WO2018193524A1 - Metal container manufacturing process - Google Patents
Metal container manufacturing process Download PDFInfo
- Publication number
- WO2018193524A1 WO2018193524A1 PCT/JP2017/015608 JP2017015608W WO2018193524A1 WO 2018193524 A1 WO2018193524 A1 WO 2018193524A1 JP 2017015608 W JP2017015608 W JP 2017015608W WO 2018193524 A1 WO2018193524 A1 WO 2018193524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- container
- rod
- metal
- diameter
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/28—Deep-drawing of cylindrical articles using consecutive dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/06—Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
Definitions
- the present invention relates to a method for manufacturing a metal container.
- squeezing and ironing has been widely adopted as a method for producing metal containers represented by aluminum cans (for example, Patent Document 1).
- This method uses a metal plate, punches out the metal plate to produce a circular slag, squeezes the slag, redraws it, and then forms it by ironing to reduce the thickness. It is a technique to do.
- Such DI molding has the advantage that the can body side wall and the bottom can be thinned, a can excellent in lightness can be obtained, and a can with a high height and gloss on the outer surface can be obtained.
- punching waste is generated and material loss is large.
- an object of the present invention is to provide a method for producing a metal container that has little material loss, and that can easily change the slag used for plastic working according to the intended diameter and length of the container. It is in.
- Another object of the present invention is to provide a method for producing a metallic container capable of producing a glossy metallic container with reduced material loss.
- Preparing a metal rod Cutting the rod at a constant height to produce a container slag; Plastically processing the container slag into a container shape; A process for making a metal container is provided.
- the rod is made of aluminum or aluminum alloy
- the metal can manufacturing method of the present invention is characterized by producing a slag to be subjected to plastic working by cutting a metal rod, thereby making it possible to manufacture a metal container with greatly reduced material loss. It can. That is, in the method of punching a metal plate to produce a slag and subjecting this slag to plastic working to form a container, punching waste is generated during the production of the slag, resulting in a large material loss. However, if the slag is produced by cutting the rod, the rod is cut so that the required amount can be obtained according to the size and thickness of the target container, and this is used as a slag for plastic processing, resulting in material loss.
- the metal container can be manufactured at a material utilization rate close to 100%. Further, when changing to a container having a different size or thickness of the target container, it can be easily handled by changing the position where the rod is cut.
- the plastic processing of the slag obtained by cutting the metal rod is performed by at least one forming means among impact forming, drawing forming, redrawing forming, and ironing forming, so that the height is particularly high.
- Metal cans such as beverage cans, aerosol cans, battery cases, aluminum tubes, etc., can be easily manufactured, especially by performing ironing to effectively reduce the wall thickness of the body wall and bottom wall, and glossy metal containers Can be obtained.
- Such a method for producing a metal container according to the present invention is particularly suitable for producing a container made of aluminum or an aluminum alloy, and is most suitable for producing a so-called aluminum can.
- FIG. 1 showing an example of a process for producing a metal container of the present invention
- a metal made of a target container material is used as a starting material
- a rod 1 made of steel is used and cut to create a disc-shaped slag 3 having a predetermined length (see FIG. 1B).
- This slag 3 is, for example, shown in FIGS. 1C to 1E.
- the target metal container 5 is manufactured by being subjected to plastic working as shown in FIG.
- the rod 1 shown in FIG. 1A is manufactured by, for example, hot forging, cold forging, hot rolling, cold rolling, extrusion molding, pultrusion molding, casting, or the like. It has a round bar shape, and may be made of steel, aluminum, aluminum alloy, etc., depending on the intended container material, but the viewpoint of manufacturing a thin and lightweight container It is most preferable to use what is made of aluminum or aluminum alloy to produce a so-called aluminum container. Also, from the viewpoint of excellent ductility and plastic workability, and the resulting container is excellent in corrosion resistance, a product made of pure aluminum having an aluminum content of 99.0% by mass or more, such as A1070, etc. The rod 1 made of is most preferably used.
- the rod 1 manufactured by mixing pure aluminum with the aluminum material collected from the used beverage can also be used, thereby improving the recyclability.
- the rod 1 is cut to form a slag 3 for a container. That is, by repeatedly cutting the rod 1 at a predetermined interval in the height direction and the vertical direction, a large number of container slags 3 can be obtained.
- a rod 1 having a diameter t is cut at a position of height h
- the disk-shaped slag 3 having a bottom diameter t ′ and a height h ′ is produced by pressing.
- a means for cutting the rod 1 it can be performed by a known cutting method. For example, although not shown, a cutting method such as shearing that does not generate chips is preferable because of less material loss.
- the height h of the slag 3 is set according to the diameter t of the rod 1 from the size (weight, etc.) of the metal container 5 to be finally formed.
- the size of the slag 3 can be changed by changing the diameter of the rod 1, but the rod 1 having the same diameter is used and the cutting height h is changed. Just do it. As a result, material loss can be greatly reduced, molding can be performed at a material utilization rate close to 100%, and the size of the target metal container 5 can be easily changed. If the height h ′ of the slag 3 becomes excessively large, the plastic working in the next step may be difficult. Therefore, the diameter t of the rod 1 is also set to the size of the finally obtained metal container 5. Accordingly, it is desirable that the height h ′ is approximately several millimeters. In order to produce the disc-shaped slag 3, the member with the rod 1 cut may be pressed in the height direction.
- the pressing direction may be changed.
- a rolling machine, a forging machine, or the like can be used as an apparatus for pressing depending on the shape and dimensions of the slag.
- the slag 3 produced as described above is subjected to plastic working. Prior to this plastic working, annealing is performed to remove residual stress, recover coarse grains, and recover work hardened structure.
- the slag 3 made of pure aluminum is heated to about 345 ° C. to 350 ° C. and then gradually cooled, although it depends on the material of the slag 3.
- annealing can also be performed in the middle of the process of producing the slag 3 as needed.
- the plastic working of the slag 3 is not particularly limited as long as it is a means that can be shaped into the shape of the container using such a disk shape, and means according to the material of the slag 3 (rod 1) can be adopted.
- the plastic working is preferably performed by at least one molding means selected from impact molding, drawing, redrawing and ironing, and in particular, these molding means may be used in combination. Is preferred.
- FIGS. 1C to 1E impact molding is performed, the cup 11 is molded (see FIG. 1C), and then drawing (redrawing) molding is performed to reduce the diameter.
- the bottomed drawn molded body 13 thus formed is molded (see FIG. 1 (d)), and finally, iron molding is performed, whereby the metal container 5 having a thin can body wall can be manufactured.
- This method is particularly suitable for producing thin and high-height metal cans.
- the impact molding is to mold the cup 11 by using the female die 21 and the punch 23 and impact-extrusion of the slag 3 in the die 21.
- the outer diameter of the obtained cup 11 is the same as the diameter t ′ of the slag 3 (FIG. 1C).
- the cup 11 can be used as a container as it is, and the bottom shape of the container can be various shapes according to the shapes of the die 21 and the punch 25, but the diameter and height of the container are limited.
- the drawing process and the ironing process are performed in the next step, and thereby, the diameter can be reduced, the wall thickness can be reduced, and the surface gloss and the surface smoothness can be improved.
- the above drawing can be performed directly on the slag 3 described above, but depending on the thickness of the slag 3 and the like, a severe surface pressure may be applied, which may make molding difficult. After that, it is desirable to reduce the diameter of the cup by drawing (redrawing).
- a die 25 having an opening 25a having a diameter t1 (t1 ⁇ t ′) is used, a drawing punch 27 is used, and the cup 11 is removed.
- a bottomed cylindrical drawn body 13 is obtained.
- the outer diameter of the drawn body 13 obtained by this drawing is equivalent to the diameter t1 of the opening 25a and is smaller than the diameter t 'of the cup 11 (or slag 3).
- a rounded portion (curvature portion) is formed at the corner portion (the side holding the cup 11) of the upper end of the opening of the die 25, and the cup 11 is not quickly and bent.
- the die 25 is pushed into the opening 25a, and the outer diameter of the drawing punch 27 is set smaller than the diameter t1 of the opening 25a by an amount corresponding to the thickness of the cup 11. In other words, thinning is hardly performed in this drawing process. Such redrawing is performed a plurality of times as necessary, and further diameter reduction can be performed.
- the drawn compact 13 thus obtained is subjected to ironing as shown in FIG. 1 (e).
- the punch 31 for ironing is inserted into the above-mentioned bottomed cylindrical drawn compact 13, and the punch 31 is pressed against the inner surface of the ring-shaped die 33 while pressing the outer surface of the drawn compact 13. Is lowered, the side wall of the drawn molded body 13 is made thinner by the die 33.
- a metal container (squeezed and squeezed can) 5 having an outer diameter of the cup smaller than t1 and a height increased according to the degree of thinning is obtained.
- Such ironing can be performed in a plurality of stages depending on the thinness and height of the target metal container 5. Note that the drawing punch 27 and the ironing punch 31 can be shared, and redrawing and ironing can be continuously performed in the same process.
- the metal container 5 obtained by such ironing is not only thin and high in height, but also excellent in surface smoothness and gloss as compared with, for example, a conventionally known impact molded can. Further, by using pure aluminum having an aluminum content of 99.0% by mass or more as the metal material, the corrosion resistance is also improved.
- the metal container 5 obtained as described above is subjected to dome molding, trimming, inner / outer surface coating, outer surface printing, decorative processing, neck-in processing, etc., as necessary, and the contents Are filled in and attached to the lid, and are put on the market. Furthermore, the metal container 5 obtained as described above can be used as a battery container member.
- a lubricant emulsion as a coolant
- a known cemented carbide die 33 is used.
- a die 33 in which a hard film such as a diamond film is formed on the processed surface.
- the cross-sectional shape of the rod 1 is not limited to a circle, and can be appropriately selected depending on the shape of the metal container required.
- a rod made of pure aluminum A1070 (20 mm diameter, 4 m length) with an aluminum content of 99.7% by mass or more is prepared, and this rod is cut and pressed to a length of about 20 mm, the diameter is 48 mm, the thickness Obtained a disk-shaped slag of about 3.5 mm.
- This disk-shaped slag was annealed at 350 ° C. for 1 hour, and then impact molding was performed.
- the bottom diameter was 48 mm, the bottom thickness was about 0.9 mm, the average side wall thickness was about 1.3 mm, and the height was about 27 mm.
- a cup was molded. In molding, an aqueous emulsion was used as a lubricant.
- the side wall of this cup had rough skin peculiar to impact molding.
- the cup obtained above is redrawn using the same lubricant as described above, and a bottomed cylindrical drawing having a bottom diameter of about 36 mm, a side wall thickness of about 1.4 mm, and a height of about 38 mm.
- a molded body was obtained.
- ironing is performed in three stages, with a bottom diameter of about 35 mm and a side wall thickness of about 0.1 mm.
- a pure aluminum drawn iron can having a height of 35 mm and a height of about 150 mm was obtained.
- the obtained squeezed iron can was excellent in surface smoothness and gloss. Furthermore, using the remaining pure aluminum rod after the molding, a pure aluminum drawn iron can was repeatedly molded by the same operation. As a result, 99% of the previously prepared pure aluminum rod can be used in the production of a pure aluminum drawn iron can, and material loss can be effectively avoided.
- Example 2 The same rod as in Experimental Example 1 is cut and pressed so as to have a length of about 17 mm, and the thickness is about 3 by changing only the pressing position of the press so that the diameter is 48 mm and the same slag diameter as in Experimental Example 1 is obtained. A disc-shaped slag of 0.0 mm was obtained. This disk-shaped slag was annealed at 350 ° C. for 1 hour, and then impact molding was performed. The bottom diameter was 48 mm, the bottom thickness was about 0.9 mm, the side wall average thickness was about 1.3 mm, and the height was about 22 mm. A cup was molded. In molding, an aqueous emulsion was used as a lubricant.
- the cup obtained above was redrawn using the same lubricant as described above, and a bottomed cylindrical draw having a bottom diameter of about 36 mm, a side wall thickness of about 1.4 mm, and a height of about 32 mm.
- a molded body was obtained.
- ironing was performed in three stages under the same conditions as above to obtain a pure aluminum drawn ironing can having a bottom diameter of about 35 mm, a side wall thickness of about 0.35 mm, and a height of about 127 mm.
- the obtained squeezed iron can was excellent in surface smoothness and gloss as in Experimental Example 1. Compared with Experimental Example 1, simply changing the cutting length of the rod and the pressing position of the press for producing the slag can produce cans with different heights of pure aluminum drawn and ironed cans, making it easy to change the type of can became.
- Metal rod 3 Slag 5: Metal container 11: Cup 13: Drawing molded body
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Forging (AREA)
Abstract
A metal container manufacturing process according to the present invention comprises: a step of preparing a rod 1 made of metal; a step of fabricating a container slug 3 by cutting the rod 1 at a certain height; and a step of subjecting the container slug 3 to plastic forming into a container shape.
Description
本発明は、金属容器の製法に関する。
The present invention relates to a method for manufacturing a metal container.
従来、アルミニウム缶に代表される金属容器の製法として、絞りしごき成形(DI成形)が広く採用されている(例えば、特許文献1)。
この方法は、金属板を使用し、この金属板を打ち抜いて円形のスラグを作製し、このスラグを絞り、再絞り成形した後、しごき成形を行って薄肉化を図ることにより、缶体を成形するという手法である。 Conventionally, squeezing and ironing (DI molding) has been widely adopted as a method for producing metal containers represented by aluminum cans (for example, Patent Document 1).
This method uses a metal plate, punches out the metal plate to produce a circular slag, squeezes the slag, redraws it, and then forms it by ironing to reduce the thickness. It is a technique to do.
この方法は、金属板を使用し、この金属板を打ち抜いて円形のスラグを作製し、このスラグを絞り、再絞り成形した後、しごき成形を行って薄肉化を図ることにより、缶体を成形するという手法である。 Conventionally, squeezing and ironing (DI molding) has been widely adopted as a method for producing metal containers represented by aluminum cans (for example, Patent Document 1).
This method uses a metal plate, punches out the metal plate to produce a circular slag, squeezes the slag, redraws it, and then forms it by ironing to reduce the thickness. It is a technique to do.
このようなDI成形は、缶胴側壁や缶底を薄肉化でき、軽量性に優れた缶を得ることができ、さらにはハイトが高く、外面に光沢のある缶を得ることができるという利点を有しているのであるが、打ち抜き屑が発生して材料ロスが多いという欠点がある。
Such DI molding has the advantage that the can body side wall and the bottom can be thinned, a can excellent in lightness can be obtained, and a can with a high height and gloss on the outer surface can be obtained. However, there is a drawback that punching waste is generated and material loss is large.
また、DI成形とは別に、インパクト成形という手法も広く採用されている(例えば特許文献2参照)。この方法は、素板の打ち抜きにより得られた薄い円板形のスラグを使用し、このスラグをダイ(雌型)とパンチ(雄型)の間に置いて、プレスすることにより金属(スラグ)を押し出すことにより、一気に缶体を成形するという手法であり、1型1工程で缶体を得ることができるというメリットがあるが、缶胴壁の肌荒れが著しく、光沢がある外面を得ることが困難であるという欠点がある。
In addition to the DI molding, a technique called impact molding is also widely used (see, for example, Patent Document 2). This method uses a thin disk-shaped slag obtained by punching a base plate, puts this slag between a die (female) and a punch (male) and presses it to make metal (slag) This is a method of forming a can body at a stretch by extruding, and there is a merit that a can body can be obtained in one process in one mold, but the skin of the can body wall is extremely rough and a glossy outer surface can be obtained. There is a drawback that it is difficult.
またインパクト成形により径や高さが異なる種々の大きさの缶を製造するにあたって、大きく分けて2つの方法が知られている。
1つには、スラグの直径を、目的とする缶の径とほぼ等しく設定し、スラグの厚みを目的の缶高さと直径から算出した値に精緻に設定する方法である。そのため、この方法は、スラグの直径ごとに打ち抜き金型が必要なことと、スラグの成形のために、板厚が異なる多種の素板を用意する必要がある、という欠点がある。
もう1つの方法としては、径が同じ缶を製造する場合、最も高さが高い缶用のスラグを作製し、それから素缶(blank can)を作製し、必要な高さでトリミング加工を行うことで種々の高さの缶を作製するという方法であり、高さが低い缶を製造するときほど著しく材料ロスが多いという欠点がある。
またいずれにしても、素板からスラグを打ち抜く工程で打ち抜き屑が発生して材料ロスが多い。 Further, when manufacturing cans of various sizes having different diameters and heights by impact molding, two methods are roughly known.
One is a method in which the diameter of the slag is set approximately equal to the diameter of the target can and the thickness of the slag is precisely set to a value calculated from the target can height and diameter. For this reason, this method has the disadvantages that a punching die is required for each slag diameter, and that various base plates having different plate thicknesses must be prepared for forming the slag.
Alternatively, when producing cans of the same diameter, make the slag for the tallest can, then make a blank can and trim it to the required height. In this method, cans of various heights are produced, and there is a drawback that material loss is remarkably increased as cans having a low height are manufactured.
In any case, punching waste is generated in the process of punching slag from the base plate, resulting in a large material loss.
1つには、スラグの直径を、目的とする缶の径とほぼ等しく設定し、スラグの厚みを目的の缶高さと直径から算出した値に精緻に設定する方法である。そのため、この方法は、スラグの直径ごとに打ち抜き金型が必要なことと、スラグの成形のために、板厚が異なる多種の素板を用意する必要がある、という欠点がある。
もう1つの方法としては、径が同じ缶を製造する場合、最も高さが高い缶用のスラグを作製し、それから素缶(blank can)を作製し、必要な高さでトリミング加工を行うことで種々の高さの缶を作製するという方法であり、高さが低い缶を製造するときほど著しく材料ロスが多いという欠点がある。
またいずれにしても、素板からスラグを打ち抜く工程で打ち抜き屑が発生して材料ロスが多い。 Further, when manufacturing cans of various sizes having different diameters and heights by impact molding, two methods are roughly known.
One is a method in which the diameter of the slag is set approximately equal to the diameter of the target can and the thickness of the slag is precisely set to a value calculated from the target can height and diameter. For this reason, this method has the disadvantages that a punching die is required for each slag diameter, and that various base plates having different plate thicknesses must be prepared for forming the slag.
Alternatively, when producing cans of the same diameter, make the slag for the tallest can, then make a blank can and trim it to the required height. In this method, cans of various heights are produced, and there is a drawback that material loss is remarkably increased as cans having a low height are manufactured.
In any case, punching waste is generated in the process of punching slag from the base plate, resulting in a large material loss.
このように、何れの製法も一長一短があり、その改善が求められているのが現状である。
As described above, all the manufacturing methods have advantages and disadvantages, and the improvement is required at present.
従って、本発明の目的は、材料ロスが少なく、しかも、目的とする容器の径や長さに応じて、塑性加工に供するスラグの変更を容易に行うことができる金属容器の製法を提供することにある。
本発明の他の目的は、光沢ある金属容器を、材料ロスを少なくして製造し得る金属容器の製法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a metal container that has little material loss, and that can easily change the slag used for plastic working according to the intended diameter and length of the container. It is in.
Another object of the present invention is to provide a method for producing a metallic container capable of producing a glossy metallic container with reduced material loss.
本発明の他の目的は、光沢ある金属容器を、材料ロスを少なくして製造し得る金属容器の製法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a metal container that has little material loss, and that can easily change the slag used for plastic working according to the intended diameter and length of the container. It is in.
Another object of the present invention is to provide a method for producing a metallic container capable of producing a glossy metallic container with reduced material loss.
本発明によれば、
金属製のロッドを用意する工程;
前記ロッドを一定の高さで切断して容器用スラグを作製する工程;
前記容器用スラグを容器の形状に塑性加工する工程;
を含む金属容器の製法が提供される。 According to the present invention,
Preparing a metal rod;
Cutting the rod at a constant height to produce a container slag;
Plastically processing the container slag into a container shape;
A process for making a metal container is provided.
金属製のロッドを用意する工程;
前記ロッドを一定の高さで切断して容器用スラグを作製する工程;
前記容器用スラグを容器の形状に塑性加工する工程;
を含む金属容器の製法が提供される。 According to the present invention,
Preparing a metal rod;
Cutting the rod at a constant height to produce a container slag;
Plastically processing the container slag into a container shape;
A process for making a metal container is provided.
本発明の製法においては、
(1)前記ロッドとして、アルミニウム製またはアルミニウム合金製のものを使用すること、
(2)前記ロッドとして、アルミニウム含量が99.0質量%以上の純アルミニウム製のものを使用すること、
(3)前記塑性加工を、インパクト成形、絞り成形、再絞り成形及びしごき成形からなる群より選択された少なくとも1種の成形手段により行うこと、
が好適である。 In the production method of the present invention,
(1) The rod is made of aluminum or aluminum alloy,
(2) Use a rod made of pure aluminum having an aluminum content of 99.0% by mass or more as the rod.
(3) performing the plastic working by at least one molding means selected from the group consisting of impact molding, drawing, redrawing and ironing;
Is preferred.
(1)前記ロッドとして、アルミニウム製またはアルミニウム合金製のものを使用すること、
(2)前記ロッドとして、アルミニウム含量が99.0質量%以上の純アルミニウム製のものを使用すること、
(3)前記塑性加工を、インパクト成形、絞り成形、再絞り成形及びしごき成形からなる群より選択された少なくとも1種の成形手段により行うこと、
が好適である。 In the production method of the present invention,
(1) The rod is made of aluminum or aluminum alloy,
(2) Use a rod made of pure aluminum having an aluminum content of 99.0% by mass or more as the rod.
(3) performing the plastic working by at least one molding means selected from the group consisting of impact molding, drawing, redrawing and ironing;
Is preferred.
本発明の金属缶の製法は、塑性加工に供するスラグを金属製のロッドの切断により作製することが顕著な特徴であり、これにより、材料ロスを大幅に低減させて金属容器を製造することができる。即ち、金属板を打ち抜いてスラグを作製し、このスラグを塑性加工に付して容器を成形するという手法では、スラグ作製時に打ち抜き屑が発生し大きな材料ロスを生じてしまう。しかしながら、ロッドの切断によりスラグを作製すれば、目的とする容器の大きさや厚みなどに応じて、必要量が得られるようにロッドを切断し、これをスラグとして塑性加工に供することにより、材料ロスを大幅に低減させ、ほぼ100%に近い材料利用率で金属容器を製造することができる。また、目的とする容器の大きさや厚みなどが異なる容器に変更するにあたってはロッドを切断する位置を変更することで容易に対応できる。
The metal can manufacturing method of the present invention is characterized by producing a slag to be subjected to plastic working by cutting a metal rod, thereby making it possible to manufacture a metal container with greatly reduced material loss. it can. That is, in the method of punching a metal plate to produce a slag and subjecting this slag to plastic working to form a container, punching waste is generated during the production of the slag, resulting in a large material loss. However, if the slag is produced by cutting the rod, the rod is cut so that the required amount can be obtained according to the size and thickness of the target container, and this is used as a slag for plastic processing, resulting in material loss. The metal container can be manufactured at a material utilization rate close to 100%. Further, when changing to a container having a different size or thickness of the target container, it can be easily handled by changing the position where the rod is cut.
また、本発明では、金属製ロッドを切断して得られるスラグの塑性加工を、インパクト成形、絞り成形、再絞り成形、しごき成形のうちの少なくとも1つの成形手段により行うことで、特にハイトの高い金属缶、例えば飲料缶、エアゾール缶、電池ケース、アルミチューブなども容易に製造することができ、特にしごき成形を行うことで胴壁や底壁の薄肉化を有効に行い、光沢のある金属容器を得ることができる。
かかる本発明の金属容器の製法は、特にアルミニウムもしくはアルミニウム合金製の容器の製造に適しており、所謂アルミニウム缶の製造に最も適している。 Further, in the present invention, the plastic processing of the slag obtained by cutting the metal rod is performed by at least one forming means among impact forming, drawing forming, redrawing forming, and ironing forming, so that the height is particularly high. Metal cans, such as beverage cans, aerosol cans, battery cases, aluminum tubes, etc., can be easily manufactured, especially by performing ironing to effectively reduce the wall thickness of the body wall and bottom wall, and glossy metal containers Can be obtained.
Such a method for producing a metal container according to the present invention is particularly suitable for producing a container made of aluminum or an aluminum alloy, and is most suitable for producing a so-called aluminum can.
かかる本発明の金属容器の製法は、特にアルミニウムもしくはアルミニウム合金製の容器の製造に適しており、所謂アルミニウム缶の製造に最も適している。 Further, in the present invention, the plastic processing of the slag obtained by cutting the metal rod is performed by at least one forming means among impact forming, drawing forming, redrawing forming, and ironing forming, so that the height is particularly high. Metal cans, such as beverage cans, aerosol cans, battery cases, aluminum tubes, etc., can be easily manufactured, especially by performing ironing to effectively reduce the wall thickness of the body wall and bottom wall, and glossy metal containers Can be obtained.
Such a method for producing a metal container according to the present invention is particularly suitable for producing a container made of aluminum or an aluminum alloy, and is most suitable for producing a so-called aluminum can.
本発明の金属容器の製法のプロセスの一例を示す図1を参照して、出発材料として、図1(a)に示されているように、本発明においては、目的とする容器材料からなる金属製のロッド1を使用し、これを切断して所定長さの円板状のスラグ3を作成し(図1(b)参照)、このスラグ3を、例えば図1(c)~(e)に示されているように塑性加工に供することにより、目的とする金属容器5を製造する。
Referring to FIG. 1 showing an example of a process for producing a metal container of the present invention, as shown in FIG. 1 (a), as a starting material, in the present invention, a metal made of a target container material is used. A rod 1 made of steel is used and cut to create a disc-shaped slag 3 having a predetermined length (see FIG. 1B). This slag 3 is, for example, shown in FIGS. 1C to 1E. The target metal container 5 is manufactured by being subjected to plastic working as shown in FIG.
本発明において、図1(a)に示されている上記のロッド1は、たとえば熱間鍛造や冷間鍛造、熱間圧延、冷間圧延、押出し成形、引き抜き成形、鋳造法等により製造された丸棒形状を有するものであり、目的とする容器の材料に応じて、スチール製、アルミニウム製及びアルミニウム合金製等からなるものであってよいが、薄肉化され且つ軽量の容器を製造するという観点からは、アルミニウム製或いはアルミニウム合金製などからなるものを使用し、所謂アルミ製容器を製造することが最も好適である。
また、展延性が優れ、塑性加工性に優れているばかりか、得られる容器が耐食性に優れているなどの観点から、アルミニウム含量が99.0質量%以上の純アルミニウム製のもの、例えばA1070等からなるロッド1が最も好適に使用される。さらに、使用済み飲料缶から回収されたアルミ材に純アルミニウムを混合して製造されたロッド1も使用することができ、これによりリサイクル性を向上させることができる。
尚、上記のロッド1は、これをカッティングして容器用のスラグ3を形成するものである。つまり、ロッド1を高さ方向と垂直方向に所定の間隔で繰り返しカッティングすることにより、容器用のスラグ3を多数個取りすることができる。 In the present invention, therod 1 shown in FIG. 1A is manufactured by, for example, hot forging, cold forging, hot rolling, cold rolling, extrusion molding, pultrusion molding, casting, or the like. It has a round bar shape, and may be made of steel, aluminum, aluminum alloy, etc., depending on the intended container material, but the viewpoint of manufacturing a thin and lightweight container It is most preferable to use what is made of aluminum or aluminum alloy to produce a so-called aluminum container.
Also, from the viewpoint of excellent ductility and plastic workability, and the resulting container is excellent in corrosion resistance, a product made of pure aluminum having an aluminum content of 99.0% by mass or more, such as A1070, etc. Therod 1 made of is most preferably used. Furthermore, the rod 1 manufactured by mixing pure aluminum with the aluminum material collected from the used beverage can can also be used, thereby improving the recyclability.
Therod 1 is cut to form a slag 3 for a container. That is, by repeatedly cutting the rod 1 at a predetermined interval in the height direction and the vertical direction, a large number of container slags 3 can be obtained.
また、展延性が優れ、塑性加工性に優れているばかりか、得られる容器が耐食性に優れているなどの観点から、アルミニウム含量が99.0質量%以上の純アルミニウム製のもの、例えばA1070等からなるロッド1が最も好適に使用される。さらに、使用済み飲料缶から回収されたアルミ材に純アルミニウムを混合して製造されたロッド1も使用することができ、これによりリサイクル性を向上させることができる。
尚、上記のロッド1は、これをカッティングして容器用のスラグ3を形成するものである。つまり、ロッド1を高さ方向と垂直方向に所定の間隔で繰り返しカッティングすることにより、容器用のスラグ3を多数個取りすることができる。 In the present invention, the
Also, from the viewpoint of excellent ductility and plastic workability, and the resulting container is excellent in corrosion resistance, a product made of pure aluminum having an aluminum content of 99.0% by mass or more, such as A1070, etc. The
The
本発明にしたがって金属容器5を製造するには、先ず、図1(a)及び(b)に示されているように、径がtのロッド1を高さhの位置でカッティングし、適宜、プレスして、底部径がt’、高さh’の円板形状のスラグ3を作製する。なお、ロッド1をカッティングする手段として、公知の切断方法により行うことが可能であり、例えば図示しないが、せん断加工等の切り屑が発生しない切断方法は材料ロスが少なく好ましい。スラグ3の高さhは、最終的に成形する金属容器5の大きさ(重量など)からロッド1の径tに応じて設定される。
目的とする容器の寸法を変更する場合、スラグ3の大きさの変更は、ロッド1の径を変更することにより行うこともできるが、同じ径のロッド1を使用し、カッティング高さhを変更するだけで対応することが可能である。
これにより、材料ロスを大きく低減させ、100%に近い材料利用率で成形を行うことができるとともに、目的とする金属容器5の大きさの変更が容易になる。
尚、スラグ3の高さh’が過度に大きくなると、次の工程での塑性加工が困難となるおそれがあるので、ロッド1の径tも、最終的に得られる金属容器5の大きさに応じて適宜の大きさのものとしておき、この高さh’が数ミリ程度となるようにすることが望ましい。
円板状のスラグ3を作製するにはロッド1をカッティングした部材を高さ方向にプレスすればよいが、例えば、角形容器(図示せず)であればプレス方向を変更してもよい。なお、プレスする装置としては、動力プレスの他、スラグの形状ならびに寸法により、圧延機、鍛圧機等が使用できる。 In order to manufacture themetal container 5 according to the present invention, first, as shown in FIGS. 1 (a) and 1 (b), a rod 1 having a diameter t is cut at a position of height h, The disk-shaped slag 3 having a bottom diameter t ′ and a height h ′ is produced by pressing. In addition, as a means for cutting the rod 1, it can be performed by a known cutting method. For example, although not shown, a cutting method such as shearing that does not generate chips is preferable because of less material loss. The height h of the slag 3 is set according to the diameter t of the rod 1 from the size (weight, etc.) of the metal container 5 to be finally formed.
When changing the size of the target container, the size of theslag 3 can be changed by changing the diameter of the rod 1, but the rod 1 having the same diameter is used and the cutting height h is changed. Just do it.
As a result, material loss can be greatly reduced, molding can be performed at a material utilization rate close to 100%, and the size of thetarget metal container 5 can be easily changed.
If the height h ′ of theslag 3 becomes excessively large, the plastic working in the next step may be difficult. Therefore, the diameter t of the rod 1 is also set to the size of the finally obtained metal container 5. Accordingly, it is desirable that the height h ′ is approximately several millimeters.
In order to produce the disc-shapedslag 3, the member with the rod 1 cut may be pressed in the height direction. For example, if the container is a rectangular container (not shown), the pressing direction may be changed. In addition to the power press, a rolling machine, a forging machine, or the like can be used as an apparatus for pressing depending on the shape and dimensions of the slag.
目的とする容器の寸法を変更する場合、スラグ3の大きさの変更は、ロッド1の径を変更することにより行うこともできるが、同じ径のロッド1を使用し、カッティング高さhを変更するだけで対応することが可能である。
これにより、材料ロスを大きく低減させ、100%に近い材料利用率で成形を行うことができるとともに、目的とする金属容器5の大きさの変更が容易になる。
尚、スラグ3の高さh’が過度に大きくなると、次の工程での塑性加工が困難となるおそれがあるので、ロッド1の径tも、最終的に得られる金属容器5の大きさに応じて適宜の大きさのものとしておき、この高さh’が数ミリ程度となるようにすることが望ましい。
円板状のスラグ3を作製するにはロッド1をカッティングした部材を高さ方向にプレスすればよいが、例えば、角形容器(図示せず)であればプレス方向を変更してもよい。なお、プレスする装置としては、動力プレスの他、スラグの形状ならびに寸法により、圧延機、鍛圧機等が使用できる。 In order to manufacture the
When changing the size of the target container, the size of the
As a result, material loss can be greatly reduced, molding can be performed at a material utilization rate close to 100%, and the size of the
If the height h ′ of the
In order to produce the disc-shaped
上記のようにして作製されたスラグ3は塑性加工に供されるが、この塑性加工に先立っては、焼き鈍しを行い、残留応力の除去や粗大化した結晶粒の回復、加工硬化した組織の回復等により、スラグ3を柔らかくするというものであり、スラグ3の材質等によっても異なるが、一般に、純アルミニウム製のスラグ3の場合で345~350℃程度に加熱した後、徐冷して行う。なお、焼き鈍しは必要に応じてスラグ3を作製する工程途中において行うこともできる。
The slag 3 produced as described above is subjected to plastic working. Prior to this plastic working, annealing is performed to remove residual stress, recover coarse grains, and recover work hardened structure. For example, the slag 3 made of pure aluminum is heated to about 345 ° C. to 350 ° C. and then gradually cooled, although it depends on the material of the slag 3. In addition, annealing can also be performed in the middle of the process of producing the slag 3 as needed.
スラグ3の塑性加工は、このような円板形状のものを用いて容器の形状に賦形できる手段であれば特に制限されず、スラグ3(ロッド1)の材質に応じた手段を採用できるが、本発明においては、塑性加工を、インパクト成形、絞り成形、再絞り成形及びしごき成形から選択される少なくとも1種の成形手段により行うことが好適であり、特にこれらの成形手段を併用することが好適である。
The plastic working of the slag 3 is not particularly limited as long as it is a means that can be shaped into the shape of the container using such a disk shape, and means according to the material of the slag 3 (rod 1) can be adopted. In the present invention, the plastic working is preferably performed by at least one molding means selected from impact molding, drawing, redrawing and ironing, and in particular, these molding means may be used in combination. Is preferred.
例えば、図1(c)~(e)に示されているように、インパクト成形を行い、カップ11を成形し(図1(c)参照)、次いで絞り(再絞り)成形を行って小径化された有底の絞り成形体13を成形し(図1(d)参照)、最後にしごき成形を行い、缶胴壁が薄肉化された金属容器5を製造することができる。
この方法は、特に薄肉で且つハイトの高い金属缶を製造するのに適している。 For example, as shown in FIGS. 1C to 1E, impact molding is performed, thecup 11 is molded (see FIG. 1C), and then drawing (redrawing) molding is performed to reduce the diameter. The bottomed drawn molded body 13 thus formed is molded (see FIG. 1 (d)), and finally, iron molding is performed, whereby the metal container 5 having a thin can body wall can be manufactured.
This method is particularly suitable for producing thin and high-height metal cans.
この方法は、特に薄肉で且つハイトの高い金属缶を製造するのに適している。 For example, as shown in FIGS. 1C to 1E, impact molding is performed, the
This method is particularly suitable for producing thin and high-height metal cans.
上記のプロセスにおいて、インパクト成形は、雌型のダイ21とパンチ23を使用し、スラグ3をダイ21内で衝撃押出しすることにより、カップ11を成形するものである。
この得られたカップ11の外径は、スラグ3の径t’と同じである(図1(c))。 In the above process, the impact molding is to mold thecup 11 by using the female die 21 and the punch 23 and impact-extrusion of the slag 3 in the die 21.
The outer diameter of the obtainedcup 11 is the same as the diameter t ′ of the slag 3 (FIG. 1C).
この得られたカップ11の外径は、スラグ3の径t’と同じである(図1(c))。 In the above process, the impact molding is to mold the
The outer diameter of the obtained
この方法では、カップ11をそのまま容器とすることもでき、容器の底部形状も、ダイ21やパンチ25の形状に合わせて種々の形状とすることができるが、容器の径や高さが制限され、薄肉化に限度があり、さらには、表面荒れや表面平滑性の問題もある。そこで、次の工程で絞り成形及びしごき成形を行い、これにより、小径化、薄肉化、表面光沢及び表面平滑性の向上が実現できる。
In this method, the cup 11 can be used as a container as it is, and the bottom shape of the container can be various shapes according to the shapes of the die 21 and the punch 25, but the diameter and height of the container are limited. However, there is a limit to thinning, and there are also problems of surface roughness and surface smoothness. Therefore, the drawing process and the ironing process are performed in the next step, and thereby, the diameter can be reduced, the wall thickness can be reduced, and the surface gloss and the surface smoothness can be improved.
上記の絞り成形は、前述したスラグ3に直接行うこともできるが、スラグ3の厚み等によっては過酷な面圧がかかり、成形困難となることがあるため、一旦、インパクト成形によりカップ形状に成形した後、このカップについて、絞り成形(再絞り成形)を行い、小径化を図ることが望ましい。
The above drawing can be performed directly on the slag 3 described above, but depending on the thickness of the slag 3 and the like, a severe surface pressure may be applied, which may make molding difficult. After that, it is desirable to reduce the diameter of the cup by drawing (redrawing).
このような絞り成形では、図1(d)に示されているように、径がt1(t1<t’)の開口25aを有するダイ25を使用し、絞り用パンチ27を用い、カップ11をダイ25の開口25a内に押し込むことにより、有底筒状の絞り成形体13を得る。この絞り成形で得られる絞り成形体13の外径は、上記開口25aの径t1に相当し、上記カップ11(或いはスラグ3)の径t’よりも小さい。
In such drawing, as shown in FIG. 1D, a die 25 having an opening 25a having a diameter t1 (t1 <t ′) is used, a drawing punch 27 is used, and the cup 11 is removed. By pushing into the opening 25a of the die 25, a bottomed cylindrical drawn body 13 is obtained. The outer diameter of the drawn body 13 obtained by this drawing is equivalent to the diameter t1 of the opening 25a and is smaller than the diameter t 'of the cup 11 (or slag 3).
尚、上記の絞り成形において、ダイ25の開口の上端のコーナー部(カップ11を保持している側)にはアール(曲率部)が形成されており、カップ11が速やかに且つ折れることなく、ダイ25の開口25a内に押し込まれるようになっており、絞り用パンチ27の外径は、カップ11のほぼ厚みに相当する分だけ、開口25aの径t1よりも小さく設定されている。即ち、この絞り加工では、薄肉化はほとんど行われない。
このような再絞り成形は、必要に応じて複数回行われ、これにより、さらなる小径化を行うこともできる。 In the above-described drawing, a rounded portion (curvature portion) is formed at the corner portion (the side holding the cup 11) of the upper end of the opening of the die 25, and thecup 11 is not quickly and bent. The die 25 is pushed into the opening 25a, and the outer diameter of the drawing punch 27 is set smaller than the diameter t1 of the opening 25a by an amount corresponding to the thickness of the cup 11. In other words, thinning is hardly performed in this drawing process.
Such redrawing is performed a plurality of times as necessary, and further diameter reduction can be performed.
このような再絞り成形は、必要に応じて複数回行われ、これにより、さらなる小径化を行うこともできる。 In the above-described drawing, a rounded portion (curvature portion) is formed at the corner portion (the side holding the cup 11) of the upper end of the opening of the die 25, and the
Such redrawing is performed a plurality of times as necessary, and further diameter reduction can be performed.
このようにして得られた絞り成形体13は、図1(e)に示されているしごき成形に供せられる。
The drawn compact 13 thus obtained is subjected to ironing as shown in FIG. 1 (e).
このしごき成形では、上記の有底筒状形状の絞り成形体13の内部にしごき用のパンチ31を挿入し、リング形状のダイス33の内面に絞り成形体13の外面を圧接しながら、パンチ31を降下させることにより、ダイス33により、絞り成形体13の側壁が薄肉化されていくこととなる。これにより、薄肉化されたことによりカップの外径がt1より小さいt2で、且つ薄肉化の程度に応じてハイトが高くなった金属容器(絞りしごき缶)5が得られることとなる。
かかるしごき成形は、目的とする金属容器5の薄肉の程度やハイトの程度に応じて、複数段で行うことができる。なお、絞り用パンチ27としごき用パンチ31を共用して、同一行程において再絞り成形としごき成形を連続して行うことが可能である。 In this ironing, thepunch 31 for ironing is inserted into the above-mentioned bottomed cylindrical drawn compact 13, and the punch 31 is pressed against the inner surface of the ring-shaped die 33 while pressing the outer surface of the drawn compact 13. Is lowered, the side wall of the drawn molded body 13 is made thinner by the die 33. As a result, a metal container (squeezed and squeezed can) 5 having an outer diameter of the cup smaller than t1 and a height increased according to the degree of thinning is obtained.
Such ironing can be performed in a plurality of stages depending on the thinness and height of thetarget metal container 5. Note that the drawing punch 27 and the ironing punch 31 can be shared, and redrawing and ironing can be continuously performed in the same process.
かかるしごき成形は、目的とする金属容器5の薄肉の程度やハイトの程度に応じて、複数段で行うことができる。なお、絞り用パンチ27としごき用パンチ31を共用して、同一行程において再絞り成形としごき成形を連続して行うことが可能である。 In this ironing, the
Such ironing can be performed in a plurality of stages depending on the thinness and height of the
このようなしごき加工により得られる金属容器5は、例えば従来公知のインパクト成形缶に比して、薄肉でハイトが高いばかりか、表面平滑性や光沢性にも優れている。また、金属素材としてアルミニウム含量が99.0質量%以上の純アルミを使用することにより、耐食性も良好なものとなる。
The metal container 5 obtained by such ironing is not only thin and high in height, but also excellent in surface smoothness and gloss as compared with, for example, a conventionally known impact molded can. Further, by using pure aluminum having an aluminum content of 99.0% by mass or more as the metal material, the corrosion resistance is also improved.
上記のようにして得られた金属容器5は、必要に応じて、ドーム成形、トリミング、内外面塗装、外面印刷、装飾的加工、ネックイン加工等による口端部の成形加工を行い、内容物の充填及び蓋体の装着を行い、市販に供される。
さらに、上記のように得られた金属容器5は、電池用容器部材として使用することができる。 Themetal container 5 obtained as described above is subjected to dome molding, trimming, inner / outer surface coating, outer surface printing, decorative processing, neck-in processing, etc., as necessary, and the contents Are filled in and attached to the lid, and are put on the market.
Furthermore, themetal container 5 obtained as described above can be used as a battery container member.
さらに、上記のように得られた金属容器5は、電池用容器部材として使用することができる。 The
Furthermore, the
尚、上述した図1(c)~(e)の塑性加工では、例えば、潤滑剤のエマルジョン液をクーラントとして用いることが好ましく、しごき成形では、公知の超硬合金製のダイス33を用いることが好適であり、さらに、加工面にダイヤモンド膜等の硬質膜が形成されているダイス33を用いることが可能である。これにより、ダイス33の表面にアルミニウム等の金属素材の付着を有効に回避することができ、特に表面の平滑性や光沢のある金属容器5を得ることができる。
In the plastic working shown in FIGS. 1C to 1E, for example, it is preferable to use a lubricant emulsion as a coolant, and in ironing, a known cemented carbide die 33 is used. Furthermore, it is possible to use a die 33 in which a hard film such as a diamond film is formed on the processed surface. Thereby, adhesion of metal materials, such as aluminum, to the surface of the die | dye 33 can be avoided effectively, and especially the smoothness and glossy metal container 5 of a surface can be obtained.
このような本発明の製法では、丸棒形状のロッド1を出発材として成形を行っているため、材料ロスが極めて少なく、これは、本発明の最も大きな利点である。
なお本発明の製法において、ロッド1の断面形状は円形に限定されず、必要とする金属容器の形状によって適宜、選択可能である。 In such a manufacturing method of the present invention, since theround rod 1 is used as a starting material, the material loss is extremely small, which is the greatest advantage of the present invention.
In the production method of the present invention, the cross-sectional shape of therod 1 is not limited to a circle, and can be appropriately selected depending on the shape of the metal container required.
なお本発明の製法において、ロッド1の断面形状は円形に限定されず、必要とする金属容器の形状によって適宜、選択可能である。 In such a manufacturing method of the present invention, since the
In the production method of the present invention, the cross-sectional shape of the
本発明を次の実験例で説明する。
The present invention will be described in the following experimental example.
<実験例1>
アルミニウム含量が99.7質量%以上の純アルミA1070製のロッド(20mm径、長さ4m)を用意し、このロッドを長さ約20mmになるようにカッティング及びプレスして、径が48mm、厚みが約3.5mmの円板状スラグを得た。
この円板状スラグを350℃で1時間焼き鈍しした後、インパクト成形を行い、底部径が48mm、底部の厚みが約0.9mm、側壁の平均厚みが約1.3mm、高さが約27mmのカップを成形した。成形に際しては、水性エマルジョンを潤滑剤として使用した。このカップの側壁はインパクト成形特有の肌荒れが生じていた。
次いで、上記で得られたカップを、上記と同様の潤滑剤を使用して再絞り成形し、底部径が約36mm、側壁厚みが約1.4mm及び高さが約38mmの有底筒状絞り成形体を得た。
さらに、上記と同様の水性エマルジョンのクーラントを使用し且つ加工面にダイヤモンド膜が形成されているしごき用ダイスを使用してしごき成形を3段行い、底部径が約35mm、側壁厚みが約0.35mm及び高さが約150mmの純アルミ製絞りしごき缶を得た。 <Experimental example 1>
A rod made of pure aluminum A1070 (20 mm diameter, 4 m length) with an aluminum content of 99.7% by mass or more is prepared, and this rod is cut and pressed to a length of about 20 mm, the diameter is 48 mm, the thickness Obtained a disk-shaped slag of about 3.5 mm.
This disk-shaped slag was annealed at 350 ° C. for 1 hour, and then impact molding was performed. The bottom diameter was 48 mm, the bottom thickness was about 0.9 mm, the average side wall thickness was about 1.3 mm, and the height was about 27 mm. A cup was molded. In molding, an aqueous emulsion was used as a lubricant. The side wall of this cup had rough skin peculiar to impact molding.
Next, the cup obtained above is redrawn using the same lubricant as described above, and a bottomed cylindrical drawing having a bottom diameter of about 36 mm, a side wall thickness of about 1.4 mm, and a height of about 38 mm. A molded body was obtained.
Further, using the same water-based emulsion coolant as above and using an ironing die having a diamond film formed on the processed surface, ironing is performed in three stages, with a bottom diameter of about 35 mm and a side wall thickness of about 0.1 mm. A pure aluminum drawn iron can having a height of 35 mm and a height of about 150 mm was obtained.
アルミニウム含量が99.7質量%以上の純アルミA1070製のロッド(20mm径、長さ4m)を用意し、このロッドを長さ約20mmになるようにカッティング及びプレスして、径が48mm、厚みが約3.5mmの円板状スラグを得た。
この円板状スラグを350℃で1時間焼き鈍しした後、インパクト成形を行い、底部径が48mm、底部の厚みが約0.9mm、側壁の平均厚みが約1.3mm、高さが約27mmのカップを成形した。成形に際しては、水性エマルジョンを潤滑剤として使用した。このカップの側壁はインパクト成形特有の肌荒れが生じていた。
次いで、上記で得られたカップを、上記と同様の潤滑剤を使用して再絞り成形し、底部径が約36mm、側壁厚みが約1.4mm及び高さが約38mmの有底筒状絞り成形体を得た。
さらに、上記と同様の水性エマルジョンのクーラントを使用し且つ加工面にダイヤモンド膜が形成されているしごき用ダイスを使用してしごき成形を3段行い、底部径が約35mm、側壁厚みが約0.35mm及び高さが約150mmの純アルミ製絞りしごき缶を得た。 <Experimental example 1>
A rod made of pure aluminum A1070 (20 mm diameter, 4 m length) with an aluminum content of 99.7% by mass or more is prepared, and this rod is cut and pressed to a length of about 20 mm, the diameter is 48 mm, the thickness Obtained a disk-shaped slag of about 3.5 mm.
This disk-shaped slag was annealed at 350 ° C. for 1 hour, and then impact molding was performed. The bottom diameter was 48 mm, the bottom thickness was about 0.9 mm, the average side wall thickness was about 1.3 mm, and the height was about 27 mm. A cup was molded. In molding, an aqueous emulsion was used as a lubricant. The side wall of this cup had rough skin peculiar to impact molding.
Next, the cup obtained above is redrawn using the same lubricant as described above, and a bottomed cylindrical drawing having a bottom diameter of about 36 mm, a side wall thickness of about 1.4 mm, and a height of about 38 mm. A molded body was obtained.
Further, using the same water-based emulsion coolant as above and using an ironing die having a diamond film formed on the processed surface, ironing is performed in three stages, with a bottom diameter of about 35 mm and a side wall thickness of about 0.1 mm. A pure aluminum drawn iron can having a height of 35 mm and a height of about 150 mm was obtained.
得られた絞りしごき缶は、表面平滑性に優れ、光沢も良好であった。
さらに、上記成形後の残りの純アルミ製ロッドを使用し、同様の操作で純アルミ製の絞りしごき缶を繰り返し成形した。これにより、先に用意した純アルミ製ロッドの99%を純アルミ製絞りしごき缶の製造に使用することができ、材料ロスを有効に回避することができた。 The obtained squeezed iron can was excellent in surface smoothness and gloss.
Furthermore, using the remaining pure aluminum rod after the molding, a pure aluminum drawn iron can was repeatedly molded by the same operation. As a result, 99% of the previously prepared pure aluminum rod can be used in the production of a pure aluminum drawn iron can, and material loss can be effectively avoided.
さらに、上記成形後の残りの純アルミ製ロッドを使用し、同様の操作で純アルミ製の絞りしごき缶を繰り返し成形した。これにより、先に用意した純アルミ製ロッドの99%を純アルミ製絞りしごき缶の製造に使用することができ、材料ロスを有効に回避することができた。 The obtained squeezed iron can was excellent in surface smoothness and gloss.
Furthermore, using the remaining pure aluminum rod after the molding, a pure aluminum drawn iron can was repeatedly molded by the same operation. As a result, 99% of the previously prepared pure aluminum rod can be used in the production of a pure aluminum drawn iron can, and material loss can be effectively avoided.
<実験例2>
実験例1と同一のロッドを、長さ約17mmになるようにカッティング及びプレスして、径が48mm、実験例1と同じスラグ径にすべくプレスの押圧位置のみを変更して厚みが約3.0mmの円板状スラグを得た。
この円板状スラグを350℃で1時間焼き鈍しした後、インパクト成形を行い、底部径が48mm、底部の厚みが約0.9mm、側壁の平均厚みが約1.3mm、高さが約22mmのカップを成形した。成形に際しては、水性エマルジョンを潤滑剤として使用した。
次いで、上記で得られたカップを、上記と同様の潤滑剤を使用して再絞り成形し、底部径が約36mm、側壁厚みが約1.4mm及び高さが約32mmの有底筒状絞り成形体を得た。
さらに、上記と同様の条件でしごき成形を3段行い、底部径が約35mm、側壁厚みが約0.35mm及び高さが約127mmの純アルミ製絞りしごき缶を得た。 <Experimental example 2>
The same rod as in Experimental Example 1 is cut and pressed so as to have a length of about 17 mm, and the thickness is about 3 by changing only the pressing position of the press so that the diameter is 48 mm and the same slag diameter as in Experimental Example 1 is obtained. A disc-shaped slag of 0.0 mm was obtained.
This disk-shaped slag was annealed at 350 ° C. for 1 hour, and then impact molding was performed. The bottom diameter was 48 mm, the bottom thickness was about 0.9 mm, the side wall average thickness was about 1.3 mm, and the height was about 22 mm. A cup was molded. In molding, an aqueous emulsion was used as a lubricant.
Next, the cup obtained above was redrawn using the same lubricant as described above, and a bottomed cylindrical draw having a bottom diameter of about 36 mm, a side wall thickness of about 1.4 mm, and a height of about 32 mm. A molded body was obtained.
Further, ironing was performed in three stages under the same conditions as above to obtain a pure aluminum drawn ironing can having a bottom diameter of about 35 mm, a side wall thickness of about 0.35 mm, and a height of about 127 mm.
実験例1と同一のロッドを、長さ約17mmになるようにカッティング及びプレスして、径が48mm、実験例1と同じスラグ径にすべくプレスの押圧位置のみを変更して厚みが約3.0mmの円板状スラグを得た。
この円板状スラグを350℃で1時間焼き鈍しした後、インパクト成形を行い、底部径が48mm、底部の厚みが約0.9mm、側壁の平均厚みが約1.3mm、高さが約22mmのカップを成形した。成形に際しては、水性エマルジョンを潤滑剤として使用した。
次いで、上記で得られたカップを、上記と同様の潤滑剤を使用して再絞り成形し、底部径が約36mm、側壁厚みが約1.4mm及び高さが約32mmの有底筒状絞り成形体を得た。
さらに、上記と同様の条件でしごき成形を3段行い、底部径が約35mm、側壁厚みが約0.35mm及び高さが約127mmの純アルミ製絞りしごき缶を得た。 <Experimental example 2>
The same rod as in Experimental Example 1 is cut and pressed so as to have a length of about 17 mm, and the thickness is about 3 by changing only the pressing position of the press so that the diameter is 48 mm and the same slag diameter as in Experimental Example 1 is obtained. A disc-shaped slag of 0.0 mm was obtained.
This disk-shaped slag was annealed at 350 ° C. for 1 hour, and then impact molding was performed. The bottom diameter was 48 mm, the bottom thickness was about 0.9 mm, the side wall average thickness was about 1.3 mm, and the height was about 22 mm. A cup was molded. In molding, an aqueous emulsion was used as a lubricant.
Next, the cup obtained above was redrawn using the same lubricant as described above, and a bottomed cylindrical draw having a bottom diameter of about 36 mm, a side wall thickness of about 1.4 mm, and a height of about 32 mm. A molded body was obtained.
Further, ironing was performed in three stages under the same conditions as above to obtain a pure aluminum drawn ironing can having a bottom diameter of about 35 mm, a side wall thickness of about 0.35 mm, and a height of about 127 mm.
得られた絞りしごき缶は実験例1と同様、表面平滑性に優れ、光沢も良好であった。
実験例1と比べてロッドのカッティング長さとスラグを作製するプレスの押圧位置を変更するだけで純アルミ製絞りしごき缶の高さの異なる缶を得ることができ、缶種の変更が極めて容易になった。 The obtained squeezed iron can was excellent in surface smoothness and gloss as in Experimental Example 1.
Compared with Experimental Example 1, simply changing the cutting length of the rod and the pressing position of the press for producing the slag can produce cans with different heights of pure aluminum drawn and ironed cans, making it easy to change the type of can became.
実験例1と比べてロッドのカッティング長さとスラグを作製するプレスの押圧位置を変更するだけで純アルミ製絞りしごき缶の高さの異なる缶を得ることができ、缶種の変更が極めて容易になった。 The obtained squeezed iron can was excellent in surface smoothness and gloss as in Experimental Example 1.
Compared with Experimental Example 1, simply changing the cutting length of the rod and the pressing position of the press for producing the slag can produce cans with different heights of pure aluminum drawn and ironed cans, making it easy to change the type of can became.
1:金属製ロッド
3:スラグ
5:金属容器
11:カップ
13:絞り成形体 1: Metal rod 3: Slag 5: Metal container 11: Cup 13: Drawing molded body
3:スラグ
5:金属容器
11:カップ
13:絞り成形体 1: Metal rod 3: Slag 5: Metal container 11: Cup 13: Drawing molded body
Claims (4)
- 金属製のロッドを用意する工程;
前記ロッドを一定の高さで切断して容器用スラグを作製する工程;
前記容器用スラグを容器の形状に塑性加工する工程;
を含む金属容器の製法。 Preparing a metal rod;
Cutting the rod at a constant height to produce a container slag;
Plastically processing the container slag into a container shape;
Of metal containers containing - 前記ロッドとして、アルミニウム製またはアルミニウム合金製のものを使用する請求項1に記載の金属容器の製法。 The method for producing a metal container according to claim 1, wherein the rod is made of aluminum or aluminum alloy.
- 前記ロッドとして、アルミニウム含量が99.0質量%以上の純アルミニウム製のものを使用する請求項2に記載の金属容器の製法。 The method for producing a metal container according to claim 2, wherein the rod is made of pure aluminum having an aluminum content of 99.0% by mass or more.
- 前記塑性加工を、インパクト成形、絞り成形、再絞り成形及びしごき成形からなる群より選択された少なくとも1種の成形手段により行う請求項1に記載の金属容器の製法。 The method for producing a metal container according to claim 1, wherein the plastic working is performed by at least one molding means selected from the group consisting of impact molding, drawing, redrawing and ironing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015608 WO2018193524A1 (en) | 2017-04-18 | 2017-04-18 | Metal container manufacturing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015608 WO2018193524A1 (en) | 2017-04-18 | 2017-04-18 | Metal container manufacturing process |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193524A1 true WO2018193524A1 (en) | 2018-10-25 |
Family
ID=63855707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015608 WO2018193524A1 (en) | 2017-04-18 | 2017-04-18 | Metal container manufacturing process |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018193524A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020090271A1 (en) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | Press die and pressing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230930B2 (en) * | 1986-09-08 | 1990-07-10 | Toyo Seikan Kaisha Ltd | ARUMINIUM UYOKI |
JPH06279888A (en) * | 1993-01-27 | 1994-10-04 | Takeuchi Press Ind Co Ltd | Production of aluminum alloy for impact molding and vessel made of aluminum alloy |
WO2003068427A1 (en) * | 2002-02-15 | 2003-08-21 | Furukawa-Sky Aluminum Corp. | Impact extrusion formed article, impact extrusion forming method, and impact extrusion forming device |
JP2017109208A (en) * | 2015-12-15 | 2017-06-22 | 東洋製罐グループホールディングス株式会社 | Metal container manufacturing method |
-
2017
- 2017-04-18 WO PCT/JP2017/015608 patent/WO2018193524A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230930B2 (en) * | 1986-09-08 | 1990-07-10 | Toyo Seikan Kaisha Ltd | ARUMINIUM UYOKI |
JPH06279888A (en) * | 1993-01-27 | 1994-10-04 | Takeuchi Press Ind Co Ltd | Production of aluminum alloy for impact molding and vessel made of aluminum alloy |
WO2003068427A1 (en) * | 2002-02-15 | 2003-08-21 | Furukawa-Sky Aluminum Corp. | Impact extrusion formed article, impact extrusion forming method, and impact extrusion forming device |
JP2017109208A (en) * | 2015-12-15 | 2017-06-22 | 東洋製罐グループホールディングス株式会社 | Metal container manufacturing method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020090271A1 (en) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | Press die and pressing method |
JP2020069502A (en) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | Mold for press working, and press working method |
CN113039026A (en) * | 2018-10-31 | 2021-06-25 | 东洋制罐集团控股株式会社 | Die for press working and press working method |
JP7363023B2 (en) | 2018-10-31 | 2023-10-18 | 東洋製罐グループホールディングス株式会社 | Pressing mold and pressing method |
CN113039026B (en) * | 2018-10-31 | 2024-04-05 | 东洋制罐集团控股株式会社 | Die for press working and press working method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3924437A (en) | Process for the non-cutting production of sheet steel containers | |
CN101479058B (en) | Method of manufacturing containers | |
US6945085B1 (en) | Method of making metal containers | |
EP2739412B1 (en) | Can manufacture | |
EA025944B1 (en) | Shaped metal container and method for making same | |
CN109648029B (en) | Forging die set for large thin-wall cylinder flange plate and forging method thereof | |
JP6676949B2 (en) | Manufacturing method of metal container | |
EA021995B1 (en) | Manufacturing process to produce a necked container | |
JP7066934B2 (en) | Titanium alloy drawing method | |
JP2018520008A (en) | Process for producing large aluminum bottles and aluminum bottles produced thereby | |
CN110293148B (en) | Magnesium alloy plate stamping and forging composite forming method | |
US10807140B2 (en) | Optimized drawing and wall ironing process of aluminum containers | |
CN104785563A (en) | Precise extruding and forming method for long barrel-shaped component with base | |
US2751676A (en) | Method of cold working metal | |
JP6534494B2 (en) | High-speed blow molding process for forming aluminum containers using high recycle content 3XXX alloy | |
JP2017164755A (en) | Manufacturing method for press-molded article and press-molded article | |
WO2018193524A1 (en) | Metal container manufacturing process | |
CN112059084A (en) | Method for forming Y-shaped cylindrical titanium alloy revolving body | |
CN105880346A (en) | Double-acting extrusion molding control method for copper cone part | |
JP6988180B2 (en) | Pure aluminum seamless can | |
CN109482791A (en) | A kind of C-shaped cross section ring centre embryo material preparation process | |
JP2022126568A (en) | Manufacturing method of inner and outer rings by hot former | |
JP2004202541A (en) | Container molding method | |
JPH07275961A (en) | Manufacture of seamless can | |
US760921A (en) | Drawing-press. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906322 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906322 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |