[go: up one dir, main page]

WO2018193490A1 - 無閉塞時隔計算システム - Google Patents

無閉塞時隔計算システム Download PDF

Info

Publication number
WO2018193490A1
WO2018193490A1 PCT/JP2017/015424 JP2017015424W WO2018193490A1 WO 2018193490 A1 WO2018193490 A1 WO 2018193490A1 JP 2017015424 W JP2017015424 W JP 2017015424W WO 2018193490 A1 WO2018193490 A1 WO 2018193490A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
calculation
time interval
value
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/015424
Other languages
English (en)
French (fr)
Inventor
英樹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Digital Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Digital Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Digital Solutions Corp filed Critical Toshiba Corp
Priority to JP2018561069A priority Critical patent/JP6559913B2/ja
Priority to KR1020197002713A priority patent/KR102128803B1/ko
Priority to PCT/JP2017/015424 priority patent/WO2018193490A1/ja
Priority to CN201780047405.2A priority patent/CN109562771B/zh
Publication of WO2018193490A1 publication Critical patent/WO2018193490A1/ja
Priority to US16/267,452 priority patent/US11097756B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L21/00Station blocking between signal boxes in one yard
    • B61L21/10Arrangements for trains which are closely following one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/204Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using Communication-based Train Control [CBTC]

Definitions

  • Embodiment of this invention is related with the non-occlusion time interval calculation system.
  • time interval The operation interval between the train that runs ahead and the train that runs continuously is called the time interval, and the time interval that can safely run without collision is called the time interval (time).
  • the train In the conventional signal system, the train is controlled by dividing into sections of a certain distance of blockage. When evaluating whether multiple trains can run safely, it was good to evaluate the time interval at the blockage of the blockage (location of traffic lights). However, recently, with the evolution of traffic light systems, it does not require blockage, and it controls its own vehicle while looking at the distance between the vehicle and other trains via a position detection device on the vehicle and a communication device on the ground. Non-blocking control type signal system (non-blocking signal system) has appeared. Therefore, the evaluation of the time interval value is also required to be compatible with this non-blocking signal system.
  • the point where the time interval should be evaluated is not clear, and it is necessary to evaluate it at every point between all the stations that run. Specifically, by calculating the time interval value at a certain distance point continuously in the distance direction between each station, a time distribution curve between each station is drawn, and the time interval value near which distance point is It is necessary to evaluate whether the two large and preceding trains are inaccessible.
  • the interval value at a certain point can be obtained by calculating back the brake curve of the continuing train from the stop position (calculation start point) and the brake time to the intersection with the run curve (distance-speed curve). Since the deceleration and elapsed time are calculated with each granularity, and the speed and braking distance are accumulated every second, the amount of calculation is large even at one point, and time is calculated for the interval value. Take it.
  • the time interval value is calculated at a constant interval.
  • (1) a constant time is calculated, and (2) a constant distance is calculated.
  • the time interval distribution curve can be obtained by arbitrarily setting a fixed distance (calculation granularity) and repeating the time interval calculation for each fixed distance, and its accuracy is proportional to the calculation granularity. If the fixed distance (calculation granularity) is set to be small in order to increase the accuracy of the distribution curve, the amount of calculation increases, causing a problem that the processing does not end within a reasonable time.
  • the time-spacing curve diagram creating apparatus of Patent Document 1 creates a new time curve by adding the margin distance and the brake distance to the original time curve, and a contact point between the new time curve and the time curve of the continuing train. By obtaining the above, only the maximum time interval value is obtained, not the continuous time interval value.
  • the problem to be solved by the present invention is to provide an unoccluded time interval calculation system capable of obtaining an accurate time interval distribution curve with a small amount of calculation.
  • the non-blocking time interval calculation system calculates a time interval value of the traveling section of the train in which the operation of the train is controlled without being blocked.
  • the non-occlusion time interval calculation system includes acquisition means and time interval value calculation means.
  • the acquisition means includes calculation distance interval data indicating a reference value of an interval between points where a time interval value is to be calculated, detailed granularity data indicating a limit value capable of subdividing the interval, and two adjacent two Time interval change amount threshold value data indicating a threshold value of the change amount of the interval value between points is acquired.
  • the time interval value calculating means is a means for obtaining an interval value distribution curve of the travel section.
  • the time interval calculation means sets a reference value indicated by the calculated distance interval data as the initial value for the interval.
  • the time interval value calculating means calculates an interval value for a plurality of points on the travel section for each interval, and a change amount of the interval value between two adjacent points is the interval value change amount threshold value. Section between two adjacent points that exceed the threshold indicated in the data, point where the interval value has changed from rising to falling, or interval between the two points before and after the beginning point and end point of the interval, or interval value Extracting a section between two points before and after the point where the point changed from descending to rising or the beginning point and the end point of the section, and further subdividing the interval in the extracted section to further calculate the interval value, Run recursively until the interval reaches the limit value indicated by the refined granularity data.
  • the figure which shows an example of a structure of the non-occluding time interval calculation system of embodiment The figure which shows an example at the time of constructing the non-occlusion time interval calculation system of embodiment with a some computer. The figure which shows an example of a time interval distribution curve. The figure for demonstrating the idea of the time interval calculation in a non-blocking signal system. The figure which shows the list of the variables used by the non-occlusion time interval calculation in the non-occlusion time interval calculation system of embodiment. The figure which shows an example of the calculation instruction
  • the figure which shows the calculation start position in case the time interval pattern in the non-occlusion time interval calculation system of embodiment is "departure".
  • the figure which shows the calculation end position when not exceeding In the case where the preceding train and the continuation train are traveling on different routes, as determined in the non-blocking time interval calculation system of the embodiment, because the train length + margin distance (behind the preceding train) exceeds the stop position
  • the train length + the margin distance (behind the preceding train) is about the kilometer of the station.
  • require the approach point of the continuing train in the non-blocking time interval calculation system of embodiment.
  • the 2nd figure which shows the area which should raise the resolution in the non-occlusion time interval calculation system of embodiment.
  • 4th figure which shows the area which should raise the resolution in the non-occlusion time interval calculation system of embodiment.
  • the figure which shows the time interval calculation example of the area which should raise the resolution shown by FIG. The figure which shows the area which should raise the resolution extracted from the calculation result shown by FIG.
  • the figure which shows the time interval calculation example of the area which should raise the resolution shown by FIG. The figure which shows the example of all the time interval values calculated by the non-occluding time interval calculation system of embodiment.
  • the figure which shows the example of simultaneous screen display of the time interval distribution curve in the non-occlusion time interval calculation system of embodiment, an operation curve, and a time interval value list.
  • the 1st flowchart which shows an example of the process sequence regarding the non-occlusion time interval calculation of the non-occlusion time interval calculation system of embodiment.
  • the 2nd flowchart which shows an example of the process sequence regarding the non-occlusion time interval calculation of the non-occlusion time interval calculation system of embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of an unoccluded time interval calculation system 100 according to the present embodiment.
  • this non-blocking time interval calculation system 100 includes a processor 10, a memory 20, a storage device 30, and a display device 40. Further, the non-occlusion time interval calculation system 100 causes the processor 10 to execute the non-occlusion time interval calculation program 21 stored in the memory 20 so that the non-occlusion time interval calculation processing unit 11 and the time interval distribution curve display processing are performed.
  • Each functional unit of the unit 12 is realized. Each functional unit may be realized by hardware as a dedicated electronic circuit, for example, without depending on software.
  • the non-occlusion time interval calculation system 100 may be constructed by a single computer or, as shown in FIG. 2, a plurality of computers (Web application server 1, database server 2, Web client browser). It may be constructed by 3).
  • the Web application server 1 receives a request from the Web client browser 3 via the Internet N and performs various processes using data stored in the database server 2 (database 2A), variables received from the Web client browser 3, and the like. And the result may be returned to the Web client browser 3. That is, the Web application server 1 plays the role of the processor 10 shown in FIG. 1, the database server 2 takes the role of the storage device 30 shown in FIG. 1, and the Web client browser 3 takes the role of the display device 40 shown in FIG. You may do it.
  • the web application server 1 can accept requests from a plurality of web client browsers 3 and process various processes in response to these requests in parallel.
  • the storage device 30 stores a line section master 31, a station master 32, a number line master 33, and a vehicle type master 34.
  • the storage device 30 stores operation curve data (distance-speed curve data, distance-time curve data) 35 calculated by, for example, a known operation curve system. Further, the storage device 30 stores a brake performance master 36 and a calculation coefficient master (coefficient master for calculation based on driving theory) 37.
  • the non-occlusion time interval calculation processing unit 11 uses the various masters and data stored in the storage device 30 to calculate an interval value suitable for the non-occlusion signal system.
  • the interval value data (distance interval value data, distance-brake distance data) 38 calculated by the non-occluding interval calculation processing unit 11 is stored in the storage device 30.
  • the time interval distribution curve display processing unit 12 reads the time interval value data 38 in the storage device 30 and displays the time interval distribution curve, the brake distance curve, and the like on the display device 40.
  • the conventional signal system is divided by a section called blockage, and there can be only one train in the section. Therefore, the number of trains that can exist between the stations depends on the number of blockages, and the train operation interval also depends on the number of blockages. If you try to shorten the train operation interval, you cannot do it without changing the blockage of the blockage. Increasing the number of obstructions will allow you to run as many trains as you want, but it will cost more because you will have to install many traffic lights. Moreover, the distance of the blockage section shorter than the train length of the longest train which runs through the section cannot be made. As a result, a blockage section longer than the train length is created. In other words, there are both a cost limit and a physical limit to reduce the operation interval.
  • CBTC Communication-Based Train Control
  • This is a signaling system.
  • the operation interval can be reduced to the limit. If you try to evaluate the interval values at all distance points at a certain distance interval, and while being conscious of the train length of the preceding and continuing trains, the calculation amount will increase, so far it has been done. However, if this new signaling system is introduced and it is evaluated how far the driving interval can be reduced, the time interval value must be evaluated over the entire area between each station.
  • the time interval distribution curve can be obtained by arbitrarily setting a fixed distance (calculation granularity) and repeating the time interval calculation for each fixed distance. Is proportional to For example, if the detail level of the distance direction calculation is 1 m and the time interval value between the preceding train and the continuation train is obtained (if it is about 1 m in detail), it is basically possible to obtain an almost accurate time interval distribution curve. It is a natural way of thinking.
  • the interval value is considered in an easy-to-understand manner, so if there are no fluctuation factors such as gradient, it will hardly change as long as the preceding train and the continuing train run at the same speed. In the vicinity where the preceding train decelerates, a speed difference is created and the interval value becomes large. The speed and braking distance change due to changes in running resistance such as slope and curve, and the interval value also changes. However, in general urban traffic, the interval value does not change extremely at distances of about the train length. For mountain climbing railways, etc., it is considered that there is an extreme change. However, if the time interval value is calculated at intervals of about the train length, it is considered that the fluctuation of the time interval value can be captured.
  • the train length is a distance that can be used as a guide for calculating the granularity of the time interval distribution.
  • the non-occlusion time interval calculation system 100 of the present embodiment is a system that obtains a distribution of interval values by continuously calculating interval values for train travel sections. If this function is simply calculated at a fixed interval, the calculation amount is large and the processing time is increased. However, the non-occlusive interval calculation system 100 omits a section that does not require calculation, Apply a unique method for calculating the interval value that can obtain an accurate interval distribution curve with a small amount of calculation. Hereinafter, the details of the method of calculating the interval value will be described.
  • FIG. 5 shows a list of setting values and data (variables) used in the non-occlusion time interval calculation in the non-occlusion time interval calculation system 100.
  • “margin distance (behind preceding train)”, “margin distance (continue train ahead)”, “signal indication change time” , “Operator handling time”, “Switching device switching time”, etc. are used in the non-occlusion time interval calculation system 100.
  • These setting values and data are prepared in advance and stored in the storage device 30.
  • this non-occlusion time interval calculation system 100 when obtaining a time distribution curve in the non-occlusion signal system, for example, a calculation instruction screen as shown in FIG. Enter the conditions and execute the non-occlusion interval calculation.
  • the non-occluding time interval calculation processing unit 11 has a function of presenting this calculation instruction screen.
  • a line section is selected (a1), and an up / down direction or a traveling direction is selected (a2).
  • a time interval calculation station to be calculated in the section is selected (a3), arrival (meaning arrival of the preceding train, arrival of the continuing train) and departure (meaning departure of the preceding train, departure of the continuing train).
  • a time interval pattern represented by a combination of departure, arrival, and passage is selected.
  • preceding train vehicle type (a5), preceding train number (a6), preceding train operation curve (a7), continuation train vehicle type (a8), continuation train number (a9), and continuation at the station where the time interval value is to be calculated
  • the train operation curve (a10) and the brake notch (a11) of the continuing train used in the calculation are selected.
  • the train length of the preceding train and the train length of the continuing train are also obtained.
  • the non-occluding time interval calculation system 100 accepts settings of a calculation distance interval (a12), a refined granularity (a13), and a time interval value change amount threshold value (a14).
  • the calculation distance interval is a reference value of the interval between points where the time interval value is to be calculated.
  • the refined granularity is a limit value that can subdivide the interval.
  • the interval value change amount threshold value is a threshold value of the change amount of the interval value between two adjacent points.
  • these three variables indicated by reference numeral a15 are set to reduce the amount of calculation and speed up the calculation. This is a variable unique to the interval calculation system 100.
  • this resolution is a predetermined fixed value in the non-occluding time interval calculation system 100.
  • the non-occlusion time interval calculation system 100 more specifically, the non-occlusion time interval calculation processing unit 11, when the interval calculation button a16 is operated, each variable set on the calculation instruction screen (and in the storage device 30). Non-blocking time interval calculation is executed using various stored masters and data).
  • the non-blocking time interval calculation processing unit 11 first determines the calculation start position and the calculation end position of the time interval value within the section where the preceding train and the continuation train travel among the stations performing the time interval calculation. .
  • the non-blocking time interval calculation processing unit 11 determines the calculation start position of the time interval value based on the route, the stop, and the passage. A rule for determining the calculation start position of the interval value will be described in detail with reference to FIGS.
  • FIG. 8 shows the calculation start position when the preceding train and the continuation train are traveling on the same route and the continuation train departs from the stop.
  • FIG. 9 shows the calculation start position when the preceding train and the continuation train are traveling on the same route and the preceding train passes.
  • FIG. 10 shows the calculation start position when the preceding train and the continuation train are traveling on different routes.
  • the interval value is calculated for only one traffic light.
  • the non-blocking time interval calculation there is no traffic light, so there are conditions for each calculation granularity. Calculations are made during the establishment. Therefore, a plurality of calculation results can be generated.
  • Fig. 11 shows the calculation start position when the interval pattern is "departure / arrival". As in the case of the conventional signal system, in the case of arrival and departure, only the case of the same route is calculated. The calculation start position of the time interval value when the time interval pattern is arrival and departure is the stop position of the preceding train.
  • the non-blocking time interval calculation processing unit 11 determines the calculation end position of the time interval value based on the route, stopping and passing. With reference to FIGS. 13 to 19, a rule for determining the calculation end position of the interval value will be described in detail.
  • FIG. 13 shows the calculation end position when the preceding train and the continuation train are traveling on the same route and the preceding train is stopped.
  • FIG. 14 shows the calculation end position when the preceding train and the continuation train travel on the same route and the preceding train passes.
  • FIG. 15 shows the calculation end position when the preceding train and the continuing train are traveling on different routes and the train length + the margin distance (behind the preceding train) does not exceed the stop position.
  • FIG. 16 is a case where the preceding train and the continuation train are traveling on different routes, and the calculation ends when the train length + the margin distance (behind the preceding train) does not exceed the kilometer of the station. Indicates the position.
  • FIG. 17 shows a case where the preceding train and the continuation train are traveling on different routes, and the train length + the margin distance (behind the preceding train) exceeds the stop position. Shows when to do.
  • FIG. 18 shows a case where the preceding train and the continuation train are traveling on different routes, and the train length + the margin distance (behind the preceding train) exceeds the kilometer of the station. The case where it is set as the calculation end position is shown.
  • FIG. 19 shows the calculation end position when the interval pattern is “departure / arrival”.
  • the calculation end position when the time interval pattern is arrival / departure is the position of the train length + the margin distance (behind the preceding train) from the stop position of the preceding train.
  • the non-occluding time interval calculation processing unit 11 calculates the total number at the calculation distance interval (calculation granularity) (every calculation distance interval). (Calculation at all calculation points set to).
  • the calculation point is set with the granularity, and the time interval calculation is performed for all the calculation points. After that, only the section to be calculated in detail is calculated step by step to the limit granularity that can be subdivided.
  • a calculation point is placed between the calculation start point and the calculation end point, and between them, as shown in FIG.
  • the calculation point is placed at a position that is an integral multiple of the calculation granularity with respect to 000 km.
  • the calculation start point is 11.475 km
  • the calculation end point is 12.105 km
  • the calculation granularity is 100 m, 11.475 km, 11.500 km, 11.600 km, 11.700 km, 11.800 km, 11.900 km, 12
  • the points of .000 km, 12.100 km, and 12.105 km are set as calculation points.
  • FIG. 21 is a diagram showing the relationship between the preceding train and the starting point of the brake.
  • the non-blocking time interval calculation in the non-blocking time interval calculation system 100 when calculating the time interval, as shown in FIG.
  • the point on the station side is the starting point of the reverse brake.
  • the starting speed is the brake starting speed.
  • the non-blocking time interval calculation processing unit 11 creates a reverse brake for each preceding train position (calculation start point), and obtains an intersection with the running curve of the continuing train as shown in FIG. A point on the driving curve about a kilometer on the starting station side from the intersection of the reverse brake and the driving curve of the continuation train is set as the entry point.
  • the non-blocking time interval calculation processing unit 11 sets the departure point of the continuing train as the entry point. At that time, the time for handling the driver is also added to the additional time for the time interval calculation.
  • the non-blocking time interval calculation processing unit 11 continues the brake start point.
  • the continuation train approach point is set as the stop position of the continuation train (the continuation train is stopped and the position error is taken into account) (Since there is no need, do not include the surplus distance (in front of the continuing train).)
  • the time for handling the driver is added to the additional time for the time interval calculation.
  • the non-blocking time interval calculation processing unit 11 sets a point on the operation curve on the starting station side as an entry point by a margin distance (in front of the continuing train) from the brake start point.
  • the non-blocking time interval calculation processing unit 11 when the point position returned to the starting station side by a margin distance (front of the continuing train) exceeds the starting point of the continuing train, the non-blocking time interval calculation processing unit 11 The starting point is the entry point. At that time, the time for handling the driver is also added to the additional time for the time interval calculation.
  • the non-blocking time interval calculation processing unit 11 obtains the operation time of the preceding train and the operation time of the continuing train from the position of the preceding train position and the entry point of the continuing train, and obtains the calculation time interval.
  • the calculation time interval is obtained in the same manner as the signal system.
  • the brake start point At the calculation end point in the case of departure and arrival, the point where the operation curve of the continuing train stops at the station is the brake start point. In this case, the brake is started and the stop position of the continuing train is set as the entry point.
  • FIG. 28 is a diagram showing a calculation method of the reverse brake (reverse brake curve).
  • a reverse brake is used in the non-occlusion time interval calculation in this non-occlusion time interval calculation system 100.
  • the reverse brake is calculated in the direction opposite to the traveling direction. This calculation process is the same as the brake calculation process for the driving curve.
  • the condition of the track equipment cannot change suddenly at a distance of about the length of the vehicle. Therefore, within a distance of less than 100 m, which is about the train length, the time interval value does not change greatly. Therefore, only when it is considered that there is a further peak value between the interval values calculated at regular intervals, it is considered that the calculation should be performed in more detail.
  • Interval value change amount threshold 5 seconds (example). When the difference in the interval of the calculated time interval value is larger than this value, the threshold value is calculated more finely.
  • time interval calculation follows the following five-step calculation procedure.
  • the non-occluding time interval calculation processing unit 11 calculates the interval before and after the calculated interval value sequence includes the same value and changes from rising to falling or falling to rising. , The interval to increase the resolution.
  • the same value is included, as shown in FIG. 31, the resolution in a section where the same value without change before and after continues is not increased.
  • the non-occluding time interval calculation processing unit 11 sets the interval to increase the resolution when the difference in the calculated interval value interval is large.
  • the threshold value is defined separately, and when it exceeds the threshold value, it is determined that the resolution is increased.
  • the non-occlusion time interval calculation processing unit 11 performs a new (with one fine resolution) for these intervals in which the resolution should be increased, as in the case of exhaustive calculation at the calculation distance interval (calculation granularity) set as the calculation condition. Perform interval calculation with granularity.
  • the non-occluding time interval calculation processing unit 11 extracts the section for which the resolution is to be further increased from the sequence of the time interval values obtained again. Then, the non-occluding interval calculation processing unit 11 performs interval value calculation with a new granularity (with one more fine resolution) within the interval.
  • the non-occluding interval calculation processing unit 11 repeats this refinement until the refinement granularity set as the calculation condition is reached, and executes the interval value calculation recursively.
  • non-occluding interval calculation processing unit 11 calculates the variables as follows.
  • the non-occluding time interval calculation processing unit 11 performs time interval calculation in units of a granularity of 100 m and lists time interval values.
  • FIG. 33 shows an example of exhaustive calculation at a calculation distance interval (calculation granularity).
  • FIG. 34 is a diagram illustrating a section in which the resolution extracted from the calculation result illustrated in FIG. 33 is to be increased.
  • the non-occlusion time interval calculation processing unit 11 includes a section of 5.3 km to 5.5 km and a length of 5.8 km as the front and rear sections in which the interval value sequence changes from rising to falling or from falling to rising. Extract a section of ⁇ 6.1km.
  • the non-occlusion time interval calculation processing unit 11 increases the resolution only for the extracted section, performs time interval calculation in units of 10 m granularity, and lists time interval values.
  • FIG. 35 shows an example of time interval calculation for a section where the resolution should be increased.
  • (A) is an example of time interval calculation in the section from 5.3 km to 5.5 km
  • (B) is an example of time interval calculation in the section from 5.8 km to 6.1 km.
  • the non-occluding time interval calculation processing unit 11 extracts a section where the resolution should be further increased from the section where the resolution is increased and the time interval value is calculated.
  • FIG. 36 is a diagram illustrating a section in which the resolution extracted from the calculation result illustrated in FIG. 35 is to be increased. As shown in FIG. 36, the non-occlusion time interval calculation processing unit 11 performs the interval from 5.40 km to 5.42 km as the interval before and after the interval value sequence changes from ascending to descending or descending to ascending. A section of 5.89 km, a section of 5.90 km to 5.95 km, and a section of 5.97 km to 5.99 km are extracted.
  • the non-occluding time interval calculation processing unit 11 increases the resolution only for the extracted interval, performs time interval calculation in units of 1 m granularity, and enumerates time interval values.
  • FIG. 37 shows a time interval calculation example of a section where the resolution should be increased.
  • (A) is an example of time interval calculation in the section of 5.40 km to 5.42 km
  • (B) is an example of time interval calculation of the section of 5.87 km to 5.89 km
  • (C) is 5.87 km to 5
  • (D) is a time interval calculation example of a section of 5.97 km to 5.99 km.
  • the non-occluding interval calculation processing unit 11 ends the interval calculation. In this way, the non-occluding time interval calculation processing unit 11 first calculates a time interval value for each set calculation distance interval for the section from the calculation start position to the calculation end position determined as described above. Based on the result of the threshold value calculation, a section where the resolution is to be increased is extracted, and the calculation granularity is reduced by one step with the set resolution. Then, the non-occluding time interval calculation processing unit 11 repeats the extraction of the section for which the resolution should be increased and the detailed calculation granularity until the set detailed granularity is reached.
  • FIG. 38 shows an example of all time interval values calculated by the non-occluding time interval calculation processing unit 11.
  • the non-occluding interval calculation processing unit 11 creates a non-linear continuous interval value list with different calculation granularities. That is, as a result, the non-occluding interval calculation processing unit 11 generates interval value data 38 in which the distance interval is not constant.
  • the time interval distribution curve display processing unit 12 is calculated by the operation curve (run curve) of the continuing train among the operation curves which are distance-speed curves based on the time interval calculation, and the non-blocking time interval calculation processing unit 11.
  • the time interval value and the brake distance data stored in the above are read out from the storage device 30 and the time interval distribution curve (the time interval value for the preceding train position kilometer), for example, the operation curve of the continuing train and the brake distance curve (the preceding train) Display on the display device 40 together with the brake distance for the position kilometer.
  • Fig. 39 shows a screen display example of the operation curve, time interval distribution curve and brake distance curve of a continuing train.
  • a region indicated by reference sign b2 is a display region for the operation curve, time interval distribution curve, and brake distance curve of the continuing train.
  • the time interval distribution curve display processing unit 12 connects the interval value and the brake distance value with a line corresponding to the distance, for example, the abscissa indicates the distance and the ordinate indicates the time. Generate a curve.
  • time interval distribution curve display processing unit 12 displays the time curve at the tail end of the preceding train and the time curve at the end of the continuing train on the screen together with the operation curve, time interval distribution curve and brake distance curve of the continuing train. Also good.
  • the area indicated by reference sign b1 is a display area for the time curve at the tail end of the preceding train and the time curve at the head end of the continuing train.
  • the time curve that is the distance-time curve of the running curve is 0 when the head of the continuation train arrives at the time interval calculation station, or 0 when the head of the continuation train departs from the time interval calculation station.
  • the time interval distribution curve display processing unit 12 sets the maximum value among the calculated interval values as the maximum interval value, and the tail end of the preceding train becomes the interval calculation station at the time shifted by the maximum interval value.
  • a time curve is drawn so that it arrives or the tail end of the preceding train departs from the time interval calculation station.
  • the time interval distribution curve display processing unit 12 can also realize a screen for displaying a list of obtained time interval values.
  • the time interval distribution curve display processing unit 12 includes the preceding train kilometer which is the distance position used for the reverse brake calculation, and the continuation considering the allowance distance in the kilometer of the intersection of the continuous train operation curve and the reverse brake curve.
  • the train distance, the brake distance, the preceding train position in consideration of the train length from the preceding train kilometers, the preceding train time that is the time on the preceding train time curve in the preceding train kilometers, It is possible to display the continuation train time that is the time on the continuation train time curve, the calculated interval value that is the obtained interval value, and the signal interval value that takes into account the processing time and transmission delay of the traffic light.
  • the time interval distribution curve display processing unit 12 can simultaneously display the time interval distribution curve, the operation curve, and the interval value list.
  • FIG. 41 shows an example in which a time interval distribution curve, an operation curve, and a time interval list are displayed on the same screen.
  • an area indicated by reference numeral c1 is a display area of a time interval distribution curve
  • an area indicated by reference numeral c2 is a display area of an operating curve
  • an area indicated by reference numeral c3 is a list of interval values. Display area.
  • the time interval distribution curve display processing unit 12 adds to the time interval distribution curve and the operation curve.
  • a list of interval values may be displayed.
  • 42A and 42B are flowcharts illustrating an example of a processing procedure related to non-occlusion time interval calculation of the non-occlusion time interval calculation system 100 of the present embodiment.
  • the non-occlusion time interval calculation processing unit 11 first reads setting values and data (variables) for the non-occlusion interval calculation (step S1). Further, the non-occluding interval calculation processing unit 11 sets calculation conditions (step S2).
  • the non-occlusion time interval calculation processing unit 11 receives an instruction to start non-occlusion calculation (step S3), and determines the station to be calculated first (step S4). Further, the non-blocking time interval calculation processing unit 11 determines a calculation start position within the station (step S5), and stores the calculation start position in Startpos (variable) (step S6). Subsequently, the non-occluding time interval calculation processing unit 11 determines a calculation end position in the section (step S7), and stores the calculation end position in Endpos (variable) (step S8). Further, the non-occluding time interval calculation processing unit 11 sets the calculation distance interval set in step S2 as the calculation granularity (step S9).
  • the non-occluding time interval calculation processing unit 11 determines the first calculation distance point (step S10), and calculates a reverse brake curve at the calculation distance point (step S11).
  • the non-blocking time interval calculation processing unit 11 calculates the intersection point of the reverse brake curve with the run curve of the continuing train (step S12), and stores the brake distance and the time interval value (step S13).
  • the non-occluding time interval calculation processing unit 11 sets a point separated from the calculation distance point by the calculation distance interval as a new calculation distance point (step S14), and determines whether the calculation distance point exceeds Endpos (step S15). ). If not exceeded (No in step S15), the non-occluding time interval calculation processing unit 11 determines the next calculation distance point (step S16), and returns to step S11.
  • the non-occluding time interval calculation processing unit 11 determines whether or not the calculation of all the sections for increasing the resolution has been completed (step S17). If not completed (No in step S17), the non-occluding time interval calculation processing unit 11 determines the next section of the section to increase the resolution (step S18), and stores the calculation start position in Startpos (variable). At the same time (step S19), the calculation end position is stored in Endpos (variable) (step S20). Then, the non-occluding interval calculation processing unit 11 returns to step S10.
  • the non-occluding interval calculation processing unit 11 determines whether or not the resolution has reached the detailed granularity set in Step S2 (Step S17). S21). If not reached (No in step S21), the non-occluding time interval calculation processing unit 11 increases the resolution and sets it as a new calculation granularity (step S22). The non-occluding time interval calculation processing unit 11 extracts a section whose resolution should be increased from the sequence of time interval values (step S23), and determines the first section (step S24). The non-occluding time interval calculation processing unit 11 stores the calculation start position in Startpos (variable) (step S19), stores the calculation end position in Endpos (variable) (step S20), and returns to step S10.
  • the non-blocking time interval calculation processing unit 11 determines whether all the processes between the stations to be calculated have been completed (step S25). When it is not over (No in step S25), the non-blocking time interval calculation processing unit 11 determines the next station (step S26), and returns to step S5. On the other hand, when all of them are finished (Yes in step S25), the time interval distribution curve display processing unit 12 reads the stored time interval value and brake distance (step S27), and the time interval distribution curve and brake distance curve are read. Is displayed (step S28).
  • the non-occlusion time interval calculation system 100 of this embodiment narrows down the portion where the interval value needs to be calculated as described above, and reduces only the necessary data by reducing the amount of calculation. Realizes high-speed calculation.
  • the non-occluding time interval calculation system 100 of the present embodiment can obtain a highly accurate time interval distribution curve with a small amount of calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

実施形態によれば、無閉塞時隔計算システムは、時隔値算出手段が、走行区間上の複数の地点について時隔値を算出し、隣接する2つの地点間での時隔値の変化量が時隔値変化量閾値データで示される閾値を超えた前記隣接する2つの地点間の区間、時隔値が上昇から下降に転じた地点または区間の先頭地点および末尾地点の前後2つの地点間の区間、または、時隔値が下降から上昇に転じた地点または区間の先頭地点および末尾地点の前後2つの地点間の区間を抽出し、当該抽出した区間における時隔値の算出間隔を細分化して時隔値をさらに算出することを、時隔値の間隔が詳細化粒度データで示される限界値に達するまで再帰的に実行する。

Description

無閉塞時隔計算システム
 本発明の実施形態は、無閉塞時隔計算システムに関する。
 先行して走る列車と、続行して走る列車との運転間隔を時隔といい、衝突せずに安全に走れる時間間隔を時隔値(時間)という。
 従来の信号システムでは、閉塞という一定距離の区間ごとに区分けして、列車を制御していた。複数の列車が安全に走れるかを評価するときは、その閉塞の切れ目(信号機設置場所)において時隔値を評価することでよかった。しかし、昨今は信号機システムの進化で、閉塞を必要とせず、車上の位置検出装置と地上の通信装置とを介して、自車と他の列車との距離を見ながら自車の制御をする無閉塞制御型の信号システム(無閉塞信号システム)が登場した。そのため、時隔値の評価も、この無閉塞信号システムへの対応が求められている。
特開2014-121909号公報
 無閉塞信号システムでは、閉塞という概念がないため、時隔を評価すべき地点が明確ではなく、走行するすべての駅間のあらゆる地点での評価が必要になる。具体的には、ある距離地点での時隔値を算出することを各駅間において距離方向に連続的に行うことで、各駅間の時隔分布曲線を描き、どの距離地点付近の時隔値が大きく、先行、続行の2列車が接近できないか評価する必要がある。
 ある1地点の時隔値は、続行列車のブレーキ曲線を停止位置(計算開始地点)から逆算し、ランカーブ(距離-速度曲線)との交点までのブレーキ時間によって求まるが、運転理論の通り1秒ごとの粒度で減速度と経過時間とを計算し、速度と制動距離とを1秒ごとに積み重ねて求めるため、たとえ1地点であっても計算量が多く、時隔値の計算には時間がかかる。
 無閉塞信号システムの場合、時隔分布曲線を得るために、時隔値を一定間隔で計算することになるが、その手法としては、(1)一定時間ごとに計算する、(2)一定距離ごとに計算する、の2通りの手法が考えられる。ここでは、そのうち、後者の一定距離ごとに計算する手法に着目する。
 時隔分布曲線は、一定距離(計算粒度)を任意に設定し、その一定距離ごとに時隔計算を繰り返すことで得ることができ、その精度は、計算粒度に比例する。分布曲線の精度を上げようとして、一定距離(計算粒度)を小さく設定すると、計算量が多くなり、妥当な時間内に処理が終わらないという問題が発生する。
 なお、特許文献1の時隔曲線図作成装置は、余裕距離とブレーキ距離とを元の時間曲線に足して新たな時間曲線を作成し、当該新たな時間曲線と続行列車の時間曲線との接点を求めることで、最大時隔値のみを求めるものであって、連続した時隔値を求めるものではない。
 また、そもそも、列車の走行区間において一定間隔ごとに時隔値を連続的に算出するような装置は存在しない。
 本発明が解決しようとする課題は、少ない計算量で精度の高い時隔分布曲線を得ることができる無閉塞時隔計算システムを提供することである。
 実施形態によれば、無閉塞時隔計算システムは、列車の運行が閉塞によらずに制御される前記列車の走行区間の時隔値を計算する。無閉塞時隔計算システムは、取得手段と、時隔値算出手段と、を具備する。前記取得手段は、時隔値を計算すべき地点間の間隔の基準値を示す計算距離間隔データと、前記間隔を細分化することのできる限界値を示す詳細化粒度データと、隣接する2つの地点間での時隔値の変化量の閾値を示す時隔値変化量閾値データとを取得する。前記時隔値算出手段は、前記走行区間の時隔値分布曲線を得るための手段である。前記時隔値算出手段は、前記計算距離間隔データで示される基準値を初期値として前記間隔に設定する。前記時隔値算出手段は、前記間隔ごとに前記走行区間上の複数の地点について時隔値を算出し、隣接する2つの地点間での時隔値の変化量が前記時隔値変化量閾値データで示される閾値を超える前記隣接する2つの地点間の区間、時隔値が上昇から下降に転じた地点または区間の先頭地点および末尾地点の前後2つの地点間の区間、または、時隔値が下降から上昇に転じた地点または区間の先頭地点および末尾地点の前後2つの地点間の区間を抽出し、当該抽出した区間における前記間隔を細分化して時隔値をさらに算出することを、前記間隔が前記詳細化粒度データで示される限界値に達するまで再帰的に実行する。
実施形態の無閉塞時隔計算システムの構成の一例を示す図。 実施形態の無閉塞時隔計算システムを複数のコンピュータで構築する場合の一例を示す図。 時隔分布曲線の一例を示す図。 無閉塞信号システムにおける時隔値算出の考え方を説明するための図。 実施形態の無閉塞時隔計算システムにおける無閉塞時隔計算で使用される変数の一覧を示す図。 実施形態の無閉塞時隔計算システムが提示する計算条件を設定可能な計算指示画面の一例を示す図。 実施形態の無閉塞時隔計算システムが、ルート、停車・通過により時隔値の計算開始位置を決定する規則を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが同一ルートを走行している場合であって、続行列車が停車から出発の場合の計算開始位置を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが同一ルートを走行している場合であって、先行列車が通過の場合の計算開始位置を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが別のルートを走行している場合の計算開始位置を示す図。 実施形態の無閉塞時隔計算システムにおける時隔パターンが「発着」の場合の計算開始位置を示す図。 実施形態の無閉塞時隔計算システムが、ルート、停車・通過により時隔値の計算終了位置を決定する規則を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが同一ルートを走行している場合であって、先行列車が停車の場合の計算終了位置を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが同一ルートを走行している場合であって、先行列車が通過の場合の計算終了位置を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が停止位置を越えることがない場合の計算終了位置を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が駅のキロ程を越えることがない場合の計算終了位置を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が停止位置を越えるため、停止位置を計算終了位置とする場合を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が駅のキロ程を越えるため、駅のキロ程を計算終了位置とする場合を示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、時隔パターンが「発着」の場合の計算終了位置を示す図。 実施形態の無閉塞時隔計算システムにおける無閉塞時隔計算での絶対キロ程と計算距離間隔とを示す図。 実施形態の無閉塞時隔計算システムにおける先行列車とブレーキの起点との関係を示す図。 実施形態の無閉塞時隔計算システムにおける続行列車の進入地点の求め方を説明するための図。 実施形態の無閉塞時隔計算システムにおける続行列車の進入地点の求め方の特例の1つめを示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、同ルートで続行列車が停車の場合の計算開始地点を示す図。 実施形態の無閉塞時隔計算システムにおける続行列車の進入地点の求め方の特例の2つめを示す図。 実施形態の無閉塞時隔計算システムにおける続行列車の進入地点の求め方の特例の3つめを示す図。 実施形態の無閉塞時隔計算システムにおいて決定される、発着の場合の計算終了地点を示す図。 実施形態の無閉塞時隔計算システムにおける逆引きブレーキの計算方法を示す図。 実施形態の無閉塞時隔計算システムにおける分解能を上げるべき区間を示す第1の図。 実施形態の無閉塞時隔計算システムにおける分解能を上げるべき区間を示す第2の図。 実施形態の無閉塞時隔計算システムにおける分解能を上げるべき区間を示す第3の図。 実施形態の無閉塞時隔計算システムにおける分解能を上げるべき区間を示す第4の図。 実施形態の無閉塞時隔計算システムにおける計算距離間隔(計算粒度)での全数計算例を示す図。 図33に示される計算結果から抽出される分解能を上げるべき区間を示す図。 図34に示される分解能を上げるべき区間の時隔計算例を示す図。 図35に示される計算結果から抽出される分解能を上げるべき区間を示す図。 図36に示される分解能を上げるべき区間の時隔計算例を示す図。 実施形態の無閉塞時隔計算システムにより計算されたすべての時隔値の例を示す図。 実施形態の無閉塞時隔計算システムにおける続行列車の運転曲線、時隔分布曲線およびブレーキ距離曲線の画面表示例を示す図。 実施形態の無閉塞時隔計算システムにおける時隔値一覧の画面表示例を示す図。 実施形態の無閉塞時隔計算システムにおける時隔分布曲線、運転曲線および時隔値一覧の同時画面表示例を示す図。 実施形態の無閉塞時隔計算システムの無閉塞時隔計算に関する処理手順の一例を示す第1のフローチャート。 実施形態の無閉塞時隔計算システムの無閉塞時隔計算に関する処理手順の一例を示す第2のフローチャート。
 以下、実施形態について図面を参照して説明する。
 図1は、本実施形態の無閉塞時隔計算システム100の構成の一例を示す図である。
 図1に示すように、この無閉塞時隔計算システム100は、プロセッサ10、メモリ20、記憶装置30および表示装置40により構成される。また、この無閉塞時隔計算システム100は、メモリ20に格納されている無閉塞時隔計算プログラム21をプロセッサ10に実行させることにより、無閉塞時隔計算処理部11および時隔分布曲線表示処理部12の各機能部を実現する。なお、各機能部は、ソフトウェアによらず、例えば専用の電子回路などとして、ハードウェア的に実現してもよい。
 また、この無閉塞時隔計算システム100は、単独のコンピュータにより構築されるものであってもよいし、図2に示すように、複数のコンピュータ(Webアプリケーションサーバ1、データベースサーバ2、Webクライアントブラウザ3)により構築されるものであってもよい。例えば、Webアプリケーションサーバ1が、インターネットN経由でWebクライアントブラウザ3からの要求を受け、データベースサーバ2(データベース2A)に格納されているデータおよびWebクライアントブラウザ3から受け取った変数などを用いて各種処理を実行し、その結果をWebクライアントブラウザ3に返却するようにしてもよい。つまり、図1に示すプロセッサ10の役割をWebアプリケーションサーバ1が担い、図1に示す記憶装置30の役割をデータベースサーバ2が担い、図1に示す表示装置40の役割をWebクライアントブラウザ3が担うようにしてもよい。Webアプリケーションサーバ1は、複数のWebクライアントブラウザ3からの要求を受け付け、それらの要求に対する各種処理を並行して処理することが可能である。
 記憶装置30には、線区マスタ31、駅マスタ32、番線マスタ33、車両形式マスタ34が格納されている。また、記憶装置30には、例えば既知の運転曲線システムなどにより計算された運転曲線データ(距離-速度曲線データ、距離-時間曲線データ)35が格納されている。さらに、記憶装置30には、ブレーキ性能マスタ36と、計算用係数マスタ(運転理論による計算用の係数マスタ)37とが格納されている。
 無閉塞時隔計算処理部11は、記憶装置30に格納されている各種マスタおよびデータを使って、無閉塞信号システムに好適な時隔値の計算を実行する。無閉塞時隔計算処理部11により計算された時隔値データ(距離時隔値データ、距離-ブレーキ距離データ)38は、記憶装置30に保存される。
 時隔分布曲線表示処理部12は、記憶装置30内の時隔値データ38を読み取り、時隔分布曲線やブレーキ距離曲線などを表示装置40に表示する。
 ここで、本実施形態の無閉塞時隔計算システム100の理解を助けるために、無閉塞信号システムの場合における時隔値の評価に関する問題点について整理する。
 従来の信号システムは、閉塞という区間で区切られ、その区間内には列車は1つしか存在できない。そのため、駅間に存在できる列車数は閉塞数に依存してしまい、列車の運転間隔も閉塞の数に依存する。列車の運転間隔を詰めようとすると、閉塞の区割りを変更しないと実現できない。閉塞の数を増やせば、その分たくさんの列車を走らせられるが、信号機を多数設置することになるため、コストがかかる。また、その区間を走る最も長い列車の列車長より短い閉塞区間の距離にはできない。結果として、列車長よりも長い閉塞区間ができてしまう。つまり、運転間隔を詰めるには、コストによる限界と、物理的な限界との両方がある。
 一方、最近では、閉塞に頼らない無閉塞信号システムが登場している。自列車の車上の位置検出装置で得た位置情報と、地上の通信設備を介して得た他の列車の位置情報とを比較しながら自列車の制御ができるCBTC(Communications-Based Train Control)といわれる信号システムである。無閉塞信号システムでは、自列車と他列車との距離を絶えず計算で求めているため、運転間隔を極限まで詰めることができる。すべての駅間において、ある距離間隔で、しかも、先行、続行列車の列車長も意識しながら、すべての距離地点で時隔値を評価しようとすると、計算量が多くなるため、いままで行われてこなかったが、もし、この新しい信号システムを導入して、どこまで運転間隔を詰められるかを評価するならば、各駅間の全領域に渡って、時隔値を評価しなければならない。
 例えば、A駅からC駅に走行する列車を想定した場合、ある距離地点での時隔値を算出することを距離方向に連続的に行うことで、図3に示すように、A駅からC駅までの時隔分布曲線を描き、どの距離地点付近の時隔値が大きく、先行、続行の2列車が接近できないか評価する必要がある。
 また、時隔分布曲線は、図4に示すように、一定距離(計算粒度)を任意に設定し、その一定距離ごとに時隔計算を繰り返すことで得ることができ、その精度は、計算粒度に比例する。例えば、距離方向の計算の詳細度を1mとして先行列車と続行列車との時隔値を求めれば(1mぐらい詳細であれば)、ほぼ正確な時隔分布曲線を得ることができるというのが基本的な考え方である。
 しかしながら、分布曲線の精度を上げようとして、例えば1m間隔で計算しようとすると、1kmの区間であれば1,000回の計算が必要であり、計算量が多くなり、妥当な時間内に処理が終わらないという問題が発生する。これが、無閉塞信号システムの場合における時隔値の評価に関する問題点である。
 なお、時隔値は、わかりやすく考えるため、勾配など変動要素がないとすれば、先行列車と続行列車が同じ速度で走る限り、ほとんど変化しない。先行列車が減速する付近は速度差が生まれ、時隔値が大きくなる。勾配やカーブなど走行抵抗の変化によって速度やブレーキ距離が変動し、時隔値も変化するが、一般的な都市交通では、列車長程度の距離では極端に時隔値が変わることがない。山間部の登山鉄道などでは、極端な変化があると考えられるが、列車長程度の間隔で時隔値計算すれば、時隔値の変動をとらえられると考えられる。列車長は、時隔分布をみるための計算粒度として目安になる距離である。
 汎用的に時隔値を評価するためには、計算間隔を走行する路線に合わせて変えられるようにしないとうまくいかない。運転曲線は列車長を考慮して作成されているので、時隔値を計算する間隔も列車長に応じて変更できるようにすると、汎用的に時隔値を評価できるようになる。
 本実施形態の無閉塞時隔計算システム100は、列車の走行区間について連続的に時隔値計算を行い、時隔値の分布を得るシステムである。この機能を単純に一定間隔で計算するように実現すると、計算量が多く、処理時間がかかるシステムとなってしまうが、この無閉塞時隔計算システム100は、計算が不要な区間は省略し、少ない計算量で精度の高い時隔分布曲線を得ることのできる独自の時隔値の計算方法を適用する。以下、この時隔値の計算方法の詳細について説明する。
 この無閉塞時隔計算システム100における無閉塞時隔計算(無閉塞信号システムでの時隔値の計算)では、既存の信号機の位置や閉塞の区切れ目は存在しないため、計算には使用しない。その代わりに、先行列車の位置(計算位置)を、計算範囲内において計算粒度間隔で定め、逆引きブレーキ(逆引きブレーキ曲線)計算、続行列車の進入地点の計算によって、時隔値の計算を行う。運転曲線データ(距離に対する速度=距離-速度曲線データ、距離に対する時間=距離-時間曲線データ)は、別システムの運転曲線算出システムによって求められているとする。
 図5に、この無閉塞時隔計算システム100における無閉塞時隔計算で使用される設定値およびデータ(変数)の一覧を示す。図5に示すように、この無閉塞時隔計算システム100における無閉塞時隔計算では、「余裕距離(先行列車後方)」、「余裕距離(続行列車前方)」、「信号現示変化時間」、「運転士取扱時間」、「転てつ器転換時分」などの変数が使用される。これらの設定値およびデータは、あらかじめ準備され、記憶装置30に保存されているものとする。
 次に、この無閉塞時隔計算システム100における無閉塞時隔計算の前提および計算条件の設定について説明する。
 この無閉塞時隔計算システム100では、無閉塞信号システムでの時隔分布曲線を求めるにあたり、例えば図6に示すような計算条件を設定可能な計算指示画面を提示して、計算に必要な諸条件を入力し、無閉塞時隔計算を実行する。なお、ここでは、無閉塞時隔計算処理部11が、この計算指示画面を提示する機能を有しているものとする。
 例えば、計算する区間を選択するため、線区を選択し(a1)、上りか下りか進行方向を選択する(a2)。また、その区間内の計算したい時隔算出駅を選択し(a3)、着着(先行列車到着、続行列車到着を意味する。)や発発(先行列車出発、続行列車出発を意味する。)など、出発、到着、通過の組み合わせで表される時隔パターン(a4)を選択する。時隔算出駅と時隔パターンとを選択することで、時隔算出駅を中心として、前の駅との区間、後ろの駅と区間、または時隔算出駅を含む前後の駅の区間など、どの区間を算出するかが決定される。
 また、時隔値を算出したい駅での先行列車車両形式(a5)、先行列車番線(a6)、先行列車運転曲線(a7)、続行列車車両形式(a8)、続行列車番線(a9)、続行列車運転曲線(a10)と、計算で使用する続行列車のブレーキノッチ(a11)とを選択する。先行列車車両形式と続行列車車両形式とを選択することで、先行列車の列車長および続行列車の列車長も得られる。
 さらに、この無閉塞時隔計算システム100では、計算距離間隔(a12)、詳細化粒度(a13)および時隔値変化量閾値(a14)の設定を受け付ける。計算距離間隔は、時隔値を計算すべき地点間の間隔の基準値である。詳細化粒度は、間隔を細分化することのできる限界値である。時隔値変化量閾値は、隣接する2つの地点間での時隔値の変化量の閾値である。計算指示画面上で設定される設定値(変数)のうち、符号a15で示されるこれら3つの変数は、計算量を削減し、計算を高速化するために設定される本実施形態の無閉塞時隔計算システム100独自の変数である。なお、本実施形態の無閉塞時隔計算システム100独自の変数として、後述する分解能も存在しており、この分解能も、この計算指示画面上で設定できるようにしてもよい。ここでは、この分解能は、無閉塞時隔計算システム100において既定の固定値であることを想定する。
 無閉塞時隔計算システム100、より詳細には、無閉塞時隔計算処理部11は、時隔計算ボタンa16が操作されると、計算指示画面上で設定された各変数(ならびに記憶装置30に格納されている各種マスタおよびデータ)を用いて無閉塞時隔計算を実行する。
 無閉塞時隔計算処理部11は、まず、時隔計算を行う駅間のうち、先行列車と続行列車とが走行する区間内で、時隔値の計算開始位置と計算終了位置とを決定する。
 第1に、無閉塞時隔計算処理部11は、図7に示すように、ルート、停車・通過により時隔値の計算開始位置を決定する。図8乃至図10を参照して、時隔値の計算開始位置を決定する規則について詳述する。
 図8は、先行列車と続行列車とが同一ルートを走行している場合であって、続行列車が停車から出発の場合の計算開始位置を示している。また、図9は、先行列車と続行列車とが同一ルートを走行している場合であって、先行列車が通過の場合の計算開始位置を示している。一方、図10は、先行列車と続行列車とが別のルートを走行している場合の計算開始位置を示している。
 ところで、時隔パターンが「発着」の場合、従来の信号システムでは、1個の信号機のみについて時隔値を計算したが、無閉塞時隔計算では、信号機がないため、計算粒度ごとに条件が成立する間において計算を行う。そのため、複数個の計算結果が生じ得る。
 図11に、時隔パターンが「発着」の場合の計算開始位置を示す。なお、従来の信号システムの場合と同様、発着の場合は、同ルートの場合しか計算しない。時隔パターンが発着の場合における時隔値の計算開始位置は、先行列車の停止位置とする。
 第2に、無閉塞時隔計算処理部11は、図12に示すように、ルート、停車・通過により時隔値の計算終了位置を決定する。図13乃至図19を参照して、時隔値の計算終了位置を決定する規則について詳述する。
 図13は、先行列車と続行列車とが同一ルートを走行している場合であって、先行列車が停車の場合の計算終了位置を示している。また、図14は、先行列車と続行列車とが同一ルートを走行している場合であって、先行列車が通過の場合の計算終了位置を示している。
 一方、図15は、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が停止位置を越えることがない場合の計算終了位置を示している。また、図16は、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が駅のキロ程を越えることがない場合の計算終了位置を示している。また、図17は、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が停止位置を越えるため、停止位置を計算終了位置とする場合を示している。また、図18は、先行列車と続行列車とが別のルートを走行している場合であって、列車長+余裕距離(先行列車後方)が駅のキロ程を越えるため、駅のキロ程を計算終了位置とする場合を示している。
 また、図19に、時隔パターンが「発着」の場合の計算終了位置を示す。時隔パターンが発着の場合の計算終了位置は、先行列車の停止位置から、列車長+余裕距離(先行列車後方)の位置とする。
 以上のように、時隔値の計算開始位置と計算終了位置とを決定すると、続いて、無閉塞時隔計算処理部11は、計算距離間隔(計算粒度)での全数計算(計算距離間隔ごとに設定されるすべての計算地点での計算)を実行する。
 この無閉塞時隔計算システム100における無閉塞時隔計算では、設定した計算距離間隔(計算粒度)に従い、その粒度で計算地点を設定し、すべての計算地点について時隔計算を行う。その後、詳細に計算すべき区間だけ、細分化することのできる限界の粒度まで段階的に細かく計算していく。
 例えば、無閉塞時隔計算システム100における無閉塞時隔計算では、計算開始地点と計算終了地点とに計算地点を置き、かつ、その間については、図20に示すように、絶対キロ程の0.000kmを基準として、計算粒度の整数倍の位置に計算地点を置くものとする。
 例えば、計算開始地点が11.475km、計算終了地点が12.105km、計算粒度が100mの場合、11.475km、11.500km、11.600km、11.700km、11.800km、11.900km、12.000km、12.100km、12.105kmの地点を計算地点とする。
 次に、逆引きブレーキ(逆引きブレーキ曲線)の計算について説明する。
 図21は、先行列車とブレーキの起点との関係を示す図である。
 無閉塞時隔計算システム100における無閉塞時隔計算では、時隔計算をする場合、図21に示すように、先行列車位置から先行列車の列車長と余裕距離(先行列車後方)の和だけ始発駅側の地点を逆引きブレーキの立ち上げ地点とする。立ち上げる速度は、ブレーキ起点速度とする。
 無閉塞時隔計算処理部11は、先行列車位置(計算開始地点)ごとに逆引きブレーキを作成し、図22に示すように、続行列車の運転曲線との交点を求める。逆引きブレーキと続行列車の運転曲線の交点から余裕距離(続行列車前方)だけ始発駅側のキロ程の運転曲線上の点を進入地点とする。
 なお、図23に示すように、逆引きブレーキと続行列車の運転曲線の交点から余裕距離(続行列車前方)だけ始発駅側のキロ程まで戻った位置が、続行列車の出発地点を越えてしまう場合、無閉塞時隔計算処理部11は、続行列車の出発地点を進入地点とする。その際、時隔計算の際の付加時分に、運転士取扱時分も付加する。
 また、図24に示すように、計算開始地点において、先行列車と続行列車とが同ルートであって、続行列車が停車の場合、無閉塞時隔計算処理部11は、ブレーキ立ち上げ地点を続行列車の停止位置とする。この場合は、ブレーキは立ち上げない。また、続行列車側の余裕距離である余裕距離(続行列車前方)を考慮せず、続行列車の進入地点を、続行列車の停止位置とする(続行列車が停車しており、位置誤差を考慮する必要がないため、余裕距離(続行列車前方)を含めない。)。また、時隔計算の際の付加時分に、運転士取扱時分も付加する。
 また、図25に示すように、逆引きブレーキ立ち上げ地点が続行列車の運転曲線の範囲内にあるが、その地点の運転曲線の速度がブレーキ起点速度よりも低い場合、運転曲線と逆引きブレーキの交点は存在しない。この場合、無閉塞時隔計算処理部11は、ブレーキ立ち上げ地点から余裕距離(続行列車前方)だけ始発駅側の運転曲線上の点を進入地点とする。
 また、図26に示すように、余裕距離(続行列車前方)だけ始発駅側に戻った地点位置が、続行列車の出発地点を越えてしまう場合、無閉塞時隔計算処理部11は、続行列車の出発地点を進入地点とする。その際、時隔計算の際の付加時分に、運転士取扱時分も付加する。
 無閉塞時隔計算処理部11は、先行列車位置と続行列車の進入地点の位置から、先行列車の運転時間、続行列車の運転時間を求め、計算時隔を求める。計算時隔の求め方は、信号方式と同じである。
 また、図27に示すように、発着の場合の計算終了地点では、続行列車の運転曲線が駅に停車する地点がブレーキ立ち上げ地点となる。この場合、ブレーキは立ち上げす、続行列車の停止位置を進入地点とする。
 図28は、逆引きブレーキ(逆引きブレーキ曲線)の計算方法を示す図である。
 この無閉塞時隔計算システム100における無閉塞時隔計算では、逆引きブレーキを使用する。逆引きブレーキの計算は、進行方向と逆方向に向かって計算する。この計算処理は運転曲線のブレーキ計算処理と同一である。
 ブレーキの計算開始点(逆引きブレーキ立ち上げ地点であり、ブレーキ起点速度の高さの点)からマイナス方向に減速度αとΔt秒間に移動する距離Δdとを求め、続行列車運転曲線と交点を結ぶところまで繰り返し計算する。交点を結んだ時のΔtの繰り返した積算値が時隔値であり、また、Δdの繰り返した積算値がブレーキ距離である。
 次に、この無閉塞時隔計算システム100における無閉塞時隔計算の計算距離間隔(計算粒度)と詳細化計算とについて説明する。
 単純に計算距離間隔(粒度)を小さくしていくと、計算量が飛躍的に大きくなる。この無閉塞時隔計算システム100では、時隔分布に必要な部分だけ細かく計算し、それ以外の部分は計算しないようにする。見かけ上の計算粒度をあげても計算量が増えないような計算方法を以下に示す。
 線路設備の状態は、車両長程度の距離で急激に変わることはあり得ない。よって列車長程度の100mより小さい距離内では、時隔値は大きく変わることはない。よって一定間隔ごとに計算された時隔値の間にさらにピーク値があると考えられるときのみ、より詳細に計算すればよいと考える。
 時隔値の詳細化計算に必要な変数は、4つ存在する。
 (1)計算距離間隔:100m(例)。すべて計算する計算粒度である。
 (2)分解能:10分割(例)。計算粒度を1段階細かくするときの分解能とする。
 (3)詳細化粒度:1m(例)。分解能が10分割のとき、2回分解を行うということを意味する。
 (4)時隔値変化量閾値:5秒(例)。計算した時隔値の区間内での差がこの値より大きいときにさらに細かく計算する閾値とする。
 また、時隔計算は、以下の5段階の計算手順を踏む。
 (1)計算対象のすべての区間に対し、計算距離間隔(計算粒度)ごとに計算し、時隔値を算出する。
 (2)計算された時隔値の並びを見て、さらに分解能を上げるべき区間を見つけ出す。分解能を上げるための判定は2種類あり、上昇や下降から変化する区間、または大きく値が変化する区間を対象とする。
 (3)1つ細かい分解能で対象の区間だけをさらに細かく計算し、時隔値を算出する。
 (4)最大粒度まで計算が達したかどうか判断し、達すれば計算終了する。達してなければ(2)に戻り、分解能を上げた計算を繰り返す。
 (5)非線形の連続した時隔値データから時隔分布図を描画する。
 図29乃至図32を参照して、分解能を上げるべき区間について説明する。
 無閉塞時隔計算処理部11は、第1に、図29および図30に示すように、計算された時隔値の並びが、同値を含んで上昇から下降または下降から上昇に転じる前後区間を、分解能を上げる区間とする。なお、同値を含む場合、図31に示すように、前後変化がない同値が連続する区間内の分解能は上げないようにする。
 また、無閉塞時隔計算処理部11は、第2に、図32に示すように、計算された時隔値の区間での差異が大きい場合、分解能を上げる区間とする。その閾値は別途定義し、それを超えた場合に分解能を上げる区間と判定する。
 無閉塞時隔計算処理部11は、これら分解能を上げるべき区間について、計算条件として設定された計算距離間隔(計算粒度)での全数計算の場合と同様に、(1つ細かい分解能の)新たな粒度で時隔値計算を実行する。無閉塞時隔計算処理部11は、分解能を上げるべき区間の計算が終わると、再び得られた時隔値の並びから、さらに分解能を上げるべき区間を抽出する。そして、無閉塞時隔計算処理部11は、その区間内を(さらに1つ細かい分解能の)新たな粒度で時隔値計算を実行する。無閉塞時隔計算処理部11は、この詳細化を、計算条件として設定された詳細化粒度に達するまで繰り返し、時隔値計算を再帰的に実行する。
 ここで、図33乃至図38を参照して、無閉塞時隔計算処理部11による時隔値計算の実例を説明する。
 いま、無閉塞時隔計算処理部11は、変数を以下として計算することを想定する。
 (1)計算距離間隔:100m。
 (2)分解能:10分割。
 (3)詳細化粒度:1m。
 (4)時隔値変化量閾値:60秒。
 まず、無閉塞時隔計算処理部11は、粒度100m単位に時隔計算を行い、時隔値を列挙する。図33に、計算距離間隔(計算粒度)での全数計算例を示す。
 次に、無閉塞時隔計算処理部11は、分解能を上げるべき区間を抽出する。図34は、図33に示される計算結果から抽出される分解能を上げるべき区間を示す図である。図34に示すように、無閉塞時隔計算処理部11は、時隔値の並びが上昇から下降または下降から上昇に転じる前後区間として、5.3km~5.5kmの区間と、5.8km~6.1kmの区間とを抽出する。
 無閉塞時隔計算処理部11は、抽出した区間のみについて、分解能を上げ、粒度10m単位に時隔計算を行い、時隔値を列挙する。図35に、分解能を上げるべき区間の時隔計算例を示す。(A)が、5.3km~5.5kmの区間の時隔計算例、(B)が、5.8km~6.1kmの区間の時隔計算例である。
 無閉塞時隔計算処理部11は、分解能を上げて時隔値を計算した区間内から、分解能をさらに上げるべき区間を抽出する。図36は、図35に示される計算結果から抽出される分解能を上げるべき区間を示す図である。図36に示すように、無閉塞時隔計算処理部11は、時隔値の並びが上昇から下降または下降から上昇に転じる前後区間として、5.40km~5.42kmの区間、5.87km~5.89kmの区間、5.90km~5.95kmの区間、および5.97km~5.99kmの区間を抽出する。
 無閉塞時隔計算処理部11は、抽出した区間のみについて、分解能を上げ、粒度1m単位に時隔計算を行い、時隔値を列挙する。図37に、分解能を上げるべき区間の時隔計算例を示す。(A)が、5.40km~5.42kmの区間の時隔計算例、(B)が、5.87km~5.89kmの区間の時隔計算例、(C)が、5.87km~5.89kmの区間の時隔計算例、(D)が、5.97km~5.99kmの区間の時隔計算例である。
 ここでは、詳細化粒度を1mと想定しているので、無閉塞時隔計算処理部11は、時隔計算を終了する。このように、無閉塞時隔計算処理部11は、前述のように決定した計算開始位置から計算終了位置までの区間について、まず、設定された計算距離間隔ごとに時隔値計算を行い、その時隔値計算の結果に基づき、分解能を上げるべき区間を抽出し、設定された分解能で計算粒度を1段階細かくする。そして、無閉塞時隔計算処理部11は、分解能を上げるべき区間の抽出および計算粒度の詳細化を、設定される詳細化粒度に達するまで繰り返す。
 図38に、無閉塞時隔計算処理部11により計算されたすべての時隔値の例を示す。図38に示すように、無閉塞時隔計算処理部11により、計算粒度は異なるが非線形の連続する時隔値一覧が作成される。すなわち、無閉塞時隔計算処理部11は、結果として、距離の間隔が一定でない時隔値データ38を生成する。
 時隔分布曲線表示処理部12は、時隔計算の基になった距離-速度曲線である運転曲線のうちの続行列車の運転曲線(ランカーブ)と、無閉塞時隔計算処理部11により算出されて保存された時隔値およびブレーキ距離データとを記憶装置30から読み出し、時隔分布曲線(先行列車位置キロ程に対する時隔値)を、例えば、続行列車の運転曲線およびブレーキ距離曲線(先行列車位置キロ程に対するブレーキ距離)とともに表示装置40に表示する。
 図39に、続行列車の運転曲線、時隔分布曲線およびブレーキ距離曲線の画面表示例を示す。図39中、符号b2で示される領域が、続行列車の運転曲線、時隔分布曲線およびブレーキ距離曲線の表示領域である。距離間隔は一定ではないが、時隔分布曲線表示処理部12は、距離に対応させて時隔値やブレーキ距離値を線で結ぶことにより、例えば横軸を距離、縦軸を時間として表される曲線を生成する。
 また、時隔分布曲線表示処理部12は、続行列車の運転曲線、時隔分布曲線およびブレーキ距離曲線とともに、先行列車尾端の時間曲線および続行列車頭端の時間曲線を画面上に表示してもよい。図39中、符号b1で示される領域が、先行列車尾端の時間曲線および続行列車頭端の時間曲線の表示領域である。
 運転曲線の距離-時間曲線である時間曲線は、続行列車の頭端が時隔算出駅に到着する時間を0、または続行列車の頭端が時隔算出駅から出発する時間を0とする。時隔分布曲線表示処理部12は、算出された時隔値の中の最大の値を最大時隔値とし、その最大時隔値分ずらした時間に先行列車の尾端が時隔算出駅に到着するように、または、先行列車の尾端が時隔算出駅から出発するように時間曲線を描画する。
 また、時隔分布曲線表示処理部12は、図40に示すように、求められた時隔値を一覧表示するような画面も実現できる。時隔分布曲線表示処理部12は、逆引きブレーキ計算に使用した距離位置である先行列車キロ程をはじめ、続行列車運転曲線と逆引きブレーキ曲線との交点のキロ程に余裕距離を考慮した続行列車キロ程や、ブレーキ距離、先行列車キロ程から列車長などを考慮した先行列車位置、先行列車キロ程での先行列車時間曲線上の時間である先行列車時間、同じく、続行列車キロ程での続行列車時間曲線上の時間である続行列車時間、そして、求まった時隔値である計算時隔値と、信号機の処理時間や伝送遅延なども考慮に入れた信号時隔値などを表示できる。
 また、時隔分布曲線表示処理部12は、時隔分布曲線と、運転曲線と、時隔値一覧とを同時に表示することも可能である。図41に、時隔分布曲線、運転曲線および時隔値一覧を同一画面で表示する例を示す。図41中、符号c1で示される領域が、時隔分布曲線の表示領域であり、符号c2で示される領域が、運転曲線の表示領域であり、符号c3で示される領域が、時隔値一覧の表示領域である。時隔分布曲線表示処理部12は、例えば、時隔分布曲線および運転曲線を表示中の状況下において、所定のボタン(c4)が操作された場合に、時隔分布曲線および運転曲線に加えて、時隔値の一覧を表示するようにしてもよい。
 図42Aおよび図42Bは、本実施形態の無閉塞時隔計算システム100の無閉塞時隔計算に関する処理手順の一例を示すフローチャートである。
 無閉塞時隔計算処理部11は、まず、無閉塞時隔計算の設定値およびデータ(変数)の読み込みを行う(ステップS1)。また、無閉塞時隔計算処理部11は、計算条件の設定を行う(ステップS2)。
 無閉塞時隔計算処理部11は、無閉塞計算の開始指示を受け付け(ステップS3)、最初に計算する駅間を決定する(ステップS4)。また、無閉塞時隔計算処理部11は、駅間内の計算開始位置を決定し(ステップS5)、その計算開始位置をStartpos(変数)に保存する(ステップS6)。続いて、無閉塞時隔計算処理部11は、区間内の計算終了位置を決定し(ステップS7)、その計算終了位置をEndpos(変数)に保存する(ステップS8)。また、無閉塞時隔計算処理部11は、ステップS2で設定された計算距離間隔を計算粒度として設定する(ステップS9)。
 無閉塞時隔計算処理部11は、最初の計算距離地点を決定し(ステップS10)、その計算距離地点での逆引きブレーキ曲線を計算する(ステップS11)。無閉塞時隔計算処理部11は、続行列車のランカーブとの逆引きブレーキ曲線の交点を算出し(ステップS12)、ブレーキ距離と時隔値とを保存する(ステップS13)。
 無閉塞時隔計算処理部11は、計算距離地点から計算距離間隔だけ離れた地点を新たな計算距離地点とし(ステップS14)、その計算距離地点がEndposを上回ったか否かを判定する(ステップS15)。上回っていない場合(ステップS15のNo)、無閉塞時隔計算処理部11は、次の計算距離地点を決定し(ステップS16)、ステップS11に戻る。
 一方、Endposを上回っている場合(ステップS16のYes)、無閉塞時隔計算処理部11は、分解能を上げるすべての区間の計算を終了したか否かを判定する(ステップS17)。終了していない場合(ステップS17のNo)、無閉塞時隔計算処理部11は、分解能を上げる区間の次の区間を決定し(ステップS18)、その計算開始位置をStartpos(変数)に保存するとともに(ステップS19)、計算終了位置をEndpos(変数)に保存する(ステップS20)。そして、無閉塞時隔計算処理部11は、ステップS10に戻る。
 すべての区間の計算を終了している場合(ステップS17のYes)、無閉塞時隔計算処理部11は、分解能はステップS2で設定された詳細化粒度に達しているか否かを判定する(ステップS21)。達していない場合(ステップS21のNo)、無閉塞時隔計算処理部11は、分解能を上げ、新たな計算粒度として設定する(ステップS22)。無閉塞時隔計算処理部11は、時隔値の並びから分解能を上げるべき区間を抽出し(ステップS23)、最初の区間を決定する(ステップS24)。無閉塞時隔計算処理部11は、その計算開始位置をStartpos(変数)に保存するとともに(ステップS19)、計算終了位置をEndpos(変数)に保存し(ステップS20)、ステップS10に戻る。
 詳細化粒度に達している場合(ステップS21のYes)、無閉塞時隔計算処理部11は、計算すべき駅間の処理がすべて終わったか否かを判定する(ステップS25)。終わっていない場合(ステップS25のNo)、無閉塞時隔計算処理部11は、次の駅間を決定し(ステップS26)、ステップS5に戻る。一方、すべて終わっている場合には(ステップS25のYes)、時隔分布曲線表示処理部12が、保存された時隔値およびブレーキ距離を読み込み(ステップS27)、時隔分布曲線およびブレーキ距離曲線を表示する(ステップS28)。
 駅間に分布する時隔値の変化やブレーキ距離の変化を正確に把握するためには、時隔計算を駅間において一定間隔で行うことが必要となる。そして、より正確な分布を求めるためには、この一定間隔を細かくする必要がある。しかし、時隔計算に必要なのはピーク値の値だけなので、そのピーク状態になる部分だけ詳細に計算すればよい。この点に着目して、本実施形態の無閉塞時隔計算システム100は、以上のように、時隔値を計算する必要がある部分を絞り込み、計算量を抑えることによって、必要なデータだけを高速に計算することを実現する。
 すなわち、本実施形態の無閉塞時隔計算システム100は、少ない計算量で精度の高い時隔分布曲線を得ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (5)

  1.  列車の運行が閉塞によらずに制御される前記列車の走行区間の時隔値を計算する無閉塞時隔計算システムであって、
     時隔値を計算すべき地点間の間隔の基準値を示す計算距離間隔データと、前記間隔を細分化することのできる限界値を示す詳細化粒度データと、隣接する2つの地点間での時隔値の変化量の閾値を示す時隔値変化量閾値データとを取得する取得手段と、
     前記走行区間の時隔値分布曲線を得るための手段であって、
     前記計算距離間隔データで示される基準値を初期値として前記間隔に設定し、
     前記間隔ごとに前記走行区間上の複数の地点について時隔値を算出し、隣接する2つの地点間での時隔値の変化量が前記時隔値変化量閾値データで示される閾値を超えた前記隣接する2つの地点間の区間、時隔値が上昇から下降に転じた地点または区間の先頭地点および末尾地点の前後2つの地点間の区間、または、時隔値が下降から上昇に転じた地点または区間の先頭地点および末尾地点の前後2つの地点間の区間を抽出し、当該抽出した区間における前記間隔を細分化して時隔値をさらに算出することを、前記間隔が前記詳細化粒度データで示される限界値に達するまで再帰的に実行する、
     時隔値算出手段と、
     を具備する無閉塞時隔計算システム。
  2.  前記計算距離間隔データ、前記詳細化粒度データおよび前記時隔値変化量閾値データを含む時隔値の計算条件を設定するための画面を提示して前記計算条件を入力する入力手段を具備する請求項1に記載の無閉塞時隔計算システム。
  3.  前記時隔値算出手段により算出された時隔値から得られる、第1軸を距離、前記第1軸に直交する第2軸を時間として表される前記走行区間の時隔値分布曲線を配置した画面を提示する出力手段を具備する請求項1に記載の無閉塞時隔計算システム。
  4.  前記出力手段は、前記時隔値算出手段により前記走行区間内において異なる間隔で算出され得る時隔値の一覧を、前記時隔値分布曲線とともに前記画面上に配置する請求項3に記載の無閉塞時隔計算システム。
  5.  前記出力手段は、前記第1軸を距離、前記第2軸を速度として表される前記走行区間の運転曲線を、前記時隔値分布曲線および前記時隔値の一覧とともに前記画面上に配置する請求項4に記載の無閉塞時隔計算システム。
PCT/JP2017/015424 2017-04-17 2017-04-17 無閉塞時隔計算システム Ceased WO2018193490A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018561069A JP6559913B2 (ja) 2017-04-17 2017-04-17 無閉塞時隔計算システム
KR1020197002713A KR102128803B1 (ko) 2017-04-17 2017-04-17 무폐색 시격 계산 시스템
PCT/JP2017/015424 WO2018193490A1 (ja) 2017-04-17 2017-04-17 無閉塞時隔計算システム
CN201780047405.2A CN109562771B (zh) 2017-04-17 2017-04-17 无闭塞时隔计算系统
US16/267,452 US11097756B2 (en) 2017-04-17 2019-02-05 Moving block signaling headway calculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015424 WO2018193490A1 (ja) 2017-04-17 2017-04-17 無閉塞時隔計算システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/267,452 Continuation US11097756B2 (en) 2017-04-17 2019-02-05 Moving block signaling headway calculation system

Publications (1)

Publication Number Publication Date
WO2018193490A1 true WO2018193490A1 (ja) 2018-10-25

Family

ID=63857078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015424 Ceased WO2018193490A1 (ja) 2017-04-17 2017-04-17 無閉塞時隔計算システム

Country Status (5)

Country Link
US (1) US11097756B2 (ja)
JP (1) JP6559913B2 (ja)
KR (1) KR102128803B1 (ja)
CN (1) CN109562771B (ja)
WO (1) WO2018193490A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009468A1 (en) * 2018-11-20 2022-01-13 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for determining a braking distance
JP2024073304A (ja) * 2022-11-17 2024-05-29 三菱電機株式会社 移動体作業計画作成システム、移動体作業計画作成方法および移動体作業計画作成プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111845862B (zh) * 2020-07-14 2021-08-31 北京交通大学 一种基于相对速度的列车安全追踪防护方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239238A (ja) * 1993-02-18 1994-08-30 Mitsubishi Electric Corp 時隔曲線作成装置
JPH09150739A (ja) * 1995-11-30 1997-06-10 Mitsubishi Electric Corp 時隔曲線作成装置
JPH11198815A (ja) * 1998-01-09 1999-07-27 Mitsubishi Electric Corp 列車走行シミュレーション装置
JP2008162400A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd 鉄道設備環境要件検出システム及び方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802633B1 (en) * 2010-12-10 2017-10-31 Cybertran International Inc. Fixed guideway transportation systems having lower cost of ownership and optimized benefits
US9376971B2 (en) * 2006-03-20 2016-06-28 General Electric Company Energy management system and method for vehicle systems
CN100511310C (zh) * 2006-11-23 2009-07-08 北京交通大学 基于无线机车信号的虚拟闭塞系统
CN101088822A (zh) * 2007-07-18 2007-12-19 北京交通大学 固定闭塞条件下列车运行模拟控制方法
JP5498688B2 (ja) 2008-11-28 2014-05-21 東海旅客鉄道株式会社 運行計画作成システム、運行計画作成方法
US8744652B1 (en) * 2010-12-10 2014-06-03 Cybertran International Inc. Method and apparatus for controlled braking in fixed guideway transportation systems
CN102082819B (zh) * 2010-12-15 2012-12-19 中国神华能源股份有限公司 列车移动闭塞系统
KR101253684B1 (ko) 2011-04-22 2013-04-11 주식회사 혁신전공사 열차의 운전시격 산출방법
JP5972781B2 (ja) 2012-12-20 2016-08-17 川崎重工業株式会社 時隔曲線図作成装置
CN104590331A (zh) * 2014-12-31 2015-05-06 北京易华录信息技术股份有限公司 能在应答器失效时确保高铁列车精准运行的方法及系统
WO2016147212A1 (ja) * 2015-03-13 2016-09-22 株式会社 東芝 列車ダイヤ校正装置および列車ダイヤ校正プログラム
JP2016193665A (ja) * 2015-03-31 2016-11-17 公益財団法人鉄道総合技術研究所 車両・軌道相互作用解析モデルの作成方法
WO2016182994A1 (en) * 2015-05-14 2016-11-17 General Electric Company Route examining system
CN105501252B (zh) * 2015-11-30 2017-05-24 中国神华能源股份有限公司 一种列车运行控制设备和方法
US10345805B2 (en) * 2016-04-15 2019-07-09 Podway Ltd. System for and method of maximizing utilization of a closed transport system in an on-demand network
CN106250629A (zh) * 2016-08-03 2016-12-21 柳州铁道职业技术学院 一种移动闭塞城轨列车追踪仿真方法
CN106379378B (zh) * 2016-09-09 2018-02-06 北京交通大学 一种离线和在线结合调整驾驶曲线的方法和系统
CN106476856B (zh) * 2016-10-13 2018-03-27 交控科技股份有限公司 一种cbtc系统信号轨旁设备平面图生成方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239238A (ja) * 1993-02-18 1994-08-30 Mitsubishi Electric Corp 時隔曲線作成装置
JPH09150739A (ja) * 1995-11-30 1997-06-10 Mitsubishi Electric Corp 時隔曲線作成装置
JPH11198815A (ja) * 1998-01-09 1999-07-27 Mitsubishi Electric Corp 列車走行シミュレーション装置
JP2008162400A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd 鉄道設備環境要件検出システム及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009468A1 (en) * 2018-11-20 2022-01-13 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for determining a braking distance
JP2024073304A (ja) * 2022-11-17 2024-05-29 三菱電機株式会社 移動体作業計画作成システム、移動体作業計画作成方法および移動体作業計画作成プログラム

Also Published As

Publication number Publication date
CN109562771B (zh) 2021-02-26
KR102128803B1 (ko) 2020-07-02
US20190168790A1 (en) 2019-06-06
US11097756B2 (en) 2021-08-24
KR20190022806A (ko) 2019-03-06
JPWO2018193490A1 (ja) 2019-06-27
JP6559913B2 (ja) 2019-08-14
CN109562771A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN111595358B (zh) 导航数据处理方法、路径诱导方法、设备及存储介质
WO2013108752A1 (ja) 運転モデルの作成装置、運転モデルの作成方法、運転評価装置、運転評価方法、および運転支援システム
JP5867524B2 (ja) 運転評価装置及び運転評価方法、並びに運転支援システム
CN110784825B (zh) 车辆行驶轨迹的生成方法、装置
US10054457B2 (en) Driving assistance system, method, and program for a vehicle
JP6559913B2 (ja) 無閉塞時隔計算システム
JP2016149044A (ja) 隊列走行管理装置、及び隊列走行管理プログラム
US20190340448A1 (en) Event prediction system, event prediction method, program, and recording medium having same recorded therein
CN102779415B (zh) 实时分析交通信号相位的方法与装置
US11781875B2 (en) Apparatus and method for forming and analyzing connected roads
Mohanty et al. Modelling the major stream delay due to U-turns
JP5972781B2 (ja) 時隔曲線図作成装置
KR102197195B1 (ko) 교통흐름의 변화를 반영한 교통정보 생성방법
JP2017151545A (ja) 事故予報システム、および事故予報方法
CN110197583A (zh) 一种道路路况的识别方法、装置及存储介质
JP5459837B2 (ja) 緊急車両支援装置、緊急車両支援システム及び緊急車両支援方法
JP2015046186A (ja) 交通情報処理装置、交通情報処理システム、プログラム、及び交通情報処理方法
JP2018010408A (ja) 異常検出装置、管理装置、および異常検出システム
CN106781470B (zh) 城市道路的运行速度的处理方法及装置
Hellinga et al. Analytical method for estimating delays to vehicles traversing single-lane roundabouts as a function of vehicle and pedestrian volumes
CN111445708A (zh) 一种交通控制方法、装置、及电子设备
JP2012128613A (ja) 走行支援システム
JP2018198026A (ja) 事故予報システム、および、事故予報方法
CN107180532A (zh) 基于车辆位置估计的可变情报板信息路由方法
CN115615444B (zh) 地图数据的检测方法、装置及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561069

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002713

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906320

Country of ref document: EP

Kind code of ref document: A1