radioactivity that will allow the destruction of cancer cells, while limiting the exposure of surrounding healthy tissues.
- X photons
- the main disadvantage of X radiotherapy is represented by the deposition of radiation also at the level of surrounding healthy tissues, leading to side effects.
- P proton beams
- the ionizing radiation by proton beams (P) is currently more expensive and more difficult to produce, it has the physical advantage of delivering no radiation outside of the intended targeted area, thanks to the so-called Bragg peak (2).
- P radiotherapy is mainly proposed for the treatment of uveal melanoma, skull base and paraspinal tumors due to its high precision in tumor targeting with a very high irradiation dose next to radiosensitive structures (2). It is also proposed for the pediatric tumors based on the advantage to deliver a much lower integral dose, which significantly reduces the risk of radiation induced cancers in a long-life expectancy setting (2).
- HNSCC head and neck squamous cell carcinoma
- HNSCC head and neck cancers are among the ten most common types of cancer and the 7 th cause of mortality from cancer worldwide.
- the treatment of HNSCC consists of either chemoradiotherapy and/or surgical excision (3).
- conventional radiotherapy with X in HNSCC remains difficult, due to the proximity of numerous organs at risk (i.e. salivary glands, esophagus and larynx).
- organs at risk i.e. salivary glands, esophagus and larynx.
- Recent studies have shown an advantage of P, over X radiotherapy, in inducing lower toxicities (4) and lower dose delivery to organs of risk (5) in HNSCC patients.
- VEGF-C Vascular Endothelial Growth Factor C
- MMP matrix-metalloproteinases
- P may have different biological properties, as compared to X radiation at a similar dose.
- the purpose of the present study was thus to analyze the different biological behaviors of FiNSCC cells when exposed to P vs X radiation.
- the present invention relates to methods and pharmaceutical compositions for the treatment of cancer.
- HNSCC head and neck squamous cell carcinoma
- RBE relative biological effectiveness
- VEGF-C protein levels and regulations were documented in freshly irradiated and/or long-term surviving cells receiving low/high-dose, single (SI)/multiple (MI) irradiations with P/X.
- the RBE was found to be 1.1 Key (lymph)angiogenesis and inflammation genes were down-regulated, except for vegf-c, after P and up-regulated after X irradiation in MI surviving cells, demonstrating a more favorable profile after P irradiation. Both irradiation types stimulated vegf-c promoter activity in a NF-KB-dependent transcriptional regulation manner, but at a lesser extent after P, as compared to X irradiation, which correlated with mRNA and protein levels. The cells surviving to MI by P or X generated tumors with higher volume, anarchic architecture and increased density of blood vessels.
- the present invention demonstrates the biological advantage of P, as compared to X irradiation. In addition to its physical advantage in dose deposition, P irradiation may help to improve treatment approaches for HNSCC.
- the inventors demonstrated that P and X radiation-induced VEGF-C over-expression at both gene and protein levels in HNSCC cells and in meduUoblastoma (MDB) cells and that VEGF-C is a major factor responsible for post-irradiation disease progression in FiNSCC patients, via promotion of lymphangiogenesis.
- MDB meduUoblastoma
- VEGF-C is an important therapeutic target for FiNSCC patients who relapse after radiotherapy with either P or X.
- the inventors also investigated the presence of lymphatic markers in biopsies from primary and locally relapsed human FiNSCC, after conventional X radiotherapy.
- the cohort of patients presented increased protein and/or mRNA levels of VEGF-C, PDPN, LYVE1 and PROX1, bringing evidence that X radiotherapy may promote lymphangiogenesis.
- the present invention relates to a method for predicting the outcome of a cancer in patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient has a good prognosis when the level determined at step i) is lower than the predetermined reference value or concluding that the patient has a poor prognosis when the level determined at step i) is higher than the predetermined reference value.
- a patient denotes a mammal.
- a patient according to the invention refers to any patient (preferably human) afflicted with solid cancer.
- the term “patient” also refers to any patient afflicted with head and neck squamous cell carcinoma (FiNSCC) or with meduUoblastoma (MDB) for example.
- the term “patient” also refers to any patient afflicted with solid cancer receiving radiotherapy.
- patient also refers to any patient afflicted with head and neck squamous cell carcinoma (FiNSCC) or with meduUoblastoma (MDB) receiving radiotherapy.
- solid cancer has its general meaning in the art and refers to solid cancer selected from the group consisting of, but not limited to, head and neck squamous cell carcinoma (FiNSCC), adrenal cortical cancer, anal cancer, bile duct cancer (e.g. periphilar cancer, distal bile duct cancer, intrahepatic bile duct cancer), bladder cancer, bone cancer (e.g.
- osteoblastoma osteochrondroma, hemangioma, chondromyxoid fibroma, osteosarcoma, chondrosarcoma, fibrosarcoma, malignant fibrous histiocytoma, giant cell tumor of the bone, chordoma, multiple myeloma), brain and central nervous system cancer (e.g. meningioma, astocytoma, oligodendrogliomas, ependymoma, gliomas, meduUoblastoma (MDB), ganglioglioma, Schwannoma, germinoma, craniopharyngioma), breast cancer (e.g.
- MDB meduUoblastoma
- ductal carcinoma in situ infiltrating ductal carcinoma, infiltrating lobular carcinoma, lobular carcinoma in situ, gynecomastia
- cervical cancer colorectal cancer
- endometrial cancer e.g. endometrial adenocarcinoma, adenocanthoma, papillary serous adenocarcinoma, clear cell
- esophagus cancer gallbladder cancer (mucinous adenocarcinoma, small cell carcinoma), gastrointestinal carcinoid tumors (e.g. choriocarcinoma, chorioadenoma destruens), Kaposi's sarcoma, kidney cancer (e.g.
- liver cancer e.g. hemangioma, hepatic adenoma, focal nodular hyperplasia, hepatocellular carcinoma
- lung cancer e.g. small cell lung cancer, non-small cell lung cancer
- mesothelioma plasmacytoma
- nasal cavity and paranasal sinus cancer e.g.
- esthesioneuroblastoma midline granuloma
- nasopharyngeal cancer neuroblastoma
- oral cavity and oropharyngeal cancer ovarian cancer, pancreatic cancer, penile cancer, pituitary cancer, prostate cancer, retinoblastoma, rhabdomyosarcoma (e.g. embryonal rhabdomyosarcoma, alveolar rhabdomyosarcoma, pleomorphic rhabdomyosarcoma), salivary gland cancer, skin cancer (e.g. melanoma, nonmelanoma skin cancer), stomach cancer, testicular cancer (e.g.
- thyroid cancer e.g. follicular carcinoma, anaplastic carcinoma, poorly differentiated carcinoma, medullary thyroid carcinoma
- vaginal cancer e.g. vulvar cancer
- uterine cancer e.g. uterine leiomyosarcoma
- the cancer is head and neck squamous cell carcinoma (HNSCC).
- HNSCC head and neck squamous cell carcinoma
- the cancer is medulloblastoma (MDB).
- biological sample refers to any biological sample derived from the patient such as solid cancer sample, biopsy sample, blood sample, plasma sample, or serum sample. Said biological sample is obtained for the purpose of the in vitro evaluation.
- radiotherapy treatment has its general meaning in the art and refers to photon (X) radiotherapy and proton (P) radiotherapy.
- radiation treatment also refers to photon irradiation and proton irradiation.
- radiation treatment also refers to single irradiation (SI) and multiple irradiations (MI) such as described in the example.
- radiation treatment also refers to radiation therapy using radio therapeutic agent administered to the patient afflicted with solid cancer.
- Radiation therapy or radiotherapy is the medical use of irradiation (i.e. ionizing radiation) as part of cancer treatment to control malignant cells.
- Ionizing radiation deposits energy that injures or destroys cells in the area being treated (the target tissue) by damaging their genetic material, making it impossible for these cells to continue to grow.
- One type of radiation therapy commonly used involves photons, e.g. X-rays. Depending on the amount of energy they possess, the rays can be used to destroy cancer cells on the surface of or deeper in the body. The higher the energy of the x-ray beam, the deeper the x-rays can go into the target tissue. Linear accelerators and betatrons produce x-rays of increasingly greater energy.
- the use of machines to focus radiation (such as x-rays) on a cancer site is called external beam radiotherapy.
- Gamma rays are another form of photons used in radiotherapy.
- Gamma rays are produced spontaneously as certain elements (such as radium, uranium, and cobalt 60) release radiation as they decompose, or decay.
- Another technique for delivering radiation to cancer cells is to place radioactive implants directly in a tumor or body cavity. This is called internal radiotherapy.
- Brachytherapy, interstitial irradiation, and intracavitary irradiation are types of internal radiotherapy. In this treatment, the radiation dose is concentrated in a small area.
- a further technique is intra-operative irradiation, in which a large dose of external radiation is directed at the tumor and surrounding tissue during surgery.
- particle beam radiation therapy differs from photon radiotherapy in that it involves the use of fast-moving subatomic particles to treat localized cancers. Some particles (protons, neutrons, pions, and heavy ions) deposit more energy along the path they take through tissue than do x-rays or gamma rays, thus causing more damage to the cells they hit. This type of radiation is often referred to as high linear energy transfer (high LET) radiation. Radio-sensitizers make the tumor cells more likely to be damaged, and radio -protectors protect normal tissues from the effects of radiation.
- high LET high linear energy transfer
- a person of ordinary skill in the radiotherapy art knows how to determine an appropriate dosing and application schedule, depending on the nature of the disease and the constitution of the patient. In particular, the person knows how to assess dose-limiting toxicity (DLT) and how to determine the maximum tolerated dose (MTD) accordingly. More particularly, the amount of radiation used in photon radiation therapy is measured in gray (Gy), and varies depending on the type and stage of cancer being treated. Many other factors are considered by radiation oncologists when selecting a dose, including whether the patient is receiving chemotherapy, patient co -morbidities, whether radiation therapy is being administered before or after surgery, and the degree of success of surgery. Moreover, the total dose is often fractionated. Fractionation regimes are individualized between different radiotherapy centers.
- the radiotherapy can be applied at a dose in a range from about 1 to 80Gy, about 10 to 55Gy, preferably from about 15 to 50 Gy, such as 20 to 40Gy, concretely from about 20 to 35 Gy, and more concretely from about 25 to 30 Gy.
- VEGF-C has its general meaning in the art and refers to Vascular Endothelial Growth Factor C, a member of the vascular endothelial growth factor family.
- the term "Good Prognosis” refers to a patient afflicted with solid cancer receiving radiotherapy treatment that is likely to not present lymph node metastasis, and/or that is likely to not present cancer relapse, and/or that is likely to present a high overall survival (OS), event-free survival (EFS), and/or metastasis- free survival (MFS).
- OS overall survival
- EFS event-free survival
- MFS metastasis- free survival
- the term "Poor Prognosis” or “Bad Prognosis” refers to a patient afflicted with solid cancer receiving radiotherapy treatment that is likely to present lymph node metastasis, and/or that is likely to present cancer relapse, and/or that is likely to present short overall survival (OS), progression free survival (PFS) and/or metastasis.
- OS overall survival
- PFS progression free survival
- the method of the invention also comprises determining the expression level of PDPN, LYVE1 and PROX1.
- PDPN has its general meaning in the art and refers to podoplanin, a mucin- type transmembrane protein.
- LYVE1 has its general meaning in the art and refers to lymphatic vessel endothelial hyaluronan receptor 1.
- PROX1 has its general meaning in the art and refers to prospero homeobox 1 transcription factor.
- the "reference value” refers to a threshold value or a cut-off value.
- the setting of a single “reference value” thus allows discrimination between a poor and a good prognosis with respect to the lymph node metastasis, cancer relapse and overall survival (OS) for a patient.
- a “threshold value” or “cut-off value” can be determined experimentally, empirically, or theoretically.
- a threshold value can also be arbitrarily selected based upon the existing experimental and/or clinical conditions, as would be recognized by a person of ordinary skilled in the art. The threshold value has to be determined in order to obtain the optimal sensitivity and specificity according to the function of the test and the benefit/risk balance (clinical consequences of false positive and false negative).
- the optimal sensitivity and specificity can be determined using a Receiver Operating Characteristic (ROC) curve based on experimental data.
- ROC Receiver Operating Characteristic
- the person skilled in the art may compare the expression level (obtained according to the method of the invention) with a defined threshold value.
- the threshold value is derived from the expression level (or ratio, or score) determined in a biological sample derived from one or more patients having solid cancer.
- retrospective measurement of the expression level (or ratio, or scores) in properly banked historical patient samples may be used in establishing these threshold values.
- Predetermined reference values used for comparison may comprise "cut-off or "threshold” values that may be determined as described herein.
- Each reference (“cut-off) value for the bio marker of interest may be predetermined by carrying out a method comprising the steps of
- step e providing, for each sample provided at step a), information relating to the responsiveness of the patient or the actual clinical outcome for the corresponding cancer patient (i.e. the duration of the event-free survival (EFS), metastasis- free survival (MFS) or the overall survival (OS) or both);
- EFS event-free survival
- MFS metastasis- free survival
- OS overall survival
- the expression level of a biomarker has been assessed for 100 cancer samples of 100 patients.
- the 100 samples are ranked according to their expression level.
- Sample 1 has the best expression level and sample 100 has the worst expression level.
- a first grouping provides two subsets: on one side sample Nr 1 and on the other side the 99 other samples.
- the next grouping provides on one side samples 1 and 2 and on the other side the 98 remaining samples etc., until the last grouping: on one side samples 1 to 99 and on the other side sample Nr 100.
- Kaplan Meier curves are prepared for each of the 99 groups of two subsets. Also for each of the 99 groups, the p value between both subsets was calculated.
- the reference value is selected such as the discrimination based on the criterion of the minimum p value is the strongest.
- the expression level corresponding to the boundary between both subsets for which the p value is minimum is considered as the reference value. It should be noted that the reference value is not necessarily the median value of expression levels.
- the reference value (cut-off value) may be used in the present method to discriminate cancer samples and therefore the corresponding patients.
- Kaplan-Meier curves of percentage of survival as a function of time are commonly to measure the fraction of patients living for a certain amount of time after treatment and are well known by the man skilled in the art.
- the reference value may correspond to the expression level of the biomarker determined in a sample associated having a good prognosis. Accordingly, a higher expression level of the biomarker than the reference value is indicative of a patient having poor prognosis, and a lower or equal expression level of the biomarker than the reference value is indicative of a patient having a good prognosis.
- the reference value may correspond to the expression level of the biomarker determined in a sample associated with a patient having a poor prognosis. Accordingly, a higher or equal expression level of the biomarker than the reference value is indicative of a patient having poor prognosis, and a lower expression level of the biomarker than the reference value is indicative of a patient having good prognosis.
- a score which is a composite of the expression levels of the different biomarkers may also be determined and compared to a reference value wherein a difference between said score and said reference value is indicative of a patient having a good or poor prognosis
- the score may be generated by a computer program. Analyzing the biomarker expression level may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed nucleic acid or translated protein.
- the biomarker expression level is assessed by analyzing the expression of the protein translated from said gene. Said analysis can be assessed using an antibody (e.g., a radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody), an antibody derivative (e.g., an antibody conjugate with a substrate or with the protein or ligand of a protein of a protein/ligand pair (e.g., biotin-streptavidin)), or an antibody fragment (e.g., a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically to the protein translated from the gene encoding for the biomarker.
- an antibody e.g., a radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody
- an antibody derivative e.g., an antibody conjugate with a substrate or with the protein or ligand of a protein
- Methods for measuring the expression level of a biomarker in a sample may be assessed by any of a wide variety of well-known methods from one of skill in the art for detecting expression of a protein including, but not limited to, direct methods like mass spectrometry-based quantification methods, protein microarray methods, enzyme immunoassay (EIA), radioimmunoassay (RIA), Immunohistochemistry (IHC), Western blot analysis, ELISA, Luminex, ELISPOT and enzyme linked immunoabsorbant assay and indirect methods based on detecting expression of corresponding messenger ribonucleic acids (mRNAs).
- the mRNA expression profile may be determined by any technology known by a man skilled in the art.
- each mRNA expression level may be measured using any technology known by a man skilled in the art, including nucleic microarrays, quantitative Polymerase Chain Reaction (qPCR), next generation sequencing and hybridization with a labelled probe.
- the binding partner may be an antibody that may be polyclonal or monoclonal, preferably monoclonal (e.g., a isotope-label, element-label, radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody), an antibody derivative (e.g., an antibody conjugate with a substrate or with the protein or ligand of a protein of a protein/ligand pair (e.g., biotin- streptavidin)), or an antibody fragment (e.g., a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically to the protein translated from the gene encoding for the biomarker of the invention.
- monoclonal e.g., a isotope-label, element-label, radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody
- an antibody derivative
- the binding partner may be an aptamer.
- the binding partners of the invention such as antibodies or aptamers may be labelled with a detectable molecule or substance, such as an isotope, an element, a fluorescent molecule, a radioactive molecule or any others labels known in the art. Labels are known in the art that generally provide (either directly or indirectly) a signal.
- the term "labelled", with regard to the antibody is intended to encompass direct labelling of the antibody or aptamer by coupling (i.e., physically linking) a detectable substance, such as an isotope, an element, a radioactive agent or a fluorophore (e.g. fluorescein isothiocyanate (FITC) or phycoerythrin (PE) or Indocyanine (Cy5)) to the antibody or aptamer, as well as indirect labelling of the probe or antibody by reactivity with a detectable substance.
- a detectable substance such as an isotope, an element, a radioactive agent or a fluorophore (e.g. fluorescein isothiocyanate (FITC) or phycoerythrin (PE) or Indocyanine (Cy5)
- FITC fluorescein isothiocyanate
- PE phycoerythrin
- Indocyanine Indocyanine
- radioactive molecules include but are not limited to radioactive atom for scintigraphic studies such as 1123, 1124, Inl 11, Rel86, Rel88, specific isotopes include but are not limited to 13C, 15N, 1261, 79Br, 81 Br.
- the abore mentioned assays generally involve the binding of the binding partner (ie. antibody or aptamer) to a solid support.
- Solid supports which can be used in the practice of the invention include substrates such as nitrocellulose (e. g., in membrane or microtiter well form); polyvinylchloride (e. g., sheets or microtiter wells); polystyrene latex (e.g., beads or microtiter plates); polyvinylidene fluoride; diazotized paper; nylon membranes; activated beads, magnetically responsive beads, silicon wafers.
- substrates such as nitrocellulose (e. g., in membrane or microtiter well form); polyvinylchloride (e. g., sheets or microtiter wells); polystyrene latex (e.g., beads or microtiter plates); polyvinylidene fluoride; diazotized paper; nylon membranes; activated beads, magnetically responsive beads, silicon wafer
- an ELISA method can be used, wherein the wells of a microtiter plate are coated with a set of antibodies which recognize said biomarker. A sample containing or suspected of containing said biomarker is then added to the coated wells. After a period of incubation sufficient to allow the formation of antibody-antigen complexes, the plate(s) can be washed to remove unbound moieties and a detectably labelled secondary binding molecule added. The secondary binding molecule is allowed to react with any captured sample marker protein, the plate washed and the presence of the secondary binding molecule detected using methods well known in the art such as Singulex, Quanterix, MSD, Bioscale, Cytof.
- an Enzyme-linked immunospot (ELISpot) method may be used.
- the sample is transferred to a plate which has been coated with the desired anti- biomarker capture antibodies.
- Revelation is carried out with biotinylated secondary Abs and standard colorimetric or fluorimetric detection methods such as streptavidin-alkaline phosphatase and NBT-BCIP and the spots counted.
- the bead may be a cytometric bead for use in flow cytometry.
- Such beads may for example correspond to BDTM Cytometric Beads commercialized by BD Biosciences (San Jose, California).
- cytometric beads may be suitable for preparing a multiplexed bead assay.
- a multiplexed bead assay such as, for example, the BD(TM) Cytometric Bead Array, is a series of spectrally discrete beads that can be used to capture and quantify soluble antigens.
- beads are labelled with one or more spectrally distinct fluorescent dyes, and detection is carried out using a multiplicity of photodetectors, one for each distinct dye to be detected.
- a number of methods of making and using sets of distinguishable beads have been described in the literature. These include beads distinguishable by size, wherein each size bead is coated with a different target-specific antibody (see e.g. Fulwyler and McHugh, 1990, Methods in Cell Biology 33:613-629), beads with two or more fluorescent dyes at varying concentrations, wherein the beads are identified by the levels of fluorescence dyes (see e.g. European Patent No.
- beads distinguishably labelled with two different dyes, wherein the beads are identified by separately measuring the fluorescence intensity of each of the dyes (see e.g. U.S. patent Nos. 4,499,052 and 4,717,655).
- Both one- dimensional and two-dimensional arrays for the simultaneous analysis of multiple antigens by flow cytometry are available commercially. Examples of one-dimensional arrays of singly dyed beads distinguishable by the level of fluorescence intensity include the BD(TM) Cytometric Bead Array (CBA) (BD Biosciences, San Jose, Calif.) and Cyto-Plex(TM) Flow Cytometry microspheres (Duke Scientific, Palo Alto, Calif).
- An example of a two-dimensional array of beads distinguishable by a combination of fluorescence intensity (five levels) and size (two sizes) is the QuantumPlex(TM) microspheres (Bangs Laboratories, Fisher, Ind.).
- An example of a two-dimensional array of doubly-dyed beads distinguishable by the levels of fluorescence of each of the two dyes is described in Fulton et al. (1997, Clinical Chemistry 43(9): 1749-1756).
- the beads may be labelled with any fluorescent compound known in the art such as e.g. FITC (FL1), PE (FL2), fluorophores for use in the blue laser (e.g.
- bead is a magnetic bead for use in magnetic separation. Magnetic beads are known to those of skill in the art. Typically, the magnetic bead is preferably made of a magnetic material selected from the group consisting of metals (e.g. ferrum, cobalt and nickel), an alloy thereof and an oxide thereof. In another particular embodiment, bead is bead that is dyed and magnetized.
- metals e.g. ferrum, cobalt and nickel
- bead is bead that is dyed and magnetized.
- protein microarray methods may be used.
- at least one antibody or aptamer directed against the biomarker is immobilized or grafted to an array(s), a solid or semi-solid surface(s).
- a sample containing or suspected of containing the biomarker is then labelled with at least one isotope or one element or one fluorophore or one colorimetric tag that are not naturally contained in the tested sample.
- the array is then washed and dried.
- quantifying said biomarker may be achieved using any appropriate microarray scanner like fluorescence scanner, colorimetric scanner, SIMS (secondary ions mass spectrometry) scanner, maldi scanner, electromagnetic scanner or any technique allowing quantifying said labels.
- the antibody or aptamer grafted on the array is labelled.
- reverse phase arrays may be used.
- at least one sample is immobilized or grafted to an array(s), a solid or semi-solid surface(s).
- An antibody or aptamer against the suspected biomarker is then labelled with at least one isotope or one element or one fluorophore or one colorimetric tag that is not naturally contained in the tested sample. After a period of incubation of said antibody or aptamer with the array sufficient to allow the formation of antibody-antigen complexes, the array is then washed and dried.
- detecting quantifying and counting by D-SIMS said biomarker containing said isotope or group of isotopes, and a reference natural element, and then calculating the isotopic ratio between the biomarker and the reference natural element may be achieve using any appropriate microarray scanner like fluorescence scanner, colorimetric scanner, SIMS (secondary ions mass spectrometry) scanner, maldi scanner, electromagnetic scanner or any technique allowing to quantify said labels.
- any appropriate microarray scanner like fluorescence scanner, colorimetric scanner, SIMS (secondary ions mass spectrometry) scanner, maldi scanner, electromagnetic scanner or any technique allowing to quantify said labels.
- said direct analysis can also be assessed by mass Spectrometry.
- Mass spectrometry-based quantification methods may be performed using either labelled or unlabelled approaches (DeSouza and Siu, 2012). Mass spectrometry-based quantification methods may be performed using chemical labeling, metabolic labelingor proteolytic labeling. Mass spectrometry-based quantification methods may be performed using mass spectrometry label free quantification, LTQ Orbitrap Velos, LTQ-MS/MS, a quantification based on extracted ion chromatogram EIC (progenesis LC-MS, Liquid chromatography-mass spectrometry) and then profile alignment to determine differential expression of the biomarker.
- the biomarker expression level is assessed by analyzing the expression of mR A transcript or mRNA precursors, such as nascent R A, of biomarker gene. Said analysis can be assessed by preparing mRNA/cDNA from cells in a sample from a patient, and hybridizing the mRNA/cDNA with a reference polynucleotide. The prepared mRNA/cDNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses, such as quantitative PCR (TaqMan), and probes arrays such as GeneChip(TM) DNA Arrays (AFFYMETRIX).
- mR A transcript or mRNA precursors such as nascent R A
- the analysis of the expression level of mRNA transcribed from the gene encoding for biomarkers involves the process of nucleic acid amplification, e. g., by RT- PCR (the experimental embodiment set forth in U. S. Patent No. 4,683, 202), ligase chain reaction (Barany, 1991), self- sustained sequence replication (Guatelli et al, 1990), transcriptional amplification system (Kwoh et al., 1989), Q-Beta Replicase (Lizardi et al, 1988), rolling circle replication (U. S. Patent No. 5,854, 033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art.
- RT- PCR the experimental embodiment set forth in U. S. Patent No. 4,683, 202
- ligase chain reaction Barany, 1991
- self- sustained sequence replication (Guatelli et al, 1990)
- transcriptional amplification system Kwoh
- amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5' or 3' regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between.
- amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.
- the present invention relates to a method for predicting lymph node metastasis in a patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient will not have a lymph node metastasis when the level determined at step i) is lower than the predetermined reference value or concluding that the patient will have a lymph node metastasis when the level determined at step i) is higher than the predetermined reference value.
- the present invention relates to a method for predicting cancer relapse in a patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient will not have a cancer relapse when the level determined at step i) is lower than the predetermined reference value or concluding that the patient will have a cancer relapse when the level determined at step i) is higher than the predetermined reference value.
- the present invention relates to a method for predicting the survival time of a patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from the patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient will have a long survival time when the level determined at step i) is lower than the predetermined reference value or concluding that the patient will have a short survival time when the level determined at step i) is higher than the predetermined reference value.
- the method of the present invention is particularly suitable for predicting the duration of the overall survival (OS), progression-free survival (PFS) and/or the disease-free survival (DFS) of the cancer patient.
- OS survival time is generally based on and expressed as the percentage of people who survive a certain type of cancer for a specific amount of time.
- OS rates do not specify whether cancer survivors are still undergoing treatment at five years or if they've become cancer-free (achieved remission).
- DFS gives more specific information and is the number of people with a particular cancer who achieve remission.
- progression-free survival (PFS) rates (the number of people who still have cancer, but their disease does not progress) includes people who may have had some success with treatment, but the cancer has not disappeared completely.
- short survival time indicates that the patient will have a survival time that will be lower than the median (or mean) observed in the general population of patients suffering from said cancer.
- long survival time indicates that the patient will have a survival time that will be higher than the median (or mean) observed in the general population of patients suffering from said cancer.
- the method of the invention is performed for predicting the overall survival (OS), progression-free survival (PFS) and/or the disease-free survival (DFS) of a patient afflicted with solid cancer receiving radiotherapy treatment.
- OS overall survival
- PFS progression-free survival
- DFS disease-free survival
- a further aspect of the invention relates to a method of monitoring cancer progression in a patient afflicted with solid cancer after radiotherapy treatment by performing the method of the invention.
- a further aspect of the invention relates to a method of monitoring radiotherapy treatment of a patient afflicted with solid cancer by performing the method of the invention.
- the present invention relates to a VEGF-C inhibitor for use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
- the solid cancer referred to in the methods and uses described herein above may be for example a head and neck squamous cell carcinoma (FINSCC) or a medulloblastoma (MDB).
- FINSCC head and neck squamous cell carcinoma
- MDB medulloblastoma
- treatment refers to both prophylactic or preventive treatment as well as curative or disease modifying treatment, including treatment of patients at risk of contracting the disease or suspected to have contracted the disease as well as patients who are ill or have been diagnosed as suffering from a disease or medical condition, and includes suppression of clinical relapse.
- the treatment may be administered to a patient having a medical disorder or who ultimately may acquire the disorder, in order to prevent, cure, delay the onset of, reduce the severity of, or ameliorate one or more symptoms of a disorder or recurring disorder, or in order to prolong the survival of a patient beyond that expected in the absence of such treatment.
- therapeutic regimen is meant the pattern of treatment of an illness, e.g., the pattern of dosing used during therapy.
- a therapeutic regimen may include an induction regimen and a maintenance regimen.
- the phrase “induction regimen” or “induction period” refers to a therapeutic regimen (or the portion of a therapeutic regimen) that is used for the initial treatment of a disease.
- the general goal of an induction regimen is to provide a high level of drug to a patient during the initial period of a treatment regimen.
- An induction regimen may employ (in part or in whole) a "loading regimen", which may include administering a greater dose of the drug than a physician would employ during a maintenance regimen, administering a drug more frequently than a physician would administer the drug during a maintenance regimen, or both.
- maintenance regimen refers to a therapeutic regimen (or the portion of a therapeutic regimen) that is used for the maintenance of a patient during treatment of an illness, e.g., to keep the patient in remission for long periods of time (months or years).
- a maintenance regimen may employ continuous therapy (e.g., administering a drug at a regular intervals, e.g., weekly, monthly, yearly, etc.) or intermittent therapy (e.g., interrupted treatment, intermittent treatment, treatment at relapse, or treatment upon achievement of a particular predetermined criteria [e.g., disease manifestation, etc.]).
- VEGF-C inhibitor has its general meaning in the art and refers to a compound that selectively blocks or inactivates the VEGF-C.
- VEGF-C inhibitor also refers to a compound that selectively blocks the binding of VEGF-C to its receptors (such as VEGFR-3 and VEGFR-2).
- VEGF-C inhibitor also refers to a compound able to prevent the action of VEGF-C for example by inhibiting the VEGF-C controls of downstream effectors such as inhibiting the activation of the KRAS/RAF/MEK/ER and PI3K/AKT/mTOR pathways.
- VEGF-C inhibitor also refers to a compound that inhibits VEGF-C expression.
- a VEGF-C inhibitor is a small organic molecule, a polypeptide, an aptamer, an antibody, an oligonucleotide, a ribozyme or a CRISPR.
- Tests and assays for determining whether a compound is a VEGF-C inhibitor are well known by the skilled person in the art such as described in WO2011/127519; WO2011/071577; WO0152875; WO2011127519.
- VEGF-C inhibitors include but are not limited to the anti- VEGF-C antibodies.
- Anti- VEGF-C antibodies are available and described in the art (such as in WO2011/127519; WO2011/071577; WO2011/127519).
- anti- VEGF-C antibody which can be used in the context of the invention is identified as "VGX-100" in WO2011/127519 and WO2011/071577.
- anti- VEGF-C antibodies are described in WO2011/071577, such as in particular those respectively identified as “VC4.5” and “VC1.12” which can, among others, be used in the context of the invention.
- the VEGF-C inhibitor is a VEGFR-3 antagonist (WO2016/184793). In some embodiments, the VEGF-C inhibitor is a VEGFR-2 antagonist (WO2016/184793). In another embodiment, the VEGF-C inhibitor of the invention is an antibody (the term including "antibody portion") directed against VEGF-C, VEGFR-3 or VEGFR-2.
- the antibody is a monoclonal antibody. In one embodiment of the antibodies or portions thereof described herein, the antibody is a polyclonal antibody. In one embodiment of the antibodies or portions thereof described herein, the antibody is a humanized antibody. In one embodiment of the antibodies or portions thereof described herein, the antibody is a chimeric antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a light chain of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a heavy chain of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a Fab portion of the antibody.
- the portion of the antibody comprises a F(ab')2 portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a Fc portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a Fv portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a variable domain of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises one or more CDR domains of the antibody.
- antibody includes both naturally occurring and non-naturally occurring antibodies. Specifically, “antibody” includes polyclonal and monoclonal antibodies, and monovalent and divalent fragments thereof. Furthermore, “antibody” includes chimeric antibodies, wholly synthetic antibodies, single chain antibodies, and fragments thereof. The antibody may be a human or nonhuman antibody. A nonhuman antibody may be humanized by recombinant methods to reduce its immunogenicity in man.
- Antibodies are prepared according to conventional methodology. Monoclonal antibodies may be generated using the method of Kohler and Milstein (Nature, 256:495, 1975). To prepare monoclonal antibodies useful in the invention, a mouse or other appropriate host animal is immunized at suitable intervals (e.g., twice-weekly, weekly, twice-monthly or monthly) with antigenic forms of VEGF-C. The animal may be administered a final "boost" of antigen within one week of sacrifice. It is often desirable to use an immunologic adjuvant during immunization.
- Suitable immunologic adjuvants include Freund's complete adjuvant, Freund's incomplete adjuvant, alum, Ribi adjuvant, Hunter's Titermax, saponin adjuvants such as QS21 or Quil A, or CpG-containing immunostimulatory oligonucleotides.
- Other suitable adjuvants are well-known in the field.
- the animals may be immunized by subcutaneous, intraperitoneal, intramuscular, intravenous, intranasal or other routes. A given animal may be immunized with multiple forms of the antigen by multiple routes.
- the antigen may be provided as synthetic peptides corresponding to antigenic regions of interest in VEGF-C.
- lymphocytes are isolated from the spleen, lymph node or other organ of the animal and fused with a suitable myeloma cell line using an agent such as polyethylene glycol to form a hydridoma.
- cells are placed in media permissive for growth of hybridomas but not the fusion partners using standard methods, as described (Coding, Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry and Immunology, 3rd edition, Academic Press, New York, 1996).
- cell supernatants are analyzed for the presence of antibodies of the desired specificity, i.e., that selectively bind the antigen.
- Suitable analytical techniques include ELISA, flow cytometry, immunoprecipitation, and western blotting. Other screening techniques are well-known in the field. Preferred techniques are those that confirm binding of antibodies to conformationally intact, natively folded antigen, such as non-denaturing ELISA, flow cytometry, and immunoprecipitation.
- an antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region designated an F(ab')2 fragment
- an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region designated as Fab fragment
- Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd.
- the Fd fragments are the major determinant of antibody specificity (a single Fd fragment may be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.
- CDRs complementarity determining regions
- FRs framework regions
- CDR1 through CDRS complementarity determining regions
- compositions and methods that include humanized forms of antibodies.
- humanized describes antibodies wherein some, most or all of the amino acids outside the CDR regions are replaced with corresponding amino acids derived from human immunoglobulin molecules.
- Methods of humanization include, but are not limited to, those described in U.S. Pat. Nos. 4,816,567, 5,225,539, 5,585,089, 5,693,761, 5,693,762 and 5,859,205, which are hereby incorporated by reference.
- the above U.S. Pat. Nos. 5,585,089 and 5,693,761, and WO 90/07861 also propose four possible criteria which may used in designing the humanized antibodies.
- the first proposal was that for an acceptor to use a framework from a particular human immunoglobulin that is unusually homologous to the donor immunoglobulin to be humanized, or to use a consensus framework from many human antibodies.
- the second proposal was that if an amino acid in the framework of the human immunoglobulin is unusual and the donor amino acid at that position is typical for human sequences, then the donor amino acid rather than the acceptor may be selected.
- the third proposal was that in the positions immediately adjacent to the 3 CDRs in the humanized immunoglobulin chain, the donor amino acid rather than the acceptor amino acid may be selected.
- the fourth proposal was to use the donor amino acid residue at the framework positions at which the amino acid is predicted to have a side chain atom within 3 A of the CDRs in a three dimensional model of the antibody and is predicted to be capable of interacting with the CDRs.
- the above methods are merely illustrative of some of the methods that one skilled in the art could employ to make humanized antibodies.
- One of ordinary skill in the art will be familiar with other methods for antibody humanization.
- humanized forms of the antibodies some, most or all of the amino acids outside the CDR regions have been replaced with amino acids from human immunoglobulin molecules but where some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they would not abrogate the ability of the antibody to bind a given antigen.
- Suitable human immunoglobulin molecules would include IgGl, IgG2, IgG3, IgG4, IgA and IgM molecules.
- a "humanized" antibody retains a similar antigenic specificity as the original antibody.
- the affinity and/or specificity of binding of the antibody may be increased using methods of "directed evolution", as described by Wu et al, /. Mol. Biol. 294: 151, 1999, the contents of which are incorporated herein by reference.
- Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. See, e.g., U.S. Pat. Nos. 5,591,669, 5,598,369, 5,545,806, 5,545,807, 6,150,584, and references cited therein, the contents of which are incorporated herein by reference. These animals have been genetically modified such that there is a functional deletion in the production of endogenous (e.g., murine) antibodies. The animals are further modified to contain all or a portion of the human germ-line immunoglobulin gene locus such that immunization of these animals will result in the production of fully human antibodies to the antigen of interest.
- monoclonal antibodies can be prepared according to standard hybridoma technology. These monoclonal antibodies will have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (KAMA) responses when administered to humans.
- KAMA human anti-mouse antibody
- the present invention also provides for F(ab') 2 Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab')2 fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or non-human sequences.
- the present invention also includes so-called single chain antibodies.
- the various antibody molecules and fragments may derive from any of the commonly known immunoglobulin classes, including but not limited to IgA, secretory IgA, IgE, IgG and IgM.
- IgG subclasses are also well known to those in the art and include but are not limited to human IgGl, IgG2, IgG3 and IgG4.
- the VEGF-C inhibitor of the invention is a Human IgG4.
- the invention provides a multi-specific antibody comprising a first antigen binding site from an antibody of the present invention directed against VEGF-C, VEGFR-3 or VEGFR-2 and at least one second antigen binding site.
- the second antigen-binding site is used for recruiting a killing mechanism such as, for example, by binding an antigen on a human effector cell as a BiTE (Bispecific T-Cell engager) antibody which is a bispecific scFv2 directed against target antigen and CD3 on T cells described in US7235641, or by binding a cytotoxic agent or a second therapeutic agent.
- a killing mechanism such as, for example, by binding an antigen on a human effector cell as a BiTE (Bispecific T-Cell engager) antibody which is a bispecific scFv2 directed against target antigen and CD3 on T cells described in US7235641, or by binding a cytotoxic agent or a second therapeutic agent.
- effector cell refers to an immune cell which is involved in the effector phase of an immune response, as opposed to the cognitive and activation phases of an immune response.
- Exemplary immune cells include a cell of a myeloid or lymphoid origin, for instance lymphocytes (such as B cells and T cells including cytolytic T cells (CTLs)), killer cells, natural killer cells, macrophages, monocytes, mast cells and granulocytes, such as neutrophils, eosinophils and basophils.
- lymphocytes such as B cells and T cells including cytolytic T cells (CTLs)
- CTLs cytolytic T cells
- FcRs Fc receptors
- an effector cell is capable of inducing ADCC, such as a natural killer cell.
- monocytes, macrophages, which express FcRs are involved in specific killing of target cells and presenting antigens to other components of the immune system.
- an effector cell may phagocytose a target antigen or target cell.
- the expression of a particular FcR on an effector cell may be regulated by humoral factors such as cytokines.
- An effector cell can phagocytose a target antigen or phagocytose or lyse a target cell.
- Suitable cytotoxic agents and second therapeutic agents are exemplified below, and include toxins (such as radiolabeled peptides), chemotherapeutic agents and prodrugs
- the second antigen-binding site binds a tissue- specific antigen, promoting localization of the bispecific antibody to a specific tissue.
- the second antigen-binding site binds to an antigen located on the same type of cell as the [VEGF-C, VEGFR-3 or VEGFR-2] -expressing cell, typically a tumor-associated antigen (TAA), but has a binding specificity different from that of the first antigen-binding site.
- TAA tumor-associated antigen
- Such multi- or bispecific antibodies can enhance the specificity of the tumor cell binding and/or engage multiple effector pathways.
- TAAs include carcinoembryonic antigen (CEA), prostate specific antigen (PSA), RAGE (renal antigen), a- fetoprotein, CAMEL (CTL-recognized antigen on melanoma), CT antigens (such as MAGE- B5, -B6, -C2, -C3, and D; Mage-12; CT10; NY-ESO-1, SSX-2, GAGE, BAGE, MAGE, and SAGE), mucin antigens (e.g., MUC1, mucin-CA125, etc.), ganglioside antigens, tyrosinase, gp75, c-Met, Marti, MelanA, MUM-1, MUM-2, MUM-3, HLA-B7, Ep-CAM or a cancer- associated integrin, such as ⁇ 5 ⁇ 3 integrin.
- CEA carcinoembryonic antigen
- PSA prostate specific antigen
- RAGE renal antigen
- the second antigen- binding site binds to a different epitope of [VEGF-C, VEGFR-3 or VEGFR-2].
- the second antigen- binding site may alternatively bind an angiogenic factor or other cancer-associated growth factor, such as a vascular endothelial growth factor, a fibroblast growth factor, epidermal growth factor, angiogenin or a receptor of any of these, particularly receptors associated with cancer progression.
- the second antigen-binding site is from a second antibody or ADCC of the invention, such as the antibody of the present invention.
- Exemplary formats for the multispecific antibody molecules of the invention include, but are not limited to (i) two antibodies cross-linked by chemical heteroconjugation, one with a specificity to [VEGF-C, VEGFR-3 or VEGFR-2] and another with a specificity to a second antigen; (ii) a single antibody that comprises two different antigen-binding regions; (iii) a single-chain antibody that comprises two different antigen-binding regions, e.g., two scFvs linked in tandem by an extra peptide linker; (iv) a dual-variable-domain antibody (DVD-Ig), where each light chain and heavy chain contains two variable domains in tandem through a short peptide linkage (Wu et al., Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-IgTM) Molecule, In : Antibody Engineering, Springer Berlin Heidelberg (2010)); (v) a chemically- linked bispecific (Fab')2 fragment; (vi)
- IgG-like molecules with complementary CH3 domains to force heterodimerization is IgG-like molecules with complementary CH3 domains to force heterodimerization.
- Such molecules can be prepared using known technologies, such as, e.g., those known as Triomab/Quadroma (Trion Pharma/Fresenius Biotech), Knob-into-Hole (Genentech), CrossMAb (Roche) and electrostatically-matched (Amgen), LUZ-Y (Genentech), Strand Exchange Engineered Domain body (SEEDbody)(EMD Serono), Biclonic (Merus) and DuoBody (Genmab A/S) technologies.
- the bispecific antibody is obtained or obtainable via a controlled Fab-arm exchange, typically using DuoBody technology.
- a controlled Fab-arm exchange typically using DuoBody technology.
- In vitro methods for producing bispecific antibodies by controlled Fab-arm exchange have been described in WO2008119353 and WO 2011131746 (both by Genmab A/S).
- a bispecific antibody is formed by "Fab-arm" or "half- molecule” exchange (swapping of a heavy chain and attached light chain) between two monospecific antibodies, both comprising IgG4-like CH3 regions, upon incubation under reducing conditions.
- the resulting product is a bispecific antibody having two Fab arms which may comprise different sequences.
- bispecific antibodies of the present invention are prepared by a method comprising the following steps, wherein at least one of the first and second antibodies is the antibody of the present invention : a) providing a first antibody comprising an Fc region of an immunoglobulin, said Fc region comprising a first CH3 region; b) providing a second antibody comprising an Fc region of an immunoglobulin, said Fc region comprising a second CH3 region; wherein the sequences of said first and second CH3 regions are different and are such that the heterodimeric interaction between said first and second CH3 regions is stronger than each of the homodimeric interactions of said first and second CH3 regions; c) incubating said first antibody together with said second antibody under reducing conditions; and d) obtaining said bispecific antibody, wherein the first antibody is the antibody of the present invention and the second antibody has a different binding specificity, or vice versa.
- the reducing conditions may, for example, be provided by adding a reducing agent, e.g. selected from 2-mercaptoethylamine, dithiothreitol and tris(2-carboxyethyl)phosphine.
- Step d) may further comprise restoring the conditions to become non-reducing or less reducing, for example by removal of a reducing agent, e.g. by desalting.
- the sequences of the first and second CH3 regions are different, comprising only a few, fairly conservative, asymmetrical mutations, such that the heterodimeric interaction between said first and second CH3 regions is stronger than each of the homodimeric interactions of said first and second CH3 regions.
- the antibody according to the invention is a single domain antibody.
- the term “single domain antibody” (sdAb) or “VHH” refers to the single heavy chain variable domain of antibodies of the type that can be found in Camelid mammals which are naturally devoid of light chains. Such VHH are also called “nanobody®”. According to the invention, sdAb can particularly be llama sdAb.
- VHH refers to the single heavy chain having 3 complementarity determining regions (CDRs): CDR1, CDR2 and CDR3.
- CDRs complementarity determining region
- CDR complementarity determining region
- VHH according to the invention can readily be prepared by an ordinarily skilled artisan using routine experimentation.
- VHH variants and modified form thereof may be produced under any known technique in the art such as in- vitro maturation.
- VHHs or sdAbs are usually generated by PCR cloning of the V-domain repertoire from blood, lymph node, or spleen cDNA obtained from immunized animals into a phage display vector, such as pHEN2.
- Antigen- specific VHHs are commonly selected by panning phage libraries on immobilized antigen, e.g., antigen coated onto the plastic surface of a test tube, biotinylated antigens immobilized on streptavidin beads, or membrane proteins expressed on the surface of cells.
- immobilized antigen e.g., antigen coated onto the plastic surface of a test tube, biotinylated antigens immobilized on streptavidin beads, or membrane proteins expressed on the surface of cells.
- VHHs often show lower affinities for their antigen than VHHs derived from animals that have received several immunizations.
- VHHs from immune libraries are attributed to the natural selection of variant VHHs during clonal expansion of B-cells in the lymphoid organs of immunized animals.
- the affinity of VHHs from non-immune libraries can often be improved by mimicking this strategy in vitro, i.e., by site directed mutagenesis of the CDR regions and further rounds of panning on immobilized antigen under conditions of increased stringency (higher temperature, high or low salt concentration, high or low pH, and low antigen concentrations).
- VHHs derived from camelid are readily expressed in and purified from the E. coli periplasm at much higher levels than the corresponding domains of conventional antibodies.
- VHHs generally display high solubility and stability and can also be readily produced in yeast, plant, and mammalian cells.
- the "Hamers patents” describe methods and techniques for generating VHH against any desired target (see for example US 5,800,988; US 5,874, 541 and US 6,015,695).
- the "Hamers patents” more particularly describe production of VHHs in bacterial hosts such as E. coli (see for example US 6,765,087) and in lower eukaryotic hosts such as moulds (for example Aspergillus or Trichoderma) or in yeast (for example Saccharomyces, Kluyveromyces, Hansenula or Pichia) (see for example US 6,838,254).
- the VEGF-C inhibitor of the invention is a VEGF-C expression inhibitor, VEGFR-3 and/or VEGFR-2 expression inhibitor.
- a gene product can be the direct transcriptional product of a gene (e.g., mRNA, tRNA, rRNA, antisense RNA, ribozyme, structural RNA or any other type of RNA) or a protein produced by translation of a mRNA.
- Gene products also include messenger RNAs, which are modified, by processes such as capping, polyadenylation, methylation, and editing, and proteins (e.g., VEGF-C, VEGFR-3 and VEGFR-2) modified by, for example, methylation, acetylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, myristilation, and glycosylation.
- proteins e.g., VEGF-C, VEGFR-3 and VEGFR-2
- proteins e.g., VEGF-C, VEGFR-3 and VEGFR-2
- an “inhibitor of expression” refers to a natural or synthetic compound that has a biological effect to inhibit the expression of a gene.
- VEGF-C, VEGFR-3 and VEGFR-2 expression inhibitors for use in the present invention may be based on antisense oligonucleotide constructs.
- Anti-sense oligonucleotides including anti-sense RNA molecules and anti-sense DNA molecules, would act to directly block the translation of VEGF-C, VEGFR-3 and VEGFR-2 mRNA by binding thereto and thus preventing protein translation or increasing mRNA degradation, thus decreasing the level of VEGF-C, VEGFR-3 and VEGFR-2 proteins, and thus activity, in a cell.
- antisense oligonucleotides of at least about 15 bases and complementary to unique regions of the mRNA transcript sequence encoding VEGF-C, VEGFR-3 and VEGFR-2 can be synthesized, e.g., by conventional phosphodiester techniques and administered by e.g., intravenous injection or infusion.
- Methods for using antisense techniques for specifically alleviating gene expression of genes whose sequence is known are well known in the art (e.g. see U.S. Pat. Nos. 6,566,135; 6,566,131; 6,365,354; 6,410,323; 6,107,091; 6,046,321; and 5,981,732).
- Small inhibitory RNAs can also function as expression inhibitors for use in the present invention.
- Gene expression can be reduced by contacting the subject or cell with a small double stranded RNA (dsRNA), or a vector or construct causing the production of a small double stranded RNA, such that VEGF-C, VEGFR-3 and VEGFR-2 expression is specifically inhibited (i.e. RNA interference or RNAi).
- dsRNA small double stranded RNA
- Methods for selecting an appropriate dsRNA or dsRNA-encoding vector are well known in the art for genes whose sequence is known (e.g. see Tuschl, T. et al. (1999); Elbashir, S. M. et al. (2001); Hannon, GJ.
- Ribozymes can also function as expression inhibitors for use in the present invention.
- Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA.
- the mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleo lytic cleavage.
- Engineered hairpin or hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleo lytic cleavage of mRNA sequences are thereby useful within the scope of the present invention.
- ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, which typically include the following sequences, GUA, GUU, and GUC. Once identified, short RNA sequences of between about 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site can be evaluated for predicted structural features, such as secondary structure, that can render the oligonucleotide sequence unsuitable. The suitability of candidate targets can also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using, e.g., ribonuclease protection assays.
- antisense oligonucleotides and ribozymes useful as VEGF-C, VEGFR-3 and VEGFR-2 inhibitors can be prepared by known methods. These include techniques for chemical synthesis such as, e.g., by solid phase phosphoramadite chemical synthesis. Alternatively, anti-sense RNA molecules can be generated by in vitro or in vivo transcription of DNA sequences encoding the RNA molecule. Such DNA sequences can be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Various modifications to the oligonucleotides of the invention can be introduced as a means of increasing intracellular stability and half-life.
- Antisense oligonucleotides siRNAs and ribozymes of the invention may be delivered in vivo alone or in association with a vector.
- a "vector” is any vehicle capable of facilitating the transfer of the antisense oligonucleotide siRNA or ribozyme nucleic acid to the cells and preferably cells expressing VEGF-C, VEGFR-3 and VEGFR-2.
- the vector transports the nucleic acid to cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector.
- the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antisense oligonucleotide siRNA or ribozyme nucleic acid sequences.
- Viral vectors are a preferred type of vector and include, but are not limited to nucleic acid sequences from the following viruses: retrovirus, such as moloney murine leukemia virus, harvey murine sarcoma virus, murine mammary tumor virus, and rouse sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus.
- retrovirus such as moloney murine leukemia virus, harvey murine sarcoma virus, murine mammary tumor virus, and rouse sarcoma virus
- retrovirus such as moloney murine leukemia virus, harvey murine sarcoma virus, murine mammary tumor virus, and rouse sarcoma virus
- adenovirus adeno
- Non-cytopathic viruses include retroviruses (e.g., lentivirus), the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes in vivo.
- adeno-viruses and adeno-associated viruses are double-stranded DNA viruses that have already been approved for human use in gene therapy.
- the adeno-associated virus can be engineered to be replication deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hematopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions.
- the adeno-associated virus can integrate into human cellular DNA in a site-specific manner, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection.
- adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event.
- the adeno- associated virus can also function in an extrachromosomal fashion.
- Plasmid vectors have been extensively described in the art and are well known to those of skill in the art. See e.g., SANBROOK et al, "Molecular Cloning: A Laboratory Manual," Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been used as DNA vaccines for delivering antigen-encoding genes to cells in vivo. They are particularly advantageous for this because they do not have the same safety concerns as with many of the viral vectors. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid.
- Plasmids may be delivered by a variety of parenteral, mucosal and topical routes.
- the DNA plasmid can be injected by intramuscular, intradermal, subcutaneous, or other routes. It may also be administered by intranasal sprays or drops, rectal suppository and orally.
- the plasmids may be given in an aqueous solution, dried onto gold particles or in association with another DNA delivery system including but not limited to liposomes, dendrimers, cochleate and microencapsulation.
- VEGF-C, VEGFR-3 and VEGFR-2 expression inhibitors include but are not limited to siRNAs and shRNA such as described in Liu et al, 2015 and Ye et al, 2015.
- inhibitors according to the invention as described above are administered to the patient in a therapeutically effective amount.
- a “therapeutically effective amount” of the inhibitor of the present invention as above described is meant a sufficient amount of the inhibitor for treating solid cancer at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the inhibitors and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific inhibitor employed; the specific composition employed, the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific inhibitor employed; the duration of the treatment; drugs used in combination or coincidential with the specific inhibitor employed; and like factors well known in the medical arts.
- the daily dosage of the products may be varied over a wide range from 0.01 to 1,000 mg per adult per day.
- the compositions contain 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 250 and 500 mg of the inhibitor of the present invention for the symptomatic adjustment of the dosage to the patient to be treated.
- a medicament typically contains from about 0.01 mg to about 500 mg of the inhibitor of the present invention, preferably from 1 mg to about 100 mg of the inhibitor of the present invention.
- An effective amount of the drug is ordinarily supplied at a dosage level from 0.0002 mg/kg to about 20 mg/kg of body weight per day, especially from about 0.001 mg/kg to 7 mg/kg of body weight per day.
- the compound according to the invention may be used in a concentration between 0.01 ⁇ and 20 ⁇ , particularly, the compound of the invention may be used in a concentration of 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 20.0 ⁇ .
- the present invention relates to the compound according to the invention for use in the treatment of solid cancer in a patient in need thereof in combination with radiotherapy treatment wherein the patient was being classified as having a poor prognosis by the method as above described.
- the VEGF-C inhibitor of the invention is administered sequentially or concomitantly with the radiotherapy treatment, herein defined as a photon (X) radiotherapy or as a proton (P) radiotherapy.
- the radiotherapy treatment herein defined as a photon (X) radiotherapy or as a proton (P) radiotherapy.
- the present invention relates to the compound according to the invention in combination with one or more anti-cancer compound for use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
- the present invention relates to the compound according to the invention in combination with one or more anti-angiogenic compound or anti- lymphangiogenic compound for use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
- anti-cancer compound has its general meaning in the art and refers to compounds used in anti-cancer therapy such as anti-angiogenic compound, tyrosine kinase inhibitors, tyrosine kinase receptor (TKR) inhibitors, Vascular Endothelial Growth Factor Receptors (VEGFRs) pathway inhibitors, interferon therapy, anti-HER2 compounds, anti- EGFR compounds, alkylating agents, anti-metabolites, immunotherapeutic agents, Interferons (IFNs), Interleukins, and chemotherapeutic agents such as described below.
- anti-angiogenic compound has its general meaning in the art and refers to compounds used in anti-angiogenic therapy such as tyrosine kinase inhibitors, anti-angiogenic tyrosine kinase receptor (TKR) inhibitors, anti-angiogenics targeting the Vascular Endothelial Growth Factor Receptors (VEGFRs) pathway, interferon therapy and anti-HER2 compounds such as Trastuzumab (herceptin) and pertuzumab.
- anti- angiogenic compound refers to Sunitinib (Sutent), an anti-angiogenic TKR inhibitor of VEGFRs, platelet-derived growth factor receptors (PDGF-Rs), and c-kit.
- tyrosine kinase inhibitor refers to any of a variety of therapeutic agents or drugs that act as selective or non-selective inhibitors of receptor and/or non-receptor tyrosine kinases. Tyrosine kinase inhibitors and related compounds are well known in the art and described in U.S Patent Publication 2007/0254295, which is incorporated by reference herein in its entirety.
- a compound related to a tyrosine kinase inhibitor will recapitulate the effect of the tyrosine kinase inhibitor, e.g., the related compound will act on a different member of the tyrosine kinase signaling pathway to produce the same effect as would a tyrosine kinase inhibitor of that tyrosine kinase.
- tyrosine kinase inhibitors and related compounds suitable for use in methods of embodiments of the present invention include, but are not limited to, sunitinib (Sutent; SU11248), Axitinib, pazopanib (Votrient), cabozantinib, dasatinib (BMS-354825), PP2, BEZ235, saracatinib, gefitinib (Iressa), erlotinib (Tarceva; OSI-1774), lapatinib (GW572016; GW2016), canertinib (CI 1033), semaxinib (SU5416), vatalanib (PTK787/ZK222584), sorafenib (BAY 43-9006), imatinib (Gleevec; STI571), leflunomide (SU101), vandetanib (Zactima; ZD6474), MK-2206 (8-[4-aminocycl
- the tyrosine kinase inhibitor is a small molecule kinase inhibitor that has been orally administered to the patient of at least one Phase I clinical trial, more preferably at least one Phase II clinical, even more preferably at least one Phase III clinical trial, and most preferably approved by the FDA for at least one hematological or oncological indication.
- inhibitors include, but are not limited to, Gefitinib, Erlotinib, Lapatinib, Canertinib, BMS-599626 (AC-480), Neratinib, KR -633, CEP-11981, Imatinib, Nilotinib, Dasatinib, AZM-475271, CP-724714, TAK-165, Sunitinib, Vatalanib, CP-547632, Vandetanib, Bosutinib, Lestaurtinib, Tandutinib, Midostaurin, Enzastaurin, AEE- 788, Pazopanib, Axitinib, Motasenib, OSI-930, Cediranib, KR -951, Dovitinib, Seliciclib, SNS-032, PD-0332991, MKC-I (Ro-317453; R-440), Sorafenib, A
- anti-angiogenic compound refers to compounds targeting the vascular endothelial growth factor (VEGF) pathway such anti-VEGF antibody bevacizumab (Avastin) and VEGF receptor tyrosine kinase inhibitor (TKI) compounds such as sunitinib (Sutent), vandetanib (Zactima), pazopanib (Votrient), sorafenib (Nexavar) and cediranib.
- VEGF vascular endothelial growth factor
- TKI VEGF receptor tyrosine kinase inhibitor
- the compound of the invention is administered sequentially or concomitantly with one or more anti-cancer compound and/or anti-angiogenic compound.
- the compound of the present invention is administered to the patient in the form of a pharmaceutical composition.
- the compound of the present invention may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form therapeutic compositions.
- pharmaceutically acceptable excipients or “pharmaceutically acceptable” refer to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a mammal, especially a human, as appropriate.
- a pharmaceutically acceptable carrier or excipient refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- the active principle in the pharmaceutical compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration, can be administered in a unit administration form, as a mixture with conventional pharmaceutical supports, to animals and human beings.
- Suitable unit administration forms comprise oral-route forms such as tablets, gel capsules, powders, granules and oral suspensions or solutions, sublingual and buccal administration forms, aerosols, implants, subcutaneous, transdermal, topical, intraperitoneal, intramuscular, intravenous, subdermal, transdermal, intrathecal and intranasal administration forms and rectal administration forms.
- the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Solutions comprising compounds of the invention as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the compound of the present invention can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like.
- Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine,
- the carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with several of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized agent of the present inventions into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- sterile powders for the preparation of sterile injectable solutions the typical methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the compound of the present invention plus any additional desired ingredient from a previously sterile- filtered solution thereof.
- the preparation of more, or highly concentrated solutions for direct injection is also contemplated, where the use of DMSO as solvent is envisioned to result in extremely rapid penetration, delivering high concentrations of the active agents to a small tumor area.
- solutions Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
- the formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.
- aqueous solutions For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
- sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. Some variation in dosage will necessarily occur depending on the condition of the patient being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual patient.
- the compound of the present invention is administered sequentially or concomitantly with one or more therapeutic active agent such as chemotherapeutic.
- the compound of the present invention is administered with a chemotherapeutic agent.
- chemotherapeutic agent refers to chemical compounds that are effective in inhibiting tumor growth.
- examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaorarnide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a carnptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozeles).
- calicheamicin especially calicheamicin (11 and calicheamicin 21 1, see, e.g., Agnew Chem Intl. Ed. Engl. 33 : 183-186 (1994); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, canninomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolin
- paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.].) and doxetaxel (TAXOTERE®, Rhone-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carbop latin; vinblastine; platinum; etoposide (VP- 16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-1 1 ; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
- anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; and phannaceutically acceptable salts, acids or derivatives of any of the above.
- the compound of the present invention is administered with a targeted cancer therapy.
- Targeted cancer therapies are drugs or other substances that block the growth and spread of cancer by interfering with specific molecules ("molecular targets") that are involved in the growth, progression, and spread of cancer.
- Targeted cancer therapies are sometimes called “molecularly targeted drugs", “molecularly targeted therapies”, “precision medicines”, or similar names.
- the targeted therapy consists of administering the patient with a tyrosine kinase inhibitor as defined above.
- compound of the present invention is administered with an immunotherapeutic agent.
- immunotherapeutic agent refers to a compound, composition or treatment that indirectly or directly enhances, stimulates or increases the body's immune response against cancer cells and/or that decreases the side effects of other anticancer therapies. Immunotherapy is thus a therapy that directly or indirectly stimulates or enhances the immune system's responses to cancer cells and/or lessens the side effects that may have been caused by other anti-cancer agents. Immunotherapy is also referred to in the art as immunologic therapy, biological therapy biological response modifier therapy and biotherapy. Examples of common immunotherapeutic agents known in the art include, but are not limited to, cytokines, cancer vaccines, monoclonal antibodies and non- cytokine adjuvants.
- the immunotherapeutic treatment may consist of administering the patient with an amount of immune cells (T cells, NK, cells, dendritic cells, B cells).
- Immunotherapeutic agents can be non-specific, i.e. boost the immune system generally so that the human body becomes more effective in fighting the growth and/or spread of cancer cells, or they can be specific, i.e. targeted to the cancer cells themselves immunotherapy regimens may combine the use of non-specific and specific immunotherapeutic agents.
- Non-specific immunotherapeutic agents are substances that stimulate or indirectly improve the immune system.
- Non-specific immunotherapeutic agents have been used alone as a main therapy for the treatment of cancer, as well as in addition to a main therapy, in which case the non-specific immunotherapeutic agent functions as an adjuvant to enhance the effectiveness of other therapies (e.g. cancer vaccines).
- Non-specific immunotherapeutic agents can also function in this latter context to reduce the side effects of other therapies, for example, bone marrow suppression induced by certain chemotherapeutic agents.
- Non-specific immunotherapeutic agents can act on key immune system cells and cause secondary responses, such as increased production of cytokines and immunoglobulins. Alternatively, the agents can themselves comprise cytokines.
- Non-specific immunotherapeutic agents are generally classified as cytokines or non-cytokine adjuvants.
- cytokines have found application in the treatment of cancer either as general nonspecific immunotherapies designed to boost the immune system, or as adjuvants provided with other therapies.
- Suitable cytokines include, but are not limited to, interferons, interleukins and colony- stimulating factors.
- Interferons (IFNs) contemplated by the present invention include the common types of IFNs, IFN-alpha (IFN-a), IFN-beta (IFN- ⁇ ) and IFN- gamma (IFN- ⁇ ).
- IFNs can act directly on cancer cells, for example, by slowing their growth, promoting their development into cells with more normal behaviour and/or increasing their production of antigens thus making the cancer cells easier for the immune system to recognise and destroy.
- IFNs can also act indirectly on cancer cells, for example, by slowing down angiogenesis, boosting the immune system and/or stimulating natural killer (NK) cells, T cells and macrophages.
- Recombinant IFN-alpha is available commercially as Roferon (Roche Pharmaceuticals) and Intron A (Schering Corporation).
- Interleukins contemplated by the present invention include IL-2, IL-4, IL-11 and IL-12. Examples of commercially available recombinant interleukins include Proleukin® (IL-2; Chiron Corporation) and Neumega® (IL- 12; Wyeth Pharmaceuticals). Zymogenetics, Inc.
- Colony- stimulating factors contemplated by the present invention include granulocyte colony stimulating factor (G-CSF or filgrastim), granulocyte-macrophage colony stimulating factor (GM-CSF or sargramostim) and erythropoietin (epoetin alfa, darbepoietin). Treatment with one or more growth factors can help to stimulate the generation of new blood cells in patients undergoing traditional chemotherapy.
- CSFs can be helpful in decreasing the side effects associated with chemotherapy and can allow for higher doses of chemo therapeutic agents to be used.
- Various-recombinant colony stimulating factors are available commercially, for example, Neupogen® (G-CSF; Amgen), Neulasta (pelfilgrastim; Amgen), Leukine (GM-CSF; Berlex), Procrit (erythropoietin; Ortho Biotech), Epogen (erythropoietin; Amgen), Arnesp (erytropoietin).
- immunotherapeutic agents can be active, i.e. stimulate the body's own immune response, or they can be passive, i.e.
- Passive specific immunotherapy typically involves the use of one or more monoclonal antibodies that are specific for a particular antigen found on the surface of a cancer cell or that are specific for a particular cell growth factor.
- Monoclonal antibodies may be used in the treatment of cancer in a number of ways, for example, to enhance a patient's immune response to a specific type of cancer, to interfere with the growth of cancer cells by targeting specific cell growth factors, such as those involved in angiogenesis, or by enhancing the delivery of other anticancer agents to cancer cells when linked or conjugated to agents such as chemotherapeutic agents, radioactive particles or toxins.
- Monoclonal antibodies currently used as cancer immunotherapeutic agents that are suitable for inclusion in the combinations of the present invention include, but are not limited to, rituximab (Rituxan®), trastuzumab (Herceptin®), ibritumomab tiuxetan (Zevalin®), tositumomab (Bexxar®), cetuximab (C-225, Erbitux®), bevacizumab (Avastin®), gemtuzumab ozogamicin (Mylotarg®), alemtuzumab (Campath®), and BL22.
- Other examples include anti-CTLA4 antibodies (e.g.
- antibodies include B cell depleting antibodies.
- Typical B cell depleting antibodies include but are not limited to anti-CD20 monoclonal antibodies [e.g.
- the immunotherapeutic treatment may consist of allografting, in particular, allograft with hematopoietic stem cell HSC.
- the immunotherapeutic treatment may also consist in an adoptive immunotherapy as described by Nicholas P. Restifo, Mark E.
- NK cells circulating lymphocytes
- the activated lymphocytes or NK cells are most preferably the patient's own cells that were earlier isolated from a blood or tumor sample and activated (or "expanded") in vitro.
- said additional active compounds may be contained in the same composition or administrated separately.
- the pharmaceutical composition of the invention relates to combined preparation for simultaneous, separate or sequential use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
- the present invention also relates to a method for treating solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described, comprising the step of administering to said patient the compound of the invention.
- the solid cancer referred to in the methods and uses described herein above may be for example a head and neck squamous cell carcinoma (FiNSCC) or a medulloblastoma (MDB).
- kits comprising the compound of the invention. Kits containing the compound of the invention find use in therapeutic methods.
- the present invention relates to a method of screening a candidate compound for use as a drug for the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described, wherein the method comprises the steps of:
- VEGF-C and VEGF-C receptor VEGFR-3 and VEGFR-2
- VEGFR-3 and VEGFR-2 providing a cell, tissue sample or organism expressing a VEGF-C and VEGF-C receptor
- a candidate compound such as small organic molecule, an oligonucleotide, a polypeptide, an aptamer, antibody or an intra-antibody,
- lymph node metastasis is measured such as described in the example.
- measuring the lymphatic vessel density and lymph node metastasis involves determining a Ki on the VEGF-C receptor cloned and transfected in a stable manner into a CHO cell line, measuring the VEGF-C downstream signalling, measuring lymphatic vessel density, measuring inhibition of VEGF-C induced endothelial cell proliferation, measuring VEGFR-3 and VEGFR-2 phosphorylation, and measuring KRAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling.
- the present invention relates to a method for treating solid cancer, for example a head and neck squamous cell carcinoma (FINSCC) or a medulloblastoma (MDB), in a patient in need thereof, comprising the step of administering to said patient a VEGF-C inhibitor in combination with radiotherapy treatment (herein defined as a photon (X) radiotherapy or a proton (P) radiotherapy), for example in combination with proton radiotherapy.
- a VEGF-C inhibitor in combination with radiotherapy treatment
- X photon
- P proton
- FIGURES are a diagrammatic representation of FIGURES.
- the values correspond to fold increase, as compared to the viable cell number at 24h after cell seeding.
- CT control (non-irradiated cells).
- FIG. 1 VEGF-C protein expression levels and regulation in CAL33 cells following P or X irradiation.
- A VEGF-C protein levels at 48h post-single irradiation (AR- SI): * and *, significantly (p ⁇ 0.05) increased levels after a low (2 Gy) or high (8 Gy) dose of P and X irradiation, respectively, as compared to CT; #, significantly decreased levels after a high dose of P, as compared to X irradiation; ⁇ , significantly increased levels after a high, as compared to a low X irradiation dose;
- B VEGF-C protein levels after cell expansion following the third irradiation (CR-MI): * and *, significantly increased levels after low and high doses of P and X irradiation, respectively, as compared to CT; Concentration in ng/ml, normalized to 1 x 106 cells, and represented as percentage of CT.
- FIG. 3 Evaluation of tumors generated following xenografting of either non- irradiated, P or X irradiated CAL33 cells in immunodeficient mice.
- A Average tumor volume (mm3);
- B Representative images of tumor xenografts;
- C Heatmap of ten most up- and down-regulated mouse genes in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors;
- D Heatmap of ten most up- and down-regulated human genes in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors;
- E Venn diagrams showing common up-regulated and down-regulated human genes between P and X tumors. Framed genes are commonly expressed in P and X tumors. Selection is adjusted p value ⁇ 0.05 and lofFC > 1.
- FIG. 4 Histology, immunofluorescence and quantitative gene expression of vascular and lymphatic markers in murine xenografts.
- A Representative images of HES staining, indicating increased necrosis (black arrowhead, delimited by dashed black lines) in CT and increased blood vessels density (white arrowhead showing collagen surrounding the vessels) in the irradiated cells-derived tumors;
- B Representative images of CD31 (endothelial cells, green) / aSMA (pericytes, red) / Hoechst (nuclei, blue) staining, showing anarchic blood vessels structures and lack of pericyte coverage of blood vessels in the irradiated cells-derived tumors;
- C Representative images of LYVEl (lymphatic endothelial cells, red) / Hoechst (nuclei, blue) staining, showing different patterns of lymphatic vessels development in X (both periphery and interior of the tumor), P and CT (periphery of the tumor) groups
- FIG. 1 Evaluation of vascular and lymphatic markers in biopsies from patients diagnosed with HNSCC. Representative images of immunohistochemistry for (A) PDPN and (B) CD31 expression: (1) oral and (2) hypopharyngeal localization; Left panels (l.a, 2.
- FIG. 7 (A) Proliferation curves, (B) VEGF-C protein expression levels, activity of a (C) VEGF-C promoter and (D) artificial promotor having three NF- ⁇ binding sites, in CAL27 cells following high doses of either P or X irradiation (CR-MI setting).
- FIG. 8 Heatmap of ten most up- and down-regulated mouse genes involved in angiogenesis, inflammation, metastasis, M1/M2 macrophage transition and proliferation in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors. Framed genes are commonly expressed in P and X tumors. Selection is Abs(logFC) > 1.
- Figure 9 Heatmap of ten most up- and down-regulated human genes involved in angiogenesis, inflammation, metastasis, M1/M2 macrophage transition and proliferation in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors. Framed genes are commonly expressed in P and X tumors. Written in red are genes associated with disease progression; written in green are genes associated with favorable outcomes. Selection is adjusted p value ⁇ 0.05 and Abs(logFC) > 1.
- FIG. 10 Density of (A) tumor vessels and (B) tumor blood vessels with CD31/aSMA colocalization. * and *, significantly increased vessel density in P and X tumors, respectively, as compared to CT; # and #, significantly decreased density of blood vessels with CD31/aSMA colocalization in P and X tumors, respectively, as compared to CT; CT, control (non-irradiated cells).
- FIG. 11 cBioPortal data showing the correlation between VEGF-C over- expression and significantly lower (A) disease free and (B) overall survival rates in patients with HNSCC.
- FIG 13 Relative levels of VEGFC mRNA in different medulloblastoma (MDB) lines from different genetic groups: Sonic hedgehog cells (SHH), HDMB03 cells (Group 3) and Group 4 (cf. example 2 and reference 51).
- SHH Sonic hedgehog cells
- HDMB03 cells Group 3
- Group 4 cf. example 2 and reference 51.
- the HDMB03 cells (Group 3 MDB) were incubated in the presence of various reference chemotherapies or irradiation with 8 Gray photons (CbPT: carbop latin, Eto, etoposide, CT: vehicle, MIX, CbPT/Eto combination, Radio: irradiation, 8 grays).
- the chemotherapy concentrations correspond to the dose killing 50% of the cells (IC50).
- VEGFC was measured in cell culture medium by ELISA. ** p ⁇ 0.01; *** p ⁇ 0.001.
- Figure 15 qPCR analysis of the different genes involved in the lymphatic program in HDMB03 cells (Group3 MDB); * p>0.05; *** p ⁇ 0.001.
- IHC Immunohistochemistry
- CAL33 and CAL27 Two human HNSCC cell lines, CAL33 and CAL27, were provided through a Material Transfer Agreement with the Oncopharmacology Laboratory, Centre Antoine Lacassagne (CAL), where they had initially been isolated (50). The cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with 7% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA).
- the cells were irradiated either once or three times, one week apart (multiple irradiations, MI) with either 2 Gy (low dose) or 8 Gy (high dose), and processed 6h after irradiation.
- MI multiple irradiations
- cells were re-seeded after each irradiation and kept in culture until the next irradiation to reproduce the clinical situation where patients are usually given several irradiations.
- the chronic response (CR) was evaluated to determine if the changes associated with the acute response (AR) persist late (three weeks) after irradiation.
- Two cell groups were thus generated from each independent irradiation experiment. They consisted of cells subjected to: (1) SI and analysis 48h thereafter (AR-SI); (2) MI and culture expansion (three weeks) after the third irradiation (CR-MI).
- the cell counting for the CR-MI group was done every day, for four days post- seeding, in triplicate, with an automatic cell counter (Advanced Detection Accurate Measurement system, LabTech, TAMPA, FL, USA), according to the manufacturer instructions.
- cDNA samples were amplified by using the StepOnePlusTM RT-PCR System (Thermo Fisher Scientific) for 40 cycles with the TakyonTM Rox SYBR® Master Mix, dTTP Blue (Eurogentec, vide, Belgium) and specific oligonucleotides (Sigma Aldrich), to assess mRNA expression for VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2, VEGFR-3, NRP1, NRP2, IL-6, IL-8, CCL2, TRF2, PLK1, PD-L1, LYVE1, PDPN and PROX1.
- mRNA levels were normalized to a housekeeping mRNA coding for either the human or murine ribosomal protein, large, P0 (RPLPO).
- the gene expression levels were given the individual scores of -1, 0 and 1 when they were significantly decreased, not significantly changed and significantly increased, respectively, as compared to control. For each irradiation setting, a global gene expression score was then calculated by cumulating the individual scores allocated to each gene expression level.
- VEGF-C protein was quantified by using an enzyme-linked immunosorbent assay (human DuoSet ELISA kit, R&D Systems, MN, USA). Protein concentration was normalized to the viable cell number.
- CAL33 cells belonging to the CR-MI group were transfected by using 50 ⁇ NaCl buffer, 1.25 ⁇ of polyethylenimine transfection reagent (Sigma Aldrich) and 0.5 ⁇ g of total test plasmid DNA-renilla luciferase.
- the plasmids encoded either (i) a human vegf-c promoter fragment with either a non-mutated (wild type, WT) or a mutated (MUT) binding site for the nuclear factor kappa- light-chain-enhancer of activated B cells (NF-KB) (32), (ii) an artificial promoter containing three binding sites for human NF- ⁇ or (iii) a human VEGF-C 3 'UTR reporter (LightSwitchTM, S803537, Active Motif, Carlsbad, CA, USA), all cloned downstream of the luciferase reporter gene.
- a CMV plasmid was used to control the variability of transfection efficiency in the reporter assays.
- RNA degradation was documented (Bioanalyzer 2100, Agilent Technologies, Santa Clara, CA, USA).
- the libraries were generated by using Truseq Stranded mRNA kit (Illumina, San Diego, CA, USA).
- STAR options were set to the recommended Encode RNA-seq options "— outFilterType BySJout —outFilterMultimapNmax 20 —alignSJoverhangMin 8 alignSJDBoverhangMin 1 —outFilterMismatchNmax 999 —outFilterMismatchNoverLmax 0.04 -alignlntronMin 20 -alignlntronMax 1000000 -alignMatesGapMax 1000000".
- Gene counts were obtained with featureCounts (subread-1.5.0-p3-Linux-x86_64) and "--primary -p -s 1 -C” options, by using the same GTF files used for STAR splice junctions training.
- genes involved in angiogenesis, inflammation, metastasis and cell proliferation were selected by using the Ingenuity Pathway Analysis (Qiagen) database.
- Qiagen Ingenuity Pathway Analysis
- M1/M2 macrophages-related genes the GEO dataset GSE69607 has been reanalyzed by using geo2R online resource.
- Genes up- and down-regulated (Abs (logFC)>2) in both Ml vs M0 and M2 vs M0 comparisons were selected as the "M1/M2 macrophages"-related gene list.
- Murine tumor sections were handled as previously described 8. To assess tumor architecture, the sections were subjected to Hematoxylin Eosin Saffron (HES) staining. For immunofluorescence, the frozen sections were incubated overnight, at 4°C, with the following primary antibodies: polyclonal rabbit anti-mouse/human LYVE1 (1 :200; Abeam, Cambridge, United Kingdom), monoclonal mouse anti-mouse/human alpha smooth muscle actin (aSMA, 1 :400, Sigma Aldrich) and monoclonal rat anti-mouse CD31 (1 :50, clone MEC 13.3, BD Pharmigen, Heidelberg, Germany) primary antibodies, then incubated for 2h at room temperature, in the dark, with the secondary antibodies: anti-rabbit FP594, anti-mouse FP547 (1 : 1000, FluoroProbes, Interchim, Montlucon, France) and anti-rat AF488 (1 : 1000, AlexaFluor, Thermo
- Table 2 Common up-regulated and down-regulated human genes in tumors generated with either X or P irradiated cells. In bullet are genes up-regulated in either P or X tumors, but down-regulated in tumors generated with non-irradiated cells. Selection is adjusted p value ⁇ 0.05 and lofFC > 1.
- Table 4 Quantitative gene expression, as percentage of control (0 Gy), in either P or X irradiated CAL27 cells belonging to CR-MI group. Highlighted values - significantly different (p ⁇ 0.05) expression levels, as compared to control, for genes associated to antitumor (dark grey) and pro-tumor (black) effects; *, significantly different expression levels after 2 Gy, as compared to 8 Gy of either P or X irradiation; #, significantly different expression levels after either 2 Gy or 8 Gy of P, as compared to X irradiation.
- the mRNA levels of the different tested genes overall increased in a dose-dependent manner and with the irradiation number after both P and X irradiation.
- IL-8 was the gene whose mRNA was induced at the highest level after X (79-fold, as compared to control), but not after P irradiation, within the high dose CR-MI setting (p ⁇ 0.0001).
- both P and X irradiation augmented PD-L1 mRNA expression in a dose-dependent manner within the AR-SI and CR-MI settings, and in an irradiation number-dependent manner within the AR-SI setting.
- the generated gene expression scores showed that P irradiation is associated with a more favorable profile [reduced proliferation, (lymph)angiogenesis, inflammation)].
- VEGF-C the major growth factor for lymphatic endothelial cells.
- mRNA levels of VEGF-C were increased after both low and high dose(s) of P or X irradiation, they were lower after high dose(s) of P irradiation.
- VEGF-C protein levels in CAL33 and CAL27 cells were assessed.
- VEGF-C protein levels increased in a dose-dependent manner following both P and X irradiation. Furthermore, they were significantly lower after P irradiation.
- Irradiation by either X or P stimulated the activity of the vegf-c promoter especially in CAL33 cells surviving to multiple X irradiations (6- and 18-fold increase, respectively, p ⁇ 0.001, Figure 2C).
- This result is consistent with the induction of the VEGF-C mRNA within the CR-MI setting (Table 1) and suggests a chronic induction of vegf-c gene transcription, an increase in vegf-c mRNA half-life or a combination of both mechanisms.
- Mutation of the NF- ⁇ binding site (MUT) had no effect on the basal vegf-c promoter activity in no n- irradiated cells.
- VEGF-C was particularly discriminative between the two experimental irradiation conditions, we tested whether it had induced the development of lymphatic vessels.
- LYVEl, PDPN and PROXl markers of lymphatic vessels were then tested (Fig. 4.D).
- VEGF-C may represent an extrinsic mechanism responsible for the post-irradiation tumor dissemination/metastasis in FiNSCC.
- VEGF-C expression was associated with lymph node metastasis, recurrence and a poorer five-year survival rate in patients with FiNSCC, being an independent prognostic factor (11, 29).
- VEGF-C may be an important therapeutic target for FiNSCC patients who relapse after radiotherapy with either P or X.
- VEGF-C might be a major factor responsible for post-irradiation disease progression in FiNSCC patients, via promotion of lymphangiogenesis, we further started investigating the mechanisms involved in its induction, which may serve to its therapeutic targeting. Regulation of VEGF-C expression has been poorly addressed (27, 31, 32). Irradiation-mediated induction of VEGF-C mRNA suggested stimulation of transcription, stabilization of mRNA or a combination of these mechanisms (31). Our data indicate that both P and X irradiation stimulated the activity of a short form of vegf-c promoter in CAL33 cells. The vegf-c promoter contained a binding site for NF- ⁇ .
- VEGF-C regulation plays a key role in VEGF-C regulation, as suggested in another cancer type (32).
- NF- ⁇ plays a key role in VEGF-C regulation, as suggested in another cancer type (32).
- these cell lines came from two different patients, our results highlight the inter-patient variability in VEGF-C expression and regulation, stressing out the importance of implementing personalized diagnosis and treatment strategies.
- the VEGF-A and VEGF-D genes were down-regulated by P and up-regulated by X irradiation.
- VEGF-A expression significantly correlated with lymph node metastasis in patients with FiNSCC 11.
- VEGF-A expression was also associated with higher clinical stages and worse overall survival, being a significant predictor of poor prognosis in patients with HNSCC (33).
- VEGF-D expression correlated with lymphatic vessel density and lymph node metastasis in these patients (10).
- VEGFR-2, VEGFR-3 and NRP1 highly expressed by HNSCC cells (34), were down-regulated in the surviving cells selected after three irradiations with P, but not with X.
- High NRP1 and NRP2 levels correlated with poor prognosis in HNSCC patients, NRP2 being an independent prognostic markers for overall survival (35).
- IL-6 expression predicted a poor response to radio-chemotherapy and a non-favorable prognosis in HNSCC patients (39). It was also linked to radiation resistance and development of chronic toxicities after irradiation (40). Depending on tumor location, the most common side effects after conventional radiotherapy of HNSCC include mucositis, xerostomia, dysphagia requiring short-term or permanent gastrostomy, soft tissue/bone necrosis, neck fibrosis, and thyroid dysfunction (41). Although the primary goal in radiotherapy is tumor control, a parallel essential goal is to spare normal tissues from radiation toxicity.
- Irradiation leads to adaptive changes in the tumor microenvironment that may limit the generation of an anti-tumor immune response (24). Indeed, we showed a significant increase of PD-Ll expression after P, and confirmed the X radiation- induced PD-Ll expression in other cancers (24, 45). In patients with HNSCC, high PD-Ll expression in primary tumors correlated with metastasis and poor prognosis, being an independent prognostic factor (46). PD-Ll was also a significant predictor for poor treatment response and shorter survival in X radiotherapy-treated patients with HNSCC (45).
- PDZK1IP1 PDZK1 interacting protein 1
- FLRT2 fibronectin leucine rich transmembrane protein 2
- mouse Car2 expression was down-regulated in P and X tumors, while up-regulated in tumors generated with non-irradiated cells.
- low CAR2 protein expression has been associated with increased tumor size (26).
- the X tumors showed up-regulation of human genes involved in metastasis, angiogenesis and epithelial mesenchymal transition, such as MMP2, MMP9, MMP13, MMP16, MMP28 and vimentinl5, while P tumors showed up-regulation of human C-C Motif Chemokine Ligand 5 chemokine gene involved in CD8 + T lymphocytes recruitment associated with better clinical outcomes (49).
- lymphatic markers expression in patients with relapsed HNSCC after X radiotherapy we investigated lymphatic markers expression in patients with relapsed HNSCC after X radiotherapy. Biopsies at relapse are very rarely sampled in radiotherapy-treated patients. However, in this small cohort, all patients presented increased protein and/or mR A levels of PDPN, VEGF- C, LYVE1 and PROX1, bringing evidence that conventional radiotherapy may promote lymphangiogenesis. It has also been reported by others that high PDPN expression is associated with aggressive tumor behavior, poor prognosis and metastatic regulation through interaction with VEGF-C, suggesting that PDPN may be used as a potential prognostic biomarker for HNSCC (27). However, our in vitro studies did not reveal increased PDPN expression in HNSCC cells that resisted to MI ( Figure 12).
- MDBs Medulloblastomas
- MDBs Medulloblastomas
- 70% of MDBs are diagnosed before the age of 10 and MDB are rare in adults.
- MDB is a pathology composed of four molecular groups: wingless (WNT), sonic hedgehog (SHH), group 3 and group 4 (51). These groups are defined by clinical and molecular parameters of the tumor cells.
- WNT and SHH groups exhibit aberrant activation of the WNT and SHH signaling pathways.
- Group 3 tumors overexpress the OTX2 and c-MYC genes and those of group 4 N-MYC (52).
- MDB The genetic landscape of MDB more precisely describes and illustrates tumor heterogeneity among the previously identified subgroups (53-55). These classifications represent important indicators for treatment decision at the first line but do not predict patients at risk of relapse after conventional therapies.
- MDB treatments combine surgery, irradiation and/or multiple chemotherapies (carboplatin, etoposide). These heavy treatments induce physical, psychological or behavioral sequelae.
- MDBs are highly vascularized by overexpression of VEGF and many other markers of angiogenesis (VEGFB, VEGFC, FGF, angiopoietin) (56). Anti-angiogenic treatments induce a poor response rate in MDB and are not devoid of side effects in developing children.
- DAOY and HDMB03 cell lines were purchased from the ATCC. Stocks were made at the original date of obtaining the cells, and were usually passaged for no more than 4 months. These cell lines have been authenticated by DNA profiling using 8 different and highly polymorphic short tandem repeat loci (DSMZ).
- Chemo/radiotherapeutic treatments result in the expression of VEGFC and several lymphatic markers in a Group 3 MDB model cell line.
- the standard chemo therapeutic treatments for MDB are combinations of carboplatin/etoposide. We determined the IC50 for each of these compounds on different MDB lines. Our results show VEGFC induction by chemotherapies/irradiation in MDB cells ( Figure 14).
- lymphatic vessels LV
- LV lymphatic vessels
- Pathologists advocate the absence of such vessels. However, their presence has been recently identified in the meninges (62, 63). The presence of LV in brain tumors has never been reported.
- podoplanin labeling commonly used by pathologist to identify lymphatic embols
- Figure 16 We believe these structures to be lymphatic vessels.
- patients exhibiting such structures should beneficiate from an aggressive treatment of cancer, typically radiotherapy, preferably P radiotherapy, and/or chemotherapy using a VEGF-C inhibitor as the chemotherapeutic agent.
- VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node metastasis in oral squamous cell carcinoma: Implications for use as a prognostic marker. Int J Oncol 2009; 34: 673-680.
- VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113: 1040-1050.
- VEGF-C Vascular endothelial growth factor C
- Tumor necrosis factor-alpha promotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-kappaB- mediated upregulation of vascular endothelial growth factor-C. Cancer Sci 2014; 105: 1261- 1271.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention relates to a method for predicting the outcome of a cancer in patient afflicted with solid cancer after radiotherapy. The inventors investigated the comparative biological effects of proton (P) versus photon (X) radiation in head and neck squamous cell carcinoma (FiNSCC) cells. The inventors demonstrated that P and X radiation induced VEGF-C over-expression at both gene and protein levels in FiNSCC cells and in MDB cells and that VEGF-C is a major factor responsible for post-irradiation disease progression in FiNSCC patients, via promotion of lymphangio genesis. The inventors demonstrated that VEGF-C is an important therapeutic target for FiNSCC patients who relapse after radiotherapy. The inventors investigated the presence of lymphatic markers in biopsies from primary and locally relapsed human FiNSCC, after X radiotherapy. The patients presented increased VEGF-C, bringing evidence that X radiotherapy promote lymphangiogenesis. Thus, the invention relates to a method for predicting the outcome of a cancer in patient afflicted with solid cancer after radiotherapy, comprising the step of determining the expression level of VEGF-C. The invention also relates to a VEGF-C inhibitor for use in the treatment of solid cancer in a patient classified as having a poor prognosis by the method of the invention.
Description
METHODS AND PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF CANCER
FIELD OF THE INVENTION:
The present invention relates to methods and pharmaceutical compositions for the treatment of cancer.
BACKGROUND OF THE INVENTION:
Approximately 50% of all cancer patients are subject to radiotherapy during the course of their illness with an estimation that radiotherapy contributes to approximately 40% towards curative treatment (1). The goal of radiotherapy is to deliver loco-regionally a specific dose of radioactivity that will allow the destruction of cancer cells, while limiting the exposure of surrounding healthy tissues. Among the ionizing radiation treatments, the large majority consists of photons (X) of high energy (5-20 MeV). However, the main disadvantage of X radiotherapy is represented by the deposition of radiation also at the level of surrounding healthy tissues, leading to side effects. Although the ionizing radiation by proton beams (P) is currently more expensive and more difficult to produce, it has the physical advantage of delivering no radiation outside of the intended targeted area, thanks to the so-called Bragg peak (2).
P radiotherapy is mainly proposed for the treatment of uveal melanoma, skull base and paraspinal tumors due to its high precision in tumor targeting with a very high irradiation dose next to radiosensitive structures (2). It is also proposed for the pediatric tumors based on the advantage to deliver a much lower integral dose, which significantly reduces the risk of radiation induced cancers in a long-life expectancy setting (2). Several retrospective and dosimetry studies have suggested an advantage of P radiotherapy in other tumors located near organs at risk, such as the head and neck squamous cell carcinoma (HNSCC) (2).
The head and neck cancers are among the ten most common types of cancer and the 7th cause of mortality from cancer worldwide. Depending on disease stage, the treatment of HNSCC consists of either chemoradiotherapy and/or surgical excision (3). However, conventional radiotherapy with X in HNSCC remains difficult, due to the proximity of numerous organs at risk (i.e. salivary glands, esophagus and larynx). Recent studies have shown an advantage of P, over X radiotherapy, in inducing lower toxicities (4) and lower dose delivery to organs of risk (5) in HNSCC patients.
Despite of the currently available therapeutic strategies, the five-year overall survival rate of HNSCC patients is only 53% (6) because of a high percentage of a poor response to
therapy and high recurrence rates. Sentinel lymph node metastasis, the first sign of tumor progression, was directly correlated to prognosis in HNSCC patients (7). Vascular Endothelial Growth Factor C (VEGF-C) is a major pro-lymphangiogenic factor responsible for the metastatic dissemination of cancer cells (8). A significant correlation has been observed between intra-tumor lymphatic vessel density and lymph node metastasis in patients with FiNSCC (9). Moreover, VEGF-C expression levels correlated with lymphatic vessel density and lymph node metastasis in these patients (10, 11). VEGF-C-dependent development of the lymphatic network might also be the major route of spread of tumor cells when the patients become resistant to therapy (8).
Beside the physical advantage of P vs. X irradiation and the RBE, few comparative preclinical studies have been conducted that contrast cellular/biological response to P vs X radiations (12-15).
P irradiation led to distinct gene and protein expression profiles (12). Mice receiving total-body irradiation with either P or X had enhanced plasma levels of transforming growth factor-β, only after X irradiation (13). Moreover, X irradiation promoted angiogenesis, thus enhancing metastasis by up-regulation of various pro-angiogenic factors (14). By contrast, low dose P irradiation did not induce the pro-angiogenic and pro -inflammatory genes, impaired tumor cell invasion in vitro, and attenuated tumor growth rate in mice (14). By down-regulating integrins and matrix-metalloproteinases (MMP), P irradiation also reduced invasive and migratory properties of tumor cells (15).
Therefore, beside the physical advantage in dose deposition, P may have different biological properties, as compared to X radiation at a similar dose. The purpose of the present study was thus to analyze the different biological behaviors of FiNSCC cells when exposed to P vs X radiation. The study focused on molecules with key roles in the progression and prognosis of FiNSCC, such as the inflammatory cytokines: Interleukin 6 (IL6) (16), Interleukin 8 (IL8) (17); (lymph)angiogenic factors: Vascular Endothelial Grow Factors (VEGF) A, C and D and their receptors: Vascular Endothelial Growth Factor Receptor (VEGFR) 1, 2 and 3, Neuropilin (NRP) 1 and 2 (18, 19); factors involved in lymphatic vessels development: lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), prospero homeobox 1 (PROX1) transcription factor, and podoplanin (PDPN), a mucin-type transmembrane protein (20); pro -inflammatory chemokine C-C Motif Chemokine Ligand 2 (CCL2) involved in cell migration (21); cell cycle regulators: polo-like kinase 1 (PLK1) (22) and telomeric repeat-binding factor 2 (TRF2) transcription factor (23); immune checkpoint
molecule programmed death-ligand 1 (PD-Ll) involved in anergy and tumor progression (24).
The role of the above-mentioned molecules in the post-irradiation progression of HNSCC has not been elucidated. Our working hypothesis was that different radiation types would lead to different intrinsic and extrinsic biological responses, allowing the adaptation of tumor cells. Therefore, we studied the impacts of P vs X irradiation on human HNSCC cells viability; proliferation; whole transcriptome profile and expression of key genes/proteins implicated in (lymph)angiogenesis/metastasis, inflammation, tumor cell proliferation and antitumor immunity; tumorigenic potential, and depicted the molecular mechanisms of post- irradiation VEGF-C regulation, to set the basis for improved therapeutic approaches for HNSCC.
SUMMARY OF THE INVENTION:
The present invention relates to methods and pharmaceutical compositions for the treatment of cancer.
DETAILED DESCRIPTION OF THE INVENTION:
The inventors investigated the comparative biological effects of P versus X radiation in head and neck squamous cell carcinoma (HNSCC) cells by assessing the relative biological effectiveness (RBE), viability, proliferation and mRNA levels for genes involved in (lymph)angiogenesis, inflammation, proliferation and anti-tumor immunity. These parameters, particularly VEGF-C protein levels and regulations, were documented in freshly irradiated and/or long-term surviving cells receiving low/high-dose, single (SI)/multiple (MI) irradiations with P/X. The RBE was found to be 1.1 Key (lymph)angiogenesis and inflammation genes were down-regulated, except for vegf-c, after P and up-regulated after X irradiation in MI surviving cells, demonstrating a more favorable profile after P irradiation. Both irradiation types stimulated vegf-c promoter activity in a NF-KB-dependent transcriptional regulation manner, but at a lesser extent after P, as compared to X irradiation, which correlated with mRNA and protein levels. The cells surviving to MI by P or X generated tumors with higher volume, anarchic architecture and increased density of blood vessels. Increased lymphangiogenesis and a transcriptomic analysis in favor of a more aggressive phenotype were observed in tumors generated with X-irradiated cells. Increased detection of lymphatic vessels in relapsed tumors from patients receiving X radiotherapy was consistent with these findings. The present invention demonstrates the biological advantage of P, as compared to X irradiation. In addition to its physical advantage in dose deposition, P irradiation may help to improve treatment approaches for HNSCC.
The inventors demonstrated that P and X radiation-induced VEGF-C over-expression at both gene and protein levels in HNSCC cells and in meduUoblastoma (MDB) cells and that VEGF-C is a major factor responsible for post-irradiation disease progression in FiNSCC patients, via promotion of lymphangiogenesis. The inventors also demonstrated that VEGF-C is an important therapeutic target for FiNSCC patients who relapse after radiotherapy with either P or X. The inventors also investigated the presence of lymphatic markers in biopsies from primary and locally relapsed human FiNSCC, after conventional X radiotherapy. The cohort of patients presented increased protein and/or mRNA levels of VEGF-C, PDPN, LYVE1 and PROX1, bringing evidence that X radiotherapy may promote lymphangiogenesis.
Accordingly, the present invention relates to a method for predicting the outcome of a cancer in patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient has a good prognosis when the level determined at step i) is lower than the predetermined reference value or concluding that the patient has a poor prognosis when the level determined at step i) is higher than the predetermined reference value.
As used herein, the term "patient" denotes a mammal. Typically, a patient according to the invention refers to any patient (preferably human) afflicted with solid cancer. The term "patient" also refers to any patient afflicted with head and neck squamous cell carcinoma (FiNSCC) or with meduUoblastoma (MDB) for example. The term "patient" also refers to any patient afflicted with solid cancer receiving radiotherapy. The term "patient" also refers to any patient afflicted with head and neck squamous cell carcinoma (FiNSCC) or with meduUoblastoma (MDB) receiving radiotherapy.
The term "solid cancer" has its general meaning in the art and refers to solid cancer selected from the group consisting of, but not limited to, head and neck squamous cell carcinoma (FiNSCC), adrenal cortical cancer, anal cancer, bile duct cancer (e.g. periphilar cancer, distal bile duct cancer, intrahepatic bile duct cancer), bladder cancer, bone cancer (e.g. osteoblastoma, osteochrondroma, hemangioma, chondromyxoid fibroma, osteosarcoma, chondrosarcoma, fibrosarcoma, malignant fibrous histiocytoma, giant cell tumor of the bone, chordoma, multiple myeloma), brain and central nervous system cancer (e.g. meningioma, astocytoma, oligodendrogliomas, ependymoma, gliomas, meduUoblastoma (MDB), ganglioglioma, Schwannoma, germinoma, craniopharyngioma), breast cancer (e.g. ductal carcinoma in situ, infiltrating ductal carcinoma, infiltrating lobular carcinoma, lobular
carcinoma in situ, gynecomastia), cervical cancer, colorectal cancer, endometrial cancer (e.g. endometrial adenocarcinoma, adenocanthoma, papillary serous adenocarcinoma, clear cell), esophagus cancer, gallbladder cancer (mucinous adenocarcinoma, small cell carcinoma), gastrointestinal carcinoid tumors (e.g. choriocarcinoma, chorioadenoma destruens), Kaposi's sarcoma, kidney cancer (e.g. renal cell cancer), laryngeal and hypopharyngeal cancer, liver cancer (e.g. hemangioma, hepatic adenoma, focal nodular hyperplasia, hepatocellular carcinoma), lung cancer (e.g. small cell lung cancer, non-small cell lung cancer), mesothelioma, plasmacytoma, nasal cavity and paranasal sinus cancer (e.g. esthesioneuroblastoma, midline granuloma), nasopharyngeal cancer, neuroblastoma, oral cavity and oropharyngeal cancer, ovarian cancer, pancreatic cancer, penile cancer, pituitary cancer, prostate cancer, retinoblastoma, rhabdomyosarcoma (e.g. embryonal rhabdomyosarcoma, alveolar rhabdomyosarcoma, pleomorphic rhabdomyosarcoma), salivary gland cancer, skin cancer (e.g. melanoma, nonmelanoma skin cancer), stomach cancer, testicular cancer (e.g. seminoma, nonseminoma germ cell cancer), thymus cancer, thyroid cancer (e.g. follicular carcinoma, anaplastic carcinoma, poorly differentiated carcinoma, medullary thyroid carcinoma), vaginal cancer, vulvar cancer, and uterine cancer (e.g. uterine leiomyosarcoma) .
In some embodiment, the cancer is head and neck squamous cell carcinoma (HNSCC).
In some embodiment, the cancer is medulloblastoma (MDB).
The term "biological sample" refers to any biological sample derived from the patient such as solid cancer sample, biopsy sample, blood sample, plasma sample, or serum sample. Said biological sample is obtained for the purpose of the in vitro evaluation.
The term "radiotherapy treatment" has its general meaning in the art and refers to photon (X) radiotherapy and proton (P) radiotherapy. The term "radiotherapy treatment" also refers to photon irradiation and proton irradiation. The term "radiotherapy treatment" also refers to single irradiation (SI) and multiple irradiations (MI) such as described in the example. The term "radiotherapy treatment" also refers to radiation therapy using radio therapeutic agent administered to the patient afflicted with solid cancer.
Radiation therapy or radiotherapy is the medical use of irradiation (i.e. ionizing radiation) as part of cancer treatment to control malignant cells. Ionizing radiation deposits energy that injures or destroys cells in the area being treated (the target tissue) by damaging their genetic material, making it impossible for these cells to continue to grow. One type of radiation therapy commonly used involves photons, e.g. X-rays. Depending on the amount of
energy they possess, the rays can be used to destroy cancer cells on the surface of or deeper in the body. The higher the energy of the x-ray beam, the deeper the x-rays can go into the target tissue. Linear accelerators and betatrons produce x-rays of increasingly greater energy. The use of machines to focus radiation (such as x-rays) on a cancer site is called external beam radiotherapy. Gamma rays are another form of photons used in radiotherapy. Gamma rays are produced spontaneously as certain elements (such as radium, uranium, and cobalt 60) release radiation as they decompose, or decay. Another technique for delivering radiation to cancer cells is to place radioactive implants directly in a tumor or body cavity. This is called internal radiotherapy. Brachytherapy, interstitial irradiation, and intracavitary irradiation are types of internal radiotherapy. In this treatment, the radiation dose is concentrated in a small area. A further technique is intra-operative irradiation, in which a large dose of external radiation is directed at the tumor and surrounding tissue during surgery.
Another approach is particle beam radiation therapy. This type of therapy differs from photon radiotherapy in that it involves the use of fast-moving subatomic particles to treat localized cancers. Some particles (protons, neutrons, pions, and heavy ions) deposit more energy along the path they take through tissue than do x-rays or gamma rays, thus causing more damage to the cells they hit. This type of radiation is often referred to as high linear energy transfer (high LET) radiation. Radio-sensitizers make the tumor cells more likely to be damaged, and radio -protectors protect normal tissues from the effects of radiation.
A person of ordinary skill in the radiotherapy art knows how to determine an appropriate dosing and application schedule, depending on the nature of the disease and the constitution of the patient. In particular, the person knows how to assess dose-limiting toxicity (DLT) and how to determine the maximum tolerated dose (MTD) accordingly. More particularly, the amount of radiation used in photon radiation therapy is measured in gray (Gy), and varies depending on the type and stage of cancer being treated. Many other factors are considered by radiation oncologists when selecting a dose, including whether the patient is receiving chemotherapy, patient co -morbidities, whether radiation therapy is being administered before or after surgery, and the degree of success of surgery. Moreover, the total dose is often fractionated. Fractionation regimes are individualized between different radiotherapy centers. The typical fractionation schedule for adults is 1 to 2 Gy per day, five days a week. In some cases, two fractions per day are used near the end of a course of treatment. This schedule is known as a concomitant boost regimen or hyperfractionation. Thus, in another preferred embodiment, the radiotherapy can be applied at a dose in a range
from about 1 to 80Gy, about 10 to 55Gy, preferably from about 15 to 50 Gy, such as 20 to 40Gy, concretely from about 20 to 35 Gy, and more concretely from about 25 to 30 Gy.
As used herein, the term "VEGF-C" has its general meaning in the art and refers to Vascular Endothelial Growth Factor C, a member of the vascular endothelial growth factor family.
As used herein, the term "Good Prognosis" refers to a patient afflicted with solid cancer receiving radiotherapy treatment that is likely to not present lymph node metastasis, and/or that is likely to not present cancer relapse, and/or that is likely to present a high overall survival (OS), event-free survival (EFS), and/or metastasis- free survival (MFS).
As used herein, the term "Poor Prognosis" or "Bad Prognosis" refers to a patient afflicted with solid cancer receiving radiotherapy treatment that is likely to present lymph node metastasis, and/or that is likely to present cancer relapse, and/or that is likely to present short overall survival (OS), progression free survival (PFS) and/or metastasis.
In some embodiment, the method of the invention also comprises determining the expression level of PDPN, LYVE1 and PROX1.
The term "PDPN" has its general meaning in the art and refers to podoplanin, a mucin- type transmembrane protein.
The term "LYVE1" has its general meaning in the art and refers to lymphatic vessel endothelial hyaluronan receptor 1.
The term "PROX1" has its general meaning in the art and refers to prospero homeobox 1 transcription factor.
As used herein, the "reference value" refers to a threshold value or a cut-off value. The setting of a single "reference value" thus allows discrimination between a poor and a good prognosis with respect to the lymph node metastasis, cancer relapse and overall survival (OS) for a patient. Typically, a "threshold value" or "cut-off value" can be determined experimentally, empirically, or theoretically. A threshold value can also be arbitrarily selected based upon the existing experimental and/or clinical conditions, as would be recognized by a person of ordinary skilled in the art. The threshold value has to be determined in order to obtain the optimal sensitivity and specificity according to the function of the test and the benefit/risk balance (clinical consequences of false positive and false negative). Typically, the optimal sensitivity and specificity (and so the threshold value) can be determined using a Receiver Operating Characteristic (ROC) curve based on experimental data. Preferably, the
person skilled in the art may compare the expression level (obtained according to the method of the invention) with a defined threshold value. In one embodiment of the present invention, the threshold value is derived from the expression level (or ratio, or score) determined in a biological sample derived from one or more patients having solid cancer. Furthermore, retrospective measurement of the expression level (or ratio, or scores) in properly banked historical patient samples may be used in establishing these threshold values.
Predetermined reference values used for comparison may comprise "cut-off or "threshold" values that may be determined as described herein. Each reference ("cut-off) value for the bio marker of interest may be predetermined by carrying out a method comprising the steps of
a) providing a collection of samples from patients suffering of solid cancer;
b) determining the expression level of the bio marker for each sample contained in the collection provided at step a);
c) ranking the tumor tissue samples according to said expression level;
d) classifying said samples in pairs of subsets of increasing, respectively decreasing, number of members ranked according to their expression level,
e) providing, for each sample provided at step a), information relating to the responsiveness of the patient or the actual clinical outcome for the corresponding cancer patient (i.e. the duration of the event-free survival (EFS), metastasis- free survival (MFS) or the overall survival (OS) or both);
f) for each pair of subsets of samples, obtaining a Kaplan Meier percentage of survival curve;
g) for each pair of subsets of samples calculating the statistical significance (p value) between both subsets;
h) selecting as reference value for the expression level, the value of expression level for which the p value is the smallest.
For example the expression level of a biomarker has been assessed for 100 cancer samples of 100 patients. The 100 samples are ranked according to their expression level. Sample 1 has the best expression level and sample 100 has the worst expression level. A first grouping provides two subsets: on one side sample Nr 1 and on the other side the 99 other samples. The next grouping provides on one side samples 1 and 2 and on the other side the 98 remaining samples etc., until the last grouping: on one side samples 1 to 99 and on the other side sample Nr 100. According to the information relating to the actual clinical outcome for
the corresponding cancer patient, Kaplan Meier curves are prepared for each of the 99 groups of two subsets. Also for each of the 99 groups, the p value between both subsets was calculated.
The reference value is selected such as the discrimination based on the criterion of the minimum p value is the strongest. In other terms, the expression level corresponding to the boundary between both subsets for which the p value is minimum is considered as the reference value. It should be noted that the reference value is not necessarily the median value of expression levels.
In routine work, the reference value (cut-off value) may be used in the present method to discriminate cancer samples and therefore the corresponding patients.
Kaplan-Meier curves of percentage of survival as a function of time are commonly to measure the fraction of patients living for a certain amount of time after treatment and are well known by the man skilled in the art.
The man skilled in the art also understands that the same technique of assessment of the expression level of a biomarker should of course be used for obtaining the reference value and thereafter for assessment of the expression level of a biomarker of a patient subjected to the method of the invention.
In one embodiment, the reference value may correspond to the expression level of the biomarker determined in a sample associated having a good prognosis. Accordingly, a higher expression level of the biomarker than the reference value is indicative of a patient having poor prognosis, and a lower or equal expression level of the biomarker than the reference value is indicative of a patient having a good prognosis.
In another embodiment, the reference value may correspond to the expression level of the biomarker determined in a sample associated with a patient having a poor prognosis. Accordingly, a higher or equal expression level of the biomarker than the reference value is indicative of a patient having poor prognosis, and a lower expression level of the biomarker than the reference value is indicative of a patient having good prognosis.
In another embodiment, a score which is a composite of the expression levels of the different biomarkers may also be determined and compared to a reference value wherein a difference between said score and said reference value is indicative of a patient having a good or poor prognosis
In a particular embodiment, the score may be generated by a computer program.
Analyzing the biomarker expression level may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed nucleic acid or translated protein.
In one embodiment, the biomarker expression level is assessed by analyzing the expression of the protein translated from said gene. Said analysis can be assessed using an antibody (e.g., a radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody), an antibody derivative (e.g., an antibody conjugate with a substrate or with the protein or ligand of a protein of a protein/ligand pair (e.g., biotin-streptavidin)), or an antibody fragment (e.g., a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically to the protein translated from the gene encoding for the biomarker.
Methods for measuring the expression level of a biomarker in a sample may be assessed by any of a wide variety of well-known methods from one of skill in the art for detecting expression of a protein including, but not limited to, direct methods like mass spectrometry-based quantification methods, protein microarray methods, enzyme immunoassay (EIA), radioimmunoassay (RIA), Immunohistochemistry (IHC), Western blot analysis, ELISA, Luminex, ELISPOT and enzyme linked immunoabsorbant assay and indirect methods based on detecting expression of corresponding messenger ribonucleic acids (mRNAs). The mRNA expression profile may be determined by any technology known by a man skilled in the art. In particular, each mRNA expression level may be measured using any technology known by a man skilled in the art, including nucleic microarrays, quantitative Polymerase Chain Reaction (qPCR), next generation sequencing and hybridization with a labelled probe.
Said direct analysis can be assessed by contacting the sample with a binding partner capable of selectively interacting with the biomarker present in the sample. The binding partner may be an antibody that may be polyclonal or monoclonal, preferably monoclonal (e.g., a isotope-label, element-label, radio-labeled, chromophore-labeled, fluorophore-labeled, or enzyme-labeled antibody), an antibody derivative (e.g., an antibody conjugate with a substrate or with the protein or ligand of a protein of a protein/ligand pair (e.g., biotin- streptavidin)), or an antibody fragment (e.g., a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically to the protein translated from the gene encoding for the biomarker of the invention. In another embodiment, the binding partner may be an aptamer.
The binding partners of the invention such as antibodies or aptamers may be labelled with a detectable molecule or substance, such as an isotope, an element, a fluorescent molecule, a radioactive molecule or any others labels known in the art. Labels are known in the art that generally provide (either directly or indirectly) a signal.
As used herein, the term "labelled", with regard to the antibody, is intended to encompass direct labelling of the antibody or aptamer by coupling (i.e., physically linking) a detectable substance, such as an isotope, an element, a radioactive agent or a fluorophore (e.g. fluorescein isothiocyanate (FITC) or phycoerythrin (PE) or Indocyanine (Cy5)) to the antibody or aptamer, as well as indirect labelling of the probe or antibody by reactivity with a detectable substance. An antibody or aptamer of the invention may be produced with a specific isotope or a radioactive molecule by any method known in the art. For example radioactive molecules include but are not limited to radioactive atom for scintigraphic studies such as 1123, 1124, Inl 11, Rel86, Rel88, specific isotopes include but are not limited to 13C, 15N, 1261, 79Br, 81 Br.
The abore mentioned assays generally involve the binding of the binding partner (ie. antibody or aptamer) to a solid support. Solid supports which can be used in the practice of the invention include substrates such as nitrocellulose (e. g., in membrane or microtiter well form); polyvinylchloride (e. g., sheets or microtiter wells); polystyrene latex (e.g., beads or microtiter plates); polyvinylidene fluoride; diazotized paper; nylon membranes; activated beads, magnetically responsive beads, silicon wafers.
In a particular embodiment, an ELISA method can be used, wherein the wells of a microtiter plate are coated with a set of antibodies which recognize said biomarker. A sample containing or suspected of containing said biomarker is then added to the coated wells. After a period of incubation sufficient to allow the formation of antibody-antigen complexes, the plate(s) can be washed to remove unbound moieties and a detectably labelled secondary binding molecule added. The secondary binding molecule is allowed to react with any captured sample marker protein, the plate washed and the presence of the secondary binding molecule detected using methods well known in the art such as Singulex, Quanterix, MSD, Bioscale, Cytof.
In one embodiment, an Enzyme-linked immunospot (ELISpot) method may be used.
Typically, the sample is transferred to a plate which has been coated with the desired anti- biomarker capture antibodies. Revelation is carried out with biotinylated secondary Abs and
standard colorimetric or fluorimetric detection methods such as streptavidin-alkaline phosphatase and NBT-BCIP and the spots counted.
In one embodiment, when multi-biomarker expression measurement is required, use of beads bearing binding partners of interest may be preferred. In a particular embodiment, the bead may be a cytometric bead for use in flow cytometry. Such beads may for example correspond to BD™ Cytometric Beads commercialized by BD Biosciences (San Jose, California). Typically cytometric beads may be suitable for preparing a multiplexed bead assay. A multiplexed bead assay, such as, for example, the BD(TM) Cytometric Bead Array, is a series of spectrally discrete beads that can be used to capture and quantify soluble antigens. Typically, beads are labelled with one or more spectrally distinct fluorescent dyes, and detection is carried out using a multiplicity of photodetectors, one for each distinct dye to be detected. A number of methods of making and using sets of distinguishable beads have been described in the literature. These include beads distinguishable by size, wherein each size bead is coated with a different target-specific antibody (see e.g. Fulwyler and McHugh, 1990, Methods in Cell Biology 33:613-629), beads with two or more fluorescent dyes at varying concentrations, wherein the beads are identified by the levels of fluorescence dyes (see e.g. European Patent No. 0 126,450), and beads distinguishably labelled with two different dyes, wherein the beads are identified by separately measuring the fluorescence intensity of each of the dyes (see e.g. U.S. patent Nos. 4,499,052 and 4,717,655). Both one- dimensional and two-dimensional arrays for the simultaneous analysis of multiple antigens by flow cytometry are available commercially. Examples of one-dimensional arrays of singly dyed beads distinguishable by the level of fluorescence intensity include the BD(TM) Cytometric Bead Array (CBA) (BD Biosciences, San Jose, Calif.) and Cyto-Plex(TM) Flow Cytometry microspheres (Duke Scientific, Palo Alto, Calif). An example of a two- dimensional array of beads distinguishable by a combination of fluorescence intensity (five levels) and size (two sizes) is the QuantumPlex(TM) microspheres (Bangs Laboratories, Fisher, Ind.). An example of a two-dimensional array of doubly-dyed beads distinguishable by the levels of fluorescence of each of the two dyes is described in Fulton et al. (1997, Clinical Chemistry 43(9): 1749-1756). The beads may be labelled with any fluorescent compound known in the art such as e.g. FITC (FL1), PE (FL2), fluorophores for use in the blue laser (e.g. PerCP, PE-Cy7, PE-Cy5, FL3 and APC or Cy5, FL4), fluorophores for use in the red, violet or UV laser (e.g. Pacific blue, pacific orange). In another particular embodiment, bead is a magnetic bead for use in magnetic separation. Magnetic beads are known to those of skill in the art. Typically, the magnetic bead is preferably made of a
magnetic material selected from the group consisting of metals (e.g. ferrum, cobalt and nickel), an alloy thereof and an oxide thereof. In another particular embodiment, bead is bead that is dyed and magnetized.
In one embodiment, protein microarray methods may be used. Typically, at least one antibody or aptamer directed against the biomarker is immobilized or grafted to an array(s), a solid or semi-solid surface(s). A sample containing or suspected of containing the biomarker is then labelled with at least one isotope or one element or one fluorophore or one colorimetric tag that are not naturally contained in the tested sample. After a period of incubation of said sample with the array sufficient to allow the formation of antibody-antigen complexes, the array is then washed and dried. After all, quantifying said biomarker may be achieved using any appropriate microarray scanner like fluorescence scanner, colorimetric scanner, SIMS (secondary ions mass spectrometry) scanner, maldi scanner, electromagnetic scanner or any technique allowing quantifying said labels.
In another embodiment, the antibody or aptamer grafted on the array is labelled.
In another embodiment, reverse phase arrays may be used. Typically, at least one sample is immobilized or grafted to an array(s), a solid or semi-solid surface(s). An antibody or aptamer against the suspected biomarker is then labelled with at least one isotope or one element or one fluorophore or one colorimetric tag that is not naturally contained in the tested sample. After a period of incubation of said antibody or aptamer with the array sufficient to allow the formation of antibody-antigen complexes, the array is then washed and dried. After all, detecting quantifying and counting by D-SIMS said biomarker containing said isotope or group of isotopes, and a reference natural element, and then calculating the isotopic ratio between the biomarker and the reference natural element, may be achieve using any appropriate microarray scanner like fluorescence scanner, colorimetric scanner, SIMS (secondary ions mass spectrometry) scanner, maldi scanner, electromagnetic scanner or any technique allowing to quantify said labels.
In one embodiment, said direct analysis can also be assessed by mass Spectrometry. Mass spectrometry-based quantification methods may be performed using either labelled or unlabelled approaches (DeSouza and Siu, 2012). Mass spectrometry-based quantification methods may be performed using chemical labeling, metabolic labelingor proteolytic labeling. Mass spectrometry-based quantification methods may be performed using mass spectrometry label free quantification, LTQ Orbitrap Velos, LTQ-MS/MS, a quantification based on extracted ion chromatogram EIC (progenesis LC-MS, Liquid chromatography-mass
spectrometry) and then profile alignment to determine differential expression of the biomarker.
In another embodiment, the biomarker expression level is assessed by analyzing the expression of mR A transcript or mRNA precursors, such as nascent R A, of biomarker gene. Said analysis can be assessed by preparing mRNA/cDNA from cells in a sample from a patient, and hybridizing the mRNA/cDNA with a reference polynucleotide. The prepared mRNA/cDNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses, such as quantitative PCR (TaqMan), and probes arrays such as GeneChip(TM) DNA Arrays (AFFYMETRIX).
Advantageously, the analysis of the expression level of mRNA transcribed from the gene encoding for biomarkers involves the process of nucleic acid amplification, e. g., by RT- PCR (the experimental embodiment set forth in U. S. Patent No. 4,683, 202), ligase chain reaction (Barany, 1991), self- sustained sequence replication (Guatelli et al, 1990), transcriptional amplification system (Kwoh et al., 1989), Q-Beta Replicase (Lizardi et al, 1988), rolling circle replication (U. S. Patent No. 5,854, 033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5' or 3' regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.
In a further aspect, the present invention relates to a method for predicting lymph node metastasis in a patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient will not have a lymph node metastasis when the level determined at step i) is lower than the predetermined reference value or concluding that the patient will have a lymph node metastasis when the level determined at step i) is higher than the predetermined reference value.
In a further aspect, the present invention relates to a method for predicting cancer relapse in a patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient will not have a cancer relapse when the level determined at step i) is lower than the predetermined reference value or concluding that the patient will have a cancer relapse when the level determined at step i) is higher than the predetermined reference value.
In a further aspect, the present invention relates to a method for predicting the survival time of a patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from the patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient will have a long survival time when the level determined at step i) is lower than the predetermined reference value or concluding that the patient will have a short survival time when the level determined at step i) is higher than the predetermined reference value.
The method of the present invention is particularly suitable for predicting the duration of the overall survival (OS), progression-free survival (PFS) and/or the disease-free survival (DFS) of the cancer patient. Those of skill in the art will recognize that OS survival time is generally based on and expressed as the percentage of people who survive a certain type of cancer for a specific amount of time. In general, OS rates do not specify whether cancer survivors are still undergoing treatment at five years or if they've become cancer-free (achieved remission). DFS gives more specific information and is the number of people with a particular cancer who achieve remission. Also, progression-free survival (PFS) rates (the number of people who still have cancer, but their disease does not progress) includes people who may have had some success with treatment, but the cancer has not disappeared completely. As used herein, the expression "short survival time" indicates that the patient will have a survival time that will be lower than the median (or mean) observed in the general population of patients suffering from said cancer. When the patient will have a short survival time, it is meant that the patient will have a "poor prognosis". Inversely, the expression "long survival time" indicates that the patient will have a survival time that will be higher than the median (or mean) observed in the general population of patients suffering from said cancer. When the patient will have a long survival time, it is meant that the patient will have a "good prognosis".
In some embodiment, the method of the invention is performed for predicting the overall survival (OS), progression-free survival (PFS) and/or the disease-free survival (DFS) of a patient afflicted with solid cancer receiving radiotherapy treatment.
A further aspect of the invention relates to a method of monitoring cancer progression in a patient afflicted with solid cancer after radiotherapy treatment by performing the method of the invention.
A further aspect of the invention relates to a method of monitoring radiotherapy treatment of a patient afflicted with solid cancer by performing the method of the invention.
In a further aspect, the present invention relates to a VEGF-C inhibitor for use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
The solid cancer referred to in the methods and uses described herein above may be for example a head and neck squamous cell carcinoma (FINSCC) or a medulloblastoma (MDB).
As used herein, the term "treatment" or "treat" refer to both prophylactic or preventive treatment as well as curative or disease modifying treatment, including treatment of patients at risk of contracting the disease or suspected to have contracted the disease as well as patients who are ill or have been diagnosed as suffering from a disease or medical condition, and includes suppression of clinical relapse. The treatment may be administered to a patient having a medical disorder or who ultimately may acquire the disorder, in order to prevent, cure, delay the onset of, reduce the severity of, or ameliorate one or more symptoms of a disorder or recurring disorder, or in order to prolong the survival of a patient beyond that expected in the absence of such treatment. By "therapeutic regimen" is meant the pattern of treatment of an illness, e.g., the pattern of dosing used during therapy. A therapeutic regimen may include an induction regimen and a maintenance regimen. The phrase "induction regimen" or "induction period" refers to a therapeutic regimen (or the portion of a therapeutic regimen) that is used for the initial treatment of a disease. The general goal of an induction regimen is to provide a high level of drug to a patient during the initial period of a treatment regimen. An induction regimen may employ (in part or in whole) a "loading regimen", which may include administering a greater dose of the drug than a physician would employ during a maintenance regimen, administering a drug more frequently than a physician would administer the drug during a maintenance regimen, or both. The phrase "maintenance regimen" or "maintenance period" refers to a therapeutic regimen (or the portion of a therapeutic regimen) that is used for the maintenance of a patient during treatment of an
illness, e.g., to keep the patient in remission for long periods of time (months or years). A maintenance regimen may employ continuous therapy (e.g., administering a drug at a regular intervals, e.g., weekly, monthly, yearly, etc.) or intermittent therapy (e.g., interrupted treatment, intermittent treatment, treatment at relapse, or treatment upon achievement of a particular predetermined criteria [e.g., disease manifestation, etc.]).
The term "VEGF-C inhibitor" has its general meaning in the art and refers to a compound that selectively blocks or inactivates the VEGF-C. The term "VEGF-C inhibitor" also refers to a compound that selectively blocks the binding of VEGF-C to its receptors (such as VEGFR-3 and VEGFR-2). The term "VEGF-C inhibitor" also refers to a compound able to prevent the action of VEGF-C for example by inhibiting the VEGF-C controls of downstream effectors such as inhibiting the activation of the KRAS/RAF/MEK/ER and PI3K/AKT/mTOR pathways. As used herein, the term "selectively blocks or inactivates" refers to a compound that preferentially binds to and blocks or inactivates VEGF-C with a greater affinity and potency, respectively, than its interaction with the other sub-types of the VEGF family. Compounds that block or inactivate VEGF-C, but that may also block or inactivate other VEGF sub-types, as partial or full inhibitors, are contemplated. The term "VEGF-C inhibitor" also refers to a compound that inhibits VEGF-C expression. Typically, a VEGF-C inhibitor is a small organic molecule, a polypeptide, an aptamer, an antibody, an oligonucleotide, a ribozyme or a CRISPR.
Tests and assays for determining whether a compound is a VEGF-C inhibitor are well known by the skilled person in the art such as described in WO2011/127519; WO2011/071577; WO0152875; WO2011127519.
In one embodiment of the invention, VEGF-C inhibitors include but are not limited to the anti- VEGF-C antibodies. Anti- VEGF-C antibodies are available and described in the art (such as in WO2011/127519; WO2011/071577; WO2011/127519).
An example of anti- VEGF-C antibody which can be used in the context of the invention is identified as "VGX-100" in WO2011/127519 and WO2011/071577.
Other examples of anti- VEGF-C antibodies are described in WO2011/071577, such as in particular those respectively identified as "VC4.5" and "VC1.12" which can, among others, be used in the context of the invention.
In some embodiments, the VEGF-C inhibitor is a VEGFR-3 antagonist (WO2016/184793). In some embodiments, the VEGF-C inhibitor is a VEGFR-2 antagonist (WO2016/184793).
In another embodiment, the VEGF-C inhibitor of the invention is an antibody (the term including "antibody portion") directed against VEGF-C, VEGFR-3 or VEGFR-2.
In one embodiment of the antibodies or portions thereof described herein, the antibody is a monoclonal antibody. In one embodiment of the antibodies or portions thereof described herein, the antibody is a polyclonal antibody. In one embodiment of the antibodies or portions thereof described herein, the antibody is a humanized antibody. In one embodiment of the antibodies or portions thereof described herein, the antibody is a chimeric antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a light chain of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a heavy chain of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a Fab portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a F(ab')2 portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a Fc portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a Fv portion of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises a variable domain of the antibody. In one embodiment of the antibodies or portions thereof described herein, the portion of the antibody comprises one or more CDR domains of the antibody.
As used herein, "antibody" includes both naturally occurring and non-naturally occurring antibodies. Specifically, "antibody" includes polyclonal and monoclonal antibodies, and monovalent and divalent fragments thereof. Furthermore, "antibody" includes chimeric antibodies, wholly synthetic antibodies, single chain antibodies, and fragments thereof. The antibody may be a human or nonhuman antibody. A nonhuman antibody may be humanized by recombinant methods to reduce its immunogenicity in man.
Antibodies are prepared according to conventional methodology. Monoclonal antibodies may be generated using the method of Kohler and Milstein (Nature, 256:495, 1975). To prepare monoclonal antibodies useful in the invention, a mouse or other appropriate host animal is immunized at suitable intervals (e.g., twice-weekly, weekly, twice-monthly or monthly) with antigenic forms of VEGF-C. The animal may be administered a final "boost" of antigen within one week of sacrifice. It is often desirable to use an immunologic adjuvant during immunization. Suitable immunologic adjuvants include Freund's complete adjuvant, Freund's incomplete adjuvant, alum, Ribi adjuvant, Hunter's Titermax, saponin adjuvants such
as QS21 or Quil A, or CpG-containing immunostimulatory oligonucleotides. Other suitable adjuvants are well-known in the field. The animals may be immunized by subcutaneous, intraperitoneal, intramuscular, intravenous, intranasal or other routes. A given animal may be immunized with multiple forms of the antigen by multiple routes.
Briefly, the antigen may be provided as synthetic peptides corresponding to antigenic regions of interest in VEGF-C. Following the immunization regimen, lymphocytes are isolated from the spleen, lymph node or other organ of the animal and fused with a suitable myeloma cell line using an agent such as polyethylene glycol to form a hydridoma. Following fusion, cells are placed in media permissive for growth of hybridomas but not the fusion partners using standard methods, as described (Coding, Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry and Immunology, 3rd edition, Academic Press, New York, 1996). Following culture of the hybridomas, cell supernatants are analyzed for the presence of antibodies of the desired specificity, i.e., that selectively bind the antigen. Suitable analytical techniques include ELISA, flow cytometry, immunoprecipitation, and western blotting. Other screening techniques are well-known in the field. Preferred techniques are those that confirm binding of antibodies to conformationally intact, natively folded antigen, such as non-denaturing ELISA, flow cytometry, and immunoprecipitation.
Significantly, as is well-known in the art, only a small portion of an antibody molecule, the paratope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W. R. (1986) The Experimental Foundations of Modern Immunology Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford). The Fc' and Fc regions, for example, are effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region, designated an F(ab')2 fragment, retains both of the antigen binding sites of an intact antibody. Similarly, an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region, designated as Fab fragment, retains one of the antigen binding sites of an intact antibody molecule. Proceeding further, Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd. The Fd fragments are the major determinant of antibody specificity (a single Fd fragment may be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.
Within the antigen-binding portion of an antibody, as is well-known in the art, there are complementarity determining regions (CDRs), which directly interact with the epitope of the antigen, and framework regions (FRs), which maintain the tertiary structure of the paratope (see, in general, Clark, 1986; Roitt, 1991). In both the heavy chain Fd fragment and the light chain of IgG immunoglobulins, there are four framework regions (FR1 through FR4) separated respectively by three complementarity determining regions (CDR1 through CDRS). The CDRs, and in particular the CDRS regions, and more particularly the heavy chain CDRS, are largely responsible for antibody specificity.
It is now well-established in the art that the non CDR regions of a mammalian antibody may be replaced with similar regions of conspecific or heterospecific antibodies while retaining the epitopic specificity of the original antibody. This is most clearly manifested in the development and use of "humanized" antibodies in which non-human CDRs are covalently joined to human FR and/or Fc/pFc' regions to produce a functional antibody.
This invention provides in certain embodiments compositions and methods that include humanized forms of antibodies. As used herein, "humanized" describes antibodies wherein some, most or all of the amino acids outside the CDR regions are replaced with corresponding amino acids derived from human immunoglobulin molecules. Methods of humanization include, but are not limited to, those described in U.S. Pat. Nos. 4,816,567, 5,225,539, 5,585,089, 5,693,761, 5,693,762 and 5,859,205, which are hereby incorporated by reference. The above U.S. Pat. Nos. 5,585,089 and 5,693,761, and WO 90/07861 also propose four possible criteria which may used in designing the humanized antibodies. The first proposal was that for an acceptor to use a framework from a particular human immunoglobulin that is unusually homologous to the donor immunoglobulin to be humanized, or to use a consensus framework from many human antibodies. The second proposal was that if an amino acid in the framework of the human immunoglobulin is unusual and the donor amino acid at that position is typical for human sequences, then the donor amino acid rather than the acceptor may be selected. The third proposal was that in the positions immediately adjacent to the 3 CDRs in the humanized immunoglobulin chain, the donor amino acid rather than the acceptor amino acid may be selected. The fourth proposal was to use the donor amino acid residue at the framework positions at which the amino acid is predicted to have a side chain atom within 3 A of the CDRs in a three dimensional model of the antibody and is predicted to be capable of interacting with the CDRs. The above methods are merely illustrative of some of the methods that one skilled in the art could employ to make
humanized antibodies. One of ordinary skill in the art will be familiar with other methods for antibody humanization.
In one embodiment of the humanized forms of the antibodies, some, most or all of the amino acids outside the CDR regions have been replaced with amino acids from human immunoglobulin molecules but where some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they would not abrogate the ability of the antibody to bind a given antigen. Suitable human immunoglobulin molecules would include IgGl, IgG2, IgG3, IgG4, IgA and IgM molecules. A "humanized" antibody retains a similar antigenic specificity as the original antibody. However, using certain methods of humanization, the affinity and/or specificity of binding of the antibody may be increased using methods of "directed evolution", as described by Wu et al, /. Mol. Biol. 294: 151, 1999, the contents of which are incorporated herein by reference.
Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. See, e.g., U.S. Pat. Nos. 5,591,669, 5,598,369, 5,545,806, 5,545,807, 6,150,584, and references cited therein, the contents of which are incorporated herein by reference. These animals have been genetically modified such that there is a functional deletion in the production of endogenous (e.g., murine) antibodies. The animals are further modified to contain all or a portion of the human germ-line immunoglobulin gene locus such that immunization of these animals will result in the production of fully human antibodies to the antigen of interest. Following immunization of these mice (e.g., XenoMouse (Abgenix), HuMAb mice (Medarex/GenPharm)), monoclonal antibodies can be prepared according to standard hybridoma technology. These monoclonal antibodies will have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (KAMA) responses when administered to humans.
In vitro methods also exist for producing human antibodies. These include phage display technology (U.S. Pat. Nos. 5,565,332 and 5,573,905) and in vitro stimulation of human B cells (U.S. Pat. Nos. 5,229,275 and 5,567,610). The contents of these patents are incorporated herein by reference.
Thus, as will be apparent to one of ordinary skill in the art, the present invention also provides for F(ab') 2 Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab')2 fragment antibodies in which
the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or non- human sequences. The present invention also includes so-called single chain antibodies.
The various antibody molecules and fragments may derive from any of the commonly known immunoglobulin classes, including but not limited to IgA, secretory IgA, IgE, IgG and IgM. IgG subclasses are also well known to those in the art and include but are not limited to human IgGl, IgG2, IgG3 and IgG4. In a preferred embodiment, the VEGF-C inhibitor of the invention is a Human IgG4.
In some embodiments, the invention provides a multi-specific antibody comprising a first antigen binding site from an antibody of the present invention directed against VEGF-C, VEGFR-3 or VEGFR-2 and at least one second antigen binding site.
In some embodiments, the second antigen-binding site is used for recruiting a killing mechanism such as, for example, by binding an antigen on a human effector cell as a BiTE (Bispecific T-Cell engager) antibody which is a bispecific scFv2 directed against target antigen and CD3 on T cells described in US7235641, or by binding a cytotoxic agent or a second therapeutic agent. As used herein, the term "effector cell" refers to an immune cell which is involved in the effector phase of an immune response, as opposed to the cognitive and activation phases of an immune response. Exemplary immune cells include a cell of a myeloid or lymphoid origin, for instance lymphocytes (such as B cells and T cells including cytolytic T cells (CTLs)), killer cells, natural killer cells, macrophages, monocytes, mast cells and granulocytes, such as neutrophils, eosinophils and basophils. Some effector cells express specific Fc receptors (FcRs) and carry out specific immune functions. In some embodiments, an effector cell is capable of inducing ADCC, such as a natural killer cell. For example, monocytes, macrophages, which express FcRs, are involved in specific killing of target cells and presenting antigens to other components of the immune system. In some embodiments, an effector cell may phagocytose a target antigen or target cell. The expression of a particular FcR on an effector cell may be regulated by humoral factors such as cytokines. An effector cell can phagocytose a target antigen or phagocytose or lyse a target cell. Suitable cytotoxic agents and second therapeutic agents are exemplified below, and include toxins (such as radiolabeled peptides), chemotherapeutic agents and prodrugs
In some embodiments, the second antigen-binding site binds a tissue- specific antigen, promoting localization of the bispecific antibody to a specific tissue.
In some embodiments, the second antigen-binding site binds to an antigen located on the same type of cell as the [VEGF-C, VEGFR-3 or VEGFR-2] -expressing cell, typically a tumor-associated antigen (TAA), but has a binding specificity different from that of the first antigen-binding site. Such multi- or bispecific antibodies can enhance the specificity of the tumor cell binding and/or engage multiple effector pathways. Exemplary TAAs include carcinoembryonic antigen (CEA), prostate specific antigen (PSA), RAGE (renal antigen), a- fetoprotein, CAMEL (CTL-recognized antigen on melanoma), CT antigens (such as MAGE- B5, -B6, -C2, -C3, and D; Mage-12; CT10; NY-ESO-1, SSX-2, GAGE, BAGE, MAGE, and SAGE), mucin antigens (e.g., MUC1, mucin-CA125, etc.), ganglioside antigens, tyrosinase, gp75, c-Met, Marti, MelanA, MUM-1, MUM-2, MUM-3, HLA-B7, Ep-CAM or a cancer- associated integrin, such as α5β3 integrin. Alternatively, the second antigen- binding site binds to a different epitope of [VEGF-C, VEGFR-3 or VEGFR-2]. The second antigen- binding site may alternatively bind an angiogenic factor or other cancer-associated growth factor, such as a vascular endothelial growth factor, a fibroblast growth factor, epidermal growth factor, angiogenin or a receptor of any of these, particularly receptors associated with cancer progression.
In some embodiments, the second antigen-binding site is from a second antibody or ADCC of the invention, such as the antibody of the present invention.
Exemplary formats for the multispecific antibody molecules of the invention include, but are not limited to (i) two antibodies cross-linked by chemical heteroconjugation, one with a specificity to [VEGF-C, VEGFR-3 or VEGFR-2] and another with a specificity to a second antigen; (ii) a single antibody that comprises two different antigen-binding regions; (iii) a single-chain antibody that comprises two different antigen-binding regions, e.g., two scFvs linked in tandem by an extra peptide linker; (iv) a dual-variable-domain antibody (DVD-Ig), where each light chain and heavy chain contains two variable domains in tandem through a short peptide linkage (Wu et al., Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-Ig™) Molecule, In : Antibody Engineering, Springer Berlin Heidelberg (2010)); (v) a chemically- linked bispecific (Fab')2 fragment; (vi) a Tandab, which is a fusion of two single chain diabodies resulting in a tetravalent bispecific antibody that has two binding sites for each of the target antigens; (vii) a flexibody, which is a combination of scFvs with a diabody resulting in a multivalent molecule; (viii) a so called "dock and lock" molecule, based on the "dimerization and docking domain" in Protein Kinase A, which, when
applied to Fabs, can yield a trivalent bispecific binding protein consisting of two identical Fab fragments linked to a different Fab fragment; (ix) a so-called Scorpion molecule, comprising, e.g., two scFvs fused to both termini of a human Fab-arm; and (x) a diabody. Another exemplary format for bispecific antibodies is IgG-like molecules with complementary CH3 domains to force heterodimerization. Such molecules can be prepared using known technologies, such as, e.g., those known as Triomab/Quadroma (Trion Pharma/Fresenius Biotech), Knob-into-Hole (Genentech), CrossMAb (Roche) and electrostatically-matched (Amgen), LUZ-Y (Genentech), Strand Exchange Engineered Domain body (SEEDbody)(EMD Serono), Biclonic (Merus) and DuoBody (Genmab A/S) technologies.
In some embodiments, the bispecific antibody is obtained or obtainable via a controlled Fab-arm exchange, typically using DuoBody technology. In vitro methods for producing bispecific antibodies by controlled Fab-arm exchange have been described in WO2008119353 and WO 2011131746 (both by Genmab A/S). In one exemplary method, described in WO 2008119353, a bispecific antibody is formed by "Fab-arm" or "half- molecule" exchange (swapping of a heavy chain and attached light chain) between two monospecific antibodies, both comprising IgG4-like CH3 regions, upon incubation under reducing conditions. The resulting product is a bispecific antibody having two Fab arms which may comprise different sequences. In another exemplary method, described in WO2011131746, bispecific antibodies of the present invention are prepared by a method comprising the following steps, wherein at least one of the first and second antibodies is the antibody of the present invention : a) providing a first antibody comprising an Fc region of an immunoglobulin, said Fc region comprising a first CH3 region; b) providing a second antibody comprising an Fc region of an immunoglobulin, said Fc region comprising a second CH3 region; wherein the sequences of said first and second CH3 regions are different and are such that the heterodimeric interaction between said first and second CH3 regions is stronger than each of the homodimeric interactions of said first and second CH3 regions; c) incubating said first antibody together with said second antibody under reducing conditions; and d) obtaining said bispecific antibody, wherein the first antibody is the antibody of the present invention and the second antibody has a different binding specificity, or vice versa. The reducing conditions may, for example, be provided by adding a reducing agent, e.g. selected from 2-mercaptoethylamine, dithiothreitol and tris(2-carboxyethyl)phosphine. Step d) may further comprise restoring the conditions to become non-reducing or less reducing, for example by removal of a reducing agent, e.g. by desalting. Preferably, the sequences of the first and second CH3 regions are different, comprising only a few, fairly conservative,
asymmetrical mutations, such that the heterodimeric interaction between said first and second CH3 regions is stronger than each of the homodimeric interactions of said first and second CH3 regions. More details on these interactions and how they can be achieved are provided in WO2011131746, which is hereby incorporated by reference in its entirety. The following are exemplary embodiments of combinations of such asymetrical mutations, optionally wherein one or both Fc-regions are of the IgGl isotype.
In another embodiment, the antibody according to the invention is a single domain antibody. The term "single domain antibody" (sdAb) or "VHH" refers to the single heavy chain variable domain of antibodies of the type that can be found in Camelid mammals which are naturally devoid of light chains. Such VHH are also called "nanobody®". According to the invention, sdAb can particularly be llama sdAb. The term "VHH" refers to the single heavy chain having 3 complementarity determining regions (CDRs): CDR1, CDR2 and CDR3. The term "complementarity determining region" or "CDR" refers to the hypervariable amino acid sequences which define the binding affinity and specificity of the VHH.
The VHH according to the invention can readily be prepared by an ordinarily skilled artisan using routine experimentation. The VHH variants and modified form thereof may be produced under any known technique in the art such as in- vitro maturation.
VHHs or sdAbs are usually generated by PCR cloning of the V-domain repertoire from blood, lymph node, or spleen cDNA obtained from immunized animals into a phage display vector, such as pHEN2. Antigen- specific VHHs are commonly selected by panning phage libraries on immobilized antigen, e.g., antigen coated onto the plastic surface of a test tube, biotinylated antigens immobilized on streptavidin beads, or membrane proteins expressed on the surface of cells. However, such VHHs often show lower affinities for their antigen than VHHs derived from animals that have received several immunizations. The high affinity of VHHs from immune libraries is attributed to the natural selection of variant VHHs during clonal expansion of B-cells in the lymphoid organs of immunized animals. The affinity of VHHs from non-immune libraries can often be improved by mimicking this strategy in vitro, i.e., by site directed mutagenesis of the CDR regions and further rounds of panning on immobilized antigen under conditions of increased stringency (higher temperature, high or low salt concentration, high or low pH, and low antigen concentrations). VHHs derived from camelid are readily expressed in and purified from the E. coli periplasm at much higher levels than the corresponding domains of conventional antibodies. VHHs generally display high solubility and stability and can also be readily produced in yeast, plant, and mammalian cells. For example, the "Hamers patents" describe methods and techniques for generating VHH
against any desired target (see for example US 5,800,988; US 5,874, 541 and US 6,015,695). The "Hamers patents" more particularly describe production of VHHs in bacterial hosts such as E. coli (see for example US 6,765,087) and in lower eukaryotic hosts such as moulds (for example Aspergillus or Trichoderma) or in yeast (for example Saccharomyces, Kluyveromyces, Hansenula or Pichia) (see for example US 6,838,254).
In one embodiment, the VEGF-C inhibitor of the invention is a VEGF-C expression inhibitor, VEGFR-3 and/or VEGFR-2 expression inhibitor.
The term "expression" when used in the context of expression of a gene or nucleic acid refers to the conversion of the information, contained in a gene, into a gene product. A gene product can be the direct transcriptional product of a gene (e.g., mRNA, tRNA, rRNA, antisense RNA, ribozyme, structural RNA or any other type of RNA) or a protein produced by translation of a mRNA. Gene products also include messenger RNAs, which are modified, by processes such as capping, polyadenylation, methylation, and editing, and proteins (e.g., VEGF-C, VEGFR-3 and VEGFR-2) modified by, for example, methylation, acetylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, myristilation, and glycosylation.
An "inhibitor of expression" refers to a natural or synthetic compound that has a biological effect to inhibit the expression of a gene.
VEGF-C, VEGFR-3 and VEGFR-2 expression inhibitors for use in the present invention may be based on antisense oligonucleotide constructs. Anti-sense oligonucleotides, including anti-sense RNA molecules and anti-sense DNA molecules, would act to directly block the translation of VEGF-C, VEGFR-3 and VEGFR-2 mRNA by binding thereto and thus preventing protein translation or increasing mRNA degradation, thus decreasing the level of VEGF-C, VEGFR-3 and VEGFR-2 proteins, and thus activity, in a cell. For example, antisense oligonucleotides of at least about 15 bases and complementary to unique regions of the mRNA transcript sequence encoding VEGF-C, VEGFR-3 and VEGFR-2 can be synthesized, e.g., by conventional phosphodiester techniques and administered by e.g., intravenous injection or infusion. Methods for using antisense techniques for specifically alleviating gene expression of genes whose sequence is known are well known in the art (e.g. see U.S. Pat. Nos. 6,566,135; 6,566,131; 6,365,354; 6,410,323; 6,107,091; 6,046,321; and 5,981,732).
Small inhibitory RNAs (siRNAs) can also function as expression inhibitors for use in the present invention. Gene expression can be reduced by contacting the subject or cell with a small double stranded RNA (dsRNA), or a vector or construct causing the production of a
small double stranded RNA, such that VEGF-C, VEGFR-3 and VEGFR-2 expression is specifically inhibited (i.e. RNA interference or RNAi). Methods for selecting an appropriate dsRNA or dsRNA-encoding vector are well known in the art for genes whose sequence is known (e.g. see Tuschl, T. et al. (1999); Elbashir, S. M. et al. (2001); Hannon, GJ. (2002); McManus, MT. et al. (2002); Brummelkamp, TR. et al. (2002); U.S. Pat. Nos. 6,573,099 and 6,506,559; and International Patent Publication Nos. WOO 1/36646, W099/32619, and WO01/68836).
Ribozymes can also function as expression inhibitors for use in the present invention. Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleo lytic cleavage. Engineered hairpin or hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleo lytic cleavage of mRNA sequences are thereby useful within the scope of the present invention. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, which typically include the following sequences, GUA, GUU, and GUC. Once identified, short RNA sequences of between about 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site can be evaluated for predicted structural features, such as secondary structure, that can render the oligonucleotide sequence unsuitable. The suitability of candidate targets can also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using, e.g., ribonuclease protection assays.
Both antisense oligonucleotides and ribozymes useful as VEGF-C, VEGFR-3 and VEGFR-2 inhibitors can be prepared by known methods. These include techniques for chemical synthesis such as, e.g., by solid phase phosphoramadite chemical synthesis. Alternatively, anti-sense RNA molecules can be generated by in vitro or in vivo transcription of DNA sequences encoding the RNA molecule. Such DNA sequences can be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Various modifications to the oligonucleotides of the invention can be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2'-0-methyl rather than phosphodiesterase linkages within the oligonucleotide backbone.
Antisense oligonucleotides siRNAs and ribozymes of the invention may be delivered in vivo alone or in association with a vector. In its broadest sense, a "vector" is any vehicle capable of facilitating the transfer of the antisense oligonucleotide siRNA or ribozyme nucleic acid to the cells and preferably cells expressing VEGF-C, VEGFR-3 and VEGFR-2. Preferably, the vector transports the nucleic acid to cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In general, the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antisense oligonucleotide siRNA or ribozyme nucleic acid sequences. Viral vectors are a preferred type of vector and include, but are not limited to nucleic acid sequences from the following viruses: retrovirus, such as moloney murine leukemia virus, harvey murine sarcoma virus, murine mammary tumor virus, and rouse sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors not named but known to the art.
Preferred viral vectors are based on non-cytopathic eukaryotic viruses in which nonessential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses (e.g., lentivirus), the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes in vivo. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell lined with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in KRIEGLER (A Laboratory Manual," W.H. Freeman CO., New York, 1990) and in MURRY ("Methods in Molecular Biology," vol.7, Humana Press, Inc., Cliffton, N.J., 1991).
Preferred viruses for certain applications are the adeno-viruses and adeno-associated viruses, which are double-stranded DNA viruses that have already been approved for human use in gene therapy. The adeno-associated virus can be engineered to be replication deficient and is capable of infecting a wide range of cell types and species. It further has advantages
such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hematopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, the adeno-associated virus can integrate into human cellular DNA in a site-specific manner, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno- associated virus can also function in an extrachromosomal fashion.
Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well known to those of skill in the art. See e.g., SANBROOK et al, "Molecular Cloning: A Laboratory Manual," Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been used as DNA vaccines for delivering antigen-encoding genes to cells in vivo. They are particularly advantageous for this because they do not have the same safety concerns as with many of the viral vectors. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid. Some commonly used plasmids include pBR322, pUC18, pUC19, pRC/CMV, SV40, and pBlueScript. Other plasmids are well known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA. Plasmids may be delivered by a variety of parenteral, mucosal and topical routes. For example, the DNA plasmid can be injected by intramuscular, intradermal, subcutaneous, or other routes. It may also be administered by intranasal sprays or drops, rectal suppository and orally. It may also be administered into the epidermis or a mucosal surface using a gene-gun. The plasmids may be given in an aqueous solution, dried onto gold particles or in association with another DNA delivery system including but not limited to liposomes, dendrimers, cochleate and microencapsulation.
In one embodiment of the invention, VEGF-C, VEGFR-3 and VEGFR-2 expression inhibitors include but are not limited to siRNAs and shRNA such as described in Liu et al, 2015 and Ye et al, 2015.
Typically the inhibitors according to the invention as described above are administered to the patient in a therapeutically effective amount.
By a "therapeutically effective amount" of the inhibitor of the present invention as above described is meant a sufficient amount of the inhibitor for treating solid cancer at a
reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the inhibitors and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific inhibitor employed; the specific composition employed, the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific inhibitor employed; the duration of the treatment; drugs used in combination or coincidential with the specific inhibitor employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the inhibitor at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. However, the daily dosage of the products may be varied over a wide range from 0.01 to 1,000 mg per adult per day. Typically, the compositions contain 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 250 and 500 mg of the inhibitor of the present invention for the symptomatic adjustment of the dosage to the patient to be treated. A medicament typically contains from about 0.01 mg to about 500 mg of the inhibitor of the present invention, preferably from 1 mg to about 100 mg of the inhibitor of the present invention. An effective amount of the drug is ordinarily supplied at a dosage level from 0.0002 mg/kg to about 20 mg/kg of body weight per day, especially from about 0.001 mg/kg to 7 mg/kg of body weight per day.
In a particular embodiment, the compound according to the invention may be used in a concentration between 0.01 μΜ and 20 μΜ, particularly, the compound of the invention may be used in a concentration of 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 20.0 μΜ.
In a further aspect, the present invention relates to the compound according to the invention for use in the treatment of solid cancer in a patient in need thereof in combination with radiotherapy treatment wherein the patient was being classified as having a poor prognosis by the method as above described.
In some embodiments, the VEGF-C inhibitor of the invention is administered sequentially or concomitantly with the radiotherapy treatment, herein defined as a photon (X) radiotherapy or as a proton (P) radiotherapy.
In a further aspect, the present invention relates to the compound according to the invention in combination with one or more anti-cancer compound for use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
In a further aspect, the present invention relates to the compound according to the invention in combination with one or more anti-angiogenic compound or anti- lymphangiogenic compound for use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
The term "anti-cancer compound" has its general meaning in the art and refers to compounds used in anti-cancer therapy such as anti-angiogenic compound, tyrosine kinase inhibitors, tyrosine kinase receptor (TKR) inhibitors, Vascular Endothelial Growth Factor Receptors (VEGFRs) pathway inhibitors, interferon therapy, anti-HER2 compounds, anti- EGFR compounds, alkylating agents, anti-metabolites, immunotherapeutic agents, Interferons (IFNs), Interleukins, and chemotherapeutic agents such as described below.
The term "anti-angiogenic compound" has its general meaning in the art and refers to compounds used in anti-angiogenic therapy such as tyrosine kinase inhibitors, anti-angiogenic tyrosine kinase receptor (TKR) inhibitors, anti-angiogenics targeting the Vascular Endothelial Growth Factor Receptors (VEGFRs) pathway, interferon therapy and anti-HER2 compounds such as Trastuzumab (herceptin) and pertuzumab. In one embodiment, the term "anti- angiogenic compound" refers to Sunitinib (Sutent), an anti-angiogenic TKR inhibitor of VEGFRs, platelet-derived growth factor receptors (PDGF-Rs), and c-kit.
The term "tyrosine kinase inhibitor" refers to any of a variety of therapeutic agents or drugs that act as selective or non-selective inhibitors of receptor and/or non-receptor tyrosine kinases. Tyrosine kinase inhibitors and related compounds are well known in the art and described in U.S Patent Publication 2007/0254295, which is incorporated by reference herein in its entirety. It will be appreciated by one of skill in the art that a compound related to a tyrosine kinase inhibitor will recapitulate the effect of the tyrosine kinase inhibitor, e.g., the related compound will act on a different member of the tyrosine kinase signaling pathway to produce the same effect as would a tyrosine kinase inhibitor of that tyrosine kinase. Examples of tyrosine kinase inhibitors and related compounds suitable for use in methods of embodiments of the present invention include, but are not limited to, sunitinib (Sutent; SU11248), Axitinib, pazopanib (Votrient), cabozantinib, dasatinib (BMS-354825), PP2, BEZ235, saracatinib, gefitinib (Iressa), erlotinib (Tarceva; OSI-1774), lapatinib (GW572016; GW2016), canertinib (CI 1033), semaxinib (SU5416), vatalanib (PTK787/ZK222584), sorafenib (BAY 43-9006), imatinib (Gleevec; STI571), leflunomide (SU101), vandetanib (Zactima; ZD6474), MK-2206 (8-[4-aminocyclobutyl)phenyl]-9-phenyl-l,2,4-triazolo[3,4- f][l,6]naphthyridin-3(2H)-one hydrochloride) derivatives thereof, analogs thereof, and
combinations thereof. Additional tyrosine kinase inhibitors and related compounds suitable for use in the present invention are described in, for example, U.S Patent Publication 2007/0254295, U.S. Pat. Nos. 5,618,829, 5,639,757, 5,728,868, 5,804,396, 6,100,254, 6,127,374, 6,245,759, 6,306,874, 6,313,138, 6,316,444, 6,329,380, 6,344,459, 6,420,382, 6,479,512, 6,498,165, 6,544,988, 6,562,818, 6,586,423, 6,586,424, 6,740,665, 6,794,393, 6,875,767, 6,927,293, and 6,958,340, all of which are incorporated by reference herein in their entirety. In certain embodiments, the tyrosine kinase inhibitor is a small molecule kinase inhibitor that has been orally administered to the patient of at least one Phase I clinical trial, more preferably at least one Phase II clinical, even more preferably at least one Phase III clinical trial, and most preferably approved by the FDA for at least one hematological or oncological indication. Examples of such inhibitors include, but are not limited to, Gefitinib, Erlotinib, Lapatinib, Canertinib, BMS-599626 (AC-480), Neratinib, KR -633, CEP-11981, Imatinib, Nilotinib, Dasatinib, AZM-475271, CP-724714, TAK-165, Sunitinib, Vatalanib, CP-547632, Vandetanib, Bosutinib, Lestaurtinib, Tandutinib, Midostaurin, Enzastaurin, AEE- 788, Pazopanib, Axitinib, Motasenib, OSI-930, Cediranib, KR -951, Dovitinib, Seliciclib, SNS-032, PD-0332991, MKC-I (Ro-317453; R-440), Sorafenib, ABT-869, Brivanib (BMS- 582664), SU-14813, Telatinib, SU-6668, (TSU-68), L-21649, MLN-8054, AEW-541, and PD-0325901.
In one embodiment, the term "anti-angiogenic compound" refers to compounds targeting the vascular endothelial growth factor (VEGF) pathway such anti-VEGF antibody bevacizumab (Avastin) and VEGF receptor tyrosine kinase inhibitor (TKI) compounds such as sunitinib (Sutent), vandetanib (Zactima), pazopanib (Votrient), sorafenib (Nexavar) and cediranib.
According to the present invention, the compound of the invention is administered sequentially or concomitantly with one or more anti-cancer compound and/or anti-angiogenic compound.
According to the invention, the compound of the present invention is administered to the patient in the form of a pharmaceutical composition. Typically, the compound of the present invention may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form therapeutic compositions. "Pharmaceutically" or "pharmaceutically acceptable" refer to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a mammal, especially a human, as appropriate. A pharmaceutically acceptable
carrier or excipient refers to a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
In the pharmaceutical compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration, the active principle, alone or in combination with another active principle, can be administered in a unit administration form, as a mixture with conventional pharmaceutical supports, to animals and human beings. Suitable unit administration forms comprise oral-route forms such as tablets, gel capsules, powders, granules and oral suspensions or solutions, sublingual and buccal administration forms, aerosols, implants, subcutaneous, transdermal, topical, intraperitoneal, intramuscular, intravenous, subdermal, transdermal, intrathecal and intranasal administration forms and rectal administration forms.
Typically, the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions. The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. Solutions comprising compounds of the invention as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. The compound of the present invention can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and
such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin. Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with several of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized agent of the present inventions into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the typical methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the compound of the present invention plus any additional desired ingredient from a previously sterile- filtered solution thereof. The preparation of more, or highly concentrated solutions for direct injection is also contemplated, where the use of DMSO as solvent is envisioned to result in extremely rapid penetration, delivering high concentrations of the active agents to a small tumor area. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed. For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. Some variation in dosage will necessarily occur depending on the condition of the patient being treated. The person
responsible for administration will, in any event, determine the appropriate dose for the individual patient.
In some embodiments, the compound of the present invention is administered sequentially or concomitantly with one or more therapeutic active agent such as chemotherapeutic.
In some embodiments, the compound of the present invention is administered with a chemotherapeutic agent. The term "chemotherapeutic agent" refers to chemical compounds that are effective in inhibiting tumor growth. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaorarnide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a carnptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estrarnustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as the enediyne antibiotics (e.g. calicheamicin, especially calicheamicin (11 and calicheamicin 21 1, see, e.g., Agnew Chem Intl. Ed. Engl. 33 : 183-186 (1994); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromomophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, canninomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idanrbicin, marcellomycin, mitomycins, mycophenolic acid, nogalarnycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptomgrin, streptozocin, tubercidin, ubenimex, zino statin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as
ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophospharnide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defo famine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; rhizoxin; sizofiran; spirogennanium; tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylarnine; trichothecenes (especially T-2 toxin, verracurin A, roridinA and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobromtol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxoids, e.g. paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.].) and doxetaxel (TAXOTERE®, Rhone-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carbop latin; vinblastine; platinum; etoposide (VP- 16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-1 1 ; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are antihormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; and phannaceutically acceptable salts, acids or derivatives of any of the above.
In some embodiments, the compound of the present invention is administered with a targeted cancer therapy. Targeted cancer therapies are drugs or other substances that block the growth and spread of cancer by interfering with specific molecules ("molecular targets") that are involved in the growth, progression, and spread of cancer. Targeted cancer therapies are sometimes called "molecularly targeted drugs", "molecularly targeted therapies", "precision medicines", or similar names. In some embodiments, the targeted therapy consists of administering the patient with a tyrosine kinase inhibitor as defined above.
In some embodiments, compound of the present invention is administered with an immunotherapeutic agent. The term "immunotherapeutic agent," as used herein, refers to a compound, composition or treatment that indirectly or directly enhances, stimulates or increases the body's immune response against cancer cells and/or that decreases the side effects of other anticancer therapies. Immunotherapy is thus a therapy that directly or indirectly stimulates or enhances the immune system's responses to cancer cells and/or lessens the side effects that may have been caused by other anti-cancer agents. Immunotherapy is also referred to in the art as immunologic therapy, biological therapy biological response modifier therapy and biotherapy. Examples of common immunotherapeutic agents known in the art include, but are not limited to, cytokines, cancer vaccines, monoclonal antibodies and non- cytokine adjuvants. Alternatively the immunotherapeutic treatment may consist of administering the patient with an amount of immune cells (T cells, NK, cells, dendritic cells, B cells...). Immunotherapeutic agents can be non-specific, i.e. boost the immune system generally so that the human body becomes more effective in fighting the growth and/or spread of cancer cells, or they can be specific, i.e. targeted to the cancer cells themselves immunotherapy regimens may combine the use of non-specific and specific immunotherapeutic agents. Non-specific immunotherapeutic agents are substances that stimulate or indirectly improve the immune system. Non-specific immunotherapeutic agents have been used alone as a main therapy for the treatment of cancer, as well as in addition to a main therapy, in which case the non-specific immunotherapeutic agent functions as an adjuvant to enhance the effectiveness of other therapies (e.g. cancer vaccines). Non-specific immunotherapeutic agents can also function in this latter context to reduce the side effects of other therapies, for example, bone marrow suppression induced by certain chemotherapeutic agents. Non-specific immunotherapeutic agents can act on key immune system cells and cause secondary responses, such as increased production of cytokines and immunoglobulins. Alternatively, the agents can themselves comprise cytokines. Non-specific immunotherapeutic agents are generally classified as cytokines or non-cytokine adjuvants. A number of cytokines have found application in the treatment of cancer either as general nonspecific immunotherapies designed to boost the immune system, or as adjuvants provided with other therapies. Suitable cytokines include, but are not limited to, interferons, interleukins and colony- stimulating factors. Interferons (IFNs) contemplated by the present invention include the common types of IFNs, IFN-alpha (IFN-a), IFN-beta (IFN-β) and IFN- gamma (IFN-γ). IFNs can act directly on cancer cells, for example, by slowing their growth, promoting their development into cells with more normal behaviour and/or increasing their
production of antigens thus making the cancer cells easier for the immune system to recognise and destroy. IFNs can also act indirectly on cancer cells, for example, by slowing down angiogenesis, boosting the immune system and/or stimulating natural killer (NK) cells, T cells and macrophages. Recombinant IFN-alpha is available commercially as Roferon (Roche Pharmaceuticals) and Intron A (Schering Corporation). Interleukins contemplated by the present invention include IL-2, IL-4, IL-11 and IL-12. Examples of commercially available recombinant interleukins include Proleukin® (IL-2; Chiron Corporation) and Neumega® (IL- 12; Wyeth Pharmaceuticals). Zymogenetics, Inc. (Seattle, Wash.) is currently testing a recombinant form of IL-21, which is also contemplated for use in the combinations of the present invention. Colony- stimulating factors (CSFs) contemplated by the present invention include granulocyte colony stimulating factor (G-CSF or filgrastim), granulocyte-macrophage colony stimulating factor (GM-CSF or sargramostim) and erythropoietin (epoetin alfa, darbepoietin). Treatment with one or more growth factors can help to stimulate the generation of new blood cells in patients undergoing traditional chemotherapy. Accordingly, treatment with CSFs can be helpful in decreasing the side effects associated with chemotherapy and can allow for higher doses of chemo therapeutic agents to be used. Various-recombinant colony stimulating factors are available commercially, for example, Neupogen® (G-CSF; Amgen), Neulasta (pelfilgrastim; Amgen), Leukine (GM-CSF; Berlex), Procrit (erythropoietin; Ortho Biotech), Epogen (erythropoietin; Amgen), Arnesp (erytropoietin). In addition to having specific or non-specific targets, immunotherapeutic agents can be active, i.e. stimulate the body's own immune response, or they can be passive, i.e. comprise immune system components that were generated external to the body. Passive specific immunotherapy typically involves the use of one or more monoclonal antibodies that are specific for a particular antigen found on the surface of a cancer cell or that are specific for a particular cell growth factor. Monoclonal antibodies may be used in the treatment of cancer in a number of ways, for example, to enhance a patient's immune response to a specific type of cancer, to interfere with the growth of cancer cells by targeting specific cell growth factors, such as those involved in angiogenesis, or by enhancing the delivery of other anticancer agents to cancer cells when linked or conjugated to agents such as chemotherapeutic agents, radioactive particles or toxins. Monoclonal antibodies currently used as cancer immunotherapeutic agents that are suitable for inclusion in the combinations of the present invention include, but are not limited to, rituximab (Rituxan®), trastuzumab (Herceptin®), ibritumomab tiuxetan (Zevalin®), tositumomab (Bexxar®), cetuximab (C-225, Erbitux®), bevacizumab (Avastin®), gemtuzumab ozogamicin (Mylotarg®), alemtuzumab (Campath®), and BL22.
Other examples include anti-CTLA4 antibodies (e.g. Ipilimumab), anti-PDl antibodies (nivolumab, prembolizumab), anti-PDLl antibodies (atezolizumab), anti-TIMP3 antibodies, anti-LAG3 antibodies, anti-B7H3 antibodies, anti-B7H4 antibodies or anti-B7H6 antibodies. In some embodiments, antibodies include B cell depleting antibodies. Typical B cell depleting antibodies include but are not limited to anti-CD20 monoclonal antibodies [e.g. Rituximab (Roche), Ibritumomab tiuxetan (Bayer Schering), Tositumomab (Glaxo SmithKline), AME- 133v (Applied Molecular Evolution), Ocrelizumab (Roche), Ofatumumab (HuMax-CD20, Gemnab), TRU-015 (Trubion) and IMMU-106 (Immuno medics)], an anti-CD22 antibody [e.g. Epratuzumab, Leonard et al, Clinical Cancer Research (Z004) 10: 53Z7-5334], anti- CD79a antibodies, anti-CD27 antibodies, or anti-CD19 antibodies (e.g. U.S. Pat. No. 7,109,304), anti-BAFF-R antibodies (e.g. Belimumab, Glaxo SmithKline), anti-APRIL antibodies (e.g. anti-human APRIL antibody, ProSci inc.), and anti-IL-6 antibodies [e.g. previously described by De Benedetti et al, J Immunol (2001) 166: 4334-4340 and by Suzuki et al., Europ J of Immunol (1992) 22 (8) 1989-1993, fully incorporated herein by reference]. The immunotherapeutic treatment may consist of allografting, in particular, allograft with hematopoietic stem cell HSC. The immunotherapeutic treatment may also consist in an adoptive immunotherapy as described by Nicholas P. Restifo, Mark E. Dudley and Steven A. Rosenberg "Adoptive immunotherapy for cancer: harnessing the T cell response, Nature Reviews Immunology, Volume 12, April 2012). In adoptive immunotherapy, the patient's circulating lymphocytes, NK cells, are isolated amplified in vitro and readministered to the patient. The activated lymphocytes or NK cells are most preferably the patient's own cells that were earlier isolated from a blood or tumor sample and activated (or "expanded") in vitro.
In one embodiment, said additional active compounds may be contained in the same composition or administrated separately.
In another embodiment, the pharmaceutical composition of the invention relates to combined preparation for simultaneous, separate or sequential use in the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described.
In a further aspect, the present invention also relates to a method for treating solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described, comprising the step of administering to said patient the compound of the invention.
The solid cancer referred to in the methods and uses described herein above may be for example a head and neck squamous cell carcinoma (FiNSCC) or a medulloblastoma (MDB).
The invention also provides kits comprising the compound of the invention. Kits containing the compound of the invention find use in therapeutic methods.
In a further aspect, the present invention relates to a method of screening a candidate compound for use as a drug for the treatment of solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method as above described, wherein the method comprises the steps of:
- providing a VEGF-C and VEGF-C receptor (VEGFR-3 and VEGFR-2), providing a cell, tissue sample or organism expressing a VEGF-C and VEGF-C receptor (VEGFR-3 and VEGFR-2),
providing radiotherapy treatment,
providing a candidate compound such as small organic molecule, an oligonucleotide, a polypeptide, an aptamer, antibody or an intra-antibody,
measuring the lymphatic vessel density and lymph node metastasis, selecting positively candidate compounds that inhibit lymph node metastasis induced by the radiotherapy treatment.
Methods for measuring lymph node metastasis are well known in the art. For example, the lymph node metastasis is measured such as described in the example. For example, measuring the lymphatic vessel density and lymph node metastasis involves determining a Ki on the VEGF-C receptor cloned and transfected in a stable manner into a CHO cell line, measuring the VEGF-C downstream signalling, measuring lymphatic vessel density, measuring inhibition of VEGF-C induced endothelial cell proliferation, measuring VEGFR-3 and VEGFR-2 phosphorylation, and measuring KRAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling.
In a further aspect, the present invention relates to a method for treating solid cancer, for example a head and neck squamous cell carcinoma (FINSCC) or a medulloblastoma (MDB), in a patient in need thereof, comprising the step of administering to said patient a VEGF-C inhibitor in combination with radiotherapy treatment (herein defined as a photon (X) radiotherapy or a proton (P) radiotherapy), for example in combination with proton radiotherapy.
The invention will be further illustrated by the following figures and examples. However, these examples and figures should not be interpreted in any way as limiting the scope of the present invention.
FIGURES:
Figure 1. CAL33 proliferative ability following multiple X or P irradiations
Counts of CAL33 cells following multiple low (2 Gy) or high (8 Gy) dose(s) of P or X irradiation and cell expansion after the third irradiation (CR-MI). The values correspond to fold increase, as compared to the viable cell number at 24h after cell seeding. Significantly decreased viable cell counts, as compared to CT: #, p<0.05; ###, p<0.001. Significantly increased viable cell counts for comparisons between X and P groups: *, p<0.05; **, p<0.01. CT, control (non-irradiated cells).
Figure 2. VEGF-C protein expression levels and regulation in CAL33 cells following P or X irradiation. (A) VEGF-C protein levels at 48h post-single irradiation (AR- SI): * and *, significantly (p<0.05) increased levels after a low (2 Gy) or high (8 Gy) dose of P and X irradiation, respectively, as compared to CT; #, significantly decreased levels after a high dose of P, as compared to X irradiation; §, significantly increased levels after a high, as compared to a low X irradiation dose; (B) VEGF-C protein levels after cell expansion following the third irradiation (CR-MI): * and *, significantly increased levels after low and high doses of P and X irradiation, respectively, as compared to CT; Concentration in ng/ml, normalized to 1 x 106 cells, and represented as percentage of CT. #, significantly decreased levels after high doses of P, as compared to X irradiation; §, significantly increased levels after high, as compared to low doses of X irradiation; (C) Activity of a short vegf-c promoter (CR-MI); (D) Activity of an artificial promoter having three binding sites for NF-Kb (CR-MI); (E) Activity of a VEGF-C 3'UTR reporter gene (CR-MI). * and *, significantly (p<0.05) increased promoter activity after P and X irradiation, respectively, as compared to CT; # and #, significantly decreased activity of MUT, as compared to WT vegf-c promoter after P and X irradiation, respectively; §, significantly decreased promoter activity after P, as compared to X irradiation; CT, control (non-irradiated cells); MUT, mutated, WT, wild type.
Figure 3. Evaluation of tumors generated following xenografting of either non- irradiated, P or X irradiated CAL33 cells in immunodeficient mice. (A) Average tumor volume (mm3); (B) Representative images of tumor xenografts; (C) Heatmap of ten most up- and down-regulated mouse genes in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors; (D) Heatmap of ten most up- and down-regulated human genes in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors; (E) Venn
diagrams showing common up-regulated and down-regulated human genes between P and X tumors. Framed genes are commonly expressed in P and X tumors. Selection is adjusted p value < 0.05 and lofFC > 1.
Figure 4. Histology, immunofluorescence and quantitative gene expression of vascular and lymphatic markers in murine xenografts. (A) Representative images of HES staining, indicating increased necrosis (black arrowhead, delimited by dashed black lines) in CT and increased blood vessels density (white arrowhead showing collagen surrounding the vessels) in the irradiated cells-derived tumors; (B) Representative images of CD31 (endothelial cells, green) / aSMA (pericytes, red) / Hoechst (nuclei, blue) staining, showing anarchic blood vessels structures and lack of pericyte coverage of blood vessels in the irradiated cells-derived tumors; (C) Representative images of LYVEl (lymphatic endothelial cells, red) / Hoechst (nuclei, blue) staining, showing different patterns of lymphatic vessels development in X (both periphery and interior of the tumor), P and CT (periphery of the tumor) groups; dashed white lines delimit the tumor edge; CT, control (tumors generated by non-irradiated cells); (D) Murine LYVEl, PDPN and PROXl mRNA quantitative mRNA expression, as percentage of control (0 Gy).
Figure 5. Evaluation of vascular and lymphatic markers in biopsies from patients diagnosed with HNSCC. Representative images of immunohistochemistry for (A) PDPN and (B) CD31 expression: (1) oral and (2) hypopharyngeal localization; Left panels (l.a, 2. a) - primary tumor; Right panels (l.b, 2.b) - relapsed tumor in the same patient after surgery and chemo-X radiotherapy (brown, PDPN/CD31; blue, hematoxylin - nuclei); (C) quantitative PDPN, VEGF-C, LYVEl and PROXl mRNA expression, as percentage of control (0 Gy); * and **, significantly increased values (p<0.5 and p<0.01, respectively) post- , as compared to pre-X irradiation.
Figure 6. Clonogenic survival of CAL33 cells after irradiation with escalating doses of either P or X, indicating a Relative Biological Effectiveness of 1.1 in favor of P.
Figure 7. (A) Proliferation curves, (B) VEGF-C protein expression levels, activity of a (C) VEGF-C promoter and (D) artificial promotor having three NF- Β binding sites, in CAL27 cells following high doses of either P or X irradiation (CR-MI setting). (A) #, (p<0.05) and ## (p<0.01) significantly decreased cell counts at 72h and 96h, respectively, post-irradiation with high doses of P or X, as compared to CT; (B) * and *, significantly increased VEGF-C protein levels after high doses of P and X irradiation, respectively, as compared to CT; #, significantly decreased levels after high doses of P, as compared to X irradiation; (C) #, significantly decreased activity in CT, P and X irradiated
cells transfected with a VEGF-C promotor with a MUT NF-κΒ binding site, as compared to CT cells transfected with a VEGF-C promoter having a WT NF-κΒ binding site; §, significantly decreased activity in cells transfected with a VEGF-C promoter having a MUT NF-KB binding site, as compared to the corresponding cells transfected with a VEGF-C promoter having a WT NF-Kb binding site; (D) Lack of stimulation of NF-κΒ promoter activity in irradiated cells; #, significantly decreased promoter activity in X irradiated, as compared to CT cells; CT, control (non-irradiated cells).
Figure 8. Heatmap of ten most up- and down-regulated mouse genes involved in angiogenesis, inflammation, metastasis, M1/M2 macrophage transition and proliferation in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors. Framed genes are commonly expressed in P and X tumors. Selection is Abs(logFC) > 1.
Figure 9. Heatmap of ten most up- and down-regulated human genes involved in angiogenesis, inflammation, metastasis, M1/M2 macrophage transition and proliferation in tumors generated by non-irradiated cells vs P or X tumors, and in P vs X tumors. Framed genes are commonly expressed in P and X tumors. Written in red are genes associated with disease progression; written in green are genes associated with favorable outcomes. Selection is adjusted p value < 0.05 and Abs(logFC) > 1.
Figure 10. Density of (A) tumor vessels and (B) tumor blood vessels with CD31/aSMA colocalization. * and *, significantly increased vessel density in P and X tumors, respectively, as compared to CT; # and #, significantly decreased density of blood vessels with CD31/aSMA colocalization in P and X tumors, respectively, as compared to CT; CT, control (non-irradiated cells).
Figure 11. cBioPortal data showing the correlation between VEGF-C over- expression and significantly lower (A) disease free and (B) overall survival rates in patients with HNSCC.
Figure 12. Quantification of hPDPN mRNA expression in long-term surviving CAL33 cells, selected in vitro after the third irradiation with either P or X (CR-MI setting).
Figure 13. Relative levels of VEGFC mRNA in different medulloblastoma (MDB) lines from different genetic groups: Sonic hedgehog cells (SHH), HDMB03 cells (Group 3) and Group 4 (cf. example 2 and reference 51).
Figure 14. VEGFC concentration in cells of Group 3 following exposition to various chemotherapies or following irradiation with 8 Gray photons.
The HDMB03 cells (Group 3 MDB) were incubated in the presence of various reference chemotherapies or irradiation with 8 Gray photons (CbPT: carbop latin, Eto,
etoposide, CT: vehicle, MIX, CbPT/Eto combination, Radio: irradiation, 8 grays). The chemotherapy concentrations correspond to the dose killing 50% of the cells (IC50). VEGFC was measured in cell culture medium by ELISA. ** p <0.01; *** p <0.001.
Figure 15. qPCR analysis of the different genes involved in the lymphatic program in HDMB03 cells (Group3 MDB); * p>0.05; *** p<0.001.
Figure 16. Immunohistochemistry (IHC) analysis of the presence of podoplanin labeled cells (stars) and structures (arrows) in three metastatic patients. The most aggressive MDB have circular structures that look like and that express a marker of lymphatic vessels.
EXPERIMENTAL PART:
EXAMPLE 1:
Material & Methods
Cell lines and culture
Two human HNSCC cell lines, CAL33 and CAL27, were provided through a Material Transfer Agreement with the Oncopharmacology Laboratory, Centre Antoine Lacassagne (CAL), where they had initially been isolated (50). The cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with 7% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA).
Cell irradiations
Five million cells were seeded onto 12 cm2 tissue culture flasks, 48 h prior to the irradiations, which were carried out at CAL (four independent experiments) with either P (63 MeV Cyclotron MEDICYC, CAL, Nice, France) or X (6 MeV Dual energy Clinac 21 EX Linear Accelerator, Varian Inc., Palo Alto, CA, USA). For clonogenicity assays, the cells were irradiated once (single irradiation, SI) with 1 , 2, 4, 6 or 8 Grays (Gy; physical dose) and processed immediately after irradiation. To the purpose of all other experiments, the cells were irradiated either once or three times, one week apart (multiple irradiations, MI) with either 2 Gy (low dose) or 8 Gy (high dose), and processed 6h after irradiation. In the MI setting, cells were re-seeded after each irradiation and kept in culture until the next irradiation to reproduce the clinical situation where patients are usually given several irradiations. The chronic response (CR) was evaluated to determine if the changes associated with the acute response (AR) persist late (three weeks) after irradiation.
Two cell groups were thus generated from each independent irradiation experiment. They consisted of cells subjected to: (1) SI and analysis 48h thereafter (AR-SI); (2) MI and culture expansion (three weeks) after the third irradiation (CR-MI).
Clonogenicity assays
They were performed to quantify the radio-induced cell mortality, to generate the cell surviving curves, and to determine the relative biological effectiveness (RBE). Due to radiation dose-induced differences in plating efficiency, the cells were seeded at different densities: 3000 cells/dish for 0, 1, 2 and 4 Gy; 6000 cells/dish for 6 Gy, and 9000 cells/dish for 8 Gy. On day ten of culture, cells were stained for 20 minutes with Giemsa (Sigma Aldrich, St. Louis, MO, USA). Stained plates were scanned and the number of cell colonies was determined with the Image J processing software (National Institutes of Health, Bethesda, MD, USA). The RBE was calculated as ratio of the biological effectiveness of P vs X irradiation, given the same dose/amount of absorbed energy (25).
Cell counting for viability and proliferation assessment
The cell counting for the CR-MI group was done every day, for four days post- seeding, in triplicate, with an automatic cell counter (Advanced Detection Accurate Measurement system, LabTech, TAMPA, FL, USA), according to the manufacturer instructions.
Quantification of gene expression
Molecular characterization of the irradiated cells was done by using the quantitative real-time - polymerase chain reaction. Total RNA was extracted with the RNeasy Mini Kit; first-strand cDNA synthesis was performed by using the QuantiTect® Reverse Transcription Kit (all from Qiagen, Hilden, Germany). cDNA samples were amplified by using the StepOnePlus™ RT-PCR System (Thermo Fisher Scientific) for 40 cycles with the Takyon™ Rox SYBR® Master Mix, dTTP Blue (Eurogentec, Liege, Belgium) and specific oligonucleotides (Sigma Aldrich), to assess mRNA expression for VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2, VEGFR-3, NRP1, NRP2, IL-6, IL-8, CCL2, TRF2, PLK1, PD-L1, LYVE1, PDPN and PROX1. mRNA levels were normalized to a housekeeping mRNA coding for either the human or murine ribosomal protein, large, P0 (RPLPO). The gene expression levels were given the individual scores of -1, 0 and 1 when they were significantly decreased, not significantly changed and significantly increased, respectively, as compared to control. For each irradiation setting, a global gene expression score was then calculated by cumulating the individual scores allocated to each gene expression level.
Protein quantification
VEGF-C protein was quantified by using an enzyme-linked immunosorbent assay (human DuoSet ELISA kit, R&D Systems, MN, USA). Protein concentration was normalized to the viable cell number.
Luciferase assays
CAL33 cells belonging to the CR-MI group were transfected by using 50 μΐ NaCl buffer, 1.25 μΐ of polyethylenimine transfection reagent (Sigma Aldrich) and 0.5 μg of total test plasmid DNA-renilla luciferase. The plasmids encoded either (i) a human vegf-c promoter fragment with either a non-mutated (wild type, WT) or a mutated (MUT) binding site for the nuclear factor kappa- light-chain-enhancer of activated B cells (NF-KB) (32), (ii) an artificial promoter containing three binding sites for human NF-κΒ or (iii) a human VEGF-C 3 'UTR reporter (LightSwitch™, S803537, Active Motif, Carlsbad, CA, USA), all cloned downstream of the luciferase reporter gene. A CMV plasmid was used to control the variability of transfection efficiency in the reporter assays.
Tumor xenografts
The study was carried out in strict accordance with the recommendations of the United Kingdom Coordinating Committee on Cancer Prevention Research's Guidelines for the Welfare of Animals in Experimental Neoplasia. Our experiments were approved by the "Comite National Institutionnel d'Ethique Pour lAnimal de Laboratoire" (CIEPAL, reference: NCE/2013-97). One million non-irradiated, P or X irradiated CAL33 cells (CR-MI group) were injected subcutaneously into the flank of 6-week-old NMRI-Foxnlnu/Foxnlnu female mice (Janvier Labs, Le Genest-Saint-Isle, France, n=10/group). The tumor volume (v = L x 12 x 0.52) was determined following measurement with a caliper. When the tumors reached one cm3, the mice were sacrificed and the tumors collected.
Whole transcriptomic screening of tumor xenografts
For the sequencing and secondary analysis, ^g of total RNA was extracted from tumor xenografts, generated with either non-irradiated, P or X irradiated cells (n=3/group), by using the AllPrep® DNA/RNA/Protein Mini Kit (Qiagen). Lack of RNA degradation (ratio 28S/18S > 1.6 and RIN > 7) was documented (Bioanalyzer 2100, Agilent Technologies, Santa Clara, CA, USA). The libraries were generated by using Truseq Stranded mRNA kit (Illumina, San Diego, CA, USA). Libraries were then quantified with KAPA library quantification kit (Kapa Biosystems, Inc., Wilmington, MA, USA) and pooled; 4nM of this pool were loaded on a Nextseq 500 high output flowcell and sequenced with a 2 >< 75bp paired-end chemistry. STAR (2.4.0i) was used to map reads vs a STAR database containing:
Ensembl hgl9 build (GRCh37.75), Ensembl mmlO build (GRCm38) and the ERCC spikes-in set, formatted with splice junctions information described from Ensembl release GRCh37.75 and GRCm38.83. STAR options were set to the recommended Encode RNA-seq options "— outFilterType BySJout —outFilterMultimapNmax 20 —alignSJoverhangMin 8 alignSJDBoverhangMin 1 —outFilterMismatchNmax 999 —outFilterMismatchNoverLmax 0.04 -alignlntronMin 20 -alignlntronMax 1000000 -alignMatesGapMax 1000000". Gene counts were obtained with featureCounts (subread-1.5.0-p3-Linux-x86_64) and "--primary -p -s 1 -C" options, by using the same GTF files used for STAR splice junctions training. Data were deposited in Gene Expression Omnibus (accession code GSE90761, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=opybisygbzotvkh&acc=GSE90761).
For the heatmaps gene lists selection, genes involved in angiogenesis, inflammation, metastasis and cell proliferation were selected by using the Ingenuity Pathway Analysis (Qiagen) database. To define M1/M2 macrophages-related genes, the GEO dataset GSE69607 has been reanalyzed by using geo2R online resource. Genes up- and down-regulated (Abs (logFC)>2) in both Ml vs M0 and M2 vs M0 comparisons were selected as the "M1/M2 macrophages"-related gene list.
Histochemistry and immunofluorescence
Murine tumor sections were handled as previously described 8. To assess tumor architecture, the sections were subjected to Hematoxylin Eosin Saffron (HES) staining. For immunofluorescence, the frozen sections were incubated overnight, at 4°C, with the following primary antibodies: polyclonal rabbit anti-mouse/human LYVE1 (1 :200; Abeam, Cambridge, United Kingdom), monoclonal mouse anti-mouse/human alpha smooth muscle actin (aSMA, 1 :400, Sigma Aldrich) and monoclonal rat anti-mouse CD31 (1 :50, clone MEC 13.3, BD Pharmigen, Heidelberg, Germany) primary antibodies, then incubated for 2h at room temperature, in the dark, with the secondary antibodies: anti-rabbit FP594, anti-mouse FP547 (1 : 1000, FluoroProbes, Interchim, Montlucon, France) and anti-rat AF488 (1 : 1000, AlexaFluor, Thermo Fisher Scientific); cell nuclei were stained with Hoechst (1 : 1000, Thermo Fisher Scientific). Cell and tissue preparations were examined under an inverted epifluorescence microscope (Axio Observer Zl) with an incorporated digital camera system for imaging (AxioCam Iccl); images acquisition and stitching, as well as the assessment of tumor vessels density, were performed with ZEN 2.3 software (all from Carl Zeiss Microimaging GmbH, Weinheim, Germany).
Immunohistochemistry
Patient biopsy samples were collected with the approval of the local Ethics Committee, and their use in research was in accordance with the Declaration of Helsinki. The patient, disease, and treatment characteristics were described in the Table 3. Sections from formalin- fixed and paraffin-embedded biopsies from initial and relapsed tumors were incubated at room temperature with monoclonal, primary mouse anti-human PDPN and CD31 antibodies, as well as biotinylated secondary antibodies, by using an automated slide stainer (Ventana Medical Systems, Inc., Basel, Switzerland). Binding was detected with the diaminobenzidine substrate against a hematoxylin counterstain. Evaluation of marker expression was performed by an accredited clinical pathologist (I. P.).
Statistical analyses
Statistical analysis for all test, excepting whole transcriptomic screening data, was performed by two-tailed unpaired t test on at least three independent experiments; the results were considered statistically significant when p value < 0.05. For the whole transcriptomic screening, statistical analyses were conducted separately for human and mouse gene expression counts. Quality of libraries was assessed based on the Pearson correlation between observed vs expected ERCC counts (R2>0.90 for all samples). Normalization and differential analysis were conducted within R/Bioconductor environment, by using DESeq2. P values were corrected for multiple testing, by using the Benjamini and Hochberg method. Heatmaps were generated with TMeV software. Heatmaps used the top 10 most up- and down-regulated genes, based on logFC and adjusted p value < 0.05 for human genes, and logFC only for mouse genes.
Tables
Table 1. Quantitative gene expression, as percentage of control (0 Gy), in either P or X irradiated CAL33 cells belonging to (A) AR-SI and (B) CR-MI groups. Highlighted values - significantly different (p<0.05) expression levels, as compared to control, for genes associated to favorable (dark grey) and non-favorable (black) outcomes; *, significantly different expression levels after low, as compared to high dose(s) of either P or X irradiation; #, significantly different expression levels after either low or high dose(s) of P, as compared to X irradiation.
Table 2. Common up-regulated and down-regulated human genes in tumors generated with either X or P irradiated cells. In bullet are genes up-regulated in either P or X tumors, but down-regulated in tumors generated with non-irradiated cells. Selection is adjusted p value < 0.05 and lofFC > 1.
Table 3. Diagnosis, disease and treatment characteristics of patients with HNSCC.
Table 4. Quantitative gene expression, as percentage of control (0 Gy), in either P or X irradiated CAL27 cells belonging to CR-MI group. Highlighted values - significantly different (p<0.05) expression levels, as compared to control, for genes associated to antitumor (dark grey) and pro-tumor (black) effects; *, significantly different expression levels
after 2 Gy, as compared to 8 Gy of either P or X irradiation; #, significantly different expression levels after either 2 Gy or 8 Gy of P, as compared to X irradiation.
Results
Cell survival/proliferation is in favor of P following single irradiation, and X following multiple irradiations
Our hypothesis was that irradiation would lead to different cell viability and proliferation profiles depending on the radiation type and dose, number of irradiations, and time of assessment. We qualified as the "acute response (AR)" the modifications of biological parameters (proliferation, survival, gene expression) a few hours following a single irradiation (SI). The modifications of the same biological parameters on cells that have survived to multiple irradiations (MI) and that have been expanded as new populations were qualified as the "chronic response (CR)".
In order to calibrate our experiments, we first determined a relative biological effectiveness (RBE) of photons and protons on our model cell lines following SI. According to the literature, P therapy treatments are based on a RBE of 1.1, relative to high-energy X therapy (25). The surviving curve of CAL33 cells following administration of escalating doses of either P or X irradiation confirmed a RBE of 1.1 for P, as compared to X irradiation (Figure 6). This experiment confirms the literature data showing that P kills tumor cells more efficiently than X irradiation (25).
However, patients are irradiated several times to reach a maximal therapeutic efficacy. Therefore, our next purpose was to compare the relative aggressiveness of cells that were resistant to MI by X or P. Hence, we performed our experiments on two independent cell lines (CAL33 and CAL27). The proliferative ability along a time course of CAL33 (Figure 1) or CAL27 (Figure 7) that have survived to MI was determined. As compared to non-irradiated cells, the proliferation of X or P irradiated cells was reduced in both models and the difference was striking 96h following cell seeding (p<0.001 for CAL33; p=0.049 for CAL27). However, the difference in proliferation became statistically significant earlier for X irradiated cells in the CAL33 model (p=0.02 for X8 at 48h; p=0.014 and 0.009 for X2 and X8, respectively, at 72h; p<0.001 for all conditions at 96h). Whereas the difference in proliferation did not reach statistical significance between X2 and X8 irradiated cells, X8 cells proliferated to a lesser extent, as compared to P2 and P8, at 48h post seeding (p=0.006 and p=0.035, respectively), to P2 at 72h post seeding (p=0.018), and P2 and P8 irradiated cells at 96h post seeding (p=0.012 and p=0.008, respectively).
Therefore, the overall therapeutic advantage, attested by reduced cell viability and proliferation capacity following SI switched in favor of X post MI for CAL33 cells. For CAL27, no difference in the proliferative ability of MI X and P cells was observed, suggesting that X and P exert different outcomes, depending on the HNSCC type.
P irradiation leads to overall lower induction of mRNA coding pro-inflammatory, pro-(lymph)angiogenic and pro-proliferative genes
The gene expression levels for CAL33 cells following SI or MI, represented as percentage of control, and the gene expression scores are listed in the Table 1 A and B. The mRNA levels of the different tested genes overall increased in a dose-dependent manner and with the irradiation number after both P and X irradiation. Genes involved in (lymph)angiogenesis, inflammation and immune tolerance were overall less expressed after high dose(s) of P, as compared to X, irradiation in all investigated groups; the genes involved in (lymph)angiogenesis, inflammation and immune tolerance were down-regulated after P irradiation, showing significantly lower mRNA levels, as compared to X irradiation, within the following settings: (i) AR-SI after low dose: CCL2 (p=0.035) and high dose: IL-6 (p=0.0001); (ii) CR-MI after low dose: VEGF-A (pO.0001), IL-6 (pO.0001), IL-8 (p=0.046), CCL2 (p=0.041), PD-L1 (p=0.002) and high dose: VEGF-D (pO.0001) and IL-8 (p<0.0001). By contrast, among these genes, X irradiation led to down-regulation of IL-8 only, within the low dose CR-MI settings. Notably, VEGF-C mRNA levels were systematically increased after both P and X irradiation, but they were significantly lower after P, as compared to X irradiation, after high dose within the CR-MI setting (p<0.001). Among all investigated genes, IL-8 was the gene whose mRNA was induced at the highest level after X (79-fold, as compared to control), but not after P irradiation, within the high dose CR-MI setting (p<0.0001). Moreover, both P and X irradiation augmented PD-L1 mRNA expression in a dose-dependent manner within the AR-SI and CR-MI settings, and in an irradiation number-dependent manner within the AR-SI setting. The generated gene expression scores showed that P irradiation is associated with a more favorable profile [reduced proliferation, (lymph)angiogenesis, inflammation)]. A similar gene score, in favor of P irradiation, was also obtained for CAL27 cells, within the CR-MI setting, despite of an increase in VEGF-C, VEGF-D, NRP1, NRP2, IL-8 and PD-L1 mRNA expression (Table 4).
Induction of VEGF-C protein is reduced in P irradiated cells
Because lymph node metastasis is frequent at diagnosis in FINSCC and in patients who relapse locally after radiotherapy, we focused our research on VEGF-C, the major growth factor for lymphatic endothelial cells. Although the mRNA levels of VEGF-C were
increased after both low and high dose(s) of P or X irradiation, they were lower after high dose(s) of P irradiation. To confirm the results obtained at mRNA level, we next assessed VEGF-C protein levels in CAL33 and CAL27 cells.
In CAL33 cells, VEGF-C protein levels increased in a dose-dependent manner following both P and X irradiation. Furthermore, they were significantly lower after P irradiation. Within the AR-SI setting (Figure 2A), VEGF-C protein levels were significantly increased after a low and high dose of irradiation with either P (p=0.038 and p=0.046, respectively) or X (p=0.0002 for both dose types). A significantly lower expression was observed after a high dose of P, as compared to X irradiation (by 59%, p=0.018). However, significantly increased levels were observed after a high vs low dose of X irradiation (3-fold increase, p=0.002).
The VEGF-C protein induction was also maintained at significantly increased levels in CAL33 cells of the CR-MI group (Figure 2B), after both low and high doses of P and X irradiation (p<0.001), with significantly decreased levels after high doses of P vs X irradiation (by 50%), p<0.001). In addition, there were significantly increased levels after high, as compared to low doses of X irradiation (p=0.002). These observations were confirmed in CAL27 cells within the CR-MI setting (Figure 7B), where VEGF-C protein levels were significantly increased after both P and X irradiations (p<0.001), with lower levels after high doses of P vs X irradiation (p=0.001).
X and P irradiations stimulate the VEGF-C promoter activity
Irradiation by either X or P stimulated the activity of the vegf-c promoter especially in CAL33 cells surviving to multiple X irradiations (6- and 18-fold increase, respectively, p<0.001, Figure 2C). This result is consistent with the induction of the VEGF-C mRNA within the CR-MI setting (Table 1) and suggests a chronic induction of vegf-c gene transcription, an increase in vegf-c mRNA half-life or a combination of both mechanisms. Mutation of the NF-κΒ binding site (MUT) had no effect on the basal vegf-c promoter activity in no n- irradiated cells. However, in cells surviving to MI by P and X, the activity of the MUT, as compared to WT, promoter was significantly decreased (by 33%, p=0.004 and by 30%), p=0.027, respectively, Figure 2C) suggesting that the increase in the transcriptional activation of the vegf-c promoter depends in part on a constitutive activation of NF-κΒ. In the CAL27 cell line, the irradiation by either P or X did not stimulate the activity of the WT vegf- c promoter but the activity of the MUT promoter was completely inhibited in both non- irradiated and irradiated cells (p<0.001, Figure 7C). To further assess the role of NF-κΒ on vegf-c promoter, the activity of an artificial promoter containing three binding sites for human
NF-κΒ was determined in control and irradiated cells. In CAL33, the NF-KB-dependent promoter activity was lower in P irradiated cells, which is consistent with the activity of the vegf-c promoter having a WT NF-κΒ binding site (Figure 2D). For CAL27, the NF-KB- dependent promoter activity is almost equivalent in control and either X or P irradiated cells (Figure 7D). This result indicates that the vegf-c promoter activity exclusively relies on a NF- KB-dependent transcriptional mechanism in CAL27 cells, whereas the dependency to NF-KB is partial in CAL33 cells. Moreover, a reporter gene used to assess VEGF-C mRNA half-life was not affected by either P or X irradiation in CAL33 cells (Figure 2E), suggesting that the increase in vegf-c mRNA levels does not depend on modifications in mRNA half-life.
Cells surviving multiple irradiations by P and X generate tumors with distinct characteristics
The cells resistant to MI by either P or X served to generate experimental tumors in mice to test their relative aggressiveness. The average tumor volume was significantly increased (p<0.05) for P and X tumors, but no differences were observed between the irradiation types (Figure 3 A and 3.B). These results were inconsistent with the in vitro proliferative abilities of the cells surviving after MI with either P or X. To determine whether P and X irradiated cells "educated" the microenvironment to favor tumor growth, we performed a whole transcriptomic screening of the tumors. Indeed, distinct profiles for both the mouse (Fig. 3.C) and human (Fig. 3.D) ten most up- and down-regulated genes were detected. Among the ten most up- and down-regulated mouse genes, some (Fig. 3.C) such as collagen type XVII alpha 1 and carbonic anhydrase 2 (Car2)26 had a shared pattern of expression in P and X tumors (Fig. 3.C). In addition, we identified distinct profiles for the ten most up- and down-regulated mouse (Figure 8) and human (Figure 9) genes involved in angiogenesis, inflammation, metastasis, M1/M2 macrophage transition. Some of these genes had a shared pattern of expression in P and X tumors.
Furthermore, we identified 70 (26%) common up-regulated and 3 (5.8%) common down-regulated genes (Fig. 3.E) between X and P tumors, with roles in angiogenesis/metastasis, inflammation, M1/M2 macrophage transition and proliferation (Table 2).
Tumors induced by irradiated cells presented less necrosis and increased intra-tumor vessels density (p=0.031 for P and p=0.002 for X group, Fig. 4.A and Figure 10A). In addition, irradiation by either P or X led to generation of tumors with destabilized vessel architecture (Fig 4.B), attested by a decrease in vessels with co-staining for CD31 and aSMA (p=0.005 for P and p=0.006 for X group, Figure 10B). Lymphatic vessels were detected in the
tumor-skin border of the control and P groups (Fig. 4.C). However, they were also present in the core of the X tumors, finding consistent with the over-expression of VEGF-C observed in vitro. Since VEGF-C was particularly discriminative between the two experimental irradiation conditions, we tested whether it had induced the development of lymphatic vessels. LYVEl, PDPN and PROXl markers of lymphatic vessels were then tested (Fig. 4.D). LYVEl and PDPN mRNA were down-regulated (p<0.001 for both markers) in P and up- regulated (p=0.015 and 0.044, respectively) in X tumors. Lower mRNA levels of LYVEl and PDPN were detected in P, as compared to X tumors (p=0.003 and p<0.001, respectively). PROXl mRNA level was down-regulated (p=0.02) and unchanged in P and X tumors, respectively.
Conventional radiotherapy by X increases tumor lymphangiogenesis in patients with HNSCC
To further correlate the relationship between irradiation-dependent VEGF-C expression and lymphatic vessels development, we tested the presence of lymphatic markers in biopsies from primary and locally relapsed human HNSCC, after conventional radiotherapy. Recent reports described that the expression of PDNP, one of the major makers of lymphatic vessels, was not restricted to lymphatic vessels but it was also expressed in HNSCC cells. Expression of PDPN was indeed detected in tumors from patients with oral and pharyngeal SCC (Fig. 5. A - la, 2a). However, we observed a high increase of PDNP labeling, in both tumor and lymphatic cells, in sections from relapsed tumors after treatment with conventional X radiotherapy (Fig. 5. A - lb, 2b). In the same tumors, the vascular network, attested by CD31 labelling, was not modified in the relapsed (Fig. 5.B - lb, 2b), as compared to the initial tumors (Fig. 5.B - la, 2a). In addition, a tendency for increased mRNA expression of PDPN (p=0.088), along with significantly increased mRNA expression of VEGF-C (p=0.005), LYVEl (p=0.025) and PROXl (p=0.003) were detected in relapsed patient tumors after conventional X radiotherapy (Figure 5C).
Discussion
Our in vitro results indicate that P irradiation led to lower expression of factors involved in (lymph)angiogenesis, inflammation and immune tolerance. This suggests the acquisition of less aggressive phenotypes after P therapy. The selection of surviving cells was still possible after MI, indicating a mechanism of acquired resistance secondary to irradiation (28). However, the molecular profiling of the surviving cells suggests a more aggressive in vivo phenotype after MI with X. Therefore, due to its physical and biological properties, P irradiation may be more efficient in tumor size control through dose escalation.
The long-term surviving cells after three irradiations with P showed a down-regulation of the investigated pro-angiogenic/pro-inflammatory genes, except for vegf-c, while most of these genes were up-regulated after X irradiation. The implication of VEGF-C in the metastatic dissemination process after irradiation has not been elucidated. To our knowledge, this is the first report showing P or X radiation- induced VEGF-C over-expression at both gene and protein levels in FiNSCC cells. The VEGF-C mR A levels increased in a dose-dependent manner and with the irradiation number, except in the cells surviving after three irradiations with P. These observations suggest that P radiotherapy would lead to less pronounced lymphangiogenesis/metastasis, as compared to X radiotherapy.
Therefore, we postulated that over-expression of VEGF-C may represent an extrinsic mechanism responsible for the post-irradiation tumor dissemination/metastasis in FiNSCC. VEGF-C expression was associated with lymph node metastasis, recurrence and a poorer five-year survival rate in patients with FiNSCC, being an independent prognostic factor (11, 29). Moreover, the online available database cBioPortal (http://www.cbioportal.org) shows that over-expression of VEGF-C correlated to significantly lower disease free (p=0.0022, Figure 11 A) and overall (p=0.015, Figure 11B) survival rates in patients with FiNSCC (n=517). It has been reported that gamma rays irradiation induced VEGF-C expression and endothelial cell proliferation in lung cancer (30). These observations, corroborated with ours, suggest that VEGF-C may be an important therapeutic target for FiNSCC patients who relapse after radiotherapy with either P or X.
Because VEGF-C might be a major factor responsible for post-irradiation disease progression in FiNSCC patients, via promotion of lymphangiogenesis, we further started investigating the mechanisms involved in its induction, which may serve to its therapeutic targeting. Regulation of VEGF-C expression has been poorly addressed (27, 31, 32). Irradiation-mediated induction of VEGF-C mRNA suggested stimulation of transcription, stabilization of mRNA or a combination of these mechanisms (31). Our data indicate that both P and X irradiation stimulated the activity of a short form of vegf-c promoter in CAL33 cells. The vegf-c promoter contained a binding site for NF-κΒ. The dependency of this site is variable considering the two cell lines we tested, but nevertheless NF-κΒ plays a key role in VEGF-C regulation, as suggested in another cancer type (32). As these cell lines came from two different patients, our results highlight the inter-patient variability in VEGF-C expression and regulation, stressing out the importance of implementing personalized diagnosis and treatment strategies.
In the cells surviving after three irradiations, the VEGF-A and VEGF-D genes were down-regulated by P and up-regulated by X irradiation. VEGF-A expression significantly correlated with lymph node metastasis in patients with FiNSCC 11. High VEGF-A expression was also associated with higher clinical stages and worse overall survival, being a significant predictor of poor prognosis in patients with HNSCC (33). Furthermore, VEGF-D expression correlated with lymphatic vessel density and lymph node metastasis in these patients (10). In addition, VEGFR-2, VEGFR-3 and NRP1, highly expressed by HNSCC cells (34), were down-regulated in the surviving cells selected after three irradiations with P, but not with X. High NRP1 and NRP2 levels correlated with poor prognosis in HNSCC patients, NRP2 being an independent prognostic markers for overall survival (35).
Therefore, our study sets the basis for clinical assays investigating more efficient treatments, combining P radiotherapy with anti-angiogenic targeted therapies. Such combinations would eventually lead to decreased selection of post-irradiation surviving cells and lower relapse rates in patients with HNSCC, for which the current treatments include X irradiation (3). A case report describing the successful treatment of a patient with chondrosarcoma by combining P radiotherapy with sunitinib, an inhibitor of VEGFRs and platelet-derived growth factor receptor, underlines the effectiveness of such approach (36).
We also showed that P and X radiations differently modulated the pro-inflammatory gene expression in HNSCC cells. Among the assessed genes, the highest determined mRNA level was for IL-8. Stress and drug-induced IL-8 signaling conferred chemotherapeutic resistance to cancer cells (37). Serum and tumor IL-8 significantly affected the disease free survival in patients with early stage HNSCC (38). Therefore, inhibiting the effects of IL-8 signaling in combination to chemoradiotherapy may be of significant therapeutic value.
P but not X irradiation down-regulate IL-6 expression at the mRNA level. IL-6 expression predicted a poor response to radio-chemotherapy and a non-favorable prognosis in HNSCC patients (39). It was also linked to radiation resistance and development of chronic toxicities after irradiation (40). Depending on tumor location, the most common side effects after conventional radiotherapy of HNSCC include mucositis, xerostomia, dysphagia requiring short-term or permanent gastrostomy, soft tissue/bone necrosis, neck fibrosis, and thyroid dysfunction (41). Although the primary goal in radiotherapy is tumor control, a parallel essential goal is to spare normal tissues from radiation toxicity. Therefore, our data bring further pre-clinical evidence that the use of P irradiation in the treatment of HNSCC may lead to less inflammatory side effects.
We also showed that, in the cells surviving long-term after three irradiations, another major pro -inflammatory cytokine, CCL2, was down-regulated after P, while being highly up- regulated after X irradiation. As serum CCL2 levels were associated with HNSCC progression (42), our data suggest that P therapy might be more beneficial for these patients.
Our results also showed that PLK1 and TRF2 genes were differently regulated after P or X irradiation and correlated to the proliferation patterns. By inhibiting apoptosis, PLK1 over-expression was associated with poor survival in patients with HNSCC, being an independent prognostic factor (43). Its targeting with a multi-kinase inhibitor led to encouraging anti-tumor activity in patients with SCC (44). These data suggest that PLK1 might be a potential therapeutic target for HNSCC patients undergoing radiotherapy. TRF2 may also become an established predictive marker for treatment efficacy and a marker of survival in HNSCC. We previously showed that the treatment response was increased in TRF2 knocked-down cells and that TRF2 over-expression had a negative impact on patients' survival (23).
Irradiation leads to adaptive changes in the tumor microenvironment that may limit the generation of an anti-tumor immune response (24). Indeed, we showed a significant increase of PD-Ll expression after P, and confirmed the X radiation- induced PD-Ll expression in other cancers (24, 45). In patients with HNSCC, high PD-Ll expression in primary tumors correlated with metastasis and poor prognosis, being an independent prognostic factor (46). PD-Ll was also a significant predictor for poor treatment response and shorter survival in X radiotherapy-treated patients with HNSCC (45). A phase II, multi-center, single-arm, global study of monotherapy with durvalumab, a Fc optimized monoclonal antibody directed against PD-Ll, is ongoing in our institution in patients with recurrent/metastatic HNSCC and PD-Ll positive status. Therefore, our data, associated to the progress in the field, set the basis for the investigation of novel therapeutic strategies for HNSCC, based on the PD-Ll - PD-1 interaction, in combination with radiotherapy.
We also demonstrated that the aggressiveness of the irradiated cells was augmented in vivo through increased tumor volume, density of tumor vessels and blood vessels with destabilized architecture. These observations suggest that the irradiation-adapted cells have acquired different transcriptome and secretome profiles. Indeed, among the common human genes up-regulated in either X or P tumors, but down-regulated in tumors generated with non- irradiated cells, we identified PDZK1 interacting protein 1 (PDZK1IP1, known also as MAP 17) (47) and fibronectin leucine rich transmembrane protein 2 (FLRT2) (48), known for promoting cell proliferation. In addition, mouse Car2 expression was down-regulated in P and
X tumors, while up-regulated in tumors generated with non-irradiated cells. Interestingly, low CAR2 protein expression has been associated with increased tumor size (26). In addition, the X tumors showed up-regulation of human genes involved in metastasis, angiogenesis and epithelial mesenchymal transition, such as MMP2, MMP9, MMP13, MMP16, MMP28 and vimentinl5, while P tumors showed up-regulation of human C-C Motif Chemokine Ligand 5 chemokine gene involved in CD8+ T lymphocytes recruitment associated with better clinical outcomes (49).
To get further insights whether tumor cell adaptation following radiotherapy may contribute to clinical disease progression, in part through lymphangiogenesis, we investigated lymphatic markers expression in patients with relapsed HNSCC after X radiotherapy. Biopsies at relapse are very rarely sampled in radiotherapy-treated patients. However, in this small cohort, all patients presented increased protein and/or mR A levels of PDPN, VEGF- C, LYVE1 and PROX1, bringing evidence that conventional radiotherapy may promote lymphangiogenesis. It has also been reported by others that high PDPN expression is associated with aggressive tumor behavior, poor prognosis and metastatic regulation through interaction with VEGF-C, suggesting that PDPN may be used as a potential prognostic biomarker for HNSCC (27). However, our in vitro studies did not reveal increased PDPN expression in HNSCC cells that resisted to MI (Figure 12).
In conclusion, our study highlighted the differential gene/protein expression profile after P vs X irradiation in HNSCC and potential candidate markers for prognosis, efficacy of anti-tumor treatments and new anti-tumor targets, such as VEGF-C. Beside the physical advantage of P irradiation in dose deposition, our observations provide preclinical evidence that beam therapy with P might be superior to conventional X therapy in HNSCC patients, due to its biological advantages. P irradiation could therefore permit dose escalation without increasing the side effects, while increasing the tumor control. Further work is also needed to refine the strategies for blocking VEGF-C activity and its effects on the vascular/lymphatic endothelial or tumor cells with anti-angiogenic therapies. The implementation of P therapy in combination with anti-angiogenic or anti-immune checkpoint drugs for HNSCC will therefore require prospective randomized clinical trials to measure the toxicity and disease control.
EXAMPLE 2:
Medulloblastomas (MDBs) are fast-growing tumors that belong to the group of primitive neuro-ectodermal tumors of the central nervous system. 70% of MDBs are diagnosed before the age of 10 and MDB are rare in adults. MDB is a pathology composed of
four molecular groups: wingless (WNT), sonic hedgehog (SHH), group 3 and group 4 (51). These groups are defined by clinical and molecular parameters of the tumor cells. The WNT and SHH groups exhibit aberrant activation of the WNT and SHH signaling pathways. Group 3 tumors overexpress the OTX2 and c-MYC genes and those of group 4 N-MYC (52). The genetic landscape of MDB more precisely describes and illustrates tumor heterogeneity among the previously identified subgroups (53-55). These classifications represent important indicators for treatment decision at the first line but do not predict patients at risk of relapse after conventional therapies. MDB treatments combine surgery, irradiation and/or multiple chemotherapies (carboplatin, etoposide). These heavy treatments induce physical, psychological or behavioral sequelae. MDBs are highly vascularized by overexpression of VEGF and many other markers of angiogenesis (VEGFB, VEGFC, FGF, angiopoietin) (56). Anti-angiogenic treatments induce a poor response rate in MDB and are not devoid of side effects in developing children. Innovative treatments use inhibitors of the SHH pathway (vismodegib) (57) and a precise radiotherapy by proton which saves healthy tissues (58). Physicians claimed that 70% of the children are cured but in case of relapse the issue is fatal in 100% of cases. Predicting such fatal relapses as precisely as possible represents a very important therapeutic issue.
Material & Methods
Cell culture
DAOY and HDMB03 cell lines were purchased from the ATCC. Stocks were made at the original date of obtaining the cells, and were usually passaged for no more than 4 months. These cell lines have been authenticated by DNA profiling using 8 different and highly polymorphic short tandem repeat loci (DSMZ).
ELISA test
Cell supernatant was recovered for VEGFC measurement using the Human DuoSet ELISA kit (R&D Systems).
Quantitative real-time PCR experiments
One microgram of total RNA was used for the reverse transcription, using the QuantiTect Reverse Transcription Kit (Qiagen), with blend of oligo (dT) and random primers to prime first strand synthesis. SYBR Master Mix Plus (Eurogentec) was used for quantitative real-time PCR (qPCR). The niRNA level was normalized to 36B4 mRNA.
Oligo sequences:
Gene expression microarray analysis
Normalized RNA sequencing data produced by The German Cancer Center Consortium and the "Genomics Analysis and visualization platform" is available at the following address:
https://hgserverl.amc.nl/cgi bin/r2/main.cgi?&dscope=M B500&option=about dscope. Almost 200 samples were analyzed.
Immuno-histo chemistry
Samples were collected with the approval of the Local Ethics committee of Nice. Sections from blocks of formalin- fixed and paraffin-embedded tissue were examined for immunostaining for podoplanin. After deparaffmization, hydration, and heat-induced antigen retrieval, the tissue sections were incubated for 20 minutes at room temperature with monoclonal anti-podoplanin antibodies diluted at 1 : 100. Biotinylated secondary antibody (DAKO) was applied and binding was detected with the substrate diaminobenzidine against a hematoxylin counterstain.
Results
Patients of Group 3 MDB express highest levels of VEGFC.
Analysis of online available data shows that the most aggressive Group 3 subgroup expressed the highest level of VEGFC (Figure 13).
Chemo/radiotherapeutic treatments result in the expression of VEGFC and several lymphatic markers in a Group 3 MDB model cell line.
The standard chemo therapeutic treatments for MDB are combinations of carboplatin/etoposide. We determined the IC50 for each of these compounds on different
MDB lines. Our results show VEGFC induction by chemotherapies/irradiation in MDB cells (Figure 14).
We also observed that expression of different markers of lymphatic cells including VEGFR3, NEUROPILIN 2 and more importantly PROX1, a master transcription factor for the development of the lymphatic system (59, 60) was stimulated by photon based radiotherapy (Figure 15). We hypothesize that in some tumors or in response to treatments tumor cells may dedifferentiate to lymphatic cells allowing the development of hybrid LV equivalent to those described for vasculo mimicry (61). We called this phenomenon ' 'Lymphomimicry' ' .
Presence of cells labelled with a lymphatic marker (podoplanin) in MDB samples
We believe that the presence of lymphatic vessels (LV) is a marker of aggressiveness of tumors and may guide the treatment. Aggressive treatment should only be given in the most severe cases. Limiting a radio/chemo heavy treatment would reduce the toxic side effects. The presence of LV in the brain is a real debate. Pathologists advocate the absence of such vessels. However, their presence has been recently identified in the meninges (62, 63). The presence of LV in brain tumors has never been reported. We have observed and herein disclose for the first time the presence of cells and/or structures revealed by podoplanin labeling (commonly used by pathologist to identify lymphatic embols) in aggressive MDB cases (Figure 16). We believe these structures to be lymphatic vessels. We further believe that patients exhibiting such structures should beneficiate from an aggressive treatment of cancer, typically radiotherapy, preferably P radiotherapy, and/or chemotherapy using a VEGF-C inhibitor as the chemotherapeutic agent.
REFERENCES
Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into the present disclosure.
1. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011; 11 : 239-253.
2. Doyen J, Falk AT, Floquet V, Herault J, Hannoun-Levi JM. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat Rev 2016; 43: 104-112.
3. Seiwert TY, Salama JK, Vokes EE. The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol 2007; 4: 156-171.
4. Sio TT, Lin HK, Shi Q, Gunn GB, Cleeland CS, Lee JJ et al. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes. Int J Radiat Oncol Biol Phys 2016; 95: 1107-1114.
5. Blanchard P, Wong AJ, Gunn GB, Garden AS, Mohamed AS, Rosenthal DI et al. Toward a model-based patient selection strategy for proton therapy: External validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother Oncol 2016; 121 : 381-386.
6. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.
7. Mamelle G, Pampurik J, Luboinski B, Lancar R, Lusinchi A, Bosq J. Lymph node prognostic factors in head and neck squamous cell carcinomas. Am J Surg 1994; 168: 494-498.
8. Grepin R, Guyot M, Jacquin M, Durivault J, Chamorey E, Sudaka A et al. Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/Avastin treatment: the role of CXCL cytokines. Oncogene 2012; 31 : 1683-1694.
9. Freeh S, Hormann K, Riedel F, Gotte K. Lymphatic vessel density in correlation to lymph node metastasis in head and neck squamous cell carcinoma. Anticancer
Res 2009; 29: 1675-1679.
10. Sugiura T, Inoue Y, Matsuki R, Ishii K, Takahashi M, Abe M et al. VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node
metastasis in oral squamous cell carcinoma: Implications for use as a prognostic marker. Int J Oncol 2009; 34: 673-680.
11. Yanase M, Kato K, Yoshizawa K, Noguchi N, Kitahara H, Nakamura H. Prognostic value of vascular endothelial growth factors A and C in oral squamous cell carcinoma. J Oral Pathol Med 2014; 43: 514-520.
12. Tian J, Zhao W, Tian S, Slater JM, Deng Z, Gridley DS. Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation. Radiat Res 2011; 176: 553-564.
13. Kajioka EH, Andres ML, Mao XW, Moyers MF, Nelson GA, Gridley DS. Hematological and TGF-beta variations after whole-body proton irradiation. In Vivo 2000;
14: 703-708.
14. Girdhani S, Lamont C, Hahnfeldt P, Abdollahi A, Hlatky L. Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth. Radiat Res 2012; 178: 33-45.
15. Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y,
Kawaguchi A et al. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 2005; 65: 113-120.
16. Shinriki S, Jono H, Ueda M, Ota K, Ota T, Sueyoshi T et al. Interleukin-6 signalling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma. J Pathol 2011; 225: 142-150.
17. Li M, Zhang Y, Feurino LW, Wang H, Fisher WE, Brunicardi FC et al. Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer. Cancer Sci 2008; 99: 733-737.
18. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113: 1040-1050.
19. Zachary I. Neuropilins: role in signalling, angiogenesis and disease. Chem Immunol Allergy 2014; 99: 37-70.
20. Pan Y, Wang WD, Yago T. Transcriptional regulation of podoplanin expression by Proxl in lymphatic endothelial cells. Microvasc Res 2014; 94: 96-102.
21. Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 2006; 8: 578- 586.
22. Kim SA, Kwon SM, Yoon JH, Ahn SG. The antitumor effect of PLK1 and HSF1 double knockdown on human oral carcinoma cells. Int J Oncol 2010; 36: 867-872.
23. Benhamou Y, Picco V, Raybaud H, Sudaka A, Chamorey E, Brolih S et al. Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma. Oncotarget 2016; 7: 44236-44251.
24. Dovedi SJ, Illidge TM. The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade. Oncoimmuno logy 2015; 4: el016709.
25. Prescribing, recording, and reporting proton-beam therapy: International Commission on Radiation Units and Measurements Report 78. J ICRU 2007; 7: 210.
26. Hu X, Huang Z, Liao Z, He C, Fang X. Low CA II expression is associated with tumor aggressiveness and poor prognosis in gastric cancer patients. Int J Clin Exp Pathol 2014; 7: 6716-6724.
27. Kim HY, Rha KS, Shim GA, Kim JH, Kim JM, Huang SM et al. Podoplanin is involved in the prognosis of head and neck squamous cell carcinoma through interaction with
VEGF-C. Oncol Rep 2015; 34: 833-842.
28. Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 2013; 19: 200-207.
29. Matsui T, Shigeta T, Umeda M, Komori T. Vascular endothelial growth factor C (VEGF-C) expression predicts metastasis in tongue cancer. Oral Surg Oral Med Oral Pathol
Oral Radiol 2015; 120: 436-442.
30. Chen YH, Pan SL, Wang JC, Kuo SH, Cheng JC, Teng CM. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer. Strahlenther Onkol 2014; 190: 1154-1162.
31. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J et al.
Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997; 14: 2475-2483.
32. Du Q, Jiang L, Wang X, Wang M, She F, Chen Y. Tumor necrosis factor-alpha promotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-kappaB- mediated upregulation of vascular endothelial growth factor-C. Cancer Sci 2014; 105: 1261- 1271.
33. Smith BD, Smith GL, Carter D, Sasaki CT, Haffty BG. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J Clin Oncol 2000; 18: 2046-2052.
34. Chu W, Song X, Yang X, Ma L, Zhu J, He M et al. Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma. PLoS One 2014; 9: el 01931.
35. Zhang B, Gao Z, Sun M, Li H, Fan H, Chen D et al. Prognostic significance of VEGF-C, semaphorin 3F, and neuropilin-2 expression in oral squamous cell carcinomas and their relationship with lymphangiogenesis. J Surg Oncol 2015; 111 : 382-388.
36. Dallas J, Imanirad I, Rajani R, Dagan R, Subbiah S, Gaa R et al. Response to sunitinib in combination with proton beam radiation in a patient with chondrosarcoma: a case report. J Med Case Rep 2012; 6: 41.
37. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 2010; 70: 1063-1071.
38. Fujita Y, Okamoto M, Goda H, Tano T, Nakashiro K, Sugita A. Prognostic significance of interleukin-8 and CD 163 -positive cell- infiltration in tumor tissues in patients with oral squamous cell carcinoma. PLoS One 2014; 9: el 10378.
39. Jinno T, Kawano S, Maruse Y, Matsubara R, Goto Y, Sakamoto T et al. Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep 2015; 33: 2161-2168.
40. Wu CT, Chen MF, Chen WC, Hsieh CC. The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol 2013; 8: 159.
41. Holliday EB, Frank SJ. Proton radiation therapy for head and neck cancer: a review of the clinical experience to date. Int J Radiat Oncol Biol Phys 2014; 89: 292-302.
42. Ding L, Li B, Zhao Y, Fu YF, Hu EL, Hu QG et al. Serum CCL2 and CCL3 as potential bio markers for the diagnosis of oral squamous cell carcinoma. Tumour Biol 2014; 35: 10539-10546.
43. Feng YB, Lin DC, Shi ZZ, Wang XC, Shen XM, Zhang Y et al. Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int J Cancer 2009; 124: 578-588.
44. Bowles DW, Diamond JR, Lam ET, Weekes CD, Astling DP, Anderson RT et al. Phase I study of oral rigosertib (ON 01910. Na), a dual inhibitor of the PI3K and Plkl pathways, in adult patients with advanced solid malignancies. Clin Cancer Res 2014; 20: 1656-1665.
45. Chen MF, Chen PT, Chen WC, Lu MS, Lin PY, Lee KD. The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression. Oncotarget 2016; 7: 7913-7924.
46. Oliveira-Costa JP, de Carvalho AF, da Silveira da GG, Amaya P, Wu Y, Park KJ et al. Gene expression patterns through oral squamous cell carcinoma development: PD-
Ll expression in primary tumor and circulating tumor cells. Oncotarget 2015; 6: 20902- 20920.
47. de Miguel-Luken MJ, Chaves-Conde M, de Miguel-Luken V, Munoz-Galvan S, Lopez-Guerra JL, Mateos JC et al. MAP17 (PDZKIP1) as a novel prognostic biomarker for laryngeal cancer. Oncotarget 2015; 6: 12625-12636.
48. Xu Y, Wei K, Kulyk W, Gong SG. FLRT2 promotes cellular proliferation and inhibits cell adhesion during chondrogenesis. J Cell Biochem 2011; 112: 3440-3448.
49. Liu J, Li F, Ping Y, Wang L, Chen X, Wang D et al. Local production of the chemokines CCL5 and CXCLIO attracts CD8+ T lymphocytes into esophageal squamous cell carcinoma. Oncotarget 2015; 6: 24978-24989.
50. Gioanni J, Fischel JL, Lambert JC, Demard F, Mazeau C, Zanghellini E et al. Two new human tumor cell lines derived from squamous cell carcinomas of the tongue: establishment, characterization and response to cytotoxic treatment. Eur J Cancer Clin Oncol 1988; 24: 1445-1455.
51. A. Gajjar et al., Pediatric Brain Tumors: Innovative Genomic Information Is
Transforming the Diagnostic and Clinical Landscape. J Clin Oncol 33, 2986-2998 (2015).
52. P. A. Northcott et al., Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428-434 (2014).
53. E. C. Schwalbe et al., Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18, 958-971
(2017).
54. P. A. Northcott et al., The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311-317 (2017).
55. F. M. G. Cavalli et al., Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 31, 737-754 e736 (2017).
56. H. Huber et al., Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas. Eur J Cancer 37, 2064-2072 (2001).
57. K. J. Ransohoff, K. Y. Sarin, J. Y. Tang, Smoothened Inhibitors in Sonic Hedgehog Subgroup Medulloblastoma. J Clin Oncol 33, 2692-2694 (2015).
58. R. Leroy, N. Benahmed, F. Hulstaert, N. Van Damme, D. De Ruysscher, Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers. IntJRadiat Oncol Biol Phys 95, 267-278 (2016).
59. N. C. Johnson et al., Lymphatic endothelial cell identity is reversible and its maintenance requires Proxl activity. Genes Dev 22, 3282-3291 (2008).
60. J. T. Wigle, G. Oliver, Proxl function is required for the development of the murine lymphatic system. Cell 98, 769-778 (1999).
61. S. Josson, Y. Matsuoka, L. W. Chung, H. E. Zhau, R. Wang, Tumor-stroma co- evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 21, 26-32 (2010).
62. A. Aspelund et al., A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212, 991-999 (2015).
63. A. Louveau et al, Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341 (2015).
Claims
1. A method for predicting the outcome of a cancer in patient afflicted with solid cancer after radiotherapy treatment, comprising the steps of: i) determining the expression level of VEGF-C in a biological sample obtained from said patient, ii) comparing the expression level determined at step i) with a predetermined reference value and iii) concluding that the patient has a good prognosis when the level determined at step i) is lower than the predetermined reference value or concluding that the patient has a poor prognosis when the level determined at step i) is higher than the predetermined reference value.
2. The method according to claim 1, wherein the cancer is a head and neck squamous cell carcinoma (HNSCC).
3. The method according to claim 1, wherein the cancer is a medulloblastoma (MDB).
4. The method according to any one of claims 1 to 3, wherein the radiotherapy treatment is photon (X) radiotherapy.
5. The method according to any one of claims 1 to 3, wherein the radiotherapy treatment is proton (P) radiotherapy.
6. A VEGF-C inhibitor for use in the treatment of solid cancer in a patient in need thereof, wherein the patient was being classified as having a poor prognosis by the method according to any one of claims 1 to 5.
7. The VEGF-C inhibitor for use according to claim 6 in combination with radiotherapy treatment.
8. The VEGF-C inhibitor for use according to any one of claims 6 or 7, wherein said VEGF-C inhibitor is a small organic molecule, a polypeptide, an aptamer, an antibody, an oligonucleotide, a ribozyme or a CRISPR.
9. The VEGF-C inhibitor for use according to any one of claims 6 or 7, wherein said VEGF-C inhibitor is an anti-VEGF-C antibody such as VGX-100, VC4.5, and VC1.12.
10. The VEGF-C inhibitor for use according to any one of claims 6 or 7 in combination with an anti-cancer compound or an anti-angiogenic compound.
11. The VEGF-C inhibitor for use according to claim 10, wherein said anti-angiogenic compound is a tyrosine kinase receptor (TK ) inhibitor such as sunitinib, vandetanib, pazopanib, sorafenib and cediranib.
12. A method for treating solid cancer in a patient in need thereof wherein the patient was being classified as having a poor prognosis by the method according to any one of claims 1 to 5, comprising the step of administering to said patient a VEGF-C inhibitor in combination with radiotherapy treatment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17305448 | 2017-04-14 | ||
EP17305448.7 | 2017-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018189403A1 true WO2018189403A1 (en) | 2018-10-18 |
Family
ID=58644983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/059613 WO2018189403A1 (en) | 2017-04-14 | 2018-04-16 | Methods and pharmaceutical compositions for the treatment of cancer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018189403A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3885452A1 (en) * | 2020-03-23 | 2021-09-29 | Koninklijke Philips N.V. | Prediction of radiotherapy response for prostate cancer subject based on chemokine genes |
CN114681609A (en) * | 2022-05-05 | 2022-07-01 | 浙江大学 | Application of anti-IL-6 antibody composition in preparation of drugs for treating hepatocellular carcinoma |
CN117298035A (en) * | 2023-09-14 | 2023-12-29 | 广州市第十二人民医院 | Injectable self-healing hydrogel and preparation method and application thereof |
Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4499052A (en) | 1982-08-30 | 1985-02-12 | Becton, Dickinson And Company | Apparatus for distinguishing multiple subpopulations of cells |
US4717655A (en) | 1982-08-30 | 1988-01-05 | Becton, Dickinson And Company | Method and apparatus for distinguishing multiple subpopulations of cells |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
WO1990007861A1 (en) | 1988-12-28 | 1990-07-26 | Protein Design Labs, Inc. | CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5229275A (en) | 1990-04-26 | 1993-07-20 | Akzo N.V. | In-vitro method for producing antigen-specific human monoclonal antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5567610A (en) | 1986-09-04 | 1996-10-22 | Bioinvent International Ab | Method of producing human monoclonal antibodies and kit therefor |
US5573905A (en) | 1992-03-30 | 1996-11-12 | The Scripps Research Institute | Encoded combinatorial chemical libraries |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5591669A (en) | 1988-12-05 | 1997-01-07 | Genpharm International, Inc. | Transgenic mice depleted in a mature lymphocytic cell-type |
US5598369A (en) | 1994-06-28 | 1997-01-28 | Advanced Micro Devices, Inc. | Flash EEPROM array with floating substrate erase operation |
US5618829A (en) | 1993-01-28 | 1997-04-08 | Mitsubishi Chemical Corporation | Tyrosine kinase inhibitors and benzoylacrylamide derivatives |
US5639757A (en) | 1995-05-23 | 1997-06-17 | Pfizer Inc. | 4-aminopyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors |
US5728868A (en) | 1993-07-15 | 1998-03-17 | Cancer Research Campaign Technology Limited | Prodrugs of protein tyrosine kinase inhibitors |
US5800988A (en) | 1992-08-21 | 1998-09-01 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
US5804396A (en) | 1994-10-12 | 1998-09-08 | Sugen, Inc. | Assay for agents active in proliferative disorders |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
WO1999032619A1 (en) | 1997-12-23 | 1999-07-01 | The Carnegie Institution Of Washington | Genetic inhibition by double-stranded rna |
US5981732A (en) | 1998-12-04 | 1999-11-09 | Isis Pharmaceuticals Inc. | Antisense modulation of G-alpha-13 expression |
US6046321A (en) | 1999-04-09 | 2000-04-04 | Isis Pharmaceuticals Inc. | Antisense modulation of G-alpha-i1 expression |
US6100254A (en) | 1997-10-10 | 2000-08-08 | Board Of Regents, The University Of Texas System | Inhibitors of protein tyrosine kinases |
US6107091A (en) | 1998-12-03 | 2000-08-22 | Isis Pharmaceuticals Inc. | Antisense inhibition of G-alpha-16 expression |
US6127374A (en) | 1997-07-29 | 2000-10-03 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6245759B1 (en) | 1999-03-11 | 2001-06-12 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
WO2001052875A1 (en) | 2000-01-18 | 2001-07-26 | Ludwig Institute For Cancer Research | Vegf-d/vegf-c/vegf peptidomimetic inhibitor |
US6306874B1 (en) | 1999-10-19 | 2001-10-23 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6313138B1 (en) | 2000-02-25 | 2001-11-06 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6316444B1 (en) | 1999-06-30 | 2001-11-13 | Merck & Co., Inc. | SRC kinase inhibitor compounds |
US6329380B1 (en) | 1999-06-30 | 2001-12-11 | Merck & Co., Inc. | SRC kinase inhibitor compounds |
US6344459B1 (en) | 1996-04-12 | 2002-02-05 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
US6365354B1 (en) | 2000-07-31 | 2002-04-02 | Isis Pharmaceuticals, Inc. | Antisense modulation of lysophospholipase I expression |
US6410323B1 (en) | 1999-08-31 | 2002-06-25 | Isis Pharmaceuticals, Inc. | Antisense modulation of human Rho family gene expression |
US6420382B2 (en) | 2000-02-25 | 2002-07-16 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6479512B1 (en) | 1999-10-19 | 2002-11-12 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6498165B1 (en) | 1999-06-30 | 2002-12-24 | Merck & Co., Inc. | Src kinase inhibitor compounds |
US6566135B1 (en) | 2000-10-04 | 2003-05-20 | Isis Pharmaceuticals, Inc. | Antisense modulation of caspase 6 expression |
US6566131B1 (en) | 2000-10-04 | 2003-05-20 | Isis Pharmaceuticals, Inc. | Antisense modulation of Smad6 expression |
US6573099B2 (en) | 1998-03-20 | 2003-06-03 | Benitec Australia, Ltd. | Genetic constructs for delaying or repressing the expression of a target gene |
US6586423B2 (en) | 1999-09-10 | 2003-07-01 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6740665B1 (en) | 1999-02-10 | 2004-05-25 | Ramachandran Murali | Tyrosine kinase inhibitors and methods of using the same |
US6765087B1 (en) | 1992-08-21 | 2004-07-20 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
US6794393B1 (en) | 1999-10-19 | 2004-09-21 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6838254B1 (en) | 1993-04-29 | 2005-01-04 | Conopco, Inc. | Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of camelidae |
US6875767B2 (en) | 2001-06-22 | 2005-04-05 | Merck & Co., Inc. | (5-cyano-2-thiazolyl)amino-4-pyridine tyrosine kinase inhibitors |
US6927293B2 (en) | 2001-08-30 | 2005-08-09 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6958340B2 (en) | 2001-08-01 | 2005-10-25 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US7109304B2 (en) | 2003-07-31 | 2006-09-19 | Immunomedics, Inc. | Humanized anti-CD19 antibodies |
WO2007015935A2 (en) * | 2005-07-29 | 2007-02-08 | Bayer Healthcare Llc | Diagnostic methods for the prediction of therapeutic success, recurrence free and overall survival in cancer therapy |
US7235641B2 (en) | 2003-12-22 | 2007-06-26 | Micromet Ag | Bispecific antibodies |
US20070254295A1 (en) | 2006-03-17 | 2007-11-01 | Prometheus Laboratories Inc. | Methods of predicting and monitoring tyrosine kinase inhibitor therapy |
WO2008119353A1 (en) | 2007-03-29 | 2008-10-09 | Genmab A/S | Bispecific antibodies and methods for production thereof |
WO2010053717A1 (en) * | 2008-10-29 | 2010-05-14 | William Beaumont Hospital | Methods of using biomarkers |
WO2011071577A1 (en) | 2009-12-11 | 2011-06-16 | Genentech, Inc. | Anti-vegf-c antibodies and methods using same |
WO2011127519A1 (en) | 2010-04-15 | 2011-10-20 | Vegenics Pty Limited | Combination treatment with vegf-c antagonists |
WO2011131746A2 (en) | 2010-04-20 | 2011-10-27 | Genmab A/S | Heterodimeric antibody fc-containing proteins and methods for production thereof |
CN104894229A (en) * | 2014-03-04 | 2015-09-09 | 中南大学 | Hexokinase 2 biomarker for predicting nasopharyngeal carcinoma radiotherapy prognosis |
WO2016184793A1 (en) | 2015-05-15 | 2016-11-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for treating a patient with vegfr inhibitor-resistant metastatic renal cell carcinoma |
-
2018
- 2018-04-16 WO PCT/EP2018/059613 patent/WO2018189403A1/en active Application Filing
Patent Citations (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4717655A (en) | 1982-08-30 | 1988-01-05 | Becton, Dickinson And Company | Method and apparatus for distinguishing multiple subpopulations of cells |
US4499052A (en) | 1982-08-30 | 1985-02-12 | Becton, Dickinson And Company | Apparatus for distinguishing multiple subpopulations of cells |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5567610A (en) | 1986-09-04 | 1996-10-22 | Bioinvent International Ab | Method of producing human monoclonal antibodies and kit therefor |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5591669A (en) | 1988-12-05 | 1997-01-07 | Genpharm International, Inc. | Transgenic mice depleted in a mature lymphocytic cell-type |
WO1990007861A1 (en) | 1988-12-28 | 1990-07-26 | Protein Design Labs, Inc. | CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5693762A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5693761A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Polynucleotides encoding improved humanized immunoglobulins |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5229275A (en) | 1990-04-26 | 1993-07-20 | Akzo N.V. | In-vitro method for producing antigen-specific human monoclonal antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5573905A (en) | 1992-03-30 | 1996-11-12 | The Scripps Research Institute | Encoded combinatorial chemical libraries |
US6015695A (en) | 1992-08-21 | 2000-01-18 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
US5800988A (en) | 1992-08-21 | 1998-09-01 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
US6765087B1 (en) | 1992-08-21 | 2004-07-20 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
US5618829A (en) | 1993-01-28 | 1997-04-08 | Mitsubishi Chemical Corporation | Tyrosine kinase inhibitors and benzoylacrylamide derivatives |
US6838254B1 (en) | 1993-04-29 | 2005-01-04 | Conopco, Inc. | Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of camelidae |
US5728868A (en) | 1993-07-15 | 1998-03-17 | Cancer Research Campaign Technology Limited | Prodrugs of protein tyrosine kinase inhibitors |
US5598369A (en) | 1994-06-28 | 1997-01-28 | Advanced Micro Devices, Inc. | Flash EEPROM array with floating substrate erase operation |
US5804396A (en) | 1994-10-12 | 1998-09-08 | Sugen, Inc. | Assay for agents active in proliferative disorders |
US5639757A (en) | 1995-05-23 | 1997-06-17 | Pfizer Inc. | 4-aminopyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors |
US6344459B1 (en) | 1996-04-12 | 2002-02-05 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
US6127374A (en) | 1997-07-29 | 2000-10-03 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
US6562818B1 (en) | 1997-07-29 | 2003-05-13 | Warner-Lambert Company | Irreversible inhibitors of tyrosine kinases |
US6100254A (en) | 1997-10-10 | 2000-08-08 | Board Of Regents, The University Of Texas System | Inhibitors of protein tyrosine kinases |
WO1999032619A1 (en) | 1997-12-23 | 1999-07-01 | The Carnegie Institution Of Washington | Genetic inhibition by double-stranded rna |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
US6573099B2 (en) | 1998-03-20 | 2003-06-03 | Benitec Australia, Ltd. | Genetic constructs for delaying or repressing the expression of a target gene |
US6107091A (en) | 1998-12-03 | 2000-08-22 | Isis Pharmaceuticals Inc. | Antisense inhibition of G-alpha-16 expression |
US5981732A (en) | 1998-12-04 | 1999-11-09 | Isis Pharmaceuticals Inc. | Antisense modulation of G-alpha-13 expression |
US6740665B1 (en) | 1999-02-10 | 2004-05-25 | Ramachandran Murali | Tyrosine kinase inhibitors and methods of using the same |
US6544988B1 (en) | 1999-03-11 | 2003-04-08 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6245759B1 (en) | 1999-03-11 | 2001-06-12 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6046321A (en) | 1999-04-09 | 2000-04-04 | Isis Pharmaceuticals Inc. | Antisense modulation of G-alpha-i1 expression |
US6316444B1 (en) | 1999-06-30 | 2001-11-13 | Merck & Co., Inc. | SRC kinase inhibitor compounds |
US6498165B1 (en) | 1999-06-30 | 2002-12-24 | Merck & Co., Inc. | Src kinase inhibitor compounds |
US6329380B1 (en) | 1999-06-30 | 2001-12-11 | Merck & Co., Inc. | SRC kinase inhibitor compounds |
US6410323B1 (en) | 1999-08-31 | 2002-06-25 | Isis Pharmaceuticals, Inc. | Antisense modulation of human Rho family gene expression |
US6586424B2 (en) | 1999-09-10 | 2003-07-01 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6586423B2 (en) | 1999-09-10 | 2003-07-01 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6479512B1 (en) | 1999-10-19 | 2002-11-12 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6794393B1 (en) | 1999-10-19 | 2004-09-21 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6306874B1 (en) | 1999-10-19 | 2001-10-23 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
WO2001052875A1 (en) | 2000-01-18 | 2001-07-26 | Ludwig Institute For Cancer Research | Vegf-d/vegf-c/vegf peptidomimetic inhibitor |
US6313138B1 (en) | 2000-02-25 | 2001-11-06 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6420382B2 (en) | 2000-02-25 | 2002-07-16 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6365354B1 (en) | 2000-07-31 | 2002-04-02 | Isis Pharmaceuticals, Inc. | Antisense modulation of lysophospholipase I expression |
US6566135B1 (en) | 2000-10-04 | 2003-05-20 | Isis Pharmaceuticals, Inc. | Antisense modulation of caspase 6 expression |
US6566131B1 (en) | 2000-10-04 | 2003-05-20 | Isis Pharmaceuticals, Inc. | Antisense modulation of Smad6 expression |
US6875767B2 (en) | 2001-06-22 | 2005-04-05 | Merck & Co., Inc. | (5-cyano-2-thiazolyl)amino-4-pyridine tyrosine kinase inhibitors |
US6958340B2 (en) | 2001-08-01 | 2005-10-25 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US6927293B2 (en) | 2001-08-30 | 2005-08-09 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
US7109304B2 (en) | 2003-07-31 | 2006-09-19 | Immunomedics, Inc. | Humanized anti-CD19 antibodies |
US7235641B2 (en) | 2003-12-22 | 2007-06-26 | Micromet Ag | Bispecific antibodies |
WO2007015935A2 (en) * | 2005-07-29 | 2007-02-08 | Bayer Healthcare Llc | Diagnostic methods for the prediction of therapeutic success, recurrence free and overall survival in cancer therapy |
US20070254295A1 (en) | 2006-03-17 | 2007-11-01 | Prometheus Laboratories Inc. | Methods of predicting and monitoring tyrosine kinase inhibitor therapy |
WO2008119353A1 (en) | 2007-03-29 | 2008-10-09 | Genmab A/S | Bispecific antibodies and methods for production thereof |
WO2010053717A1 (en) * | 2008-10-29 | 2010-05-14 | William Beaumont Hospital | Methods of using biomarkers |
WO2011071577A1 (en) | 2009-12-11 | 2011-06-16 | Genentech, Inc. | Anti-vegf-c antibodies and methods using same |
WO2011127519A1 (en) | 2010-04-15 | 2011-10-20 | Vegenics Pty Limited | Combination treatment with vegf-c antagonists |
WO2011131746A2 (en) | 2010-04-20 | 2011-10-27 | Genmab A/S | Heterodimeric antibody fc-containing proteins and methods for production thereof |
CN104894229A (en) * | 2014-03-04 | 2015-09-09 | 中南大学 | Hexokinase 2 biomarker for predicting nasopharyngeal carcinoma radiotherapy prognosis |
WO2016184793A1 (en) | 2015-05-15 | 2016-11-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for treating a patient with vegfr inhibitor-resistant metastatic renal cell carcinoma |
Non-Patent Citations (79)
Title |
---|
"Biochemistry and Immunology", 1996, ACADEMIC PRESS, article "Coding, Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology" |
A. ASPELUND ET AL.: "A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules", J EXP MED, vol. 212, 2015, pages 991 - 999, XP055515828, DOI: doi:10.1084/jem.20142290 |
A. GAJJAR ET AL.: "Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape", J CLIN ONCOL, vol. 33, 2015, pages 2986 - 2998 |
A. LOUVEAU ET AL.: "Structural and functional features of central nervous system lymphatic vessels", NATURE, vol. 523, 2015, pages 337 - 341, XP055445074, DOI: doi:10.1038/nature14432 |
AGNEW CHEM INTL. ED. ENGL., vol. 33, 1994, pages 183 - 186 |
BEGG AC; STEWART FA; VENS C.: "Strategies to improve radiotherapy with targeted drugs", NAT REV CANCER, vol. 11, 2011, pages 239 - 253 |
BENHAMOU Y; PICCO V; RAYBAUD H; SUDAKA A; CHAMOREY E; BROLIH S ET AL.: "Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma", ONCOTARGET, vol. 7, 2016, pages 44236 - 44251 |
BLANCHARD P; WONG AJ; GUNN GB; GARDEN AS; MOHAMED AS; ROSENTHAL DI ET AL.: "Toward a model-based patient selection strategy for proton therapy: External validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort", RADIOTHER ONCOL, vol. 121, 2016, pages 381 - 386, XP029854929, DOI: doi:10.1016/j.radonc.2016.08.022 |
BOWLES DW; DIAMOND JR; LAM ET; WEEKES CD; ASTLING DP; ANDERSON RT ET AL.: "Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plkl pathways, in adult patients with advanced solid malignancies", CLIN CANCER RES, vol. 20, 2014, pages 1656 - 1665, XP055483800, DOI: doi:10.1158/1078-0432.CCR-13-2506 |
CHEN MF; CHEN PT; CHEN WC; LU MS; LIN PY; LEE KD.: "The role of PD-Ll in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression", ONCOTARGET, vol. 7, 2016, pages 7913 - 7924 |
CHEN YH; PAN SL; WANG JC; KUO SH; CHENG JC; TENG CM.: "Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer", STRAHLENTHER ONKOL, vol. 190, 2014, pages 1154 - 1162 |
CHU W; SONG X; YANG X; MA L; ZHU J; HE M ET AL.: "Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma", PLOS ONE, vol. 9, 2014, pages e101931 |
CLARK, W. R.: "The Experimental Foundations of Modern Immunology", 1986, WILEY & SONS, INC. |
CURSIEFEN C; CHEN L; BORGES LP; JACKSON D; CAO J; RADZIEJEWSKI C ET AL.: "VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment", J CLIN INVEST, vol. 113, 2004, pages 1040 - 1050 |
DALLAS J; IMANIRAD I; RAJANI R; DAGAN R; SUBBIAH S; GAA R ET AL.: "Response to sunitinib in combination with proton beam radiation in a patient with chondrosarcoma: a case report", J MED CASE REP, vol. 6, 2012, pages 41, XP021131883, DOI: doi:10.1186/1752-1947-6-41 |
DE BENEDETTI ET AL., J IMMUNOL, vol. 166, 2001, pages 4334 - 4340 |
DE MIGUEL-LUKEN MJ; CHAVES-CONDE M; DE MIGUEL-LUKEN V; MUNOZ-GALVAN S; LOPEZ-GUERRA JL; MATEOS JC ET AL.: "MAP17 (PDZKIP1) as a novel prognostic biomarker for laryngeal cancer", ONCOTARGET, vol. 6, 2015, pages 12625 - 12636 |
DING L; LI B; ZHAO Y; FU YF; HU EL; HU QG ET AL.: "Serum CCL2 and CCL3 as potential bio markers for the diagnosis of oral squamous cell carcinoma", TUMOUR BIOL, vol. 35, 2014, pages 10539 - 10546 |
DOVEDI SJ; ILLIDGE TM.: "The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade", ONCOIMMUNOLOGY, vol. 4, 2015, pages e1016709 |
DOYEN J; FALK AT; FLOQUET V; HERAULT J; HANNOUN-LEVI JM.: "Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy", CANCER TREAT REV, vol. 43, 2016, pages 104 - 112 |
DU Q; JIANG L; WANG X; WANG M; SHE F; CHEN Y.: "Tumor necrosis factor-alpha promotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-kappaB-mediated upregulation of vascular endothelial growth factor-C", CANCER SCI, vol. 105, 2014, pages 1261 - 1271 |
E. C. SCHWALBE ET AL.: "Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study", LANCET ONCOL, vol. 18, 2017, pages 958 - 971, XP085110050, DOI: doi:10.1016/S1470-2045(17)30243-7 |
ENHOLM B; PAAVONEN K; RISTIMAKI A; KUMAR V; GUNJI Y; KLEFSTROM J ET AL.: "Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia", ONCOGENE, vol. 14, 1997, pages 2475 - 2483, XP002913099, DOI: doi:10.1038/sj.onc.1201090 |
EPRATUZUMAB, LEONARD ET AL., CLINICAL CANCER RESEARCH, vol. 10, pages 53Z7 - 5334 |
F. M. G. CAVALLI ET AL.: "Intertumoral Heterogeneity within Medulloblastoma Subgroups", CANCER CELL, vol. 31, 2017, pages 737 - 754 |
FENG YB; LIN DC; SHI ZZ; WANG XC; SHEN XM; ZHANG Y ET AL.: "Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma", INT J CANCER, vol. 124, 2009, pages 578 - 588, XP055002858, DOI: doi:10.1002/ijc.23990 |
FRECH S; HORMANN K; RIEDEL F; GOTTE K.: "Lymphatic vessel density in correlation to lymph node metastasis in head and neck squamous cell carcinoma", ANTICANCER RES, vol. 29, 2009, pages 1675 - 1679 |
FUJITA Y; OKAMOTO M; GODA H; TANO T; NAKASHIRO K; SUGITA A.: "Prognostic significance of interleukin-8 and CD163-positive cell-infiltration in tumor tissues in patients with oral squamous cell carcinoma", PLOS ONE, vol. 9, 2014, pages el 10378 |
FULTON ET AL., CLINICAL CHEMISTRY, vol. 43, no. 9, 1997, pages 1749 - 1756 |
FULWYLER; MCHUGH, METHODS IN CELL BIOLOGY, vol. 33, 1990, pages 613 - 629 |
GIOANNI J; FISCHEL JL; LAMBERT JC; DEMARD F; MAZEAU C; ZANGHELLINI E ET AL.: "Two new human tumor cell lines derived from squamous cell carcinomas of the tongue: establishment, characterization and response to cytotoxic treatment", EUR J CANCER CLIN ONCOL, vol. 24, 1988, pages 1445 - 1455, XP026201081, DOI: doi:10.1016/0277-5379(88)90335-5 |
GIRDHANI S; LAMONT C; HAHNFELDT P; ABDOLLAHI A; HLATKY L.: "Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth", RADIAT RES, vol. 178, 2012, pages 33 - 45 |
GREPIN R; GUYOT M; JACQUIN M; DURIVAULT J; CHAMOREY E; SUDAKA A ET AL.: "Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/Avastin treatment: the role of CXCL cytokines", ONCOGENE, vol. 31, 2012, pages 1683 - 1694, XP055078253, DOI: doi:10.1038/onc.2011.360 |
H. HUBER ET AL.: "Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas", EUR J CANCER, vol. 37, 2001, pages 2064 - 2072, XP004307926, DOI: doi:10.1016/S0959-8049(01)00225-8 |
HOLLIDAY EB; FRANK SJ.: "Proton radiation therapy for head and neck cancer: a review of the clinical experience to date", INT J RADIAT ONCOL BIOL PHYS, vol. 89, 2014, pages 292 - 302, XP028658008, DOI: doi:10.1016/j.ijrobp.2014.02.029 |
HU X; HUANG Z; LIAO Z; HE C; FANG X.: "Low CA II expression is associated with tumor aggressiveness and poor prognosis in gastric cancer patients", INT J CLIN EXP PATHOL, vol. 7, 2014, pages 6716 - 6724 |
HUANG D; DING Y; ZHOU M; RINI BI; PETILLO D; QIAN CN ET AL.: "Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma", CANCER RES, vol. 70, 2010, pages 1063 - 1071, XP002583999, DOI: doi:10.1158/0008-5472.CAN-09-3965 |
J. T. WIGLE; G. OLIVER: "Proxl function is required for the development of the murine lymphatic system", CELL, vol. 98, 1999, pages 769 - 778, XP002309908, DOI: doi:10.1016/S0092-8674(00)81511-1 |
JINNO T; KAWANO S; MARUSE Y; MATSUBARA R; GOTO Y; SAKAMOTO T ET AL.: "Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma", ONCOL REP, vol. 33, 2015, pages 2161 - 2168 |
K. J. RANSOHOFF; K. Y. SARIN; J. Y. TANG: "Smoothened Inhibitors in Sonic Hedgehog Subgroup Medulloblastoma", J CLIN ONCOL, vol. 33, 2015, pages 2692 - 2694 |
KAJIOKA EH; ANDRES ML; MAO XW; MOYERS MF; NELSON GA; GRIDLEY DS.: "Hematological and TGF-beta variations after whole-body proton irradiation", IN VIVO, vol. 14, 2000, pages 703 - 708 |
KIM HY; RHA KS; SHIM GA; KIM JH; KIM JM; HUANG SM ET AL.: "Podoplanin is involved in the prognosis of head and neck squamous cell carcinoma through interaction with VEGF-C", ONCOL REP, vol. 34, 2015, pages 833 - 842 |
KIM SA; KWON SM; YOON JH; AHN SG: "The antitumor effect of PLK1 and HSF1 double knockdown on human oral carcinoma cells", INT J ONCOL, vol. 36, 2010, pages 867 - 872 |
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495 |
KRIEGLER: "A Laboratory Manual", 1990, W.H. FREEMAN C.O. |
LI M; ZHANG Y; FEURINO LW; WANG H; FISHER WE; BRUNICARDI FC ET AL.: "Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer", CANCER SCI, vol. 99, 2008, pages 733 - 737 |
LIU J; LI F; PING Y; WANG L; CHEN X; WANG D ET AL.: "Local production of the chemokines CCL5 and CXCL10 attracts CD8+ T lymphocytes into esophageal squamous cell carcinoma", ONCOTARGET, vol. 6, 2015, pages 24978 - 24989 |
LOBERG RD; DAY LL; HARWOOD J; YING C; ST JOHN LN; GILES R ET AL.: "CCL2 is a potent regulator of prostate cancer cell migration and proliferation", NEOPLASIA, vol. 8, 2006, pages 578 - 586, XP007910907, DOI: doi:10.1593/neo.06280 |
MAMELLE G; PAMPURIK J; LUBOINSKI B; LANCAR R; LUSINCHI A; BOSQ J.: "Lymph node prognostic factors in head and neck squamous cell carcinomas", AM J SURG, vol. 168, 1994, pages 494 - 498 |
MATSUI T; SHIGETA T; UMEDA M; KOMORI T.: "Vascular endothelial growth factor C (VEGF-C) expression predicts metastasis in tongue cancer", ORAL SURG ORAL MED ORAL PATHOL ORAL RADIOL, vol. 120, 2015, pages 436 - 442, XP029265801, DOI: doi:10.1016/j.oooo.2015.06.002 |
MURRY: "Methods in Molecular Biology", vol. 7, 1991, HUMANA PRESS, INC. |
N. C. JOHNSON ET AL.: "Lymphatic endothelial cell identity is reversible and its maintenance requires Proxl activity", GENES DEV, vol. 22, 2008, pages 3282 - 3291 |
NICHOLAS P. RESTIFO; MARK E. DUDLEY; STEVEN A. ROSENBERG: "Adoptive immunotherapy for cancer: harnessing the T cell response", NATURE REVIEWS IMMUNOLOGY, 12 April 2012 (2012-04-12) |
OGATA T; TESHIMA T; KAGAWA K; HISHIKAWA Y; TAKAHASHI Y; KAWAGUCHI A ET AL.: "Particle irradiation suppresses metastatic potential of cancer cells", CANCER RES, vol. 65, 2005, pages 113 - 120 |
OLIVEIRA-COSTA JP; DE CARVALHO AF; DA SILVEIRA DA GG; AMAYA P; WU Y; PARK KJ ET AL.: "Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells", ONCOTARGET, vol. 6, 2015, pages 20902 - 20920 |
P. A. NORTHCOTT ET AL.: "Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma", NATURE, vol. 511, 2014, pages 428 - 434 |
P. A. NORTHCOTT ET AL.: "The whole-genome landscape of medulloblastoma subtypes", NATURE, vol. 547, 2017, pages 311 - 317 |
PAN Y; WANG WD; YAGO T.: "Transcriptional regulation of podoplanin expression by Proxl in lymphatic endothelial cells", MICROVASC RES, vol. 94, 2014, pages 96 - 102 |
PARKIN DM; BRAY F; FERLAY J; PISANI P.: "Global cancer statistics", CA CANCER J CLIN 2005, vol. 55, 2002, pages 74 - 108 |
PRESCRIBING, RECORDING, AND REPORTING PROTON-BEAM THERAPY: INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS REPORT 78: "Prescribing, recording, and reporting proton-beam therapy: International Commission on Radiation Units and Measurements Report 78", J ICRU, vol. 7, 2007, pages 210 |
R. LEROY; N. BENAHMED; F. HULSTAERT; N. VAN DAMME; D. DE RUYSSCHER: "Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers", INT JRADIAT ONCOL BIOL PHYS, vol. 95, 2016, pages 267 - 278 |
ROITT, I.: "Blackwell Scientific Publications", 1991, article "Essential Immunology" |
S. JOSSON; Y. MATSUOKA; L. W. CHUNG; H. E. ZHAU; R. WANG: "Tumor-stroma co-evolution in prostate cancer progression and metastasis", SEMIN CELL DEV BIOL, vol. 21, 2010, pages 26 - 32 |
SANBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SEIWERT TY; SALAMA JK; VOKES EE: "The chemoradiation paradigm in head and neck cancer", NAT CLIN PRACT ONCOL, vol. 4, 2007, pages 156 - 171 |
SHINRIKI S; JONO H; UEDA M; OTA K; OTA T; SUEYOSHI T ET AL.: "Interleukin-6 signalling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma", J PATHOL, vol. 225, 2011, pages 142 - 150 |
SIO TT; LIN HK; SHI Q; GUNN GB; CLEELAND CS; LEE JJ ET AL.: "Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes", INT J RADIAT ONCOL BIOL PHYS, vol. 95, 2016, pages 1107 - 1114, XP029618412, DOI: doi:10.1016/j.ijrobp.2016.02.044 |
SMITH BD; SMITH GL; CARTER D; SASAKI CT; HAFFTY BG: "Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma", J CLIN ONCOL, vol. 18, 2000, pages 2046 - 2052 |
SUGIURA T; INOUE Y; MATSUKI R; ISHII K; TAKAHASHI M; ABE M ET AL.: "VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node metastasis in oral squamous cell carcinoma: Implications for use as a prognostic marker", INT J ONCOL, vol. 34, 2009, pages 673 - 680 |
SUZUKI ET AL., EUROP J OF IMMUNOL, vol. 22, no. 8, 1992, pages 1989 - 1993 |
TIAN J; ZHAO W; TIAN S; SLATER JM; DENG Z; GRIDLEY DS.: "Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation", RADIAT RES, vol. 176, 2011, pages 553 - 564 |
WILLERS H; AZZOLI CG; SANTIVASI WL; XIA F.: "Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer", CANCER J, vol. 19, 2013, pages 200 - 207 |
WU CT; CHEN MF; CHEN WC; HSIEH CC.: "The role of IL-6 in the radiation response of prostate cancer", RADIAT ONCOL, vol. 8, 2013, pages 159, XP021157069, DOI: doi:10.1186/1748-717X-8-159 |
WU ET AL., MOL. BIOL., vol. 294, 1999, pages 151 |
WU ET AL.: "Antibody Engineering", 2010, SPRINGER BERLIN HEIDELBERG, article "Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-IgTM) Molecule" |
XU Y; WEI K; KULYK W; GONG SG.: "FLRT2 promotes cellular proliferation and inhibits cell adhesion during chondrogenesis", J CELL BIOCHEM, vol. 112, 2011, pages 3440 - 3448 |
YANASE M; KATO K; YOSHIZAWA K; NOGUCHI N; KITAHARA H; NAKAMURA H.: "Prognostic value of vascular endothelial growth factors A and C in oral squamous cell carcinoma", J ORAL PATHOL MED, vol. 43, 2014, pages 514 - 520 |
ZACHARY I.: "Neuropilins: role in signalling, angiogenesis and disease", CHEM IMMUNOL ALLERGY, vol. 99, 2014, pages 37 - 70 |
ZHANG B; GAO Z; SUN M; LI H; FAN H; CHEN D ET AL.: "Prognostic significance of VEGF-C, semaphorin 3F, and neuropilin-2 expression in oral squamous cell carcinomas and their relationship with lymphangiogenesis", J SURG ONCOL, vol. 111, 2015, pages 382 - 388 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3885452A1 (en) * | 2020-03-23 | 2021-09-29 | Koninklijke Philips N.V. | Prediction of radiotherapy response for prostate cancer subject based on chemokine genes |
WO2021190940A1 (en) | 2020-03-23 | 2021-09-30 | Koninklijke Philips N.V. | Prediction of radiotherapy response for prostate cancer subject based on chemokine genes |
CN114681609A (en) * | 2022-05-05 | 2022-07-01 | 浙江大学 | Application of anti-IL-6 antibody composition in preparation of drugs for treating hepatocellular carcinoma |
CN117298035A (en) * | 2023-09-14 | 2023-12-29 | 广州市第十二人民医院 | Injectable self-healing hydrogel and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019106126A1 (en) | Mdm2 modulators for the diagnosis and treatment of liposarcoma | |
HK1221422A1 (en) | Diagnostic methods and compositions for treatment of glioblastoma | |
CN104965084A (en) | Method to identify a patient with an increase likelihood of responding to an anti-cancer therapy | |
US20230088070A1 (en) | Use of il-1beta binding antibodies | |
US20190263927A1 (en) | Combination of a pd-1 antagonist and eribulin for treating urothelial cancer | |
CN106460067A (en) | Diagnostic methods and compositions for treating glioblastoma | |
CA3032305A1 (en) | Treating solid tumor by targeting dectin-1 signaling | |
WO2018189403A1 (en) | Methods and pharmaceutical compositions for the treatment of cancer | |
WO2018185516A1 (en) | Methods and pharmaceutical compositions for treating cardiovascular toxicity induced by anti-cancer therapy | |
WO2019234221A1 (en) | Methods for stratification and treatment of a patient suffering from chronic lymphocytic leukemia | |
WO2019211370A1 (en) | Methods and pharmaceutical compositions for treating cancer | |
US20170115293A1 (en) | Methods for predicting the radiosensitivity of a cancer tumor and methods of treating cancer | |
US20240426823A1 (en) | Methods and compositions for treating triple negative breast cancer (tnbc) | |
US20210164984A1 (en) | Methods for predicting outcome and treatment of patients suffering from prostate cancer or breast cancer | |
WO2020128637A1 (en) | Use of il-1 binding antibodies in the treatment of a msi-h cancer | |
US20220025036A1 (en) | Use of il-1beta binding antibodies | |
US20210047696A1 (en) | Methods and pharmaceutical compositions for treating cancer | |
EP3976040A1 (en) | Pd-1 axis binding antagonist to treat cancer with genetic mutations in specific genes | |
WO2025068393A1 (en) | Methods for the treatment of fibrotic related diseases | |
US20220290151A1 (en) | Use of müllerian inhibiting substance inhibitors for treating cancer | |
US20210290633A1 (en) | Combination for treating cancer | |
WO2025210123A1 (en) | Methods and pharmaceutical composition for treating cancers | |
WO2022003554A1 (en) | Biomarkers for pd-1 axis binding antagonist therapy | |
WO2022023379A1 (en) | Methods and compositions for preventing and treating a cancer | |
PA | session A: gastrointestinal tumours |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18721291 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18721291 Country of ref document: EP Kind code of ref document: A1 |