WO2018193986A1 - Solid-state imaging element and method for manufacturing same - Google Patents
Solid-state imaging element and method for manufacturing same Download PDFInfo
- Publication number
- WO2018193986A1 WO2018193986A1 PCT/JP2018/015540 JP2018015540W WO2018193986A1 WO 2018193986 A1 WO2018193986 A1 WO 2018193986A1 JP 2018015540 W JP2018015540 W JP 2018015540W WO 2018193986 A1 WO2018193986 A1 WO 2018193986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photoelectric conversion
- filter
- layer
- pixel
- microlens
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 53
- 238000006243 chemical reaction Methods 0.000 claims description 231
- 239000000758 substrate Substances 0.000 claims description 72
- 239000004065 semiconductor Substances 0.000 claims description 68
- 238000000206 photolithography Methods 0.000 claims description 50
- 239000011347 resin Substances 0.000 claims description 50
- 229920005989 resin Polymers 0.000 claims description 50
- 238000002834 transmittance Methods 0.000 claims description 34
- 239000011159 matrix material Substances 0.000 claims description 32
- 238000000926 separation method Methods 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 28
- 238000005192 partition Methods 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 8
- 238000000016 photochemical curing Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 79
- 230000003287 optical effect Effects 0.000 abstract description 2
- 239000000049 pigment Substances 0.000 description 38
- 238000004528 spin coating Methods 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 28
- 229910052710 silicon Inorganic materials 0.000 description 28
- 239000010703 silicon Substances 0.000 description 28
- 230000008569 process Effects 0.000 description 22
- 239000006185 dispersion Substances 0.000 description 21
- 230000003595 spectral effect Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 229920002120 photoresistant polymer Polymers 0.000 description 19
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 18
- 238000011161 development Methods 0.000 description 17
- 230000018109 developmental process Effects 0.000 description 17
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 206010034972 Photosensitivity reaction Diseases 0.000 description 12
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 230000036211 photosensitivity Effects 0.000 description 12
- 239000003086 colorant Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 10
- 229920000178 Acrylic resin Polymers 0.000 description 10
- 239000003513 alkali Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 239000002966 varnish Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000004061 bleaching Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- -1 for example Inorganic materials 0.000 description 3
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229940099800 pigment red 48 Drugs 0.000 description 3
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 description 3
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- NCMAYWHYXSWFGB-UHFFFAOYSA-N [Si].[N+][O-] Chemical compound [Si].[N+][O-] NCMAYWHYXSWFGB-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
Definitions
- the present invention relates to a solid-state imaging device and a manufacturing method thereof.
- imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting.
- Various types of image pickup devices have been proposed.
- An image pickup device incorporating a solid-state image pickup device that has been stably manufactured with a small size, light weight, and high performance can be used as a digital camera or digital video. It has become widespread.
- the solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal.
- the types of photoelectric conversion elements are roughly classified into CCD types and C-MOS types.
- a color filter that transmits light of a specific wavelength is provided in the upper layer of the photoelectric conversion element in the path of light incident on the photoelectric conversion element.
- the color filter layer can collect color-separated image information by patterning one pixel by a specific colored transparent pixel corresponding to one photoelectric conversion element and regularly arranging a plurality of pixels.
- a color of the colored transparent pixel for example, three primary colors composed of three colors of red (R), green (G), and blue (B) are often used.
- microlenses corresponding to each pixel are provided in a uniform shape.
- the light condensed by the microlens is configured to enter the photoelectric conversion element through the color filter layer.
- One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light.
- a photoelectric conversion device serving as a light receiving unit.
- the photoelectric conversion elements are highly integrated, the area of each photoelectric conversion element is reduced, and the area ratio that can be used as the light receiving part is also reduced. Therefore, the amount of light that can be taken into the light receiving part of the photoelectric conversion element is reduced, which Sensitivity is reduced.
- one pixel is formed by patterning in red (R), green (G), and blue (B), but there is a problem that the sensitivity of the solid-state image sensor varies depending on each pixel.
- the transmittance to the inside of the solid-state image sensor varies depending on the wavelength of each color of the color filter layer. For example, blue (B) is absorbed near the surface of the solid-state image sensor, but red (R) is transmitted to the inside of the solid-state image sensor. Therefore, a sensitivity difference is generated due to a difference in light transmittance of each color of the color filter layer.
- the first color filter layer formed first on the planarization layer formed on the plurality of photoelectric conversion elements has a surface free energy larger than that of the planarization layer and a film thickness of 100 nm or less. It is described that color filter layers other than the first color filter layer are formed on the flattening layer. Thus, it is described that a color filter layer that is miniaturized and thinned in accordance with the progress of pixel miniaturization can be formed with few defects such as residue and peeling.
- An object of the present invention is to provide a solid-state imaging device having a color filter layer in which light receiving sensitivity is optimized for each of red (R), green (G), and blue (B) pixels.
- a solid-state imaging device includes a semiconductor substrate, and a plurality of photoelectric conversion elements formed on the semiconductor substrate, the photoelectric conversion elements arranged in a matrix in the plane of the semiconductor substrate, A planarization layer formed on the semiconductor substrate so as to cover the plurality of photoelectric conversion elements, an undercoat layer formed on the planarization layer, and a color filter layer formed on the undercoat layer, A plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements, a color filter layer having a red (R) filter, a green (G) filter, and a blue (B) filter, and the plurality of color filters; And a plurality of microlenses formed respectively.
- R red
- G green
- B blue
- the focal point of the microlens in the pixel portion of the red (R) filter is at a position of 2000 nm to 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element, and the pixel of the green (G) filter
- the focal point of the microlens at the portion is 600 nm to 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element
- the focal point of the microlens at the pixel portion of the blue (B) filter is the flatness of the photoelectric conversion element.
- the film is formed with a thickness that is 200 nm or more and 500 nm or less from the boundary surface with the conversion layer.
- the semiconductor substrate is formed so as to cover the plurality of photoelectric conversion elements formed on the semiconductor substrate and arranged in a matrix in the plane of the semiconductor substrate.
- a flattening layer forming step for forming a flattening layer thereon, an undercoat layer forming step for forming an undercoat layer on the flattening layer, and a plurality of photoelectric conversion elements arranged in the same matrix on the undercoat layer A color filter layer forming step of forming a color filter layer comprising a plurality of color filters and having a red (R) filter, a green (G) filter, and a blue (B) filter, and a plurality of color filters on the plurality of color filters And a microlens forming step for forming each microlens.
- the undercoat layer forming step is performed by forming a liquid layer containing a transparent photosensitive resin on the planarizing layer and then photocuring the liquid layer by a photolithography method using a gray tone mask.
- the thickness of the undercoat layer immediately below the red (R) filter is set so that the focal point of the microlens in the pixel portion of the red (R) filter is 2000 nm or more and 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element.
- the thickness is as follows.
- the thickness of the undercoat layer immediately below the green (G) filter is set so that the focal point of the microlens in the pixel portion of the green (G) filter is 600 nm or more and 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element.
- the thickness is as follows.
- the thickness of the undercoat layer immediately below the blue (B) filter is set so that the focal point of the microlens in the pixel portion of the blue (B) filter is 200 nm or more and 500 nm from the boundary surface with the planarization layer of the photoelectric conversion element.
- the thickness is as follows.
- the solid-state imaging device includes a semiconductor substrate and a plurality of photoelectric conversion elements formed on the semiconductor substrate, the photoelectric conversions being arranged in a matrix within the surface of the semiconductor substrate.
- the color filter includes a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements, and includes a red (R) filter, a green (G) filter, a blue (B) filter, and an infrared (IR) filter.
- the focal point of the microlens in the pixel portion of the red (R) filter is a position of 2000 nm to 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side
- the focal point of the micro lens in the pixel portion of the filter is a position of 600 nm to 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side
- the micro lens in the pixel portion of the blue (B) filter The focal point of the lens is a position of 200 nm or more and 500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side
- the focal point of the microlens in the pixel portion of the infrared (IR) filter is It is formed with a thickness that is 1500 nm or more and
- the solid-state imaging device manufacturing method includes a semiconductor substrate formed on a semiconductor substrate so as to cover a plurality of photoelectric conversion elements arranged in a matrix within the surface of the semiconductor substrate.
- the undercoat layer forming step is performed by forming a liquid layer containing a transparent photosensitive resin on the planarizing layer and then photocuring the liquid layer by a photolithography method using a gray tone mask.
- the thickness of the undercoat layer immediately below the red (R) filter is set so that the focal point of the microlens in the pixel portion of the red (R) filter is from the boundary surface with the planarization layer of the photoelectric conversion element.
- the thickness is set to a position of 2000 nm to 2500 nm toward the side.
- the thickness of the undercoat layer immediately below the green (G) filter is set so that the focal point of the microlens in the pixel portion of the green (G) filter is from the boundary surface with the planarization layer of the photoelectric conversion element.
- the thickness is 600 nm or more and 900 nm or less to the side. Then, the thickness of the undercoat layer immediately below the blue (B) filter is set so that the focal point of the microlens in the pixel portion of the blue (B) filter is from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is set to be 200 nm or more and 500 nm or less to the side. The thickness of the undercoat layer immediately below the infrared (IR) filter is set so that the focal point of the microlens in the pixel portion of the infrared (IR) filter is from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side. The thickness is set to a position of 1500 nm to 5000 nm.
- the solid-state imaging device image sensor
- at least a photoelectric conversion element and a microlens are stacked in this order on a semiconductor substrate, and each unit photoelectric conversion element has green, Blue and red pixels are formed, the microlens height on the green pixel is 100%, the microlens height on the blue pixel is in the range of 105% to 150%, and on the red pixel The microlens height is in the range of 95% to 70%.
- a photoelectric conversion element In the solid-state imaging device (image sensor) according to the sixth aspect of the present invention, at least a photoelectric conversion element, a planarization layer, a color separation filter, and a microlens are stacked in this order on a semiconductor substrate.
- a photoelectric conversion element For each photoelectric conversion element as a unit, either a green pixel, a blue pixel, or a red pixel is formed, and a microlens of a green pixel corresponding to each of the green pixel, the blue pixel, and the red pixel, A blue pixel microlens and a red pixel microlens are formed, and the focal depth of the blue pixel microlens is 200 nm or more and 500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side.
- the focal depth of the green pixel microlens is the same as that of the planarization layer of the photoelectric conversion element.
- the focal depth of the red lens microlens is 2000 nm or more and 2500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side at a position of 600 nm to 900 nm from the boundary surface to the photoelectric conversion element side. It is in position.
- a solid-state imaging device (image sensor) manufacturing method is a method for manufacturing the solid-state imaging device according to the fifth or sixth aspect of the present invention.
- the microlenses having different heights are collectively formed by a photolithography method using the above.
- a solid-state imaging device having a color filter layer in which the light receiving sensitivity is optimized for each of red (R), green (G), and blue (B) pixels.
- FIG. 1A is a cross-sectional view taken along line II in FIG. 1
- FIG. 1B is a cross-sectional view taken along line II-II in FIG. It is a figure corresponding to the III-III section. It is a figure explaining the difference in the focus of the micro lens in a pixel part by the difference in the color of the color filter in a general solid-state image sensor.
- FIG. 9A and 9B are cross-sectional views illustrating a solid-state imaging device according to Embodiment 3 of the present invention, where FIG. 9A is a cross-sectional view taken along line VII-VII in FIG. 9, FIG. 9B is a cross-sectional view taken along line XIII-XIII in FIG. It is a figure corresponding to the IX-IX section.
- FIG. 15 is a schematic partial cross-sectional view (XX cross-sectional view in FIG. 15) illustrating a microlens arranged on each of red and green pixels of the image sensor of FIG.
- FIG. 15 is a schematic partial cross-sectional view (a YY cross-sectional view in FIG.
- FIG. 10 is a schematic partial cross-sectional view ((a) to (d)) for explaining an eighth example of the image sensor manufacturing method according to the fourth embodiment of the present invention.
- FIG. 10 is a schematic partial cross-sectional view ((a) to (e)) for explaining an example 8 of the image sensor manufacturing method according to the fourth embodiment of the present invention.
- FIG. 10 is a schematic partial cross-sectional view ((a) to (d)) for explaining Example 9 of the method for manufacturing the image sensor according to the fourth embodiment of the present invention.
- FIG. 10 is a schematic partial cross-sectional view ((a) to (e)) for explaining Example 9 of the method of manufacturing the image sensor according to the fourth embodiment of the present invention.
- It is an example of the AFM observation image of the micro lens created with the manufacturing method of the image sensor which concerns on Embodiment 4 of this invention.
- It is the figure ((a), (b)) which graphed the content of Table 4 which contrasts the microlens height of the microlens produced with the manufacturing method of the image sensor which concerns on Embodiment 4 of this invention, and light reception sensitivity.
- It is a figure explaining the 1st gray tone mask and 2nd gray tone mask which concern on Embodiment 5 of this invention.
- FIG. 30 is a schematic partial plan view for explaining each pixel arrangement of red, green, and blue in the image sensor of FIG. 29. It is a graph which shows an example of the light reception sensitivity curve explaining the light reception sensitivity of each pixel of red, green, and blue in an image sensor.
- FIG. 10 is a schematic cross-sectional view of an image sensor according to Embodiment 6 for explaining red, green, and blue light receiving depths. It is the figure which made the content of Table 5 the graph which contrasted the microlens height of the microlens produced with the manufacturing method of the image sensor of Embodiment 6, and light reception sensitivity.
- the solid-state imaging device 6 of Embodiment 1 includes a photoelectric conversion element 2, a planarization layer 3, an undercoat layer 7, and a plurality of color filters 4 ⁇ / b> R and 4 ⁇ / b> G on a semiconductor substrate 1. , 4B and the microlens 5 are laminated in this order. In FIG. 2, other components of the solid-state imaging device 6 are omitted for easy understanding of the arrangement of the photoelectric conversion elements 2 and the color filters.
- photoelectric conversion elements 2 made of CMOS or CCD are formed in a matrix as light receiving elements.
- a silicon oxide film or a silicon nitrogen oxide film (not shown) is formed on the surface of the semiconductor substrate 1, and a planarizing layer 3 made of a transparent resin is formed on the semiconductor substrate 1.
- an undercoat layer 7 made of a transparent resin is formed with an appropriate film thickness corresponding to each pixel.
- a color filter layer 4 made of a transparent resin in which a coloring material such as a pigment or a dye is dispersed is formed on the undercoat layer 7.
- the color filter layer 4 of the first embodiment includes a red (R) filter 4R and a green (G) filter that respectively transmit one of the three colors red (R), green (G), and blue (B).
- a 4G and blue (B) filter 4B is provided, and these three colors are arranged in a Bayer array.
- the pixel arrangement and the color of the color filter constituting the color filter layer 4 are not limited to these.
- the color combination may be a combination in which color filters such as yellow and transparent are provided in addition to the three primary colors.
- microlenses 5 are formed corresponding to the photoelectric conversion elements 2.
- the red (R) filter 4R, the green (G) filter 4G, and the blue (B) filter 4B have the same film thickness and are not provided with the undercoat layer 7, they are incident on the microlens 5.
- the light passes through each filter and is focused at different positions in the thickness direction of the photoelectric conversion element 2. Specifically, light with a red (R) wavelength passes through the photoelectric conversion element relatively deeply to about 2000 nm. Accordingly, in the red (R) pixel region, it is desirable that the focal position of the microlens 5 is a position 8c in the photoelectric conversion element layer.
- the light receiving sensitivity when the focal point of the microlens 5 is changed in a range where the distance from the surface of the red (R) photoelectric conversion element (boundary surface with the planarization layer) is 0 nm or more and 3500 nm or less. . From FIG. 4, it can be seen that, under the red (R) pixel, the light receiving sensitivity reaches a peak in a range where the focal point of the microlens 5 is in a range of 2000 nm to 2500 nm from the photoelectric conversion element surface.
- FIG. 4 shows the light receiving sensitivity when the focal point of the microlens 5 is changed in a range where the distance from the surface of the green (G) photoelectric conversion element is 0 nm or more and 1500 nm or less. From FIG. 4, it can be seen that under the green (G) pixel, the light receiving sensitivity reaches a peak in a range where the focal point of the microlens 5 is 600 nm or more and 900 nm or less from the surface of the photoelectric conversion element.
- Blue (B) wavelength light is transmitted to a depth of about 200 nm near the surface of the photoelectric conversion element. Accordingly, in the blue (B) pixel region, it is desirable that the focal position is a position 8a in the vicinity of the surface of the photoelectric conversion element.
- FIG. 4 shows the light receiving sensitivity when the focal point of the microlens 5 is changed in a range where the distance from the surface of the blue (B) photoelectric conversion element is 0 nm or more and 1500 nm or less. From FIG.
- the light receiving sensitivity reaches a peak in a range where the focal point of the microlens 5 is in the range of 200 nm to 500 nm from the surface of the photoelectric conversion element.
- the focal point of the microlens 5 is a distance from the surface of the photoelectric conversion element, and is in the range of 2000 nm to 2500 nm below the red (R) pixel, green (G).
- the transmittance of the undercoat layer 7 is 90% or more in the wavelength range of 300 nm to 800 nm.
- the color filter is obtained by changing the thickness of the red (R) filter 4R, the green (G) filter 4G, and the blue (B) filter 4B according to the thickness of the undercoat layer 7.
- the surface of the layer 4 on the microlens 5 side is preferably a flat surface. This is because the microlens 5 can be easily formed because there is no step between the color filters of adjacent colors or there are few steps.
- a planarization layer may be added on the color filters.
- the vertices 5a of the microlenses on the red (R), green (G), and blue (B) color filter layers 4 have substantially the same height. As a result, the distribution of incident light to red, green, and blue pixels can be easily controlled, and the sensitivity of the solid-state imaging device 6 can be stably changed according to the focal depth of the microlens 5.
- a semiconductor substrate 1 in which a plurality of photoelectric conversion elements 2 are arranged in a matrix in a plane is prepared, and a planarization layer 3 is formed on the semiconductor substrate 1 so as to cover the plurality of photoelectric conversion elements 2.
- an undercoat layer corresponding to each pixel is formed.
- a liquid (photoresist) containing a transparent photosensitive transparent resin is applied to the planarizing layer 3 with a predetermined thickness, and the liquid layer 70 is formed.
- the liquid layer 70 is exposed, developed, and baked based on the photolithography method using the gray tone mask 9, thereby subtracting. Layer 7 is formed.
- the transmissivity of the gray tone mask is changed at each position of the red (R) filter, the green (G) filter, and the blue (B) filter, so that in the plane of the undercoat layer 7. Is controlled so that the focal point of the microlens 5 under each pixel falls within the above-described range.
- the gradation of the mask transmittance gradation is achieved by a partial difference in density per unit area of small diameter dots that are not resolved by light used for exposure.
- a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements 2 on the undercoat layer that is, a red (R) filter 4R, a green (G) filter 4G, and a blue color (B)
- the color filter layer 4 composed of the filter 4B is formed.
- These steps can be performed by applying a conventionally known photolithography method, etching method, printing method, or the like.
- Example 1 The solid-state imaging device of Example 1 was produced by the following method.
- a silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate.
- a plurality of photodiodes made of CMOS as photoelectric conversion elements are arranged on the upper surface of the silicon wafer so as to form a Bayer array.
- the arrangement period of the pixels of the photodiode was 1.1 ⁇ m.
- a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer.
- the thickness of the planarizing layer was 40 nm.
- the microlens under the green (G) pixel is located at a position where the focal point of the microlens under the red (R) pixel is 2200 nm from the surface of the photoelectric conversion element.
- the film thickness of the undercoat layer is set so that the focal point of the microlens under the blue (B) pixel corresponds to the position of 300 nm from the surface of the photoelectric conversion element. did.
- a positive resist made of an acrylic transparent resin having alkali solubility and photosensitivity is applied by spin coating to a thickness of 1.0 ⁇ m, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven.
- the thickness of the undercoat layer in Example 1 was 32 nm under the red (R) pixel, 212 nm under the green (G) pixel, and 354 nm under the blue (B) pixel.
- the transmittance of the undercoat layer 7 was 97% in the wavelength range of 300 nm to 800 nm.
- a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. Next, a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
- G green
- R red
- a negative pigment dispersion resist having blue (B) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. Next, a thermosetting acrylic resin layer having a flattening effect and containing an infrared absorber on the three color pixels of the color filter layer is applied by spin coating, and then cleaned at 200 ° C. in a clean oven. Then, a baking process was performed for 10 minutes to form a planarization layer. The film thickness was 0.5 ⁇ m.
- a microlens was formed on the color filter layer and the flattening layer.
- an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes.
- microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
- Example 2 A solid-state imaging device of Example 2 was produced by the following method.
- a silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate.
- a plurality of photodiodes made of CMOS as photoelectric conversion elements are arranged on the upper surface of the silicon wafer so as to form a Bayer array.
- the arrangement period of the pixels of the photodiode was 1.1 ⁇ m.
- a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer.
- the thickness of the planarizing layer was 40 nm.
- the microlens under the red (R) pixel is located at a position 2400 nm from the surface of the photoelectric conversion element, and the microlens under the green (G) pixel.
- the film thickness of the undercoat layer is set so that the focal point of the microlens corresponds to the position of 850 nm from the surface of the photoelectric conversion element and the focal point of the microlens under the blue (B) pixel corresponds to the position of 2400 nm from the surface of the photoelectric conversion element. did.
- a positive resist made of an alkali-soluble and photosensitive acrylic transparent resin is applied by spin coating to a thickness of 1.0 ⁇ m, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven.
- the thickness of the undercoat layer was 22 nm under the red (R) pixel, 198 nm under the green (G) pixel, and 330 nm under the blue (B) pixel.
- the transmittance of the undercoat layer 7 was 97% in the wavelength range of 300 nm to 800 nm.
- a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. Next, a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
- G green
- R red
- a negative pigment dispersion resist having blue (B) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. Next, a thermosetting acrylic resin layer having a flattening effect and containing an infrared absorber on the three color pixels of the color filter layer is applied by spin coating, and then cleaned at 200 ° C. in a clean oven. Then, a baking process was performed for 10 minutes to form a planarization layer. The film thickness was 0.5 ⁇ m.
- a microlens was formed on the color filter layer and the flattening layer.
- an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes.
- microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
- Comparative Example 1 A solid-state imaging device of Comparative Example 1 was produced in the same manner as in Examples 1 and 2 except that the undercoat layer was not formed. The light receiving efficiency of the solid-state imaging devices obtained in Example 1, Example 2 and Comparative Example 1 was measured. A value obtained by setting the light receiving efficiency of Comparative Example 1 to 100% was calculated as the light receiving sensitivity. These results are shown in Table 1.
- the solid-state imaging device of Example 1 has a high light receiving sensitivity of about 5.4%, and the solid-state imaging device of Example 2 has a high light receiving sensitivity of about 4.9%. It turns out that the result was obtained.
- Embodiment 2 A configuration of the solid-state imaging device 10 according to the second embodiment will be described with reference to FIGS. 6 and 7.
- symbol is used and the detail is abbreviate
- the solid-state imaging device 10 includes a photoelectric conversion element 2, a planarization layer 3, and an adjacent photoelectric conversion element 2 on the semiconductor substrate 1 on a semiconductor substrate 1.
- the partition wall 11 is provided upright at a position corresponding to between the two.
- the solid-state imaging device 10 includes an undercoat layer 7 formed between the adjacent partition walls 11 on the planarizing layer 3, a color filter layer 4 including a plurality of color filters 4R, 4G, and 4B, and a microlens. 5 are laminated in this order.
- other components of the solid-state imaging device 6 are omitted for easy understanding of the arrangement of the photoelectric conversion elements 2 and the color filters.
- the partition wall 11 has a lattice shape in plan view, and the color filter layer 4 is formed in the square opening of the partition wall 11.
- the refractive index of the partition wall 11 is preferably 0.01 or more and 0.8 or less lower than the refractive index of the color filter layer 4, and particularly preferably 0.2 or more and 0.7 or less. Light traveling from the color filter layer 4 toward the partition wall 11 is easily reflected at the interface between the color filter layer 4 and the partition wall 11 having a lower refractive index, and does not easily enter the partition wall 11 and enter the adjacent color filter layer 4.
- the light is unlikely to enter a photoelectric conversion element 2 different from the photoelectric conversion element 2 that should be incident, and color mixing can be reduced.
- the light utilization efficiency can be increased, and a highly sensitive solid-state imaging device 10 can be realized.
- the refractive index of the color filter layer 4 is formed using, for example, a pigment dispersion resist, and the refractive index is about 1.6 or more and 1.8 or less.
- the material used for the partition wall 11 is not particularly limited as long as it satisfies the refractive index. For example, if it is an inorganic material, for example, aluminum (Al), tungsten (W), copper (Cu), TEOS (tetraethoxy) A silicon oxide film typified by (silane) is preferable. If it is an organic material, the acrylic resin and polyimide resin containing a silica oxide will be mentioned, for example.
- the height of the partition wall 11 may be 10 nm or more and 30000 nm or less, and particularly preferably 100 nm or more and 900 nm or less.
- the width of the partition wall may be 10 nm or more and 500 nm or less, and particularly preferably 100 nm or more and 300 nm or less.
- FIG. 8A a semiconductor substrate 1 in which a plurality of photoelectric conversion elements 2 are arranged in a matrix in a plane is prepared, and the semiconductor substrate 1 is covered so as to cover the plurality of photoelectric conversion elements 2.
- a planarization layer 3 is formed on the substrate.
- a partition wall material 12 is laminated on the planarizing layer 3. Specifically, after the partition wall material 12 is applied, the film is formed by rotation and baking, or is formed by various methods such as vapor deposition, sputtering, and CVD.
- a resist pattern 13 is formed using a photosensitive transparent resin using a mask having a pattern along the barrier rib shape.
- etching is performed using the resist pattern 13 as a mask.
- the partition 11 is formed by removing the resist using ashing or a stripping solution. Etching can be wet etching or dry etching. Dry etching is preferable because the fine line width of the partition wall 11 can be obtained with high accuracy.
- the partition 11 is formed of an inorganic material, there is a problem that the adhesion between the undercoat layer formed using a photosensitive transparent resin and the partition 11 is low.
- the material used for the undercoat layer 7 is selected from materials that are transparent and have excellent photosensitivity and adhesion between inorganic materials. Moreover, you may implement the process of improving adhesiveness by HMDS process (1,1,1,3,3,3-hexamethyldisilazane) and UV irradiation after the partition 11 formation.
- Example 3 A solid-state imaging device of Example 3 was produced by the following method.
- a silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate.
- a plurality of photoelectric conversion elements made of CMOS as photoelectric conversion elements were arranged on the upper surface of the silicon wafer so as to form a Bayer array.
- the arrangement period of the pixels of the photoelectric conversion element was 1.1 ⁇ m.
- a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer.
- the thickness of the planarizing layer was 40 nm.
- the microlens under the green (G) pixel is located at a position where the focal point of the microlens under the red (R) pixel is 2200 nm from the surface of the photoelectric conversion element.
- the film thickness of the undercoat layer is set so that the focal point of the microlens under the blue (B) pixel corresponds to the position of 300 nm from the surface of the photoelectric conversion element. did.
- a positive resist made of an acrylic transparent resin having alkali solubility and photosensitivity is applied by spin coating to a thickness of 1.0 ⁇ m, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven.
- the thickness of the undercoat layer in Example 1 was 32 nm under the red (R) pixel, 212 nm under the green (G) pixel, and 354 nm under the blue (B) pixel.
- a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The refractive index of the negative pigment dispersion resist having the green (G) spectral characteristics was 1.70.
- a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The refractive index of the negative pigment dispersion resist having red (R) spectral characteristics was 1.70.
- a negative pigment dispersion resist having blue (B) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The refractive index of the negative pigment dispersion resist having the blue (B) spectral characteristics was 1.70. Next, a thermosetting acrylic resin layer having a flattening effect and containing an infrared absorber on the three color pixels of the color filter layer is applied by spin coating, and then cleaned at 200 ° C. in a clean oven. Then, a baking process was performed for 10 minutes to form a planarization layer. The film thickness was 0.5 ⁇ m.
- a microlens was formed on the color filter layer and the flattening layer.
- an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes.
- microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
- Example 4 the focal point of the microlens under the red (R) pixel is 2400 nm from the surface of the photoelectric conversion element, and the focal point of the microlens under the green (G) pixel is 850 nm from the surface of the photoelectric conversion element.
- the film thickness of the undercoat layer is set so that the focal point of the microlens under the blue (B) pixel corresponds to the position of 2400 nm from the surface of the photoelectric conversion element at the position of
- a solid-state imaging device was fabricated in the same manner as in Example 1 except that the thickness was 22 nm under the red (R) pixel, 198 nm under the green (G) pixel, and 330 nm under the blue (B) pixel.
- Example 5 a solid-state imaging device was formed in the same manner as in Example 1 except that the partition walls described below were formed on the planarization layer formed on the semiconductor substrate.
- a silicon oxide film was formed by an evaporation method, an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was cured by heating at 90 ° C. for 2 minutes.
- a protective film was formed on the acrylic transparent resin by a photolithography method.
- dry etching was performed using a fluorocarbon gas using the protective film as a mask to form partition walls.
- a mixed gas with a chlorine gas, a halogen gas, hydrogen, nitrogen, oxygen, a rare gas, or the like may be used in addition to the fluorine gas.
- the partition wall height was 800 nm and the inter-pixel width was 100 nm.
- the refractive index of the partition was 1.45.
- Example 3 was about 5.4%, the solid-state imaging device of Example 4 is about 4.9%, and Example 3 is 10.4% light receiving sensitivity. It can be seen that both obtained good results. In addition, Example 5 was about 5.4% higher than Comparative Example 3.
- the solid-state imaging device 6 (Embodiment 3) The configuration of the solid-state imaging device 6 according to Embodiment 3 will be described with reference to FIGS. 9 and 10.
- the solid-state imaging device 6 ⁇ / b> A of Embodiment 3 includes a photoelectric conversion device 2, a planarization layer 3, an undercoat layer 7, and a plurality of color filters 4 ⁇ / b> R, 4 ⁇ / b> G on a semiconductor substrate 1.
- a color filter layer 4a made of 4B and 4IR and a microlens 5 are laminated in this order.
- FIG. 10 in order to make the arrangement of the photoelectric conversion element 2 and the color filter easier to understand, other configurations in the solid-state imaging element 6A are omitted.
- photoelectric conversion elements 2 made of CMOS or CCD are formed in a matrix as light receiving elements.
- a silicon oxide film or a silicon nitrogen oxide film (not shown) is formed on the surface of the semiconductor substrate 1, and a planarizing layer 3 made of a transparent resin is formed on the semiconductor substrate 1.
- an undercoat layer 7 made of a transparent resin is formed with an appropriate film thickness corresponding to each pixel.
- a color filter layer 4a made of a transparent resin in which a coloring material such as a pigment or a dye is dispersed is formed on the undercoat layer 7.
- the color filter layer 4a of the third embodiment includes a red (R) filter 4R, a green (G) filter 4G, a blue (B) filter 4B, and an infrared (IR) filter 4IR.
- R red
- G green
- B blue
- IR infrared
- the pixel array and the color of the color filter are not limited to these.
- the combination of colors may be a combination provided with a color filter such as yellow or transparent.
- microlenses 5 are formed corresponding to the photoelectric conversion elements 2.
- the red (R) filter 4R, the green (G) filter 4G, the blue (B) filter 4B, and the infrared (IR) filter 4IR have the same film thickness and the undercoat layer 7 is not provided
- the light incident on the microlens 5 passes through each filter and is focused at different positions in the thickness direction of the photoelectric conversion element 2. Specifically, light with a red (R) wavelength passes through the photoelectric conversion element relatively deeply to about 2000 nm. Accordingly, in the red (R) pixel region, it is desirable that the focal position of the microlens 5 is a position 8c in the photoelectric conversion element layer.
- the light receiving sensitivity when the focal point of the microlens 5 is changed in a range in which the distance from the surface of the red (R) photoelectric conversion element (interface with the planarization layer) is 0 nm or more and 3500 nm or less. . From FIG. 12, it can be seen that, under the red (R) pixel, the light receiving sensitivity peaks when the focal point of the microlens 5 is in the range of 2000 nm to 2500 nm from the surface of the photoelectric conversion element.
- FIG. 12 shows the light receiving sensitivity when the focal point of the microlens 5 is changed in a range where the distance from the surface of the green (G) photoelectric conversion element is 0 nm or more and 1500 nm or less. From FIG. 12, it can be seen that, under the green (G) pixel, the light receiving sensitivity reaches a peak when the focus of the microlens 5 is in the range of 600 nm to 900 nm from the surface of the photoelectric conversion element.
- Blue (B) wavelength light is transmitted to a depth of about 200 nm near the surface of the photoelectric conversion element. Accordingly, in the blue (B) pixel region, it is desirable that the focal position is a position 8a in the vicinity of the surface of the photoelectric conversion element.
- FIG. 12 shows the light receiving sensitivity when the focal point of the microlens 5 is changed in a range where the distance from the surface of the blue (B) photoelectric conversion element is 0 nm or more and 1500 nm or less. From FIG. 12, it can be seen that, under the blue (B) pixel, the light receiving sensitivity reaches a peak when the focus of the microlens 5 is in the range of 200 nm to 500 nm from the surface of the photoelectric conversion element.
- FIG. 12 shows the light receiving sensitivity when the focal point of the microlens 5 is changed within a range where the distance from the surface of the photoelectric conversion element of infrared rays (IR) is 0 nm or more and 5000 nm or less. From FIG.
- the light receiving sensitivity of the focus of the microlens 5 increases from 1500 nm from the surface of the photoelectric conversion element, and the light receiving sensitivity reaches a peak in the range of 3000 nm to 5000 nm.
- the focal point of the microlens 5 is the distance from the surface of the photoelectric conversion device, and the range of 2000 nm to 2500 nm below the red (R) pixel, green (G )
- the planarizing layer 3 has a range of 600 nm to 900 nm under the pixel, a range of 200 nm to 500 nm under the blue (B) pixel, and a range of 1500 nm to 5000 nm under the infrared (IR) pixel.
- the thickness of the undercoat layer 7 provided between the color filter layer 4a and the color filter layer 4a is set for each pixel.
- the vertexes 5a of the microlenses 5 on the color filter layer 4A are substantially the same height.
- the distribution of incident light to red (R), green (G), blue (B), and infrared (IR) pixels can be easily controlled, and the sensitivity of the solid-state imaging device is stabilized by the depth of focus of the microlens 5.
- the height of the microlens 5 is set to red (R), green (G), blue (B), and infrared (IR) so that the vertexes 5a of the microlens 5 are approximately the same height. ) It may be changed for each pixel.
- a method for manufacturing the solid-state imaging element 6A of Embodiment 3 will be described with reference to FIG. First, a semiconductor substrate 1 in which a plurality of photoelectric conversion elements 2 are arranged in a matrix in a plane is prepared, and a planarization layer 3 is formed on the semiconductor substrate 1 so as to cover the plurality of photoelectric conversion elements 2. After this planarization layer stacking step, an undercoat layer corresponding to each pixel is formed.
- a liquid (photoresist) containing a transparent photosensitive transparent resin is applied on the planarizing layer 3 with a predetermined thickness, and the liquid layer 70 is formed. Form.
- FIGS. 13B and 13C the liquid layer 70 is subjected to exposure, development, and baking processes based on the photolithography method using the gray-tone mask 9, thereby subtracting. Layer 7 is formed.
- the transmittance of the gray tone mask 9 at each position of the red (R) filter, green (G) filter, blue (B) filter, and infrared (IR) filter in this undercoat layer forming step.
- the in-plane thickness of the pulling layer 7 is controlled so that the focal point of the microlens 5 under each pixel is in the above-described range.
- the gradation of the mask transmittance gradation is achieved by a partial difference in density per unit area of small diameter dots that are not resolved by light used for exposure.
- a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements 2 on the undercoat layer that is, a red (R) filter 4R, a green (G) filter 4G, and a blue color ( B)
- a color filter layer 4a composed of a filter 4B and an infrared (IR) filter 4IR is formed.
- a microlens forming step for forming a plurality of microlenses 5 is performed. These steps can be performed by applying a conventionally known photolithography method, etching method, printing method, or the like. In particular, it is preferable to use the gray tone mask 9 that can arbitrarily change the mask transmittance gradation because the microlens vertex 5a can be easily controlled.
- Example 6 A solid-state imaging device of Example 6 was produced by the following method.
- a silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate.
- a plurality of photoelectric conversion elements made of CMOS were arranged as photoelectric conversion elements on the upper surface of the silicon wafer.
- the arrangement period of the pixels of the photoelectric conversion element was 1.1 ⁇ m.
- a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer.
- the thickness of the planarizing layer was 40 nm.
- the microlens under the green (G) pixel is located at a position where the focal point of the microlens under the red (R) pixel is 2200 nm from the surface of the photoelectric conversion element.
- the focal point of the microlens under the blue (B) pixel is 300 nm from the surface of the photoelectric conversion element, and the focal point of the microlens under the infrared (IR) pixel is at the position of 700 nm from the surface of the photoelectric conversion element.
- the film thickness of the undercoat layer was set so as to correspond to a position of 2000 nm from the surface of the photoelectric conversion element.
- a positive resist made of an acrylic transparent resin having alkali solubility and photosensitivity is applied by spin coating to a thickness of 1.0 ⁇ m, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven.
- the thickness of the undercoat layer in Example 1 is 32 nm under the red (R) pixel, 212 nm under the green (G) pixel, 354 nm under the blue (B) pixel, and 340 nm under the infrared (IR) pixel. there were.
- a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating.
- the green resist is C.I. I. Pigment yellow 139, C.I. I. Pigment green 36, C.I. I. Pigment Blue 15: 6 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMEA, a polymer varnish, a monomer, and an initiator were added was used.
- alignment with the pixels was performed, and then exposure and development processing were performed by a photolithography method to form a predetermined pattern that matched the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
- the negative pigment dispersion resist having the green (G) spectral characteristics had a refractive index of 1.70 and a film thickness of 700 nm.
- a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating.
- the color material of the red resist is C.I. I. Pigment red 117, C.I. I. Pigment red 48: 1, C.I. I. Pigment Yellow 139.
- the composition other than the color material was the same as that of the green resist.
- alignment with the pixel was performed, and then exposure and development processing were performed by a photolithography method, thereby forming a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
- the negative pigment dispersion resist having red (R) spectral characteristics had a refractive index of 1.70 and a film thickness of 700 nm.
- a negative pigment dispersion resist having a blue (B) spectral characteristic was applied by spin coating.
- the blue resist is C.I. I. Pigment blue 15: 6, C.I. I.
- a pigment violet 23 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMA, a polymer varnish, a monomer, and an initiator were added was used.
- alignment with the pixel was performed, and then exposure and development processing were performed by a photolithography method to form a predetermined pattern in accordance with the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
- the negative pigment dispersion resist having blue (B) spectral characteristics had a refractive index of 1.70 and a film thickness of 600 nm.
- a negative pigment dispersion resist having infrared (IR) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
- the negative pigment dispersion resist having infrared (IR) spectral characteristics had a refractive index of 1.70 and a film thickness of 800 nm.
- a thermosetting type acrylic resin layer having a flattening effect is applied onto the pixels of the color filter layer by spin coating, and a baking process is performed at 200 ° C. for 10 minutes in a clean oven, so that the flattening layer Formed.
- the film thickness was 0.5 ⁇ m.
- a microlens was formed on the planarizing layer.
- an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes.
- microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
- Example 7 In Example 7, the focal point of the microlens under the red (R) pixel is 2400 nm from the surface of the photoelectric conversion element, and the focal point of the microlens under the green (G) pixel is 850 nm from the surface of the photoelectric conversion element.
- the focal point of the micro lens under the blue (B) pixel is 240 nm from the surface of the photoelectric conversion element, and the focal point of the micro lens under the infrared (IR) pixel is 2000 nm from the surface of the photoelectric conversion element.
- the thickness of the undercoat layer is set so as to correspond to the position, and the thickness of the formed undercoat layer is 22 nm under the red (R) pixel, 198 nm under the green (G) pixel, and blue (B) pixel.
- a solid-state imaging device was produced in the same manner as in Example 1 except that the thickness was 330 nm below and 340 nm below the infrared (IR) pixel.
- Example 4 A solid-state imaging device was produced in the same manner as in Example 6 except that the undercoat layer was not formed.
- the light receiving efficiency of the solid-state imaging devices obtained in Example 6, Example 7, and Comparative Example 4 was measured.
- a value obtained by setting the light receiving efficiency of Comparative Example 4 to 100% was calculated as the light receiving sensitivity.
- the solid-state imaging device of Example 6 has a high light receiving sensitivity of about 5.4%, and the solid-state imaging device of Example 7 has a high light receiving sensitivity of about 4.9%. You can see that it was obtained.
- an image sensor that is a solid-state imaging device according to the fourth embodiment includes a large number of photoelectric conversion elements 103, a planarization layer 3a, a color separation filter (color filter) 102, and a microlens on a semiconductor substrate 104a. 101 are stacked in this order, and each pixel of green, blue, and red is formed for each photoelectric conversion element as a unit.
- a color separation filter color filter
- the color separation filter 102, the flattening layer 3 a below the photoelectric conversion element 103, and the photoelectric conversion element 103 are illustrated, but in this specification, the semiconductor substrate 104 a, the photoelectric conversion element 103, the flattening layer 3 a, and the color separation filter 102.
- the microlens 101 and so on are referred to as an image sensor.
- the semiconductor substrate 104a is obtained by, for example, dividing a silicon wafer made of single crystal silicon into individual chip formation regions (image sensors) in a manufacturing method described later.
- a G (green) filter 102b is provided for every other pixel, and R (red) filters 102a and B (every other row are provided between the G filters 102b.
- Blue It is a so-called Bayer array provided with a filter 102c.
- An electrical signal of image information obtained by the image sensor is guided to the back surface of the semiconductor substrate 104a by a conductive material that fills the inside of the through hole or covers the inner wall via an electrode (not shown), and is patterned insulation.
- the layer and the conductive layer are connected to the external circuit from the external connection pad 105 via the connection bump 106 by the BGA method.
- an electroless plating layer for preventing flare and having a light shielding property may be provided on the side wall of the lens module.
- the material is a single plating layer of a metal selected from nickel, chromium, cobalt, iron, copper, gold, etc., and an alloy selected from a combination of nickel-iron, cobalt-iron, copper-iron, etc.
- An electroplating layer is mentioned.
- a metal such as copper can be electrolessly plated, and then the surface thereof can be chemically or oxidized to form a metal compound to form a metal light-shielding layer having a low light reflectance on the surface.
- the height of the microlens 101 on the green pixel is 100%
- the height of the microlens 101 on the blue pixel is in the range of 105% to 150%.
- the height of the microlens 101 on the red pixel is set in the range of 95% to 70%. According to the image sensor of the fourth embodiment, it is possible to collect light at the optimum depth of the image sensor by adjusting the height of the microlens for each pixel. Thereby, the light receiving sensitivity is improved.
- FIG. 16 shows an example of the light reception sensitivity curve of each pixel of red, green, and blue in a general image sensor
- FIG. 18 shows blue, green
- the transmission and reception image of red incident light is shown.
- red transmits to a relatively deep layer 103 c of the image sensor due to a difference in light transmittance and the like.
- the height of the microlens 101c of the red pixel is relatively set with reference to the height of the microlens 101b on the green pixel. The relative height is lowered by 101d, so that the light condensing position is the inside 103c of the image sensor layer.
- the light receiving sensitivity when the height of the green and blue microlenses is fixed to 580 nm and the height of the red microlens is changed from 551 nm to 348 nm is shown in Examples 7 to 11 in Table 4. Moreover, the graph of the result is shown in FIG.
- the height of the microlens 101b on the green pixel is 100%, and the height of the microlens 101c on the red pixel is 100% (580 nm) to 95% ( 551 nm), no influence on the light receiving sensitivity was observed (Example 7 in Table 4).
- the height of the microlens 101c on the red pixel is 70% (406 nm) or less, it was confirmed that the light receiving sensitivity of the red pixel is reduced (Example 11 in Table 4). ). Therefore, it can be seen that the height of the microlens 101c on the red pixel is preferably in the range of 70% to 95% when the height of the microlens on the green pixel is 100% (FIG. 26A).
- the height of the microlens 101b of the blue pixel is relatively set based on the height of the microlens 101b on the green pixel.
- the light collecting position is set to the image sensor surface vicinity 103a by increasing the relative height 101e.
- the light receiving sensitivity when the height of the green and red microlenses is fixed to 580 nm and the height of the blue microlens is changed from 609 nm to 928 nm is shown in Examples 2 to 6 in Table 4.
- the graph of the result is shown in FIG.
- the height of the microlens 101b on the green pixel is 100%, and the height of the microlens 101a on the blue pixel is 100% (580 nm) to 105% ( 609 nm), no influence on the light receiving sensitivity was observed (Example 1 and Example 2 in Table 4).
- the height of the microlens 101a on the blue pixel is 150% (928 nm) or more, the light receiving sensitivity of the green pixel around the blue pixel is lowered ( Example 6 in Table 4).
- the height of the microlens 101a on the blue pixel is desirably in the range of 105% to 150% (FIG. 26B).
- Example 8 a method for manufacturing the microlens 101 formed on the photoelectric conversion element 103 described above will be described in detail based on examples.
- Example 8 will be described with reference to FIGS. 17, 21, and 22.
- the photosensitive microlens material 111 (see FIG. 21B) composing the microlens 101 is a photosensitive transparent resin, and is an example using a positive photosensitive resin.
- different microlens heights for each pixel of the microlens 101 are controlled by the exposure method. Therefore, a special exposure mask called gray tone mask 150 shown in FIG. 17 is used.
- a gray tone mask 150 shown in FIG. 17 is a mask in which light transmittance is increased with respect to a microlens-shaped lens bottom to be created, and a light shielding film is provided with a gradation (gradation) of light and shade. This gradation of gradation is achieved by the difference in the number (rough density) of small-diameter dots per unit area that is not resolved by the light used for exposure.
- the transmitted light distribution of the mask is varied depending on each pixel of green, blue, and red. In the example of FIG.
- reference numeral 150 a indicates the gray tone mask transmitted light distribution of the microlens on the red pixel
- reference numeral 150 b indicates the graytone mask transmitted light distribution of the microlens on the green pixel
- reference numeral 150 c indicates the blue pixel. The distribution of light transmitted through the gray-tone mask of the upper microlens is shown. In the drawing, a bright part has little transmitted light and a dark part has much transmitted light.
- Example 8 for example, a photoelectric conversion element 103 (see FIG. 14), a light-shielding film, and a passivation film are formed on a silicon wafer 104 made of single crystal silicon having a thickness of 0.75 mm and a diameter of 20 cm as a semiconductor substrate, and the uppermost layer is formed. Then, the planarization layer 3a (see FIG. 14) was formed by spin coating using a thermosetting acrylic resin coating solution. Next, the color separation filter 102 is formed on the planarizing layer 3a by three photolithography techniques in three colors of green, blue, and red (see FIG. 21A). The photoelectric conversion element and the planarization layer are not shown.)
- Green resist is a C.I. I. Pigment yellow 139, C.I. I. Pigment green 36, C.I. I. Pigment Blue 15: 6 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMEA, a polymer varnish, a monomer, and an initiator were added was used.
- Blue resist is C.I. I. Pigment blue 15: 6, C.I. I. A pigment violet 23 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMA, a polymer varnish, a monomer, and an initiator were further added was used.
- the color material of the red resist is C.I. I. Pigment red 117, C.I. I. Pigment red 48: 1, C.I. I. Pigment Yellow 139.
- the composition other than the color material was the same as that of the green resist.
- the arrangement of the colored pixels is a so-called Bayer arrangement in which a G (green) filter is provided every other pixel, and an R (red) filter and a B (blue) filter are provided every other row between the G filters.
- styrene having alkali-soluble, photosensitive, and thermal reflow properties with a thickness of 1 ⁇ m is formed on the entire surface of the silicon wafer 104 including the color separation filter (each color filter) 102.
- Resin was applied to form a photosensitive microlens material 111. Thereafter, as shown in FIG. 21C, the photosensitive microlens material 111 is patterned by a photolithography process using ultraviolet i rays using a gray-tone mask 150, and then heat-treated at 250 ° C. As shown in (d), a microlens 101 was formed.
- the green pixel of the microlens 101 has a smooth semi-parabolic shape with a height of about 0.62 ⁇ m
- the red pixel has a smooth semi-parabolic shape with a height of 0.53 ⁇ m
- the blue pixel has a height of 0.74 ⁇ m. It was.
- an image sensor multi-faced on the silicon wafer 104 was completed (FIG. 21D).
- a photoresist is applied to the back surface of the silicon wafer 104, an opening is formed at a site where a through hole is to be formed by a regular photolithography method, and then reactive ion etching is performed using the photoresist film as a mask.
- the silicon wafer 104 was etched to a predetermined depth to form through holes. Next, in order to insulate the silicon wafer 104 from a wiring layer to be formed later, a SiO 2 insulating film was formed on the entire inner wall, bottom, and back surface of the through hole by a CVD method.
- the insulating film was formed such that the thickness of the insulating film was thinner on the bottom of the through hole (which is a pad made of a highly conductive metal such as aluminum) than on the back surface of the silicon wafer 104. Then, reactive ion etching was performed again to remove the insulating film at the bottom of the through hole. Subsequently, a conductive film was formed by sputtering, and a through hole was buried and a wiring layer on the back surface of the wafer was formed. Next, a portion of the wiring layer to be connected to the outside was exposed by a regular photolithography method. A solder paste was applied to the exposed portion by screen printing, and a solder ball was mounted. When reflow processing was performed to remove residual flux, an image sensor substrate having external connection pads 105 and connection bumps 106 was obtained (FIG. 22B).
- FIG. 22 (c) a dicing apparatus using a 450 mesh resin blade was used to cut a groove from the surface with the middle part of the image sensor multi-faceted in a matrix as a cutting line.
- FIG. 22 (d) the product was separated into individual image sensors to obtain a finished product in the state shown in FIG. 22 (e). That is, a plurality of image sensors were obtained in which a large number of photoelectric conversion elements 103, color separation filters 102, and microlenses 101 were stacked in this order on a semiconductor substrate 104a.
- Example 3 in Table 4 As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red was 64.2%, the light receiving sensitivity of green was 60.0%, and the light receiving sensitivity of blue was 43.9% (Example 3 in Table 4). Improvement was confirmed with respect to the standard example (Example 1 in Table 4) having the same pixel height. If necessary, a process such as bleaching may be performed to control the shape and light transmittance of the microlens.
- the AFM observation shape of the microlens obtained in Example 8 is shown in FIG. In the conventional microlens manufacturing method, the microlens for each pixel has the same shape, but in Example 8, microlenses having different heights are formed at the same pitch for each pixel.
- Example 9 will be described with reference to FIGS. 23 and 24.
- FIG. 9 a photoelectric conversion element 103 (see FIG. 14), a light-shielding film, and a passivation film are formed on a silicon wafer 104 having a thickness of 0.75 mm and a diameter of 20 cm, and a thermosetting acrylic resin coating liquid is formed on the uppermost layer.
- a photoelectric conversion element 103 see FIG. 14
- a light-shielding film a passivation film
- a passivation film a silicon wafer 104 having a thickness of 0.75 mm and a diameter of 20 cm
- a thermosetting acrylic resin coating liquid is formed on the uppermost layer.
- the color separation filter 102 was formed on the planarizing layer 3a (see FIG. 14) by three photolithography techniques in three colors of green, blue, and red (FIG. 23A). (Refer to photoelectric conversion element and planarization layer not shown.)
- Green resist is a C.I. I. Pigment yellow 139, C.I. I. Pigment green 36, C.I. I. Pigment Blue 15: 6 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMEA, a polymer varnish, a monomer, and an initiator were added was used.
- Blue resist is C.I. I. Pigment blue 15: 6, C.I. I. A pigment violet 23 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMA, a polymer varnish, a monomer, and an initiator were further added was used.
- the color material of the red resist is C.I. I. Pigment red 117, C.I. I. Pigment red 48: 1, C.I. I. Pigment Yellow 139.
- the composition other than the color material was the same as that of the green resist.
- the arrangement of the colored pixels is a so-called Bayer arrangement in which a G (green) filter is provided every other pixel, and an R (red) filter and a B (blue) filter are provided every other row between the G filters.
- an acrylic resin coating liquid in which a benzene ring is introduced into the resin skeleton is applied to the entire surface of the silicon wafer 104 including the color separation filter (each color filter) 102.
- a transparent resin layer 112 having a thickness of 1 ⁇ m was formed, and the film was hardened by heating at 180 ° C. for 3 minutes.
- a photosensitive sacrificial layer 113 was formed by applying a styrene resin having alkali solubility, photosensitivity, and heat reflow (FIG. 23C). Thereafter, as shown in FIG. 23C, the photosensitive sacrificial layer 113 was patterned by a photolithography process using a KrF laser using the gray tone mask 150.
- the gray tone mask 150 is a mask in which light transmittance is increased with respect to a microlens-shaped lens bottom to be created, and a shading film is provided with gradation (gradation) of light and shade. This gradation of gradation is achieved by the difference in the number (rough density) of small-diameter dots per unit area that is not resolved by the light used for exposure.
- the lens matrix 113a has a smooth semi-parabolic shape with a thickness of about 0.7 ⁇ m, and the concave lens curvature diameter between adjacent lens matrices 113a is 0.2 ⁇ m.
- dry etching is performed using a mixed gas of CF 4 and C 3 F 8 which is a fluorocarbon gas, and the pattern of the lens matrix 113a is made of a transparent resin made of acrylic resin. Transferring to the layer 112, a microlens 112a was formed as shown in FIG.
- the dry etching time was 5 minutes.
- the green pixel of the microlens 112a has a smooth semi-parabolic shape with a height of about 0.58 ⁇ m
- the red pixel has a smooth semi-parabolic shape with a height of 0.49 ⁇ m
- the blue pixel has a height of 0.70 ⁇ m. It was. In this way, an image sensor with multiple faces on the silicon wafer 104 was completed (FIG. 24A).
- a photoresist was applied to the back surface of the silicon wafer 104, and an opening was formed at a site where a through hole was to be formed by a regular photolithography method.
- reactive ion etching was performed using the photoresist film as a mask, and the silicon wafer 104 was etched to a predetermined depth to form through holes.
- a SiO 2 insulating film was formed on the entire inner wall, bottom, and back surface of the through hole by a CVD method.
- the insulating film was formed such that the thickness of the insulating film was thinner on the bottom of the through hole (which is a pad made of a highly conductive metal such as aluminum) than on the back surface of the silicon wafer 104. Then, reactive ion etching was performed again to remove the insulating film at the bottom of the through hole. Subsequently, a conductive film was formed by sputtering, and a through hole was buried and a wiring layer on the back surface of the wafer was formed.
- the light receiving sensitivity of red was 65.1%
- the light receiving sensitivity of green was 55.9%
- the light receiving sensitivity of blue was 43.8% (Example 4 in Table 4). Improvement was confirmed with respect to the standard example (Example 1 in Table 4) having the same pixel height.
- steps such as heat flow and bleaching can be performed to control the shape and light transmittance of the microlens.
- the curved surface shape of the microlens can be controlled from a curvature diameter of 120 nm to 248 nm by the wavelength limit resolution of the KrF laser. It becomes.
- the image sensor of the fourth embodiment light can be condensed at an optimal depth of the image sensor by adjusting the height of the microlens for each pixel. Thereby, the light receiving sensitivity is improved. Further, according to the image sensor manufacturing method of Embodiment 4, microlens shapes having different heights for each pixel can be easily and collectively formed by a photolithography process using a gray tone mask. Therefore, the manufacturing cost can be reduced compared to the conventional multiple etching methods and multiple resist patterning methods.
- the curved surface shape of the microlens can be controlled from a curvature diameter of 180 nm to 365 nm, and a pixel size of about 1100 nm. This is effective in improving the light collection efficiency of the micro lens. Further, by using a KrF laser, the curved surface shape of the microlens can be controlled from a curvature diameter of 120 nm to 248 nm, which is effective in improving the light collection efficiency of the microlens having a pixel size of 1000 nm or less.
- a fifth embodiment of the present invention will be described.
- the manufacturing method of the microlens 101 having different heights will be described focusing on the differences from the manufacturing method in the fourth embodiment described above, and the same reference numerals are given to the same configurations as the microlens 101. Therefore, the description is omitted.
- two types of masks are used to form the microlenses 101 having different heights, and the microlenses 101 are manufactured through two steps. Specifically, a micro lens for a green pixel is formed using a first gray tone mask, and a micro lens for a blue pixel and a red pixel is formed using a second gray tone mask. is there.
- the resolution at the boundary portion between adjacent microlenses can be improved.
- the shape at the boundary between adjacent microlenses can be made closer to the design shape, and deterioration of the light collection characteristics of incident light can be suppressed.
- a first gray tone mask 120 and a second gray tone mask 130 are used.
- the density gradation pattern 121 corresponding to the green pixel is in a checkered pattern (pattern in which grid-like eyes are arranged in different colors: Checkered Pattern).
- the other part is a photomask formed of a transmission surface on which no pattern is formed.
- a density gradation pattern 131 corresponding to a blue pixel and a density gradation pattern 132 corresponding to a red pixel are formed in a checkered pattern.
- the other part is a photomask composed of a transmission surface on which no pattern is formed.
- a light-shielding portion pattern made of a light-shielding film such as metal chrome is light-transmitted on a substrate such as quartz or glass having good transparency to exposure light. It consists of the structure formed distinguishing from the part.
- the density gradation patterns 121, 131, and 132 are formed by gradually changing the film thickness of a light-shielding metal film or the like to provide a density gradient in the region, or by dot (halftone dot) arrangement or line-and-space (line / space)
- the pattern is formed by a gray-tone type method or the like in which the fine pattern arrangement of the light-shielding film is changed, such as a pattern in which voids are repeated, and the average light-shielding density of each pattern region is inclined. That is, the density gradation patterns 121, 131, and 132 corresponding to the respective colors shown in FIG. 27 correspond to 150b, 150c, and 150a in FIG.
- FIG. 28 is a diagram ((1) to (5)) for explaining the manufacturing method of the microlens 1 performed after the pattern formation of the color separation filter (R filter 102a, G filter 102b, B filter 102c).
- 28 corresponds to the YY cross section in FIG. 15, and each figure shown in B in FIG. 28 corresponds to the XX cross section in FIG. .
- a microlens material which is a positive photoresist is applied on the color separation filter (R filter 102a, G filter 102b, B filter 102c) 102 shown in FIG.
- a first photoresist layer 140 is formed on the color separation filter 102 as shown in FIG.
- a microlens material is applied on the color separation filter 102 and the microlens 101b of the green pixel, and heat treatment is performed.
- a second photoresist layer 141 is formed on the color separation filter 102 and the microlens 101b of the green pixel.
- exposure is performed using the second gray-tone mask 130 as a photomask.
- development with a developer is performed, and heat curing is performed, so that the blue pixel microlens 101a and the red pixel R filter 102a are formed on the blue pixel B filter 102c as shown in FIG. Red pixel microlenses 101c are respectively formed (second forming step).
- the height of the microlens 101c of the red pixel can be made lower than the height of the microlens 101b of the green pixel.
- Example 10 corresponding to Embodiment 5 will be described.
- a photoelectric conversion element 103, a light shielding film, and a passivation film are formed on a silicon wafer 104 made of silicon material and having a thickness of 0.75 mm, and spin coating is performed using a thermosetting acrylic resin coating liquid as the uppermost layer.
- a planarizing layer was formed by coating.
- a green pixel G filter 102b, a blue pixel B filter 102c, and a red pixel R filter 102a were respectively formed on the planarizing layer by photolithography. Through these steps, the structure below the microlens 101 in FIG. 14 was fabricated (the light-shielding film and the passivation film are not shown).
- Photoresists were formed using the same materials as in Example 8 for the green pixel G filter 102b, the blue pixel B filter 102c, and the red pixel R filter 102a. Further, the arrangement of the colored pixels is a so-called Bayer arrangement as in the example shown in FIG. Next, a heat treatment is performed on the photosensitive microlens material 111 formed by applying a styrene resin having alkali solubility, photosensitivity, and heat reflow on the color separation filter 102, and the first photoresist layer 140 is processed. Formed.
- the film thickness of the first photoresist layer 140 was about 0.80 ⁇ m.
- a green pixel microlens 101b was formed by heat treatment at 250 ° C.
- the density gradation pattern 121 corresponding to the green pixel uses a gray tone type configuration in which a plurality of fine light shielding film portions are arranged in a halftone dot pattern.
- the same photosensitive microlens material 111 as that of the first photoresist layer 140 was applied onto the color separation filter 102, and heat treatment was performed to form the second photoresist layer 141.
- the film thickness of the second photoresist layer 141 was about 0.80 ⁇ m.
- the density gradation pattern 131 corresponding to the blue pixel and the density gradation pattern 132 corresponding to the red pixel are gray in which a plurality of fine light-shielding film portions are arranged in a halftone dot pattern.
- a tone type configuration is used.
- the micro pixel 101b of the green pixel has a smooth semi-parabolic shape with a height of 0.60 ⁇ m, the height of the micro lens 101a of the blue pixel is 0.69 ⁇ m, and the height of the micro lens 101c of the red pixel is 0.52 ⁇ m. It was a smooth semi-parabolic shape. In this way, an image sensor with multiple surfaces was formed on the silicon wafer 104. As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of the red pixel is 65.5%, the light receiving sensitivity of the green pixel is 56.2%, and the light receiving sensitivity of the blue pixel is 44.6%. Improvement was confirmed with respect to the standard example (Example 1 in Table 4). If necessary, a process such as bleaching may be performed to control the shape and light transmittance of the microlens.
- the image sensor according to the sixth embodiment is an example in which the focal depth of the microlens for each pixel is set as a parameter for changing the condensing position. Since the image sensor according to the sixth embodiment can be manufactured by the same method as the manufacturing method according to the fourth embodiment described above (Examples 8 to 9), the method for manufacturing the image sensor according to the sixth embodiment is described below. Description is omitted. As shown in FIG. 29, in the image sensor of the sixth embodiment, a large number of photoelectric conversion elements 203, a planarization layer 3a, a color separation filter 202, and a microlens 201 are stacked in this order on a semiconductor substrate 204a. Each pixel of blue and red is formed for each photoelectric conversion element as a unit.
- the color separation filter 202 and the photoelectric conversion element 203 under the color separation filter 202 are shown.
- the silicon wafer 204, the photoelectric conversion element 203, the planarization layer 3a, the color separation filter 202, and the microlens 201 are included. Is called an image sensor.
- a G (green) filter 202b is provided for every other pixel, and R (red) filters 202a and B (every other row) are provided between the G filters 202b. Blue) It is a so-called Bayer array provided with a filter 202c.
- the semiconductor substrate 204a is obtained by dividing a silicon wafer made of, for example, single crystal silicon into individual chip formation regions (image sensors) in the manufacture thereof, as in the fourth embodiment.
- the electrical signal of the image information obtained by the image sensor is guided to the back surface of the semiconductor substrate 204a by a conductive material filling the through hole or covering the inner wall via an electrode (not shown), and patterned insulation.
- the layer and the conductive layer are connected to an external circuit from the external connection pad 205 via the connection bump 206 by the BGA method.
- an electroless plating layer for preventing flare and having a light shielding property may be provided on the side wall of the lens module.
- the material is a single plating layer of a metal selected from nickel, chromium, cobalt, iron, copper, gold, etc., and an alloy selected from a combination of nickel-iron, cobalt-iron, copper-iron, etc.
- An electroplating layer is mentioned.
- a metal such as copper can be electrolessly plated, and then the surface thereof can be chemically or oxidized to form a metal compound to form a metal light-shielding layer having a low light reflectance on the surface.
- FIG. 31 shows an example of the light reception sensitivity curve of each pixel of red, green, and blue in a general image sensor.
- FIG. 32 shows the transmission and reception image of blue, green, and red incident light to the inner layer of the image sensor according to the sixth embodiment.
- the blue wavelength is received at a depth of about 200 nm in the vicinity 203c of the image sensor surface.
- the condensing position of the microlens 201c be the image sensor surface vicinity 203c in accordance with this.
- Table 5 shows the light receiving sensitivity when the focal depth of the micro lens 201c of the blue pixel is changed from 0 nm to 1500 nm.
- the microlens height of the microlens produced by the image sensor manufacturing method of Embodiment 6 is compared with the light receiving sensitivity. The graph of the result is shown in Blue (lower row) of FIG.
- the focal depth of the blue pixel microlens 201c had a peak between 200 nm and 500 nm.
- the focal depth of the micro lens 201c of the blue pixel is an inner position of 200 nm or more and 500 nm or less from the surface of the photoelectric conversion element 203 on the micro lens 201 side toward the film thickness direction of the photoelectric conversion element 203, that is, photoelectric conversion.
- a position of 200 nm or more and 500 nm or less from the boundary surface between the element 203 and the planarization layer 3a toward the photoelectric conversion element 203 side is desirable.
- the green wavelength is transmitted to a depth of about 600 nm in the inner layer 203b of the image sensor. Therefore, it is desirable that the condensing position of the microlens 201b be the image sensor layer interior 203b in accordance with this.
- the light receiving sensitivity when the green microlens height is changed from 0 nm to 1500 nm is also shown in Table 5.
- the graph of the result is shown in Green (middle) of FIG. As is apparent from the graph, it was found that the focal depth of the microlens 201b of the green pixel has a peak between 600 nm and 900 nm.
- the focal depth of the microlens 201b of the green pixel is 600 nm or more and 900 nm or less from the surface of the photoelectric conversion element 203 on the microlens 201 side in the photoelectric conversion element 203 toward the film thickness direction of the photoelectric conversion element 203.
- the position that is, the position of 600 nm or more and 900 nm or less from the boundary surface between the photoelectric conversion element 203 and the planarization layer 3a to the photoelectric conversion element 203 side is desirable.
- the wavelength of red is transmitted to a depth of about 2000 nm in the inner layer 203a of the image sensor. Therefore, it is desirable that the condensing position of the microlens 201a be the image sensor layer interior 203a in accordance with this.
- Table 5 also shows the light receiving sensitivity when the focal depth of the red microlens 201a is changed from 0 nm to 3500 nm.
- the graph of the result is shown in Red (upper) of FIG. As is apparent from the graph, it was found that the focal depth of the red lens microlens 201a had a peak between 2000 nm and 2500 nm.
- the focal depth of the micro lens 201a of the red pixel is 2000 nm or more and 2500 nm or less from the surface of the photoelectric conversion element 203 on the micro lens 201 side in the photoelectric conversion element 203 toward the film thickness direction of the photoelectric conversion element 203.
- the position that is, the position of 2000 nm or more and 2500 nm or less from the boundary surface between the photoelectric conversion element 203 and the planarization layer 3a toward the photoelectric conversion element 203 side is desirable.
- the focal depth of the microlens 201 (201c) on the blue pixel is from the boundary surface with the planarization layer 3a of the photoelectric conversion element 203 to the photoelectric conversion element 203 side.
- the focal depth of the microlens 201 (201b) on the green pixel is set to a position of 200 nm or more and 500 nm or less, and the depth of focus is 600 nm or more and 900 nm or less from the boundary surface with the planarization layer 3a of the photoelectric conversion element 203 to the photoelectric conversion element side.
- the focal depth of the micro lens 201 (201a) on the red pixel is set to a position of 2000 nm or more and 2500 nm or less from the boundary surface with the planarization layer 3a of the photoelectric conversion element 203 to the photoelectric conversion element 203 side. ing.
- the image sensor of the sixth embodiment it is possible to collect light at the optimum depth of the image sensor by adjusting the focal depth of the microlens for each pixel. Thereby, the light receiving sensitivity is improved.
- Example 11 In Example 11, the image sensor of Embodiment 4 was manufactured by the same method as in Example 8 described above. As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red is 66.1%, the light receiving sensitivity of green is 57.5%, and the light receiving sensitivity of blue is 41.1% (Example 11 in Table 5). Improvement was confirmed for the light receiving sensitivity (the leftmost example in Table 5) with the same lens focal depth of 0 nm for all pixels. If necessary, a process such as bleaching may be performed to control the shape and light transmittance of the microlens. As in the above-described eighth embodiment, the microlenses obtained in the present embodiment 11 are formed with microlenses having different heights at the same pitch as shown in FIG.
- Example 12 the image sensor of Embodiment 6 was manufactured by the same method as in Example 9 described above. As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red is 65.5%, the light receiving sensitivity of green is 57.7%, and the light receiving sensitivity of blue is 41.5% (Example 12 in Table 5). Improvement was confirmed for the light receiving sensitivity (the leftmost example in Table 5) with the same lens focal depth of 0 nm for all pixels.
- steps such as heat flow and bleaching can be performed to control the shape and light transmittance of the microlens.
- the curved surface shape of the microlens can be controlled from a curvature diameter of 120 nm to 248 nm by the wavelength limit resolution of the KrF laser. It becomes.
- the image sensor according to the sixth embodiment of the present invention it is possible to collect light at the optimum depth of the image sensor by optimizing the focal depth of the microlens for each pixel. . Thereby, the light receiving sensitivity can be improved.
- the depth of focus for each pixel in the photolithography process using the gray-tone mask is compared with Embodiment 6 of the present invention.
- Different microlens shapes can be easily and collectively formed.
- microlens shapes having different heights for each pixel can be easily and collectively formed by a photolithography process using the gray tone mask 9. Therefore, the manufacturing cost can be reduced compared to the conventional multiple etching methods and multiple resist patterning methods.
- the curved surface shape of the microlens can be controlled from a curvature diameter of 180 nm to 365 nm, which is effective in improving the light collection efficiency of a microlens having a pixel size of about 1100 nm. is there.
- the curved surface shape of the microlens can be controlled from a curvature diameter of 120 nm to 248 nm, which is effective in improving the light collection efficiency of the microlens having a pixel size of 1000 nm or less.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本発明は、固体撮像素子及びその製造方法に関する。 The present invention relates to a solid-state imaging device and a manufacturing method thereof.
近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を組み込んだ撮像装置が、デジタルカメラやデジタルビデオとして普及してきている。
固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCDタイプとC―MOSタイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサ(ラインセンサ)と、光電変換素子を縦横に2次元的に配列されたエリアセンサ(面センサ)との2種類に大別される。いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になるので、近年は特に、大画素数の固体撮像素子を安価に製造する方法が検討されている。
In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Various types of image pickup devices have been proposed. An image pickup device incorporating a solid-state image pickup device that has been stably manufactured with a small size, light weight, and high performance can be used as a digital camera or digital video. It has become widespread.
The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD types and C-MOS types. Further, two types of arrangements of the photoelectric conversion elements, a linear sensor (line sensor) in which the photoelectric conversion elements are arranged in one row and an area sensor (surface sensor) in which the photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into. In any of the sensors, as the number of photoelectric conversion elements (number of pixels) increases, the captured image becomes more precise. In recent years, in particular, a method for manufacturing a solid-state imaging element having a large number of pixels at low cost has been studied.
また、光電変換素子に入射する光の経路に特定の波長の光を透過するカラーフィルタが光電変換素子の上層に設けられている。カラーフィルタ層は、1個の光電変換素子に対応して特定の着色透明画素による1画素をパターン形成して、規則的に多数配列することにより、色分解した画像情報を集めることができる。着色透明画素の色としては、一例としては赤色(R)、緑色(G)、青色(B)の3色からなる3原色系が多く使われている。
カラーフィルタ層の上層においては、各画素に対応したマイクロレンズが均一な形状で設けられている。このマイクロレンズによって集光された光が、カラーフィルタ層を通って、光電変換素子へ入射するように構成されている。マイクロレンズで光を集光して光電変換素子の受光部に導くことで、受光部の見かけ上の開口率を大きくすることが可能になり、固体撮像素子の感度の向上が可能になる。
In addition, a color filter that transmits light of a specific wavelength is provided in the upper layer of the photoelectric conversion element in the path of light incident on the photoelectric conversion element. The color filter layer can collect color-separated image information by patterning one pixel by a specific colored transparent pixel corresponding to one photoelectric conversion element and regularly arranging a plurality of pixels. As a color of the colored transparent pixel, for example, three primary colors composed of three colors of red (R), green (G), and blue (B) are often used.
In the upper layer of the color filter layer, microlenses corresponding to each pixel are provided in a uniform shape. The light condensed by the microlens is configured to enter the photoelectric conversion element through the color filter layer. By condensing the light with the microlens and guiding it to the light receiving portion of the photoelectric conversion element, the apparent aperture ratio of the light receiving portion can be increased, and the sensitivity of the solid-state imaging device can be improved.
固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。小型化した固体撮像素子で撮影した画像の情報量を多くするためには受光部となる光電変換素子を微細化して高集積化する必要がある。しかし、光電変換素子を高集積化した場合、各光電変換素子の面積が小さくなり、受光部として利用できる面積割合も減るので、光電変換素子の受光部に取り込める光の量が小さくなり、実効的な感度は低下する。
また、固体撮像素子のカラーフィルタ層では赤色(R)、緑色(G)、青(B)で1画素をパターン形成しているが、各画素により、固体撮像素子の感度が異なる問題がある。カラーフィルタ層の各色の波長毎に、固体撮像素子内部への透過率が異なる。例えば、青色(B)は固体撮像素子表面付近で吸収されるが、赤色(R)は固体撮像素子内部まで透過する。そのため、カラーフィルタ層の各色の光透過率差により感度差が発生している。
One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of an image photographed with a miniaturized solid-state imaging device, it is necessary to miniaturize and highly integrate a photoelectric conversion device serving as a light receiving unit. However, when the photoelectric conversion elements are highly integrated, the area of each photoelectric conversion element is reduced, and the area ratio that can be used as the light receiving part is also reduced. Therefore, the amount of light that can be taken into the light receiving part of the photoelectric conversion element is reduced, which Sensitivity is reduced.
In addition, in the color filter layer of the solid-state image sensor, one pixel is formed by patterning in red (R), green (G), and blue (B), but there is a problem that the sensitivity of the solid-state image sensor varies depending on each pixel. The transmittance to the inside of the solid-state image sensor varies depending on the wavelength of each color of the color filter layer. For example, blue (B) is absorbed near the surface of the solid-state image sensor, but red (R) is transmitted to the inside of the solid-state image sensor. Therefore, a sensitivity difference is generated due to a difference in light transmittance of each color of the color filter layer.
特許文献1には、複数の光電変換素子上に形成された平坦化層の上に最初に形成する第一カラーフィルタ層は、表面自由エネルギーが平坦化層より大きく、膜厚が100nm以下の下引き層上に形成し、第一カラーフィルタ層以外のカラーフィルタ層は平坦化層上に形成することが記載されている。これにより、画素の微細化の進展に合せて微細化及び薄膜化されたカラーフィルタ層を、残渣や剥がれ等の欠陥が少ない状態で形成できると記載されている。
In
本発明の課題は、赤色(R)、緑色(G)、青色(B)の画素毎に受光感度が最適化されたカラーフィルタ層を有する固体撮像素子を提供することである。 An object of the present invention is to provide a solid-state imaging device having a color filter layer in which light receiving sensitivity is optimized for each of red (R), green (G), and blue (B) pixels.
本発明の第一の態様に係る固体撮像素子は、半導体基板と、半導体基板上に形成された複数の光電変換素子であって、半導体基板の面内に行列状に配置された光電変換素子と、半導体基板上に複数の光電変換素子を覆うように形成された平坦化層と、平坦化層上に形成された下引き層と、下引き層上に形成されたカラーフィルタ層であって、複数の光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、及び青色(B)フィルタを有するカラーフィルタ層と、複数のカラーフィルタ上にそれぞれ形成された複数のマイクロレンズと、を備える。そして、下引き層は、赤色(R)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から2000nm以上2500nm以下の位置となり、緑色(G)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から600nm以上900nm以下の位置となり、青色(B)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から200nm以上500nm以下の位置となる厚さで形成されている。 A solid-state imaging device according to a first aspect of the present invention includes a semiconductor substrate, and a plurality of photoelectric conversion elements formed on the semiconductor substrate, the photoelectric conversion elements arranged in a matrix in the plane of the semiconductor substrate, A planarization layer formed on the semiconductor substrate so as to cover the plurality of photoelectric conversion elements, an undercoat layer formed on the planarization layer, and a color filter layer formed on the undercoat layer, A plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements, a color filter layer having a red (R) filter, a green (G) filter, and a blue (B) filter, and the plurality of color filters; And a plurality of microlenses formed respectively. In the undercoat layer, the focal point of the microlens in the pixel portion of the red (R) filter is at a position of 2000 nm to 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element, and the pixel of the green (G) filter The focal point of the microlens at the portion is 600 nm to 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element, and the focal point of the microlens at the pixel portion of the blue (B) filter is the flatness of the photoelectric conversion element. The film is formed with a thickness that is 200 nm or more and 500 nm or less from the boundary surface with the conversion layer.
また、本発明の第二の態様に係る固体撮像素子の製造方法は、半導体基板上に形成され、半導体基板の面内に行列状に配置された複数の光電変換素子を覆うように、半導体基板上に平坦化層を形成する平坦化層形成工程と、平坦化層上に下引き層を形成する下引き層形成工程と、下引き層上に、複数の光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、及び青色(B)フィルタを有するカラーフィルタ層を形成するカラーフィルタ層形成工程と、複数のカラーフィルタ上に複数のマイクロレンズをそれぞれ形成するマイクロレンズ形成工程と、を含む。そして、下引き層形成工程は、平坦化層上に透明な感光性樹脂を含む液層を形成した後に、グレートーンマスクを用いたフォトリソグラフィ法により液層を光硬化することで行う。そして、赤色(R)フィルタの直下での下引き層の厚さを、赤色(R)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から2000nm以上2500nm以下の位置となる厚さとする。そして、緑色(G)フィルタの直下での下引き層の厚さを、緑色(G)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から600nm以上900nm以下の位置となる厚さとする。そして、青色(B)フィルタの直下での下引き層の厚さを、青色(B)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から200nm以上500nm以下の位置となる厚さとする。 Further, in the method for manufacturing a solid-state imaging device according to the second aspect of the present invention, the semiconductor substrate is formed so as to cover the plurality of photoelectric conversion elements formed on the semiconductor substrate and arranged in a matrix in the plane of the semiconductor substrate. A flattening layer forming step for forming a flattening layer thereon, an undercoat layer forming step for forming an undercoat layer on the flattening layer, and a plurality of photoelectric conversion elements arranged in the same matrix on the undercoat layer A color filter layer forming step of forming a color filter layer comprising a plurality of color filters and having a red (R) filter, a green (G) filter, and a blue (B) filter, and a plurality of color filters on the plurality of color filters And a microlens forming step for forming each microlens. The undercoat layer forming step is performed by forming a liquid layer containing a transparent photosensitive resin on the planarizing layer and then photocuring the liquid layer by a photolithography method using a gray tone mask. The thickness of the undercoat layer immediately below the red (R) filter is set so that the focal point of the microlens in the pixel portion of the red (R) filter is 2000 nm or more and 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is as follows. The thickness of the undercoat layer immediately below the green (G) filter is set so that the focal point of the microlens in the pixel portion of the green (G) filter is 600 nm or more and 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is as follows. The thickness of the undercoat layer immediately below the blue (B) filter is set so that the focal point of the microlens in the pixel portion of the blue (B) filter is 200 nm or more and 500 nm from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is as follows.
また、本発明の第三の態様に係る固体撮像素子は、半導体基板と、半導体基板上に形成された複数の光電変換素子であって、半導体基板の面内に行列状に配置された光電変換素子と、半導体基板上に複数の光電変換素子を覆うように形成された平坦化層と、平坦化層上に形成された下引き層と、下引き層上に形成されたカラーフィルタ層であって、複数の光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタ、及び赤外線(IR)フィルタを有するカラーフィルタ層と、複数のカラーフィルタ上にそれぞれ形成された複数のマイクロレンズと、を備える。そして、下引き層は、赤色(R)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ2000nm以上2500nm以下の位置となり、緑色(G)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ600nm以上900nm以下の位置となり、青色(B)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ200nm以上500nm以下の位置となり、赤外線(IR)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ1500nm以上5000nm以下の位置となる厚さで形成されている。 The solid-state imaging device according to the third aspect of the present invention includes a semiconductor substrate and a plurality of photoelectric conversion elements formed on the semiconductor substrate, the photoelectric conversions being arranged in a matrix within the surface of the semiconductor substrate. An element, a planarization layer formed on the semiconductor substrate so as to cover the plurality of photoelectric conversion elements, an undercoat layer formed on the planarization layer, and a color filter layer formed on the undercoat layer. The color filter includes a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements, and includes a red (R) filter, a green (G) filter, a blue (B) filter, and an infrared (IR) filter. A layer, and a plurality of microlenses formed on the plurality of color filters, respectively. In the undercoat layer, the focal point of the microlens in the pixel portion of the red (R) filter is a position of 2000 nm to 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side, and green ( G) The focal point of the micro lens in the pixel portion of the filter is a position of 600 nm to 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side, and the micro lens in the pixel portion of the blue (B) filter The focal point of the lens is a position of 200 nm or more and 500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side, and the focal point of the microlens in the pixel portion of the infrared (IR) filter is It is formed with a thickness that is 1500 nm or more and 5000 nm or less from the boundary surface with the planarization layer to the photoelectric conversion element side.
また、本発明の第四の態様に係る固体撮像素子の製造方法は、半導体基板上に形成され、半導体基板の面内に行列状に配置された複数の光電変換素子を覆うように、半導体基板上に平坦化層を形成する平坦化層形成工程と、平坦化層上に下引き層を形成する下引き層形成工程と、下引き層上に、複数の光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタ、及び赤外線(IR)フィルタを有するカラーフィルタ層を形成するカラーフィルタ層形成工程と、複数のカラーフィルタ上に複数のマイクロレンズをそれぞれ形成するマイクロレンズ形成工程と、を含む。そして、下引き層形成工程は、平坦化層上に透明な感光性樹脂を含む液層を形成した後に、グレートーンマスクを用いたフォトリソグラフィ法により液層を光硬化することで行う。そして、赤色(R)フィルタの直下での下引き層の厚さを、赤色(R)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ2000nm以上2500nm以下の位置となる厚さとする。そして、緑色(G)フィルタの直下での下引き層の厚さを、緑色(G)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ600nm以上900nm以下の位置となる厚さとする。そして、青色(B)フィルタの直下での下引き層の厚さを、青色(B)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ200nm以上500nm以下の位置となる厚さとする。そして、赤外線(IR)フィルタの直下での下引き層の厚さを赤外線(IR)フィルタの画素部でのマイクロレンズの焦点が、光電変換素子の平坦化層との境界面から光電変換素子側へ1500nm以上5000nm以下の位置となる厚さとする。 The solid-state imaging device manufacturing method according to the fourth aspect of the present invention includes a semiconductor substrate formed on a semiconductor substrate so as to cover a plurality of photoelectric conversion elements arranged in a matrix within the surface of the semiconductor substrate. A flattening layer forming step for forming a flattening layer thereon, an undercoat layer forming step for forming an undercoat layer on the flattening layer, and a plurality of photoelectric conversion elements arranged in the same matrix on the undercoat layer A color filter layer forming step of forming a color filter layer comprising a plurality of color filters and having a red (R) filter, a green (G) filter, a blue (B) filter, and an infrared (IR) filter; A microlens forming step of forming a plurality of microlenses on the color filter. The undercoat layer forming step is performed by forming a liquid layer containing a transparent photosensitive resin on the planarizing layer and then photocuring the liquid layer by a photolithography method using a gray tone mask. The thickness of the undercoat layer immediately below the red (R) filter is set so that the focal point of the microlens in the pixel portion of the red (R) filter is from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is set to a position of 2000 nm to 2500 nm toward the side. The thickness of the undercoat layer immediately below the green (G) filter is set so that the focal point of the microlens in the pixel portion of the green (G) filter is from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is 600 nm or more and 900 nm or less to the side. Then, the thickness of the undercoat layer immediately below the blue (B) filter is set so that the focal point of the microlens in the pixel portion of the blue (B) filter is from the boundary surface with the planarization layer of the photoelectric conversion element. The thickness is set to be 200 nm or more and 500 nm or less to the side. The thickness of the undercoat layer immediately below the infrared (IR) filter is set so that the focal point of the microlens in the pixel portion of the infrared (IR) filter is from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side. The thickness is set to a position of 1500 nm to 5000 nm.
また、本発明の第五の態様に係る固体撮像素子(イメージセンサ)は、半導体基板上に、少なくとも、光電変換素子及びマイクロレンズがこの順に積層され、単位となる光電変換素子毎に、グリーン、ブルー及びレッドの各画素が形成されており、グリーン画素上のマイクロレンズ高さを100%として、ブルー画素上のマイクロレンズ高さが105%から150%の範囲であり、かつ、レッド画素上のマイクロレンズ高さが95%から70%の範囲であることを特徴とする。 Further, in the solid-state imaging device (image sensor) according to the fifth aspect of the present invention, at least a photoelectric conversion element and a microlens are stacked in this order on a semiconductor substrate, and each unit photoelectric conversion element has green, Blue and red pixels are formed, the microlens height on the green pixel is 100%, the microlens height on the blue pixel is in the range of 105% to 150%, and on the red pixel The microlens height is in the range of 95% to 70%.
また、本発明の第六の態様に係る固体撮像素子(イメージセンサ)は、半導体基板上に、少なくとも、光電変換素子、平坦化層、色分解フィルタ及びマイクロレンズがこの順に積層され、色分解フィルタとして、単位となる光電変換素子毎に、グリーン画素、ブルー画素及びレッド画素のいずれかが形成されており、マイクロレンズとして、グリーン画素、ブルー画素及びレッド画素にそれぞれ対応したグリーン画素のマイクロレンズ、ブルー画素のマイクロレンズ、レッド画素のマイクロレンズが形成されており、ブルー画素のマイクロレンズの焦点深さは、光電変換素子の平坦化層との境界面から光電変換素子側へ200nm以上500nm以下の位置にあり、グリーン画素のマイクロレンズの焦点深さは、光電変換素子の平坦化層との境界面から光電変換素子側へ600nm以上900nm以下の位置にあり、レッド画素のマイクロレンズの焦点深さは、光電変換素子の平坦化層との境界面から光電変換素子側へ2000nm以上2500nm以下の位置にあることを特徴とする。 In the solid-state imaging device (image sensor) according to the sixth aspect of the present invention, at least a photoelectric conversion element, a planarization layer, a color separation filter, and a microlens are stacked in this order on a semiconductor substrate. For each photoelectric conversion element as a unit, either a green pixel, a blue pixel, or a red pixel is formed, and a microlens of a green pixel corresponding to each of the green pixel, the blue pixel, and the red pixel, A blue pixel microlens and a red pixel microlens are formed, and the focal depth of the blue pixel microlens is 200 nm or more and 500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side. The focal depth of the green pixel microlens is the same as that of the planarization layer of the photoelectric conversion element. The focal depth of the red lens microlens is 2000 nm or more and 2500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side at a position of 600 nm to 900 nm from the boundary surface to the photoelectric conversion element side. It is in position.
また、本発明の第七の態様に係る固体撮像素子(イメージセンサ)の製造方法は、本発明の上記第五又は第六の態様に係る固体撮像素子を製造する方法であって、グレートーンマスクを使用したフォトリソグラフィ法により、高さの異なるマイクロレンズを一括形成することを特徴とする。 A solid-state imaging device (image sensor) manufacturing method according to the seventh aspect of the present invention is a method for manufacturing the solid-state imaging device according to the fifth or sixth aspect of the present invention. The microlenses having different heights are collectively formed by a photolithography method using the above.
本発明によれば、赤色(R)、緑色(G)、青色(B)の画素毎に受光感度が最適化されたカラーフィルタ層を有する固体撮像素子が提供される。 According to the present invention, there is provided a solid-state imaging device having a color filter layer in which the light receiving sensitivity is optimized for each of red (R), green (G), and blue (B) pixels.
以下、この発明の実施形態について説明するが、この発明は以下に示す実施形態に限定されない。以下に示す実施形態では、この発明を実施するために技術的に好ましい限定がなされているが、この限定はこの発明の必須要件ではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments. In the embodiment described below, a technically preferable limitation is made for carrying out the present invention, but this limitation is not an essential requirement of the present invention.
(実施形態1)
<構成>
図1及び図2に示すように、本実施形態1の固体撮像素子6は、半導体基板1の上に、光電変換素子2、平坦化層3、下引き層7、複数のカラーフィルタ4R,4G,4Bからなるカラーフィルタ層4、及びマイクロレンズ5がこの順に積層されて形成されている。なお、図2では、光電変換素子2及びカラーフィルタの配置を分かりやすくするため、固体撮像素子6における他の構成については省略している。
(Embodiment 1)
<Configuration>
As shown in FIGS. 1 and 2, the solid-
半導体基板1には、受光素子としてCMOSやCCDからなる光電変換素子2がマトリクス状に形成されている。そして、半導体基板1の表面には、シリコン酸化膜またはシリコン窒素酸化膜(図示せず)が形成されており、半導体基板1上には、透明樹脂からなる平坦化層3が形成されている。また、平坦化層3上には、透明樹脂からなる下引き層7が各画素に対応して、適切な膜厚で形成されている。さらに、下引き層7上には、顔料や染料などの着色材を分散させた透明樹脂からなるカラーフィルタ層4が形成されている。本実施形態1のカラーフィルタ層4は、赤色(R)、緑色(G)、青色(B)の3色のいずれか1つの色をそれぞれ透過させる赤色(R)フィルタ4R、緑色(G)フィルタ4G、青色(B)フィルタ4Bを有し、これら3色がベイヤー配列されるものである。なお、画素配列やカラーフィルタ層4を構成するカラーフィルタの色についてはこれらに限定するものではない。色の組み合わせは、3原色に加えて、黄色や透明などのカラーフィルタを設けた組み合わせとしても構わない。これらのカラーフィルタ層4上に、光電変換素子2に対応してマイクロレンズ5が形成されている。
On the
図3に示すように、赤色(R)フィルタ4R、緑色(G)フィルタ4G、青色(B)フィルタ4Bの膜厚が同じで、下引き層7を設けない場合、マイクロレンズ5に入射された光は、各フィルタを透過して光電変換素子2の厚さ方向の異なる位置で焦点を結ぶ。
具体的には、赤色(R)の波長の光は光電変換素子の比較的深く2000nm程度まで透過する。これに合わせて、赤色(R)画素領域においては、マイクロレンズ5の焦点位置を光電変換素子層内の位置8cとすることが望ましい。図4に、マイクロレンズ5の焦点を、赤色(R)の光電変換素子表面(平坦化層との境界面)からの距離が0nm以上3500nm以下となる範囲で変化させたときの受光感度を示す。図4より、赤色(R)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から2000nm以上2500nm以下の位置となる範囲で、受光感度がピークになることが分かる。
As shown in FIG. 3, when the red (R)
Specifically, light with a red (R) wavelength passes through the photoelectric conversion element relatively deeply to about 2000 nm. Accordingly, in the red (R) pixel region, it is desirable that the focal position of the
緑色(G)の波長の光は光電変換素子の深さ600nm程度まで透過する。これに合わせて、緑色(G)画素領域においては、焦点位置を光電変換素子層内の位置8bとすることが望ましい。図4に、マイクロレンズ5の焦点を、緑色(G)の光電変換素子表面からの距離が0nm以上1500nm以下となる範囲で変化させたときの受光感度を示す。図4より、緑色(G)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から600nm以上900nm以下の位置となる範囲で、受光感度がピークになることが分かる。
Light of green (G) wavelength is transmitted to a depth of about 600 nm of the photoelectric conversion element. In accordance with this, in the green (G) pixel region, it is desirable that the focal position is the
青色(B)の波長の光は光電変換素子表面近傍の深さ200nm程度まで透過する。これに合わせて、青色(B)画素領域においては、焦点位置を光電変換素子表面近傍の位置8aとすることが望ましい。図4に、マイクロレンズ5の焦点を、青色(B)の光電変換素子表面からの距離が0nm以上1500nm以下となる範囲で変化させたときの受光感度を示す。図4より、青色(B)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から200nm以上500nm以下の位置となる範囲で、受光感度がピークになることが分かる。
Blue (B) wavelength light is transmitted to a depth of about 200 nm near the surface of the photoelectric conversion element. Accordingly, in the blue (B) pixel region, it is desirable that the focal position is a
以上のことから、本実施形態1の固体撮像素子においては、マイクロレンズ5の焦点を、光電変換素子表面からの距離で、赤色(R)画素下では2000nm以上2500nm以下の範囲、緑色(G)画素下では、600nm以上900nm以下の範囲、青色(B)画素下では、200nm以上500nm以下の範囲になるように、平坦化層3とカラーフィルタ層4との間に設ける下引き層7の厚さが画素毎に設定されている。また、下引き層7の透過率は、波長300nm以上800nm以下の範囲で90%以上としている。
From the above, in the solid-state imaging device of the first embodiment, the focal point of the
なお、図2に示すように、下引き層7の厚さに応じて赤色(R)フィルタ4R、緑色(G)フィルタ4G、及び青色(B)フィルタ4Bの厚さを変えることにより、カラーフィルタ層4のマイクロレンズ5側の面を平坦面にすることが好ましい。これは、隣接する各色のカラーフィルタ間に段差がない、あるいは段差が少ないことで、マイクロレンズ5の形成が容易になるためである。カラーフィルタ間の段差低減の為、カラーフィルタ上に平坦化層を追加しても良い。
ここで、赤色(R)、緑色(G)、青色(B)各カラーフィルタ層4上のマイクロレンズの頂点5aは概略同一高さとなっている。これにより入射光の赤色、緑色、青色画素への配分の制御が容易となり、マイクロレンズ5の焦点深度によって固体撮像素子6の感度を安定して変化させることができる。
In addition, as shown in FIG. 2, the color filter is obtained by changing the thickness of the red (R)
Here, the
<製造方法>
次に、図5を参照して、本実施形態1の固体撮像素子6の製造方法について説明する。
先ず、面内に複数の光電変換素子2が行列状に配置された半導体基板1を用意し、複数の光電変換素子2を覆うように、半導体基板1上に平坦化層3を形成する。この平坦化層積層工程後に、各画素に対応した下引き層を形成する。
下引き層形成工程では、まず、図5(a)に示すように、平坦化層3上に透明な感光性透明樹脂を含む液体(フォトレジスト)を所定の厚みで塗布して液層70を形成する。次いで、図5(b)及び(c)に示すように、液層70に対して、グレートーンマスク9を用いたフォトリソグラフィ法に基づき、露光、現像、ベークの処理を行うことにより、下引き層7を形成する。
<Manufacturing method>
Next, with reference to FIG. 5, the manufacturing method of the solid-
First, a
In the undercoat layer forming step, first, as shown in FIG. 5A, a liquid (photoresist) containing a transparent photosensitive transparent resin is applied to the
この下引き層形成工程で、赤色(R)フィルタ、緑色(G)フィルタ、及び青色(B)フィルタの各位置で、グレートーンマスクの透過率を変えることにより、下引き層7の面内での厚さを、各画素下でのマイクロレンズ5の焦点が上述の範囲となるように制御する。
この工程で、任意にマスク透過率階調を可変することができるグレートーンマスク9を用いることにより、下引き層7の面内で厚さを制御することが容易になる。このマスク透過率階調の濃淡は、露光に用いる光では解像しない小さな径のドットの単位面積当たりの粗密の部分的な差によって達成される。
In this undercoat layer forming step, the transmissivity of the gray tone mask is changed at each position of the red (R) filter, the green (G) filter, and the blue (B) filter, so that in the plane of the
In this step, it is easy to control the thickness within the surface of the
下引き層形成の後、下引き層上に、複数の光電変換素子2と同じ行列状に配置された複数のカラーフィルタ、つまり、赤色(R)フィルタ4R、緑色(G)フィルタ4G、及び青色(B)フィルタ4Bからなるカラーフィルタ層4を形成する。このカラーフィルタ層形成工程の後、複数のカラーフィルタ上に複数のマイクロレンズ5をそれぞれ形成するマイクロレンズ形成工程を行う。これらの工程は、従来公知のフォトリソグラフィ法、エッチング法、印刷法等を適用して行うことができる。特に、任意にマスク透過率階調を可変することができるグレートーンマスクを用いることにより、マイクロレンズの頂点5aを制御することが容易になる為、好適である。
After the undercoat layer is formed, a plurality of color filters arranged in the same matrix as the plurality of
以下、実施例及び比較例について説明する。
(実施例1)
以下の方法で実施例1の固体撮像素子を作製した。
半導体基板として、厚さ0.75mm、直径20cmのシリコンウエハを使用した。このシリコンウエハの表面上部に光電変換素子としてCMOSからなる複数のフォトダイオードを、ベイヤー配列となるように配置した。ここで、フォトダイオードの画素の配列周期は1.1μmであった。
Hereinafter, examples and comparative examples will be described.
Example 1
The solid-state imaging device of Example 1 was produced by the following method.
A silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate. A plurality of photodiodes made of CMOS as photoelectric conversion elements are arranged on the upper surface of the silicon wafer so as to form a Bayer array. Here, the arrangement period of the pixels of the photodiode was 1.1 μm.
次に、スピンコートにより、スチレン系の透明樹脂からなる膜を形成し、200℃で2分のベーク処理を行い、平坦化層を形成した。平坦化層の膜厚は40nmであった。
次に、平坦化層上に下引き層を形成するにあたり、赤色(R)画素下でのマイクロレンズの焦点が光電変換素子の表面から2200nmの位置に、緑色(G)画素下でのマイクロレンズの焦点が光電変換素子の表面から700nmの位置に、青色(B)画素下でのマイクロレンズの焦点が光電変換素子の表面から300nmの位置に対応するように、下引き層の膜厚を設定した。
Next, a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer. The thickness of the planarizing layer was 40 nm.
Next, in forming the undercoat layer on the planarization layer, the microlens under the green (G) pixel is located at a position where the focal point of the microlens under the red (R) pixel is 2200 nm from the surface of the photoelectric conversion element. The film thickness of the undercoat layer is set so that the focal point of the microlens under the blue (B) pixel corresponds to the position of 300 nm from the surface of the photoelectric conversion element. did.
下引き層形成工程では、まず、アルカリ可溶性・感光性を有するアクリル系透明樹脂からなるポジ型レジストをスピンコートにより厚さ1.0μmで塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にて露光、現像処理を行い、下引き層を形成した。グレートーンマスクを用いることにより、各画素領域での下引き層の膜厚を制御した。その後、クリーンオーブンにてベーク処理を180℃で2分間行った。本実施例1においての下引き層の膜厚は、赤色(R)画素下では32nm、緑色(G)画素下では212nm、青色(B)画素下では354nmであった。また、下引き層7の透過率は、波長300nm以上800nm以下の範囲で97%であった。
In the undercoat layer forming process, first, a positive resist made of an acrylic transparent resin having alkali solubility and photosensitivity is applied by spin coating to a thickness of 1.0 μm, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven. The thickness of the undercoat layer in Example 1 was 32 nm under the red (R) pixel, 212 nm under the green (G) pixel, and 354 nm under the blue (B) pixel. The transmittance of the
次に、下引き層上にスピンコートによって緑色(G)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列に合った所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。
次に、スピンコートにより赤色(R)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。
Next, a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
Next, a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
次に、スピンコートにより青色(B)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。
次に、カラーフィルタ層の三色の画素上に平坦化効果を持ち、且つ、赤外線吸収剤を含有する熱硬化タイプのアクリル系樹脂層を、スピンコートにより塗布して、クリーンオーブンにて200℃で10分間のベーク処理を行い、平坦化層を形成した。膜厚は0.5μmであった。
Next, a negative pigment dispersion resist having blue (B) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
Next, a thermosetting acrylic resin layer having a flattening effect and containing an infrared absorber on the three color pixels of the color filter layer is applied by spin coating, and then cleaned at 200 ° C. in a clean oven. Then, a baking process was performed for 10 minutes to form a planarization layer. The film thickness was 0.5 μm.
次に、カラーフィルタ層、平坦化層上にマイクロレンズを形成した。まず、スピンコートによって、アルカリ可溶性・感光性を有するアクリル系透明樹脂を塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にてマイクロレンズを形成した。グレートーンマスクを用いることにより、画素内のマスク透過率分布を制御可能となるため、任意のマイクロレンズ形状を形成することが可能となる。 Next, a microlens was formed on the color filter layer and the flattening layer. First, an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes. Thereafter, microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
(実施例2)
以下の方法で実施例2の固体撮像素子を作製した。
半導体基板として、厚さ0.75mm、直径20cmのシリコンウエハを使用した。このシリコンウエハの表面上部に光電変換素子としてCMOSからなる複数のフォトダイオードを、ベイヤー配列となるように配置した。ここで、フォトダイオードの画素の配列周期は1.1μmであった。
次に、スピンコートにより、スチレン系の透明樹脂からなる膜を形成し、200℃で2分のベーク処理を行い、平坦化層を形成した。平坦化層の膜厚は40nmであった。
次に、平坦化層上に下引き層を形成するにあたり、赤色(R)画素下でのマイクロレンズの焦点が光電変換素子の表面から2400nmの位置に、緑色(G)画素下でのマイクロレンズの焦点が光電変換素子の表面から850nmの位置に、青色(B)画素下でのマイクロレンズの焦点が光電変換素子の表面から2400nmの位置に対応するように、下引き層の膜厚を設定した。
(Example 2)
A solid-state imaging device of Example 2 was produced by the following method.
A silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate. A plurality of photodiodes made of CMOS as photoelectric conversion elements are arranged on the upper surface of the silicon wafer so as to form a Bayer array. Here, the arrangement period of the pixels of the photodiode was 1.1 μm.
Next, a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer. The thickness of the planarizing layer was 40 nm.
Next, when forming the undercoat layer on the planarization layer, the microlens under the red (R) pixel is located at a position 2400 nm from the surface of the photoelectric conversion element, and the microlens under the green (G) pixel. The film thickness of the undercoat layer is set so that the focal point of the microlens corresponds to the position of 850 nm from the surface of the photoelectric conversion element and the focal point of the microlens under the blue (B) pixel corresponds to the position of 2400 nm from the surface of the photoelectric conversion element. did.
下引き層形成工程では、まず、アルカリ可溶性・感光性を有するアクリル系透明樹脂からなるポジ型レジストをスピンコートにより厚さ1.0umで塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にて露光、現像処理を行い、下引き層を形成した。グレートーンマスクを用いることにより、各画素領域での下引き層の膜厚を制御した。その後、クリーンオーブンにてベーク処理を180℃で2分間行った。本実施例2においての下引き層の膜厚は、赤色(R)画素下では22nm、緑色(G)画素下では198nm、青色(B)画素下では330nmであった。また、下引き層7の透過率は、波長300nm以上800nm以下の範囲で97%であった。
In the undercoat layer forming step, first, a positive resist made of an alkali-soluble and photosensitive acrylic transparent resin is applied by spin coating to a thickness of 1.0 μm, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven. In Example 2, the thickness of the undercoat layer was 22 nm under the red (R) pixel, 198 nm under the green (G) pixel, and 330 nm under the blue (B) pixel. The transmittance of the
次に、下引き層上にスピンコートによって緑色(G)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列に合った所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。
次に、スピンコートにより赤色(R)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。
Next, a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
Next, a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
次に、スピンコートにより青色(B)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。
次に、カラーフィルタ層の三色の画素上に平坦化効果を持ち、且つ、赤外線吸収剤を含有する熱硬化タイプのアクリル系樹脂層を、スピンコートにより塗布して、クリーンオーブンにて200℃で10分間のベーク処理を行い、平坦化層を形成した。膜厚は0.5μmであった。
Next, a negative pigment dispersion resist having blue (B) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven.
Next, a thermosetting acrylic resin layer having a flattening effect and containing an infrared absorber on the three color pixels of the color filter layer is applied by spin coating, and then cleaned at 200 ° C. in a clean oven. Then, a baking process was performed for 10 minutes to form a planarization layer. The film thickness was 0.5 μm.
次に、カラーフィルタ層、平坦化層上にマイクロレンズを形成した。まず、スピンコートによって、アルカリ可溶性・感光性を有するアクリル系透明樹脂を塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にてマイクロレンズを形成した。グレートーンマスクを用いることにより、画素内のマスク透過率分布を制御可能となるため、任意のマイクロレンズ形状を形成することが可能となる。 Next, a microlens was formed on the color filter layer and the flattening layer. First, an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes. Thereafter, microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
(比較例1)
下引き層を形成しなかったこと以外は実施例1及び2と同じ方法で比較例1の固体撮像素子を作製した。
実施例1、実施例2及び比較例1で得られた固体撮像素子の受光効率を計測した。比較例1の受光効率を100%とした値を算出して受光感度とした。これらの結果を表1に示す。
(Comparative Example 1)
A solid-state imaging device of Comparative Example 1 was produced in the same manner as in Examples 1 and 2 except that the undercoat layer was not formed.
The light receiving efficiency of the solid-state imaging devices obtained in Example 1, Example 2 and Comparative Example 1 was measured. A value obtained by setting the light receiving efficiency of Comparative Example 1 to 100% was calculated as the light receiving sensitivity. These results are shown in Table 1.
表1から、比較例1との比較で、実施例1の固体撮像素子は約5.4%程度、実施例2の固体撮像素子は約4.9%程度受光感度が高くなり、ともに良好な結果が得られたことが分かる。 From Table 1, in comparison with Comparative Example 1, the solid-state imaging device of Example 1 has a high light receiving sensitivity of about 5.4%, and the solid-state imaging device of Example 2 has a high light receiving sensitivity of about 4.9%. It turns out that the result was obtained.
(実施形態2)
本実施形態2に係る固体撮像素子10の構成について、図6及び図7を用いて説明する。
なお、実施形態1と同様な構成等については同一の符号を使用して、その詳細は省略する。
(Embodiment 2)
A configuration of the solid-
In addition, about the structure similar to
<構成>
図6及び図7に示すように、本実施形態2の固体撮像素子10は、半導体基板1の上に、光電変換素子2、平坦化層3、及び半導体基板1上の隣接する光電変換素子2の間に相当する箇所に立設された隔壁11を備える。さらに、固体撮像素子10は、平坦化層3上であって隣接する隔壁11の間に形成された下引き層7、複数のカラーフィルタ4R,4G,4Bからなるカラーフィルタ層4、及びマイクロレンズ5がこの順に積層されて形成されている。なお、図6では、光電変換素子2及びカラーフィルタの配置を分かりやすくするため、固体撮像素子6における他の構成については省略している。なお、隔壁11を平面視すると格子状となっており、隔壁11の正方形状の開口にカラーフィルタ層4が形成されている。
<Configuration>
As shown in FIGS. 6 and 7, the solid-
隔壁11の屈折率はカラーフィルタ層4の屈折率よりも0.01以上0.8以下低いと良く、特に0.2以上0.7以下低いことが望ましい。カラーフィルタ層4から隔壁11に向かう光は、カラーフィルタ層4と屈折率がより低い隔壁11との界面で反射しやすく、隔壁11内に侵入しにくく隣接するカラーフィルタ層4に入り込みにくい。隣接するカラーフィルタ同士の間が隔壁で区切られた構造にすることで、当該光は本来入射すべき光電変換素子2と異なる光電変換素子2には入射しにくく、混色を低減することができる。また、光の利用効率を高めることができ、高感度な固体撮像素子10を実現できる。カラーフィルタ層4の屈折率は、例えば、顔料分散型レジストを用い形成されており、屈折率は1.6以上1.8以下程度である。隔壁11に使用される材料は屈折率を満たす材料であれば特に限定されないが、例えば、無機材料であれば、例えばアルミニウム(Al)、あるいはタングステン(W)、銅(Cu)、TEOS(テトラエトキシシラン)に代表されるシリコン酸化膜が好ましい。有機材料であれば、例えば酸化シリカを含有するアクリル樹脂やポリイミド樹脂が挙げられる。
隔壁11の高さは、10nm以上30000nm以下であれば良く、特に100nm以上900nm以下が望ましい。隔壁の幅は、10nm以上500nm以下であれば良く、特に100nm以上300nm以下が望ましい。
The refractive index of the
The height of the
<製造方法>
次に、図8を参照して、本実施形態2の固体撮像素子10の製造方法について、要部となる隔壁工程を説明する。
先ず、図8(a)に示すように、面内に複数の光電変換素子2が行列状に配置された半導体基板1を用意し、複数の光電変換素子2を覆うように、半導体基板1上に平坦化層3を形成する。そして平坦化層3上に隔壁材料12を積層する。具体的には、隔壁材料12を塗布した後、回転とベークとで成膜するか、蒸着、スパッタ及びCVD等の各種方法で成膜する。
<Manufacturing method>
Next, with reference to FIG. 8, a partition wall process that is a main part of the method for manufacturing the solid-
First, as shown in FIG. 8A, a
次に、図8(b)に示すように、隔壁材料12を成膜した後、隔壁形状に沿ったパターンのマスクを使用し感光透明樹脂を用いてレジストパターン13を形成する。
次に、レジストパターン13をマスクとしてエッチングを行う。その後、レジストをアッシングあるいは剥離液を用いて除去することで隔壁11が形成される。エッチングは、ウェットエッチング、あるいはドライエッチングを用いることができる。ドライエッチングは、隔壁11の微細線幅が精度よく得られるので好ましい。
ここで、隔壁11が無機材料で形成される場合、感光性透明樹脂を用いて形成する下引き層と隔壁11の密着性が低いことが問題となる。その為、下引き層7に使用する材料は、透明且つ感光性と無機物との密着性に優れた材料が選択される。また、隔壁11形成後にHMDS処理(1,1,1,3,3,3‐ヘキサメチルジシラザン)やUV照射することで密着性改善を行う工程を実施しても良い。
Next, as shown in FIG. 8B, after the
Next, etching is performed using the resist
Here, when the
以下、実施例及び比較例について説明する。
(実施例3)
以下の方法で実施例3の固体撮像素子を作製した。
半導体基板として、厚さ0.75mm、直径20cmのシリコンウエハを使用した。このシリコンウエハの表面上部に光電変換素子としてCMOSからなる複数の光電変換素子を、ベイヤー配列となるように配置した。ここで、光電変換素子の画素の配列周期は1.1μmであった。
Hereinafter, examples and comparative examples will be described.
(Example 3)
A solid-state imaging device of Example 3 was produced by the following method.
A silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate. A plurality of photoelectric conversion elements made of CMOS as photoelectric conversion elements were arranged on the upper surface of the silicon wafer so as to form a Bayer array. Here, the arrangement period of the pixels of the photoelectric conversion element was 1.1 μm.
次に、スピンコートにより、スチレン系の透明樹脂からなる膜を形成し、200℃で2分のベーク処理を行い、平坦化層を形成した。平坦化層の膜厚は40nmであった。
次に、平坦化層上に下引き層を形成するにあたり、赤色(R)画素下でのマイクロレンズの焦点が光電変換素子の表面から2200nmの位置に、緑色(G)画素下でのマイクロレンズの焦点が光電変換素子の表面から700nmの位置に、青色(B)画素下でのマイクロレンズの焦点が光電変換素子の表面から300nmの位置に対応するように、下引き層の膜厚を設定した。
Next, a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer. The thickness of the planarizing layer was 40 nm.
Next, in forming the undercoat layer on the planarization layer, the microlens under the green (G) pixel is located at a position where the focal point of the microlens under the red (R) pixel is 2200 nm from the surface of the photoelectric conversion element. The film thickness of the undercoat layer is set so that the focal point of the microlens under the blue (B) pixel corresponds to the position of 300 nm from the surface of the photoelectric conversion element. did.
下引き層形成工程では、まず、アルカリ可溶性・感光性を有するアクリル系透明樹脂からなるポジ型レジストをスピンコートにより厚さ1.0μmで塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にて露光、現像処理を行い、下引き層を形成した。グレートーンマスクを用いることにより、各画素領域での下引き層の膜厚を制御した。その後、クリーンオーブンにてベーク処理を180℃で2分間行った。本実施例1においての下引き層の膜厚は、赤色(R)画素下では32nm、緑色(G)画素下では212nm、青色(B)画素下では354nmであった。 In the undercoat layer forming process, first, a positive resist made of an acrylic transparent resin having alkali solubility and photosensitivity is applied by spin coating to a thickness of 1.0 μm, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven. The thickness of the undercoat layer in Example 1 was 32 nm under the red (R) pixel, 212 nm under the green (G) pixel, and 354 nm under the blue (B) pixel.
次に、下引き層上にスピンコートによって緑色(G)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列に合った所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。緑色(G)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70であった。
次に、スピンコートにより赤色(R)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。赤色(R)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70であった。
Next, a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The refractive index of the negative pigment dispersion resist having the green (G) spectral characteristics was 1.70.
Next, a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The refractive index of the negative pigment dispersion resist having red (R) spectral characteristics was 1.70.
次に、スピンコートにより青色(B)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。青色(B)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70であった。
次に、カラーフィルタ層の三色の画素上に平坦化効果を持ち、且つ、赤外線吸収剤を含有する熱硬化タイプのアクリル系樹脂層を、スピンコートにより塗布して、クリーンオーブンにて200℃で10分間のベーク処理を行い、平坦化層を形成した。膜厚は0.5μmであった。
Next, a negative pigment dispersion resist having blue (B) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The refractive index of the negative pigment dispersion resist having the blue (B) spectral characteristics was 1.70.
Next, a thermosetting acrylic resin layer having a flattening effect and containing an infrared absorber on the three color pixels of the color filter layer is applied by spin coating, and then cleaned at 200 ° C. in a clean oven. Then, a baking process was performed for 10 minutes to form a planarization layer. The film thickness was 0.5 μm.
次に、カラーフィルタ層、平坦化層上にマイクロレンズを形成した。まず、スピンコートによって、アルカリ可溶性・感光性を有するアクリル系透明樹脂を塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にてマイクロレンズを形成した。グレートーンマスクを用いることにより、画素内のマスク透過率分布を制御可能となるため、任意のマイクロレンズ形状を形成することが可能となる。 Next, a microlens was formed on the color filter layer and the flattening layer. First, an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes. Thereafter, microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
(実施例4)
本実施例4において、赤色(R)画素下でのマイクロレンズの焦点が光電変換素子の表面から2400nmの位置に、緑色(G)画素下でのマイクロレンズの焦点が光電変換素子の表面から850nmの位置に、青色(B)画素下でのマイクロレンズの焦点が光電変換素子の表面から2400nmの位置に対応するように、下引き層の膜厚を設定し、形成した下引き層の膜厚が、赤色(R)画素下では22nm、緑色(G)画素下では198nm、青色(B)画素下では330nmであったこと以外は、実施例1と同じ方法で固体撮像素子を作製した。
Example 4
In Example 4, the focal point of the microlens under the red (R) pixel is 2400 nm from the surface of the photoelectric conversion element, and the focal point of the microlens under the green (G) pixel is 850 nm from the surface of the photoelectric conversion element. The film thickness of the undercoat layer is set so that the focal point of the microlens under the blue (B) pixel corresponds to the position of 2400 nm from the surface of the photoelectric conversion element at the position of However, a solid-state imaging device was fabricated in the same manner as in Example 1 except that the thickness was 22 nm under the red (R) pixel, 198 nm under the green (G) pixel, and 330 nm under the blue (B) pixel.
(実施例5)
実施例5において、半導体基板上に形成した平坦化層上に以下に記載した隔壁を形成した以外は実施例1と同じ方法で固体撮像素子を形成した。
蒸着法で酸化シリコン膜を形成し、スピンコートによって、アルカリ可溶性・感光性を有するアクリル系透明樹脂を塗布し、90℃で2分間加熱して硬膜化処理を行った。次に、アクリル系透明樹脂に対して、フォトリソグラフィ法にて保護膜を形成した。次に保護膜をマスクとしてフッ化炭素ガスを用いてドライエッチングを行い、隔壁形成した。ドライエッチング時のガスは、フッ素系ガスの他、塩素系ガス、ハロゲンガス、水素、窒素、酸素、希ガス等との混合ガスを用いてもよい。この時、隔壁高さは800nm、画素間幅は100nmであった。また、隔壁の屈折率は1.45であった。
(Example 5)
In Example 5, a solid-state imaging device was formed in the same manner as in Example 1 except that the partition walls described below were formed on the planarization layer formed on the semiconductor substrate.
A silicon oxide film was formed by an evaporation method, an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was cured by heating at 90 ° C. for 2 minutes. Next, a protective film was formed on the acrylic transparent resin by a photolithography method. Next, dry etching was performed using a fluorocarbon gas using the protective film as a mask to form partition walls. As a gas at the time of dry etching, a mixed gas with a chlorine gas, a halogen gas, hydrogen, nitrogen, oxygen, a rare gas, or the like may be used in addition to the fluorine gas. At this time, the partition wall height was 800 nm and the inter-pixel width was 100 nm. Moreover, the refractive index of the partition was 1.45.
(比較例2)
下引き層を形成しなかったこと以外は実施例3と同じ方法で固体撮像素子を作製した。
(比較例3)
下引き層を形成しなかったこと以外は実施例5同じ方法で比較例3の固体撮像素子を作製した。
実施例3~5と比較例2及び3で得られた固体撮像素子の受光効率を計測した。比較例2の受光効率を100%とした値を算出して受光感度とした。これらの結果を表2に示す。
(Comparative Example 2)
A solid-state imaging device was produced in the same manner as in Example 3 except that the undercoat layer was not formed.
(Comparative Example 3)
A solid-state imaging device of Comparative Example 3 was produced in the same manner as in Example 5 except that the undercoat layer was not formed.
The light receiving efficiencies of the solid-state imaging devices obtained in Examples 3 to 5 and Comparative Examples 2 and 3 were measured. A value obtained by setting the light receiving efficiency of Comparative Example 2 to 100% was calculated as the light receiving sensitivity. These results are shown in Table 2.
表2から、比較例2との比較で、実施例3の固体撮像素子は5.4%程度、実施例4の固体撮像素子は4.9%程度、実施例3は10.4%受光感度が高くなり、ともに良好な結果が得られたことが分かる。また実施例5は比較例3と比較して5.4%程度高くなっていた。 From Table 2, in comparison with Comparative Example 2, the solid-state imaging device of Example 3 is about 5.4%, the solid-state imaging device of Example 4 is about 4.9%, and Example 3 is 10.4% light receiving sensitivity. It can be seen that both obtained good results. In addition, Example 5 was about 5.4% higher than Comparative Example 3.
(実施形態3)
本実施形態3に係る固体撮像素子6の構成について、図9及び図10を用いて説明する。
<構成>
図9及び図10に示すように、本実施形態3の固体撮像素子6Aは、半導体基板1の上に、光電変換素子2、平坦化層3、下引き層7、複数のカラーフィルタ4R、4G、4B、4IRからなるカラーフィルタ層4a、及びマイクロレンズ5がこの順に積層されて形成されている。なお、図10では、光電変換素子2及びカラーフィルタの配置を分かりやすくするため、固体撮像素子6Aにおける他の構成については省略している。
(Embodiment 3)
The configuration of the solid-
<Configuration>
As shown in FIGS. 9 and 10, the solid-
半導体基板1には、受光素子としてCMOSやCCDからなる光電変換素子2がマトリクス状に形成されている。そして、半導体基板1の表面には、シリコン酸化膜またはシリコン窒素酸化膜(図示せず)が形成されており、半導体基板1上には、透明樹脂からなる平坦化層3が形成されている。また、平坦化層3上には、透明樹脂からなる下引き層7が各画素に対応して、適切な膜厚で形成されている。さらに、下引き層7上には、顔料や染料などの着色材を分散させた透明樹脂からなるカラーフィルタ層4aが形成されている。本実施形態3のカラーフィルタ層4aは、赤色(R)フィルタ4R、緑色(G)フィルタ4G、青色(B)フィルタ4B、及び赤外線(IR)フィルタ4IRを有する。なお、画素配列やカラーフィルタの色についてはこれらに限定するものではない。色の組み合わせは、黄色や透明などのカラーフィルタを設けた組み合わせとしても構わない。これらのカラーフィルタ層4a上に、光電変換素子2に対応してマイクロレンズ5が形成されている。
On the
図11に示すように、赤色(R)フィルタ4R、緑色(G)フィルタ4G、青色(B)フィルタ4B、赤外線(IR)フィルタ4IRの膜厚が同じで、下引き層7を設けない場合、マイクロレンズ5に入射された光は、各フィルタを透過して光電変換素子2の厚さ方向の異なる位置で焦点を結ぶ。
具体的には、赤色(R)の波長の光は光電変換素子の比較的深く2000nm程度まで透過する。これに合わせて、赤色(R)画素領域においては、マイクロレンズ5の焦点位置を光電変換素子層内の位置8cとすることが望ましい。図12に、マイクロレンズ5の焦点を、赤色(R)の光電変換素子表面(平坦化層との境界面)からの距離が0nm以上3500nm以下となる範囲で変化させたときの受光感度を示す。図12より、赤色(R)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から2000nm以上2500nm以下の範囲で、受光感度がピークになることが分かる。
As shown in FIG. 11, when the red (R)
Specifically, light with a red (R) wavelength passes through the photoelectric conversion element relatively deeply to about 2000 nm. Accordingly, in the red (R) pixel region, it is desirable that the focal position of the
緑色(G)の波長の光は光電変換素子の深さ600nm程度まで透過する。これに合わせて、緑色(G)画素領域においては、焦点位置を光電変換素子層内の位置8bとすることが望ましい。図12に、マイクロレンズ5の焦点を、緑色(G)の光電変換素子表面からの距離が0nm以上1500nm以下となる範囲で変化させたときの受光感度を示す。図12より、緑色(G)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から600nm以上900nm以下の範囲で、受光感度がピークになることが分かる。
青色(B)の波長の光は光電変換素子表面近傍の深さ200nm程度まで透過する。これに合わせて、青色(B)画素領域においては、焦点位置を光電変換素子表面近傍の位置8aとすることが望ましい。図12に、マイクロレンズ5の焦点を、青色(B)の光電変換素子表面からの距離が0nm以上1500nm以下となる範囲で変化させたときの受光感度を示す。図12より、青色(B)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から200nm以上500nm以下の範囲で、受光感度がピークになることが分かる。
Light having a green (G) wavelength is transmitted to a depth of about 600 nm of the photoelectric conversion element. In accordance with this, in the green (G) pixel region, it is desirable that the focal position is the
Blue (B) wavelength light is transmitted to a depth of about 200 nm near the surface of the photoelectric conversion element. Accordingly, in the blue (B) pixel region, it is desirable that the focal position is a
赤外線(IR)の波長の光は光電変換素子の深さ3000nm程度まで透過する。これに合わせて、赤外線(IR)画素領域においては、焦点位置を光電変換素子層内の位置8dとすることが望ましい。図12に、マイクロレンズ5の焦点を、赤外線(IR)の光電変換素子表面からの距離が0nm以上5000nm以下となる範囲で変化させたときの受光感度を示す。図12より、赤外線(IR)画素下においては、マイクロレンズ5の焦点が光電変換素子表面から1500nmから受光感度が上昇し、3000nm以上5000nm以下の範囲で、受光感度がピークになることが分かる。
Infrared (IR) wavelength light passes through the photoelectric conversion element to a depth of about 3000 nm. Accordingly, in the infrared (IR) pixel region, it is desirable that the focal position is a
以上のことから、本実施形態3の固体撮像素子6Aにおいては、マイクロレンズ5の焦点を、光電変換素子表面からの距離で、赤色(R)画素下では2000nm以上2500nm以下の範囲、緑色(G)画素下では、600nm以上900nm以下の範囲、青色(B)画素下では、200nm以上500nm以下の範囲、赤外線(IR)画素下では、1500nm以上5000nm以下の範囲になるように、平坦化層3とカラーフィルタ層4aとの間に設ける下引き層7の厚さが画素毎に設定されている。
From the above, in the solid-
ここで、カラーフィルタ層4A上のマイクロレンズ5の頂点5aは概略同一高さとなっている。これにより入射光の赤色(R)、緑色(G)、青色(B)、赤外線(IR)画素への配分の制御が容易となり、マイクロレンズ5の焦点深度によって固体撮像素子の感度を安定して変化させることができる。
なお、図10に示すように、マイクロレンズ5の頂点5aを概略同一高さとするために、マイクロレンズ5の高さを赤色(R)、緑色(G)、青色(B)、及び赤外線(IR)画素毎に変えてもよい。
Here, the
As shown in FIG. 10, the height of the
<製造方法>
次に、図13を参照して、本実施形態3の固体撮像素子6Aの製造方法について説明する。先ず、面内に複数の光電変換素子2が行列状に配置された半導体基板1を用意し、複数の光電変換素子2を覆うように、半導体基板1上に平坦化層3を形成する。この平坦化層積層工程後に、各画素に対応した下引き層を形成する。
下引き層形成工程では、まず、図13(a)に示すように、平坦化層3上に透明な感光性透明樹脂を含む液体(フォトレジスト)を所定の厚みで塗布して液層70を形成する。次いで、図13(b)及び(c)に示すように、液層70に対して、グレートーンマスク9を用いたフォトリソグラフィ法に基づき、露光、現像、ベークの処理を行うことにより、下引き層7を形成する。
<Manufacturing method>
Next, a method for manufacturing the solid-
In the undercoat layer forming step, first, as shown in FIG. 13A, a liquid (photoresist) containing a transparent photosensitive transparent resin is applied on the
この下引き層形成工程で、赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタ、及び赤外線(IR)フィルタの各位置で、グレートーンマスク9の透過率を変えることにより、下引き層7の面内での厚さを、各画素下でのマイクロレンズ5の焦点が上述の範囲となるように制御する。
この工程で、任意にマスク透過率階調を可変することができるグレートーンマスク9を用いることにより、下引き層7の面内で厚さを制御することが容易になる。このマスク透過率階調の濃淡は、露光に用いる光では解像しない小さな径のドットの単位面積当たりの粗密の部分的な差によって達成される。
By changing the transmittance of the
In this step, it is easy to control the thickness within the surface of the
下引き層形成の後、下引き層上に、複数の光電変換素子2と同じ行列状に配置された複数のカラーフィルタ、つまり、赤色(R)フィルタ4R、緑色(G)フィルタ4G、青色(B)フィルタ4B、及び赤外線(IR)フィルタ4IRからなるカラーフィルタ層4aを形成する。このカラーフィルタ層形成工程の後、複数のマイクロレンズ5をそれぞれ形成するマイクロレンズ形成工程を行う。これらの工程は、従来公知のフォトリソグラフィ法、エッチング法、印刷法等を適用して行うことができる。特に、任意にマスク透過率階調を可変することができるグレートーンマスク9を用いることにより、マイクロレンズ頂点5aを制御することが容易になる為、好適である。
After the undercoat layer is formed, a plurality of color filters arranged in the same matrix as the plurality of
以下、実施例及び比較例について説明する。
(実施例6)
以下の方法で実施例6の固体撮像素子を作製した。
半導体基板として、厚さ0.75mm、直径20cmのシリコンウエハを使用した。このシリコンウエハの表面上部に光電変換素子としてCMOSからなる複数の光電変換素子を配置した。ここで、光電変換素子の画素の配列周期は1.1μmであった。
次に、スピンコートにより、スチレン系の透明樹脂からなる膜を形成し、200℃で2分のベーク処理を行い、平坦化層を形成した。平坦化層の膜厚は40nmであった。
Hereinafter, examples and comparative examples will be described.
(Example 6)
A solid-state imaging device of Example 6 was produced by the following method.
A silicon wafer having a thickness of 0.75 mm and a diameter of 20 cm was used as the semiconductor substrate. A plurality of photoelectric conversion elements made of CMOS were arranged as photoelectric conversion elements on the upper surface of the silicon wafer. Here, the arrangement period of the pixels of the photoelectric conversion element was 1.1 μm.
Next, a film made of a styrene-based transparent resin was formed by spin coating, and baked at 200 ° C. for 2 minutes to form a planarization layer. The thickness of the planarizing layer was 40 nm.
次に、平坦化層上に下引き層を形成するにあたり、赤色(R)画素下でのマイクロレンズの焦点が光電変換素子の表面から2200nmの位置に、緑色(G)画素下でのマイクロレンズの焦点が光電変換素子の表面から700nmの位置に、青色(B)画素下でのマイクロレンズの焦点が光電変換素子の表面から300nmの位置に、赤外線(IR)画素下でのマイクロレンズの焦点が光電変換素子の表面から2000nmの位置に対応するように、下引き層の膜厚を設定した。 Next, in forming the undercoat layer on the planarization layer, the microlens under the green (G) pixel is located at a position where the focal point of the microlens under the red (R) pixel is 2200 nm from the surface of the photoelectric conversion element. The focal point of the microlens under the blue (B) pixel is 300 nm from the surface of the photoelectric conversion element, and the focal point of the microlens under the infrared (IR) pixel is at the position of 700 nm from the surface of the photoelectric conversion element. The film thickness of the undercoat layer was set so as to correspond to a position of 2000 nm from the surface of the photoelectric conversion element.
下引き層形成工程では、まず、アルカリ可溶性・感光性を有するアクリル系透明樹脂からなるポジ型レジストをスピンコートにより厚さ1.0μmで塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にて露光、現像処理を行い、下引き層を形成した。グレートーンマスクを用いることにより、各画素領域での下引き層の膜厚を制御した。その後、クリーンオーブンにてベーク処理を180℃で2分間行った。本実施例1においての下引き層の膜厚は、赤色(R)画素下では32nm、緑色(G)画素下では212nm、青色(B)画素下では354nm、赤外線(IR)画素下では340nmであった。 In the undercoat layer forming process, first, a positive resist made of an acrylic transparent resin having alkali solubility and photosensitivity is applied by spin coating to a thickness of 1.0 μm, and heated at 90 ° C. for 2 minutes to be hardened. Went. Thereafter, the acrylic transparent resin was exposed and developed by photolithography using a gray tone mask to form an undercoat layer. By using a gray tone mask, the film thickness of the undercoat layer in each pixel region was controlled. Thereafter, baking was performed at 180 ° C. for 2 minutes in a clean oven. The thickness of the undercoat layer in Example 1 is 32 nm under the red (R) pixel, 212 nm under the green (G) pixel, 354 nm under the blue (B) pixel, and 340 nm under the infrared (IR) pixel. there were.
次に、下引き層上にスピンコートによって緑色(G)の分光特性を有するネガ型顔料分散レジストの塗布を行った。緑色レジストは、色材としてC.I.ピグメントイエロー139、C.I.ピグメントグリーン36、C.I.ピグメントブルー15:6を用い、さらにシクロヘキサノン、PGMEAなどの有機溶剤、ポリマーワニス、モノマー、開始剤を添加した構成のカラーレジストを用いた。緑色レジストの塗布を行なった後、画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列に合った所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。緑色(G)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70で、膜厚は700nmであった。 Next, a negative pigment dispersion resist having green (G) spectral characteristics was applied onto the undercoat layer by spin coating. The green resist is C.I. I. Pigment yellow 139, C.I. I. Pigment green 36, C.I. I. Pigment Blue 15: 6 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMEA, a polymer varnish, a monomer, and an initiator were added was used. After applying the green resist, alignment with the pixels was performed, and then exposure and development processing were performed by a photolithography method to form a predetermined pattern that matched the pixel arrangement. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The negative pigment dispersion resist having the green (G) spectral characteristics had a refractive index of 1.70 and a film thickness of 700 nm.
次に、スピンコートにより赤色(R)の分光特性を有するネガ型顔料分散レジストの塗布を行った。赤色レジストの色材は、C.I.ピグメントレッド117、C.I.ピグメントレッド48:1、C.I.ピグメントイエロー139とした。色材以外の組成は、緑色レジストと同様とした。赤色レジストの塗布を行なった後、画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。赤色(R)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70で、膜厚は700nmであった。 Next, a negative pigment dispersion resist having red (R) spectral characteristics was applied by spin coating. The color material of the red resist is C.I. I. Pigment red 117, C.I. I. Pigment red 48: 1, C.I. I. Pigment Yellow 139. The composition other than the color material was the same as that of the green resist. After applying the red resist, alignment with the pixel was performed, and then exposure and development processing were performed by a photolithography method, thereby forming a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The negative pigment dispersion resist having red (R) spectral characteristics had a refractive index of 1.70 and a film thickness of 700 nm.
次に、スピンコートにより青色(B)の分光特性を有するネガ型顔料分散レジストの塗布を行った。青色レジストは、色材としてC.I.ピグメントブルー15:6、C.I.ピグメントバイオレット23を用い、さらにシクロヘキサノン、PGMAなどの有機溶剤、ポリマーワニス、モノマー、開始剤を添加した構成のカラーレジストを用いた。青色レジストの塗布を行なった後、画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。青色(B)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70で、膜厚は600nmであった。 Next, a negative pigment dispersion resist having a blue (B) spectral characteristic was applied by spin coating. The blue resist is C.I. I. Pigment blue 15: 6, C.I. I. A pigment violet 23 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMA, a polymer varnish, a monomer, and an initiator were added was used. After applying the blue resist, alignment with the pixel was performed, and then exposure and development processing were performed by a photolithography method to form a predetermined pattern in accordance with the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The negative pigment dispersion resist having blue (B) spectral characteristics had a refractive index of 1.70 and a film thickness of 600 nm.
次に、スピンコートにより赤外線(IR)の分光特性を有するネガ型顔料分散レジストの塗布を行った。画素と位置合せを行った上で、フォトリソグラフィ法にて露光、現像処理を行い、画素配列にあった所定のパターンを形成した。その後、クリーンオーブンにてベーク処理を200℃で10分間行った。赤外線(IR)の分光特性を有するネガ型顔料分散レジストの屈折率は1.70で、膜厚は800nmであった。
次に、カラーフィルタ層の画素上に平坦化効果を持つ熱硬化タイプのアクリル系樹脂層を、スピンコートにより塗布して、クリーンオーブンにて200℃で10分間のベーク処理を行い、平坦化層を形成した。膜厚は0.5μmであった。
Next, a negative pigment dispersion resist having infrared (IR) spectral characteristics was applied by spin coating. After alignment with the pixels, exposure and development processing were performed by a photolithography method to form a predetermined pattern corresponding to the pixel array. Thereafter, baking was performed at 200 ° C. for 10 minutes in a clean oven. The negative pigment dispersion resist having infrared (IR) spectral characteristics had a refractive index of 1.70 and a film thickness of 800 nm.
Next, a thermosetting type acrylic resin layer having a flattening effect is applied onto the pixels of the color filter layer by spin coating, and a baking process is performed at 200 ° C. for 10 minutes in a clean oven, so that the flattening layer Formed. The film thickness was 0.5 μm.
次に、平坦化層上にマイクロレンズを形成した。まず、スピンコートによって、アルカリ可溶性・感光性を有するアクリル系透明樹脂を塗布し、90℃で2分間加熱して硬膜化処理を行った。その後、アクリル系透明樹脂に対して、グレートーンマスクを用いたフォトリソグラフィ法にてマイクロレンズを形成した。グレートーンマスクを用いることにより、画素内のマスク透過率分布を制御可能となるため、任意のマイクロレンズ形状を形成することが可能となる。 Next, a microlens was formed on the planarizing layer. First, an acrylic transparent resin having alkali solubility and photosensitivity was applied by spin coating, and the film was hardened by heating at 90 ° C. for 2 minutes. Thereafter, microlenses were formed on the acrylic transparent resin by photolithography using a gray tone mask. By using the gray tone mask, the mask transmittance distribution in the pixel can be controlled, so that an arbitrary microlens shape can be formed.
(実施例7)
本実施例7において、赤色(R)画素下でのマイクロレンズの焦点が光電変換素子の表面から2400nmの位置に、緑色(G)画素下でのマイクロレンズの焦点が光電変換素子の表面から850nmの位置に、青色(B)画素下でのマイクロレンズの焦点が光電変換素子の表面から240nmの位置に、赤外(IR)画素下でのマイクロレンズの焦点が光電変換素子の表面から2000nmの位置に対応するように、下引き層の膜厚を設定し、形成した下引き層の膜厚が、赤色(R)画素下では22nm、緑色(G)画素下では198nm、青色(B)画素下では330nm、赤外線(IR)画素下では340nmであったこと以外は、実施例1と同じ方法で固体撮像素子を作製した。
(Example 7)
In Example 7, the focal point of the microlens under the red (R) pixel is 2400 nm from the surface of the photoelectric conversion element, and the focal point of the microlens under the green (G) pixel is 850 nm from the surface of the photoelectric conversion element. The focal point of the micro lens under the blue (B) pixel is 240 nm from the surface of the photoelectric conversion element, and the focal point of the micro lens under the infrared (IR) pixel is 2000 nm from the surface of the photoelectric conversion element. The thickness of the undercoat layer is set so as to correspond to the position, and the thickness of the formed undercoat layer is 22 nm under the red (R) pixel, 198 nm under the green (G) pixel, and blue (B) pixel. A solid-state imaging device was produced in the same manner as in Example 1 except that the thickness was 330 nm below and 340 nm below the infrared (IR) pixel.
(比較例4)
下引き層を形成しなかったこと以外は実施例6と同じ方法で固体撮像素子を作製した。
実施例6、実施例7及び比較例4で得られた固体撮像素子の受光効率を計測した。比較例4の受光効率を100%とした値を算出して受光感度とした。これらの結果を表3に示す。
(Comparative Example 4)
A solid-state imaging device was produced in the same manner as in Example 6 except that the undercoat layer was not formed.
The light receiving efficiency of the solid-state imaging devices obtained in Example 6, Example 7, and Comparative Example 4 was measured. A value obtained by setting the light receiving efficiency of Comparative Example 4 to 100% was calculated as the light receiving sensitivity. These results are shown in Table 3.
表3から、比較例4との比較で、実施例6の固体撮像素子は5.4%程度、実施例7の固体撮像素子は4.9%程度受光感度が高くなり、ともに良好な結果が得られたことが分かる。 From Table 3, in comparison with Comparative Example 4, the solid-state imaging device of Example 6 has a high light receiving sensitivity of about 5.4%, and the solid-state imaging device of Example 7 has a high light receiving sensitivity of about 4.9%. You can see that it was obtained.
(実施形態4)
次に、本発明の実施形態4について説明する。この実施形態4の固体撮像素子としてのイメージセンサでは、集光位置を変えるパラメータとして、高さの異なるマイクロレンズを設定する例である。
本実施形態4の固体撮像素子であるイメージセンサは、図14に示すように、半導体基板104a上に、多数の光電変換素子103、平坦化層3a、色分解フィルタ(カラーフィルタ)102及びマイクロレンズ101がこの順に積層され、グリーン、ブルー及びレッドの各画素は、単位となる光電変換素子毎に形成される。図14の例では、色分解フィルタ102及びその下部の平坦化層3a、光電変換素子103を示すが、本明細書では、半導体基板104a、光電変換素子103、平坦化層3a、色分解フィルタ102、マイクロレンズ101までをイメージセンサと称する。半導体基板104aは、後述する製造方法において、例えば単結晶シリコンからなるシリコンウエハを個々のチップ形成領域(イメージセンサ)に分割することによって得られる。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described. In the image sensor as the solid-state imaging device according to the fourth embodiment, microlenses having different heights are set as parameters for changing the condensing position.
As shown in FIG. 14, an image sensor that is a solid-state imaging device according to the fourth embodiment includes a large number of
本実施形態4での画素の配列は、図15に示すように、一画素おきにG(緑)フィルタ102bが設けられ、Gフィルタ102bの間に一行おきにR(赤)フィルタ102aとB(青)フィルタ102cが設けられた、いわゆるベイヤー配列とされている。
イメージセンサにて得られる画像情報の電気信号は、電極(図示せず)を経由して貫通孔内に充填もしくは内壁を被覆する導電物質により半導体基板104aの裏面に導かれ、パターン化された絶縁層と導電層によって、BGA方式により、外部接続パッド105から接続バンプ106を介して外部回路に接続される。
As shown in FIG. 15, in the fourth embodiment, a G (green)
An electrical signal of image information obtained by the image sensor is guided to the back surface of the
その他、レンズモジュールの側壁に、フレア防止用で遮光性のある無電解めっき層を施しても良い。その材質は、ニッケル、クロム、コバルト、鉄、銅、金等から選択される金属の単一めっき層のほか、ニッケル-鉄、コバルト-鉄、銅-鉄等の組合せから選択される合金の無電解めっき層があげられる。そのほかに、銅等の金属を無電解めっきし、しかる後に、その表面を化学処理や酸化処理して金属化合物とし、表面の光反射率の低い金属遮光層とすることも可能である。
ここで、本実施形態4のイメージセンサは、グリーン画素上のマイクロレンズ101の高さを100%としたとき、ブルー画素上のマイクロレンズ101の高さが105%から150%の範囲であり、さらに、レッド画素上のマイクロレンズ101の高さが95%から70%の範囲に設定されている。本実施形態4のイメージセンサによれば、画素ごとのマイクロレンズ高さを調整することにより、イメージセンサの最適な深さで集光させることができる。これにより、受光感度が向上する。
In addition, an electroless plating layer for preventing flare and having a light shielding property may be provided on the side wall of the lens module. The material is a single plating layer of a metal selected from nickel, chromium, cobalt, iron, copper, gold, etc., and an alloy selected from a combination of nickel-iron, cobalt-iron, copper-iron, etc. An electroplating layer is mentioned. In addition, a metal such as copper can be electrolessly plated, and then the surface thereof can be chemically or oxidized to form a metal compound to form a metal light-shielding layer having a low light reflectance on the surface.
Here, in the image sensor of
図16に、一般的なイメージセンサにおける、レッド、グリーン、ブルーの各画素の受光感度カーブの一例を示し、また、図18に、一般的なイメージセンサにおける、イメージセンサ内層へのブルー、グリーン、レッド入射光の透過と受光イメージを示す。
図18に示すように、レッドは、光透過率等の差により、イメージセンサの比較的深い層103cまで透過する。そこで、本実施形態4のイメージセンサは、これに合わせて、図19に示すように、グリーン画素上のマイクロレンズ101bの高さを基準とし、レッド画素のマイクロレンズ101cの高さを相対的に相対高さ101dだけ低くしており、これにより、集光位置をイメージセンサの層内部103cとしている。
ここで、グリーン及びブルーのマイクロレンズ高さを580nmに固定して、レッドのマイクロレンズ高さを551nmから348nmまで変化させたときの受光感度を、表4の例7から例11に示す。また、同結果のグラフを図26(a)に示す。
FIG. 16 shows an example of the light reception sensitivity curve of each pixel of red, green, and blue in a general image sensor, and FIG. 18 shows blue, green, The transmission and reception image of red incident light is shown.
As shown in FIG. 18, red transmits to a relatively
Here, the light receiving sensitivity when the height of the green and blue microlenses is fixed to 580 nm and the height of the red microlens is changed from 551 nm to 348 nm is shown in Examples 7 to 11 in Table 4. Moreover, the graph of the result is shown in FIG.
表4、及び、図26(a)に示すように、グリーン画素上のマイクロレンズ101bの高さを100%として、レッド画素上のマイクロレンズ101cの高さが100%(580nm)から95%(551nm)の間では、受光感度への影響が見られなかった(表4の例7)。
一方、図26(a)に示すように、レッド画素上のマイクロレンズ101cの高さが70%(406nm)以下では、レッド画素の受光感度が低下することが確認された(表4の例11)。このため、レッド画素上のマイクロレンズ101cの高さは、グリーン画素上のマイクロレンズ高さを100%としたとき、70%から95%の範囲が望ましいことがわかる(図26(a))。
As shown in Table 4 and FIG. 26A, the height of the
On the other hand, as shown in FIG. 26A, when the height of the
また、図18に示すように、ブルーは、光透過率等の差により、イメージセンサ表面近傍103aで受光される。そこで、本実施形態4のイメージセンサは、これに合わせて、図20に示すように、グリーン画素上のマイクロレンズ101bの高さを基準とし、ブルー画素のマイクロレンズ101aの高さを相対的に相対高さ101eだけ高くして、集光位置をイメージセンサ表面近傍103aとしている。
ここで、グリーン及びレッドのマイクロレンズ高さを580nmに固定して、ブルーのマイクロレンズ高さを609nmから928nmまで変化させたときの受光感度を、表4の例2から例6に示す。また、同結果のグラフを図26(b)に示す。
Further, as shown in FIG. 18, blue is received in the vicinity of the
Here, the light receiving sensitivity when the height of the green and red microlenses is fixed to 580 nm and the height of the blue microlens is changed from 609 nm to 928 nm is shown in Examples 2 to 6 in Table 4. Moreover, the graph of the result is shown in FIG.
表4、及び、図26(b)に示すように、グリーン画素上のマイクロレンズ101bの高さを100%として、ブルー画素上のマイクロレンズ101aの高さが100%(580nm)から105%(609nm)の間では、受光感度への影響が見られなかった(表4の例1と例2)。
一方、図26(b)に示すように、ブルー画素上のマイクロレンズ101aの高さが150%(928nm)以上では、ブルー画素周辺にあるグリーン画素の受光感度が低下することが確認された(表4の例6)。このため、ブルー画素上のマイクロレンズ101aの高さは、105%から150%の範囲が望ましいことがわかる(図26(b))。
As shown in Table 4 and FIG. 26B, the height of the
On the other hand, as shown in FIG. 26B, it was confirmed that when the height of the microlens 101a on the blue pixel is 150% (928 nm) or more, the light receiving sensitivity of the green pixel around the blue pixel is lowered ( Example 6 in Table 4). For this reason, it can be seen that the height of the microlens 101a on the blue pixel is desirably in the range of 105% to 150% (FIG. 26B).
次に、上述した光電変換素子103の上部に形成されるマイクロレンズ101の製造方法について、実施例に基づき詳しく説明する。
(実施例8)
実施例8について、図17、図21及び図22を参照しつつ説明する。
実施例8では、マイクロレンズ101を組成する感光性マイクロレンズ材111(図21(b)参照)は、感光性透明樹脂であり、ポジ型の感光性樹脂を用いた例である。本実施例では、マイクロレンズ101の画素毎に異なるマイクロレンズ高さを露光法で制御する。そのため、図17に示す、グレートーンマスク150という特殊な露光用マスクを使用する。
Next, a method for manufacturing the
(Example 8)
Example 8 will be described with reference to FIGS. 17, 21, and 22.
In Example 8, the photosensitive microlens material 111 (see FIG. 21B) composing the
図17に示すグレートーンマスク150は、作成したいマイクロレンズ形状のレンズボトムに対して光透過率を高くした、遮光膜に濃淡のグラデュエーション(階調)が付いたマスクである。この階調の濃淡は、露光に用いる光では解像しない小径ドットの単位面積当たりの個数(粗密)差によって達成される。グレートーンマスク150は、グリーン、ブルー、レッドの各画素に応じて、マスクの透過光分布を異ならせてある。
図17の例では、符号150aが、レッド画素上マイクロレンズのグレートーンマスク透過光分布を示し、符号150bが、グリーン画素上マイクロレンズのグレートーンマスク透過光分布を示し、符号150cが、ブルー画素上マイクロレンズのグレートーンマスク透過光分布を示しており、図中、明るいところは透過光が少なく、暗いところは透過光が多い。
A
In the example of FIG. 17,
実施例8では、例えば半導体基板として厚さ0.75mm、直径20cmの単結晶シリコンからなるシリコンウエハ104に、光電変換素子103(図14参照)や遮光膜、パッシベーション膜を形成し、最上層に、熱硬化タイプのアクリル樹脂塗布液を用いてスピンコートにて平坦化層3a(図14参照)を形成した。次いで、平坦化層3aの上に、色分解フィルタ102を、グリーン、ブルー、レッドの3色にて3回のフォトリソグラフィの手法で、それぞれ形成した(図21(a)を参照のこと。但し、光電変換素子と平坦化層は図示せず。)。
In Example 8, for example, a photoelectric conversion element 103 (see FIG. 14), a light-shielding film, and a passivation film are formed on a
グリーンレジストは、色材としてC.I.ピグメントイエロー139、C.I.ピグメントグリーン36、C.I.ピグメントブルー15:6を用い、さらにシクロヘキサノン、PGMEAなどの有機溶剤、ポリマーワニス、モノマー、開始剤を添加した構成のカラーレジストを用いた。
ブルーレジストは、色材としてC.I.ピグメントブルー15:6、C.I.ピグメントバイオレット23を用い、さらにシクロヘキサノン、PGMAなどの有機溶剤、ポリマーワニス、モノマー、開始剤を添加した構成のカラーレジストを用いた。
Green resist is a C.I. I. Pigment yellow 139, C.I. I. Pigment green 36, C.I. I. Pigment Blue 15: 6 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMEA, a polymer varnish, a monomer, and an initiator were added was used.
Blue resist is C.I. I. Pigment blue 15: 6, C.I. I. A pigment violet 23 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMA, a polymer varnish, a monomer, and an initiator were further added was used.
レッドレジストの色材は、C.I.ピグメントレッド117、C.I.ピグメントレッド48:1、C.I.ピグメントイエロー139とした。色材以外の組成は、グリーンレジストと同様とした。
着色画素の配列は、一画素おきにG(緑)フィルタが設けられ、Gフィルタの間に一行おきにR(赤)フィルタとB(青)フィルタが設けられた、いわゆるベイヤー配列とした。
次に、図21(b)に示すように、色分解フィルタ(各色カラーフィルタ)102上を含むシリコンウエハ104上の全面に、1μmの膜厚のアルカリ可溶性・感光性・熱リフロー性を有するスチレン樹脂を塗布して感光性マイクロレンズ材111を形成した。その後、図21(c)に示すように、感光性マイクロレンズ材111を、グレートーンマスク150を使用する紫外i線によるフォトリソグラフィのプロセスによりパターン化し、その後に、250℃で熱処理し、図21(d)に示すように、マイクロレンズ101を形成した。
The color material of the red resist is C.I. I. Pigment red 117, C.I. I. Pigment red 48: 1, C.I. I. Pigment Yellow 139. The composition other than the color material was the same as that of the green resist.
The arrangement of the colored pixels is a so-called Bayer arrangement in which a G (green) filter is provided every other pixel, and an R (red) filter and a B (blue) filter are provided every other row between the G filters.
Next, as shown in FIG. 21B, styrene having alkali-soluble, photosensitive, and thermal reflow properties with a thickness of 1 μm is formed on the entire surface of the
マイクロレンズ101のグリーン画素は、高さ約0.62μmのスムースな半放物形状であり、レッド画素は高さ0.53μm、ブルー画素は高さ0.74μmのスムースな半放物形状であった。このようにしてシリコンウエハ104上に多面付けされたイメージセンサが完成した(図21(d))。
次に、上記のシリコンウエハ104の裏面にフォトレジストを塗布し、定法のフォトリソグラフィ法により貫通孔が形成されるべき部位に開口部を形成し、次いで、フォトレジスト膜をマスクとして反応性イオンエッチングを行い、シリコンウエハ104を所定の深さまでエッチングして貫通孔を形成した。次に、シリコンウエハ104と後に形成する配線層とを絶縁するために、CVD法により貫通孔の内壁、底部及び裏面全体にSiO2絶縁膜を形成した。
The green pixel of the
Next, a photoresist is applied to the back surface of the
ここで、絶縁膜は、その膜厚が貫通孔の底部(アルミニウムなど導電性の高い金属からなるパッドである)上の方がシリコンウエハ104の裏面上より薄くなるように形成した。こうした上で、反応性イオンエッチングを再度行い貫通孔底部の絶縁膜を除去した。引き続き、スパッタ法により、導電膜を形成し、貫通孔の埋設及びウエハ裏面の配線層を形成した。
次に、定法のフォトリソグラフィ法により、配線層の一部で外部と接続させる部分を露出させた。当該露出部位に、スクリーン印刷によりはんだペーストを塗布し、はんだボールを搭載した。リフロー処理を施し、残留フラックスを除去すると、外部接続パッド105及び接続バンプ106を有するイメージセンサ基板が得られた(図22(b))。
Here, the insulating film was formed such that the thickness of the insulating film was thinner on the bottom of the through hole (which is a pad made of a highly conductive metal such as aluminum) than on the back surface of the
Next, a portion of the wiring layer to be connected to the outside was exposed by a regular photolithography method. A solder paste was applied to the exposed portion by screen printing, and a solder ball was mounted. When reflow processing was performed to remove residual flux, an image sensor substrate having
最後に、450メッシユのレジンブレードを用いたダイシング装置により、マトリックス状に多面付けされたイメージセンサの中間部を断裁線として、表面より断裁溝を入れた(図22(c))。その後に、図22(d)に示すように個々のイメージセンサに分離し、図22(e)の状態とした完成品を得た。すなわち、半導体基板104a上に、多数の光電変換素子103、色分解フィルタ102及びマイクロレンズ101がこの順に積層された複数のイメージセンサを得た。
Finally, a dicing apparatus using a 450 mesh resin blade was used to cut a groove from the surface with the middle part of the image sensor multi-faceted in a matrix as a cutting line (FIG. 22 (c)). Thereafter, as shown in FIG. 22 (d), the product was separated into individual image sensors to obtain a finished product in the state shown in FIG. 22 (e). That is, a plurality of image sensors were obtained in which a large number of
各画素の受光感度を測定した結果、レッドの受光感度は64.2%、グリーンの受光感度は60.0%、ブルーの受光感度は43.9%となり(表4の実施例3)、全画素同一レンズ高さの標準例(表4の例1)に対して改善が確認された。なお、必要に応じてブリーチングなどの工程を実施して、マイクロレンズの形状と光透過性を制御することもできる。
実施例8によって得られたマイクロレンズの、AFM観察形状を図25に示す。従来のマイクロレンズの製造方法では、画素毎のマイクロレンズは同一形状であったが、本実施例8では、画素毎に高さの異なるマイクロレンズが同一ピッチで形成されている。
As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red was 64.2%, the light receiving sensitivity of green was 60.0%, and the light receiving sensitivity of blue was 43.9% (Example 3 in Table 4). Improvement was confirmed with respect to the standard example (Example 1 in Table 4) having the same pixel height. If necessary, a process such as bleaching may be performed to control the shape and light transmittance of the microlens.
The AFM observation shape of the microlens obtained in Example 8 is shown in FIG. In the conventional microlens manufacturing method, the microlens for each pixel has the same shape, but in Example 8, microlenses having different heights are formed at the same pitch for each pixel.
(実施例9)
実施例9について、図23及び図24を参照しつつ説明する。
実施例9では、厚さ0.75mm、直径20cmのシリコンウエハ104に、光電変換素子103(図14参照)や遮光膜、パッシベーション膜を形成し、最上層に、熱硬化タイプのアクリル樹脂塗布液を用いてスピンコートにて平坦化層を形成した。次いで、平坦化層3a(図14参照)の上に、色分解フィルタ102を、グリーン、ブルー、レッドの3色にて3回のフォトリソグラフィの手法で、それぞれ形成した(図23(a)を参照のこと。但し、光電変換素子と平坦化層は図示せず。)。
Example 9
Example 9 will be described with reference to FIGS. 23 and 24. FIG.
In Example 9, a photoelectric conversion element 103 (see FIG. 14), a light-shielding film, and a passivation film are formed on a
グリーンレジストは、色材としてC.I.ピグメントイエロー139、C.I.ピグメントグリーン36、C.I.ピグメントブルー15:6を用い、さらにシクロヘキサノン、PGMEAなどの有機溶剤、ポリマーワニス、モノマー、開始剤を添加した構成のカラーレジストを用いた。
ブルーレジストは、色材としてC.I.ピグメントブルー15:6、C.I.ピグメントバイオレット23を用い、さらにシクロヘキサノン、PGMAなどの有機溶剤、ポリマーワニス、モノマー、開始剤を添加した構成のカラーレジストを用いた。
Green resist is a C.I. I. Pigment yellow 139, C.I. I. Pigment green 36, C.I. I. Pigment Blue 15: 6 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMEA, a polymer varnish, a monomer, and an initiator were added was used.
Blue resist is C.I. I. Pigment blue 15: 6, C.I. I. A pigment violet 23 was used, and a color resist having a constitution in which an organic solvent such as cyclohexanone and PGMA, a polymer varnish, a monomer, and an initiator were further added was used.
レッドレジストの色材は、C.I.ピグメントレッド117、C.I.ピグメントレッド48:1、C.I.ピグメントイエロー139とした。色材以外の組成は、グリーンレジストと同様とした。
着色画素の配列は、一画素おきにG(緑)フィルタが設けられ、Gフィルタの間に一行おきにR(赤)フィルタとB(青)フィルタが設けられた、いわゆるベイヤー配列とした。
The color material of the red resist is C.I. I. Pigment red 117, C.I. I. Pigment red 48: 1, C.I. I. Pigment Yellow 139. The composition other than the color material was the same as that of the green resist.
The arrangement of the colored pixels is a so-called Bayer arrangement in which a G (green) filter is provided every other pixel, and an R (red) filter and a B (blue) filter are provided every other row between the G filters.
次に、図23(b)に示すように、色分解フィルタ(各色カラーフィルタ)102上を含むシリコンウエハ104上の全面に、ベンゼン環を樹脂骨格に導入したアクリル樹脂の塗布液を塗布して、1μmの膜厚の透明樹脂層112を形成し、180℃で3分間加熱して硬膜化処理を行った。
更に、アルカリ可溶性・感光性・熱リフロー性を有するスチレン樹脂を塗布して感光性犠牲層113を形成した(図23(c))。その後、図23(c)に示すように、感光性犠牲層113を、上記グレートーンマスク150を使用し、KrFレーザーによるフォトリソグラフィのプロセスによりパターン化した。グレートーンマスク150は、作成したいマイクロレンズ形状のレンズボトムに対して光透過率を高くした、遮光膜に濃淡のグラデュエーション(階調)が付いたマスクである。この階調の濃淡は、露光に用いる光では解像しない小径ドットの単位面積当たりの個数(粗密)差によって達成される。
Next, as shown in FIG. 23B, an acrylic resin coating liquid in which a benzene ring is introduced into the resin skeleton is applied to the entire surface of the
Further, a photosensitive
その後に、250℃で熱処理して、片側0.1μmのほぼ適正なフロー量で、レンズ母型113aを形成した(図23(d))。レンズ母型113aは、厚さ約0.7μmのスムースな半放物形状であり、隣り合うレンズ母型113a間の凹レンズ曲率直径は0.2μmであった。
次に、図23(d)に示すように、フロン系ガスであるCF4とC3F8の混合系ガスを用いてドライエッチングを施し、レンズ母型113aのパターンをアクリル樹脂からなる透明樹脂層112に転写して、図24(a)に示すように、マイクロレンズ112aを形成した。ドライエッチング時間は5分とした。マイクロレンズ112aのグリーン画素は、高さ約0.58μmのスムースな半放物形状であり、レッド画素は高さ0.49μm、ブルー画素は高さ0.70μmのスムースな半放物形状であった。このようにしてシリコンウエハ104上に多面付けされたイメージセンサが完成した(図24(a))。
Thereafter, heat treatment was performed at 250 ° C. to form the
Next, as shown in FIG. 23D, dry etching is performed using a mixed gas of CF 4 and C 3 F 8 which is a fluorocarbon gas, and the pattern of the
次に、上記シリコンウエハ104の裏面にフォトレジストを塗布し、定法のフォトリソグラフィ法により貫通孔が形成されるべき部位に開口部を形成した。次いで、フォトレジスト膜をマスクとして反応性イオンエッチングを行い、シリコンウエハ104を所定の深さまでエッチングして貫通孔を形成した。次に、シリコンウエハ4と後に形成する配線層とを絶縁するために、CVD法により貫通孔の内壁、底部及び裏面全体にSiO2絶縁膜を形成した。
ここで、絶縁膜は、その膜厚が貫通孔の底部(アルミニウムなど導電性の高い金属からなるパッドである)上の方がシリコンウエハ104の裏面上より薄くなるように形成した。こうした上で、反応性イオンエッチングを再度行い貫通孔底部の絶縁膜を除去した。引き続き、スパッタ法により導電膜を形成し、貫通孔の埋設及びウエハ裏面の配線層を形成した。
Next, a photoresist was applied to the back surface of the
Here, the insulating film was formed such that the thickness of the insulating film was thinner on the bottom of the through hole (which is a pad made of a highly conductive metal such as aluminum) than on the back surface of the
次に、定法のフォトリソグラフィ法により、配線層の一部で外部と接続させる部分を露出させた。当該露出部位に、スクリーン印刷によりはんだペーストを塗布し、はんだボールを搭載した。リフロー処理を施し、残留フラックスを除去すると、外部接続パッド105及び接続バンプ106を有するイメージセンサ基板が得られた(図24(b))。
最後に、450メッシュのレジンブレードを用いたダイシング装置により、マトリックス状に多面付けされたイメージセンサの中間部を断裁線として、表面より断裁溝を入れた(図24(c))。その後に、同図(d)に示すように個々のイメージセンサに分離し、図24(e)の状態とした完成品を得た。すなわち、半導体基板104a上に、多数の光電変換素子103、色分解フィルタ102及びマイクロレンズ112aがこの順に積層された複数のイメージセンサを得た。
Next, a portion of the wiring layer to be connected to the outside was exposed by a regular photolithography method. A solder paste was applied to the exposed portion by screen printing, and a solder ball was mounted. When reflow treatment was performed to remove residual flux, an image sensor substrate having
Finally, by using a dicing apparatus using a 450 mesh resin blade, cutting grooves were formed from the surface with the middle part of the image sensor multi-faceted in a matrix as cutting lines (FIG. 24C). After that, as shown in FIG. 4D, the image sensor was separated into individual image sensors to obtain a finished product in a state shown in FIG. That is, a plurality of image sensors were obtained in which a large number of
各画素の受光感度を測定した結果、レッドの受光感度は65.1%、グリーンの受光感度は55.9%、ブルーの受光感度は43.8%となり(表4の実施例4)、全画素同一レンズ高さの標準例(表4の例1)に対して改善が確認された。なお、必要に応じて熱フローやブリーチングなどの工程を実施して、マイクロレンズの形状と光透過性を制御することもできる。
また、本実施例のグレートーンマスク150を使用したフォトリソグラフィ法において、KrFレーザーを用いると、KrFレーザーの波長限界分解能により、マイクロレンズの曲面形状を、曲率直径120nmから248nmに制御する事が可能となる。
As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red was 65.1%, the light receiving sensitivity of green was 55.9%, and the light receiving sensitivity of blue was 43.8% (Example 4 in Table 4). Improvement was confirmed with respect to the standard example (Example 1 in Table 4) having the same pixel height. In addition, if necessary, steps such as heat flow and bleaching can be performed to control the shape and light transmittance of the microlens.
Further, in the photolithography method using the
以上説明したように、本実施形態4のイメージセンサによれば、画素ごとのマイクロレンズ高さを調整することにより、イメージセンサの最適な深さで集光させることができる。これにより、受光感度が向上する。
また、本実施形態4のイメージセンサの製造方法によれば、グレートーンマスクを使用したフォトリソ工程で、画素毎に高さの異なるマイクロレンズ形状を簡便に一括形成できる。そのため、従来の複数回のエッチング工法や、複数回のレジストパターニング工法に対し、製造コストを削減できる。
As described above, according to the image sensor of the fourth embodiment, light can be condensed at an optimal depth of the image sensor by adjusting the height of the microlens for each pixel. Thereby, the light receiving sensitivity is improved.
Further, according to the image sensor manufacturing method of
また、本実施形態4のイメージセンサの製造方法において、フォトリソグラフィ法に紫外i線を使用することにより、マイクロレンズの曲面形状を曲率直径180nmから365nmに制御する事が可能となり、画素サイズ1100nm程度のマイクロレンズの集光効率向上に効果的である。また、KrFレーザーを使用することにより、マイクロレンズの曲面形状を曲率直径120nmから248nmに制御する事が可能となり、画素サイズ1000nm以下のマイクロレンズの集光効率向上に効果的である。 Further, in the method of manufacturing the image sensor according to the fourth embodiment, by using ultraviolet i rays for photolithography, the curved surface shape of the microlens can be controlled from a curvature diameter of 180 nm to 365 nm, and a pixel size of about 1100 nm. This is effective in improving the light collection efficiency of the micro lens. Further, by using a KrF laser, the curved surface shape of the microlens can be controlled from a curvature diameter of 120 nm to 248 nm, which is effective in improving the light collection efficiency of the microlens having a pixel size of 1000 nm or less.
(実施形態5)
次に、本発明の実施形態5について説明する。
本実施形態5では、高さの異なるマイクロレンズ101の製造方法について、上述した実施形態4での製造方法との相違点を中心に説明し、マイクロレンズ101と同様の構成については同じ符号を付してその説明を省略する。
本実施形態5では、高さの異なるマイクロレンズ101を形成するために2種類のマスクを使い、2段階の工程を経て製造するものである。具体的には、第1のグレートーンマスクを用いて、グリーン画素用のマイクロレンズを形成し、第2のグレートーンマスクを用いて、ブルー画素用及びレッド画素用のマイクロレンズを形成するものである。この製造方法により、隣接するマイクロレンズの境界部分における解像性を高めることができる。その結果、隣接するマイクロレンズの境界部分における形状を、より設計形状に近づけることができ、入射光の集光特性の劣化を抑制することが可能となる。
(Embodiment 5)
Next, a fifth embodiment of the present invention will be described.
In the fifth embodiment, the manufacturing method of the
In the fifth embodiment, two types of masks are used to form the
以下、実施形態5の詳細について説明する。
本実施形態5では、図27に示すように、第1のグレートーンマスク120と、第2のグレートーンマスク130とを用いる。第1のグレートーンマスク120は、図27の符号Aに示すように、グリーン画素に対応した濃度階調パターン121が市松模様状(格子状の目を色違いに並べた模様:Checkered Pattern)に形成されており、それ以外の部分は、パターンが形成されていない透過面からなるフォトマスクである。
また、第2のグレートーンマスク130は、図27の符号Bに示すように、ブルー画素に対応した濃度階調パターン131と、レッド画素に対応した濃度階調パターン132とが市松模様状に形成されており、それ以外の部分は、パターンが形成されていない透過面からなるフォトマスクである。
Details of the fifth embodiment will be described below.
In the fifth embodiment, as shown in FIG. 27, a first
In the second gray-
第1のグレートーンマスク120及び第2のグレートーンマスク130は、露光光に対して透明性の良好な石英やガラス等の基板上に、金属クロム等の遮光性膜による遮光部パターンが光透過部と区別して形成された構成からなる。濃度階調パターン121、131、132は、遮光性の金属膜等の膜厚を漸次変化させて領域内に濃度傾斜を設ける方法や、ドット(網点)配列やライン・アンド・スペース(線/空隙が繰り返されているパターン)のような遮光膜の微細パターン配置を変化させて、各パターン領域の平均的な遮光濃度を傾斜させるグレートーンタイプの手法などで形成される。つまり、図27に示されている各色に対応した濃度階調パターン121、131、132は、それぞれ図17の150b、150c、150aに対応している。
In the first
図28は、色分解フィルタ(Rフィルタ102a,Gフィルタ102b,Bフィルタ102c)102のパターン形成後に行われる、マイクロレンズ1の製造方法を説明する図((1)~(5))である。なお、図28の符号Aに示す各図は、それぞれ図15のY-Y断面に対応し、図28の符号Bに示す各図は、それぞれ図15のX-X断面に対応する図である。
まず、図28(1)に示す色分解フィルタ(Rフィルタ102a,Gフィルタ102b,Bフィルタ102c)102上に、ポジ型のフォトレジストであるマイクロレンズ材料を塗布し、熱処理を行う。これにより、図28(2)に示すように、色分解フィルタ102上に、第1のフォトレジスト層140が形成される。その後、ステッパを用いて、第1のグレートーンマスク120をフォトマスクとして、露光を行う。露光後、現像液による現像を行い、加熱硬化処理することで、図28(3)に示すように、グリーン画素のGフィルタ102b上にグリーン画素のマイクロレンズ101bが形成される(第一形成工程)。
FIG. 28 is a diagram ((1) to (5)) for explaining the manufacturing method of the
First, a microlens material which is a positive photoresist is applied on the color separation filter (
次に、色分解フィルタ102上、及び、グリーン画素のマイクロレンズ101b上に、マイクロレンズ材料を塗布し、熱処理を行う。これにより、図28(4)に示すように、色分解フィルタ102、及びグリーン画素のマイクロレンズ101b上に、第2のフォトレジスト層141が形成される。その後、ステッパを用いて、第2のグレートーンマスク130をフォトマスクとして、露光を行う。
露光後、現像液による現像を行い、加熱硬化処理することで、図28(5)に示すように、ブルー画素のBフィルタ102c上にブルー画素のマイクロレンズ101a、レッド画素のRフィルタ102a上にレッド画素のマイクロレンズ101cがそれぞれ形成される(第二形成工程)。
Next, a microlens material is applied on the
After the exposure, development with a developer is performed, and heat curing is performed, so that the
ここで、ポジ型のフォトレジスト材料を用いる場合、露光時にフォトレジスト層140、141に入射する光量が多いほど、深くまで感光されるため、現像後の残膜が薄くなる。このため、フォトマスクにおいて光の透過率が大きいほど残膜が薄くなる。よって、前述した透過率分布からなる濃度階調パターン121、131、132を有するグレートーンマスク120、130をフォトリソグラフィ工程で用いることで、ブルー画素のマイクロレンズ101aの高さは、グリーン画素のマイクロレンズ101bの高さよりも高くなり、レッド画素のマイクロレンズ101cの高さは、グリーン画素のマイクロレンズ101bの高さよりも低く形成することができる。
Here, when a positive photoresist material is used, the greater the amount of light that enters the photoresist layers 140 and 141 during exposure, the deeper the photosensitivity, the thinner the remaining film after development. For this reason, the remaining film becomes thinner as the light transmittance in the photomask increases. Therefore, by using the gray tone masks 120 and 130 having the
(実施例10)
次に、実施形態5に対応する実施例10について説明する。
実施例10では、シリコン材料からなる厚さ0.75mmのシリコンウエハ104に、光電変換素子103や遮光膜、パッシベーション膜を形成し、最上層に、熱硬化タイプのアクリル樹脂塗布液を用いてスピンコートにて平坦化層を形成した。
次いで、平坦化層の上に、グリーン画素のGフィルタ102b、ブルー画素のBフィルタ102c、レッド画素のRフィルタ102a、をそれぞれフォトリソグラフィ法により形成した。これらの工程により、図14におけるマイクロレンズ101より下の構成が作製された(遮光膜、パッシベーション膜は図示せず)。
(Example 10)
Next, Example 10 corresponding to
In Example 10, a
Next, a green
グリーン画素のGフィルタ102b、ブルー画素のBフィルタ102c、レッド画素のRフィルタ102aにおいて、実施例8と同様の材料を用いて、フォトレジストを作成した。また、着色画素の配列は、図15に示す例同様に、いわゆるベイヤー配列とした。
次に、色分解フィルタ102上に、アルカリ可溶性・感光性・熱リフロー性を有するスチレン樹脂を塗布して形成した感光性マイクロレンズ材111に対して加熱処理を行い、第1のフォトレジスト層140を形成した。ここで、第1のフォトレジスト層140の膜厚は、約0.80μmであった。
Photoresists were formed using the same materials as in Example 8 for the green
Next, a heat treatment is performed on the
その後、第1のグレートーンマスク120を用いて、紫外i線によるフォトリソグラフィのプロセスによりパターン化した。そして、250℃で熱処理することでグリーン画素のマイクロレンズ101bを形成した。なお、第1のグレートーンマスク120において、グリーン画素に対応した濃度階調パターン121は、複数の微細な遮光膜部分が網点状に配列されたグレートーンタイプの構成を使用している。
次に、第1のフォトレジスト層140と同一の感光性マイクロレンズ材111を色分解フィルタ102上に塗布し、加熱処理を行うことで第2のフォトレジスト層141を形成した。第2のフォトレジスト層141の膜厚は、約0.80μmであった。
Thereafter, patterning was performed by a photolithography process using ultraviolet i rays using the first gray-
Next, the same
その後、第2のグレートーンマスク130を用いて、紫外i線によるフォトリソグラフィのプロセスによりパターン化した。そして、250℃で熱処理することでブルー画素のマイクロレンズ101a及びレッド画素のマイクロレンズ101cを形成した。なお、第2のグレートーンマスク130において、ブルー画素に対応した濃度階調パターン131及びレッド画素に対応した濃度階調パターン132は、複数の微細な遮光膜部分が網点状に配列されたグレートーンタイプの構成を使用している。
Thereafter, patterning was performed by a photolithography process using ultraviolet i rays using the second gray-
グリーン画素のマイクロレンズ101bは高さ0.60μmのスムースな半放物形状であり、ブルー画素のマイクロレンズ101aの高さは0.69μm、レッド画素のマイクロレンズ101cの高さは0.52μmのスムースな半放物形状であった。このようにしてシリコンウエハ104上に多面付けされたイメージセンサを形成した。
各画素の受光感度を測定した結果、レッド画素の受光感度は65.5%、グリーン画素の受光感度は56.2%、ブルー画素の受光感度は44.6%となり、全画素同一レンズ高さの標準例(表4の例1)に対して改善が確認された。なお、必要に応じてブリーチングなどの工程を実施して、マイクロレンズの形状と光透過性を制御することもできる。
The
As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of the red pixel is 65.5%, the light receiving sensitivity of the green pixel is 56.2%, and the light receiving sensitivity of the blue pixel is 44.6%. Improvement was confirmed with respect to the standard example (Example 1 in Table 4). If necessary, a process such as bleaching may be performed to control the shape and light transmittance of the microlens.
(実施形態6)
次に、本発明の実施形態6について説明する。この実施形態6のイメージセンサでは、集光位置を変えるパラメータとして、画素ごとのマイクロレンズの焦点深さを設定する例である。なお、実施形態6のイメージセンサを製造するに際しては、上述した実施形態4の製造方法(実施例8ないし9)と同様の方法で製造可能なので、この実施形態6のイメージセンサの製造方法については説明を省略する。
本実施形態6のイメージセンサは、図29に示すように、半導体基板204a上に、多数の光電変換素子203、平坦化層3a、色分解フィルタ202及びマイクロレンズ201がこの順に積層され、グリーン、ブルー及びレッドの各画素は、単位となる光電変換素子毎に形成される。
(Embodiment 6)
Next, a sixth embodiment of the present invention will be described. The image sensor according to the sixth embodiment is an example in which the focal depth of the microlens for each pixel is set as a parameter for changing the condensing position. Since the image sensor according to the sixth embodiment can be manufactured by the same method as the manufacturing method according to the fourth embodiment described above (Examples 8 to 9), the method for manufacturing the image sensor according to the sixth embodiment is described below. Description is omitted.
As shown in FIG. 29, in the image sensor of the sixth embodiment, a large number of
図29の例では、色分解フィルタ202及びその下部の光電変換素子203を示すが、本明細書では、シリコンウエハ204、光電変換素子203、平坦化層3a、色分解フィルタ202、マイクロレンズ201までをイメージセンサと称する。
本実施形態6での画素の配列は、図30に示すように、一画素おきにG(緑)フィルタ202bが設けられ、Gフィルタ202bの間に一行おきにR(赤)フィルタ202aとB(青)フィルタ202cが設けられた、いわゆるベイヤー配列とされている。半導体基板204aは、その製造において、上述の実施形態4と同様に、例えば単結晶シリコンからなるシリコンウエハを個々のチップ形成領域(イメージセンサ)に分割することによって得られる。
In the example of FIG. 29, the
As shown in FIG. 30, in the sixth embodiment, a G (green)
イメージセンサにて得られる画像情報の電気信号は、電極(図示せず)を経由して貫通孔内に充填もしくは内壁を被覆する導電物質により半導体基板204aの裏面に導かれ、パターン化された絶縁層と導電層によって、BGA方式により、外部接続パッド205から接続バンプ206を介して外部回路に接続される。
その他、レンズモジュールの側壁に、フレア防止用で遮光性のある無電解めっき層を施しても良い。その材質は、ニッケル、クロム、コバルト、鉄、銅、金等から選択される金属の単一めっき層のほか、ニッケル-鉄、コバルト-鉄、銅-鉄等の組合せから選択される合金の無電解めっき層があげられる。そのほかに、銅等の金属を無電解めっきし、しかる後に、その表面を化学処理や酸化処理して金属化合物とし、表面の光反射率の低い金属遮光層とすることも可能である。
The electrical signal of the image information obtained by the image sensor is guided to the back surface of the
In addition, an electroless plating layer for preventing flare and having a light shielding property may be provided on the side wall of the lens module. The material is a single plating layer of a metal selected from nickel, chromium, cobalt, iron, copper, gold, etc., and an alloy selected from a combination of nickel-iron, cobalt-iron, copper-iron, etc. An electroplating layer is mentioned. In addition, a metal such as copper can be electrolessly plated, and then the surface thereof can be chemically or oxidized to form a metal compound to form a metal light-shielding layer having a low light reflectance on the surface.
ここで、図31に、一般的なイメージセンサにおける、レッド、グリーン、ブルーの各画素の受光感度カーブの一例を示す。また、図32に、本実施形態6のイメージセンサ内層へのブルー、グリーン、レッド入射光の透過と、受光イメージを示す。
図32に示すように、ブルーの波長は、イメージセンサ表面近傍203cの深さ200nm程度で受光される。そのため、これに合わせてマイクロレンズ201cの集光位置をイメージセンサ表面近傍203cとすることが望ましい。ブルー画素のマイクロレンズ201cの焦点深さを0nm以上1500nm以下に変化させた時の受光感度を、表5に示す。表5では、本実施形態6のイメージセンサの製造方法により作成されたマイクロレンズのマイクロレンズ高さと受光感度とを対比して示している。図33のBlue(下段)に同結果のグラフを示す。
Here, FIG. 31 shows an example of the light reception sensitivity curve of each pixel of red, green, and blue in a general image sensor. FIG. 32 shows the transmission and reception image of blue, green, and red incident light to the inner layer of the image sensor according to the sixth embodiment.
As shown in FIG. 32, the blue wavelength is received at a depth of about 200 nm in the
グラフからも明らかなように、ブルー画素のマイクロレンズ201cの焦点深さが200nm以上500nm以下の間でピークを持つことがわかった。このため、ブルー画素のマイクロレンズ201cの焦点深さは、光電変換素子203におけるマイクロレンズ201側の表面から光電変換素子203の膜厚方向に向かって200nm以上500nm以下の内側の位置、すなわち光電変換素子203の平坦化層3aとの境界面から光電変換素子203側へ200nm以上500nm以下の位置が望ましい。
As is clear from the graph, it was found that the focal depth of the
一方、グリーンの波長はイメージセンサの比較的中域の層内部203bであって、深さ600nm程度まで透過する。よって、これに合わせてマイクロレンズ201bの集光位置をイメージセンサの層内部203bとすることが望ましい。グリーンのマイクロレンズ高さを0nmから1500nmまで変化させた時の受光感度を、表5に併せて示す。また、図33のGreen(中段)に同結果のグラフを示す。
グラフからも明らかなように、グリーン画素のマイクロレンズ201bの焦点深さが600nm以上900nm以下の間でピークを持つことがわかった。このため、グリーン画素のマイクロレンズ201bの焦点深さは、光電変換素子203におけるマイクロレンズ201側の光電変換素子203の表面から光電変換素子203の膜厚方向に向かって600nm以上900nm以下の内側の位置、すなわち光電変換素子203の平坦化層3aとの境界面から光電変換素子203側へ600nm以上900nm以下の位置が望ましい。
On the other hand, the green wavelength is transmitted to a depth of about 600 nm in the
As is apparent from the graph, it was found that the focal depth of the
さらに、レッドの波長はイメージセンサの比較的深い層内部203aであって、深さ2000nm程度まで透過する。よって、これに合わせてマイクロレンズ201aの集光位置をイメージセンサの層内部203aとすることが望ましい。レッドのマイクロレンズ201aの焦点深さを0nmから3500nmまで変化させた時の受光感度を表5に併せて示す。また、図33のRed(上段)に同結果のグラフを示す。
グラフからも明らかなように、レッド画素のマイクロレンズ201aの焦点深さが2000nm以上2500nm以下の間でピークを持つことがわかった。このため、レッド画素のマイクロレンズ201aの焦点深さは、光電変換素子203におけるマイクロレンズ201側の光電変換素子203の表面から光電変換素子203の膜厚方向に向かって2000nm以上2500nm以下の内側の位置、すなわち光電変換素子203の平坦化層3aとの境界面から光電変換素子203側へ2000nm以上2500nm以下の位置が望ましい。
Further, the wavelength of red is transmitted to a depth of about 2000 nm in the
As is apparent from the graph, it was found that the focal depth of the
上記検討を踏まえ、本実施形態6のイメージセンサは、ブルー画素上のマイクロレンズ201(201c)の焦点深さが、光電変換素子203の平坦化層3aとの境界面から光電変換素子203側へ200nm以上500nm以下の位置に設定され、グリーン画素上のマイクロレンズ201(201b)の焦点深さが、光電変換素子203の平坦化層3aとの境界面から光電変換素子側へ600nm以上900nm以下の位置に設定され、レッド画素上のマイクロレンズ201(201a)の焦点深さが、光電変換素子203の平坦化層3aとの境界面から光電変換素子203側へ2000nm以上2500nm以下の位置に設定されている。
本実施形態6のイメージセンサによれば、画素ごとのマイクロレンズの焦点深さを調整することにより、イメージセンサの最適な深さで集光させることができる。これにより、受光感度が向上する。
Based on the above examination, in the image sensor of the sixth embodiment, the focal depth of the microlens 201 (201c) on the blue pixel is from the boundary surface with the
According to the image sensor of the sixth embodiment, it is possible to collect light at the optimum depth of the image sensor by adjusting the focal depth of the microlens for each pixel. Thereby, the light receiving sensitivity is improved.
(実施例11)
実施例11では、実施形態4のイメージセンサを上述の実施例8と同様の方法で製造した。
そして、各画素の受光感度を測定した結果、レッドの受光感度は66.1%、グリーンの受光感度は57.5%、ブルーの受光感度は41.1%となり(表5の実施例11)、全画素同一レンズ焦点深さ0nmの受光感度(表5の最左側の例)に対して改善が確認された。なお、必要に応じてブリーチングなどの工程を実施して、マイクロレンズの形状と光透過性を制御することもできる。
本実施例11によって得られたマイクロレンズは、上述の実施例8と同様に、図25に示すように、画素毎に高さの異なるマイクロレンズが、同一ピッチで形成されている。
(Example 11)
In Example 11, the image sensor of
As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red is 66.1%, the light receiving sensitivity of green is 57.5%, and the light receiving sensitivity of blue is 41.1% (Example 11 in Table 5). Improvement was confirmed for the light receiving sensitivity (the leftmost example in Table 5) with the same lens focal depth of 0 nm for all pixels. If necessary, a process such as bleaching may be performed to control the shape and light transmittance of the microlens.
As in the above-described eighth embodiment, the microlenses obtained in the
(実施例12)
実施例12では、実施形態6のイメージセンサを上述の実施例9と同様の方法で製造した。
そして、各画素の受光感度を測定した結果、レッドの受光感度は65.5%、グリーンの受光感度は57.7%、ブルーの受光感度は41.5%となり(表5の実施例12)、全画素同一レンズ焦点深さ0nmの受光感度(表5の最左側の例)に対して改善が確認された。
(Example 12)
In Example 12, the image sensor of
As a result of measuring the light receiving sensitivity of each pixel, the light receiving sensitivity of red is 65.5%, the light receiving sensitivity of green is 57.7%, and the light receiving sensitivity of blue is 41.5% (Example 12 in Table 5). Improvement was confirmed for the light receiving sensitivity (the leftmost example in Table 5) with the same lens focal depth of 0 nm for all pixels.
なお、必要に応じて熱フローやブリーチングなどの工程を実施して、マイクロレンズの形状と光透過性を制御することもできる。また、本実施例のグレートーンマスク50を使用したフォトリソグラフィ法において、KrFレーザーを用いると、KrFレーザーの波長限界分解能により、マイクロレンズの曲面形状を、曲率直径120nmから248nmに制御する事が可能となる。
以上説明したように、本発明の実施形態6に係るイメージセンサによれば、画素ごとのマイクロレンズの焦点深さを最適化することにより、イメージセンサの最適な深さで集光させることができる。これにより、受光感度を向上させることができる。
In addition, if necessary, steps such as heat flow and bleaching can be performed to control the shape and light transmittance of the microlens. In the photolithography method using the
As described above, according to the image sensor according to the sixth embodiment of the present invention, it is possible to collect light at the optimum depth of the image sensor by optimizing the focal depth of the microlens for each pixel. . Thereby, the light receiving sensitivity can be improved.
また、本発明の実施例11及び実施例12の何れかに係るイメージセンサの製造方法によれば、本発明の実施形態6に対し、グレートーンマスクを使用したフォトリソ工程で、画素毎に焦点深さの異なるマイクロレンズ形状を簡便に一括形成できる。
また、実施例11及び実施例12の何れかのイメージセンサの製造方法によれば、グレートーンマスク9を使用したフォトリソ工程で、画素毎に高さの異なるマイクロレンズ形状を簡便に一括形成できる。そのため、従来の複数回のエッチング工法や、複数回のレジストパターニング工法に対し、製造コストを削減できる。
Further, according to the method of manufacturing the image sensor according to any one of Example 11 and Example 12 of the present invention, the depth of focus for each pixel in the photolithography process using the gray-tone mask is compared with
Further, according to the method for manufacturing an image sensor of any one of Example 11 and Example 12, microlens shapes having different heights for each pixel can be easily and collectively formed by a photolithography process using the
また、フォトリソグラフィ法に紫外i線を使用することにより、マイクロレンズの曲面形状を曲率直径180nmから365nmに制御する事が可能となり、画素サイズ1100nm程度のマイクロレンズの集光効率向上に効果的である。
また、KrFレーザーを使用することにより、マイクロレンズの曲面形状を曲率直径120nmから248nmに制御する事が可能となり、画素サイズ1000nm以下のマイクロレンズの集光効率向上に効果的である。
以上、本発明者によってなされた発明を、上述の実施形態に基づき具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
In addition, by using ultraviolet i rays for photolithography, it becomes possible to control the curved surface shape of the microlens from a curvature diameter of 180 nm to 365 nm, which is effective in improving the light collection efficiency of a microlens having a pixel size of about 1100 nm. is there.
Further, by using a KrF laser, the curved surface shape of the microlens can be controlled from a curvature diameter of 120 nm to 248 nm, which is effective in improving the light collection efficiency of the microlens having a pixel size of 1000 nm or less.
Although the invention made by the present inventor has been specifically described based on the above-described embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Of course.
1 半導体基板
2 光電変換素子
3,3a 平坦化層
4,4a カラーフィルタ層
4R 赤色(R)フィルタ
4G 緑色(G)フィルタ
4B 青色(B)フィルタ
5 マイクロレンズ
5a 頂点
6,6A 固体撮像素子
7 下引き層
8a 青色(B)フィルタの画素部での透過光到達位置
8b 緑色(G)フィルタの画素部での透過光到達位置
8c 赤色(R)フィルタの画素部での透過光到達位置
9 グレートーンマスク
101 マイクロレンズ
101a ブルー画素のマイクロレンズ
101b グリーン画素のマイクロレンズ
101c レッド画素のマイクロレンズ
101d グリーン画素とレッド画素の高さの差
101e ブルー画素とグリーン画素の高さの差
102 色分解フィルタ(カラーフィルタ)
102a レッド画素の色分解フィルタ
102b グリーン画素の色分解フィルタ
102c ブルー画素の色分解フィルタ
103 光電変換素子
103a ブルーの透過光到達域
103b グリーンの透過光到達域
103c レッドの透過光到達域
104 シリコンウエハ
104a 半導体基板
105 外部接続パッド(電極パット)
106 接続バンプ(はんだバンプ)
111 感光性マイクロレンズ材
111a マイクロレンズ
112 透明樹脂層
112a マイクロレンズ
113 感光性犠牲層
113a レンズ母型
120 第1のグレートーンマスク
121 グリーン画素に対応した濃度階調パターン
130 第2のグレートーンマスク
131 ブルー画素に対応した濃度階調パターン
132 レッド画素に対応した濃度階調パターン
140 第1のフォトレジスト層
141 第2のフォトレジスト層
150 グレートーンマスク
201 マイクロレンズ
201a レッド画素のマイクロレンズ
201b グリーン画素のマイクロレンズ
201c ブルー画素のマイクロレンズ
202 色分解フィルタ(カラーフィルタ)
202a レッド画素の色分解フィルタ
202b グリーン画素の色分解フィルタ
202c ブルー画素の色分解フィルタ
203 光電変換素子
203a レッドの透過光到達域
203b グリーンの透過光到達域
203c ブルーの透過光到達域
204a 半導体基板
205 外部接続パッド(電極パット)
206 接続バンプ(はんだバンプ)
DESCRIPTION OF
102a Red pixel
106 Connection bump (solder bump)
111 Photosensitive microlens
202a Red pixel
206 Connection bump (solder bump)
Claims (18)
前記半導体基板上に形成された複数の光電変換素子であって、前記半導体基板の面内に行列状に配置された光電変換素子と、
前記半導体基板上に複数の前記光電変換素子を覆うように形成された平坦化層と、
前記平坦化層上に形成された下引き層と、
前記下引き層上に形成されたカラーフィルタ層であって、複数の前記光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、及び青色(B)フィルタを有するカラーフィルタ層と、
前記複数のカラーフィルタ上にそれぞれ形成された複数のマイクロレンズと、
を備え、
前記下引き層は、
前記赤色(R)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から2000nm以上2500nm以下の位置となり、前記緑色(G)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から600nm以上900nm以下の位置となり、前記青色(B)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から200nm以上500nm以下の位置となる厚さで形成されている固体撮像素子。 A semiconductor substrate;
A plurality of photoelectric conversion elements formed on the semiconductor substrate, wherein the photoelectric conversion elements are arranged in a matrix in the plane of the semiconductor substrate;
A planarization layer formed on the semiconductor substrate so as to cover the plurality of photoelectric conversion elements;
An undercoat layer formed on the planarizing layer;
A color filter layer formed on the undercoat layer, comprising a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements, a red (R) filter, a green (G) filter, and A color filter layer having a blue (B) filter;
A plurality of microlenses formed respectively on the plurality of color filters;
With
The undercoat layer is
The focal point of the micro lens in the pixel portion of the red (R) filter is a position of 2000 nm or more and 2500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element, and the pixel portion of the green (G) filter. The focal point of the microlens is a position of 600 nm to 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element, and the focal point of the microlens in the pixel portion of the blue (B) filter is the photoelectrical element. A solid-state imaging device formed to have a thickness of 200 nm or more and 500 nm or less from a boundary surface between the conversion element and the planarization layer.
前記平坦化層上に下引き層を形成する下引き層形成工程と、
前記下引き層上に、複数の前記光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、及び青色(B)フィルタを有するカラーフィルタ層を形成するカラーフィルタ層形成工程と、
前記複数のカラーフィルタ上に複数のマイクロレンズをそれぞれ形成するマイクロレンズ形成工程と、
を含み、
前記下引き層形成工程は、前記平坦化層上に透明な感光性樹脂を含む液層を形成した後に、グレートーンマスクを用いたフォトリソグラフィ法により前記液層を光硬化することで行い、
前記赤色(R)フィルタの直下での前記下引き層の厚さを、前記赤色(R)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から2000nm以上2500nm以下の位置となる厚さとし、
前記緑色(G)フィルタの直下での前記下引き層の厚さを、前記緑色(G)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から600nm以上900nm以下の位置となる厚さとし、
前記青色(B)フィルタの直下での前記下引き層の厚さを、前記青色(B)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から200nm以上500nm以下の位置となる厚さとする固体撮像素子の製造方法。 A planarization layer forming step of forming a planarization layer on the semiconductor substrate so as to cover a plurality of photoelectric conversion elements formed on the semiconductor substrate and arranged in a matrix within the surface of the semiconductor substrate;
An undercoat layer forming step of forming an undercoat layer on the planarizing layer;
A color filter comprising a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements on the undercoat layer, and having a red (R) filter, a green (G) filter, and a blue (B) filter A color filter layer forming step of forming a layer;
A microlens forming step of forming a plurality of microlenses on the plurality of color filters, respectively.
Including
The undercoat layer forming step is performed by forming a liquid layer containing a transparent photosensitive resin on the planarizing layer and then photocuring the liquid layer by a photolithography method using a gray tone mask.
The thickness of the undercoat layer immediately below the red (R) filter is the interface between the focal point of the microlens in the pixel portion of the red (R) filter and the planarization layer of the photoelectric conversion element. To a thickness of 2000 nm to 2500 nm.
The thickness of the undercoat layer immediately below the green (G) filter is the interface between the focal point of the microlens at the pixel portion of the green (G) filter and the planarization layer of the photoelectric conversion element. From 600 nm to 900 nm in thickness,
The thickness of the undercoat layer immediately below the blue (B) filter is the interface between the focal point of the microlens at the pixel portion of the blue (B) filter and the planarization layer of the photoelectric conversion element. The manufacturing method of the solid-state image sensor made into thickness which becomes 200 nm or more and 500 nm or less position from.
前記半導体基板上に形成された複数の光電変換素子であって、前記半導体基板の面内に行列状に配置された光電変換素子と、
前記半導体基板上に複数の前記光電変換素子を覆うように形成された平坦化層と、
前記平坦化層上に形成された下引き層と、
前記下引き層上に形成されたカラーフィルタ層であって、複数の前記光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)、緑色(G)、青色(B)、及び赤外線(IR)フィルタを有するカラーフィルタ層と、
前記複数のカラーフィルタ上にそれぞれ形成された複数のマイクロレンズと、
を備え、前記下引き層は、
前記赤色(R)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ2000nm以上2500nm以下の位置となり、
前記緑色(G)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ600nm以上900nm以下の位置となり、
前記青色(B)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ200nm以上500nm以下の位置となり、
前記赤外線(IR)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ1500nm以上5000nm以下の位置となる厚さで形成されている固体撮像素子。 A semiconductor substrate;
A plurality of photoelectric conversion elements formed on the semiconductor substrate, wherein the photoelectric conversion elements are arranged in a matrix in the plane of the semiconductor substrate;
A planarization layer formed on the semiconductor substrate so as to cover the plurality of photoelectric conversion elements;
An undercoat layer formed on the planarizing layer;
A color filter layer formed on the undercoat layer, comprising a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements, and includes red (R), green (G), and blue (B ), And a color filter layer having an infrared (IR) filter;
A plurality of microlenses formed respectively on the plurality of color filters;
The undercoat layer comprises
The focal point of the microlens in the pixel portion of the red (R) filter is a position of 2000 nm to 2500 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side,
The focal point of the microlens in the pixel portion of the green (G) filter is a position of 600 nm to 900 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side,
The focal point of the microlens in the pixel portion of the blue (B) filter is a position of 200 nm to 500 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side,
The focal point of the microlens in the pixel portion of the infrared (IR) filter is formed at a thickness of 1500 nm to 5000 nm from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side. A solid-state imaging device.
前記平坦化層上に下引き層を形成する下引き層形成工程と、
前記下引き層上に、複数の前記光電変換素子と同じ行列状に配置された複数のカラーフィルタからなり、赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタ、及び赤外線(IR)フィルタを有するカラーフィルタ層を形成するカラーフィルタ層形成工程と、
前記複数のカラーフィルタ上に複数のマイクロレンズをそれぞれ形成するマイクロレンズ形成工程と、
を含み、
前記下引き層形成工程は、前記平坦化層上に透明な感光性樹脂を含む液層を形成した後に、グレートーンマスクを用いたフォトリソグラフィ法により前記液層を光硬化することで行い、
前記赤色(R)フィルタの直下での前記下引き層の厚さを、前記赤色(R)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ2000nm以上2500nm以下の位置となる厚さとし、
前記緑色(G)フィルタの直下での前記下引き層の厚さを、前記緑色(G)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ600nm以上900nm以下の位置となる厚さとし、
前記青色(B)フィルタの直下での前記下引き層の厚さを、前記青色(B)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ200nm以上500nm以下の位置となる厚さとし、
前記赤外線(IR)フィルタの直下での前記下引き層の厚さを、前記赤外線(IR)フィルタの画素部での前記マイクロレンズの焦点が、前記光電変換素子の前記平坦化層との境界面から光電変換素子側へ1500nm以上5000nm以下の位置となる厚さとする固体撮像素子の製造方法。 A planarization layer forming step of forming a planarization layer on the semiconductor substrate so as to cover a plurality of photoelectric conversion elements formed on the semiconductor substrate and arranged in a matrix within the surface of the semiconductor substrate;
An undercoat layer forming step of forming an undercoat layer on the planarizing layer;
It comprises a plurality of color filters arranged in the same matrix as the plurality of photoelectric conversion elements on the undercoat layer, and includes a red (R) filter, a green (G) filter, a blue (B) filter, and an infrared ray (IR) ) A color filter layer forming step of forming a color filter layer having a filter;
A microlens forming step of forming a plurality of microlenses on the plurality of color filters, respectively.
Including
The undercoat layer forming step is performed by forming a liquid layer containing a transparent photosensitive resin on the planarizing layer and then photocuring the liquid layer by a photolithography method using a gray tone mask.
The thickness of the undercoat layer immediately below the red (R) filter is the interface between the focal point of the microlens in the pixel portion of the red (R) filter and the planarization layer of the photoelectric conversion element. The thickness from 2000 nm to 2500 nm to the photoelectric conversion element side,
The thickness of the undercoat layer immediately below the green (G) filter is the interface between the focal point of the microlens at the pixel portion of the green (G) filter and the planarization layer of the photoelectric conversion element. The thickness from 600 nm to 900 nm to the photoelectric conversion element side,
The thickness of the undercoat layer immediately below the blue (B) filter is the interface between the focal point of the microlens at the pixel portion of the blue (B) filter and the planarization layer of the photoelectric conversion element. The thickness from 200 nm to 500 nm to the photoelectric conversion element side,
The thickness of the undercoat layer immediately below the infrared (IR) filter is the boundary surface between the microlens focal point at the pixel portion of the infrared (IR) filter and the planarization layer of the photoelectric conversion element. The manufacturing method of the solid-state image sensor made into the thickness used as the position which is 1500 nm or more and 5000 nm or less from the photoelectric conversion element side.
グリーン画素上のマイクロレンズ高さを100%として、ブルー画素上のマイクロレンズ高さが105%から150%の範囲であり、かつ、レッド画素上のマイクロレンズ高さが95%から70%の範囲であることを特徴とする固体撮像素子。 On the semiconductor substrate, at least a photoelectric conversion element and a microlens are laminated in this order, and each pixel of green, blue and red is formed for each photoelectric conversion element as a unit,
The microlens height on the green pixel is in the range of 105% to 150%, and the microlens height on the red pixel is in the range of 95% to 70%. A solid-state imaging device characterized by the above.
前記色分解フィルタとして、単位となる前記光電変換素子毎に、グリーン画素、ブルー画素及びレッド画素のいずれかが形成されており、
前記マイクロレンズとして、前記グリーン画素、前記ブルー画素及び前記レッド画素にそれぞれ対応したグリーン画素のマイクロレンズ、ブルー画素のマイクロレンズ、レッド画素のマイクロレンズが形成されており、
前記ブルー画素のマイクロレンズの焦点深さは、前記光電変換素子の前記平坦化層との境界面から前記光電変換素子側へ200nm以上500nm以下の位置にあり、
前記グリーン画素のマイクロレンズの焦点深さは、前記光電変換素子の前記平坦化層との境界面から前記光電変換素子側へ600nm以上900nm以下の位置にあり、
前記レッド画素のマイクロレンズの焦点深さは、前記光電変換素子の前記平坦化層との境界面から前記光電変換素子側へ2000nm以上2500nm以下の位置にあることを特徴とする固体撮像素子。 On the semiconductor substrate, at least a photoelectric conversion element, a planarization layer, a color separation filter and a microlens are laminated in this order,
As the color separation filter, for each photoelectric conversion element as a unit, either a green pixel, a blue pixel, or a red pixel is formed,
As the micro lens, a green pixel micro lens, a blue pixel micro lens, and a red pixel micro lens corresponding to the green pixel, the blue pixel, and the red pixel, respectively, are formed.
The focal depth of the micro lens of the blue pixel is at a position of 200 nm or more and 500 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side,
The focal depth of the microlens of the green pixel is at a position of 600 nm or more and 900 nm or less from the boundary surface with the planarization layer of the photoelectric conversion element to the photoelectric conversion element side,
The solid-state imaging device, wherein a focal depth of the micro lens of the red pixel is in a position of 2000 nm or more and 2500 nm or less from a boundary surface with the planarization layer of the photoelectric conversion device to the photoelectric conversion device side.
グレートーンマスクを使用したフォトリソグラフィ法により、高さの異なる前記マイクロレンズを一括形成することを特徴とする固体撮像素子の製造方法。 It is a manufacturing method of the solid-state image sensing device according to claim 12 or 13,
A method of manufacturing a solid-state imaging device, wherein the microlenses having different heights are collectively formed by photolithography using a gray tone mask.
前記光電変換素子上に感光性マイクロレンズ材を塗布する工程と、
前記グレートーンマスクを使用したフォトリソグラフィ法により、前記感光性マイクロレンズ材をパターニングする工程と、
を少なくとも含む請求項14に記載の固体撮像素子の製造方法。 Forming the photoelectric conversion element on the semiconductor substrate;
Applying a photosensitive microlens material on the photoelectric conversion element;
Patterning the photosensitive microlens material by photolithography using the gray tone mask; and
The manufacturing method of the solid-state image sensor of Claim 14 containing at least.
前記光電変換素子上の全面に透明樹脂層を塗布する工程と、
前記透明樹脂層上に感光性犠牲層を塗布する工程と、
前記グレートーンマスクを使用したフォトリソグラフィ法により、前記感光性犠牲層をパターニングしてレンズ母型を形成する工程と、
前記レンズ母型上から当該レンズ母型と前記透明樹脂層をエッチングして前記マイクロレンズを形成するエッチング転写工程と、
を少なくとも含む請求項14に記載の固体撮像素子の製造方法。 Forming the photoelectric conversion element on the semiconductor substrate;
Applying a transparent resin layer over the entire surface of the photoelectric conversion element;
Applying a photosensitive sacrificial layer on the transparent resin layer;
Forming a lens matrix by patterning the photosensitive sacrificial layer by a photolithography method using the gray tone mask;
An etching transfer step of forming the microlens by etching the lens matrix and the transparent resin layer from above the lens matrix;
The manufacturing method of the solid-state image sensor of Claim 14 containing at least.
第1のグレートーンマスクを用いて、前記グリーン画素上のマイクロレンズを形成する工程と、
第2のグレートーンマスクを用いて、前記ブルー画素上のマイクロレンズ及び前記レッド画素上のマイクロレンズを形成する工程と、を含み、
前記第2のグレートーンマスクは、前記ブルー画素に対応したパターン中央部の透過率が、前記第1のグレートーンマスクの前記グリーン画素に対応したパターン中央部の透過率よりも小さく、
さらに、前記第2のグレートーンマスクは、前記レッド画素に対応したパターン中央部の透過率が、前記第1のグレートーンマスクの前記グリーン画素に対応したパターン中央部の透過率よりも大きいことを特徴とする固体撮像素子の製造方法。 A method for producing the solid-state imaging device according to claim 12,
Forming a microlens on the green pixel using a first gray tone mask;
Forming a microlens on the blue pixel and a microlens on the red pixel using a second graytone mask,
In the second gray tone mask, the transmittance at the center of the pattern corresponding to the blue pixel is smaller than the transmittance at the center of the pattern corresponding to the green pixel of the first gray tone mask.
Further, in the second gray tone mask, the transmittance at the center of the pattern corresponding to the red pixel is larger than the transmittance at the center of the pattern corresponding to the green pixel of the first gray tone mask. A method for manufacturing a solid-state imaging device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017081426 | 2017-04-17 | ||
JP2017-081426 | 2017-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193986A1 true WO2018193986A1 (en) | 2018-10-25 |
Family
ID=63857082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015540 WO2018193986A1 (en) | 2017-04-17 | 2018-04-13 | Solid-state imaging element and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018193986A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022050345A1 (en) * | 2020-09-02 | 2022-03-10 | 凸版印刷株式会社 | Solid-state imaging element and manufacturing method |
WO2022091769A1 (en) * | 2020-10-30 | 2022-05-05 | パナソニックIpマネジメント株式会社 | Photodetector device, method for manufacturing structure, and method for manufacturing photodetector device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006156515A (en) * | 2004-11-26 | 2006-06-15 | Sony Corp | Solid-state imaging device and manufacturing method thereof |
JP2007157743A (en) * | 2005-11-30 | 2007-06-21 | Fujifilm Corp | Solid-state imaging device and manufacturing method of solid-state imaging device |
JP2009170562A (en) * | 2008-01-15 | 2009-07-30 | Panasonic Corp | Solid-state imaging device and method for manufacturing solid-state imaging device |
JP2013251292A (en) * | 2012-05-30 | 2013-12-12 | Panasonic Corp | Solid-state image pickup device and manufacturing method thereof |
JP2016225338A (en) * | 2015-05-27 | 2016-12-28 | 凸版印刷株式会社 | Solid state imaging device |
-
2018
- 2018-04-13 WO PCT/JP2018/015540 patent/WO2018193986A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006156515A (en) * | 2004-11-26 | 2006-06-15 | Sony Corp | Solid-state imaging device and manufacturing method thereof |
JP2007157743A (en) * | 2005-11-30 | 2007-06-21 | Fujifilm Corp | Solid-state imaging device and manufacturing method of solid-state imaging device |
JP2009170562A (en) * | 2008-01-15 | 2009-07-30 | Panasonic Corp | Solid-state imaging device and method for manufacturing solid-state imaging device |
JP2013251292A (en) * | 2012-05-30 | 2013-12-12 | Panasonic Corp | Solid-state image pickup device and manufacturing method thereof |
JP2016225338A (en) * | 2015-05-27 | 2016-12-28 | 凸版印刷株式会社 | Solid state imaging device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022050345A1 (en) * | 2020-09-02 | 2022-03-10 | 凸版印刷株式会社 | Solid-state imaging element and manufacturing method |
JPWO2022050345A1 (en) * | 2020-09-02 | 2022-03-10 | ||
WO2022091769A1 (en) * | 2020-10-30 | 2022-05-05 | パナソニックIpマネジメント株式会社 | Photodetector device, method for manufacturing structure, and method for manufacturing photodetector device |
JPWO2022091769A1 (en) * | 2020-10-30 | 2022-05-05 | ||
JP7304534B2 (en) | 2020-10-30 | 2023-07-07 | パナソニックIpマネジメント株式会社 | Photodetector, structure manufacturing method, and photodetector manufacturing method |
EP4239682A4 (en) * | 2020-10-30 | 2024-12-18 | Panasonic Intellectual Property Management Co., Ltd. | PHOTODETECTOR DEVICE, METHOD FOR PRODUCING A STRUCTURE AND METHOD FOR PRODUCING A PHOTODETECTOR DEVICE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5504695B2 (en) | Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus | |
US6940654B1 (en) | Lens array and method of making same | |
US7427799B2 (en) | Complementary metal oxide semiconductor image sensor and method for fabricating the same | |
KR102626696B1 (en) | Solid-state imaging device and method of manufacturing the same | |
KR960016178B1 (en) | Solid state imaging device and manufacturing method thereof | |
JPWO2020122032A1 (en) | Manufacturing method of solid-state image sensor and solid-state image sensor | |
JP2011171328A (en) | Solid-state image pickup element and method of manufacturing the same | |
JP2005079344A (en) | Solid-state imaging device and manufacturing method thereof | |
KR100720457B1 (en) | Image sensor and its manufacturing method | |
WO2018193986A1 (en) | Solid-state imaging element and method for manufacturing same | |
JP4181487B2 (en) | Solid-state imaging device and manufacturing method thereof | |
KR100720509B1 (en) | Image sensor and its manufacturing method | |
JP6816717B2 (en) | Image sensor and its manufacturing method | |
JP2007067384A (en) | Solid-state imaging device | |
JP2009152314A (en) | Image sensor and manufacturing method thereof | |
JP6763187B2 (en) | Image sensor manufacturing method | |
JP2018078268A (en) | Image sensor and method for manufacturing the same | |
JP2011165791A (en) | Solid-state imaging element, and method of manufacturing the same | |
JP2012156212A (en) | Solid state image pickup element and its manufacturing method and electronic information apparatus | |
JP2012109302A (en) | Solid state image pickup device and manufacturing method of the same | |
KR100727267B1 (en) | Image element with micro lens and manufacturing method thereof | |
JP2005150697A (en) | Solid-state imaging device | |
JP2005109445A (en) | Solid state imaging device | |
JP2016225338A (en) | Solid state imaging device | |
JP2020077733A (en) | Solid-state imaging element color filter, manufacturing method thereof, solid-state imaging element, and imprint mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787446 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18787446 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |