[go: up one dir, main page]

WO2018190365A1 - Neuropathic pain marker and use thereof - Google Patents

Neuropathic pain marker and use thereof Download PDF

Info

Publication number
WO2018190365A1
WO2018190365A1 PCT/JP2018/015200 JP2018015200W WO2018190365A1 WO 2018190365 A1 WO2018190365 A1 WO 2018190365A1 JP 2018015200 W JP2018015200 W JP 2018015200W WO 2018190365 A1 WO2018190365 A1 WO 2018190365A1
Authority
WO
WIPO (PCT)
Prior art keywords
dorsal root
root ganglion
antibody
patient
detecting
Prior art date
Application number
PCT/JP2018/015200
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 吉良
敬之 藤井
今日子 飯沼
山▲崎▼ 亮
大介 土本
雄作 中別府
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2019512547A priority Critical patent/JP7067800B2/en
Publication of WO2018190365A1 publication Critical patent/WO2018190365A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a neuropathic pain marker and use thereof. More specifically, the present invention relates to a neuropathic pain marker, a method for detecting neuropathic pain, and a diagnostic kit for neuropathic pain.
  • This application claims priority based on provisional application No. 62 / 484,406 filed provisionally in the United States on April 12, 2017, the contents of which are incorporated herein by reference.
  • Neuropathic pain is an intractable disease that includes various pathologies defined as “pain caused by lesions and diseases of the somatosensory nervous system” by the International Association for Pain (IASP). It is one of sexual pain (for example, refer nonpatent literature 1).
  • Peripheral nerve fibers are classified into A ⁇ fibers, A ⁇ fibers, A ⁇ fibers, B fibers, and C fibers according to the presence / absence of myelin sheath, diameter, conduction velocity, and the like.
  • nerve fibers having a larger diameter tend to have a higher conduction speed
  • nerve fibers that are myelinated tend to have a higher conduction speed.
  • a ⁇ fibers, A ⁇ fibers, A ⁇ fibers, and B fibers are myelinated fibers
  • C fibers are unmyelinated fibers.
  • a ⁇ fibers which are small-diameter myelinated fibers
  • C fibers which are unmyelinated fibers.
  • the nerve conduction test which is a general test for peripheral neuropathy, examines A ⁇ fibers, which are large-diameter myelinated fibers. For this reason, an abnormality cannot be detected even if a peripheral neuropathy test common to patients with neuropathic pain is performed. As a result, many patients with neuropathic pain are determined to be of unknown cause or psychogenic, and have not yet been diagnosed.
  • an object of the present invention is to provide a technique for detecting neuropathic pain.
  • the present invention includes the following aspects.
  • [1] Use of autoantibodies against small unmyelinated dorsal root ganglion neurons as a neuropathic pain marker.
  • [2] The use according to [1], wherein the autoantibody is an anti-Plexin D1 antibody.
  • [3] A method for detecting neuropathic pain, comprising detecting autoantibodies against small unmyelinated dorsal root ganglion neurons in a blood sample derived from a patient, wherein the autoantibodies are detected.
  • a human or non-human animal-derived dorsal root ganglion tissue or spinal dorsal horn tissue is contacted with a patient-derived blood sample, Detecting human IgG antibodies bound to ganglion tissue or spinal dorsal horn tissue; detecting myelinated dorsal root ganglion neurons or nerve fibers thereof in the dorsal root ganglion tissue or spinal dorsal horn tissue; Wherein the human IgG antibody binds to a neuron other than the myelinated dorsal root ganglion neuron, indicating that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected.
  • Detecting a myelinated dorsal root ganglion neuron includes immunostaining the dorsal root ganglion tissue with an anti-S100 ⁇ antibody, and the neuron immunostained with the anti-S100 ⁇ antibody is a myelinated dorsal root nerve
  • a human or non-human animal-derived dorsal root ganglion tissue or spinal cord dorsal horn tissue is contacted with a patient-derived blood sample, Detecting a human IgG antibody bound to the ganglion tissue or the dorsal horn tissue of the spinal cord; detecting unmyelinated dorsal root ganglion neurons or nerve fibers thereof in the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord; The method according to [3], wherein binding of the human IgG antibody to the unmyelinated dorsal root ganglion neuron indicates that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected.
  • Detecting an unmyelinated dorsal root ganglion neuron includes contacting the dorsal root ganglion tissue with isolectin B4, and the neuron to which the isolectin B4 is bound is an unmyelinated dorsal root ganglion neuron.
  • the autoantibody is an anti-Plexin D1 antibody.
  • a method for detecting neuropathic pain comprising contacting a blood sample derived from a patient with a human cell or non-human animal cell expressing Plexin D1, and detecting a human IgG antibody bound to the cell.
  • the amount of the human IgG antibody detected is higher than the amount of the human IgG antibody that binds to the cell.
  • a method of showing that it is suffering from neuropathic pain comprising an anti-human IgG antibody and a detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons.
  • the diagnostic kit according to [11], wherein the anti-human IgG antibody is an anti-human IgG2 antibody.
  • the diagnostic kit according to [11] or [12], wherein the drug for detecting myelinated dorsal root ganglion neurons is an anti-S100 ⁇ antibody.
  • the diagnostic kit according to any one of [11] to [13], wherein the detection agent for unmyelinated dorsal root ganglion neurons is isolectin B4.
  • a diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and a Plexin D1 protein.
  • the diagnostic kit according to [15], wherein the anti-human IgG antibody is an anti-human IgG2 antibody.
  • the present invention can provide a technique for detecting neuropathic pain.
  • (A) to (f) are fluorescence micrographs showing the results of Experimental Example 2.
  • (A) to (d) are fluorescence micrographs showing the results of Experimental Example 2.
  • (A) to (d) are fluorescence micrographs showing the results of Experimental Example 3.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and isolectin B4 in Experimental Example 4.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-CGRP antibody in Experimental Example 4.
  • (A)-(c) are fluorescence micrographs showing the results of double staining of patient serum and anti-S100 ⁇ antibody in Experimental Example 4.
  • (A)-(c) are fluorescence micrographs showing the results of double staining of patient serum and anti-TRPV1 antibody in Experimental Example 4.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-P2X3 antibody in Experimental Example 4.
  • (A)-(c) are fluorescence micrographs showing the results of double staining of patient serum and anti-CGRP antibody in Experimental Example 5.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and isolectin B4 in Experimental Example 5.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-PKC ⁇ antibody in Experimental Example 5.
  • (A) is an optical micrograph showing the results of Experimental Example 6.
  • (B) and (c) are fluorescence micrographs showing the results of Experimental Example 6.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-TH antibody in Experimental Example 6.
  • (A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-VIP antibody in Experimental Example 6.
  • A) And (c) is a photograph which shows the result of the western blotting in Experimental example 7.
  • FIG. (B) is a photograph showing the results of SDS-PAGE and silver staining in Experimental Example 7.
  • (A) to (c) are fluorescence micrographs showing the results of Experimental Example 8.
  • FIG. (A) is a graph showing the results of quantitative real-time PCR in Experimental Example 9.
  • B is a photograph showing the results of Western blotting in Experimental Example 9.
  • (A) to (c) are fluorescence micrographs showing the results of Experimental Example 9.
  • (A) is an optical micrograph showing the results of Experimental Example 9.
  • (B) and (c) are fluorescence micrographs showing the results of Experimental Example 9.
  • (D) is a merged photograph of (a) to (c).
  • (A) And (b) is the fluorescence micrograph which shows the result of Experimental example 10.
  • FIG. (C) is the graph which digitized the result of (a) and (b).
  • (A) to (f) are fluorescence micrographs showing the results of Experimental Example 11.
  • (A) to (d) are photographs showing the results of Western blotting in Experimental Example 12. It is a photograph which shows the result of the western blotting in Experimental example 13.
  • the present invention provides a neuropathic pain marker.
  • a neuropathic pain marker As will be described later in the Examples, the inventors have revealed that autoantibodies against small unmyelinated dorsal root ganglion neurons are markers of neuropathic pain. Thus, the detection of autoantibodies against small unmyelinated dorsal root ganglion neurons in the patient serum indicates that the patient has neuropathic pain.
  • neuropathic pain can be easily detected by the marker of this embodiment.
  • This embodiment can also be said to provide the use of autoantibodies against small unmyelinated dorsal root ganglion neurons as neuropathic pain markers.
  • it can be said to provide a method of using autoantibodies against small unmyelinated dorsal root ganglion neurons as a neuropathic pain marker.
  • the autoantibody against the small unmyelinated dorsal root ganglion neuron may be an anti-Plexin D1 antibody or an autoantibody against a small unmyelinated dorsal root ganglion neuron other than the anti-Plexin D1 antibody.
  • anti-Plexin D1 antibody is present in the serum of a patient having neuropathic pain.
  • the RefSeqID of the human Plexin D1 protein is NP_055918
  • the RefSeqID of the mouse Plexin D1 protein is NP_080652.
  • the anti-Plexin D1 antibody in a blood sample derived from a patient may be detected by, for example, a lateral flow immunoassay method, an ELISA method, a Western blotting method, or the like.
  • a method of detecting an autoantibody bound to Plexin D1 protein with an anti-human IgG antibody, and the like are mentioned.
  • Plexin D1 is a molecule conventionally known as a neurogenesis guidance factor, a semaphorin receptor involved in immune cell differentiation and activation, and the like. Conventionally, the relationship between Plexin D1 and pain has not been reported.
  • Detection of the presence of anti-Plexin D1 antibody present in the patient's serum or autoantibodies against unidentified small unmyelinated dorsal root ganglion neurons indicates that the patient has neuropathic pain . That is, by detecting an anti-Plexin D1 antibody present in a patient's serum or an autoantibody against an unidentified small unmyelinated dorsal root ganglion neuron, neuropathic pain that has been conventionally diagnosed as unknown is eliminated. Diagnosis is possible.
  • the present embodiment is a data collection method for diagnosing whether or not a patient suffers from neuropathic pain, and is an anti-PlexinD1 antibody present in the patient's serum or an unidentified small antigen. It can also be a method comprising detecting the presence of autoantibodies against dorsal root ganglion neurons.
  • the data collection method does not include a step in which a doctor determines the patient's condition.
  • an anti-small unmyelinated dorsal root ganglion neuron antibody When an anti-small unmyelinated dorsal root ganglion neuron antibody is detected in the patient's serum, it can be diagnosed as small fiber neuropathy. Small fiber neuropathy can be treated with immunotherapy.
  • Plexin D1 autoantibody-positive or antigen-unidentified autoantibody-positive neuropathic pain patients with small unmyelinated dorsal root ganglion neurons can be treated differently from patients with neuropathic pain due to other causes It is.
  • the neuropathic pain in these patients can be treated by immunotherapy such as administration of corticosteroids, administration of immunosuppressants, high-dose immunoglobulin therapy, plasma exchange therapy, and the like.
  • immunotherapy such as administration of corticosteroids, administration of immunosuppressants, high-dose immunoglobulin therapy, plasma exchange therapy, and the like.
  • an analgesic agent such as an SCN9A inhibitor, an SCN10A inhibitor, or a P2X3 receptor antagonist that targets small-diameter unmyelinated fibers.
  • the present invention relates to a method for detecting neuropathic pain, comprising detecting an autoantibody against a small unmyelinated dorsal root ganglion neuron in a blood sample derived from a patient, wherein the autoantibody comprises Detecting provides a method for indicating that the patient is suffering from neuropathic pain.
  • the method of the present embodiment may be referred to as a fluorescent indirect antibody method (IFA).
  • the method of the first embodiment is a data collection method for diagnosing whether or not a patient suffers from neuropathic pain.
  • the data collection method does not include a step in which a doctor determines the patient's condition.
  • detecting autoantibodies against small unmyelinated dorsal root ganglion neurons involves contacting a patient-derived blood sample with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal. Detecting a human IgG antibody bound to the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord; and a myelinated dorsal root ganglion neuron or a nerve fiber thereof in the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord.
  • the human IgG antibody binds to a neuron other than the myelinated dorsal root ganglion neuron, indicating that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected. There may be.
  • an autoantibody against a small unmyelinated dorsal root ganglion neuron that has not been identified with an antigen is detected. be able to.
  • the non-human animal is not particularly limited, and examples thereof include mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, monkeys, sheep, pigs, goats, cows, horses and the like.
  • the inventors obtained sera from patients with neuropathic pain, tissue sections of human dorsal root ganglia, tissue sections of human dorsal horn, tissue sections of mouse dorsal root ganglia. It was clarified that autoantibodies against small unmyelinated dorsal root ganglion neurons can be detected by reacting with tissue slices of the dorsal horn of mouse spinal cord and detecting the binding.
  • detecting the myelinated dorsal root ganglion neuron includes immunostaining the dorsal root ganglion tissue with an anti-S100 ⁇ antibody, and the neurons immunostained with the anti-S100 ⁇ antibody It may be determined that it is a neuron. As described later in the Examples, the inventors have revealed that autoantibodies derived from patients with neuropathic pain do not colocalize with anti-S100 ⁇ antibodies.
  • detecting autoantibodies against small unmyelinated dorsal root ganglion neurons involves contacting a patient-derived blood sample with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal. Detecting a human IgG antibody bound to the dorsal root ganglion tissue or the spinal dorsal horn tissue, and an unmyelinated dorsal root ganglion neuron or a nerve fiber thereof in the dorsal root ganglion tissue or the spinal dorsal horn tissue.
  • the human IgG antibody bound to the unmyelinated dorsal root ganglion neuron may indicate that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected. Good.
  • Non-human animals are the same as described above. Further, detecting the unmyelinated dorsal root ganglion neuron includes contacting the dorsal root ganglion tissue with isolectin B4, and determining that the neuron to which the isolectin B4 is bound is an unmyelinated dorsal root ganglion neuron. May be. As described later in the Examples, the inventors revealed that autoantibodies derived from patients with neuropathic pain co-localize with isolectin B4.
  • the autoantibody against small unmyelinated dorsal root ganglion neurons contained in a patient-derived blood sample may be an IgG2 antibody.
  • IgG2 antibody As will be described later in the Examples, the inventors have revealed that the IgG subclass of autoantibodies derived from patients with neuropathic pain is IgG2.
  • the autoantibody against small unmyelinated dorsal root ganglion neurons contained in a patient-derived blood sample may be an anti-Plexin D1 antibody.
  • the inventors have clarified that the autoantibody derived from a patient having neuropathic pain is an anti-Plexin D1 antibody.
  • the present invention is a method for detecting neuropathic pain, wherein a human cell or non-human animal cell expressing Plexin D1 is contacted with a blood sample derived from a patient, and the human IgG antibody bound to the cell The amount of the human IgG antibody detected is greater than the amount of the human IgG antibody that binds to the cell when the blood sample is contacted with a cell that does not express Plexin D1. Provides a method of indicating that the patient is suffering from neuropathic pain.
  • the method of the second embodiment is a data collection method for diagnosing whether or not a patient suffers from neuropathic pain.
  • the data collection method does not include a step in which a doctor determines the patient's condition.
  • the method of the second embodiment is mainly different from the method of the first embodiment in that the antigen of the autoantibody is limited to Plexin D1 protein.
  • Non-human animals are the same as described above.
  • the cell that expresses Plexin D1 may be a cell that originally expresses Plexin D1, or may be a cell that expresses Plexin D1 as a result of introducing a Plexin D1 expression vector.
  • HeLa cells can be used as cells that express Plexin D1.
  • the cell that does not express Plexin D1 may be a cell that originally does not express Plexin D1, may be a cell in which the PLXND1 gene that encodes the Plexin D1 protein is disrupted, or Plexin D1. It may be a cell in which the expression level of is reduced. Specifically, for example, as described later in Examples, HeLa cells into which siRNA for the PLXND1 gene has been introduced can be used as cells that do not express Plexin D1.
  • the autoantibodies contained in the patient-derived blood sample may be IgG2 antibodies.
  • the present invention provides a diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and a detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons. To do.
  • a patient-derived blood sample may be detected by anti-human IgG antibody after contacting a patient-derived blood sample with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal.
  • the anti-human IgG antibody may be an anti-human IgG2 antibody.
  • a detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons caused the patient-derived IgG antibody to bind to myelinated dorsal root ganglion neurons, or unmyelinated dorsal root ganglion neurons.
  • Anti-S100 ⁇ antibody can be used as a detection agent for myelinated dorsal root ganglion neurons.
  • isolectin B4 is mentioned as a detection agent of an unmyelinated dorsal root ganglion neuron.
  • the present invention provides a diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and a Plexin D1 protein.
  • kits of this embodiment it is easily detected whether autoantibodies to Plexin D1 protein are present in a blood sample derived from a patient, for example, by a lateral flow immunoassay method, an ELISA method, a Western blotting method, or the like. be able to.
  • the Plexin D1 protein the full length of the Plexin D1 protein may be used, the extracellular domain of the Plexin D1 protein may be used, or the Plexin D1 protein effective for detecting autoantibodies. An epitope part is specified, and a shorter partial peptide may be used.
  • a recombinant human Plexin D1 protein model “4160-PD”, R & D Systems, the amino acid sequence is shown in SEQ ID NO: 8) described later in Examples can be used.
  • the anti-human IgG antibody may be an anti-human IgG2 antibody.
  • the present invention is a method for diagnosing and treating neuropathic pain in a patient, comprising collecting a blood sample from the patient, and a small unmyelinated dorsal root ganglion neuron in the blood sample. Detecting whether there is an autoantibody against, and diagnosing that the patient is neuropathic pain and having been diagnosed with neuropathic pain when the autoantibody is present.
  • the patient is administered an effective amount of a drug selected from the group consisting of corticosteroids, immunosuppressants, SCN9A inhibitors, SCN10A inhibitors, P2X3 receptor antagonists, or massive immunoglobulin therapy
  • a method is provided comprising performing plasma exchange therapy.
  • Example 1 Collection of blood sample
  • Blood samples were collected from patients with neuropathic pain.
  • the diagnostic criteria for neuropathic pain proposed by the International Pain Society (Finnerup NB, et al., Neuropathic pain: an updated grading system for research and clinical practice., Pain, vol. 157 (8), 1599-1606, 2016.), 110 patients who met the probable and define criteria were included.
  • the breakdown of patients with neuropathic pain is 22 patients with atopic myelitis, 17 patients with optic neuromyelitis (NMOSD), 15 patients with relapsing-remitting multiple sclerosis (RRMS), multiple chronic inflammatory demyelinating 14 patients with neuritis (CIDP), 10 patients with Sjogren's syndrome with spinal root peripheral neuritis, 10 patients with neurosarcoidosis, 6 patients with Churg Strauss, patients with systemic lupus erythematosus (SLE) with myelitis and peripheral neuritis 4 patients, 3 patients with neuro-Behcet's disease (nBD), 2 patients with acromegaly, 2 patients with drug-induced neuropathy, 2 patients with vitamin deficiency neuropathy, 1 patient with neuropathy positive for anti-SGPG antibody, Guillain Valley There were 1 syndrome patient and 1 cryoglobulinemia patient.
  • blood samples were also collected from healthy individuals and patients without neuropathic pain (total of 50 patients).
  • the breakdown of 50 is 20 healthy individuals, 20 patients with neurodegenerative diseases (of which 6 are amyotrophic lateral sclerosis, 4 are multisystem atrophy, and 3 are spinocerebellar degeneration) 2 had Parkinson's disease, 2 had normal pressure hydrocephalus, 1 had Alzheimer's disease, 1 had dementia, and 1 had basal ganglia degeneration. ), 10 patients with collagen vascular disease (of which 4 were systemic lupus erythematosus, 4 were Behcet's disease, and 2 were Sjogren's syndrome).
  • PBS phosphate buffered saline
  • tissue section was immersed in xylene for 5 minutes three times to deparaffinize. Subsequently, immersing the tissue section in 100% ethanol for 5 minutes was repeated twice and hydrated. Subsequently, antigen activation treatment was performed. Specifically, the tissue sections were boiled in citrate buffer (pH 6.0) at 120 ° C. for 10 minutes, slowly cooled at room temperature over 15 minutes, and washed twice with PBS for 5 minutes.
  • citrate buffer pH 6.0
  • a secondary antibody Alexa 488-labeled anti-human IgG antibody, Thermo Fisher Scientific
  • diluted 500-fold was brought into contact with the tissue section and allowed to stand at room temperature for 1 hour to carry out an antigen-antibody reaction. Subsequently, the plate was washed twice with PBS for 5 minutes.
  • FIG. 1 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with a control serum.
  • the scale bar indicates 50 ⁇ m.
  • 1 (b)-(f) show autoantibodies detected in tissue sections of mouse dorsal root ganglia reacted with serum from patients with neuropathic pain (cases 1-5, respectively). It is the fluorescence micrograph which shows the typical result done.
  • the scale bar indicates 50 ⁇ m.
  • FIG. 2 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse spinal cord reacted with serum from the same healthy person as in FIG. 1 (a).
  • the scale bar indicates 50 ⁇ m.
  • FIG. 2 (b) is a fluorescence micrograph of the same sample as FIG. 2 (a) taken at high magnification. The scale bar indicates 50 ⁇ m.
  • FIG. 2 (c) is a representative fluorescence micrograph showing the result of a tissue section of a mouse spinal cord reacted with serum from the same patient (case 5) as in FIG. 1 (f).
  • the scale bar indicates 50 ⁇ m.
  • FIG. 2 (d) is a fluorescence micrograph of the same sample as FIG. 2 (c) taken at high magnification.
  • the scale bar indicates 50 ⁇ m.
  • the method of this experimental example may be referred to as a fluorescent indirect antibody method (tissue-based indirect immunofluorescence assay, IFA).
  • Table 2 shows the clinical characteristics of 11 patients who contained autoantibodies reactive to tissue sections of mouse dorsal root ganglia.
  • 3 (a) to 3 (d) are representative fluorescence micrographs showing typical results of detecting autoantibodies of IgG1, IgG2, IgG3, and IgG4, respectively.
  • the scale bar indicates 50 ⁇ m.
  • IgG subclass of autoantibodies was IgG2 in all 11 patient-derived sera.
  • Double staining with isolectin B4 In the primary antibody reaction, in addition to patient serum diluted 60-fold, isolectin B4 (Iselectin GS-IB 4 From Griffinia simplicifolia, Alexa Fluor 594 Conjugate, thermofischer science, a marker of non-peptide C fiber type dorsal root ganglion neurons The fluorescent indirect antibody method was carried out in the same manner as in Experimental Example 2 except that the reaction was carried out after diluting 500 times.
  • FIG. 4 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum from a patient with neuropathic pain.
  • FIG. 4 (b) is a representative fluorescence micrograph showing the result of detecting the binding of isolectin B4 (IB4) in the same field of view as FIG. 4 (a).
  • FIG. 4C is a merged photograph of FIGS. 4A and 4B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that patient-derived autoantibodies colocalized with isolectin B4.
  • FIG. 5 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain.
  • FIG. 5 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-CGRP antibody in the same field of view as FIG. 5 (a).
  • FIG. 5C is a merged photograph of FIGS. 5A and 5B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that patient-derived autoantibodies colocalized only partly with CGRP.
  • Double staining with anti-S100 ⁇ antibody >> In the primary antibody reaction, in addition to patient serum diluted 60 times, the myelinated nerve fibers, A ⁇ fiber type dorsal root ganglion neurons and A ⁇ fiber type dorsal root ganglion neurons, and S100 ⁇ which is a marker of satellite glial cells A fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except that the antibody (rabbit polyclonal antibody, Abcam) was diluted 500 times and reacted.
  • FIG. 6 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain.
  • FIG. 6 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-S100 ⁇ antibody in the same field of view as FIG. 6 (a).
  • FIG. 6C is a merged photograph of FIGS. 6A and 6B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that patient-derived autoantibodies do not colocalize with S100 ⁇ .
  • FIG. 7 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain.
  • FIG. 7 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-TRPV1 antibody in the same field of view as FIG. 7 (a).
  • FIG. 7C is a merged photograph of FIGS. 7A and 7B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that some of the patient-derived autoantibodies reacted with TRPV1-positive dorsal root ganglion neurons. This result further supports that patient-derived autoantibodies are associated with neuropathic pain.
  • Double staining with anti-P2X3 antibody In the primary antibody reaction, in addition to patient serum diluted 60 times, antibody (rabbit polyclonal antibody, Abcam) against P2X purinoceptor 3 (P2X3), which is known to be involved in pain perception, was diluted 500 times and reacted.
  • the fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except for the points described above.
  • FIG. 8 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain.
  • FIG. 8 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-P2X3 antibody in the same field of view as FIG. 8 (a).
  • FIG. 8C is a merged photograph of FIGS. 8A and 8B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that patient-derived autoantibodies mainly reacted with P2X3-positive dorsal root ganglion neurons. This result further supports that patient-derived autoantibodies are associated with neuropathic pain.
  • FIG. 9 (a) is a representative fluorescence micrograph showing the result of a tissue section of the mouse dorsal spinal cord reacted with serum from a patient with neuropathic pain.
  • FIG. 4B is a representative fluorescence micrograph showing the result of detecting the binding of the anti-CGRP antibody in the same field of view as FIG.
  • FIG. 4C is a merged photograph of FIGS. 4A and 4B.
  • the scale bar indicates 50 ⁇ m.
  • Double staining with isolectin B4 In the primary antibody reaction, in addition to patient serum diluted 60-fold, isolectin B4 (Iselectin GS-IB 4 From Griffinia simplicifolia, Alexa Fluor 594 Conjugate, thermofischer science, a marker of non-peptide C fiber type dorsal root ganglion neurons The fluorescent indirect antibody method was carried out in the same manner as in Experimental Example 2 except that the reaction was carried out after diluting 500 times.
  • FIG. 10 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal spinal cord reacted with serum from a patient having neuropathic pain.
  • FIG. 10 (b) is a representative fluorescence micrograph showing the result of detecting the binding of isolectin B4 in the same field of view as FIG. 10 (a).
  • FIG. 10C is a merged photograph of FIGS. 10A and 10B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that many of the autoantibodies derived from patients reacted with isolectin B4 staining axon terminals located in the spinal cord dorsal horn IIi layer.
  • FIG. 11 (a) is a representative fluorescence micrograph showing the result of a tissue section of the mouse dorsal spinal cord reacted with serum from a patient with neuropathic pain.
  • FIG. 11 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-PKC ⁇ antibody in the same field of view as FIG. 11 (a).
  • FIG. 11C is a merged photograph of FIGS. 11A and 11B. The scale bar indicates 50 ⁇ m.
  • the autonomic nerve C fiber is present in the dermis (inner layer of the skin) and shows a distribution pattern similar to protein gene product 9.5 (PGP 9.5), which is a general nerve fiber marker.
  • PGP 9.5 protein gene product 9.5
  • FIG. 12 (a) is an optical micrograph showing the result of hematoxylin-eosin staining of a tissue section of the skin of the hind foot sole of a mouse.
  • the scale bar indicates 50 ⁇ m.
  • “dermis” indicates the dermis and “epidermis” indicates the epidermis.
  • FIG. 12 (b) is a representative fluorescence micrograph showing the result of immunostaining of the control serum.
  • the fluorescent indirect antibody method similar to Experimental Example 2 except that the anti-PGP9.5 antibody (rabbit polyclonal antibody, Abcam) was diluted 500-fold in addition to the control serum diluted 60-fold. Went.
  • nuclei were stained with 4 ', 6-diamidino-2-phenylindole (DAPI).
  • DAPI 6-diamidino-2-phenylindole
  • the scale bar indicates 50 ⁇ m.
  • An enlarged photograph of the arrow is shown in the lower left frame. As a result, the control serum was not reactive with mouse skin.
  • FIG. 12 (c) is a representative fluorescence micrograph showing the results of immunostaining of patient-derived autoantibodies.
  • the fluorescent indirect antibody method similar to Experimental Example 2 except that the anti-PGP9.5 antibody (rabbit polyclonal antibody, Abcam) was diluted 500-fold in addition to the patient serum diluted 60-fold. Went. Also, nuclei were stained with DAPI. The scale bar indicates 50 ⁇ m. An enlarged photograph of the arrow is shown in the lower left frame. As a result, it was revealed that patient-derived autoantibodies bound to the epidermis and PGP9.5 positive skin nerve fibers.
  • ⁇ Double staining with anti-TH antibody Subsequently, in order to identify the autonomic nerve fiber to which the autoantibody derived from the patient binds to the tissue section of the skin of the hind foot sole of the mouse, the antibody against tyrosine hydroxylase (TH), which is a sympathetic nerve marker, is used. Double staining was performed.
  • TH tyrosine hydroxylase
  • the fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except that the anti-TH antibody (rabbit polyclonal antibody, Abcam) was diluted 500 times and reacted in addition to patient serum diluted 60 times. It was. Also, nuclei were stained with DAPI.
  • anti-TH antibody rabbit polyclonal antibody, Abcam
  • FIG. 13 (a) is a representative fluorescence micrograph showing the result of the tissue section of the skin of the hind paw plantar of the mouse reacted with serum derived from a patient with neuropathic pain.
  • FIG. 13 (b) is a representative fluorescence micrograph showing the result of detecting anti-TH antibody binding in the same field of view as FIG. 13 (a).
  • FIG. 13C is a merged photograph of FIGS. 13A and 13B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that patient-derived autoantibodies do not stain TH-positive nerve fibers.
  • Double staining with anti-VIP antibody was performed on a tissue section of the skin of the hind foot sole of the mouse.
  • VIP vasoactive intestinal peptide
  • the fluorescent indirect antibody method similar to Experimental Example 2 was used except that the anti-VIP antibody (rabbit polyclonal antibody, Immunostar) was diluted 500 times and reacted in addition to 60-fold diluted patient serum. went. Also, nuclei were stained with DAPI.
  • the anti-VIP antibody rabbit polyclonal antibody, Immunostar
  • FIG. 14 (a) is a representative fluorescence micrograph showing the result of a tissue section of the skin of the hind paw foot of a mouse reacted with serum derived from a patient with neuropathic pain.
  • FIG. 14 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-VIP antibody in the same field of view as FIG. 14 (a).
  • FIG. 14C is a merged photograph of FIGS. 14A and 14B. The scale bar indicates 50 ⁇ m. As a result, it was revealed that patient-derived autoantibodies colocalized with VIP-positive nerve fibers.
  • the mouse dorsal root ganglion-derived protein extract was subjected to Western blotting, and as a result of detection with a patient-derived autoantibody that reacted with tissue sections of the mouse dorsal root ganglion, 10 patients out of 11 patients A band having a common immunoreactivity with the antibody was detected. The molecular weight of the band was about 220 kDa.
  • no band having immunoreactivity was detected.
  • FIG. 15 (a) is a photograph showing the result of Western blotting.
  • IFA positive indicates that the result of the fluorescent indirect antibody method is positive
  • IFA negative indicates that the result of the fluorescent indirect antibody method is negative
  • NeP Pt.1 2, 5, 6, 9, 11 "represent patients 1, 2, 5, 6, 9, 11 with neuropathic pain, respectively
  • HC represents a healthy person.
  • the band enclosed with the line is a band detected in common by 10 patient-derived autoantibodies out of 11 patients.
  • mouse dorsal root ganglion-derived protein extract diluted to 1 mg / mL and 0.1 mg of FG beads-Protein G beads (Tamakawa Seiki) were incubated at 4 ° C. for 15 minutes. Subsequently, magnetic separation was performed to remove non-specific protein G adsorbate in the protein extract and crude purification was performed.
  • FIG. 15 (b) is a photograph showing the results of SDS-PAGE and silver staining.
  • lane 1 is a molecular weight marker
  • lane 2 is a mouse dorsal root ganglion-derived protein extract
  • lane 3 is a negative control immunoprecipitation sample
  • lane 4 contains an autoantigen protein. Immunoprecipitation sample.
  • the arrow indicates a band of autoantigen protein slightly larger than 220 kDa.
  • FIG. 15 (c) is a photograph showing the result of subjecting the same sample as in FIG. 15 (b) to Western blotting and detecting with a patient-derived autoantibody.
  • lane 1 is a molecular weight marker
  • lane 2 is a mouse dorsal root ganglion-derived protein extract
  • lane 3 is a negative control immunoprecipitation sample
  • lane 4 contains an autoantigen protein. Immunoprecipitation sample.
  • the arrow indicates a band of autoantigen protein slightly larger than 220 kDa.
  • Plexin D1 has a theoretical molecular weight of approximately 212 kDa. This almost coincided with the molecular weight of the band detected by Western blotting. Plexin D1 is one of the largest molecular weight glycoproteins in nerve tissue. However, the expression of Plexin D1 in human dorsal root ganglia and spinal cord has not been reported.
  • Example 8 (Examination of Plexin D1 expression in human dorsal root ganglia and spinal cord tissue sections) Tissue sections of human lumbar dorsal root ganglia and spinal cord from dead donors were prepared. Subsequently, each tissue section was immunostained and observed with a fluorescence microscope (model “BZ-X700”, Keyence Corporation).
  • FIG. 16 (a) is a fluorescence micrograph showing the result of staining a tissue section of a human dorsal root ganglion with an anti-human Plexin D1 antibody (goat polyclonal antibody, R & D Systems).
  • FIG. 16B shows a neurofilament heavy chain (marker of A ⁇ fiber-type dorsal root ganglion neurons and A ⁇ fiber-type dorsal root ganglion neurons, which are myelinated fibers, in the same field of view as FIG. 16A.
  • the results of staining with an antibody against NFH anti-human phosphorylated NFH antibody, model “SMI31”, mouse monoclonal antibody, Covance; and anti-human non-phosphorylated NFH antibody, model “SMI32”, mouse monoclonal antibody, Covance
  • NFH anti-human phosphorylated NFH antibody
  • model “SMI32” mouse monoclonal antibody, Covance
  • FIG. 16 (c) is a merged photograph of FIG. 16 (a) and FIG. 16 (b).
  • the scale bar indicates 50 ⁇ m.
  • FIG. 16 (d) is a fluorescence micrograph showing the result of staining a tissue section of human spinal cord with anti-human Plexin D1 antibody (goat polyclonal antibody, R & D Systems).
  • FIG. 16 (e) shows an anti-human NFH antibody (anti-human phosphorylated NFH antibody, model “SMI31”, mouse monoclonal antibody, Covance; and anti-human non-phosphorylated NFH antibody in the same field of view as FIG. 16 (d). , Model “SMI32”, mouse monoclonal antibody, Covance)). Also, nuclei were stained with DAPI.
  • FIG. 16 (f) is a merge of the photos of FIG. 16 (d) and FIG. 16 (e).
  • the scale bar indicates 100 ⁇ m.
  • Plexin D1 does not co-localize with NFH-positive myelinated dorsal root ganglion neurons.
  • NFH is mainly present in the dorsal column (PC) and the dorsal horn deep layer (DDH; spinal dorsal horn III to V layers), and more in the dorsal horn superficial layer (SDH). There were few.
  • Plexin D1 is present in the unmyelinated dorsal root ganglion neurons and their axon terminals located in the dorsal horn superficial layer, and this localization pattern is the binding pattern of patient-derived autoantibodies. It was similar.
  • mRNA of the KIF11 gene was amplified as a positive control.
  • GAPDH gene mRNA was amplified as a reference gene.
  • FESI Fast SYBR Green Master Mix
  • PCR was performed with a StepOnePlus real-time PCR system (Thermo Fisher Scientific).
  • PLXND1-specific primers As PLXND1-specific primers, PLXND1 Fwd (5′-AATGGGCGGAACATCGTCAAG-3 ′, SEQ ID NO: 2) and PLXND1 Rev (5′-CGAGACTGGTTGGAAACACAG-3 ′, SEQ ID NO: 3) were used. Further, KIF11 Fwd (5′-TGTTTGATGATCCCCGTAACAAG-3 ′, SEQ ID NO: 4) and KIF11 Rev (5′-CTGAGTGGGAACGACTAGAGT-3 ′, SEQ ID NO: 5) were used as KIF11 specific primers.
  • GAPDH Fwd (5′-ACCCACTCCTCCACCTTTGAC-3 ′, SEQ ID NO: 6) and GAPDH Rev (5′-TGTTGCTGTAGCCAAATTCGTT-3 ′, SEQ ID NO: 7) were used as GAPDH specific primers.
  • FIG. 17 (a) is a graph showing the results of quantitative real-time PCR.
  • “Scrambled siRNA” indicates the result of introducing the control siRNA
  • “PLXND1 siRNA” indicates the result of introducing the siRNA for the PLXND1 gene.
  • FIG. 17 (b) is a photograph showing the result of examining the expression of Plexin D1 protein by Western blotting. ⁇ -actin protein was detected as a loading control.
  • “Scramble siRNA” indicates the result of introducing the control siRNA
  • “PLXND1 siRNA” indicates the result of introducing the siRNA for the PLXND1 gene.
  • BioCoat Collagen I culture slide 8 well (Corning) was added with a preparation solution containing 7.5 nM final concentration of siRNA and 0.45 ⁇ L of Lipofectamine RNAiMAX (Invitrogen) per well to cover the whole well surface, 15 Let stand at room temperature for minutes.
  • HeLa cells were seeded at 8 ⁇ 10 3 cells / well, cultured under conditions of 37 ° C. and 5% CO 2 , and reverse transfection was performed. Subsequently, the medium was changed after 48 hours. Subsequently, 96 hours after reverse transfection, the medium was removed, 4% paraformaldehyde / phosphate buffer (Wako Pure Chemical Industries) was added, and the mixture was allowed to stand at room temperature for 10 minutes, and then the cells were washed with ice-cold PBS ( ⁇ ). Washed 3 times.
  • PBS (-) containing 0.1% Tween 20 (Sigma-Aldrich) was added to each well, left at room temperature for 10 minutes to perform membrane permeation treatment, and then washed twice with PBS (-). . Subsequently, PBS (-) containing 1% gelatin was added to each well and allowed to stand at room temperature for 1 hour for blocking.
  • patient-derived serum IgG diluted 1,000-fold in PBS (-) containing 1% bovine serum albumin (BSA), and anti-Plexin D1 antibody diluted 200-fold (goat polyclonal antibody, R & D Systems)
  • a primary antibody reaction solution containing the solution was added, and the mixture was allowed to stand at room temperature for 1 hour to carry out a primary antibody reaction, and then washed three times with PBS ( ⁇ ).
  • a sample prepared by reacting control serum IgG instead of patient-derived serum IgG was also prepared.
  • Alexa Fluor 488-labeled goat anti-human IgG (H + L) antibody (Thermo Fisher Scientific) diluted 1,000 times
  • Alexa Fluor 594-labeled rabbit anti-goat IgG (H + L) antibody (Thermo) diluted 1,000 times.
  • a secondary antibody reaction solution containing Fischer Scientific 0.1 ⁇ g / mL DAPI
  • the mixture was allowed to stand at room temperature for 1 hour under light shielding, followed by a secondary antibody reaction, and then PBS ( ⁇ ) And washed 3 times. Subsequently, it was observed with a fluorescence microscope (model “BZ-X710”, Keyence Corporation).
  • FIG. 18 (a) is a representative fluorescence micrograph showing the result of detection of control IgG bound to HeLa cells into which no siRNA has been introduced.
  • FIG. 18 (b) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 18 (a).
  • FIG. 18C is a merged photograph of FIGS. 18A and 18B. The scale bar indicates 100 ⁇ m.
  • FIG. 18 (d) is a representative fluorescence micrograph showing the result of detecting patient-derived autoantibodies bound to HeLa cells into which no siRNA has been introduced.
  • FIG. 18 (e) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 18 (d).
  • FIG. 18F is a merged photograph of FIGS. 18D and 18E. The scale bar indicates 100 ⁇ m.
  • FIG. 19 (a) is a photomicrograph of HeLa cells into which control siRNA has been introduced, observed in a bright field.
  • FIG. 19B is a fluorescence micrograph showing the result of detecting the binding of a patient-derived autoantibody (Case 5) in the same field of view as FIG.
  • FIG. 19 (c) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 19 (a).
  • FIG. 19D is a merged photograph of FIGS. 19A, 19B, and 19C. The scale bar indicates 25 ⁇ m.
  • FIG. 19 (e) is a photomicrograph of bright field observation of HeLa cells into which siRNA for the PLXND1 gene has been introduced.
  • FIG. 19 (f) is a fluorescence micrograph showing the result of detecting the binding of the patient-derived autoantibody (Case 5) in the same field of view as FIG. 19 (e).
  • FIG. 19 (g) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 19 (e).
  • FIG. 19 (h) is a merge of the photos of FIG. 19 (e), FIG. 19 (f) and FIG. 19 (g).
  • the scale bar indicates 25 ⁇ m.
  • FIG. 20 (a) is a representative fluorescence micrograph showing the result of detecting a patient-derived autoantibody (case 5) bound to a HeLa cell into which a control siRNA was introduced.
  • FIG. 20A the nucleus is stained with DAPI.
  • the scale bar indicates 50 ⁇ m.
  • FIG. 20 (b) is a representative fluorescence micrograph showing the result of detecting a patient-derived autoantibody (case 5) bound to a HeLa cell into which siRNA against the PLXND1 gene has been introduced.
  • nuclei are stained with DAPI.
  • the scale bar indicates 50 ⁇ m.
  • FIG. 20 (c) is a graph in which the results of FIGS. 20 (a) and (b) are digitized. As a result, it was revealed that the binding of autoantibodies derived from the patient in case 5 was significantly reduced in HeLa cells into which siRNA for the PLXND1 gene was introduced.
  • FIG. 21 (a) is a fluorescence micrograph showing the result of reacting a patient-derived autoantibody (Case 5) with a tissue section of a mouse dorsal root ganglion.
  • the scale bar indicates 50 ⁇ m.
  • FIG. 21 (b) is a fluorescence micrograph showing the results of reacting a patient-derived autoantibody (Case 5) preincubated with 0.5 ⁇ g / mL Plexin D1 protein to a tissue section of a mouse dorsal root ganglion.
  • the scale bar indicates 50 ⁇ m.
  • FIG. 21 (c) is a fluorescence micrograph showing the result of reacting the patient-derived autoantibody (Case 5) preincubated with 2 ⁇ g / mL Plexin D1 protein to the tissue section of the mouse dorsal root ganglion.
  • the scale bar indicates 50 ⁇ m.
  • FIG. 21 (d) is a fluorescence micrograph showing the result of reacting a patient-derived autoantibody (Case 5) with a tissue section of a mouse spinal cord.
  • the scale bar indicates 50 ⁇ m. Binding of patient-derived autoantibodies was observed at the arrowed portion.
  • FIG. 21 (e) is a fluorescence micrograph showing the result of reaction of a patient-derived autoantibody (Case 5) preincubated with 0.5 ⁇ g / mL Plexin D1 protein to a tissue section of a mouse spinal cord.
  • the scale bar indicates 50 ⁇ m.
  • An arrow is shown at the same position as in FIG.
  • FIG. 21 (f) is a fluorescence micrograph showing the result of reacting a patient-derived autoantibody (case 5) preincubated with 2 ⁇ g / mL Plexin D1 protein to a tissue section of a mouse spinal cord.
  • the scale bar indicates 50 ⁇ m.
  • An arrow is shown at the same position as in FIG.
  • Plexin D1 protein decreased the staining of dorsal root ganglion neurons of patient-derived autoantibodies (Case 5) in a dose-dependent manner of Plexin D1 protein. Similar results were observed with all 11 patient-derived autoantibodies.
  • FIG. 22 (a) is a photograph showing the result of detecting a self-antigen by reacting with a patient-derived autoantibody (case 1).
  • FIG. 22 (b) is a photograph showing a result of detecting autoantigen by reacting a patient-derived autoantibody (case 1) preincubated with 0.5 ⁇ g / mL Plexin D1 protein.
  • FIG. 22 (c) is a photograph showing a result of detecting a self-antigen by reacting with a patient-derived autoantibody (case 2).
  • FIG. 22 (d) is a photograph showing the result of detecting autoantigen by reacting a patient-derived autoantibody (Case 2) preincubated with 0.5 ⁇ g / mL Plexin D1 protein.
  • a protein in which the extracellular domain portion of the PLXND1 gene was expressed (model “4160-PD”, R & D Systems, amino acid sequence is shown in SEQ ID NO: 8) was used.
  • the band size of this protein was predicted to be 165 kDa to 175 kDa.
  • FIG. 23 shows autoantibodies derived from neuropathic pain patients whose results by the fluorescent indirect antibody method were positive (cases 1, 2, 5), and sera derived from neuropathic pain patients whose results by the fluorescent indirect antibody method were negative It is a photograph which shows the result of having detected recombinant human Plexin D1 protein using the serum derived from a healthy person, and a commercially available anti-human Plexin D1 antibody.
  • Plexin D1 is a protein to which an autoantibody derived from a neuropathic pain patient whose result by the fluorescent indirect antibody method is positive.
  • the present invention can provide a technique for detecting neuropathic pain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention uses an autoantibody to a small unmyelinated dorsal root ganglion neuron as a neuropathic pain marker.

Description

神経障害性疼痛マーカー及びその使用Neuropathic pain marker and use thereof
 本発明は、神経障害性疼痛マーカー及びその使用に関する。より具体的には、神経障害性疼痛マーカー、神経障害性疼痛の検出方法、及び、神経障害性疼痛の診断キットに関する。本願は、2017年4月12日に米国に仮出願された仮出願第62/484,406号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a neuropathic pain marker and use thereof. More specifically, the present invention relates to a neuropathic pain marker, a method for detecting neuropathic pain, and a diagnostic kit for neuropathic pain. This application claims priority based on provisional application No. 62 / 484,406 filed provisionally in the United States on April 12, 2017, the contents of which are incorporated herein by reference.
 神経障害性疼痛(neuropathic pain)は、国際疼痛学会(IASP:International Association for the Study of Pain)により、「体性感覚神経系の病変や疾患によって生じる痛み」と定義される様々な病態を含む難治性疼痛の一つである(例えば、非特許文献1を参照。)。 Neuropathic pain is an intractable disease that includes various pathologies defined as “pain caused by lesions and diseases of the somatosensory nervous system” by the International Association for Pain (IASP). It is one of sexual pain (for example, refer nonpatent literature 1).
 末梢神経の神経線維は、髄鞘の有無、直径、伝導速度等により、Aα線維、Aβ線維、Aδ線維、B線維、C線維に分類される。一般に、直径が太い神経線維の方が伝導速度が速く、また、有髄である神経線維の方が伝導速度が速い傾向にある。これらの神経線維のうち、Aα線維、Aβ線維、Aδ線維、B線維は有髄線維であり、C線維は無髄線維である。 Peripheral nerve fibers are classified into Aα fibers, Aβ fibers, Aδ fibers, B fibers, and C fibers according to the presence / absence of myelin sheath, diameter, conduction velocity, and the like. In general, nerve fibers having a larger diameter tend to have a higher conduction speed, and nerve fibers that are myelinated tend to have a higher conduction speed. Among these nerve fibers, Aα fibers, Aβ fibers, Aδ fibers, and B fibers are myelinated fibers, and C fibers are unmyelinated fibers.
 神経障害性疼痛は主にAδ線維とC線維の障害により生じると考えられている。部位のはっきりする鋭い痛みは小径有髄線維であるAδ線維が担っており、鈍く遅い痛みは無髄線維であるC線維が担っている。 Neuropathic pain is thought to be caused mainly by Aδ fiber and C fiber damage. The sharp and sharp pain is borne by Aδ fibers, which are small-diameter myelinated fibers, and the blunt and slow pain is borne by C fibers, which are unmyelinated fibers.
 しかしながら、一般的な末梢神経障害の検査である神経伝導検査では、大径有髄線維であるAβ線維が検査される。このため、神経障害性疼痛の患者に一般的な末梢神経障害の検査を行っても異常を検出することができない。その結果、神経障害性疼痛の患者の多くが原因不明又は心因性と判断され、診断にまで至っていないのが現状である。 However, the nerve conduction test, which is a general test for peripheral neuropathy, examines Aβ fibers, which are large-diameter myelinated fibers. For this reason, an abnormality cannot be detected even if a peripheral neuropathy test common to patients with neuropathic pain is performed. As a result, many patients with neuropathic pain are determined to be of unknown cause or psychogenic, and have not yet been diagnosed.
 このような背景のもと、本発明は、神経障害性疼痛を検出する技術を提供することを目的とする。 Under such background, an object of the present invention is to provide a technique for detecting neuropathic pain.
 本発明は以下の態様を含む。
[1]神経障害性疼痛マーカーとしての小型無髄後根神経節ニューロンに対する自己抗体の使用。
[2]前記自己抗体が抗Plexin D1抗体である、[1]に記載の使用。
[3]神経障害性疼痛の検出方法であって、患者由来の血液試料中の、小型無髄後根神経節ニューロンに対する自己抗体を検出することを備え、前記自己抗体が検出されることが、前記患者が神経障害性疼痛に罹患していることを示す、方法。
[4]小型無髄後根神経節ニューロンに対する自己抗体を検出することが、ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させ、前記後根神経節組織又は前記脊髄後角組織に結合したヒトIgG抗体を検出することと、前記後根神経節組織又は前記脊髄後角組織における有髄後根神経節ニューロン又はその神経線維を検出することと、を含み、前記ヒトIgG抗体が前記有髄後根神経節ニューロン以外のニューロンに結合したことが、小型無髄後根神経節ニューロンに対する自己抗体が検出されたことを示す、[3]に記載の方法。
[5]有髄後根神経節ニューロンを検出することが、前記後根神経節組織を抗S100β抗体で免疫染色することを含み、前記抗S100β抗体で免疫染色されたニューロンが有髄後根神経節ニューロンである、[4]に記載の方法。
[6]小型無髄後根神経節ニューロンに対する自己抗体を検出することが、ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させ、前記後根神経節組織又は前記脊髄後角組織に結合したヒトIgG抗体を検出することと、前記後根神経節組織又は前記脊髄後角組織における無髄後根神経節ニューロン又はその神経線維を検出することと、を含み、前記ヒトIgG抗体が前記無髄後根神経節ニューロンに結合したことが、小型無髄後根神経節ニューロンに対する自己抗体が検出されたことを示す、[3]に記載の方法。
[7]無髄後根神経節ニューロンを検出することが、前記後根神経節組織にイソレクチンB4を接触させることを含み、前記イソレクチンB4が結合したニューロンが無髄後根神経節ニューロンである、[6]に記載の方法。
[8]前記ヒトIgG抗体がIgG2抗体である、[3]~[7]のいずれかに記載の方法。
[9]前記自己抗体が抗Plexin D1抗体である、[3]~[8]のいずれかに記載の方法。
[10]神経障害性疼痛の検出方法であって、Plexin D1を発現するヒト細胞又は非ヒト動物細胞に患者由来の血液試料を接触させ、前記細胞に結合したヒトIgG抗体を検出することを含み、検出された前記ヒトIgG抗体の量が、Plexin D1を発現しない細胞に前記血液試料を接触させた場合に、当該細胞に結合するヒトIgG抗体の量と比較して多いことが、前記患者が神経障害性疼痛に罹患していることを示す、方法。
[11]抗ヒトIgG抗体と、有髄後根神経節ニューロンの検出薬又は無髄後根神経節ニューロンの検出薬と、を備える、神経障害性疼痛の診断キット。
[12]前記抗ヒトIgG抗体が、抗ヒトIgG2抗体である、[11]に記載の診断キット。
[13]前記有髄後根神経節ニューロンの検出薬が、抗S100β抗体である、[11]又は[12]に記載の診断キット。
[14]前記無髄後根神経節ニューロンの検出薬が、イソレクチンB4である、[11]~[13]のいずれかに記載の診断キット。
[15]抗ヒトIgG抗体と、Plexin D1タンパク質と、を備える、神経障害性疼痛の診断キット。
[16]前記抗ヒトIgG抗体が、抗ヒトIgG2抗体である、[15]に記載の診断キット。
The present invention includes the following aspects.
[1] Use of autoantibodies against small unmyelinated dorsal root ganglion neurons as a neuropathic pain marker.
[2] The use according to [1], wherein the autoantibody is an anti-Plexin D1 antibody.
[3] A method for detecting neuropathic pain, comprising detecting autoantibodies against small unmyelinated dorsal root ganglion neurons in a blood sample derived from a patient, wherein the autoantibodies are detected. A method showing that the patient is suffering from neuropathic pain.
[4] To detect autoantibodies against small unmyelinated dorsal root ganglion neurons, a human or non-human animal-derived dorsal root ganglion tissue or spinal dorsal horn tissue is contacted with a patient-derived blood sample, Detecting human IgG antibodies bound to ganglion tissue or spinal dorsal horn tissue; detecting myelinated dorsal root ganglion neurons or nerve fibers thereof in the dorsal root ganglion tissue or spinal dorsal horn tissue; Wherein the human IgG antibody binds to a neuron other than the myelinated dorsal root ganglion neuron, indicating that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected. [3] the method of.
[5] Detecting a myelinated dorsal root ganglion neuron includes immunostaining the dorsal root ganglion tissue with an anti-S100β antibody, and the neuron immunostained with the anti-S100β antibody is a myelinated dorsal root nerve The method according to [4], which is a nodal neuron.
[6] To detect autoantibodies against small unmyelinated dorsal root ganglion neurons, a human or non-human animal-derived dorsal root ganglion tissue or spinal cord dorsal horn tissue is contacted with a patient-derived blood sample, Detecting a human IgG antibody bound to the ganglion tissue or the dorsal horn tissue of the spinal cord; detecting unmyelinated dorsal root ganglion neurons or nerve fibers thereof in the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord; The method according to [3], wherein binding of the human IgG antibody to the unmyelinated dorsal root ganglion neuron indicates that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected.
[7] Detecting an unmyelinated dorsal root ganglion neuron includes contacting the dorsal root ganglion tissue with isolectin B4, and the neuron to which the isolectin B4 is bound is an unmyelinated dorsal root ganglion neuron. The method according to [6].
[8] The method according to any one of [3] to [7], wherein the human IgG antibody is an IgG2 antibody.
[9] The method according to any one of [3] to [8], wherein the autoantibody is an anti-Plexin D1 antibody.
[10] A method for detecting neuropathic pain, comprising contacting a blood sample derived from a patient with a human cell or non-human animal cell expressing Plexin D1, and detecting a human IgG antibody bound to the cell. When the blood sample is contacted with a cell that does not express Plexin D1, the amount of the human IgG antibody detected is higher than the amount of the human IgG antibody that binds to the cell. A method of showing that it is suffering from neuropathic pain.
[11] A diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and a detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons.
[12] The diagnostic kit according to [11], wherein the anti-human IgG antibody is an anti-human IgG2 antibody.
[13] The diagnostic kit according to [11] or [12], wherein the drug for detecting myelinated dorsal root ganglion neurons is an anti-S100β antibody.
[14] The diagnostic kit according to any one of [11] to [13], wherein the detection agent for unmyelinated dorsal root ganglion neurons is isolectin B4.
[15] A diagnostic kit for neuropathic pain, comprising an anti-human IgG antibody and a Plexin D1 protein.
[16] The diagnostic kit according to [15], wherein the anti-human IgG antibody is an anti-human IgG2 antibody.
 本発明により、神経障害性疼痛を検出する技術を提供することができる。 The present invention can provide a technique for detecting neuropathic pain.
(a)~(f)は、実験例2の結果を示す蛍光顕微鏡写真である。(A) to (f) are fluorescence micrographs showing the results of Experimental Example 2. (a)~(d)は、実験例2の結果を示す蛍光顕微鏡写真である。(A) to (d) are fluorescence micrographs showing the results of Experimental Example 2. (a)~(d)は、実験例3の結果を示す蛍光顕微鏡写真である。(A) to (d) are fluorescence micrographs showing the results of Experimental Example 3. (a)~(c)は、実験例4における、患者血清とイソレクチンB4との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and isolectin B4 in Experimental Example 4. (a)~(c)は、実験例4における、患者血清と抗CGRP抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-CGRP antibody in Experimental Example 4. (a)~(c)は、実験例4における、患者血清と抗S100β抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A)-(c) are fluorescence micrographs showing the results of double staining of patient serum and anti-S100β antibody in Experimental Example 4. (a)~(c)は、実験例4における、患者血清と抗TRPV1抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A)-(c) are fluorescence micrographs showing the results of double staining of patient serum and anti-TRPV1 antibody in Experimental Example 4. (a)~(c)は、実験例4における、患者血清と抗P2X3抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-P2X3 antibody in Experimental Example 4. (a)~(c)は、実験例5における、患者血清と抗CGRP抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A)-(c) are fluorescence micrographs showing the results of double staining of patient serum and anti-CGRP antibody in Experimental Example 5. (a)~(c)は、実験例5における、患者血清とイソレクチンB4との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and isolectin B4 in Experimental Example 5. (a)~(c)は、実験例5における、患者血清と抗PKCγ抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-PKCγ antibody in Experimental Example 5. (a)は、実験例6の結果を示す光学顕微鏡写真である。(b)及び(c)は、実験例6の結果を示す蛍光顕微鏡写真である。(A) is an optical micrograph showing the results of Experimental Example 6. (B) and (c) are fluorescence micrographs showing the results of Experimental Example 6. (a)~(c)は、実験例6における、患者血清と抗TH抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-TH antibody in Experimental Example 6. (a)~(c)は、実験例6における、患者血清と抗VIP抗体との二重染色の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of double staining of patient serum and anti-VIP antibody in Experimental Example 6. (a)及び(c)は、実験例7におけるウエスタンブロッティングの結果を示す写真である。(b)は、実験例7におけるSDS-PAGE及び銀染色の結果を示す写真である。(A) And (c) is a photograph which shows the result of the western blotting in Experimental example 7. FIG. (B) is a photograph showing the results of SDS-PAGE and silver staining in Experimental Example 7. (a)~(c)は、実験例8の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of Experimental Example 8. (a)は、実験例9における定量的リアルタイムPCRの結果を示すグラフである。(b)は、実験例9におけるウエスタンブロッティングの結果を示す写真である。(A) is a graph showing the results of quantitative real-time PCR in Experimental Example 9. (B) is a photograph showing the results of Western blotting in Experimental Example 9. (a)~(c)は、実験例9の結果を示す蛍光顕微鏡写真である。(A) to (c) are fluorescence micrographs showing the results of Experimental Example 9. (a)は、実験例9の結果を示す光学顕微鏡写真である。(b)及び(c)は、実験例9の結果を示す蛍光顕微鏡写真である。(d)は、(a)~(c)の写真をマージしたものである。(A) is an optical micrograph showing the results of Experimental Example 9. (B) and (c) are fluorescence micrographs showing the results of Experimental Example 9. (D) is a merged photograph of (a) to (c). (a)及び(b)は、実験例10の結果を示す蛍光顕微鏡写真である。(c)は、(a)及び(b)の結果を数値化したグラフである。(A) And (b) is the fluorescence micrograph which shows the result of Experimental example 10. FIG. (C) is the graph which digitized the result of (a) and (b). (a)~(f)は、実験例11の結果を示す蛍光顕微鏡写真である。(A) to (f) are fluorescence micrographs showing the results of Experimental Example 11. (a)~(d)は、実験例12におけるウエスタンブロッティングの結果を示す写真である。(A) to (d) are photographs showing the results of Western blotting in Experimental Example 12. 実験例13におけるウエスタンブロッティングの結果を示す写真である。It is a photograph which shows the result of the western blotting in Experimental example 13.
[神経障害性疼痛マーカー]
 1実施形態において、本発明は、神経障害性疼痛マーカーを提供する。実施例において後述するように、発明者らは、小型無髄後根神経節ニューロンに対する自己抗体が神経障害性疼痛のマーカーであることを明らかにした。したがって、患者血清中に、小型無髄後根神経節ニューロンに対する自己抗体が検出されることは、当該患者が神経障害性疼痛を有することを示す。
[Neuropathic pain marker]
In one embodiment, the present invention provides a neuropathic pain marker. As will be described later in the Examples, the inventors have revealed that autoantibodies against small unmyelinated dorsal root ganglion neurons are markers of neuropathic pain. Thus, the detection of autoantibodies against small unmyelinated dorsal root ganglion neurons in the patient serum indicates that the patient has neuropathic pain.
 従来、神経障害性疼痛を検出することは困難であった。これに対し、本実施形態のマーカーにより、神経障害性疼痛を容易に検出することができる。 Conventionally, it has been difficult to detect neuropathic pain. On the other hand, neuropathic pain can be easily detected by the marker of this embodiment.
 本実施形態は、神経障害性疼痛マーカーとしての小型無髄後根神経節ニューロンに対する自己抗体の使用を提供するものであるということもできる。あるいは、小型無髄後根神経節ニューロンに対する自己抗体を、神経障害性疼痛マーカーとして使用する方法を提供するものであるということもできる。 This embodiment can also be said to provide the use of autoantibodies against small unmyelinated dorsal root ganglion neurons as neuropathic pain markers. Alternatively, it can be said to provide a method of using autoantibodies against small unmyelinated dorsal root ganglion neurons as a neuropathic pain marker.
 小型無髄後根神経節ニューロンに対する自己抗体は、抗Plexin D1抗体であってもよいし、抗Plexin D1抗体以外の小型無髄後根神経節ニューロンに対する自己抗体であってもよい。実施例において後述するように、発明者らは、神経障害性疼痛を有する患者の血清中に、抗Plexin D1抗体が存在することを明らかにした。しかしながら、小型無髄後根神経節ニューロンに対する全ての自己抗体がPlexinD1だけを認識しているわけではないと推定される。 The autoantibody against the small unmyelinated dorsal root ganglion neuron may be an anti-Plexin D1 antibody or an autoantibody against a small unmyelinated dorsal root ganglion neuron other than the anti-Plexin D1 antibody. As will be described later in Examples, the inventors have clarified that anti-Plexin D1 antibody is present in the serum of a patient having neuropathic pain. However, it is presumed that not all autoantibodies to small unmyelinated dorsal root ganglion neurons recognize PlexinD1 alone.
 なお、ヒトPlexin D1タンパク質のRefSeqIDはNP_055918であり、マウスPlexin D1タンパク質のRefSeqIDはNP_080652である。 Note that the RefSeqID of the human Plexin D1 protein is NP_055918, and the RefSeqID of the mouse Plexin D1 protein is NP_080652.
 患者由来の血液試料中の抗Plexin D1抗体は、例えば、ラテラルフローイムノアッセイ法、ELISA法、ウエスタンブロッティング法等により検出してもよい。例えば、Plexin D1タンパク質を固定した固相に、患者由来の血液試料を反応させた後、Plexin D1タンパク質に結合した自己抗体を抗ヒトIgG抗体で検出する方法等が挙げられる。 The anti-Plexin D1 antibody in a blood sample derived from a patient may be detected by, for example, a lateral flow immunoassay method, an ELISA method, a Western blotting method, or the like. For example, after reacting a blood sample derived from a patient with a solid phase to which Plexin D1 protein is immobilized, a method of detecting an autoantibody bound to Plexin D1 protein with an anti-human IgG antibody, and the like are mentioned.
 Plexin D1は、従来、神経発生のガイダンス因子、免疫細胞の分化や活性化に関わるセマフォリンの受容体等として知られていた分子である。従来、Plexin D1と痛みとの関係は報告されていない。 Plexin D1 is a molecule conventionally known as a neurogenesis guidance factor, a semaphorin receptor involved in immune cell differentiation and activation, and the like. Conventionally, the relationship between Plexin D1 and pain has not been reported.
 患者の血清中に存在する抗PlexinD1抗体、又は、抗原未同定の、小型無髄後根神経節ニューロンに対する自己抗体の存在が検出されることは、当該患者が神経障害性疼痛を有することを示す。すなわち、患者の血清中に存在する抗PlexinD1抗体、又は、抗原未同定の、小型無髄後根神経節ニューロンに対する自己抗体を検出することにより、従来原因不明と診断されていた神経障害性疼痛を診断することが可能となる。 Detection of the presence of anti-Plexin D1 antibody present in the patient's serum or autoantibodies against unidentified small unmyelinated dorsal root ganglion neurons indicates that the patient has neuropathic pain . That is, by detecting an anti-Plexin D1 antibody present in a patient's serum or an autoantibody against an unidentified small unmyelinated dorsal root ganglion neuron, neuropathic pain that has been conventionally diagnosed as unknown is eliminated. Diagnosis is possible.
 本実施形態は、患者が神経障害性疼痛に罹患しているか否かを診断するためのデータ収集方法であって、患者の血清中に存在する抗PlexinD1抗体、又は、抗原未同定の、小型無髄後根神経節ニューロンに対する自己抗体の存在を検出することを含む方法であるということもできる。なお、データ収集方法は、医師が患者の状態を判断する工程を含まない。 The present embodiment is a data collection method for diagnosing whether or not a patient suffers from neuropathic pain, and is an anti-PlexinD1 antibody present in the patient's serum or an unidentified small antigen. It can also be a method comprising detecting the presence of autoantibodies against dorsal root ganglion neurons. The data collection method does not include a step in which a doctor determines the patient's condition.
 患者の血清中に、抗小型無髄後根神経節ニューロン抗体が検出された場合、small fiber neuropathy(小径線維ニューロパチー)であると診断することができる。小径線維ニューロパチーは免疫療法により治療することができる。 When an anti-small unmyelinated dorsal root ganglion neuron antibody is detected in the patient's serum, it can be diagnosed as small fiber neuropathy. Small fiber neuropathy can be treated with immunotherapy.
 したがって、小型無髄後根神経節ニューロンに対する自己抗体の存在を指標とすることにより、神経障害性疼痛の治療に対する免疫療法の適応を速やかに判断することが可能となり、神経障害性疼痛の早期診断・早期治療が可能となる。 Therefore, by using the presence of autoantibodies against small unmyelinated dorsal root ganglion neurons as an index, it is possible to quickly determine the indication of immunotherapy for the treatment of neuropathic pain, and early diagnosis of neuropathic pain・ Early treatment is possible.
 Plexin D1に対する自己抗体陽性、又は、抗原未同定の、小型無髄後根神経節ニューロンに対する自己抗体陽性の神経障害性疼痛の患者は、他の原因による神経障害性疼痛患者と異なり、治療が可能である。 Plexin D1 autoantibody-positive or antigen-unidentified autoantibody-positive neuropathic pain patients with small unmyelinated dorsal root ganglion neurons can be treated differently from patients with neuropathic pain due to other causes It is.
 これらの患者の神経障害性疼痛は、副腎皮質ステロイド薬の投与、免疫抑制剤の投与、大量免疫グロブリン療法、血漿交換療法等の免疫療法により治療することができる。また、対症療法として、小径無髄線維を標的とする、SCN9A阻害剤、SCN10A阻害剤、P2X3受容体アンタゴニスト等の鎮痛剤を投与することが効果的である。 The neuropathic pain in these patients can be treated by immunotherapy such as administration of corticosteroids, administration of immunosuppressants, high-dose immunoglobulin therapy, plasma exchange therapy, and the like. In addition, as a symptomatic treatment, it is effective to administer an analgesic agent such as an SCN9A inhibitor, an SCN10A inhibitor, or a P2X3 receptor antagonist that targets small-diameter unmyelinated fibers.
[神経障害性疼痛の検出方法]
(第1実施形態)
 1実施形態において、本発明は、神経障害性疼痛の検出方法であって、患者由来の血液試料中の、小型無髄後根神経節ニューロンに対する自己抗体を検出することを備え、前記自己抗体が検出されることが、前記患者が神経障害性疼痛に罹患していることを示す方法を提供する。以下、本実施形態の方法を、蛍光間接抗体法(tissue-based indirect immunofluorescence assay、IFA)という場合がある。
[Method for detecting neuropathic pain]
(First embodiment)
In one embodiment, the present invention relates to a method for detecting neuropathic pain, comprising detecting an autoantibody against a small unmyelinated dorsal root ganglion neuron in a blood sample derived from a patient, wherein the autoantibody comprises Detecting provides a method for indicating that the patient is suffering from neuropathic pain. Hereinafter, the method of the present embodiment may be referred to as a fluorescent indirect antibody method (IFA).
 第1実施形態の方法は、患者が神経障害性疼痛に罹患しているか否かを診断するためのデータ収集方法であるということもできる。なお、データ収集方法は、医師が患者の状態を判断する工程を含まない。 It can also be said that the method of the first embodiment is a data collection method for diagnosing whether or not a patient suffers from neuropathic pain. The data collection method does not include a step in which a doctor determines the patient's condition.
 本実施形態の方法において、小型無髄後根神経節ニューロンに対する自己抗体を検出することは、ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させ、前記後根神経節組織又は前記脊髄後角組織に結合したヒトIgG抗体を検出することと、前記後根神経節組織又は前記脊髄後角組織における有髄後根神経節ニューロン又はその神経線維を検出することと、を含み、前記ヒトIgG抗体が前記有髄後根神経節ニューロン以外のニューロンに結合したことが、小型無髄後根神経節ニューロンに対する自己抗体が検出されたことを示すものであってもよい。 In the method of the present embodiment, detecting autoantibodies against small unmyelinated dorsal root ganglion neurons involves contacting a patient-derived blood sample with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal. Detecting a human IgG antibody bound to the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord; and a myelinated dorsal root ganglion neuron or a nerve fiber thereof in the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord. The human IgG antibody binds to a neuron other than the myelinated dorsal root ganglion neuron, indicating that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected. There may be.
 第1実施形態の方法によれば、後根神経節組織又は前記脊髄後角組織に反応する自己抗体を検出するため、抗原未同定の、小型無髄後根神経節ニューロンに対する自己抗体を検出することができる。 According to the method of the first embodiment, in order to detect an autoantibody that reacts with the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord, an autoantibody against a small unmyelinated dorsal root ganglion neuron that has not been identified with an antigen is detected. be able to.
 非ヒト動物としては、特に限定されず、例えば、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、サル、ヒツジ、ブタ、ヤギ、ウシ、ウマ等が挙げられる。 The non-human animal is not particularly limited, and examples thereof include mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, monkeys, sheep, pigs, goats, cows, horses and the like.
 実施例において後述するように、発明者らは、神経障害性疼痛を有する患者由来の血清を、ヒト後根神経節の組織切片、ヒト脊髄後角の組織切片、マウス後根神経節の組織切片、マウス脊髄後角の組織切片等と反応させて、その結合を検出することにより、小型無髄後根神経節ニューロンに対する自己抗体を検出できることを明らかにした。 As will be described later in the Examples, the inventors obtained sera from patients with neuropathic pain, tissue sections of human dorsal root ganglia, tissue sections of human dorsal horn, tissue sections of mouse dorsal root ganglia. It was clarified that autoantibodies against small unmyelinated dorsal root ganglion neurons can be detected by reacting with tissue slices of the dorsal horn of mouse spinal cord and detecting the binding.
 また、有髄後根神経節ニューロンを検出することが、前記後根神経節組織を抗S100β抗体で免疫染色することを含み、前記抗S100β抗体で免疫染色されたニューロンを有髄後根神経節ニューロンであると判断してもよい。実施例において後述するように、発明者らは、神経障害性疼痛を有する患者由来の自己抗体が、抗S100β抗体とは共局在しないことを明らかにした。 Further, detecting the myelinated dorsal root ganglion neuron includes immunostaining the dorsal root ganglion tissue with an anti-S100β antibody, and the neurons immunostained with the anti-S100β antibody It may be determined that it is a neuron. As described later in the Examples, the inventors have revealed that autoantibodies derived from patients with neuropathic pain do not colocalize with anti-S100β antibodies.
 本実施形態の方法において、小型無髄後根神経節ニューロンに対する自己抗体を検出することは、ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させ、前記後根神経節組織又は前記脊髄後角組織に結合したヒトIgG抗体を検出することと、前記後根神経節組織又は前記脊髄後角組織における無髄後根神経節ニューロン又はその神経線維を検出することと、を含み、前記ヒトIgG抗体が前記無髄後根神経節ニューロンに結合したことが、小型無髄後根神経節ニューロンに対する自己抗体が検出されたことを示すものであってもよい。 In the method of the present embodiment, detecting autoantibodies against small unmyelinated dorsal root ganglion neurons involves contacting a patient-derived blood sample with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal. Detecting a human IgG antibody bound to the dorsal root ganglion tissue or the spinal dorsal horn tissue, and an unmyelinated dorsal root ganglion neuron or a nerve fiber thereof in the dorsal root ganglion tissue or the spinal dorsal horn tissue. The human IgG antibody bound to the unmyelinated dorsal root ganglion neuron may indicate that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected. Good.
 非ヒト動物については上述したものと同様である。また、無髄後根神経節ニューロンを検出することが、前記後根神経節組織にイソレクチンB4を接触させることを含み、前記イソレクチンB4が結合したニューロンが無髄後根神経節ニューロンであると判断してもよい。実施例において後述するように、発明者らは、神経障害性疼痛を有する患者由来の自己抗体が、イソレクチンB4と共局在することを明らかにした。 Non-human animals are the same as described above. Further, detecting the unmyelinated dorsal root ganglion neuron includes contacting the dorsal root ganglion tissue with isolectin B4, and determining that the neuron to which the isolectin B4 is bound is an unmyelinated dorsal root ganglion neuron. May be. As described later in the Examples, the inventors revealed that autoantibodies derived from patients with neuropathic pain co-localize with isolectin B4.
 本実施形態の方法において、患者由来の血液試料に含まれる、小型無髄後根神経節ニューロンに対する自己抗体は、IgG2抗体であってもよい。実施例において後述するように、発明者らは、神経障害性疼痛を有する患者由来の自己抗体のIgGサブクラスがIgG2であることを明らかにした。 In the method of the present embodiment, the autoantibody against small unmyelinated dorsal root ganglion neurons contained in a patient-derived blood sample may be an IgG2 antibody. As will be described later in the Examples, the inventors have revealed that the IgG subclass of autoantibodies derived from patients with neuropathic pain is IgG2.
 本実施形態の方法において、患者由来の血液試料に含まれる、小型無髄後根神経節ニューロンに対する自己抗体は、抗Plexin D1抗体であってもよい。実施例において後述するように、発明者らは、神経障害性疼痛を有する患者由来の自己抗体が抗Plexin D1抗体であることを明らかにした。 In the method of the present embodiment, the autoantibody against small unmyelinated dorsal root ganglion neurons contained in a patient-derived blood sample may be an anti-Plexin D1 antibody. As described later in Examples, the inventors have clarified that the autoantibody derived from a patient having neuropathic pain is an anti-Plexin D1 antibody.
(第2実施形態)
 1実施形態において、本発明は、神経障害性疼痛の検出方法であって、Plexin D1を発現するヒト細胞又は非ヒト動物細胞に患者由来の血液試料を接触させ、前記細胞に結合したヒトIgG抗体を検出することを含み、検出された前記ヒトIgG抗体の量が、Plexin D1を発現しない細胞に前記血液試料を接触させた場合に、当該細胞に結合するヒトIgG抗体の量と比較して多いことが、前記患者が神経障害性疼痛に罹患していることを示す方法を提供する。
(Second Embodiment)
In one embodiment, the present invention is a method for detecting neuropathic pain, wherein a human cell or non-human animal cell expressing Plexin D1 is contacted with a blood sample derived from a patient, and the human IgG antibody bound to the cell The amount of the human IgG antibody detected is greater than the amount of the human IgG antibody that binds to the cell when the blood sample is contacted with a cell that does not express Plexin D1. Provides a method of indicating that the patient is suffering from neuropathic pain.
 第2実施形態の方法は、患者が神経障害性疼痛に罹患しているか否かを診断するためのデータ収集方法であるということもできる。なお、データ収集方法は、医師が患者の状態を判断する工程を含まない。 It can also be said that the method of the second embodiment is a data collection method for diagnosing whether or not a patient suffers from neuropathic pain. The data collection method does not include a step in which a doctor determines the patient's condition.
 第2実施形態の方法は、第1実施形態の方法と比較して、自己抗体の抗原がPlexin D1タンパク質に限定されている点において主に異なる。 The method of the second embodiment is mainly different from the method of the first embodiment in that the antigen of the autoantibody is limited to Plexin D1 protein.
 非ヒト動物については上述したものと同様である。Plexin D1を発現する細胞は、本来Plexin D1を発現する細胞であってもよいし、Plexin D1の発現ベクターを導入した結果、Plexin D1を発現するようになった細胞であってもよい。例えば、実施例において後述するように、HeLa細胞をPlexin D1を発現する細胞として用いることができる。 Non-human animals are the same as described above. The cell that expresses Plexin D1 may be a cell that originally expresses Plexin D1, or may be a cell that expresses Plexin D1 as a result of introducing a Plexin D1 expression vector. For example, as described later in the Examples, HeLa cells can be used as cells that express Plexin D1.
 また、Plexin D1を発現しない細胞は、本来Plexin D1を発現しない細胞であってもよいし、Plexin D1タンパク質をコードする遺伝子である、PLXND1遺伝子が破壊された細胞であってもよいし、Plexin D1の発現量が低下した細胞であってもよい。具体的には、例えば、実施例において後述するように、PLXND1遺伝子に対するsiRNAを導入したHeLa細胞をPlexin D1を発現しない細胞として用いることができる。 The cell that does not express Plexin D1 may be a cell that originally does not express Plexin D1, may be a cell in which the PLXND1 gene that encodes the Plexin D1 protein is disrupted, or Plexin D1. It may be a cell in which the expression level of is reduced. Specifically, for example, as described later in Examples, HeLa cells into which siRNA for the PLXND1 gene has been introduced can be used as cells that do not express Plexin D1.
 第2実施形態の方法において、患者由来の血液試料に含まれる自己抗体は、IgG2抗体であってもよい。 In the method of the second embodiment, the autoantibodies contained in the patient-derived blood sample may be IgG2 antibodies.
[神経障害性疼痛の診断キット]
(第1実施形態)
 1実施形態において、本発明は、抗ヒトIgG抗体と、有髄後根神経節ニューロンの検出薬又は無髄後根神経節ニューロンの検出薬と、を備える、神経障害性疼痛の診断キットを提供する。
[Diagnostic kit for neuropathic pain]
(First embodiment)
In one embodiment, the present invention provides a diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and a detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons. To do.
 本実施形態のキットは、上述した第1実施形態の神経障害性疼痛の検出方法に好適に用いることができる。具体的には、ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させた後、抗ヒトIgG抗体により患者由来のIgG抗体を検出すればよい。抗ヒトIgG抗体が、抗ヒトIgG2抗体であってもよい。 The kit of this embodiment can be suitably used for the method for detecting neuropathic pain of the first embodiment described above. Specifically, a patient-derived blood sample may be detected by anti-human IgG antibody after contacting a patient-derived blood sample with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal. The anti-human IgG antibody may be an anti-human IgG2 antibody.
 また、有髄後根神経節ニューロンの検出薬又は無髄後根神経節ニューロンの検出薬により、患者由来のIgG抗体が有髄後根神経節ニューロンに結合したか、無髄後根神経節ニューロンに結合したかを判断することができる。有髄後根神経節ニューロンの検出薬としては、抗S100β抗体が挙げられる。また、無髄後根神経節ニューロンの検出薬としては、イソレクチンB4が挙げられる。 In addition, a detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons caused the patient-derived IgG antibody to bind to myelinated dorsal root ganglion neurons, or unmyelinated dorsal root ganglion neurons. Can be determined. Anti-S100β antibody can be used as a detection agent for myelinated dorsal root ganglion neurons. Moreover, isolectin B4 is mentioned as a detection agent of an unmyelinated dorsal root ganglion neuron.
 小型無髄後根神経節ニューロンに対する自己抗体が検出された場合、当該患者は神経障害性疼痛患者であると判断することができる。 If autoantibodies against small unmyelinated dorsal root ganglion neurons are detected, it can be determined that the patient is a patient with neuropathic pain.
(第2実施形態)
 1実施形態において、本発明は、抗ヒトIgG抗体と、Plexin D1タンパク質と、を備える、神経障害性疼痛の診断キットを提供する。
(Second Embodiment)
In one embodiment, the present invention provides a diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and a Plexin D1 protein.
 本実施形態のキットによれば、例えば、ラテラルフローイムノアッセイ法、ELISA法、ウエスタンブロッティング法等により、患者由来の血液試料中に、Plexin D1タンパク質に対する自己抗体が存在するか否かを容易に検出することができる。 According to the kit of this embodiment, it is easily detected whether autoantibodies to Plexin D1 protein are present in a blood sample derived from a patient, for example, by a lateral flow immunoassay method, an ELISA method, a Western blotting method, or the like. be able to.
 より具体的には、例えば、Plexin D1タンパク質を固定した固相に、患者由来の血液試料を反応させた後、Plexin D1タンパク質に結合した自己抗体を抗ヒトIgG抗体で検出することにより、自己抗体の存在を検出することができる。 More specifically, for example, after reacting a blood sample derived from a patient with a solid phase on which Plexin D1 protein is immobilized, autoantibodies bound to Plexin D1 protein are detected with anti-human IgG antibodies, thereby autoantibodies. The presence of can be detected.
 本実施形態のキットにおいて、Plexin D1タンパク質としては、Plexin D1タンパク質の全長を用いてもよいし、Plexin D1タンパク質の細胞外ドメインを用いてもよいし、自己抗体の検出に有効なPlexin D1タンパク質のエピトープ部を特定し、より短い部分ペプチドを用いてもよい。Plexin D1タンパク質としては、例えば、実施例において後述する組換えヒトPlexin D1タンパク質(型式「4160-PD」、R&Dシステムズ社、アミノ酸配列を配列番号8に示す。)等を用いることができる。 In the kit of this embodiment, as the Plexin D1 protein, the full length of the Plexin D1 protein may be used, the extracellular domain of the Plexin D1 protein may be used, or the Plexin D1 protein effective for detecting autoantibodies. An epitope part is specified, and a shorter partial peptide may be used. As the Plexin D1 protein, for example, a recombinant human Plexin D1 protein (model “4160-PD”, R & D Systems, the amino acid sequence is shown in SEQ ID NO: 8) described later in Examples can be used.
 Plexin D1タンパク質に対する自己抗体が検出された場合、当該患者は神経障害性疼痛患者であると判断することができる。上記の抗ヒトIgG抗体は、抗ヒトIgG2抗体であってもよい。 When an autoantibody against Plexin D1 protein is detected, it can be determined that the patient is a neuropathic pain patient. The anti-human IgG antibody may be an anti-human IgG2 antibody.
[その他の実施形態]
 1実施形態において、本発明は、患者の神経障害性疼痛の診断及び治療を行う方法であって、前記患者から血液試料を採取することと、前記血液試料中に小型無髄後根神経節ニューロンに対する自己抗体が存在するか否かを検出することと、前記自己抗体が存在した場合に、前記患者は神経障害性疼痛であると診断することと、神経障害性疼痛であると診断された場合に、前記患者に、有効量の、副腎皮質ステロイド薬、免疫抑制剤、SCN9A阻害剤、SCN10A阻害剤、P2X3受容体アンタゴニストからなる群より選択される薬物を投与するか、又は、大量免疫グロブリン療法若しくは血漿交換療法を実施することを含む、方法を提供する。
[Other Embodiments]
In one embodiment, the present invention is a method for diagnosing and treating neuropathic pain in a patient, comprising collecting a blood sample from the patient, and a small unmyelinated dorsal root ganglion neuron in the blood sample. Detecting whether there is an autoantibody against, and diagnosing that the patient is neuropathic pain and having been diagnosed with neuropathic pain when the autoantibody is present In addition, the patient is administered an effective amount of a drug selected from the group consisting of corticosteroids, immunosuppressants, SCN9A inhibitors, SCN10A inhibitors, P2X3 receptor antagonists, or massive immunoglobulin therapy Alternatively, a method is provided comprising performing plasma exchange therapy.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[実験例1]
(血液試料の採取)
 神経障害性疼痛を有する患者から血液試料を採取した。神経障害性疼痛を有する患者としては、国際疼痛学会が提唱する神経障害性疼痛の診断基準(Finnerup N. B., et al., Neuropathic pain: an updated grading system for research and clinical practice., Pain, vol. 157 (8), 1599-1606, 2016.)において、probable及びdefiniteの基準を満たす110名の患者を対象とした。
[Experimental Example 1]
(Collection of blood sample)
Blood samples were collected from patients with neuropathic pain. For patients with neuropathic pain, the diagnostic criteria for neuropathic pain proposed by the International Pain Society (Finnerup NB, et al., Neuropathic pain: an updated grading system for research and clinical practice., Pain, vol. 157 (8), 1599-1606, 2016.), 110 patients who met the probable and define criteria were included.
 神経障害性疼痛を有する患者の内訳は、アトピー性脊髄炎患者22名、視神経脊髄炎(NMOSD)患者17名、再発寛解型多発性硬化症(RRMS)患者15名、慢性炎症性脱髄性多発神経炎(CIDP)患者14名、脊髄根末梢神経炎を有するシェーグレン症候群患者10名、神経サルコイドーシス患者10名、チャーグストラウス患者6名、脊髄炎と末梢神経炎を有する全身性エリテマトーデス(SLE)患者4名、神経ベーチェット病(nBD)患者3名、肢端紅痛症患者2名、薬物誘導性ニューロパチー患者2名、ビタミン欠乏性ニューロパチー患者2名、抗SGPG抗体陽性ニューロパチー患者1名、ギラン・バレー症候群患者1名、クリオグロブリン血症患者1名であった。 The breakdown of patients with neuropathic pain is 22 patients with atopic myelitis, 17 patients with optic neuromyelitis (NMOSD), 15 patients with relapsing-remitting multiple sclerosis (RRMS), multiple chronic inflammatory demyelinating 14 patients with neuritis (CIDP), 10 patients with Sjogren's syndrome with spinal root peripheral neuritis, 10 patients with neurosarcoidosis, 6 patients with Churg Strauss, patients with systemic lupus erythematosus (SLE) with myelitis and peripheral neuritis 4 patients, 3 patients with neuro-Behcet's disease (nBD), 2 patients with acromegaly, 2 patients with drug-induced neuropathy, 2 patients with vitamin deficiency neuropathy, 1 patient with neuropathy positive for anti-SGPG antibody, Guillain Valley There were 1 syndrome patient and 1 cryoglobulinemia patient.
 また、対照として、健常人及び神経障害性疼痛のない患者(合計50名)からも血液試料を採取した。50名の内訳は、健常人20名、神経変性疾患患者20名(うち、6名は筋萎縮性側索硬化症であり、4名は多系統萎縮症であり、3名は脊髄小脳変性症であり、2名はパーキンソン病であり、2名は正常圧水頭症であり、1名はアルツハイマー病であり、1名は認知症であり、1名は大脳皮質基底核変性症であった。)、コラーゲン血管疾患患者10名(うち、4名が全身性エリテマトーデスであり、4名がベーチェット病であり、2名がシェーグレン症候群であった。)であった。 As controls, blood samples were also collected from healthy individuals and patients without neuropathic pain (total of 50 patients). The breakdown of 50 is 20 healthy individuals, 20 patients with neurodegenerative diseases (of which 6 are amyotrophic lateral sclerosis, 4 are multisystem atrophy, and 3 are spinocerebellar degeneration) 2 had Parkinson's disease, 2 had normal pressure hydrocephalus, 1 had Alzheimer's disease, 1 had dementia, and 1 had basal ganglia degeneration. ), 10 patients with collagen vascular disease (of which 4 were systemic lupus erythematosus, 4 were Behcet's disease, and 2 were Sjogren's syndrome).
[実験例2]
(後根神経節ニューロンに対する自己抗体の検出)
 マウス後根神経節(Dorsal root ganglion、DRG)の組織切片及びマウス脊髄(spinal cord、SC)の組織切片を用いて、実験例1で採取した血液試料中の、後根神経節ニューロンに対する自己抗体を検出した。
[Experiment 2]
(Detection of autoantibodies against dorsal root ganglion neurons)
Autoantibodies against dorsal root ganglion neurons in blood samples collected in Experimental Example 1 using tissue sections of mouse dorsal root ganglion (DRG) and mouse spinal cord (spinal cord, SC) Was detected.
《組織切片の調製》
 8~10週齢の雄のC57BL/6マウスに麻酔をかけた。続いて、リン酸緩衝生理食塩水(Phosphate buffered saline、PBS)で潅流した。続いて、4%のパラホルムアルデヒドで潅流固定を行った。続いて、腰髄レベル(L4-L6)の脊髄と後根神経節を摘出し、各組織を10%のホルムアルデヒドで固定した。続いて、各組織をパラフィン包埋し、4μm厚の組織切片を作製し、スライドガラスに張り付けた。
<Preparation of tissue section>
8-10 week old male C57BL / 6 mice were anesthetized. Subsequently, it was perfused with phosphate buffered saline (PBS). Subsequently, perfusion fixation was performed with 4% paraformaldehyde. Subsequently, the spinal cord and dorsal root ganglia at the lumbar spinal level (L4-L6) were removed, and each tissue was fixed with 10% formaldehyde. Subsequently, each tissue was embedded in paraffin, a 4 μm-thick tissue section was prepared, and attached to a glass slide.
《血液試料との反応》
 調製した組織切片をキシレンに5分間浸漬することを3回繰り返し、脱パラフィンした。続いて、組織切片を100%のエタノールに5分間浸漬することを2回繰り返し、水和させた。続いて、抗原賦活化処理を行った。具体的には、組織切片をクエン酸バッファー(pH6.0)中で120℃、10分間煮沸し、室温で15分かけて徐冷し、PBSで5分間の洗浄を2回行った。
<Reaction with blood sample>
The prepared tissue section was immersed in xylene for 5 minutes three times to deparaffinize. Subsequently, immersing the tissue section in 100% ethanol for 5 minutes was repeated twice and hydrated. Subsequently, antigen activation treatment was performed. Specifically, the tissue sections were boiled in citrate buffer (pH 6.0) at 120 ° C. for 10 minutes, slowly cooled at room temperature over 15 minutes, and washed twice with PBS for 5 minutes.
 続いて、組織切片に10%ヤギ血清/PBSを接触させて室温で30分間静置し、ブロッキングした。続いて、組織切片に、1次抗体として60倍希釈した血液試料(血清)を接触させて37℃で1時間静置し、抗原抗体反応を行った。続いて、PBSで5分間の洗浄を2回行った。 Subsequently, 10% goat serum / PBS was brought into contact with the tissue section and allowed to stand at room temperature for 30 minutes for blocking. Subsequently, a 60-fold diluted blood sample (serum) as a primary antibody was brought into contact with the tissue section and left at 37 ° C. for 1 hour to carry out an antigen-antibody reaction. Subsequently, the plate was washed twice with PBS for 5 minutes.
 続いて、組織切片に500倍希釈した2次抗体(Alexa488標識抗ヒトIgG抗体、サーモフィッシャーサイエンティフィック社)を接触させて室温で1時間静置し、抗原抗体反応を行った。続いて、PBSで5分間の洗浄を2回行った。 Subsequently, a secondary antibody (Alexa 488-labeled anti-human IgG antibody, Thermo Fisher Scientific) diluted 500-fold was brought into contact with the tissue section and allowed to stand at room temperature for 1 hour to carry out an antigen-antibody reaction. Subsequently, the plate was washed twice with PBS for 5 minutes.
 続いて、組織切片を封入し、共焦点レーザ顕微鏡(型式「LSM510」、カールツァイス社)で観察した。その結果、健常者由来の血清には、マウス後根神経節の組織切片やマウス脊髄の組織切片に反応する自己抗体がほとんど存在しないことが明らかとなった。 Subsequently, the tissue section was sealed and observed with a confocal laser microscope (model “LSM510”, Carl Zeiss). As a result, it was clarified that the serum derived from healthy subjects hardly contains autoantibodies that react with tissue sections of mouse dorsal root ganglia and mouse spinal cord.
 一方、神経障害性疼痛を有する110名の患者由来の血清のうち、11名の患者由来の血清が、マウス後根神経節の組織切片の小型無髄後根神経節ニューロン及び脊髄後角に存在するその神経終末に反応する自己抗体を含んでいたことが明らかとなった。 On the other hand, sera from 110 patients out of 110 patients with neuropathic pain are present in small unmyelinated dorsal root ganglion neurons and spinal dorsal horns of tissue sections of mouse dorsal root ganglia It was revealed that it contained autoantibodies that responded to its nerve endings.
 図1(a)は、対照血清を反応させたマウス後根神経節の組織切片の結果を示す代表的な蛍光顕微鏡写真である。スケールバーは50μmを示す。また、図1(b)~(f)は、神経障害性疼痛を有する患者(それぞれ、症例1~5)由来の血清を反応させたマウス後根神経節の組織切片のうち、自己抗体が検出された代表的な結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。 FIG. 1 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with a control serum. The scale bar indicates 50 μm. 1 (b)-(f) show autoantibodies detected in tissue sections of mouse dorsal root ganglia reacted with serum from patients with neuropathic pain (cases 1-5, respectively). It is the fluorescence micrograph which shows the typical result done. The scale bar indicates 50 μm.
 また、図2(a)は、図1(a)と同じ健常者由来の血清を反応させたマウス脊髄の組織切片の結果を示す代表的な蛍光顕微鏡写真である。スケールバーは50μmを示す。図2(b)は図2(a)と同じ試料を高倍率で撮影した蛍光顕微鏡写真である。スケールバーは50μmを示す。 FIG. 2 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse spinal cord reacted with serum from the same healthy person as in FIG. 1 (a). The scale bar indicates 50 μm. FIG. 2 (b) is a fluorescence micrograph of the same sample as FIG. 2 (a) taken at high magnification. The scale bar indicates 50 μm.
 また、図2(c)は、図1(f)と同じ患者(症例5)由来の血清を反応させたマウス脊髄の組織切片の結果を示す代表的な蛍光顕微鏡写真である。スケールバーは50μmを示す。図2(d)は図2(c)と同じ試料を高倍率で撮影した蛍光顕微鏡写真である。スケールバーは50μmを示す。 FIG. 2 (c) is a representative fluorescence micrograph showing the result of a tissue section of a mouse spinal cord reacted with serum from the same patient (case 5) as in FIG. 1 (f). The scale bar indicates 50 μm. FIG. 2 (d) is a fluorescence micrograph of the same sample as FIG. 2 (c) taken at high magnification. The scale bar indicates 50 μm.
 以下、本実験例の方法を蛍光間接抗体法(tissue-based indirect immunofluorescence assay、IFA)という場合がある。 Hereinafter, the method of this experimental example may be referred to as a fluorescent indirect antibody method (tissue-based indirect immunofluorescence assay, IFA).
 下記表1に結果をまとめた。表1中、「NeP」は神経障害性疼痛を表し、「NS」は有意差がないことを表し、「IFA」は蛍光間接抗体法を表す。連続変数の比較にはマン・ホイットニーのU検定を用いた。また、NePを有する患者と有しない患者の間のカテゴリー間の変数の比較にはカイ二乗検定を用い、カイ二乗検定を適用できない場合にはフィッシャーの正確確率検定を用いた。 The results are summarized in Table 1 below. In Table 1, “NeP” represents neuropathic pain, “NS” represents no significant difference, and “IFA” represents the fluorescent indirect antibody method. Mann-Whitney U test was used for comparison of continuous variables. In addition, chi-square test was used for comparison of variables between categories between patients with and without NeP, and Fisher exact test was used when chi-square test could not be applied.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、下記表2に、マウス後根神経節の組織切片に反応する自己抗体を含んでいた11名の患者の臨床的特徴を示す。 In addition, Table 2 below shows the clinical characteristics of 11 patients who contained autoantibodies reactive to tissue sections of mouse dorsal root ganglia.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実験例3]
(後根神経節ニューロンに対する自己抗体のサブクラスの検討)
 実験例2において検出された、マウス後根神経節の組織切片に反応する自己抗体を含んでいた11名の患者由来の血清について、自己抗体のIgGサブクラスを検討した。
[Experiment 3]
(Examination of subclasses of autoantibodies against dorsal root ganglion neurons)
The IgG subclass of autoantibodies was examined for sera from 11 patients that contained autoantibodies reactive to tissue sections of mouse dorsal root ganglia detected in Experimental Example 2.
 具体的には、2次抗体反応において、ヒトIgG1、IgG2、IgG3、IgG4にそれぞれ特異的なFITC標識マウスモノクローナル抗体(シグマアルドリッチ社)を、それぞれ50倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。 Specifically, in the secondary antibody reaction, experimental examples except that FITC-labeled mouse monoclonal antibodies (Sigma Aldrich) specific for human IgG1, IgG2, IgG3, and IgG4 were respectively diluted 50 times and reacted. The same fluorescent indirect antibody method as 2 was performed.
 図3(a)~(d)は、それぞれ、IgG1、IgG2、IgG3、IgG4である自己抗体を検出した代表的な結果を示す代表的な蛍光顕微鏡写真である。スケールバーは50μmを示す。その結果、11名の患者由来の血清全てにおいて、自己抗体のIgGサブクラスがIgG2であることが明らかとなった。 3 (a) to 3 (d) are representative fluorescence micrographs showing typical results of detecting autoantibodies of IgG1, IgG2, IgG3, and IgG4, respectively. The scale bar indicates 50 μm. As a result, it was revealed that the IgG subclass of autoantibodies was IgG2 in all 11 patient-derived sera.
[実験例4]
(自己抗体が反応する後根神経節ニューロンのサブタイプの検討)
 実験例2において検出された、マウス後根神経節の組織切片に反応する11名の患者由来の自己抗体について、小型無髄後根神経節ニューロン(無髄C線維型後根神経節ニューロン)に選択的に結合するか否かを検討した。
[Experimental Example 4]
(Examination of subtypes of dorsal root ganglion neurons to which autoantibodies respond)
About the autoantibodies derived from 11 patients reacting to the tissue section of the mouse dorsal root ganglion detected in Experimental Example 2, small unmyelinated dorsal root ganglion neurons (unmyelinated C fiber type dorsal root ganglion neurons) Whether or not to selectively bind was examined.
《イソレクチンB4との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、非ペプチド性C線維型後根神経節ニューロンのマーカーであるイソレクチンB4(Isolectin GS-IB From Griffonia simplicifolia、 Alexa Fluor 594 Conjugate、サーモフィッシャーサイエンティフィック社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
<< Double staining with isolectin B4 >>
In the primary antibody reaction, in addition to patient serum diluted 60-fold, isolectin B4 (Iselectin GS-IB 4 From Griffinia simplicifolia, Alexa Fluor 594 Conjugate, thermofischer science, a marker of non-peptide C fiber type dorsal root ganglion neurons The fluorescent indirect antibody method was carried out in the same manner as in Experimental Example 2 except that the reaction was carried out after diluting 500 times.
 図4(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス後根神経節の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図4(b)は、図4(a)と同一の視野において、イソレクチンB4(IB4)の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図4(c)は、図4(a)及び図4(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体は、イソレクチンB4と共局在したことが明らかとなった。 FIG. 4 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum from a patient with neuropathic pain. FIG. 4 (b) is a representative fluorescence micrograph showing the result of detecting the binding of isolectin B4 (IB4) in the same field of view as FIG. 4 (a). FIG. 4C is a merged photograph of FIGS. 4A and 4B. The scale bar indicates 50 μm. As a result, it was revealed that patient-derived autoantibodies colocalized with isolectin B4.
《抗CGRP抗体との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、ペプチド性C線維型後根神経節ニューロンのマーカーであるカルシトニン遺伝子関連ペプチド(calcitonin gene-related peptide、CGRP)に対する抗体(ウサギポリクローナル抗体、矢内原研究所)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
《Double staining with anti-CGRP antibody》
In the primary antibody reaction, in addition to patient serum diluted 60-fold, an antibody against a calcitonin gene-related peptide (CGRP) that is a marker of peptidic C-fiber dorsal root ganglion neurons (rabbit polyclonal antibody, Yauchihara) The indirect fluorescent antibody method was performed in the same manner as in Experimental Example 2 except that the laboratory was diluted 500 times and reacted.
 図5(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス後根神経節の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図5(b)は、図5(a)と同一の視野において、抗CGRP抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図5(c)は、図5(a)及び図5(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体は、CGRPと一部のみ共局在したことが明らかとなった。 FIG. 5 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain. FIG. 5 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-CGRP antibody in the same field of view as FIG. 5 (a). FIG. 5C is a merged photograph of FIGS. 5A and 5B. The scale bar indicates 50 μm. As a result, it was revealed that patient-derived autoantibodies colocalized only partly with CGRP.
《抗S100β抗体との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、有髄神経線維である、Aβ線維型後根神経節ニューロン及びAδ線維型後根神経節ニューロン、並びにサテライトグリア細胞のマーカーであるS100βに対する抗体(ウサギポリクローナル抗体、アブカム社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
<< Double staining with anti-S100β antibody >>
In the primary antibody reaction, in addition to patient serum diluted 60 times, the myelinated nerve fibers, Aβ fiber type dorsal root ganglion neurons and Aδ fiber type dorsal root ganglion neurons, and S100β which is a marker of satellite glial cells A fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except that the antibody (rabbit polyclonal antibody, Abcam) was diluted 500 times and reacted.
 図6(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス後根神経節の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図6(b)は、図6(a)と同一の視野において、抗S100β抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図6(c)は、図6(a)及び図6(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体は、S100βと共局在しないことが明らかとなった。 FIG. 6 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain. FIG. 6 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-S100β antibody in the same field of view as FIG. 6 (a). FIG. 6C is a merged photograph of FIGS. 6A and 6B. The scale bar indicates 50 μm. As a result, it was revealed that patient-derived autoantibodies do not colocalize with S100β.
《抗TRPV1抗体との二重染色》
 以上の結果から、神経障害性疼痛を有する患者由来の自己抗体は、小型無髄後根神経節ニューロンに特異的に結合することが明らかとなった。
<< Double staining with anti-TRPV1 antibody >>
From the above results, it was revealed that autoantibodies derived from patients with neuropathic pain specifically bind to small unmyelinated dorsal root ganglion neurons.
 そこで、1次抗体反応において、60倍希釈した患者血清に加え、痛みの知覚に関与することが知られているtransient receptor potential vanilloid 1(TRPV1)に対する抗体(ウサギポリクローナル抗体)を1,000倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。 Therefore, in the primary antibody reaction, in addition to patient serum diluted 60 times, an antibody (rabbit polyclonal antibody) against transient receptor potential vanilloid 1 (TRPV1), which is known to be involved in pain perception, was diluted 1,000 times. Then, the fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except that the reaction was performed.
 図7(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス後根神経節の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図7(b)は、図7(a)と同一の視野において、抗TRPV1抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図7(c)は、図7(a)及び図7(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体の一部は、TRPV1陽性の後根神経節ニューロンと反応したことが明らかとなった。この結果は、患者由来の自己抗体が、神経障害性疼痛と関連することを更に支持するものである。 FIG. 7 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain. FIG. 7 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-TRPV1 antibody in the same field of view as FIG. 7 (a). FIG. 7C is a merged photograph of FIGS. 7A and 7B. The scale bar indicates 50 μm. As a result, it was revealed that some of the patient-derived autoantibodies reacted with TRPV1-positive dorsal root ganglion neurons. This result further supports that patient-derived autoantibodies are associated with neuropathic pain.
《抗P2X3抗体との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、痛みの知覚に関与することが知られているP2X purinoceptor 3(P2X3)に対する抗体(ウサギポリクローナル抗体、アブカム社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
<< Double staining with anti-P2X3 antibody >>
In the primary antibody reaction, in addition to patient serum diluted 60 times, antibody (rabbit polyclonal antibody, Abcam) against P2X purinoceptor 3 (P2X3), which is known to be involved in pain perception, was diluted 500 times and reacted. The fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except for the points described above.
 図8(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス後根神経節の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図8(b)は、図8(a)と同一の視野において、抗P2X3抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図8(c)は、図8(a)及び図8(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体は、主にP2X3陽性後根神経節ニューロンと反応したことが明らかとなった。この結果は、患者由来の自己抗体が、神経障害性疼痛と関連することを更に支持するものである。 FIG. 8 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal root ganglion reacted with serum derived from a patient with neuropathic pain. FIG. 8 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-P2X3 antibody in the same field of view as FIG. 8 (a). FIG. 8C is a merged photograph of FIGS. 8A and 8B. The scale bar indicates 50 μm. As a result, it was revealed that patient-derived autoantibodies mainly reacted with P2X3-positive dorsal root ganglion neurons. This result further supports that patient-derived autoantibodies are associated with neuropathic pain.
[実験例5]
(背側脊髄の組織切片に対する自己抗体の反応性の検討)
 実験例2において検出された、マウス後根神経節の組織切片に反応する11名の患者由来の自己抗体について、マウス背側脊髄の組織切片への反応性を検討した。
[Experimental Example 5]
(Examination of autoantibody reactivity to dorsal spinal cord tissue sections)
Regarding the autoantibodies derived from 11 patients reacting with the tissue section of the mouse dorsal root ganglion detected in Experimental Example 2, the reactivity of the mouse dorsal spinal cord with the tissue section was examined.
《抗CGRP抗体との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、ペプチド性C線維型後根神経節ニューロンのマーカーであるカルシトニン遺伝子関連ペプチド(calcitonin gene-related peptide、CGRP)に対する抗体(ウサギポリクローナル抗体、矢内原研究所)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
《Double staining with anti-CGRP antibody》
In the primary antibody reaction, in addition to patient serum diluted 60-fold, an antibody against a calcitonin gene-related peptide (CGRP) that is a marker of peptidic C-fiber dorsal root ganglion neurons (rabbit polyclonal antibody, Yauchihara) The indirect fluorescent antibody method was performed in the same manner as in Experimental Example 2 except that the laboratory was diluted 500 times and reacted.
 図9(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス背側脊髄の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図4(b)は、図4(a)と同一の視野において、抗CGRP抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図4(c)は、図4(a)及び図4(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体の一部は、脊髄後角第I層及び第IIo層に位置するCGRP陽性の軸索末端と反応したことが明らかとなった。 FIG. 9 (a) is a representative fluorescence micrograph showing the result of a tissue section of the mouse dorsal spinal cord reacted with serum from a patient with neuropathic pain. FIG. 4B is a representative fluorescence micrograph showing the result of detecting the binding of the anti-CGRP antibody in the same field of view as FIG. FIG. 4C is a merged photograph of FIGS. 4A and 4B. The scale bar indicates 50 μm. As a result, it was revealed that some of the patient-derived autoantibodies reacted with CGRP-positive axon terminals located in the dorsal horn layer I and IIo layers of the spinal cord.
《イソレクチンB4との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、非ペプチド性C線維型後根神経節ニューロンのマーカーであるイソレクチンB4(Isolectin GS-IB From Griffonia simplicifolia、 Alexa Fluor 594 Conjugate、サーモフィッシャーサイエンティフィック社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
<< Double staining with isolectin B4 >>
In the primary antibody reaction, in addition to patient serum diluted 60-fold, isolectin B4 (Iselectin GS-IB 4 From Griffinia simplicifolia, Alexa Fluor 594 Conjugate, thermofischer science, a marker of non-peptide C fiber type dorsal root ganglion neurons The fluorescent indirect antibody method was carried out in the same manner as in Experimental Example 2 except that the reaction was carried out after diluting 500 times.
 図10(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス背側脊髄の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図10(b)は、図10(a)と同一の視野において、イソレクチンB4の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図10(c)は、図10(a)及び図10(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体の多くは、脊髄後角第IIi層に位置するイソレクチンB4染色性の軸索末端と反応したことが明らかとなった。 FIG. 10 (a) is a representative fluorescence micrograph showing the result of a tissue section of a mouse dorsal spinal cord reacted with serum from a patient having neuropathic pain. FIG. 10 (b) is a representative fluorescence micrograph showing the result of detecting the binding of isolectin B4 in the same field of view as FIG. 10 (a). FIG. 10C is a merged photograph of FIGS. 10A and 10B. The scale bar indicates 50 μm. As a result, it was revealed that many of the autoantibodies derived from patients reacted with isolectin B4 staining axon terminals located in the spinal cord dorsal horn IIi layer.
《抗PKCγ抗体との二重染色》
 1次抗体反応において、60倍希釈した患者血清に加え、抗PKCγ抗体(ウサギポリクローナル抗体、サンタクルーズ社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。
《Double staining with anti-PKCγ antibody》
In the primary antibody reaction, in addition to the patient serum diluted 60 times, the fluorescent indirect antibody method similar to Experimental Example 2 was used except that the anti-PKCγ antibody (rabbit polyclonal antibody, Santa Cruz) was diluted 500 times and reacted. went.
 図11(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウス背側脊髄の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図11(b)は、図11(a)と同一の視野において、抗PKCγ抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図11(c)は、図11(a)及び図11(b)の写真をマージしたものである。スケールバーは50μmを示す。 FIG. 11 (a) is a representative fluorescence micrograph showing the result of a tissue section of the mouse dorsal spinal cord reacted with serum from a patient with neuropathic pain. FIG. 11 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-PKCγ antibody in the same field of view as FIG. 11 (a). FIG. 11C is a merged photograph of FIGS. 11A and 11B. The scale bar indicates 50 μm.
 その結果、患者由来の自己抗体の大部分は、腹部側の脊髄後角第IIi層及び脊髄後角第III層に位置するPKCγ陽性のバンドとは重複せず、より背側に反応したことが明らかとなった。 As a result, the majority of patient-derived autoantibodies did not overlap with the PKCγ positive bands located in the dorsal horn IIi layer and the dorsal horn III layer on the abdominal side, and reacted more to the dorsal side. It became clear.
 以上の結果は、患者由来の自己抗体の結合が、C線維型求心性神経の軸索末端が位置する脊髄後角第I層及び第IIo層に限られていることを示す。 The above results indicate that the binding of patient-derived autoantibodies is restricted to the dorsal horn layer I and IIo of the spinal cord where the axonal terminal of the C-fiber afferent nerve is located.
[実験例6]
(自己抗体の節後自律神経C線維への反応性の検討)
 実験例2において検出された、マウス後根神経節の組織切片に反応する11名の患者由来の自己抗体について、節後自律神経C線維への反応性を検討した。
[Experimental Example 6]
(Examination of reactivity of autoantibodies to post-node autonomic nerve C fibers)
The reactivity of the autoantibodies derived from 11 patients reacting with the tissue section of the mouse dorsal root ganglion detected in Experimental Example 2 was examined for the reactivity to the autonomic nerve C fibers after the node.
 自律神経C線維は真皮(皮膚の内層)に存在し、一般的な神経線維マーカーであるprotein gene product 9.5(PGP9.5)と類似の分布パターンを示す。 The autonomic nerve C fiber is present in the dermis (inner layer of the skin) and shows a distribution pattern similar to protein gene product 9.5 (PGP 9.5), which is a general nerve fiber marker.
 まず、患者由来の自己抗体の後足足底の皮膚における結合パターンを検討した。図12(a)は、マウスの後足足底の皮膚の組織切片のヘマトキシリン・エオジン染色の結果を示す光学顕微鏡写真である。スケールバーは50μmを示す。図12(a)中、「dermis」は真皮を示し、「epidermis」は表皮を示す。 First, the binding pattern in the skin of the hind foot soles of patient-derived autoantibodies was examined. FIG. 12 (a) is an optical micrograph showing the result of hematoxylin-eosin staining of a tissue section of the skin of the hind foot sole of a mouse. The scale bar indicates 50 μm. In FIG. 12A, “dermis” indicates the dermis and “epidermis” indicates the epidermis.
 図12(b)は、対照血清の免疫染色の結果を示す代表的な蛍光顕微鏡写真である。1次抗体反応において、60倍希釈した対照血清に加え、抗PGP9.5抗体(ウサギポリクローナル抗体、アブカム社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。また、4’,6-ジアミジノ-2-フェニルインドール(DAPI)で核を染色した。スケールバーは50μmを示す。また、左下の枠内に矢印部分の拡大写真を示す。その結果、対照血清はマウス皮膚と反応性を示さなかった。 FIG. 12 (b) is a representative fluorescence micrograph showing the result of immunostaining of the control serum. In the primary antibody reaction, the fluorescent indirect antibody method similar to Experimental Example 2 except that the anti-PGP9.5 antibody (rabbit polyclonal antibody, Abcam) was diluted 500-fold in addition to the control serum diluted 60-fold. Went. In addition, nuclei were stained with 4 ', 6-diamidino-2-phenylindole (DAPI). The scale bar indicates 50 μm. An enlarged photograph of the arrow is shown in the lower left frame. As a result, the control serum was not reactive with mouse skin.
 図12(c)は、患者由来の自己抗体の免疫染色の結果を示す代表的な蛍光顕微鏡写真である。1次抗体反応において、60倍希釈した患者血清に加え、抗PGP9.5抗体(ウサギポリクローナル抗体、アブカム社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。また、DAPIで核を染色した。スケールバーは50μmを示す。また、左下の枠内に矢印部分の拡大写真を示す。その結果、患者由来の自己抗体は、表皮及びPGP9.5陽性の皮膚神経線維に結合したことが明らかとなった。 FIG. 12 (c) is a representative fluorescence micrograph showing the results of immunostaining of patient-derived autoantibodies. In the primary antibody reaction, the fluorescent indirect antibody method similar to Experimental Example 2 except that the anti-PGP9.5 antibody (rabbit polyclonal antibody, Abcam) was diluted 500-fold in addition to the patient serum diluted 60-fold. Went. Also, nuclei were stained with DAPI. The scale bar indicates 50 μm. An enlarged photograph of the arrow is shown in the lower left frame. As a result, it was revealed that patient-derived autoantibodies bound to the epidermis and PGP9.5 positive skin nerve fibers.
《抗TH抗体との二重染色》
 続いて、マウスの後足足底の皮膚の組織切片に対し、患者由来の自己抗体が結合する自律神経線維を同定するために、交感神経のマーカーであるチロシンヒドロキシラーゼ(TH)に対する抗体との二重染色を行った。
《Double staining with anti-TH antibody》
Subsequently, in order to identify the autonomic nerve fiber to which the autoantibody derived from the patient binds to the tissue section of the skin of the hind foot sole of the mouse, the antibody against tyrosine hydroxylase (TH), which is a sympathetic nerve marker, is used. Double staining was performed.
 1次抗体反応において、60倍希釈した患者血清に加え、抗TH抗体(ウサギポリクローナル抗体、アブカム社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。また、DAPIで核を染色した。 In the primary antibody reaction, the fluorescent indirect antibody method was performed in the same manner as in Experimental Example 2 except that the anti-TH antibody (rabbit polyclonal antibody, Abcam) was diluted 500 times and reacted in addition to patient serum diluted 60 times. It was. Also, nuclei were stained with DAPI.
 図13(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウスの後足足底の皮膚の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図13(b)は、図13(a)と同一の視野において、抗TH抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図13(c)は、図13(a)及び図13(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体は、TH陽性の神経線維を染色しないことが明らかとなった。 FIG. 13 (a) is a representative fluorescence micrograph showing the result of the tissue section of the skin of the hind paw plantar of the mouse reacted with serum derived from a patient with neuropathic pain. FIG. 13 (b) is a representative fluorescence micrograph showing the result of detecting anti-TH antibody binding in the same field of view as FIG. 13 (a). FIG. 13C is a merged photograph of FIGS. 13A and 13B. The scale bar indicates 50 μm. As a result, it was revealed that patient-derived autoantibodies do not stain TH-positive nerve fibers.
《抗VIP抗体との二重染色》
 続いて、マウスの後足足底の皮膚の組織切片に対し、副交感神経のマーカーであるvasoactive intestinal peptide(VIP)に対する抗体との二重染色を行った。
<< Double staining with anti-VIP antibody >>
Subsequently, double staining with an antibody against vasoactive intestinal peptide (VIP), which is a parasympathetic nerve marker, was performed on a tissue section of the skin of the hind foot sole of the mouse.
 1次抗体反応において、60倍希釈した患者血清に加え、抗VIP抗体(ウサギポリクローナル抗体、イムノスター社)を500倍希釈して反応させた点以外は実験例2と同様の蛍光間接抗体法を行った。また、DAPIで核を染色した。 In the primary antibody reaction, the fluorescent indirect antibody method similar to Experimental Example 2 was used except that the anti-VIP antibody (rabbit polyclonal antibody, Immunostar) was diluted 500 times and reacted in addition to 60-fold diluted patient serum. went. Also, nuclei were stained with DAPI.
 図14(a)は、神経障害性疼痛を有する患者由来の血清を反応させたマウスの後足足底の皮膚の組織切片の結果を示す代表的な蛍光顕微鏡写真である。図14(b)は、図14(a)と同一の視野において、抗VIP抗体の結合を検出した結果を示す代表的な蛍光顕微鏡写真である。図14(c)は、図14(a)及び図14(b)の写真をマージしたものである。スケールバーは50μmを示す。その結果、患者由来の自己抗体は、VIP陽性の神経線維と共局在したことが明らかとなった。 FIG. 14 (a) is a representative fluorescence micrograph showing the result of a tissue section of the skin of the hind paw foot of a mouse reacted with serum derived from a patient with neuropathic pain. FIG. 14 (b) is a representative fluorescence micrograph showing the result of detecting the binding of anti-VIP antibody in the same field of view as FIG. 14 (a). FIG. 14C is a merged photograph of FIGS. 14A and 14B. The scale bar indicates 50 μm. As a result, it was revealed that patient-derived autoantibodies colocalized with VIP-positive nerve fibers.
 以上の結果から、神経障害性疼痛を有する患者由来の自己抗体が、節後自律神経である副交感神経C線維にも反応することが明らかとなった。 From the above results, it has been clarified that autoantibodies derived from patients with neuropathic pain also react to parasympathetic nerve C fibers, which are post-node autonomic nerves.
[実験例7]
(自己抗体が反応するタンパク質の同定)
 10~12週齢の雄のC57BL/6マウスの腰椎後根神経節を採取し、直ちに液体窒素中で凍結した。続いて、凍結した組織を、TritonX-100を終濃度1%となるように添加したRIPAバッファー(ナカライテスク社)中でホモジナイズした。続いて、4℃で10,000×g、30分間遠心して上清を回収し、マウス後根神経節由来タンパク質抽出液とした。
[Experimental Example 7]
(Identification of proteins to which autoantibodies react)
Lumbar dorsal root ganglia of 10-12 week old male C57BL / 6 mice were collected and immediately frozen in liquid nitrogen. Subsequently, the frozen tissue was homogenized in RIPA buffer (Nacalai Tesque) supplemented with Triton X-100 to a final concentration of 1%. Subsequently, the supernatant was collected by centrifugation at 10,000 × g for 30 minutes at 4 ° C. to obtain a mouse dorsal root ganglion-derived protein extract.
 続いて、マウス後根神経節由来タンパク質抽出液をウエスタンブロッティングに供し、マウス後根神経節の組織切片に反応する患者由来自己抗体で検出した結果、11名の患者のうち10名の患者由来自己抗体で共通の免疫反応性を有するバンドが検出された。当該バンドの分子量は約220kDaであった。一方、神経障害性疼痛を有しない患者由来血清及び健常人由来血清で検出した結果、免疫反応性を有するバンドは検出されなかった。 Subsequently, the mouse dorsal root ganglion-derived protein extract was subjected to Western blotting, and as a result of detection with a patient-derived autoantibody that reacted with tissue sections of the mouse dorsal root ganglion, 10 patients out of 11 patients A band having a common immunoreactivity with the antibody was detected. The molecular weight of the band was about 220 kDa. On the other hand, as a result of detection with serum derived from a patient not having neuropathic pain and serum derived from a healthy person, no band having immunoreactivity was detected.
 図15(a)はウエスタンブロッティングの結果を示す写真である。図15(a)中、「IFA positive」は蛍光間接抗体法の結果陽性であったことを表し、「IFA negative」は蛍光間接抗体法の結果陰性であったことを表し、「NeP Pt.1、2、5、6、9、11」は、それぞれ、神経障害性疼痛を有する患者1、2、5、6、9、11を表し、「HC」は健常人を表す。また、線で囲んだバンドは11名の患者のうち10名の患者由来自己抗体で共通に検出されたバンドである。 FIG. 15 (a) is a photograph showing the result of Western blotting. In FIG. 15 (a), “IFA positive” indicates that the result of the fluorescent indirect antibody method is positive, “IFA negative” indicates that the result of the fluorescent indirect antibody method is negative, and “NeP Pt.1”. 2, 5, 6, 9, 11 "represent patients 1, 2, 5, 6, 9, 11 with neuropathic pain, respectively, and" HC "represents a healthy person. Moreover, the band enclosed with the line is a band detected in common by 10 patient-derived autoantibodies out of 11 patients.
《免疫沈降、ポリアクリルアミドゲル電気泳動及び銀染色》
 患者血清から、Protein G HP SpinTrap(GEヘルスケアバイオサイエンス社)を用いてIgGサブクラス全4種類の血清IgGを精製した。
<< Immunoprecipitation, polyacrylamide gel electrophoresis and silver staining >>
From the patient sera, four IgG subclasses of IgG were purified using Protein G HP SpinTrap (GE Healthcare Bioscience).
 また、1mg/mLに希釈したマウス後根神経節由来タンパク質抽出液300μLと、0.1mgのFG beads-Protein G beads(多摩川精機)を4℃で15分間インキュベーションした。続いて、磁気分離を行い、タンパク質抽出液中の非特異的なProtein G吸着物を除去し、粗精製した。 Also, 300 μL of mouse dorsal root ganglion-derived protein extract diluted to 1 mg / mL and 0.1 mg of FG beads-Protein G beads (Tamakawa Seiki) were incubated at 4 ° C. for 15 minutes. Subsequently, magnetic separation was performed to remove non-specific protein G adsorbate in the protein extract and crude purification was performed.
 続いて、粗精製したタンパク質抽出液300μLに血清IgG 3μgを加え、4℃で1時間インキュベーションし抗原抗体反応を起こさせた。 Subsequently, 3 μg of serum IgG was added to 300 μL of the crudely purified protein extract and incubated at 4 ° C. for 1 hour to cause an antigen-antibody reaction.
 続いて、0.1mgのFG beads-Protein G beads(多摩川精機)に上記のタンパク質-血清IgG反応液240μLを添加し、分散させた。続いて、ローテーターで攪拌しながら4℃で2時間インキュベーションし、ビーズとIgGとの結合反応を行った。 Subsequently, 240 μL of the above protein-serum IgG reaction solution was added to 0.1 mg of FG beads-Protein G beads (Tamakawa Seiki) and dispersed. Subsequently, the mixture was incubated at 4 ° C. for 2 hours while stirring with a rotator to perform a binding reaction between the beads and IgG.
 続いて、磁気分離を行い、上清を除去した後に、200μLの150mM KClバッファー(150mM KCl、20mM HEPES-NaOH、1mM MgCl、0.2mM CaCl、0.2mM EDTA、10%(v/v)グリセロール、0.1%NP-40、0.2mM PMSF)で計3回ビーズを洗浄した。 Subsequently, after performing magnetic separation and removing the supernatant, 200 μL of 150 mM KCl buffer (150 mM KCl, 20 mM HEPES-NaOH, 1 mM MgCl 2 , 0.2 mM CaCl 2 , 0.2 mM EDTA, 10% (v / v The beads were washed a total of 3 times with glycerol, 0.1% NP-40, 0.2 mM PMSF).
 続いて、40μLの1×Dye(4×Dye:0.25M Tris-HCl、8%SDS、40%グリセロール、20%2-メルカプトエタノール、0.002%BPB)を加えて分散させた後に、98℃で5分間インキュベーションした。 Subsequently, 40 μL of 1 × Dye (4 × Dye: 0.25 M Tris-HCl, 8% SDS, 40% glycerol, 20% 2-mercaptoethanol, 0.002% BPB) was added and dispersed, and then 98 Incubated at 5 ° C. for 5 minutes.
 続いて、室温で磁気分離を行い、上清を回収し目的タンパク質を含む試料とした。続いて、免疫沈降で得られた自己抗原タンパク質試料をSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、銀染色を行って自己抗原タンパク質を含むバンドを確認して切り出し、LC-MS/MSによる解析を行った。 Subsequently, magnetic separation was performed at room temperature, and the supernatant was collected to obtain a sample containing the target protein. Subsequently, the autoantigen protein sample obtained by immunoprecipitation was subjected to SDS polyacrylamide gel electrophoresis (SDS-PAGE), silver staining was performed to confirm and cut out the band containing the autoantigen protein, and LC-MS / MS Analysis was performed.
 図15(b)はSDS-PAGE及び銀染色の結果を示す写真である。図15(b)中、レーン1は分子量マーカーであり、レーン2はマウス後根神経節由来タンパク質抽出液であり、レーン3は陰性対照の免疫沈降試料であり、レーン4は自己抗原タンパク質を含む免疫沈降試料である。矢印は、220kDaより少し大きな自己抗原タンパク質のバンドを示す。 FIG. 15 (b) is a photograph showing the results of SDS-PAGE and silver staining. In FIG. 15 (b), lane 1 is a molecular weight marker, lane 2 is a mouse dorsal root ganglion-derived protein extract, lane 3 is a negative control immunoprecipitation sample, and lane 4 contains an autoantigen protein. Immunoprecipitation sample. The arrow indicates a band of autoantigen protein slightly larger than 220 kDa.
 図15(c)は図15(b)と同様の試料をウエスタンブロッティングに供し、患者由来自己抗体で検出した結果を示す写真である。図15(c)中、レーン1は分子量マーカーであり、レーン2はマウス後根神経節由来タンパク質抽出液であり、レーン3は陰性対照の免疫沈降試料であり、レーン4は自己抗原タンパク質を含む免疫沈降試料である。矢印は、220kDaより少し大きな自己抗原タンパク質のバンドを示す。 FIG. 15 (c) is a photograph showing the result of subjecting the same sample as in FIG. 15 (b) to Western blotting and detecting with a patient-derived autoantibody. In FIG. 15 (c), lane 1 is a molecular weight marker, lane 2 is a mouse dorsal root ganglion-derived protein extract, lane 3 is a negative control immunoprecipitation sample, and lane 4 contains an autoantigen protein. Immunoprecipitation sample. The arrow indicates a band of autoantigen protein slightly larger than 220 kDa.
 続いて、LC-MS/MSによる解析結果を解析ソフトで解析し、自己抗原候補タンパク質を同定した。その結果、「RTITVAGERF」(配列番号1)のアミノ酸配列を有するペプチド断片が検出された。このペプチド断片は、plexin D1タンパク質のアミノ酸配列の第1087~1096番目のアミノ酸と一致した。 Subsequently, the analysis results by LC-MS / MS were analyzed with analysis software, and autoantigen candidate proteins were identified. As a result, a peptide fragment having the amino acid sequence of “RTITVAGERF” (SEQ ID NO: 1) was detected. This peptide fragment coincided with the 1087th to 1096th amino acids of the amino acid sequence of plexin D1 protein.
 Plexin D1は約212kDaの理論的分子量を有する。これは、ウエスタンブロッティングにより検出されたバンドの分子量とほぼ一致した。Plexin D1は、神経組織における最も分子量の大きい糖タンパク質の1つである。しかしながら、ヒト後根神経節及び脊髄におけるPlexin D1の発現は報告されていない。 Plexin D1 has a theoretical molecular weight of approximately 212 kDa. This almost coincided with the molecular weight of the band detected by Western blotting. Plexin D1 is one of the largest molecular weight glycoproteins in nerve tissue. However, the expression of Plexin D1 in human dorsal root ganglia and spinal cord has not been reported.
[実験例8]
(ヒト後根神経節及び脊髄の組織切片におけるPlexin D1の発現の検討)
 死亡したドナー由来のヒト腰椎後根神経節及び脊髄の組織切片を調製した。続いて、各組織切片を免疫染色し、蛍光顕微鏡(型式「BZ-X700」、キーエンス社)で観察した。
[Experimental Example 8]
(Examination of Plexin D1 expression in human dorsal root ganglia and spinal cord tissue sections)
Tissue sections of human lumbar dorsal root ganglia and spinal cord from dead donors were prepared. Subsequently, each tissue section was immunostained and observed with a fluorescence microscope (model “BZ-X700”, Keyence Corporation).
 図16(a)は、ヒト後根神経節の組織切片を抗ヒトPlexin D1抗体(ヤギポリクローナル抗体、R&Dシステムズ社)で染色した結果を示す蛍光顕微鏡写真である。 FIG. 16 (a) is a fluorescence micrograph showing the result of staining a tissue section of a human dorsal root ganglion with an anti-human Plexin D1 antibody (goat polyclonal antibody, R & D Systems).
 図16(b)は、図16(a)と同一の視野において、有髄線維である、Aβ線維型後根神経節ニューロン及びAδ線維型後根神経節ニューロンのマーカーである、neurofilament heavy chain(NFH)に対する抗体(抗ヒトリン酸化NFH抗体、型式「SMI31」、マウスモノクローナル抗体、Covance社;及び、抗ヒト非リン酸化NFH抗体、型式「SMI32」、マウスモノクローナル抗体、Covance社)で染色した結果を示す蛍光顕微鏡写真である。また、DAPIで核を染色した。 FIG. 16B shows a neurofilament heavy chain (marker of Aβ fiber-type dorsal root ganglion neurons and Aδ fiber-type dorsal root ganglion neurons, which are myelinated fibers, in the same field of view as FIG. 16A. The results of staining with an antibody against NFH (anti-human phosphorylated NFH antibody, model “SMI31”, mouse monoclonal antibody, Covance; and anti-human non-phosphorylated NFH antibody, model “SMI32”, mouse monoclonal antibody, Covance) It is a fluorescence micrograph shown. Also, nuclei were stained with DAPI.
 図16(c)は、図16(a)及び図16(b)の写真をマージしたものである。スケールバーは50μmを示す。 FIG. 16 (c) is a merged photograph of FIG. 16 (a) and FIG. 16 (b). The scale bar indicates 50 μm.
 図16(d)は、ヒト脊髄の組織切片を抗ヒトPlexin D1抗体(ヤギポリクローナル抗体、R&Dシステムズ社)で染色した結果を示す蛍光顕微鏡写真である。 FIG. 16 (d) is a fluorescence micrograph showing the result of staining a tissue section of human spinal cord with anti-human Plexin D1 antibody (goat polyclonal antibody, R & D Systems).
 図16(e)は、図16(d)と同一の視野において、抗ヒトNFH抗体(抗ヒトリン酸化NFH抗体、型式「SMI31」、マウスモノクローナル抗体、Covance社;及び、抗ヒト非リン酸化NFH抗体、型式「SMI32」、マウスモノクローナル抗体、Covance社)で染色した結果を示す蛍光顕微鏡写真である。また、DAPIで核を染色した。 FIG. 16 (e) shows an anti-human NFH antibody (anti-human phosphorylated NFH antibody, model “SMI31”, mouse monoclonal antibody, Covance; and anti-human non-phosphorylated NFH antibody in the same field of view as FIG. 16 (d). , Model “SMI32”, mouse monoclonal antibody, Covance)). Also, nuclei were stained with DAPI.
 図16(f)は、図16(d)及び図16(e)の写真をマージしたものである。スケールバーは100μmを示す。 FIG. 16 (f) is a merge of the photos of FIG. 16 (d) and FIG. 16 (e). The scale bar indicates 100 μm.
 その結果、Plexin D1は、NFH陽性の有髄後根神経節ニューロンとは全く共局在しないことが明らかとなった。また、脊髄の背側において、NFHは後柱(PC)及び後角深層(DDH;脊髄後角第III層~第V層)に主に存在しており、後角浅層(SDH)ではより少なく存在していた。 As a result, it was revealed that Plexin D1 does not co-localize with NFH-positive myelinated dorsal root ganglion neurons. On the dorsal side of the spinal cord, NFH is mainly present in the dorsal column (PC) and the dorsal horn deep layer (DDH; spinal dorsal horn III to V layers), and more in the dorsal horn superficial layer (SDH). There were few.
 以上の結果は、Plexin D1が無髄後根神経節ニューロン及び後角浅層に位置するその軸索末端に存在していることを示し、この局在パターンは患者由来の自己抗体の結合パターンに類似していた。 The above results indicate that Plexin D1 is present in the unmyelinated dorsal root ganglion neurons and their axon terminals located in the dorsal horn superficial layer, and this localization pattern is the binding pattern of patient-derived autoantibodies. It was similar.
[実験例9]
(患者由来の自己抗体のPlexin D1に対する反応性の検討1)
《siRNAによるPLXND1遺伝子発現の抑制》
 Plexin D1を発現するHeLa細胞(ヒト子宮頸癌由来細胞株)に、Plexin D1タンパク質をコードする遺伝子である、PLXND1遺伝子に対するsiRNA(型式「s23094」、サーモフィッシャーサイエンティフィック社)及び対照siRNA(型式「#4390843」、サーモフィッシャーサイエンティフィック社)を導入し、定量的リアルタイムPCRによりPLXND1遺伝子のmRNA発現量を定量した。また、ウエスタンブロッティングによりタンパク質レベルでPlexin D1タンパク質の発現量を検討した。
[Experimental Example 9]
(Examination of reactivity of autoantibodies derived from patients to Plexin D1)
<Suppression of PLXND1 gene expression by siRNA>
HeLa cells (human cervical cancer-derived cell line) expressing Plexin D1, siRNA against PLXND1 gene (model “s23094”, Thermo Fisher Scientific) and control siRNA (model), which are genes encoding Plexin D1 protein "# 4390843", Thermo Fisher Scientific) was introduced, and the mRNA expression level of the PLXND1 gene was quantified by quantitative real-time PCR. In addition, the expression level of Plexin D1 protein was examined at the protein level by Western blotting.
 定量的リアルタイムPCRにおいては、陽性コントロールとしてKIF11遺伝子のmRNAを増幅した。また、リファレンス遺伝子としてGAPDH遺伝子のmRNAを増幅した。定量的リアルタイムPCRにはFast SYBR Green Master Mix(サーモフィッシャーサイエンティフィック社)を用い、StepOnePlus リアルタイムPCRシステム(サーモフィッシャーサイエンティフィック社)でPCRを実施した。 In quantitative real-time PCR, mRNA of the KIF11 gene was amplified as a positive control. In addition, GAPDH gene mRNA was amplified as a reference gene. For quantitative real-time PCR, Fast SYBR Green Master Mix (Thermo Fisher Scientific) was used, and PCR was performed with a StepOnePlus real-time PCR system (Thermo Fisher Scientific).
 PLXND1特異的プライマーとして、PLXND1 Fwd(5'-AATGGGCGGAACATCGTCAAG-3'、配列番号2)及びPLXND1 Rev(5'-CGAGACTGGTTGGAAACACAG-3'、配列番号3)を用いた。また、KIF11特異的プライマーとして、KIF11 Fwd(5'-TGTTTGATGATCCCCGTAACAAG-3'、配列番号4)及びKIF11 Rev(5'-CTGAGTGGGAACGACTAGAGT-3'、配列番号5)を用いた。また、GAPDH特異的プライマーとして、GAPDH Fwd(5'-ACCCACTCCTCCACCTTTGAC-3'、配列番号6)及びGAPDH Rev(5'-TGTTGCTGTAGCCAAATTCGTT-3'、配列番号7)を用いた。 As PLXND1-specific primers, PLXND1 Fwd (5′-AATGGGCGGAACATCGTCAAG-3 ′, SEQ ID NO: 2) and PLXND1 Rev (5′-CGAGACTGGTTGGAAACACAG-3 ′, SEQ ID NO: 3) were used. Further, KIF11 Fwd (5′-TGTTTGATGATCCCCGTAACAAG-3 ′, SEQ ID NO: 4) and KIF11 Rev (5′-CTGAGTGGGAACGACTAGAGT-3 ′, SEQ ID NO: 5) were used as KIF11 specific primers. Further, GAPDH Fwd (5′-ACCCACTCCTCCACCTTTGAC-3 ′, SEQ ID NO: 6) and GAPDH Rev (5′-TGTTGCTGTAGCCAAATTCGTT-3 ′, SEQ ID NO: 7) were used as GAPDH specific primers.
 図17(a)は定量的リアルタイムPCRの結果を示すグラフである。図17(a)中、「Scrambled siRNA」は対照siRNAを導入した結果であることを示し、「PLXND1 siRNA」はPLXND1遺伝子に対するsiRNAを導入した結果であることを示す。その結果、PLXND1遺伝子に対するsiRNAの導入により、PLXND1遺伝子のmRNA発現量を平均87%低下させることができたことが確認された。 FIG. 17 (a) is a graph showing the results of quantitative real-time PCR. In FIG. 17 (a), “Scrambled siRNA” indicates the result of introducing the control siRNA, and “PLXND1 siRNA” indicates the result of introducing the siRNA for the PLXND1 gene. As a result, it was confirmed that by introducing siRNA into the PLXND1 gene, the mRNA expression level of the PLXND1 gene could be reduced by an average of 87%.
 また、図17(b)はウエスタンブロッティングによりPlexin D1タンパク質の発現を検討した結果を示す写真である。ローディングコントロールとしてβアクチンタンパク質を検出した。 FIG. 17 (b) is a photograph showing the result of examining the expression of Plexin D1 protein by Western blotting. Β-actin protein was detected as a loading control.
 図17(b)中、「Scramble siRNA」は対照siRNAを導入した結果であることを示し、「PLXND1 siRNA」はPLXND1遺伝子に対するsiRNAを導入した結果であることを示す。その結果、PLXND1遺伝子に対するsiRNAの導入により、Plexin D1タンパク質の発現量を82%低下させることができたことが確認された。 In FIG. 17B, “Scramble siRNA” indicates the result of introducing the control siRNA, and “PLXND1 siRNA” indicates the result of introducing the siRNA for the PLXND1 gene. As a result, it was confirmed that the expression level of Plexin D1 protein could be reduced by 82% by introducing siRNA into the PLXND1 gene.
《自己抗体の反応性の検討》
 HeLa細胞にPLXND1遺伝子に対するsiRNAを導入し、神経障害性疼痛を有する患者由来の自己抗体を反応させた。また、比較のために、siRNAを導入しなかったHeLa細胞も用意した。
<Examination of autoantibody reactivity>
An siRNA against the PLXND1 gene was introduced into HeLa cells and allowed to react with autoantibodies from patients with neuropathic pain. For comparison, HeLa cells into which siRNA was not introduced were also prepared.
 まず、BioCoatコラーゲンI カルチャースライド8ウェル(コーニング社)に、1ウェル当たり終濃度7.5nMのsiRNAと0.45μLのLipofectamine RNAiMAX(インビトロジェン社)を含む調製液を加えてウェル表面全体を覆い、15分間室温で静置した。 First, BioCoat Collagen I culture slide 8 well (Corning) was added with a preparation solution containing 7.5 nM final concentration of siRNA and 0.45 μL of Lipofectamine RNAiMAX (Invitrogen) per well to cover the whole well surface, 15 Let stand at room temperature for minutes.
 続いて、HeLa細胞を8×10個/ウェルで播種し、37℃、5%COの条件下で培養し、リバーストランスフェクションを行った。続いて、48時間後に培地交換を行った。続いて、リバーストランスフェクションから96時間後に培地を除去し、4%パラホルムアルデヒド・リン酸緩衝液(和光純薬)を加えて室温で10分間静置した後、氷冷PBS(-)で細胞を3回洗浄した。 Subsequently, HeLa cells were seeded at 8 × 10 3 cells / well, cultured under conditions of 37 ° C. and 5% CO 2 , and reverse transfection was performed. Subsequently, the medium was changed after 48 hours. Subsequently, 96 hours after reverse transfection, the medium was removed, 4% paraformaldehyde / phosphate buffer (Wako Pure Chemical Industries) was added, and the mixture was allowed to stand at room temperature for 10 minutes, and then the cells were washed with ice-cold PBS (−). Washed 3 times.
 続いて、各ウェルに0.1%Tween20(シグマ-アルドリッチ社)を含むPBS(-)を加え、10分間室温静置して膜透過処理を行った後、PBS(-)で2回洗浄した。続いて、各ウェルに1%ゼラチンを含むPBS(-)を加え室温で1時間静置してブロッキングした。 Subsequently, PBS (-) containing 0.1% Tween 20 (Sigma-Aldrich) was added to each well, left at room temperature for 10 minutes to perform membrane permeation treatment, and then washed twice with PBS (-). . Subsequently, PBS (-) containing 1% gelatin was added to each well and allowed to stand at room temperature for 1 hour for blocking.
 続いて、1%ウシ血清アルブミン(BSA)を含むPBS(-)中に1,000倍希釈した患者由来の血清IgG、及び、200倍希釈した抗Plexin D1抗体(ヤギポリクローナル抗体、R&Dシステムズ社)を含む、1次抗体反応液を加えて室温で1時間静置し1次抗体反応を行った後、PBS(-)で3回洗浄した。また、比較のために、患者由来の血清IgGの代わりに対照の血清IgGを反応させた試料も用意した。 Subsequently, patient-derived serum IgG diluted 1,000-fold in PBS (-) containing 1% bovine serum albumin (BSA), and anti-Plexin D1 antibody diluted 200-fold (goat polyclonal antibody, R & D Systems) A primary antibody reaction solution containing the solution was added, and the mixture was allowed to stand at room temperature for 1 hour to carry out a primary antibody reaction, and then washed three times with PBS (−). For comparison, a sample prepared by reacting control serum IgG instead of patient-derived serum IgG was also prepared.
 続いて、1,000倍希釈したAlexa Fluor 488標識ヤギ抗ヒトIgG(H+L)抗体(サーモフィッシャーサイエンティフィック社)、1,000倍希釈したAlexa Fluor 594標識ウサギ抗ヤギIgG(H+L)抗体(サーモフィッシャーサイエンティフィック社)、及び0.1μg/mLのDAPIを含む、2次抗体反応液を加えて室温で1時間、遮光下で静置し2次抗体反応を行った後、PBS(-)で3回洗浄した。続いて、蛍光顕微鏡(型式「BZ-X710」、キーエンス社)で観察した。 Subsequently, Alexa Fluor 488-labeled goat anti-human IgG (H + L) antibody (Thermo Fisher Scientific) diluted 1,000 times, Alexa Fluor 594-labeled rabbit anti-goat IgG (H + L) antibody (Thermo) diluted 1,000 times. After adding a secondary antibody reaction solution containing Fischer Scientific) and 0.1 μg / mL DAPI, the mixture was allowed to stand at room temperature for 1 hour under light shielding, followed by a secondary antibody reaction, and then PBS (−) And washed 3 times. Subsequently, it was observed with a fluorescence microscope (model “BZ-X710”, Keyence Corporation).
 図18(a)はsiRNAを導入していないHeLa細胞に結合した対照IgGを検出した結果を示す代表的な蛍光顕微鏡写真である。図18(b)は、図18(a)と同一の視野において、抗Plexin D1抗体の結合を検出した結果を示す蛍光顕微鏡写真である。図18(c)は、図18(a)及び図18(b)の写真をマージしたものである。スケールバーは100μmを示す。 FIG. 18 (a) is a representative fluorescence micrograph showing the result of detection of control IgG bound to HeLa cells into which no siRNA has been introduced. FIG. 18 (b) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 18 (a). FIG. 18C is a merged photograph of FIGS. 18A and 18B. The scale bar indicates 100 μm.
 また、図18(d)はsiRNAを導入していないHeLa細胞に結合した患者由来自己抗体を検出した結果を示す代表的な蛍光顕微鏡写真である。図18(e)は、図18(d)と同一の視野において、抗Plexin D1抗体の結合を検出した結果を示す蛍光顕微鏡写真である。図18(f)は、図18(d)及び図18(e)の写真をマージしたものである。スケールバーは100μmを示す。 FIG. 18 (d) is a representative fluorescence micrograph showing the result of detecting patient-derived autoantibodies bound to HeLa cells into which no siRNA has been introduced. FIG. 18 (e) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 18 (d). FIG. 18F is a merged photograph of FIGS. 18D and 18E. The scale bar indicates 100 μm.
 その結果、患者由来自己抗体はHeLa細胞に結合したのに対し、対照IgGはHeLa細胞に結合しないことが明らかとなった。また、患者由来自己抗体は、抗Plexin D1抗体と共局在したことが明らかとなった。 As a result, it was revealed that patient-derived autoantibodies bound to HeLa cells, whereas control IgG did not bind to HeLa cells. It was also revealed that patient-derived autoantibodies colocalized with anti-Plexin D1 antibody.
 図19(a)は対照siRNAを導入したHeLa細胞を明視野観察した顕微鏡写真である。図19(b)は、図19(a)と同一の視野において、患者由来自己抗体(症例5)の結合を検出した結果を示す蛍光顕微鏡写真である。図19(c)は、図19(a)と同一の視野において、抗Plexin D1抗体の結合を検出した結果を示す蛍光顕微鏡写真である。図19(d)は、図19(a)、図19(b)及び図19(c)の写真をマージしたものである。スケールバーは25μmを示す。 FIG. 19 (a) is a photomicrograph of HeLa cells into which control siRNA has been introduced, observed in a bright field. FIG. 19B is a fluorescence micrograph showing the result of detecting the binding of a patient-derived autoantibody (Case 5) in the same field of view as FIG. FIG. 19 (c) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 19 (a). FIG. 19D is a merged photograph of FIGS. 19A, 19B, and 19C. The scale bar indicates 25 μm.
 図19(e)はPLXND1遺伝子に対するsiRNAを導入したHeLa細胞を明視野観察した顕微鏡写真である。図19(f)は、図19(e)と同一の視野において、患者由来自己抗体(症例5)の結合を検出した結果を示す蛍光顕微鏡写真である。図19(g)は、図19(e)と同一の視野において、抗Plexin D1抗体の結合を検出した結果を示す蛍光顕微鏡写真である。図19(h)は、図19(e)、図19(f)及び図19(g)の写真をマージしたものである。スケールバーは25μmを示す。 FIG. 19 (e) is a photomicrograph of bright field observation of HeLa cells into which siRNA for the PLXND1 gene has been introduced. FIG. 19 (f) is a fluorescence micrograph showing the result of detecting the binding of the patient-derived autoantibody (Case 5) in the same field of view as FIG. 19 (e). FIG. 19 (g) is a fluorescence micrograph showing the result of detecting the binding of anti-Plexin D1 antibody in the same field of view as FIG. 19 (e). FIG. 19 (h) is a merge of the photos of FIG. 19 (e), FIG. 19 (f) and FIG. 19 (g). The scale bar indicates 25 μm.
 その結果、PLXND1遺伝子に対するsiRNAを導入することにより、患者由来自己抗体のHeLa細胞に対する結合が顕著に減少したことが明らかとなった。この結果は、神経障害性疼痛を有する患者由来自己抗体が認識する自己抗原がPlexin D1であることを示す。 As a result, it was revealed that the introduction of siRNA against the PLXND1 gene significantly reduced the binding of patient-derived autoantibodies to HeLa cells. This result indicates that the autoantigen recognized by the patient-derived autoantibody having neuropathic pain is Plexin D1.
[実験例10]
(患者由来の自己抗体のPlexin D1に対する反応性の検討2)
 マウス後根神経節の組織切片に反応する自己抗体を含んでいた11名の患者由来の血清を用いて、実験例9と同様の検討を行った。
[Experimental Example 10]
(Examination of reactivity of patient-derived autoantibodies to Plexin D1 2)
The same examination as in Experimental Example 9 was performed using serum derived from 11 patients who contained autoantibodies reactive to tissue sections of mouse dorsal root ganglia.
 図20(a)は、対照siRNAを導入したHeLa細胞に結合した患者由来自己抗体(症例5)を検出した結果を示す代表的な蛍光顕微鏡写真である。図20(a)では、DAPIで核が染色されている。スケールバーは50μmを示す。図20(b)は、PLXND1遺伝子に対するsiRNAを導入したHeLa細胞に結合した患者由来自己抗体(症例5)を検出した結果を示す代表的な蛍光顕微鏡写真である。図20(b)においても、DAPIで核が染色されている。スケールバーは50μmを示す。 FIG. 20 (a) is a representative fluorescence micrograph showing the result of detecting a patient-derived autoantibody (case 5) bound to a HeLa cell into which a control siRNA was introduced. In FIG. 20A, the nucleus is stained with DAPI. The scale bar indicates 50 μm. FIG. 20 (b) is a representative fluorescence micrograph showing the result of detecting a patient-derived autoantibody (case 5) bound to a HeLa cell into which siRNA against the PLXND1 gene has been introduced. In FIG. 20B as well, nuclei are stained with DAPI. The scale bar indicates 50 μm.
 図20(c)は、図20(a)及び(b)の結果を数値化したグラフである。その結果、PLXND1遺伝子に対するsiRNAを導入したHeLa細胞では、症例5の患者由来自己抗体の結合が有意に減少したことが明らかとなった。 FIG. 20 (c) is a graph in which the results of FIGS. 20 (a) and (b) are digitized. As a result, it was revealed that the binding of autoantibodies derived from the patient in case 5 was significantly reduced in HeLa cells into which siRNA for the PLXND1 gene was introduced.
 同様の検討を、症例5以外の患者由来自己抗体についても行った。その結果、11名の患者由来自己抗体のうち9名の患者由来自己抗体について同様の結果が得られた。この結果は、神経障害性疼痛を有する患者由来自己抗体が認識する自己抗原がPlexin D1であることを更に支持するものである。 The same examination was performed for patient-derived autoantibodies other than Case 5. As a result, similar results were obtained for 9 patient-derived autoantibodies out of 11 patient-derived autoantibodies. This result further supports that the self-antigen recognized by the patient-derived autoantibody having neuropathic pain is Plexin D1.
[実験例11]
(患者由来の自己抗体のPlexin D1に対する反応性の検討3)
 免疫吸収実験を行い、患者由来の自己抗体のPlexin D1に対する反応性を検討した。具体的には、患者由来自己抗体に、PLXND1遺伝子の細胞外ドメイン部分を発現させた組換えヒトPlexin D1タンパク質(型式「4160-PD」、R&Dシステムズ社、アミノ酸配列を配列番号8に示す。)を混合し、プレインキュベートした。続いて、マウス後根神経節の組織切片及びマウス脊髄の組織切片を用いた蛍光間接抗体法を行った。
[Experimental Example 11]
(Study on reactivity of patient-derived autoantibodies to Plexin D1 3)
Immunoresorption experiments were conducted to examine the reactivity of patient-derived autoantibodies to Plexin D1. Specifically, a recombinant human Plexin D1 protein in which the extracellular domain portion of the PLXND1 gene is expressed in a patient-derived autoantibody (type “4160-PD”, R & D Systems, amino acid sequence is shown in SEQ ID NO: 8). Were mixed and pre-incubated. Subsequently, the fluorescent indirect antibody method using tissue sections of mouse dorsal root ganglia and mouse spinal cord was performed.
 図21(a)は、患者由来自己抗体(症例5)を、マウス後根神経節の組織切片に反応させた結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。 FIG. 21 (a) is a fluorescence micrograph showing the result of reacting a patient-derived autoantibody (Case 5) with a tissue section of a mouse dorsal root ganglion. The scale bar indicates 50 μm.
 図21(b)は、0.5μg/mLのPlexin D1タンパク質とプレインキュベートした患者由来自己抗体(症例5)をマウス後根神経節の組織切片に反応させた結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。 FIG. 21 (b) is a fluorescence micrograph showing the results of reacting a patient-derived autoantibody (Case 5) preincubated with 0.5 μg / mL Plexin D1 protein to a tissue section of a mouse dorsal root ganglion. The scale bar indicates 50 μm.
 図21(c)は、2μg/mLのPlexin D1タンパク質とプレインキュベートした患者由来自己抗体(症例5)をマウス後根神経節の組織切片に反応させた結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。 FIG. 21 (c) is a fluorescence micrograph showing the result of reacting the patient-derived autoantibody (Case 5) preincubated with 2 μg / mL Plexin D1 protein to the tissue section of the mouse dorsal root ganglion. The scale bar indicates 50 μm.
 図21(d)は、患者由来自己抗体(症例5)を、マウス脊髄の組織切片に反応させた結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。矢印の部分に患者由来自己抗体の結合が認められた。 FIG. 21 (d) is a fluorescence micrograph showing the result of reacting a patient-derived autoantibody (Case 5) with a tissue section of a mouse spinal cord. The scale bar indicates 50 μm. Binding of patient-derived autoantibodies was observed at the arrowed portion.
 図21(e)は、0.5μg/mLのPlexin D1タンパク質とプレインキュベートした患者由来自己抗体(症例5)をマウス脊髄の組織切片に反応させた結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。また、図21(d)と同じ位置に矢印を示す。 FIG. 21 (e) is a fluorescence micrograph showing the result of reaction of a patient-derived autoantibody (Case 5) preincubated with 0.5 μg / mL Plexin D1 protein to a tissue section of a mouse spinal cord. The scale bar indicates 50 μm. An arrow is shown at the same position as in FIG.
 図21(f)は、2μg/mLのPlexin D1タンパク質とプレインキュベートした患者由来自己抗体(症例5)をマウス脊髄の組織切片に反応させた結果を示す蛍光顕微鏡写真である。スケールバーは50μmを示す。また、図21(d)と同じ位置に矢印を示す。 FIG. 21 (f) is a fluorescence micrograph showing the result of reacting a patient-derived autoantibody (case 5) preincubated with 2 μg / mL Plexin D1 protein to a tissue section of a mouse spinal cord. The scale bar indicates 50 μm. An arrow is shown at the same position as in FIG.
 その結果、Plexin D1タンパク質とプレインキュベートすることにより、Plexin D1タンパク質の容量依存的に患者由来自己抗体(症例5)の後根神経節ニューロンに対する染色性が低下したことが確認された。同様の結果が11名の患者由来自己抗体の全てで認められた。 As a result, it was confirmed that preincubation with Plexin D1 protein decreased the staining of dorsal root ganglion neurons of patient-derived autoantibodies (Case 5) in a dose-dependent manner of Plexin D1 protein. Similar results were observed with all 11 patient-derived autoantibodies.
 この結果は、神経障害性疼痛を有する患者由来の自己抗体が、Plexin D1タンパク質に対する特異性を有すること、及び病原性を有することを更に支持するものである。 This result further supports that autoantibodies derived from patients with neuropathic pain have specificity for Plexin D1 protein and have pathogenicity.
[実験例12]
(患者由来の自己抗体のPlexin D1に対する反応性の検討4)
 免疫吸収実験を行い、患者由来の自己抗体のPlexin D1に対する反応性を検討した。具体的には、患者由来自己抗体に、PLXND1遺伝子の細胞外ドメイン部分を発現させた組換えヒトPlexin D1タンパク質(型式「4160-PD」、R&Dシステムズ社、アミノ酸配列を配列番号8に示す。)を混合し、プレインキュベートした。続いて、実験例7と同様にして調製したマウス後根神経節由来タンパク質抽出液をウエスタンブロッティングに供し、患者由来自己抗体で検出した。
[Experimental example 12]
(Study on reactivity of patient-derived autoantibodies to Plexin D1 4)
Immunoresorption experiments were conducted to examine the reactivity of patient-derived autoantibodies to Plexin D1. Specifically, a recombinant human Plexin D1 protein in which the extracellular domain portion of the PLXND1 gene is expressed in a patient-derived autoantibody (type “4160-PD”, R & D Systems, amino acid sequence is shown in SEQ ID NO: 8). Were mixed and pre-incubated. Subsequently, the mouse dorsal root ganglion-derived protein extract prepared in the same manner as in Experimental Example 7 was subjected to Western blotting and detected with patient-derived autoantibodies.
 図22(a)は、患者由来自己抗体(症例1)を反応させて自己抗原を検出した結果を示す写真である。図22(b)は、0.5μg/mLのPlexin D1タンパク質とプレインキュベートした患者由来自己抗体(症例1)を反応させて自己抗原を検出した結果を示す写真である。 FIG. 22 (a) is a photograph showing the result of detecting a self-antigen by reacting with a patient-derived autoantibody (case 1). FIG. 22 (b) is a photograph showing a result of detecting autoantigen by reacting a patient-derived autoantibody (case 1) preincubated with 0.5 μg / mL Plexin D1 protein.
 図22(c)は、患者由来自己抗体(症例2)を反応させて自己抗原を検出した結果を示す写真である。図22(d)は、0.5μg/mLのPlexin D1タンパク質とプレインキュベートした患者由来自己抗体(症例2)を反応させて自己抗原を検出した結果を示す写真である。 FIG. 22 (c) is a photograph showing a result of detecting a self-antigen by reacting with a patient-derived autoantibody (case 2). FIG. 22 (d) is a photograph showing the result of detecting autoantigen by reacting a patient-derived autoantibody (Case 2) preincubated with 0.5 μg / mL Plexin D1 protein.
 その結果、Plexin D1タンパク質とプレインキュベートすることにより、220kDa付近のバンドが消失したことが確認された。同様の結果が11名の患者由来自己抗体の全てで認められた。 As a result, it was confirmed that the band around 220 kDa disappeared by preincubation with Plexin D1 protein. Similar results were observed with all 11 patient-derived autoantibodies.
 この結果は、神経障害性疼痛を有する患者由来の自己抗体が、Plexin D1タンパク質に対する特異性を有すること、及び病原性を有することを更に支持するものである。 This result further supports that autoantibodies derived from patients with neuropathic pain have specificity for Plexin D1 protein and have pathogenicity.
[実験例13]
(患者由来の自己抗体のPlexin D1に対する反応性の検討5)
 組換えヒトPlexin D1タンパク質をウエスタンブロッティングに供し、患者由来自己抗体で検出することにより、患者由来の自己抗体のPlexin D1に対する反応性を検討した。
[Experimental Example 13]
(Study of reactivity of patient-derived autoantibodies to Plexin D1 5)
Recombinant human Plexin D1 protein was subjected to Western blotting and detected with patient-derived autoantibodies, thereby examining the reactivity of patient-derived autoantibodies to Plexin D1.
 組換えヒトPlexin D1タンパク質として、PLXND1遺伝子の細胞外ドメイン部分を発現させたタンパク質(型式「4160-PD」、R&Dシステムズ社、アミノ酸配列を配列番号8に示す。)を用いた。このタンパク質のバンドサイズは165kDa~175kDaと予測された。 As a recombinant human Plexin D1 protein, a protein in which the extracellular domain portion of the PLXND1 gene was expressed (model “4160-PD”, R & D Systems, amino acid sequence is shown in SEQ ID NO: 8) was used. The band size of this protein was predicted to be 165 kDa to 175 kDa.
 図23は、蛍光間接抗体法による結果が陽性であった神経障害性疼痛患者由来自己抗体(症例1、2、5)、蛍光間接抗体法による結果が陰性であった神経障害性疼痛患者由来血清、健常人由来血清、及び、市販の抗ヒトPlexin D1抗体を用いて、組換えヒトPlexin D1タンパク質を検出した結果を示す写真である。 FIG. 23 shows autoantibodies derived from neuropathic pain patients whose results by the fluorescent indirect antibody method were positive ( cases 1, 2, 5), and sera derived from neuropathic pain patients whose results by the fluorescent indirect antibody method were negative It is a photograph which shows the result of having detected recombinant human Plexin D1 protein using the serum derived from a healthy person, and a commercially available anti-human Plexin D1 antibody.
 その結果、蛍光間接抗体法による結果が陽性であった神経障害性疼痛患者由来自己抗体、及び、市販の抗ヒトPlexin D1抗体により、150kDaと250kDaの間のサイズである単一のバンドが検出されたことが明らかとなった。 As a result, a single band having a size of between 150 kDa and 250 kDa was detected by an autoantibody derived from a neuropathic pain patient whose result by the fluorescent indirect antibody method was positive and a commercially available anti-human Plexin D1 antibody. It became clear.
一方、蛍光間接抗体法による結果が陰性であった神経障害性疼痛患者由来血清、及び、健常人由来血清では、バンドが検出されなかった。 On the other hand, no band was detected in the serum derived from a patient with neuropathic pain and the serum derived from a healthy person who were negative by the fluorescent indirect antibody method.
 以上の結果は、蛍光間接抗体法による結果が陽性であった神経障害性疼痛患者由来自己抗体が結合したタンパク質がPlexin D1であることを更に支持するものである。 The above results further support that Plexin D1 is a protein to which an autoantibody derived from a neuropathic pain patient whose result by the fluorescent indirect antibody method is positive.
 本発明により、神経障害性疼痛を検出する技術を提供することができる。 The present invention can provide a technique for detecting neuropathic pain.

Claims (16)

  1.  神経障害性疼痛マーカーとしての小型無髄後根神経節ニューロンに対する自己抗体の使用。 Use of autoantibodies against small unmyelinated dorsal root ganglion neurons as a neuropathic pain marker.
  2.  前記自己抗体が抗Plexin D1抗体である、請求項1に記載の使用。 The use according to claim 1, wherein the autoantibody is an anti-Plexin D1 antibody.
  3.  神経障害性疼痛の検出方法であって、患者由来の血液試料中の、小型無髄後根神経節ニューロンに対する自己抗体を検出することを備え、前記自己抗体が検出されることが、前記患者が神経障害性疼痛に罹患していることを示す、方法。 A method for detecting neuropathic pain comprising detecting autoantibodies against small unmyelinated dorsal root ganglion neurons in a blood sample from a patient, wherein the patient detects that the autoantibodies are detected. A method of showing that it is suffering from neuropathic pain.
  4.  小型無髄後根神経節ニューロンに対する自己抗体を検出することが、
     ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させ、前記後根神経節組織又は前記脊髄後角組織に結合したヒトIgG抗体を検出することと、
     前記後根神経節組織又は前記脊髄後角組織における有髄後根神経節ニューロン又はその神経線維を検出することと、
     を含み、前記ヒトIgG抗体が前記有髄後根神経節ニューロン以外のニューロンに結合したことが、小型無髄後根神経節ニューロンに対する自己抗体が検出されたことを示す、請求項3に記載の方法。
    Detecting autoantibodies against small unmyelinated dorsal root ganglion neurons
    Contacting a blood sample derived from a patient with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal, and detecting human IgG antibody bound to the dorsal root ganglion tissue or spinal dorsal horn tissue ,
    Detecting myelinated dorsal root ganglion neurons or nerve fibers thereof in the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord;
    And wherein the human IgG antibody binds to a neuron other than the myelinated dorsal root ganglion neuron, indicating that an autoantibody against a small unmyelinated dorsal root ganglion neuron has been detected. Method.
  5.  有髄後根神経節ニューロンを検出することが、
     前記後根神経節組織を抗S100β抗体で免疫染色することを含み、
     前記抗S100β抗体で免疫染色されたニューロンが有髄後根神経節ニューロンである、請求項4に記載の方法。
    Detecting myelinated dorsal root ganglion neurons
    Immunostaining the dorsal root ganglion tissue with an anti-S100β antibody,
    5. The method of claim 4, wherein the neurons immunostained with the anti-S100β antibody are myelinated dorsal root ganglion neurons.
  6.  小型無髄後根神経節ニューロンに対する自己抗体を検出することが、
     ヒト又は非ヒト動物由来の後根神経節組織又は脊髄後角組織に患者由来の血液試料を接触させ、前記後根神経節組織又は前記脊髄後角組織に結合したヒトIgG抗体を検出することと、
     前記後根神経節組織又は前記脊髄後角組織における無髄後根神経節ニューロン又はその神経線維を検出することと、
     を含み、前記ヒトIgG抗体が前記無髄後根神経節ニューロンに結合したことが、小型無髄後根神経節ニューロンに対する自己抗体が検出されたことを示す、請求項3に記載の方法。
    Detecting autoantibodies against small unmyelinated dorsal root ganglion neurons
    Contacting a blood sample derived from a patient with dorsal root ganglion tissue or spinal dorsal horn tissue derived from a human or non-human animal, and detecting human IgG antibody bound to the dorsal root ganglion tissue or spinal dorsal horn tissue ,
    Detecting unmyelinated dorsal root ganglion neurons or nerve fibers thereof in the dorsal root ganglion tissue or the dorsal horn tissue of the spinal cord;
    4. The method of claim 3, wherein binding of the human IgG antibody to the unmyelinated dorsal root ganglion neuron indicates that autoantibodies to small unmyelinated dorsal root ganglion neurons have been detected.
  7.  無髄後根神経節ニューロンを検出することが、
     前記後根神経節組織にイソレクチンB4を接触させることを含み、
     前記イソレクチンB4が結合したニューロンが無髄後根神経節ニューロンである、請求項6に記載の方法。
    Detecting unmyelinated dorsal root ganglion neurons
    Contacting said dorsal root ganglion tissue with isolectin B4;
    The method according to claim 6, wherein the neuron to which isolectin B4 is bound is an unmyelinated dorsal root ganglion neuron.
  8.  前記ヒトIgG抗体がIgG2抗体である、請求項3~7のいずれか一項に記載の方法。 The method according to any one of claims 3 to 7, wherein the human IgG antibody is an IgG2 antibody.
  9.  前記自己抗体が抗Plexin D1抗体である、請求項3~8のいずれか一項に記載の方法。 The method according to any one of claims 3 to 8, wherein the autoantibody is an anti-Plexin D1 antibody.
  10.  神経障害性疼痛の検出方法であって、Plexin D1を発現するヒト細胞又は非ヒト動物細胞に患者由来の血液試料を接触させ、前記細胞に結合したヒトIgG抗体を検出することを含み、
     検出された前記ヒトIgG抗体の量が、Plexin D1を発現しない細胞に前記血液試料を接触させた場合に、当該細胞に結合するヒトIgG抗体の量と比較して多いことが、前記患者が神経障害性疼痛に罹患していることを示す、方法。
    A method for detecting neuropathic pain comprising contacting a blood sample derived from a patient with a human cell or non-human animal cell expressing Plexin D1, and detecting a human IgG antibody bound to the cell,
    When the amount of the human IgG antibody detected is higher than the amount of human IgG antibody that binds to the blood sample when the blood sample is brought into contact with cells that do not express Plexin D1, A method of showing that it is suffering from disabling pain.
  11.  抗ヒトIgG抗体と、
     有髄後根神経節ニューロンの検出薬又は無髄後根神経節ニューロンの検出薬と、
     を備える、神経障害性疼痛の診断キット。
    An anti-human IgG antibody;
    A detection agent for myelinated dorsal root ganglion neurons or a detection agent for unmyelinated dorsal root ganglion neurons;
    A diagnostic kit for neuropathic pain, comprising:
  12.  前記抗ヒトIgG抗体が、抗ヒトIgG2抗体である、請求項11に記載の診断キット。 The diagnostic kit according to claim 11, wherein the anti-human IgG antibody is an anti-human IgG2 antibody.
  13.  前記有髄後根神経節ニューロンの検出薬が、抗S100β抗体である、請求項11又は12に記載の診断キット。 The diagnostic kit according to claim 11 or 12, wherein the drug for detecting myelinated dorsal root ganglion neurons is an anti-S100β antibody.
  14.  前記無髄後根神経節ニューロンの検出薬が、イソレクチンB4である、請求項11~13のいずれか一項に記載の診断キット。 The diagnostic kit according to any one of claims 11 to 13, wherein the agent for detecting an unmyelinated dorsal root ganglion neuron is isolectin B4.
  15.  抗ヒトIgG抗体と、Plexin D1タンパク質と、を備える、神経障害性疼痛の診断キット。 A diagnostic kit for neuropathic pain comprising an anti-human IgG antibody and Plexin D1 protein.
  16.  前記抗ヒトIgG抗体が、抗ヒトIgG2抗体である、請求項15に記載の診断キット。 The diagnostic kit according to claim 15, wherein the anti-human IgG antibody is an anti-human IgG2 antibody.
PCT/JP2018/015200 2017-04-12 2018-04-11 Neuropathic pain marker and use thereof WO2018190365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019512547A JP7067800B2 (en) 2017-04-12 2018-04-11 Neuropathic pain markers and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762484406P 2017-04-12 2017-04-12
US62/484,406 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018190365A1 true WO2018190365A1 (en) 2018-10-18

Family

ID=63792506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015200 WO2018190365A1 (en) 2017-04-12 2018-04-11 Neuropathic pain marker and use thereof

Country Status (2)

Country Link
JP (1) JP7067800B2 (en)
WO (1) WO2018190365A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162322A1 (en) * 2023-01-31 2024-08-08 国立大学法人九州大学 Prevention or treatment of neuropathic pain
CN118962156A (en) * 2024-09-19 2024-11-15 阿维森纳(广州)健康科技有限公司 A Plexin-D1 antibody detection kit and its application in nervous system pain diseases

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519983A (en) * 2003-02-04 2006-08-31 ミレニアム・ファーマシューティカルズ・インコーポレイテッド 16386, 15402, 21165, 1423, 636, 12303, 21425, 27410, 38554, 35555, 55633, 57145, 59914, 94921, 16852, 33260, 58573, 30911, 85913, 14303, 16816, 17727, or 32620, Methods and compositions for treating pain and pain disorders
JP2007518068A (en) * 2003-11-25 2007-07-05 マヨ ファウンデーション フォー メディカル エデュケーション アンド リサーチ Optic myelitis marker
JP2009506985A (en) * 2005-07-21 2009-02-19 ステイヒテイング・カソリーケ・ユニベルシタイト Plexin D1 as a target for tumor diagnosis and treatment
JP2013504331A (en) * 2009-09-14 2013-02-07 バンヤン・バイオマーカーズ・インコーポレーテッド MicroRNAs, autoantibodies and protein markers for neuronal damage diagnosis
JP2013047259A (en) * 2006-01-10 2013-03-07 Zymogenetics Inc Method of treating pain and inflammation in neuronal tissue using il-31 antagonist
JP2013524220A (en) * 2010-04-01 2013-06-17 バンヤン・バイオマーカーズ・インコーポレイテッド Markers and assays for detecting neurotoxicity
EP2816354A1 (en) * 2013-06-19 2014-12-24 Medizinische Hochschule Hannover Biomarker for complex regional pain syndrome (CRPS)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI100556B (en) * 1995-03-01 1997-12-31 Biohit Oyj Procedure for Detecting Anti-DNA Antibodies, Diagnostic Procedure, Reagent Packaging and Autoimmune Disease Drugs
US10620201B2 (en) 2014-01-20 2020-04-14 Pad 4 Di Maria Adele Silvia Denegri S.A.S. In vitro method for predicting, diagnosing and monitoring in therapeutic follow up lupus nephritis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519983A (en) * 2003-02-04 2006-08-31 ミレニアム・ファーマシューティカルズ・インコーポレイテッド 16386, 15402, 21165, 1423, 636, 12303, 21425, 27410, 38554, 35555, 55633, 57145, 59914, 94921, 16852, 33260, 58573, 30911, 85913, 14303, 16816, 17727, or 32620, Methods and compositions for treating pain and pain disorders
JP2007518068A (en) * 2003-11-25 2007-07-05 マヨ ファウンデーション フォー メディカル エデュケーション アンド リサーチ Optic myelitis marker
JP2009506985A (en) * 2005-07-21 2009-02-19 ステイヒテイング・カソリーケ・ユニベルシタイト Plexin D1 as a target for tumor diagnosis and treatment
JP2013047259A (en) * 2006-01-10 2013-03-07 Zymogenetics Inc Method of treating pain and inflammation in neuronal tissue using il-31 antagonist
JP2013504331A (en) * 2009-09-14 2013-02-07 バンヤン・バイオマーカーズ・インコーポレーテッド MicroRNAs, autoantibodies and protein markers for neuronal damage diagnosis
JP2013524220A (en) * 2010-04-01 2013-06-17 バンヤン・バイオマーカーズ・インコーポレイテッド Markers and assays for detecting neurotoxicity
EP2816354A1 (en) * 2013-06-19 2014-12-24 Medizinische Hochschule Hannover Biomarker for complex regional pain syndrome (CRPS)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Plexin D1", PERIPHERAL NERVE, vol. 28, no. 2, 1 December 2017 (2017-12-01), pages 279 *
CHOI, Y ET AL.: "Dynamic control of beta-1 integrin adhesion by the plexinD1-sema3E axis", PNAS, vol. 111, no. 1, 7 January 2014 (2014-01-07), pages 379 - 384, XP055559263, Retrieved from the Internet <URL:doi:10.1073/pnas.1314209111> *
FUJII, T ET AL.: "Anti-plexin D1 autoantibody-associated neuropathic pain syndrome is responsive to immunotherapies", JOURNAL OF THE NEUROLOGICAL SCIENCES, vol. 381 supp, 15 October 2017 (2017-10-15), pages 78 - 79, XP085297341, Retrieved from the Internet <URL:https://doi.org/10.1016/j.jns.2017.08.269> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162322A1 (en) * 2023-01-31 2024-08-08 国立大学法人九州大学 Prevention or treatment of neuropathic pain
CN118962156A (en) * 2024-09-19 2024-11-15 阿维森纳(广州)健康科技有限公司 A Plexin-D1 antibody detection kit and its application in nervous system pain diseases

Also Published As

Publication number Publication date
JP7067800B2 (en) 2022-05-16
JPWO2018190365A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
Tajik et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis
Vincent et al. Autoimmune channelopathies and related neurological disorders
Huang et al. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord
Sailer et al. Immunolocalization of BK channels in hippocampal pyramidal neurons
Wunsch et al. The enteric nervous system is a potential autoimmune target in multiple sclerosis
Arevalo-Martin et al. Elevated autoantibodies in subacute human spinal cord injury are naturally occurring antibodies
EP2483417B1 (en) Methods for diagnosing and treating encephalitis or epilepsy
Ding et al. Anti-NMDAR encephalitis induced in mice by active immunization with a peptide from the amino-terminal domain of the GluN1 subunit
Margutti et al. Autoantibodies to the C-terminal subunit of RLIP76 induce oxidative stress and endothelial cell apoptosis in immune-mediated vascular diseases and atherosclerosis
US8354236B2 (en) Detection of neurodegenerative disease
Ren et al. Cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4: potential relevance to neuromyelitis optica
DE102018004759A1 (en) Diagnosis of a neuroautoimmune disease
Loewen et al. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity
Danesh-Seta et al. Bee venom–derived BBB shuttle and its correlation with oligodendrocyte proliferation markers in mice model of multiple sclerosis
JPWO2014003008A1 (en) Novel histamine-releasing substance contained in human sweat
WO2018190365A1 (en) Neuropathic pain marker and use thereof
US11061027B2 (en) Materials and methods for evaluating and treating cancer
Wang et al. SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of Multiple sclerosis
Schmieder et al. The CD 20 homolog M s4a8a integrates pro‐and anti‐inflammatory signals in novel M 2‐like macrophages and is expressed in parasite infection
JP6754751B2 (en) Method for screening compounds using membrane STIM1
Bedolla et al. Microglia-derived TGF-β1 ligand maintains microglia homeostasis via autocrine mechanism and is critical for normal cognitive function in adult mouse brain
WO2019202767A1 (en) Antifibrotic agent and biomarker for fibrosis
Li et al. Upregulation of spinal MDGA1 in rats after nerve injury alters interactions between neuroligin-2 and postsynaptic scaffolding proteins and increases GluR1 subunit surface delivery in the spinal cord dorsal horn
EP3644061A1 (en) Diagnosis of blistering autoimmune diseases
Larsson et al. Distribution of transmembrane AMPA receptor regulatory protein (TARP) isoforms in the rat spinal cord

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784145

Country of ref document: EP

Kind code of ref document: A1