[go: up one dir, main page]

WO2018197984A1 - Display system and mobile body - Google Patents

Display system and mobile body Download PDF

Info

Publication number
WO2018197984A1
WO2018197984A1 PCT/IB2018/052611 IB2018052611W WO2018197984A1 WO 2018197984 A1 WO2018197984 A1 WO 2018197984A1 IB 2018052611 W IB2018052611 W IB 2018052611W WO 2018197984 A1 WO2018197984 A1 WO 2018197984A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
imaging
wiring
circuit
function
Prior art date
Application number
PCT/IB2018/052611
Other languages
French (fr)
Japanese (ja)
Inventor
山崎舜平
宮口厚
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019514878A priority Critical patent/JPWO2018197984A1/en
Publication of WO2018197984A1 publication Critical patent/WO2018197984A1/en
Priority to JP2022182480A priority patent/JP2023036577A/en
Priority to JP2024081459A priority patent/JP7707366B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • One embodiment of the present invention relates to a display system and a moving object.
  • Patent Document 1 Vehicles equipped with an imaging device for imaging information around a vehicle and a display device for displaying information obtained by imaging are widely used (for example, Patent Document 1).
  • a light source with high illuminance such as a vehicle headlight (headlight) approaches. Therefore, there is a problem that the obtained image data is excessively exposed around the light source, and the display of the area corresponding to the periphery of the light source becomes white.
  • the exposure around the light source can be adjusted, the displayed image becomes dark, and it becomes difficult to grasp the size and shape of the entire vehicle. That is, the information obtained is limited.
  • An object of one embodiment of the present invention is to provide a novel display system, a moving object, and the like.
  • one embodiment of the present invention provides a novel display system, a moving body, and the like that can perform normal display even if a defect (unclear) portion occurs in acquired captured data due to an imaging environment. This is one of the issues.
  • Another object of one embodiment of the present invention is to provide a novel display system, a moving object, and the like that can improve visibility.
  • the feature amount is extracted from part of the information of the subject that is clearly imaged, and the corresponding correction data is selected by collating in the database.
  • the gist is to correct the unclear area of the imaging data based on the correction data.
  • One embodiment of the present invention includes an imaging device, a display device, a feature amount output circuit, an image processing circuit, and a database.
  • the imaging device has a function of outputting imaging data.
  • the feature amount output circuit includes imaging data.
  • the database has correction data and detection data, and has a function of outputting correction data to the image processing circuit in accordance with the feature data.
  • the image processing circuit has a function of generating image data by correcting imaging data based on correction data
  • the display device is a display system having a function of performing display according to image data.
  • the database is preferably a display system having a function of selecting detection data that matches or resembles feature data and outputting correction data corresponding to the detection data to the image processing circuit.
  • the database can update detection data serving as a weight parameter by machine learning using feature data as learning data, and infer correction data that matches or is similar to the feature data.
  • detection data serving as a weight parameter by machine learning using feature data as learning data
  • infer correction data that matches or is similar to the feature data.
  • a display system with functionality is preferred.
  • One embodiment of the present invention includes an imaging device, a display device, a feature amount output circuit, an image processing circuit, and a transmission / reception circuit, the imaging device has a function of acquiring imaging data, and the feature amount output circuit includes:
  • the image processing circuit has a function of acquiring feature amount data of imaging data, and the feature amount data has a function of being transmitted to a database having correction data and detection data via a transmission / reception circuit.
  • the correction data is data corresponding to the detection data
  • the detection data is data that matches or is similar to the feature data
  • the correction data is obtained by inferring by inputting feature amount data in a database in which detection data serving as a weight parameter is updated by machine learning using the feature amount data as learning data.
  • a mobile that is data is preferred.
  • One embodiment of the present invention can provide a novel display system, a moving object including the display system, and the like.
  • one embodiment of the present invention provides a novel display system, a moving body, and the like that can perform normal display even if a defect (unclear) portion occurs in acquired captured data due to an imaging environment. be able to.
  • a novel display system, a moving object, and the like that can improve visibility can be provided.
  • the block diagram for demonstrating a display system The block diagram for demonstrating a display system.
  • FIG. 9 illustrates a configuration example of a semiconductor device.
  • FIG. 14 is a top view illustrating one embodiment of a display device.
  • FIG. 14 is a cross-sectional view illustrating one embodiment of a display device.
  • FIG. 14 is a cross-sectional view illustrating one embodiment of a display device.
  • 4A and 4B illustrate a display device in a moving object. The figure explaining an example of a moving body.
  • FIG. 1 is a block diagram for explaining an example of a display system which is one embodiment of the present invention.
  • the display system 10 illustrated in FIG. 1 includes an imaging device 11, a feature amount output circuit 12, a database 13, an image processing circuit 14, and a display device 15.
  • the imaging device 11 is specifically a camera module attached to a moving body such as an automobile.
  • the imaging device 11 has a function of outputting the imaging data 16.
  • the imaging data 16 is output to the feature amount output circuit 12 and the image processing circuit 14.
  • the imaging device 11 preferably has an imaging element with a wide dynamic range. For example, by using the imaging device 11 including an imaging element having selenium, it is possible to reduce unclear portions of imaging data when imaging a subject having a large contrast.
  • the feature amount output circuit 12 extracts the feature amount in the imaging data 16 and outputs it as feature amount data. It is effective to extract the feature amount in combination with imaging data obtained by the imaging device 11 and data that can be acquired from a sensor or the like used to detect the relative speed or relative position of the subject.
  • the feature amount includes an appearance feature amount (appearance feature amount).
  • the appearance feature amount in an automobile includes, for example, the body color of the own vehicle, the number of the license plate, the vehicle type, the vehicle width, the vehicle height, the blinker lamp, and the headlight.
  • the feature amount data of these feature amounts is output to the database 13 as encoded data or data cut out from the original imaging data.
  • the feature amount is set so that it can be easily detected by image recognition, thereby reducing the load of image recognition processing. It is also effective to exclude the blinker lamp and the brake lamp from being subject to image recognition because lighting or blinking changes depending on the situation.
  • the unclear area of the imaging data 16 is an area where it is difficult to extract a feature amount because the contrast ratio between light and dark is small. Therefore, the feature quantity output circuit 12 can reduce the data of the unclear area of the imaged data by extracting the feature quantity.
  • the feature quantity output circuit 12 extracts, for example, a Haar-like feature, a HOG (Histograms of Oriented Gradients) feature, a SIFT (Scaled Invariance Feature Transform) feature, or a SURF (Speeded Up Robust feature). It is also effective to extract and output feature amount data at a desired location by combining the above. It is also effective to smooth the imaged data 16 with a Gaussian filter and select characteristic area information.
  • a Haar-like feature for example, a HOG (Histograms of Oriented Gradients) feature, a SIFT (Scaled Invariance Feature Transform) feature, or a SURF (Speeded Up Robust feature). It is also effective to extract and output feature amount data at a desired location by combining the above. It is also effective to smooth the imaged data 16 with a Gaussian filter and select characteristic area information.
  • the feature quantity output circuit 12 may output, as feature quantity data, a feature quantity that is automatically calculated by CNN (Convolutional Neural Network) learning, for example.
  • the feature amount output circuit 12 is mainly configured as a microcomputer, and includes a processor, a memory, an I / O, and a bus connecting them.
  • various functions can be realized by executing a program stored in advance in a memory by a processor based on information of various sensors in addition to the imaging device 11.
  • the database 13 stores feature data 17, correction data 18, and detection data 19.
  • the correction data 18 is data for correcting the imaging data 16.
  • the detection data 19 is data for selecting the correction data 18 based on the feature data.
  • the correction data 18 is data for correcting the imaging data 16 in the image processing circuit 14.
  • the correction data 18 is preferably data that can be displayed with a higher resolution than the imaging data 16. With this configuration, the resolution of an image obtained by correcting the imaging data 16 can be increased, and the visibility of display on the display device 15 can be increased.
  • the image data obtained by the correction of the imaging data using the correction data 18 may be different from the image actually obtained by visual observation.
  • image data there may be image data in which the vehicle type, the shape of the vehicle body, etc. are partially different.
  • correction data may be selected from subjects having the same feature data. Even in such a case, since the entire information of the subject can be removed as compared with the image data without correction, the situation can be grasped more efficiently by the projected image.
  • the detection data 19 is data that can select the correction data 18 based on the feature value data 17 input from the feature value output circuit 12.
  • the detection data can be feature amount data such as an appearance feature amount extracted based on the correction data 18. With this configuration, it is possible to select the desired correction data 18 by selecting the detection data 19 that matches or is similar to the feature data 17.
  • the detection data 19 may be data serving as a weight parameter in CNN learning.
  • the CNN learning in the database 13 is a detection parameter which is a weighting parameter using, as learning data, data obtained by adding a correct label corresponding to the correction data 18 to the feature data 17 input from the feature data output circuit 12 collected in advance.
  • the data 19 is updated.
  • the detection data 19 is updated by repeating the CNN learning. By repeating the update, the accuracy can be improved.
  • the correction data 18 corresponding to the input of the feature data 17 can be selected with high accuracy.
  • the database 13 has a function of storing the correction data 18 and the detection data 19, a memory for storing a program for selecting the correction data 18 corresponding to the feature data 17, and a processor for executing the program It has a function as a computer equipped with. In the database 13, various functions can be realized by executing a program stored in advance in a computer.
  • the image processing circuit 14 is a circuit having a function of correcting data in a blurred region of the imaging data 16 based on the correction data 18 and outputting the corrected imaging data as image data.
  • the unclear area of the imaging data 16 corresponds to an area where it is difficult to extract a feature amount, such as an area where the contrast ratio between light and dark is small. For this reason, a configuration in which a region where feature amount extraction is difficult can be corrected based on the correction data 18 can be given as an example.
  • the correction data 18 is particularly effective when correcting the entire contour of the subject in the imaging data 16.
  • the image processing circuit 14 holds the correction data once acquired. With this configuration, once the correction data 18 is held, it can be repeatedly used for correction of imaging data.
  • the correction data 18 preferably has a higher resolution than the imaging data 16.
  • the correction data 18 can be used for the super-resolution processing of the imaging data, and the corrected and displayed image becomes clearer. be able to.
  • the display device 15 performs display based on the image data generated by the image processing circuit.
  • the display device 15 can be used in place of a room mirror in the case of an automobile.
  • the display system 10 includes an imaging device 11 and a display device 15.
  • the display system 10 extracts feature data from a part of information of the subject in the imaging data 16 obtained by the imaging device 11 and collates it in the database 13 to select correction data 18. Originally, the unclear area of the imaging data 16 is corrected.
  • the display system 10 is preferably applied to a moving body such as an automobile. Specifically, it is particularly suitable in a situation where the periphery of the automobile is imaged by an imaging device such as a camera and the state is visually recognized by a display device.
  • the moving body is a vehicle that moves like an automobile. Accordingly, the moving body is not limited to a car, but includes a bus, a train, an airplane, and the like.
  • an unclear area may occur in imaging data obtained by the imaging device according to changes in conditions such as day and night, and fine rain.
  • a headlight of a rear automobile or water droplets adhering to the imaging device causes a blurred area.
  • the feature data is extracted from the information on a part of the subject and collated in the database 13 to select the correction data 18 so that the imaging data 16 is unclear. Correct the area. Therefore, it is effective for improving visibility.
  • the application of the display system 10 of the present invention is not limited to a mobile object. This is effective when image data captured by the imaging device is displayed on the display device. For example, it is effective when correcting unclear portions of imaging data obtained by an imaging device such as a security camera or a smartphone.
  • a display system 10A shown in FIG. 2 has a configuration in which a transmission / reception circuit 20 and a network 21 are added to the configuration of the display system 10 of FIG. That is, data output from the feature amount output circuit 12 to the database 13 and data output from the database to the image processing circuit 14 are performed via the transmission / reception circuit 20 and the network 21.
  • the configuration of the display system 10A in FIG. 2 can be described with reference to the conceptual diagram illustrated in FIG. That is, the display system 10 ⁇ / b> A is configured to transmit / receive data to / from the database 13 via the relay station 24 from the automobile 22 ⁇ / b> A to which the transmission / reception circuit 20 is attached.
  • the configuration of the display system 10 in FIG. 1 can be described with reference to the conceptual diagram illustrated in FIG. That is, the imaging device 11, the feature amount output circuit 12, the database 13, the image processing circuit 14, and the display device 15 that constitute the display system 10 are configured to be included in the automobile 22.
  • the feature amount output circuit 12, the database 13, and the image processing circuit 14 are illustrated as a data processing circuit 23.
  • FIG. 4 illustrates a block diagram of a display system 10B including a plurality of imaging devices 11_1-11_n (n is a natural number) and a display device 15_1-15_n.
  • the display device 15 can include a large display portion so that image data obtained by imaging with the plurality of imaging devices 11_1-11_n can be displayed side by side.
  • FIG. 5 illustrates a block diagram of a display system 10C in which a sensor 25 is added to the configuration of the display system 10 of FIG.
  • the sensor 25 can control whether or not to stop the function of the feature value output circuit 12 according to the output. For example, when the sensor 25 is an illuminance sensor, the output of feature amount data from the feature amount output circuit 12 is stopped when the illuminance is high, and the output of feature amount data from the feature amount output circuit 12 is started when the illuminance is low. can do.
  • the switching of the output of the feature amount data from the feature amount output circuit 12 may be performed by turning on and off the switching function by the user.
  • the configuration may be such that the function can be switched between start and stop in accordance with input from a touch sensor or the like.
  • the sensor 25 may be configured to be used in combination with other sensors such as a millimeter wave radar that can be used to detect the relative speed and relative position of the subject.
  • sensors such as a millimeter wave radar that can be used to detect the relative speed and relative position of the subject.
  • the imaging data is corrected based on the correction data, and normal Image data for display can be generated. Therefore, the visibility of the image displayed on the display device can be improved.
  • FIG. 6 is a flowchart for explaining an operation example of the display system 10 described in FIG.
  • feature amount data is input to the database 13 by extracting the feature amount of the imaging data 16, and detection data 19 that matches or resembles the feature amount data 17 is compared.
  • the correction data 18 is selected. Then, the selected correction data 18 is used by the image processing circuit 14 to correct the imaging data 16.
  • step S ⁇ b> 11 is a step of acquiring the imaging data 16 by the imaging device 11.
  • the imaging data 16 is output to the feature amount output circuit 12.
  • the same imaging data 16 is also output to the image processing circuit 14.
  • Step S12 is a step of determining whether or not the input imaging data 16 has a display abnormality.
  • Step S12 may be performed together with the feature amount extraction in step S13.
  • the structure which determines display abnormality according to the output of sensors, such as an illumination intensity sensor may be sufficient.
  • the user may determine the display abnormality by looking at the display based on the imaging data 16 and perform switching using a sensor or the like. If it is determined that there is no display abnormality (No), the process proceeds to the step of displaying on the display device 15 in step S17. If it is determined that there is a display abnormality (Yes), the process proceeds to step S13.
  • Step S13 is a step in which the feature quantity output circuit 12 performs feature quantity extraction.
  • the obtained feature quantity is output to the database 13 as feature quantity data 17.
  • the feature amount data 17 is data obtained by combining the appearance feature amount based on the image recognition process and the feature amount obtained by the local gradient feature extraction technique of the characteristic region.
  • Step S14 is a step of selecting (searching) the detection data 19 stored in the database 13 corresponding to the feature data obtained in Step S13.
  • the detection data 19 is data for selecting the correction data 18 based on the feature amount data 17.
  • Step S15 is a step for causing the image processing circuit 14 to output the correction data 18 corresponding to the detection data 19 that matches or is similar to (or hits) the feature data 17 by the search in step S14.
  • the correction data 18 is data for correcting a missing (unclear) region of the imaging data 16.
  • Step S16 is a step of correcting the imaging data 16 to generate image data.
  • the image data obtained on the basis of the corrected imaging data 16 is data in which excessive exposure around the light source and information on the size and shape of the entire subject are corrected. That is, the information obtained can be complemented by the correction data 18.
  • Step S17 is a step of performing display based on the image data on the display device 15.
  • the correction data 18 can be selected by comparing the detection data 19 that matches or is similar to the feature data 17.
  • the selected correction data 18 is used to correct the imaging data 16 by the image processing circuit 14, thereby generating image data for normal display when a missing (unclear) portion occurs in the acquired imaging data. can do. Therefore, the visibility of the image displayed on the display device can be improved.
  • the correction data 18 can be selected from the feature amount data by extracting the feature amount of the imaging data 16 into the database 13.
  • the database 13 is trained so as to infer the correction data 18 corresponding to the feature data using the detection data 19 as a weight parameter in CNN learning. Then, the selected correction data 18 can be used for correction of the imaging data 16 by the image processing circuit 14.
  • FIG. 7 shows a flowchart for explaining an example of learning of the display system 10 when the detection data 19 is used as a weight parameter in CNN learning.
  • Step S21 performs the same feature amount extraction as step S13. That is, in step S12, the feature amount of the imaging data 16 having display abnormality is extracted.
  • the feature amount data obtained in step S21 is training data and test data.
  • the original imaging data is preferably different data, and it is preferable to generate and prepare a large amount of feature amount data.
  • Step S22 is a step of assigning a correct answer label to the feature data.
  • the correct answer label corresponds to correction data 18 that is optimal for correcting the imaging data 16 corresponding to the feature data.
  • Step S23 is a step in which feature data for training is given and the detection data 19 serving as a weight parameter is updated. It is effective to update the weight parameter using a known learning method such as an error back propagation method.
  • Step S24 is a step of inputting feature amount data.
  • the feature data input in step S24 is test data with a correct answer label.
  • step S25 it is determined whether the output signal obtained in step S24 corresponds to the correct label attached earlier (Yes or No). If not, the parameter update in step S23 is repeated.
  • Step S26 is a determination (Yes or No) as to whether or not the accuracy of whether the correction data 18 that matches or is similar to the feature data 17 is obtained is equal to or less than the set value. If the accuracy is less than or equal to the set value, the parameter update in step S23 is repeated.
  • Detecting data 19 is updated by repeating CNN learning. By repeating the update, the accuracy of the correction data 18 corresponding to the input of the feature data 17 can be improved. By using the CNN using the updated detection data 19 as a weight parameter, the correction data 18 corresponding to the input of the unknown feature data 17 can be selected with high accuracy.
  • FIG. 8 is a block diagram for explaining a configuration example of the CNN (convolutional neural network) explained in FIG.
  • the convolutional neural network 30 shown in FIG. 8 includes an input layer 31, an intermediate layer 32, and an output layer 33.
  • FIG. 8 illustrates the feature data 17 that is input data in the input layer 31.
  • the filter 34 in the intermediate layer 32, the filter 34, the convolution data 35, the pooling data 36, the filter 37, the convolution data 38, and the pooling data 39 are illustrated.
  • the configuration of the intermediate layer 32 is an example, and a configuration in which pooling processing and convolution calculation processing by the filters 34 and 37 are performed in multiple layers, or a configuration in which calculation processing such as padding and stride is performed may be employed.
  • the output data 41 is obtained by processing the obtained all combined data 40 (y1-ym in the figure) with a softmax function to obtain an output corresponding to the correct answer label.
  • the parameters (weight data) of the filters 34 and 37 are updated, and output data 41 (O (y1) ⁇ O (ym) in the figure) with labels is obtained. So that they can learn and infer.
  • the corresponding correction data 18 can be output to the image processing circuit 14.
  • FIG. 9A is a schematic view seen from the rear of the automobile 22.
  • a camera that is the imaging device 11 and a room mirror that is the display device 15 are illustrated.
  • FIG. 9B shows a car 22 and another car 42 behind it.
  • the automobile 42 illustrates a state in which a headlight as a light source 43 is emitted toward the automobile 22 in the irradiation direction 44.
  • FIG. 9B shows a state in which the imaging device 11 of the automobile 22 is imaged toward the automobile 42 in the imaging direction 45.
  • the automobile 42 is illustrated as the subject to be imaged by the imaging device 11, but the subject is not limited to the automobile.
  • the subject may be any object that can select correction data by extracting feature values from imaged data such as pedestrians, bicycles, street lamps, and signs. If it is a pedestrian, it is also effective to extract a feature amount from features of parts such as feet and hands, and to correct a part of the head or upper body with correction data. Visibility can be enhanced by displaying image data of the entire pedestrian on the display device.
  • the imaging data 16 obtained by the imaging device 11 can be expressed as shown in FIG. That is, as shown in FIG. 9C, the illuminance of the light source 43 increases. Although the shape of the area around the light source 43 is recognized by suppressing exposure, it is difficult to recognize the shape of the entire automobile 42. For this reason, as shown in FIG. 9D, when an automobile having a light source with high illuminance is captured during night driving or the like, a clear area 48 and an unclear area 49 are mixed in the imaging data.
  • FIG. 10A is a schematic view seen from the rear of the automobile 22A.
  • FIG. 10A illustrates a camera that is the imaging device 11 ⁇ / b> A and a room mirror that is the display device 15.
  • FIG. 10A illustrates an enlarged schematic diagram of the imaging device 11A, and illustrates a lens 46 and a water droplet 47. In the case of rain or the like, water droplets 47 or the like may adhere to the surface of the lens 46, resulting in unclear image data.
  • 10A shows a configuration in which the display device 15 is arranged at the position of the room mirror, but it is also effective for a configuration in which a display device at the position of the side mirror or the dashboard is arranged.
  • FIG. 10B shows a car 22A and another car 42 behind the car 22A.
  • FIG. 10B illustrates a state where the imaging device 11 ⁇ / b> A of the automobile 22 ⁇ / b> A is imaged toward the automobile 42 in the imaging direction 45.
  • the imaging data 16 obtained by the imaging device 11 can be represented as shown in FIG. That is, as shown in FIG. 10C, when the water droplet 47 is imaged, the image of the automobile 42 becomes unclear, and it becomes difficult to recognize the shape of the entire automobile 42. Therefore, as illustrated in FIG. 10D, when an automobile is imaged during rainy weather driving or the like, a clear area 48 and an unclear area 49 are mixed in the image data.
  • a feature amount is extracted from part of the information of the automobile 42 in the clear region 48 of the imaging data 16, and the feature amount data 17 is collated in the database 13 for correction.
  • the data 18 can be selected and the unclear area of the imaging data 16 can be corrected.
  • a corrected image can be visually recognized even if an unclear area is generated in the imaging data obtained by the imaging device in accordance with changes in conditions such as day and night and fine rain. For example, even if a headlight of a vehicle behind the vehicle or a water droplet attached to the imaging device causes a blurred region, correction data corresponding to the feature amount data can be selected and the imaging data can be corrected. Therefore, it becomes easy to grasp the size and shape of the entire subject. Moreover, since the information obtained can be increased, it is effective in improving visibility.
  • FIG. 11 is a flowchart for explaining a more specific example of the operation of the display system.
  • FIG. 11 illustrates the data flow in the imaging device 11, the feature amount output circuit 12, the database 13, the image processing circuit 14, and the display device 15 in the display system 10 described in FIG.
  • step S31 shown in FIG. 11 the imaging data is acquired by the imaging device 11 and the imaging data is output to the feature amount output circuit 12.
  • correction data and detection data are stored in the database 13.
  • the correction data 18 and the detection data 19 in the database 13 may be stored in advance.
  • Step S31 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG.
  • the imaging data 16 illustrated in FIG. 9C is illustrated for easy understanding.
  • a plurality of automobile images 18 ⁇ / b> A are shown as the correction data 18 for easy understanding.
  • a headlight image 19 ⁇ / b> A which is a part of an image of an automobile, is illustrated as detection data.
  • step S32 shown in FIG. 11 the feature amount data is calculated by the feature amount output circuit 12, and the feature amount data is output from the feature amount output circuit 12 to the database 13.
  • Step S32 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG. In FIG. 13, in order to facilitate understanding, a headlight image 17 ⁇ / b> A is illustrated as a part of an automobile image that is an appearance feature amount as the feature amount data 17.
  • step S33 shown in FIG. 11 the feature amount data 17 is input from the feature amount output circuit 12 to the database 13, and the detection is performed by searching for the detection data 19 that matches or resembles the feature amount data using the headlight image 17A.
  • the data 19 is selected and the correction data 18 corresponding to the detection data 19 is output to the image processing circuit 14.
  • Step S33 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG. In FIG. 14, for the sake of easy understanding, it is assumed that the feature data of the headlight image 17A and the feature data of the headlight image 19A coincide with each other with correction data 18 output to the image processing circuit 14. An image 18A is illustrated.
  • step S34 shown in FIG. 11 the imaging data 16 from the imaging device 11 as correction source data and the correction data 18 from the database 13 as correction data are input to the image processing circuit 14, and imaging is performed. Data 16 is corrected.
  • the corrected imaging data is output from the image processing circuit 14 to the display device 15 as image data.
  • the display device 15 receives image data from the image processing circuit 14 and can perform a clear display.
  • Step S34 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG.
  • FIG. 15 illustrates the imaging data 16 illustrated in FIG. 9C for easy understanding.
  • an image 18 ⁇ / b> A is illustrated as correction data 18 output to the image processing circuit 14 for easy understanding.
  • image data 51 corresponding to the image data output to the display device 15 is illustrated for easy understanding.
  • the feature amount is extracted from a part of information of the imaging data 16, and the feature amount data 17 is collated in the database 13. 18 is selected and the unclear area of the imaged data 16 is corrected. Therefore, it is effective for improving visibility.
  • a corrected image can be visually recognized even if an unclear area is generated in the imaging data obtained by the imaging device in accordance with changes in conditions such as day and night and fine rain. For example, even if a headlight of a vehicle behind the vehicle or a water droplet attached to the imaging device causes a blurred region, correction data corresponding to the feature amount data can be selected and the imaging data can be corrected. Therefore, it becomes easy to grasp the size and shape of the entire subject. Moreover, since the information obtained can be increased, it is effective in improving visibility.
  • Embodiment 2 In this embodiment, a configuration example of a semiconductor device that can be used for the neural network 30 described in the above embodiment will be described. In particular, it can be used in product-sum operation circuits such as the intermediate layer 32 and the output layer 33.
  • FIG. 16 shows a configuration example of the semiconductor device MAC having a function of performing a neural network operation.
  • the semiconductor device MAC can be used for at least a part of the neural network 30 described in the above embodiment.
  • the semiconductor device MAC has a function of performing a product-sum operation on the first data corresponding to the connection strength (weight) between the neurons and the second data corresponding to the input data.
  • the first data and the second data can be analog data or multivalued data (discrete data), respectively.
  • the semiconductor device MAC has a function of converting data obtained by the product-sum operation using an activation function.
  • the semiconductor device MAC includes a cell array CA, a current source circuit CS, a current mirror circuit CM, a circuit WDD, a circuit WLD, a circuit CLD, an offset circuit OFST, and an activation function circuit ACTV.
  • the cell array CA includes a plurality of memory cells MC and a plurality of memory cells MCref.
  • the cell array CA has m rows and n columns (m and n are integers of 1 or more) memory cells MC (MC [1,1] to [m, n]) and m memory cells MCref (MCref 2 shows an example of a configuration having [1] to [m]).
  • Memory cell MC has a function of storing first data.
  • the memory cell MCref has a function of storing reference data used for product-sum operation.
  • the reference data can be analog data or multi-value data.
  • the memory cell MC [i, j] (i is an integer of 1 to m, j is an integer of 1 to n) includes the wiring WL [i], the wiring RW [i], the wiring WD [j], and the wiring BL [J].
  • the memory cell MCref [i] is connected to the wiring WL [i], the wiring RW [i], the wiring WDref, and the wiring BLref.
  • a current flowing between the memory cell MC [i, j] and the wiring BL [ j] is expressed as I MC [i, j]
  • a current flowing between the memory cell MCref [i] and the wiring BLref is expressed as I MCref [ i] .
  • FIG. 17 shows a specific configuration example of the memory cell MC and the memory cell MCref.
  • FIG. 17 shows memory cells MC [1,1], [2,1] and memory cells MCref [1], [2] as representative examples, but the same applies to other memory cells MC and memory cells MCref. Can be used.
  • Each of the memory cell MC and the memory cell MCref includes transistors Tr11 and Tr12 and a capacitor C11.
  • the case where the transistors Tr11 and Tr12 are n-channel transistors will be described.
  • the gate of the transistor Tr11 is connected to the wiring WL, one of the source and the drain is connected to the gate of the transistor Tr12 and the first electrode of the capacitor C11, and the other of the source or the drain is connected to the wiring WD.
  • One of a source and a drain of the transistor Tr12 is connected to the wiring BL, and the other of the source and the drain is connected to the wiring VR.
  • the second electrode of the capacitor C11 is connected to the wiring RW.
  • the wiring VR is a wiring having a function of supplying a predetermined potential.
  • a low power supply potential such as a ground potential
  • a node connected to one of the source and the drain of the transistor Tr11, the gate of the transistor Tr12, and the first electrode of the capacitor C11 is a node NM.
  • the nodes NM of the memory cells MC [1,1] and [2,1] are denoted as nodes NM [1,1] and [2,1], respectively.
  • the memory cell MCref has the same configuration as the memory cell MC. However, the memory cell MCref is connected to the wiring WDref instead of the wiring WD, and is connected to the wiring BLref instead of the wiring BL.
  • a node connected to one of the source and the drain of the transistor Tr11, the gate of the transistor Tr12, and the first electrode of the capacitor C11 is a node NMref [1]. , [2].
  • the node NM and the node NMref function as a memory cell MC and a holding node for the memory cell MCref, respectively.
  • the node NM holds first data
  • the node NMref holds reference data.
  • currents IMC [1,1] and IMC [2,1] flow from the wiring BL [1] to the transistors Tr12 of the memory cells MC [1,1] and [2,1], respectively.
  • currents I MCref [1] and I MCref [2] flow from the wiring BLref to the transistors Tr12 of the memory cells MCref [1] and [2], respectively.
  • the transistor Tr11 Since the transistor Tr11 has a function of holding the potential of the node NM or the node NMref, the off-state current of the transistor Tr11 is preferably small. Therefore, an OS transistor with an extremely low off-state current is preferably used as the transistor Tr11. As a result, fluctuations in the potential of the node NM or the node NMref can be suppressed, and the calculation accuracy can be improved. In addition, the frequency of the operation of refreshing the potential of the node NM or the node NMref can be suppressed, and power consumption can be reduced.
  • the transistor Tr12 is not particularly limited, and for example, a Si transistor or an OS transistor can be used.
  • an OS transistor is used as the transistor Tr12, the transistor Tr12 can be manufactured using the same manufacturing apparatus as the transistor Tr11, and manufacturing cost can be reduced.
  • the transistor Tr12 may be an n-channel type or a p-channel type.
  • the current source circuit CS is connected to the wirings BL [1] to [n] and the wiring BLref.
  • the current source circuit CS has a function of supplying current to the wirings BL [1] to [n] and the wiring BLref.
  • the current value supplied to the wirings BL [1] to [n] may be different from the current value supplied to the wiring BLref.
  • the current supplied from the current source circuit CS to the wirings BL [1] to [n] is expressed as I C
  • the current supplied from the current source circuit CS to the wiring BLref is expressed as I Cref .
  • the current mirror circuit CM includes wirings IL [1] to [n] and wiring ILref.
  • the wirings IL [1] to [n] are connected to the wirings BL [1] to [n], respectively, and the wiring ILref is connected to the wiring BLref.
  • connection points between the wirings IL [1] to [n] and the wirings BL [1] to [n] are denoted as nodes NP [1] to [n].
  • a connection point between the wiring ILref and the wiring BLref is referred to as a node NPref.
  • the current mirror circuit CM has a function of flowing a current I CM corresponding to the potential of the node NPref to the wiring ILref and a function of flowing the current I CM to the wirings IL [1] to [n].
  • Figure 16 is discharged current I CM from the wiring BLref to the wiring ILref
  • wiring BL [1] to the wiring from the [n] IL [1] to [n] to the current I CM is an example to be discharged .
  • currents flowing from the current mirror circuit CM to the cell array CA via the wirings BL [1] to [n] are denoted as I B [1] to [n].
  • a current flowing from the current mirror circuit CM to the cell array CA via the wiring BLref is denoted as I Bref .
  • the circuit WDD is connected to the wirings WD [1] to [n] and the wiring WDref.
  • the circuit WDD has a function of supplying a potential corresponding to the first data stored in the memory cell MC to the wirings WD [1] to [n]. Further, the circuit WDD has a function of supplying a potential corresponding to reference data stored in the memory cell MCref to the wiring WDref.
  • the circuit WLD is connected to the wirings WL [1] to [m].
  • the circuit WLD has a function of supplying a signal for selecting the memory cell MC or the memory cell MCref to which data is written to the wirings WL [1] to [m].
  • the circuit CLD is connected to the wirings RW [1] to [m].
  • the circuit CLD has a function of supplying a potential corresponding to the second data to the wirings RW [1] to [m].
  • the offset circuit OFST is connected to the wirings BL [1] to [n] and the wirings OL [1] to [n].
  • the offset circuit OFST has a function of detecting a current amount flowing from the wirings BL [1] to [n] to the offset circuit OFST and / or a change amount of a current flowing from the wirings BL [1] to [n] to the offset circuit OFST.
  • Have The offset circuit OFST has a function of outputting the detection result to the wirings OL [1] to [n].
  • the offset circuit OFST may output a current corresponding to the detection result to the wiring OL, or may convert a current corresponding to the detection result into a voltage and output the voltage to the wiring OL.
  • the current flowing between the cell array CA and the offset circuit OFST is expressed as I ⁇ [1] to [n].
  • FIG. 18 shows a configuration example of the offset circuit OFST.
  • the offset circuit OFST illustrated in FIG. 18 includes circuits OC [1] to [n].
  • Each of the circuits OC [1] to [n] includes a transistor Tr21, a transistor Tr22, a transistor Tr23, a capacitor C21, and a resistor R1.
  • the connection relationship of each element is as shown in FIG. Note that a node connected to the first electrode of the capacitor C21 and the first terminal of the resistor element R1 is referred to as a node Na.
  • a node connected to the second electrode of the capacitor C21, one of the source or the drain of the transistor Tr21, and the gate of the transistor Tr22 is referred to as a node Nb.
  • the wiring VrefL has a function of supplying the potential Vref
  • the wiring VaL has a function of supplying the potential Va
  • the wiring VbL has a function of supplying the potential Vb.
  • the wiring VDDL has a function of supplying the potential VDD
  • the wiring VSSL has a function of supplying the potential VSS.
  • the wiring RST has a function of supplying a potential for controlling the conduction state of the transistor Tr21.
  • the transistor Tr22, the transistor Tr23, the wiring VDDL, the wiring VSSL, and the wiring VbL constitute a source follower circuit.
  • circuit OC [1] to [n] will be described.
  • or [n] can be operated similarly.
  • the transistor Tr21 is on, and the potential Va is supplied to the node Nb. Thereafter, the transistor Tr21 is turned off.
  • the potential ⁇ V Na is determined according to the amount of change from the first current to the second current, the resistance element R1, and the potential Vref.
  • the resistance element R1 and the potential Vref is known, it is possible to determine the amount of change current flowing from the potential [Delta] V Na wiring BL.
  • the signal corresponding to the amount of current detected by the offset circuit OFST and / or the amount of change in current as described above is input to the activation function circuit ACTV via the wirings OL [1] to [n].
  • the activation function circuit ACTV is connected to the wirings OL [1] to [n] and the wirings NIL [1] to [n].
  • the activation function circuit ACTV has a function of performing an operation for converting the signal input from the offset circuit OFST according to a predefined activation function.
  • a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, or the like can be used.
  • the signal converted by the activation function circuit ACTV is output as output data to the wirings NIL [1] to [n].
  • FIG. 19 shows a timing chart of an operation example of the semiconductor device MAC.
  • 19 includes the wiring WL [1], the wiring WL [2], the wiring WD [1], the wiring WDref, the node NM [1,1], the node NM [2,1], and the node NMref [1] in FIG. ,
  • the transition of the potential of the node NMref [2], the wiring RW [1], and the wiring RW [2] and the transition of the values of the current I B [1] ⁇ I ⁇ [1] and the current I Bref .
  • the current I B [1] ⁇ I ⁇ [1] corresponds to the sum of currents flowing from the wiring BL [1] to the memory cells MC [1,1] and [2,1].
  • the operation will be described focusing on the memory cells MC [1,1] and [2,1] and the memory cells MCref [1] and [2] shown in FIG.
  • the MC and the memory cell MCref can be operated similarly.
  • the potential of the wiring WL [1] becomes high level
  • the potential of the wiring WD [1] becomes V PR ⁇ V W [1,1] higher than the ground potential (GND)
  • the wiring potential of WDref becomes the V PR greater potential than the ground potential.
  • the potentials of the wiring RW [1] and the wiring RW [2] are the reference potential (REFP).
  • the potential V W [1, 1] is a potential corresponding to the first data stored in the memory cell MC [1, 1].
  • the potential VPR is a potential corresponding to the reference data.
  • the transistor Tr11 included in the memory cell MC [1,1] and the memory cell MCref [1] is turned on, and the potential of the node NM [1,1] is V PR ⁇ V W [1,1] and the node NMref.
  • the potential of [1] becomes VPR .
  • a current I MC [1,1], 0 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [1,1] can be expressed by the following equation.
  • k is a constant determined by the channel length, channel width, mobility, capacitance of the gate insulating film, and the like of the transistor Tr12.
  • V th is the threshold voltage of the transistor Tr12.
  • the potential of the wiring WL [1] is at a low level. Accordingly, the transistor Tr11 included in the memory cell MC [1,1] and the memory cell MCref [1] is turned off, and the potentials of the node NM [1,1] and the node NMref [1] are held.
  • an OS transistor is preferably used as the transistor Tr11. Accordingly, leakage current of the transistor Tr11 can be suppressed, and the potentials of the node NM [1,1] and the node NMref [1] can be accurately held.
  • the potential of the wiring WL [2] is at a high level
  • the potential of the wiring WD [1] is V PR ⁇ V W [2,1] higher than the ground potential
  • the wiring WDref The potential becomes a potential VPR larger than the ground potential.
  • the potential V W [2, 1] is a potential corresponding to the first data stored in the memory cell MC [2, 1]. Accordingly, the transistor Tr11 included in the memory cell MC [2,1] and the memory cell MCref [2] is turned on, and the potential of the node NM [2,1] is V PR ⁇ V W [2,1] and the node NMref. The potential of [2] becomes VPR .
  • the potential of the wiring WL [2] is at a low level. Accordingly, the transistor Tr11 included in the memory cell MC [2,1] and the memory cell MCref [2] is turned off, and the potentials of the node NM [2,1] and the node NMref [2] are held.
  • the first data is stored in the memory cells MC [1,1] and [2,1], and the reference data is stored in the memory cells MCref [1] and [2].
  • a current from the current source circuit CS is supplied to the wiring BL [1]. Further, the current flowing through the wiring BL [1] is discharged to the current mirror circuit CM and the memory cells MC [1,1], [2,1]. In addition, a current flows from the wiring BL [1] to the offset circuit OFST.
  • the current supplied from the current source circuit CS to the wiring BL [1] is I C, 0 and the current flowing from the wiring BL [1] to the offset circuit OFST is I ⁇ , 0 , the following equation is established.
  • the potential of the wiring RW [1] is V X [1] larger than the reference potential.
  • the potential V X [1] is supplied to the respective capacitive elements C11 of the memory cell MC [1,1] and the memory cell MCref [1], and the potential of the gate of the transistor Tr12 is increased by capacitive coupling.
  • the potential V x [1] is a potential corresponding to the second data supplied to the memory cell MC [1, 1] and the memory cell MCref [1].
  • the amount of change in the potential of the gate of the transistor Tr12 is a value obtained by multiplying the amount of change in the potential of the wiring RW by the capacitive coupling coefficient determined by the configuration of the memory cell.
  • the capacitive coupling coefficient is calculated by the capacitance of the capacitive element C11, the gate capacitance of the transistor Tr12, the parasitic capacitance, and the like.
  • the capacitive coupling coefficient is 1.
  • the potential V x may be determined in consideration of the capacitive coupling coefficient.
  • the current I MC [1,1], 1 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [1,1] can be expressed by the following equation.
  • current I MCref [1], 1 flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [1] from time T05 to T06 can be expressed by the following equation.
  • the wiring BL [1], the current I C is supplied from the current source circuit CS. Further, the current flowing through the wiring BL [1] is discharged to the current mirror circuit CM and the memory cells MC [1,1], [2,1]. Further, a current also flows from the wiring BL [1] to the offset circuit OFST.
  • the current flowing from the wiring BL [1] to the offset circuit OFST is I ⁇ , 1 , the following equation is established.
  • the differential current ⁇ I ⁇ has a value corresponding to the product of the potentials V W [1, 1] and V X [1] .
  • the potential of the wiring RW [1] becomes the ground potential, and the potentials of the node NM [1,1] and the node NMref [1] are the same as those of the time T04-T05.
  • the potential of the wiring RW [1] is V X [1] larger than the reference potential
  • the potential of the wiring RW [2] is V X [2] larger than the reference potential.
  • the potential V X [1] is supplied to the respective capacitive elements C11 of the memory cell MC [1,1] and the memory cell MCref [1], and the node NM [1,1] and the node NMref [ 1] is increased by V X [1] .
  • V X [2] is supplied to the respective capacitor C11 of the memory cell MC [2,1] and the memory cell MCref [2], and the node NM [2,1] and the node NMref [2 ] are connected by capacitive coupling. ] Increases by V X [2] .
  • the current I MC [2,1], 1 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [2,1] can be expressed by the following equation.
  • current I MCref [2], 1 flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [2] from time T05 to T06 can be expressed by the following equation.
  • the wiring BL [1], the current I C is supplied from the current source circuit CS. Further, the current flowing through the wiring BL [1] is discharged to the current mirror circuit CM and the memory cells MC [1,1], [2,1]. Further, a current also flows from the wiring BL [1] to the offset circuit OFST. Assuming that the current flowing from the wiring BL [1] to the offset circuit OFST is I ⁇ , 2 , the following equation is established.
  • the differential current ⁇ I ⁇ is obtained by adding the product of the potential V W [1, 1] and the potential V X [1] and the product of the potential V W [2, 1] and the potential V X [2]. The value depends on the combined result.
  • the difference current ⁇ I ⁇ input to the offset circuit OFST includes the potential V X corresponding to the first data (weight) and the second data (input data). ) corresponding to a value corresponding to the combined result plus the product of the potential V W. That is, by measuring the differential current ⁇ I ⁇ with the offset circuit OFST, it is possible to obtain a product-sum operation result of the first data and the second data.
  • the memory cells MC [1,1] and [2,1] and the memory cells MCref [1] and [2] are particularly focused.
  • the number of the memory cells MC and the memory cells MCref should be arbitrarily set. Can do.
  • the differential current ⁇ I ⁇ when the number of rows m of the memory cell MC and the memory cell MCref is an arbitrary number can be expressed by the following equation.
  • the number of product-sum operations executed in parallel can be increased.
  • the semiconductor device MAC by using the semiconductor device MAC, the product-sum operation of the first data and the second data can be performed. Note that by using the structure shown in FIG. 17 as the memory cell MC and the memory cell MCref, a product-sum operation circuit can be formed with a small number of transistors. Therefore, the circuit scale of the semiconductor device MAC can be reduced.
  • the number of rows m of the memory cells MC corresponds to the number of input data supplied to one neuron
  • the number of columns n of the memory cells MC corresponds to the number of neurons.
  • the semiconductor device MAC As described above, by using the semiconductor device MAC, the product-sum operation of the neural network can be performed. Further, by using the memory cell MC and the memory cell MCref shown in FIG. 17 for the cell array CA, an integrated circuit capable of improving calculation accuracy, reducing power consumption, or reducing the circuit scale can be provided. .
  • the product difference calculation can be performed by setting “positive” when the potential V X corresponding to the first data (weight) is equal to or higher than an arbitrary reference potential, and “negative” when the potential is smaller. Therefore, the semiconductor device MAC can function as a product difference arithmetic circuit.
  • FIGS. 20A and 20B are shown.
  • 20A and 20B are images showing a vehicle that is traveling in a dark place such as in a tunnel.
  • FIG. 20A shows that the vehicle 110 positioned outside the tunnel can be visually recognized due to the influence of the headlight 105 of the vehicle 100 that is suddenly turned on, but the visibility of the pedestrian 120 and the pedestrian 130 inside the tunnel is reduced. Shows the state.
  • the image processing using the product difference arithmetic circuit reduces the influence of the headlight 105 that is suddenly turned on, and not only the vehicle 110 located outside the tunnel but also the pedestrian 120 inside the tunnel. In addition, the visibility of the pedestrian 130 is also improved. Note that difference information between the current frame image and the previous frame image can be acquired by the product difference calculation circuit, and image processing can be performed using the difference information.
  • in-vehicle image sensors are expected for automated driving and as side mirrors and rearview mirrors.
  • a mechanism for adjusting sensitivity for each pixel By combining one embodiment of the present invention with a mechanism for adjusting sensitivity for each pixel, an obstacle or a person can be accurately detected even in a situation where the lights of other vehicles are dazzling.
  • This embodiment mode can be combined with any of the other embodiment modes as appropriate.
  • FIG. 21 is a top view showing a display device 700 applicable to the display device 15 exemplified in the previous embodiment.
  • a display device 700 illustrated in FIG. 21 includes a pixel portion 702 provided over a first substrate 701, a demultiplexer 703 provided in the first substrate 701, a source driver 704 and a gate driver 706, a pixel portion 702,
  • the sealant 712 is disposed so as to surround the demultiplexer 703 and the gate driver 706, and the second substrate 705 is provided so as to face the first substrate 701. Note that the first substrate 701 and the second substrate 705 are sealed with a sealant 712.
  • the pixel portion 702, the demultiplexer 703, and the gate driver 706 are sealed with the first substrate 701, the sealant 712, and the second substrate 705. Note that although not illustrated in FIG. 21, a display element is provided between the first substrate 701 and the second substrate 705.
  • the display device 700 includes a pixel portion 702, a demultiplexer 703, a source driver 704, and a gate driver 706 in different regions from the region surrounded by the sealant 712 on the first substrate 701.
  • FPC terminal portion 708 Flexible printed circuit
  • an FPC 716 is connected to the FPC terminal portion 708, and various signals are supplied to the pixel portion 702, the demultiplexer 703, the source driver 704, and the gate driver 706 by the FPC 716.
  • a signal line 710 is connected to each of the pixel portion 702, the demultiplexer 703, the source driver 704, the gate driver 706, and the FPC terminal portion 708.
  • Various signals and the like supplied from the FPC 716 are supplied to the pixel portion 702, the demultiplexer 703, the source driver 704, the gate driver 706, and the FPC terminal portion 708 through the signal line 710.
  • a plurality of gate drivers 706 may be provided in the display device 700.
  • the gate driver 706 is formed over the same first substrate 701 as the pixel portion 702 and the source driver 704 is a source driver IC is shown; however, the structure is not limited to this.
  • the source driver 704 may be formed on the first substrate 701.
  • the source driver IC can be provided by a COG (Chip On Glass) method, a wire bonding method, or the like.
  • the demultiplexer 703 can be omitted.
  • the display device 700 can have various elements.
  • the element include, for example, an electroluminescence (EL) element (an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element, an LED, etc.), a light-emitting transistor (a transistor that emits light in response to a current), and electron emission.
  • EL electroluminescence
  • Element liquid crystal element, electronic ink element, electrophoretic element, electrowetting element, plasma display panel (PDP), MEMS (micro electro mechanical system) display (for example, grating light valve (GLV), digital micromirror device (DMD), digital micro shutter (DMS) element, interferometric modulation (IMOD) element, etc.), piezoelectric ceramic display, and the like.
  • An example of a display device using an EL element is an EL display.
  • a display device using an electron-emitting device there is a field emission display (FED), a SED type flat display (SED: Surface-conduction Electron-emitter Display), or the like.
  • FED field emission display
  • SED SED type flat display
  • a display device using a liquid crystal element there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like.
  • An example of a display device using an electronic ink element or an electrophoretic element is electronic paper.
  • part or all of the pixel electrode may have a function as a reflective electrode.
  • part or all of the pixel electrode may have aluminum, silver, or the like.
  • a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
  • the color elements controlled by the pixels when performing color display are not limited to three colors of RGB (R represents red, G represents green, and B represents blue).
  • RGB red
  • G represents green
  • B represents blue
  • it may be composed of four pixels: an R pixel, a G pixel, a B pixel, and a W (white) pixel.
  • one color element may be configured by two colors of RGB, and two different colors may be selected and configured depending on the color element.
  • one or more colors such as yellow, cyan, and magenta may be added to RGB.
  • the size of the display area may be different for each dot of the color element.
  • the disclosed invention is not limited to a display device for color display, and can be applied to a display device for monochrome display.
  • a colored layer (also referred to as a color filter) may be used in order to display white light (W) in a backlight (an organic EL element, an inorganic EL element, an LED, a fluorescent lamp, or the like) and display a full color display device.
  • a backlight an organic EL element, an inorganic EL element, an LED, a fluorescent lamp, or the like
  • red (R), green (G), blue (B), yellow (Y), and the like can be used in appropriate combination for the colored layer.
  • the colored layer the color reproducibility can be increased as compared with the case where the colored layer is not used.
  • white light in a region having no colored layer may be directly used for display by arranging a region having a colored layer and a region having no colored layer.
  • a decrease in luminance due to the colored layer can be reduced during bright display, and power consumption can be reduced by about 20% to 30%.
  • a self-luminous element such as an organic EL element or an inorganic EL element
  • R, G, B, Y, and W may be emitted from elements having respective emission colors.
  • power consumption may be further reduced as compared with the case where a colored layer is used.
  • colorization method in addition to a method (color filter method) in which part of the light emission from the white light emission described above is converted into red, green, and blue through a color filter, red, green, and blue light emission is performed.
  • a method of using each (three-color method) or a method of converting a part of light emission from blue light emission into red or green (color conversion method, quantum dot method) may be applied.
  • FIG. 22 is a cross-sectional view taken along one-dot chain line QR shown in FIG.
  • FIG. 23 is a cross-sectional view taken along the alternate long and short dash line QR shown in FIG. 21, and includes an EL element as a display element.
  • a display device 700 illustrated in FIGS. 22 and 23 includes a lead wiring portion 711, a pixel portion 702, a demultiplexer 703, and an FPC terminal portion 708. Further, the lead wiring portion 711 includes a signal line 710. In addition, the pixel portion 702 includes a transistor 750 and a capacitor 790. In addition, the demultiplexer 703 includes a transistor 752.
  • the transistor 750 and the transistor 752 may be any of a top gate type, a bottom gate type, a channel etch type, and a channel protection type. 22 and 23 illustrate a top gate type.
  • a silicon-based semiconductor amorphous silicon, polycrystalline silicon, or the like
  • an oxide semiconductor zinc oxide, indium oxide, or the like
  • 22 and 23 illustrate the case where an oxide semiconductor is used.
  • the capacitor 790 includes a first oxide semiconductor film included in the transistor 750, a lower electrode formed through a step of processing the same oxide semiconductor film, and a conductive material functioning as a source electrode and a drain electrode included in the transistor 750. A film and an upper electrode formed through a process of processing the same conductive film. In addition, a step of forming the same insulating film as the second insulating film and the insulating film functioning as the third insulating film of the transistor 750 between the lower electrode and the upper electrode is formed. An insulating film formed through the above is provided. That is, the capacitor 790 has a stacked structure in which an insulating film functioning as a dielectric is sandwiched between a pair of electrodes.
  • a planarization insulating film 770 is provided over the transistor 750, the transistor 752, and the capacitor 790.
  • planarization insulating film 770 an organic material having heat resistance such as polyimide resin, acrylic resin, polyimide amide resin, benzocyclobutene resin, polyamide resin, or epoxy resin can be used. Note that the planarization insulating film 770 may be formed by stacking a plurality of insulating films formed using these materials. Further, the planarization insulating film 770 may be omitted.
  • the signal line 710 is formed through the same process as the conductive film functioning as the source and drain electrodes of the transistors 750 and 752.
  • the signal line 710 is a conductive film formed through a different process from the source and drain electrodes of the transistors 750 and 752, for example, an oxide semiconductor formed through the same process as an oxide semiconductor film functioning as a gate electrode.
  • a membrane may be used.
  • a material containing a copper element is used as the signal line 710, signal delay due to wiring resistance is small and display on a large screen is possible.
  • the FPC terminal portion 708 includes a connection electrode 760, an anisotropic conductive film 780, and an FPC 716.
  • the connection electrode 760 is formed through the same process as the conductive film functioning as the source and drain electrodes of the transistors 750 and 752.
  • the connection electrode 760 is electrically connected to a terminal included in the FPC 716 through an anisotropic conductive film 780.
  • first substrate 701 and the second substrate 705 for example, glass substrates can be used.
  • first substrate 701 and the second substrate 705 flexible substrates may be used. Examples of the flexible substrate include a plastic substrate.
  • a structure body 778 is provided between the first substrate 701 and the second substrate 705.
  • the structure body 778 is a columnar spacer obtained by selectively etching an insulating film, and is provided to control the distance (cell gap) between the first substrate 701 and the second substrate 705. Note that a spherical spacer may be used as the structure body 778.
  • a light shielding film 738 functioning as a black matrix, a colored film 736 functioning as a color filter, and an insulating film 734 in contact with the light shielding film 738 and the colored film 736 are provided.
  • a display device 700 illustrated in FIG. 22 includes a liquid crystal element 775.
  • the liquid crystal element 775 includes a conductive film 772, a conductive film 774, and a liquid crystal layer 776.
  • the conductive film 774 is provided on the second substrate 705 side and functions as a counter electrode.
  • the display device 700 illustrated in FIG. 22 can display an image by controlling transmission and non-transmission of light by changing the alignment state of the liquid crystal layer 776 depending on voltages applied to the conductive films 772 and 774.
  • the conductive film 772 is connected to a conductive film functioning as a source electrode and a drain electrode of the transistor 750.
  • the conductive film 772 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of a display element.
  • the conductive film 772 functions as a transparent electrode.
  • a display device 700 illustrated in FIG. 22 is a so-called transmissive color liquid crystal display device that transmits light from a backlight through a liquid crystal layer 776 and displays the light through a colored film 736.
  • a conductive film that is transparent to visible light or a conductive film that is reflective to visible light can be used.
  • a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used.
  • a material containing aluminum or silver is preferably used.
  • an alignment film may be provided on each side of the conductive films 772 and 774 in contact with the liquid crystal layer 776.
  • an optical member such as a polarizing member, a retardation member, or an antireflection member may be provided as appropriate.
  • circularly polarized light using a polarizing substrate and a retardation substrate may be used.
  • a backlight, a sidelight, or the like may be used as the light source.
  • thermotropic liquid crystal When a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
  • a liquid crystal exhibiting a blue phase without using an alignment film may be used.
  • the blue phase is one of the liquid crystal phases.
  • the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
  • a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic, so that alignment treatment is unnecessary.
  • a liquid crystal material exhibiting a blue phase has a small viewing angle dependency.
  • a liquid crystal element when used as a display element, a TN (Twisted Nematic) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe Field Switching) mode, an ASM (Axially Symmetrical Aligned MicroOcell) mode.
  • a Compensated Birefringence mode, an FLC (Ferroelectric Liquid Crystal) mode, an AFLC (Antiferroelectric Liquid Crystal) mode, and the like can be used.
  • a normally black liquid crystal display device such as a transmissive liquid crystal display device employing a vertical alignment (VA) mode may be used.
  • VA vertical alignment
  • the vertical alignment mode There are several examples of the vertical alignment mode. For example, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV mode, and the like can be used.
  • a display device 700 illustrated in FIG. 23 includes a light-emitting element 782.
  • the light-emitting element 782 includes a conductive film 784, an EL layer 786, and a conductive film 788.
  • the display device 700 illustrated in FIG. 23 can display an image when the EL layer 786 included in the light-emitting element 782 emits light.
  • the conductive film 784 is connected to a conductive film functioning as a source electrode and a drain electrode of the transistor 750.
  • the conductive film 784 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of a display element.
  • a conductive film that transmits visible light or a conductive film that reflects visible light can be used.
  • a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used.
  • As the conductive film having reflectivity in visible light for example, a material containing aluminum or silver is preferably used.
  • the insulating film 730 is provided over the planarization insulating film 770 and the conductive film 784.
  • the insulating film 730 covers part of the conductive film 784.
  • the light-emitting element 782 has a top emission structure. Therefore, the conductive film 788 has a light-transmitting property and transmits light emitted from the EL layer 786.
  • the top emission structure is illustrated, but is not limited thereto. For example, a bottom emission structure in which light is emitted to the conductive film 784 side or a dual emission structure in which light is emitted to both the conductive film 784 and the conductive film 788 can be used.
  • a colored film 736 is provided at a position overlapping with the light emitting element 782, and a light shielding film 738 is provided at a position overlapping with the insulating film 730, the routing wiring portion 711, and the source driver 704. Further, the coloring film 736 and the light shielding film 738 are covered with an insulating film 734. A space between the light emitting element 782 and the insulating film 734 is filled with a sealing film 732. Note that in the display device 700 illustrated in FIG. 23, the structure in which the colored film 736 is provided is illustrated, but the present invention is not limited to this. For example, in the case where the EL layer 786 is formed by separate coating, the coloring film 736 may not be provided.
  • FIG. 24A shows the interior of an automobile in which bench seats are used for the driver's seat and the passenger seat.
  • FIG. 24A illustrates a display device 52A provided at the door, a display device 52B provided at the handle, and a display device 52C provided at the center of the seat surface of the bench seat.
  • the display device 52A can complement the view blocked by the door, for example, by displaying an image from an imaging device provided on the vehicle body on the display unit.
  • the display devices 52B and 52C have various other information such as navigation information, meters such as a speedometer and a tachometer, travel distance, oil supply amount, gear state, and air conditioner settings in addition to the image from the image pickup device provided on the vehicle body. Can be provided. In addition, display items, layouts, and the like displayed on the display device can be changed as appropriate according to user preferences.
  • the display devices 52B and 52C can also be used as lighting devices.
  • FIG. 24B is a diagram showing the periphery of the windshield in the interior of a car.
  • FIG. 24B illustrates the display device 53A attached to the dashboard.
  • the display device 53A can provide various other information such as navigation information, a speedometer and a tachometer, a travel distance, an oil supply amount, a gear state, and an air conditioner setting.
  • the display items, layout, and the like displayed on the display device can be appropriately changed according to the user's preference, and the design can be improved.
  • the display device 53A can also be used as a lighting device.
  • the display device 53A can complement the field of view (dead angle) obstructed by the vehicle body by displaying an image from the imaging means provided on the vehicle body. That is, by displaying an image from the imaging means provided outside the automobile, the blind spot can be compensated and safety can be improved. Also, by displaying a video that complements the invisible part, it is possible to confirm the safety more naturally and without a sense of incongruity.
  • the display device 53A can also be used as a lighting device.
  • the display system according to one embodiment of the present invention can be used not only for automobiles but also for various mobile objects. Specific examples of these moving objects are shown in FIGS.
  • FIG. 25A shows the bus 302.
  • the moving body according to one embodiment of the present invention can be used for the bus 302.
  • the display system can take an image outside the bus 302 and improve the visibility of the image when viewing the image. Therefore, the bus 302 can be improved in safety.
  • FIG. 25B shows the train 303.
  • the moving body according to one embodiment of the present invention can be used for the train 303.
  • the display system captures an image outside the train 303 and can improve the visibility of the image when viewing the image. Therefore, the train 303 can be improved in safety.
  • FIG. 25C shows the airplane 304.
  • the moving body according to one embodiment of the present invention can be used for the airplane 304.
  • the display system can take an image outside the airplane 304 and improve the visibility of the image when viewing the image. Therefore, the airplane 304 can be improved in safety.
  • the components are classified by function and shown as independent blocks.
  • it is difficult to separate the components for each function and there may be a case where a plurality of functions are involved in one circuit or a case where one function is involved over a plurality of circuits. Therefore, the blocks in the block diagram are not limited to the components described in the specification, and can be appropriately rephrased depending on the situation.
  • the voltage is a potential difference from a reference potential.
  • the reference potential is a ground potential (ground potential)
  • the voltage can be rephrased as a potential.
  • the ground potential does not necessarily mean 0V. Note that the potential is relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
  • a switch refers to a switch that is in a conductive state (on state) or a non-conductive state (off state) and has a function of controlling whether or not to pass a current.
  • the switch refers to a switch having a function of selecting and switching a current flow path.
  • an electrical switch or a mechanical switch can be used. That is, the switch is not limited to a specific one as long as it can control the current.
  • the “conducting state” of the transistor means a state in which the source and drain of the transistor can be regarded as being electrically short-circuited.
  • the “non-conducting state” of a transistor refers to a state where the source and drain of the transistor can be regarded as being electrically cut off.
  • the polarity (conductivity type) of the transistor is not particularly limited.
  • a and B are connected includes not only those in which A and B are directly connected, but also those that are electrically connected.
  • a and B are electrically connected.
  • 10 Display system, 10A: Display system, 10B: Display system, 10C: Display system, 11: Imaging device, 11A: Imaging device, 12: Feature output circuit, 13: Database, 14: Image processing circuit, 15: Display Device: 16: imaging data, 17: feature data, 18: correction data, 19: detection data, 20: transmission / reception circuit, 21: network, 22: automobile, 22A: automobile, 23: data processing circuit, 24: Relay station, 25: sensor, S11-S17: step, S21-S26: step, 30: neural network, 31: input layer, 32: intermediate layer, 33: output layer, 34: filter, 35: convolution data, 36: Pooling data, 37: filter, 38: convolution data, 39: pooling data, 40: all combined data, 4 : Output data, 42: automobile, 43: light source, 44: irradiation direction, 45: imaging direction, 46: lens, 47: water drop, 48: clear region, 49: unclear region, 11_1-11_n: imaging device, 15_1-15_n : Display

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)
  • Instrument Panels (AREA)
  • Image Analysis (AREA)

Abstract

Provided are: a display system that has a novel configuration; and a mobile body. A display system that has an imaging device, a display device, a feature value output circuit, an image processing circuit, and a server. The imaging device can acquire imaging data. The feature value output circuit can acquire feature value data for the imaging data. A database includes correction data and detection data and can output correction data to the image processing circuit in accordance with the feature value data. The database selects the correction data in accordance with machine learning or with coincidence with or similarity to the feature value data. The image processing circuit can generate image data by correcting the imaging data on the basis of the correction data. The display device can produce a display in accordance with the image data.

Description

表示システムおよび移動体Display system and moving body
 本発明の一態様は、表示システムおよび移動体に関する。 One embodiment of the present invention relates to a display system and a moving object.
 車両周辺の情報を撮像するための撮像装置、および撮像で得られた情報を表示するための表示装置を備えた車両が普及している(例えば特許文献1)。 Vehicles equipped with an imaging device for imaging information around a vehicle and a display device for displaying information obtained by imaging are widely used (for example, Patent Document 1).
特開2017−5678号公報JP 2017-5678 A
 夜間走行中に車両周辺を撮像するような状況で、車両のヘッドライト(前照灯)などによる高照度の光源(眩光)が近付くことになる。そのため得られる撮像データは光源周辺で過剰な露光となり、光源周辺に対応する領域の表示が白くなるといった問題がある。一方露光を抑えることで、光源周辺の露光が調節可能となるものの表示する画像が暗くなってしまい、車両全体の大きさや形状の把握が困難となる。つまり、得られる情報が限定的となる。 In a situation where the periphery of the vehicle is imaged during night driving, a light source with high illuminance (dazzling light) such as a vehicle headlight (headlight) approaches. Therefore, there is a problem that the obtained image data is excessively exposed around the light source, and the display of the area corresponding to the periphery of the light source becomes white. On the other hand, by suppressing the exposure, although the exposure around the light source can be adjusted, the displayed image becomes dark, and it becomes difficult to grasp the size and shape of the entire vehicle. That is, the information obtained is limited.
 本発明の一態様は、新規な表示システムおよび移動体等を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a novel display system, a moving object, and the like.
 または本発明の一態様は、撮像環境に起因して、取得した撮像データに欠損(不鮮明な)部分が生じても正常な表示を行うことができる、新規な表示システムおよび移動体等を提供することを課題の一とする。または本発明の一態様は、視認性の向上を図ることができる、新規な表示システムおよび移動体等を提供することを課題の一とする。 Alternatively, one embodiment of the present invention provides a novel display system, a moving body, and the like that can perform normal display even if a defect (unclear) portion occurs in acquired captured data due to an imaging environment. This is one of the issues. Another object of one embodiment of the present invention is to provide a novel display system, a moving object, and the like that can improve visibility.
 本発明の一態様の表示システムは、撮像装置で得られる撮像データにおいて、鮮明に撮像された被写体の一部の情報から特徴量を抽出し、データベースにおいて照合することで対応する補正用データを選び出して、この補正用データをもとに撮像データの不鮮明な領域を補正することを要旨とする。 In the display system of one embodiment of the present invention, in the imaging data obtained by the imaging device, the feature amount is extracted from part of the information of the subject that is clearly imaged, and the corresponding correction data is selected by collating in the database. Thus, the gist is to correct the unclear area of the imaging data based on the correction data.
 本発明の一態様は、撮像装置、表示装置、特徴量出力回路、画像処理回路、およびデータベースを有し、撮像装置は、撮像データを出力する機能を有し、特徴量出力回路は、撮像データの特徴量データを出力する機能を有し、データベースは、補正用データと、検出用データと、を有し、特徴量データに応じて補正用データを画像処理回路に出力する機能を有し、画像処理回路は、補正用データをもとに撮像データを補正することで画像データを生成する機能を有し、表示装置は、画像データに応じた表示を行う機能を有する表示システムである。 One embodiment of the present invention includes an imaging device, a display device, a feature amount output circuit, an image processing circuit, and a database. The imaging device has a function of outputting imaging data. The feature amount output circuit includes imaging data. And the database has correction data and detection data, and has a function of outputting correction data to the image processing circuit in accordance with the feature data. The image processing circuit has a function of generating image data by correcting imaging data based on correction data, and the display device is a display system having a function of performing display according to image data.
 本発明の一態様において、データベースは、特徴量データに一致または類似する検出用データを選び出して検出用データに対応する補正用データを画像処理回路に出力する機能を有する表示システムが好ましい。 In one embodiment of the present invention, the database is preferably a display system having a function of selecting detection data that matches or resembles feature data and outputting correction data corresponding to the detection data to the image processing circuit.
 本発明の一態様において、データベースは、特徴量データを学習用データとした機械学習により重みパラメータとなる検出用データを更新し、特徴量データに一致または類似する補正用データを推論することができる機能を有する表示システムが好ましい。 In one embodiment of the present invention, the database can update detection data serving as a weight parameter by machine learning using feature data as learning data, and infer correction data that matches or is similar to the feature data. A display system with functionality is preferred.
 本発明の一態様は、撮像装置、表示装置、特徴量出力回路、画像処理回路、および送受信回路と、を有し、撮像装置は、撮像データを取得する機能を有し、特徴量出力回路は、撮像データの特徴量データを取得する機能を有し、特徴量データは、送受信回路を介して、補正用データと、検出用データとを有するデータベースに送信される機能を有し、画像処理回路は、送受信回路を介して、データベースから補正用データを受信し、補正用データをもとに撮像データを補正することで画像データを生成する機能を有し、表示装置は、画像データに応じた表示を行う機能を有する移動体である。 One embodiment of the present invention includes an imaging device, a display device, a feature amount output circuit, an image processing circuit, and a transmission / reception circuit, the imaging device has a function of acquiring imaging data, and the feature amount output circuit includes: The image processing circuit has a function of acquiring feature amount data of imaging data, and the feature amount data has a function of being transmitted to a database having correction data and detection data via a transmission / reception circuit. Has a function of receiving correction data from a database via a transmission / reception circuit and generating image data by correcting imaging data based on the correction data. It is a moving body having a function of performing display.
 本発明の一態様において、補正用データは、検出用データに対応するデータであり、検出用データは、特徴量データに一致または類似するデータである移動体が好ましい。 In one embodiment of the present invention, it is preferable that the correction data is data corresponding to the detection data, and the detection data is data that matches or is similar to the feature data.
 本発明の一態様において、補正用データは、特徴量データを学習用データとした機械学習により重みパラメータとなる検出用データを更新したデータベースにおいて、特徴量データを入力することで推論して得られるデータである移動体が好ましい。 In one embodiment of the present invention, the correction data is obtained by inferring by inputting feature amount data in a database in which detection data serving as a weight parameter is updated by machine learning using the feature amount data as learning data. A mobile that is data is preferred.
 なおその他の本発明の一態様については、以下で述べる「発明を実施するための形態」、および「図面」に記載されている。 Other aspects of the present invention are described in “DETAILED DESCRIPTION OF THE INVENTION” and “Drawings” described below.
 本発明の一態様は、新規な表示システム、および当該表示システムを備えた移動体等を提供することができる。 One embodiment of the present invention can provide a novel display system, a moving object including the display system, and the like.
 または本発明の一態様は、撮像環境に起因して、取得した撮像データに欠損(不鮮明な)部分が生じても正常な表示を行うことができる、新規な表示システムおよび移動体等を提供することができる。または本発明の一態様は、視認性の向上を図ることができる、新規な表示システムおよび移動体等を提供することができる。 Alternatively, one embodiment of the present invention provides a novel display system, a moving body, and the like that can perform normal display even if a defect (unclear) portion occurs in acquired captured data due to an imaging environment. be able to. Alternatively, according to one embodiment of the present invention, a novel display system, a moving object, and the like that can improve visibility can be provided.
表示システムを説明するためのブロック図。The block diagram for demonstrating a display system. 表示システムを説明するためのブロック図。The block diagram for demonstrating a display system. 表示システムを説明するための概念図。The conceptual diagram for demonstrating a display system. 表示システムを説明するためのブロック図。The block diagram for demonstrating a display system. 表示システムを説明するためのブロック図。The block diagram for demonstrating a display system. 表示システムを説明するためのフローチャート。The flowchart for demonstrating a display system. 表示システムを説明するためのフローチャート。The flowchart for demonstrating a display system. 表示システムを説明するためのブロック図。The block diagram for demonstrating a display system. 表示システムを説明するための図。The figure for demonstrating a display system. 表示システムを説明するための図。The figure for demonstrating a display system. 表示システムの動作の具体例を説明するための図。The figure for demonstrating the specific example of operation | movement of a display system. 表示システムの動作の具体例を説明するための図。The figure for demonstrating the specific example of operation | movement of a display system. 表示システムの動作の具体例を説明するための図。The figure for demonstrating the specific example of operation | movement of a display system. 表示システムの動作の具体例を説明するための図。The figure for demonstrating the specific example of operation | movement of a display system. 表示システムの動作の具体例を説明するための図。The figure for demonstrating the specific example of operation | movement of a display system. 半導体装置の構成例を示す図。FIG. 9 illustrates a configuration example of a semiconductor device. メモリセルの構成例を示す図。The figure which shows the structural example of a memory cell. オフセット回路の構成例を示す図。The figure which shows the structural example of an offset circuit. タイミングチャート。Timing chart. 積差演算回路の応用例を示す図。The figure which shows the example of application of a product difference calculating circuit. 表示装置の一態様を示す上面図。FIG. 14 is a top view illustrating one embodiment of a display device. 表示装置の一態様を示す断面図。FIG. 14 is a cross-sectional view illustrating one embodiment of a display device. 表示装置の一態様を示す断面図。FIG. 14 is a cross-sectional view illustrating one embodiment of a display device. 移動体における表示装置を説明するための図。4A and 4B illustrate a display device in a moving object. 移動体の一例を説明する図。The figure explaining an example of a moving body.
 以下、本発明の一態様について図面を参照しながら説明する。但し、本発明の一態様は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の記載内容に限定して解釈されるものではない。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings. However, one embodiment of the present invention can be implemented in many different modes, and it is easily understood by those skilled in the art that the modes and details can be variously changed without departing from the spirit and scope thereof. Is done. Accordingly, the present invention should not be construed as being limited to the following description.
(実施の形態1)
<表示システムの構成>
 本発明の一態様の表示システムについて説明する。
(Embodiment 1)
<Configuration of display system>
A display system of one embodiment of the present invention is described.
 図1は、本発明の一態様である表示システムの一例を説明するためのブロック図である。図1に示す表示システム10は、撮像装置11、特徴量出力回路12、データベース13、画像処理回路14および表示装置15を有する。 FIG. 1 is a block diagram for explaining an example of a display system which is one embodiment of the present invention. The display system 10 illustrated in FIG. 1 includes an imaging device 11, a feature amount output circuit 12, a database 13, an image processing circuit 14, and a display device 15.
 撮像装置11は、具体的には、自動車などの移動体に取り付けられるカメラモジュールである。撮像装置11は、撮像データ16を出力する機能を有する。撮像データ16は、特徴量出力回路12および画像処理回路14に出力される。 The imaging device 11 is specifically a camera module attached to a moving body such as an automobile. The imaging device 11 has a function of outputting the imaging data 16. The imaging data 16 is output to the feature amount output circuit 12 and the image processing circuit 14.
 撮像装置11はダイナミックレンジの広い撮像素子を有することが好適である。例えば、セレンを有する撮像素子を備えた撮像装置11とすることで、明暗差の大きい被写体を撮像する際に、撮像データの不鮮明な部分を減らすことができる。 The imaging device 11 preferably has an imaging element with a wide dynamic range. For example, by using the imaging device 11 including an imaging element having selenium, it is possible to reduce unclear portions of imaging data when imaging a subject having a large contrast.
 特徴量出力回路12は、撮像データ16における特徴量を抽出し、特徴量データとして出力する。特徴量の抽出は、撮像装置11で得られる撮像データと、被写体の相対速度や相対位置を検出するのに用いるセンサなどから取得できるデータと、を組み合わせて行うことが有効である。 The feature amount output circuit 12 extracts the feature amount in the imaging data 16 and outputs it as feature amount data. It is effective to extract the feature amount in combination with imaging data obtained by the imaging device 11 and data that can be acquired from a sensor or the like used to detect the relative speed or relative position of the subject.
 特徴量としては、外観の特徴量(外観特徴量)がある。例えば、自動車における外観特徴量は、一例として、自車の車体色、ナンバープレートのナンバー、車種、車幅、車高、ウインカーランプ、ヘッドライトなどがある。これらの特徴量の特徴量データは、符号化されたデータ、あるいは元の撮像データから切り出されたデータとして、データベース13に出力される。 The feature amount includes an appearance feature amount (appearance feature amount). For example, the appearance feature amount in an automobile includes, for example, the body color of the own vehicle, the number of the license plate, the vehicle type, the vehicle width, the vehicle height, the blinker lamp, and the headlight. The feature amount data of these feature amounts is output to the database 13 as encoded data or data cut out from the original imaging data.
 特徴量の設定は、デフォルトでは、画像認識による検出が容易なものを設定しておくことで、画像認識処理の負荷を低減することができる。なおウインカーランプやブレーキランプは、点灯または点滅が状況により変化するため、画像認識の対象から除外することも有効である。 ¡By default, the feature amount is set so that it can be easily detected by image recognition, thereby reducing the load of image recognition processing. It is also effective to exclude the blinker lamp and the brake lamp from being subject to image recognition because lighting or blinking changes depending on the situation.
 撮像データ16の不鮮明な領域は、明暗のコントラスト比が小さいなどのために、特徴量の抽出が困難な領域である。そのため特徴量出力回路12は、特徴量を抽出することで撮像データの不鮮明な領域のデータを削減することができる。 The unclear area of the imaging data 16 is an area where it is difficult to extract a feature amount because the contrast ratio between light and dark is small. Therefore, the feature quantity output circuit 12 can reduce the data of the unclear area of the imaged data by extracting the feature quantity.
 また特徴量出力回路12は、例えば、Haar−like特徴、HOG(Histograms of Oriented Gradients)特徴、SIFT(Scald Invariance Feature Transform)特徴、またはSURF(Speeded Up Robust Features)を抽出する局所勾配特徴抽出技術などを組みあわせて所望箇所の特徴量データを抽出して出力することも有効である。また撮像データ16をガウシアンフィルタで平滑化し、特徴的な領域の情報を選別することも有効である。 Further, the feature quantity output circuit 12 extracts, for example, a Haar-like feature, a HOG (Histograms of Oriented Gradients) feature, a SIFT (Scaled Invariance Feature Transform) feature, or a SURF (Speeded Up Robust feature). It is also effective to extract and output feature amount data at a desired location by combining the above. It is also effective to smooth the imaged data 16 with a Gaussian filter and select characteristic area information.
 また局所勾配特徴抽出技術とSVM(Support Vector Machine)学習とを組み合わせた物体検出を行ない、所望箇所の特徴量データを抽出して出力することも有効である。特徴量出力回路12は、例えば、CNN(Convolutional Neural Network)学習によって自動算出された特徴量を特徴量データとして出力してもよい。 It is also effective to perform object detection that combines local gradient feature extraction technology and SVM (Support Vector Machine) learning, and extract and output feature data at a desired location. The feature quantity output circuit 12 may output, as feature quantity data, a feature quantity that is automatically calculated by CNN (Convolutional Neural Network) learning, for example.
 特徴量出力回路12は、主にマイクロコンピュータとして構成され、プロセッサ、メモリ、I/O、及びこれらを接続するバスによって構成される。特徴量出力回路12では、撮像装置11の他、各種センサの情報に基づき、プロセッサがメモリに予め記憶されているプログラムを実行することによって各種機能を実現することができる。 The feature amount output circuit 12 is mainly configured as a microcomputer, and includes a processor, a memory, an I / O, and a bus connecting them. In the feature amount output circuit 12, various functions can be realized by executing a program stored in advance in a memory by a processor based on information of various sensors in addition to the imaging device 11.
 データベース13は、特徴量データ17、補正用データ18および検出用データ19を記憶する。補正用データ18は、撮像データ16を補正するためのデータである。検出用データ19は、特徴量データをもとに補正用データ18を選び出すためのデータである。 The database 13 stores feature data 17, correction data 18, and detection data 19. The correction data 18 is data for correcting the imaging data 16. The detection data 19 is data for selecting the correction data 18 based on the feature data.
 補正用データ18は、画像処理回路14において、撮像データ16を補正するためのデータである。補正用データ18は、撮像データ16より解像度が高い表示が可能なデータとすることが好ましい。当該構成とすることで、撮像データ16の補正によって得られる画像の解像度を高めることができ、表示装置15における表示の視認性を高めることができる。 The correction data 18 is data for correcting the imaging data 16 in the image processing circuit 14. The correction data 18 is preferably data that can be displayed with a higher resolution than the imaging data 16. With this configuration, the resolution of an image obtained by correcting the imaging data 16 can be increased, and the visibility of display on the display device 15 can be increased.
 なお補正用データ18を用いた撮像データの補正によって得られる画像データは、実際に目視して得られる像とは異なる場合がある。例えば、車種、車体の形状などが部分的に異なる画像データとなる場合がある。あるいは、同じ特徴量データを有する被写体から補正用データを選び出す場合がある。このような場合でも、補正のない画像データと比べて被写体の全体の情報をおぎなうことができるため、映し出された画像によってより効率的に状況を把握することができる。 Note that the image data obtained by the correction of the imaging data using the correction data 18 may be different from the image actually obtained by visual observation. For example, there may be image data in which the vehicle type, the shape of the vehicle body, etc. are partially different. Alternatively, correction data may be selected from subjects having the same feature data. Even in such a case, since the entire information of the subject can be removed as compared with the image data without correction, the situation can be grasped more efficiently by the projected image.
 検出用データ19は、特徴量出力回路12より入力される特徴量データ17をもとに、補正用データ18を選び出すことができるデータである。例えば検出用データは、補正用データ18をもとに抽出された外観特徴量などの特徴量データとすることができる。当該構成により、特徴量データ17と一致または類似する検出用データ19を選び出すことによって、所望の補正用データ18を選択することができる。 The detection data 19 is data that can select the correction data 18 based on the feature value data 17 input from the feature value output circuit 12. For example, the detection data can be feature amount data such as an appearance feature amount extracted based on the correction data 18. With this configuration, it is possible to select the desired correction data 18 by selecting the detection data 19 that matches or is similar to the feature data 17.
 あるいは検出用データ19は、CNN学習における重みパラメータとなるデータでもよい。この場合、データベース13におけるCNN学習は、予め収集した特徴量出力回路12より入力される特徴量データ17に補正用データ18に対応する正解ラベルを付与したデータを学習データとして重みパラメータである検出用データ19を更新して行う。CNN学習を繰り返すことで検出用データ19が更新される。更新を繰り返すことで、精度を向上させることができる。更新された検出用データ19を重みパラメータとしたCNNを用いることで、特徴量データ17の入力に応じた補正用データ18を精度よく選択することができる。 Alternatively, the detection data 19 may be data serving as a weight parameter in CNN learning. In this case, the CNN learning in the database 13 is a detection parameter which is a weighting parameter using, as learning data, data obtained by adding a correct label corresponding to the correction data 18 to the feature data 17 input from the feature data output circuit 12 collected in advance. The data 19 is updated. The detection data 19 is updated by repeating the CNN learning. By repeating the update, the accuracy can be improved. By using the CNN using the updated detection data 19 as a weight parameter, the correction data 18 corresponding to the input of the feature data 17 can be selected with high accuracy.
 データベース13は、補正用データ18および検出用データ19を記憶する機能の他、特徴量データ17に応じた補正用データ18を選び出すためのプログラムを記憶するメモリと、当該プログラムを実行するためのプロセッサとを備えたコンピュータとしての機能を有する。データベース13では、コンピュータに予め記憶されているプログラムを実行することによって各種機能を実現することができる。 The database 13 has a function of storing the correction data 18 and the detection data 19, a memory for storing a program for selecting the correction data 18 corresponding to the feature data 17, and a processor for executing the program It has a function as a computer equipped with. In the database 13, various functions can be realized by executing a program stored in advance in a computer.
 画像処理回路14は、補正用データ18をもとに撮像データ16の不鮮明な領域のデータを補正し、補正された撮像データを画像データとして出力する機能を有する回路である。なお撮像データ16の不鮮明な領域は、明暗のコントラスト比が小さい領域などの、特徴量の抽出が困難な領域に対応する。そのため、特徴量の抽出が困難な領域を補正用データ18をもとに補正する構成を一例として挙げることができる。補正用データ18は、撮像データ16での被写体の全体の輪郭を補正する際に特に有効である。 The image processing circuit 14 is a circuit having a function of correcting data in a blurred region of the imaging data 16 based on the correction data 18 and outputting the corrected imaging data as image data. Note that the unclear area of the imaging data 16 corresponds to an area where it is difficult to extract a feature amount, such as an area where the contrast ratio between light and dark is small. For this reason, a configuration in which a region where feature amount extraction is difficult can be corrected based on the correction data 18 can be given as an example. The correction data 18 is particularly effective when correcting the entire contour of the subject in the imaging data 16.
 画像処理回路14は、一旦取得した補正用データを保持する構成が好ましい。当該構成とすることで一旦補正用データ18を保持しておけば、繰り返して撮像データの補正に用いることができる。 It is preferable that the image processing circuit 14 holds the correction data once acquired. With this configuration, once the correction data 18 is held, it can be repeatedly used for correction of imaging data.
 なお補正用データ18は、撮像データ16より解像度が高いことが好適である。撮像装置11で得られる撮像データの解像度がディスプレイの解像度に比べて小さい場合、補正用データ18を撮像データの超解像処理に用いることができ、補正されて表示される画像をより鮮明にすることができる。 Note that the correction data 18 preferably has a higher resolution than the imaging data 16. When the resolution of the imaging data obtained by the imaging device 11 is smaller than the resolution of the display, the correction data 18 can be used for the super-resolution processing of the imaging data, and the corrected and displayed image becomes clearer. be able to.
 表示装置15は、画像処理回路で生成された画像データに基づく表示を行う。表示装置15は、自動車の場合、ルームミラーの代わりとして用いることができる。表示装置15としては、液晶表示装置の他、エレクトロルミネッセンス素子を有する自発光型表示装置などを用いることができる。 The display device 15 performs display based on the image data generated by the image processing circuit. The display device 15 can be used in place of a room mirror in the case of an automobile. As the display device 15, in addition to a liquid crystal display device, a self-luminous display device having an electroluminescence element can be used.
 表示システム10は、撮像装置11および表示装置15を有する。表示システム10は、撮像装置11で得られる撮像データ16において、被写体の一部の情報から特徴量を抽出し、データベース13において照合することで補正用データ18を選び出して、この補正用データ18をもとに撮像データ16の不鮮明な領域を補正する。 The display system 10 includes an imaging device 11 and a display device 15. The display system 10 extracts feature data from a part of information of the subject in the imaging data 16 obtained by the imaging device 11 and collates it in the database 13 to select correction data 18. Originally, the unclear area of the imaging data 16 is corrected.
 表示システム10は、自動車などの移動体への適用が好適である。具体的には、自動車周辺をカメラなどの撮像装置で撮像し、その様子を表示装置で視認する状況で特に好適である。なお移動体とは、自動車のように移動する車両のことである。したがって移動体は自動車に限らず、バス、電車、飛行機などを含む。 The display system 10 is preferably applied to a moving body such as an automobile. Specifically, it is particularly suitable in a situation where the periphery of the automobile is imaged by an imaging device such as a camera and the state is visually recognized by a display device. The moving body is a vehicle that moves like an automobile. Accordingly, the moving body is not limited to a car, but includes a bus, a train, an airplane, and the like.
 上述のように撮像装置および表示装置を搭載した自動車では、昼夜、晴雨等の状況の変化に応じて、撮像装置で得られる撮像データに不鮮明な領域が生じる場合がある。例えば、後方の自動車のヘッドライト、あるいは撮像装置に付着した水滴等が、不鮮明な領域を生じさせる原因となる。このように得られる撮像データに不鮮明な領域が存在する場合、被写体全体の大きさや形状の把握が困難となり、得られる情報が限定的となる。上述したように本発明の一態様の表示システム10では、この被写体の一部の情報から特徴量を抽出し、データベース13において照合することで補正用データ18を選び出して、撮像データ16の不鮮明な領域を補正する。そのため、視認性の向上に有効である。 As described above, in an automobile equipped with an imaging device and a display device, an unclear area may occur in imaging data obtained by the imaging device according to changes in conditions such as day and night, and fine rain. For example, a headlight of a rear automobile or water droplets adhering to the imaging device causes a blurred area. When there is an unclear area in the imaging data obtained in this way, it is difficult to grasp the size and shape of the entire subject, and the obtained information is limited. As described above, in the display system 10 according to one aspect of the present invention, the feature data is extracted from the information on a part of the subject and collated in the database 13 to select the correction data 18 so that the imaging data 16 is unclear. Correct the area. Therefore, it is effective for improving visibility.
 本発明の表示システム10の適用は、移動体に限らない。撮像装置で撮像した撮像データを表示装置に表示する際に有効である。例えば、防犯用カメラやスマートフォンなどの撮像装置で得られる撮像データの不鮮明な部分を補正する場合に有効である。 The application of the display system 10 of the present invention is not limited to a mobile object. This is effective when image data captured by the imaging device is displayed on the display device. For example, it is effective when correcting unclear portions of imaging data obtained by an imaging device such as a security camera or a smartphone.
 なおデータベース13は、自動車と離れた遠隔地に設ける場合、図2に示す表示システムのブロック図のようにすればよい。図2に示す表示システム10Aは、図1の表示システム10の構成に送受信回路20およびネットワーク21を追加した構成である。つまり、特徴量出力回路12からデータベース13に出力されるデータ、およびデータベースから画像処理回路14に出力されるデータは、送受信回路20およびネットワーク21を介して行われる。 In addition, what is necessary is just to make the database 13 like the block diagram of the display system shown in FIG. A display system 10A shown in FIG. 2 has a configuration in which a transmission / reception circuit 20 and a network 21 are added to the configuration of the display system 10 of FIG. That is, data output from the feature amount output circuit 12 to the database 13 and data output from the database to the image processing circuit 14 are performed via the transmission / reception circuit 20 and the network 21.
 図2の表示システム10Aの構成は、図3(A)に図示する概念図で説明することができる。すなわち、表示システム10Aは、送受信回路20が取り付けられた自動車22Aから中継局24を介してデータベース13とのデータの送受信を行う構成となる。 The configuration of the display system 10A in FIG. 2 can be described with reference to the conceptual diagram illustrated in FIG. That is, the display system 10 </ b> A is configured to transmit / receive data to / from the database 13 via the relay station 24 from the automobile 22 </ b> A to which the transmission / reception circuit 20 is attached.
 なお図1の表示システム10の構成は、図3(B)に図示する概念図で説明することができる。すなわち、表示システム10を構成する撮像装置11、特徴量出力回路12、データベース13、画像処理回路14および表示装置15は、自動車22内に有する構成となる。特徴量出力回路12、データベース13および画像処理回路14は、データ処理回路23として図示している。 Note that the configuration of the display system 10 in FIG. 1 can be described with reference to the conceptual diagram illustrated in FIG. That is, the imaging device 11, the feature amount output circuit 12, the database 13, the image processing circuit 14, and the display device 15 that constitute the display system 10 are configured to be included in the automobile 22. The feature amount output circuit 12, the database 13, and the image processing circuit 14 are illustrated as a data processing circuit 23.
 また図1の表示システム10の構成において、各構成を複数設ける構成としてもよい。例えば図4には、複数の撮像装置11_1−11_n(nは自然数)および表示装置15_1−15_nを備えた表示システム10Bのブロック図について図示している。なお図4の構成では、撮像装置11_1−11_nが出力する複数の撮像データ16の他、特徴量出力回路12、データベース13および画像処理回路14が出力するデータについても複数となる。なお表示装置15は、大型の表示部を有することで、複数の撮像装置11_1−11_nで撮像して得られる画像データを並べて表示する構成とすることも可能である。 Further, in the configuration of the display system 10 in FIG. 1, a plurality of configurations may be provided. For example, FIG. 4 illustrates a block diagram of a display system 10B including a plurality of imaging devices 11_1-11_n (n is a natural number) and a display device 15_1-15_n. In the configuration of FIG. 4, there are a plurality of pieces of data output from the feature amount output circuit 12, the database 13, and the image processing circuit 14 in addition to the plurality of pieces of imaging data 16 output from the imaging devices 11_1-11_n. Note that the display device 15 can include a large display portion so that image data obtained by imaging with the plurality of imaging devices 11_1-11_n can be displayed side by side.
 また図1の表示システム10の構成において、周辺の照度に応じて補正の有無を切り替える構成としてもよい。例えば図5には、図1の表示システム10の構成にセンサ25を追加した表示システム10Cのブロック図について図示している。 Further, in the configuration of the display system 10 in FIG. For example, FIG. 5 illustrates a block diagram of a display system 10C in which a sensor 25 is added to the configuration of the display system 10 of FIG.
 図5の表示システム10Cの構成において、センサ25は、その出力に応じて、特徴量出力回路12の機能を停止するか否かを制御することができる。例えばセンサ25が照度センサの場合、照度が大きいと特徴量出力回路12からの特徴量データの出力を停止し、照度が小さいと特徴量出力回路12からの特徴量データの出力を開始する構成とすることができる。 In the configuration of the display system 10C in FIG. 5, the sensor 25 can control whether or not to stop the function of the feature value output circuit 12 according to the output. For example, when the sensor 25 is an illuminance sensor, the output of feature amount data from the feature amount output circuit 12 is stopped when the illuminance is high, and the output of feature amount data from the feature amount output circuit 12 is started when the illuminance is low. can do.
 特徴量出力回路12からの特徴量データの出力の切り替えは、ユーザによる切り替え機能のオンとオフによって行う構成としてもよい。この場合、タッチセンサなどによる入力に応じて、機能の開始と停止を切り替えることができる構成とすればよい。 The switching of the output of the feature amount data from the feature amount output circuit 12 may be performed by turning on and off the switching function by the user. In this case, the configuration may be such that the function can be switched between start and stop in accordance with input from a touch sensor or the like.
 センサ25として、被写体の相対速度や相対位置を検出するのに用いることができるミリ波レーダ等の他のセンサなどと組み合わせて用いる構成としてもよい。 The sensor 25 may be configured to be used in combination with other sensors such as a millimeter wave radar that can be used to detect the relative speed and relative position of the subject.
 以上説明した本発明の一態様の表示システムでは、撮像環境に起因して、取得した撮像データに欠損(不鮮明)部分が生じても、補正用データをもとに撮像データを補正し、正常な表示を行うための画像データを生成することができる。そのため、表示装置に表示された画像の視認性の向上を図ることができる。 In the display system of one embodiment of the present invention described above, even if a defect (unclear) portion occurs in the acquired imaging data due to the imaging environment, the imaging data is corrected based on the correction data, and normal Image data for display can be generated. Therefore, the visibility of the image displayed on the display device can be improved.
<表示システムの動作>
 図6は、図1で説明した表示システム10の動作例を説明するためのフローチャートである。
<Operation of display system>
FIG. 6 is a flowchart for explaining an operation example of the display system 10 described in FIG.
 図6で説明する表示システムの動作では、撮像データ16の特徴量を抽出することで特徴量データをデータベース13に入力し、特徴量データ17に一致または類似する検出用データ19を比較することで補正用データ18を選び出す。そして、選び出された補正用データ18を画像処理回路14で撮像データ16の補正に用いる。 In the operation of the display system described with reference to FIG. 6, feature amount data is input to the database 13 by extracting the feature amount of the imaging data 16, and detection data 19 that matches or resembles the feature amount data 17 is compared. The correction data 18 is selected. Then, the selected correction data 18 is used by the image processing circuit 14 to correct the imaging data 16.
 まずステップS11は、撮像装置11で撮像データ16を取得するステップである。撮像データ16は、特徴量出力回路12に出力される。同じ撮像データ16は、画像処理回路14にも出力される。 First, step S <b> 11 is a step of acquiring the imaging data 16 by the imaging device 11. The imaging data 16 is output to the feature amount output circuit 12. The same imaging data 16 is also output to the image processing circuit 14.
 ステップS12は、入力された撮像データ16に表示異常があるか否かを判定するステップである。ステップS12は、ステップS13の特徴量の抽出とともにおこなってもよい。表示異常がある場合、外観特徴量などの特徴量の抽出が部分的に困難となる。そのため、特徴量データの変化に基づく、表示異常の判定を行うことが有効である。あるいは、照度センサなどのセンサの出力に応じて表示異常を判定する構成でもよい。ユーザが撮像データ16に基づく表示を見て表示異常を判定し、センサ等による切り替えを行ってもよい。表示異常がない(No)と判定すればステップS17での表示装置15による表示を行うステップに進む。表示異常がある(Yes)と判定すれば、ステップS13に進む。 Step S12 is a step of determining whether or not the input imaging data 16 has a display abnormality. Step S12 may be performed together with the feature amount extraction in step S13. When there is a display abnormality, extraction of feature quantities such as appearance feature quantities is partially difficult. For this reason, it is effective to perform display abnormality determination based on changes in the feature amount data. Or the structure which determines display abnormality according to the output of sensors, such as an illumination intensity sensor, may be sufficient. The user may determine the display abnormality by looking at the display based on the imaging data 16 and perform switching using a sensor or the like. If it is determined that there is no display abnormality (No), the process proceeds to the step of displaying on the display device 15 in step S17. If it is determined that there is a display abnormality (Yes), the process proceeds to step S13.
 ステップS13は、特徴量出力回路12で特徴量抽出を行うステップである。得られた特徴量は、特徴量データ17としてデータベース13に出力される。特徴量データ17は、画像認識処理に基づく外観特徴量と、特徴的な領域の局所勾配特徴抽出技術で得られる特徴量と、を組み合わせて得られるデータである。 Step S13 is a step in which the feature quantity output circuit 12 performs feature quantity extraction. The obtained feature quantity is output to the database 13 as feature quantity data 17. The feature amount data 17 is data obtained by combining the appearance feature amount based on the image recognition process and the feature amount obtained by the local gradient feature extraction technique of the characteristic region.
 ステップS14は、ステップS13で得られた特徴量データに対応する、データベース13に記憶された検出用データ19を選び出す(サーチする)ステップである。検出用データ19は、上述したように、特徴量データ17をもとに補正用データ18を選び出すためのデータである。 Step S14 is a step of selecting (searching) the detection data 19 stored in the database 13 corresponding to the feature data obtained in Step S13. As described above, the detection data 19 is data for selecting the correction data 18 based on the feature amount data 17.
 ステップS15は、ステップS14でのサーチによって特徴量データ17に一致または類似した(ヒットした)検出用データ19に対応する補正用データ18を画像処理回路14に出力させるステップである。補正用データ18は、上述したように、撮像データ16の欠損(不鮮明)領域を補正するためのデータである。 Step S15 is a step for causing the image processing circuit 14 to output the correction data 18 corresponding to the detection data 19 that matches or is similar to (or hits) the feature data 17 by the search in step S14. As described above, the correction data 18 is data for correcting a missing (unclear) region of the imaging data 16.
 ステップS16は、撮像データ16を補正して画像データを生成するステップである。補正された撮像データ16をもとに得られる画像データは、光源周辺で過剰な露光や、被写体全体の大きさや形状の情報が補正されたデータである。つまり補正用データ18によって、得られる情報を補完することができる。 Step S16 is a step of correcting the imaging data 16 to generate image data. The image data obtained on the basis of the corrected imaging data 16 is data in which excessive exposure around the light source and information on the size and shape of the entire subject are corrected. That is, the information obtained can be complemented by the correction data 18.
 ステップS17は、表示装置15での画像データに基づく表示を行うステップである。 Step S17 is a step of performing display based on the image data on the display device 15.
 図6で説明した表示システムの一連の動作では、特徴量データ17に一致または類似する検出用データ19を比較し、補正用データ18を選び出すことができる。選び出された補正用データ18を画像処理回路14で撮像データ16の補正に用いることで、取得した撮像データに欠損(不鮮明)部分が生じた際に正常な表示を行うための画像データを生成することができる。そのため、表示装置に表示された画像の視認性の向上を図ることができる。 In the series of operations of the display system described with reference to FIG. 6, the correction data 18 can be selected by comparing the detection data 19 that matches or is similar to the feature data 17. The selected correction data 18 is used to correct the imaging data 16 by the image processing circuit 14, thereby generating image data for normal display when a missing (unclear) portion occurs in the acquired imaging data. can do. Therefore, the visibility of the image displayed on the display device can be improved.
 また表示システムの動作では、撮像データ16の特徴量をデータベース13に抽出させて特徴量データから補正用データ18を選び出すことができる。なおデータベース13は、検出用データ19をCNN学習における重みパラメータとして特徴量データに応じた補正用データ18を推論するように学習をさせておく。そして、選び出された補正用データ18を画像処理回路14で撮像データ16の補正に用いることができる。 In the operation of the display system, the correction data 18 can be selected from the feature amount data by extracting the feature amount of the imaging data 16 into the database 13. The database 13 is trained so as to infer the correction data 18 corresponding to the feature data using the detection data 19 as a weight parameter in CNN learning. Then, the selected correction data 18 can be used for correction of the imaging data 16 by the image processing circuit 14.
 図7では、検出用データ19をCNN学習における重みパラメータとする場合の表示システム10の学習の例を説明するためのフローチャートを示す。 FIG. 7 shows a flowchart for explaining an example of learning of the display system 10 when the detection data 19 is used as a weight parameter in CNN learning.
 ステップS21は、上記ステップS13と同じ特徴量抽出を行う。つまりステップS12で表示異常のある撮像データ16の特徴量抽出を行う。ステップS21で得られる特徴量データは訓練用のデータおよびテスト用のデータであり、元になる撮像データは異なるデータであることが好ましく、大量の特徴量データを生成して用意することが好ましい。 Step S21 performs the same feature amount extraction as step S13. That is, in step S12, the feature amount of the imaging data 16 having display abnormality is extracted. The feature amount data obtained in step S21 is training data and test data. The original imaging data is preferably different data, and it is preferable to generate and prepare a large amount of feature amount data.
 ステップS22は、特徴量データに正解ラベルを付与するステップである。正解ラベルは、特徴量データに対応する撮像データ16の補正に最適な補正用データ18に相当する。 Step S22 is a step of assigning a correct answer label to the feature data. The correct answer label corresponds to correction data 18 that is optimal for correcting the imaging data 16 corresponding to the feature data.
 ステップS23は、訓練用の特徴量データを与えて、重みパラメータとなる検出用データ19の更新を行うステップである。重みパラメータの更新は、誤差逆伝播法など既知の学習方法を用いて行うことが有効である。 Step S23 is a step in which feature data for training is given and the detection data 19 serving as a weight parameter is updated. It is effective to update the weight parameter using a known learning method such as an error back propagation method.
 ステップS24は、特徴量データの入力を行うステップである。ステップS24で入力する特徴量データは、正解ラベルを付したテスト用のデータである。 Step S24 is a step of inputting feature amount data. The feature data input in step S24 is test data with a correct answer label.
 ステップS25は、ステップS24によって得られた出力信号が先に付した正解ラベルに対応するか否かの判定(Yes又はNo)を行う。対応しなければ、ステップS23でのパラメータの更新を繰り返す。 In step S25, it is determined whether the output signal obtained in step S24 corresponds to the correct label attached earlier (Yes or No). If not, the parameter update in step S23 is repeated.
 ステップS26は、特徴量データ17に一致または類似する補正用データ18が得られるかの精度が設定値以下であるかの判定(Yes又はNo)である。精度が設定値以下であれば、ステップS23でのパラメータの更新を繰り返す。 Step S26 is a determination (Yes or No) as to whether or not the accuracy of whether the correction data 18 that matches or is similar to the feature data 17 is obtained is equal to or less than the set value. If the accuracy is less than or equal to the set value, the parameter update in step S23 is repeated.
 CNN学習を繰り返すことで検出用データ19が更新される。更新を繰り返すことで、特徴量データ17の入力に対応する補正用データ18の精度を向上させることができる。更新された検出用データ19を重みパラメータとしたCNNを用いることで、未知の特徴量データ17の入力に応じた補正用データ18を精度よく選択することができる。 Detecting data 19 is updated by repeating CNN learning. By repeating the update, the accuracy of the correction data 18 corresponding to the input of the feature data 17 can be improved. By using the CNN using the updated detection data 19 as a weight parameter, the correction data 18 corresponding to the input of the unknown feature data 17 can be selected with high accuracy.
 図8は、図7で説明したCNN(畳み込みニューラルネットワーク)の構成例を説明するためのブロック図である。 FIG. 8 is a block diagram for explaining a configuration example of the CNN (convolutional neural network) explained in FIG.
 図8に示す畳み込みニューラルネットワーク30は、入力層31、中間層32および出力層33で構成される。 The convolutional neural network 30 shown in FIG. 8 includes an input layer 31, an intermediate layer 32, and an output layer 33.
 図8では、入力層31において、入力データである特徴量データ17を図示している。 FIG. 8 illustrates the feature data 17 that is input data in the input layer 31.
 また図8では、中間層32において、フィルタ34、畳み込みデータ35、プーリングデータ36、フィルタ37、畳み込みデータ38およびプーリングデータ39を図示している。なお中間層32の構成は一例であり、プーリング処理、およびフィルタ34、37による畳み込み演算処理をさらに多層で行う構成や、パディングやストライドといった演算処理を介して行う構成としてもよい。 Further, in FIG. 8, in the intermediate layer 32, the filter 34, the convolution data 35, the pooling data 36, the filter 37, the convolution data 38, and the pooling data 39 are illustrated. Note that the configuration of the intermediate layer 32 is an example, and a configuration in which pooling processing and convolution calculation processing by the filters 34 and 37 are performed in multiple layers, or a configuration in which calculation processing such as padding and stride is performed may be employed.
 また図8では、出力層33において、全結合データ40および出力データ41を図示している。出力データ41は、得られた全結合データ40(図中、y1−ym)をソフトマックス関数で処理し、正解ラベルに対応する出力が得られる。 Further, in FIG. 8, in the output layer 33, all combined data 40 and output data 41 are illustrated. The output data 41 is obtained by processing the obtained all combined data 40 (y1-ym in the figure) with a softmax function to obtain an output corresponding to the correct answer label.
 図7で説明したフローチャートにおけるCNN学習では、フィルタ34、37のパラメータ(重みデータ)を更新して、ラベルを付与した出力データ41(図中、O(y1)−O(ym))が得られるように学習させ、推論できるようにする。特徴量データ17を畳み込みニューラルネットワーク30に入力することで、対応する補正用データ18を画像処理回路14に出力する構成とすることができる。 In the CNN learning in the flowchart described in FIG. 7, the parameters (weight data) of the filters 34 and 37 are updated, and output data 41 (O (y1) −O (ym) in the figure) with labels is obtained. So that they can learn and infer. By inputting the feature data 17 to the convolutional neural network 30, the corresponding correction data 18 can be output to the image processing circuit 14.
 以上説明した表示システム10およびその動作の具体例について説明する。図9および図10では、表示システム10を自動車に適用する場合の例について説明する。 A specific example of the display system 10 described above and its operation will be described. 9 and 10, an example in which the display system 10 is applied to an automobile will be described.
 図9(A)は、自動車22の後方から見た模式図である。図9(A)では、撮像装置11であるカメラ、表示装置15であるルームミラーを図示している。 FIG. 9A is a schematic view seen from the rear of the automobile 22. In FIG. 9A, a camera that is the imaging device 11 and a room mirror that is the display device 15 are illustrated.
 図9(B)では、自動車22と、その後方にある別の自動車42を図示している。自動車42は光源43であるヘッドライトを照射方向44にある自動車22に向けて照射する様子を図示している。また図9(B)では自動車22の撮像装置11を撮像方向45にある自動車42に向けて撮像している様子を図示している。 FIG. 9B shows a car 22 and another car 42 behind it. The automobile 42 illustrates a state in which a headlight as a light source 43 is emitted toward the automobile 22 in the irradiation direction 44. FIG. 9B shows a state in which the imaging device 11 of the automobile 22 is imaged toward the automobile 42 in the imaging direction 45.
 なお図9(B)の例では、撮像装置11で撮像する被写体として自動車42を例示しているが、被写体は自動車に限らない。例えば被写体は、歩行者、自転車、街灯、標識など、撮像データの中から特徴量の抽出によって補正用データを選び出すことができる対象であればよい。歩行者であれば、足や手などの部位の特徴から特徴量を抽出して、頭や上半身の部位を補正用データで補正する構成とすることも有効である。歩行者全身の画像データを表示装置に表示させることで、視認性を高めることができる。 In the example of FIG. 9B, the automobile 42 is illustrated as the subject to be imaged by the imaging device 11, but the subject is not limited to the automobile. For example, the subject may be any object that can select correction data by extracting feature values from imaged data such as pedestrians, bicycles, street lamps, and signs. If it is a pedestrian, it is also effective to extract a feature amount from features of parts such as feet and hands, and to correct a part of the head or upper body with correction data. Visibility can be enhanced by displaying image data of the entire pedestrian on the display device.
 図9(B)の場合、撮像装置11で得られる撮像データ16は、図9(C)のように表すことができる。つまり図9(C)に図示するように、光源43の照度が高くなる。露光を抑えることで光源43周辺の領域の形状は認識されるものの、自動車42全体の形状は認識することが困難になる。そのため、図9(D)に図示するように、夜間走行時などで高照度の光源を有する自動車を撮像する場合、撮像データ内に鮮明領域48と不鮮明領域49とが混在することになる。 In the case of FIG. 9B, the imaging data 16 obtained by the imaging device 11 can be expressed as shown in FIG. That is, as shown in FIG. 9C, the illuminance of the light source 43 increases. Although the shape of the area around the light source 43 is recognized by suppressing exposure, it is difficult to recognize the shape of the entire automobile 42. For this reason, as shown in FIG. 9D, when an automobile having a light source with high illuminance is captured during night driving or the like, a clear area 48 and an unclear area 49 are mixed in the imaging data.
 また別の例として図10(A)は、自動車22Aの後方から見た模式図である。図10(A)では、撮像装置11Aであるカメラ、表示装置15であるルームミラーを図示している。また図10(A)では撮像装置11Aを拡大した模式図を図示しており、レンズ46および水滴47を図示している。雨天などの場合、レンズ46の表面に水滴47などが付着し、得られる撮像データが不鮮明になる場合がある。なお図10(A)では、表示装置15をルームミラーの位置に配置する構成を図示しているが、サイドミラー、あるいはダッシュボードの位置の表示装置を配置する構成などにも有効である。 As another example, FIG. 10A is a schematic view seen from the rear of the automobile 22A. FIG. 10A illustrates a camera that is the imaging device 11 </ b> A and a room mirror that is the display device 15. FIG. 10A illustrates an enlarged schematic diagram of the imaging device 11A, and illustrates a lens 46 and a water droplet 47. In the case of rain or the like, water droplets 47 or the like may adhere to the surface of the lens 46, resulting in unclear image data. 10A shows a configuration in which the display device 15 is arranged at the position of the room mirror, but it is also effective for a configuration in which a display device at the position of the side mirror or the dashboard is arranged.
 図10(B)では、自動車22Aと、その後方にある別の自動車42を図示している。図10(B)では自動車22Aの撮像装置11Aを撮像方向45にある自動車42に向けて撮像している様子を図示している。 FIG. 10B shows a car 22A and another car 42 behind the car 22A. FIG. 10B illustrates a state where the imaging device 11 </ b> A of the automobile 22 </ b> A is imaged toward the automobile 42 in the imaging direction 45.
 図10(B)の場合、撮像装置11で得られる撮像データ16は、図10(C)のように表すことができる。つまり図10(C)に図示するように、水滴47が撮像されることにより自動車42の像が不鮮明となり、自動車42全体の形状は認識することが困難になる。そのため、図10(D)に図示するように、雨天走行時などで自動車を撮像する場合、撮像データ内に鮮明領域48と不鮮明領域49とが混在することになる。 In the case of FIG. 10B, the imaging data 16 obtained by the imaging device 11 can be represented as shown in FIG. That is, as shown in FIG. 10C, when the water droplet 47 is imaged, the image of the automobile 42 becomes unclear, and it becomes difficult to recognize the shape of the entire automobile 42. Therefore, as illustrated in FIG. 10D, when an automobile is imaged during rainy weather driving or the like, a clear area 48 and an unclear area 49 are mixed in the image data.
 上述した本発明の一態様の表示システム10では、撮像データ16の鮮明領域48にある自動車42の一部の情報から特徴量を抽出し、特徴量データ17をデータベース13において照合することで補正用データ18を選び出して、撮像データ16の不鮮明な領域を補正することができる。 In the display system 10 according to one aspect of the present invention described above, a feature amount is extracted from part of the information of the automobile 42 in the clear region 48 of the imaging data 16, and the feature amount data 17 is collated in the database 13 for correction. The data 18 can be selected and the unclear area of the imaging data 16 can be corrected.
 そのため表示システム10を搭載した自動車では、昼夜、晴雨等の状況の変化に応じて、撮像装置で得られる撮像データに不鮮明な領域が生じても補正された画像を視認することができる。例えば、後方の自動車のヘッドライト、あるいは撮像装置に付着した水滴等が、不鮮明な領域を生じさせても特徴量データに応じた補正用データを選び出して撮像データを補正することができる。そのため、被写体全体の大きさや形状の把握が容易になる。また得られる情報を増やすことができるため、視認性の向上に有効である。 Therefore, in a car equipped with the display system 10, a corrected image can be visually recognized even if an unclear area is generated in the imaging data obtained by the imaging device in accordance with changes in conditions such as day and night and fine rain. For example, even if a headlight of a vehicle behind the vehicle or a water droplet attached to the imaging device causes a blurred region, correction data corresponding to the feature amount data can be selected and the imaging data can be corrected. Therefore, it becomes easy to grasp the size and shape of the entire subject. Moreover, since the information obtained can be increased, it is effective in improving visibility.
<表示システムの動作を説明するための具体例>
 図11は、表示システムの動作のより具体的な例を説明するためのフローチャートである。図11では、図1で説明した表示システム10における撮像装置11、特徴量出力回路12、データベース13、画像処理回路14、および表示装置15でのデータの流れについて図示している。
<Specific example for explaining operation of display system>
FIG. 11 is a flowchart for explaining a more specific example of the operation of the display system. FIG. 11 illustrates the data flow in the imaging device 11, the feature amount output circuit 12, the database 13, the image processing circuit 14, and the display device 15 in the display system 10 described in FIG.
 図11に示すステップS31は、撮像装置11での撮像データの取得、特徴量出力回路12への撮像データの出力を行う。また図11に示すステップS31は、データベース13で、補正用データ、検出用データの保存を行う。データベース13における補正用データ18、検出用データ19の保存は、予め行っておいてもよい。 In step S31 shown in FIG. 11, the imaging data is acquired by the imaging device 11 and the imaging data is output to the feature amount output circuit 12. In step S31 shown in FIG. 11, correction data and detection data are stored in the database 13. The correction data 18 and the detection data 19 in the database 13 may be stored in advance.
 図11に示すステップS31は、図12に示すブロック図のように図示することができる。図12では、理解を容易にするために、図9(C)で図示した撮像データ16を図示している。また図12では、理解を容易にするために、補正用データ18として複数の自動車の画像18Aを図示している。また、図12では、理解を容易にするために、検出用データとして自動車の画像の一部であるヘッドライトの画像19Aを図示している。 Step S31 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG. In FIG. 12, the imaging data 16 illustrated in FIG. 9C is illustrated for easy understanding. In FIG. 12, a plurality of automobile images 18 </ b> A are shown as the correction data 18 for easy understanding. In FIG. 12, for easy understanding, a headlight image 19 </ b> A, which is a part of an image of an automobile, is illustrated as detection data.
 図11に示すステップS32は、特徴量出力回路12での特徴量データの演算、および特徴量出力回路12からデータベース13への特徴量データ出力を行う。 In step S32 shown in FIG. 11, the feature amount data is calculated by the feature amount output circuit 12, and the feature amount data is output from the feature amount output circuit 12 to the database 13.
 図11に示すステップS32は、図13に示すブロック図のように図示することができる。図13では、理解を容易にするために、特徴量データ17として外観特徴量である、自動車の画像の一部としてヘッドライトの画像17Aを図示している。 Step S32 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG. In FIG. 13, in order to facilitate understanding, a headlight image 17 </ b> A is illustrated as a part of an automobile image that is an appearance feature amount as the feature amount data 17.
 図11に示すステップS33は、特徴量出力回路12からデータベース13への特徴量データ17の入力、ヘッドライトの画像17Aを用いた特徴量データに一致または類似する検出用データ19のサーチによる検出用データ19の選択、および検出用データ19に応じた補正用データ18の画像処理回路14への出力を行う。 In step S33 shown in FIG. 11, the feature amount data 17 is input from the feature amount output circuit 12 to the database 13, and the detection is performed by searching for the detection data 19 that matches or resembles the feature amount data using the headlight image 17A. The data 19 is selected and the correction data 18 corresponding to the detection data 19 is output to the image processing circuit 14.
 図11に示すステップS33は、図14に示すブロック図のように図示することができる。図14では、理解を容易にするために、ヘッドライトの画像17Aの特徴量データとヘッドライトの画像19Aの特徴量データとが一致するとして、画像処理回路14に出力される補正用データ18である画像18Aを図示している。 Step S33 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG. In FIG. 14, for the sake of easy understanding, it is assumed that the feature data of the headlight image 17A and the feature data of the headlight image 19A coincide with each other with correction data 18 output to the image processing circuit 14. An image 18A is illustrated.
 図11に示すステップS34は、画像処理回路14に対して補正元のデータである撮像装置11からの撮像データ16と補正用のデータであるデータベース13からの補正用データ18とが入力され、撮像データ16が補正される。補正された撮像データは、画像データとして画像処理回路14から表示装置15に出力される。表示装置15では画像処理回路14から画像データが入力され、鮮明な表示を行うことができる。 In step S34 shown in FIG. 11, the imaging data 16 from the imaging device 11 as correction source data and the correction data 18 from the database 13 as correction data are input to the image processing circuit 14, and imaging is performed. Data 16 is corrected. The corrected imaging data is output from the image processing circuit 14 to the display device 15 as image data. The display device 15 receives image data from the image processing circuit 14 and can perform a clear display.
 図11に示すステップS34は、図15に示すブロック図のように図示することができる。図15では、理解を容易にするために、図9(C)で図示した撮像データ16を図示している。また図15では、理解を容易にするために、画像処理回路14に出力される補正用データ18として画像18Aを図示している。また図15では、理解を容易にするために、表示装置15に出力される画像データに対応する画像データ51を図示している。 Step S34 shown in FIG. 11 can be illustrated as in the block diagram shown in FIG. FIG. 15 illustrates the imaging data 16 illustrated in FIG. 9C for easy understanding. In FIG. 15, an image 18 </ b> A is illustrated as correction data 18 output to the image processing circuit 14 for easy understanding. In FIG. 15, image data 51 corresponding to the image data output to the display device 15 is illustrated for easy understanding.
 上述した本発明の一態様の表示システム10では、図11に図示したように撮像データ16の一部の情報から特徴量を抽出し、データベース13において特徴量データ17を照合することで補正用データ18を選び出して、撮像データ16の不鮮明な領域を補正する。そのため、視認性の向上に有効である。 In the above-described display system 10 according to an aspect of the present invention, as illustrated in FIG. 11, the feature amount is extracted from a part of information of the imaging data 16, and the feature amount data 17 is collated in the database 13. 18 is selected and the unclear area of the imaged data 16 is corrected. Therefore, it is effective for improving visibility.
 そのため表示システム10を搭載した自動車では、昼夜、晴雨等の状況の変化に応じて、撮像装置で得られる撮像データに不鮮明な領域が生じても補正された画像を視認することができる。例えば、後方の自動車のヘッドライト、あるいは撮像装置に付着した水滴等が、不鮮明な領域を生じさせても特徴量データに応じた補正用データを選び出して撮像データを補正することができる。そのため、被写体全体の大きさや形状の把握が容易になる。また得られる情報を増やすことができるため、視認性の向上に有効である。 Therefore, in a car equipped with the display system 10, a corrected image can be visually recognized even if an unclear area is generated in the imaging data obtained by the imaging device in accordance with changes in conditions such as day and night and fine rain. For example, even if a headlight of a vehicle behind the vehicle or a water droplet attached to the imaging device causes a blurred region, correction data corresponding to the feature amount data can be selected and the imaging data can be corrected. Therefore, it becomes easy to grasp the size and shape of the entire subject. Moreover, since the information obtained can be increased, it is effective in improving visibility.
(実施の形態2)
 本実施の形態では、上記の実施の形態で説明したニューラルネットワーク30に用いることが可能な半導体装置の構成例について説明する。特に、中間層32や出力層33などの積和演算回路に用いることができる。
(Embodiment 2)
In this embodiment, a configuration example of a semiconductor device that can be used for the neural network 30 described in the above embodiment will be described. In particular, it can be used in product-sum operation circuits such as the intermediate layer 32 and the output layer 33.
<半導体装置の構成例>
 図16に、ニューラルネットワークの演算を行う機能を有する半導体装置MACの構成例を示す。半導体装置MACは、上記の実施の形態で説明したニューラルネットワーク30の少なくとも一部に用いることができる。半導体装置MACは、ニューロン間の結合強度(重み)に対応する第1のデータと、入力データに対応する第2のデータの積和演算を行う機能を有する。なお、第1のデータ及び第2のデータはそれぞれ、アナログデータ又は多値のデータ(離散的なデータ)とすることができる。また、半導体装置MACは、積和演算によって得られたデータを活性化関数によって変換する機能を有する。
<Configuration example of semiconductor device>
FIG. 16 shows a configuration example of the semiconductor device MAC having a function of performing a neural network operation. The semiconductor device MAC can be used for at least a part of the neural network 30 described in the above embodiment. The semiconductor device MAC has a function of performing a product-sum operation on the first data corresponding to the connection strength (weight) between the neurons and the second data corresponding to the input data. Note that the first data and the second data can be analog data or multivalued data (discrete data), respectively. Further, the semiconductor device MAC has a function of converting data obtained by the product-sum operation using an activation function.
 半導体装置MACは、セルアレイCA、電流源回路CS、カレントミラー回路CM、回路WDD、回路WLD、回路CLD、オフセット回路OFST、及び活性化関数回路ACTVを有する。 The semiconductor device MAC includes a cell array CA, a current source circuit CS, a current mirror circuit CM, a circuit WDD, a circuit WLD, a circuit CLD, an offset circuit OFST, and an activation function circuit ACTV.
 セルアレイCAは、複数のメモリセルMC及び複数のメモリセルMCrefを有する。図16には、セルアレイCAがm行n列(m,nは1以上の整数)のメモリセルMC(MC[1,1]乃至[m,n])と、m個のメモリセルMCref(MCref[1]乃至[m])を有する構成例を示している。メモリセルMCは、第1のデータを格納する機能を有する。また、メモリセルMCrefは、積和演算に用いられる参照データを格納する機能を有する。なお、参照データはアナログデータ又は多値のデータとすることができる。 The cell array CA includes a plurality of memory cells MC and a plurality of memory cells MCref. In FIG. 16, the cell array CA has m rows and n columns (m and n are integers of 1 or more) memory cells MC (MC [1,1] to [m, n]) and m memory cells MCref (MCref 2 shows an example of a configuration having [1] to [m]). Memory cell MC has a function of storing first data. The memory cell MCref has a function of storing reference data used for product-sum operation. The reference data can be analog data or multi-value data.
 メモリセルMC[i,j](iは1以上m以下の整数、jは1以上n以下の整数)は、配線WL[i]、配線RW[i]、配線WD[j]、及び配線BL[j]と接続されている。また、メモリセルMCref[i]は、配線WL[i]、配線RW[i]、配線WDref、配線BLrefと接続されている。ここで、メモリセルMC[i,j]と配線BL[j]間を流れる電流をIMC[i,j]と表記し、メモリセルMCref[i]と配線BLref間を流れる電流をIMCref[i]と表記する。 The memory cell MC [i, j] (i is an integer of 1 to m, j is an integer of 1 to n) includes the wiring WL [i], the wiring RW [i], the wiring WD [j], and the wiring BL [J]. The memory cell MCref [i] is connected to the wiring WL [i], the wiring RW [i], the wiring WDref, and the wiring BLref. Here, a current flowing between the memory cell MC [i, j] and the wiring BL [ j] is expressed as I MC [i, j], and a current flowing between the memory cell MCref [i] and the wiring BLref is expressed as I MCref [ i] .
 メモリセルMC及びメモリセルMCrefの具体的な構成例を、図17に示す。図17には代表例としてメモリセルMC[1,1]、[2,1]及びメモリセルMCref[1]、[2]を示しているが、他のメモリセルMC及びメモリセルMCrefにも同様の構成を用いることができる。メモリセルMC及びメモリセルMCrefはそれぞれ、トランジスタTr11、Tr12、容量素子C11を有する。ここでは、トランジスタTr11及びトランジスタTr12がnチャネル型のトランジスタである場合について説明する。 FIG. 17 shows a specific configuration example of the memory cell MC and the memory cell MCref. FIG. 17 shows memory cells MC [1,1], [2,1] and memory cells MCref [1], [2] as representative examples, but the same applies to other memory cells MC and memory cells MCref. Can be used. Each of the memory cell MC and the memory cell MCref includes transistors Tr11 and Tr12 and a capacitor C11. Here, the case where the transistors Tr11 and Tr12 are n-channel transistors will be described.
 メモリセルMCにおいて、トランジスタTr11のゲートは配線WLと接続され、ソース又はドレインの一方はトランジスタTr12のゲート、及び容量素子C11の第1の電極と接続され、ソース又はドレインの他方は配線WDと接続されている。トランジスタTr12のソース又はドレインの一方は配線BLと接続され、ソース又はドレインの他方は配線VRと接続されている。容量素子C11の第2の電極は、配線RWと接続されている。配線VRは、所定の電位を供給する機能を有する配線である。ここでは一例として、配線VRから低電源電位(接地電位など)が供給される場合について説明する。 In the memory cell MC, the gate of the transistor Tr11 is connected to the wiring WL, one of the source and the drain is connected to the gate of the transistor Tr12 and the first electrode of the capacitor C11, and the other of the source or the drain is connected to the wiring WD. Has been. One of a source and a drain of the transistor Tr12 is connected to the wiring BL, and the other of the source and the drain is connected to the wiring VR. The second electrode of the capacitor C11 is connected to the wiring RW. The wiring VR is a wiring having a function of supplying a predetermined potential. Here, as an example, a case where a low power supply potential (such as a ground potential) is supplied from the wiring VR will be described.
 トランジスタTr11のソース又はドレインの一方、トランジスタTr12のゲート、及び容量素子C11の第1の電極と接続されたノードを、ノードNMとする。また、メモリセルMC[1,1]、[2,1]のノードNMを、それぞれノードNM[1,1]、[2,1]と表記する。 A node connected to one of the source and the drain of the transistor Tr11, the gate of the transistor Tr12, and the first electrode of the capacitor C11 is a node NM. The nodes NM of the memory cells MC [1,1] and [2,1] are denoted as nodes NM [1,1] and [2,1], respectively.
 メモリセルMCrefも、メモリセルMCと同様の構成を有する。ただし、メモリセルMCrefは配線WDの代わりに配線WDrefと接続され、配線BLの代わりに配線BLrefと接続されている。また、メモリセルMCref[1]、[2]において、トランジスタTr11のソース又はドレインの一方、トランジスタTr12のゲート、及び容量素子C11の第1の電極と接続されたノードを、それぞれノードNMref[1]、[2]と表記する。 The memory cell MCref has the same configuration as the memory cell MC. However, the memory cell MCref is connected to the wiring WDref instead of the wiring WD, and is connected to the wiring BLref instead of the wiring BL. In the memory cells MCref [1] and [2], a node connected to one of the source and the drain of the transistor Tr11, the gate of the transistor Tr12, and the first electrode of the capacitor C11 is a node NMref [1]. , [2].
 ノードNMとノードNMrefはそれぞれ、メモリセルMCとメモリセルMCrefの保持ノードとして機能する。ノードNMには第1のデータが保持され、ノードNMrefには参照データが保持される。また、配線BL[1]からメモリセルMC[1,1],[2,1]のトランジスタTr12には、それぞれ電流IMC[1,1]、IMC[2,1]が流れる。また、配線BLrefからメモリセルMCref[1]、[2]のトランジスタTr12には、それぞれ電流IMCref[1]、IMCref[2]が流れる。 The node NM and the node NMref function as a memory cell MC and a holding node for the memory cell MCref, respectively. The node NM holds first data, and the node NMref holds reference data. Further, currents IMC [1,1] and IMC [2,1] flow from the wiring BL [1] to the transistors Tr12 of the memory cells MC [1,1] and [2,1], respectively. Further, currents I MCref [1] and I MCref [2] flow from the wiring BLref to the transistors Tr12 of the memory cells MCref [1] and [2], respectively.
 トランジスタTr11は、ノードNM又はノードNMrefの電位を保持する機能を有するため、トランジスタTr11のオフ電流は小さいことが好ましい。そのため、トランジスタTr11としてオフ電流が極めて小さいOSトランジスタを用いることが好ましい。これにより、ノードNM又はノードNMrefの電位の変動を抑えることができ、演算精度の向上を図ることができる。また、ノードNM又はノードNMrefの電位をリフレッシュする動作の頻度を低く抑えることが可能となり、消費電力を削減することができる。 Since the transistor Tr11 has a function of holding the potential of the node NM or the node NMref, the off-state current of the transistor Tr11 is preferably small. Therefore, an OS transistor with an extremely low off-state current is preferably used as the transistor Tr11. As a result, fluctuations in the potential of the node NM or the node NMref can be suppressed, and the calculation accuracy can be improved. In addition, the frequency of the operation of refreshing the potential of the node NM or the node NMref can be suppressed, and power consumption can be reduced.
 トランジスタTr12は特に限定されず、例えばSiトランジスタ又はOSトランジスタなどを用いることができる。トランジスタTr12にOSトランジスタを用いる場合、トランジスタTr11と同じ製造装置を用いて、トランジスタTr12を作製することが可能となり、製造コストを抑制することができる。なお、トランジスタTr12はnチャネル型であってもpチャネル型であってもよい。 The transistor Tr12 is not particularly limited, and for example, a Si transistor or an OS transistor can be used. When an OS transistor is used as the transistor Tr12, the transistor Tr12 can be manufactured using the same manufacturing apparatus as the transistor Tr11, and manufacturing cost can be reduced. Note that the transistor Tr12 may be an n-channel type or a p-channel type.
 電流源回路CSは、配線BL[1]乃至[n]及び配線BLrefと接続されている。電流源回路CSは、配線BL[1]乃至[n]及び配線BLrefに電流を供給する機能を有する。なお、配線BL[1]乃至[n]に供給される電流値と配線BLrefに供給される電流値は異なっていてもよい。ここでは、電流源回路CSから配線BL[1]乃至[n]に供給される電流をI、電流源回路CSから配線BLrefに供給される電流をICrefと表記する。 The current source circuit CS is connected to the wirings BL [1] to [n] and the wiring BLref. The current source circuit CS has a function of supplying current to the wirings BL [1] to [n] and the wiring BLref. Note that the current value supplied to the wirings BL [1] to [n] may be different from the current value supplied to the wiring BLref. Here, the current supplied from the current source circuit CS to the wirings BL [1] to [n] is expressed as I C , and the current supplied from the current source circuit CS to the wiring BLref is expressed as I Cref .
 カレントミラー回路CMは、配線IL[1]乃至[n]及び配線ILrefを有する。配線IL[1]乃至[n]はそれぞれ配線BL[1]乃至[n]と接続され、配線ILrefは、配線BLrefと接続されている。ここでは、配線IL[1]乃至[n]と配線BL[1]乃至[n]の接続箇所をノードNP[1]乃至[n]と表記する。また、配線ILrefと配線BLrefの接続箇所をノードNPrefと表記する。 The current mirror circuit CM includes wirings IL [1] to [n] and wiring ILref. The wirings IL [1] to [n] are connected to the wirings BL [1] to [n], respectively, and the wiring ILref is connected to the wiring BLref. Here, connection points between the wirings IL [1] to [n] and the wirings BL [1] to [n] are denoted as nodes NP [1] to [n]. Further, a connection point between the wiring ILref and the wiring BLref is referred to as a node NPref.
 カレントミラー回路CMは、ノードNPrefの電位に応じた電流ICMを配線ILrefに流す機能と、この電流ICMを配線IL[1]乃至[n]にも流す機能を有する。図16には、配線BLrefから配線ILrefに電流ICMが排出され、配線BL[1]乃至[n]から配線IL[1]乃至[n]に電流ICMが排出される例を示している。また、カレントミラー回路CMから配線BL[1]乃至[n]を介してセルアレイCAに流れる電流を、I[1]乃至[n]と表記する。また、カレントミラー回路CMから配線BLrefを介してセルアレイCAに流れる電流を、IBrefと表記する。 The current mirror circuit CM has a function of flowing a current I CM corresponding to the potential of the node NPref to the wiring ILref and a function of flowing the current I CM to the wirings IL [1] to [n]. Figure 16 is discharged current I CM from the wiring BLref to the wiring ILref, wiring BL [1] to the wiring from the [n] IL [1] to [n] to the current I CM is an example to be discharged . Further, currents flowing from the current mirror circuit CM to the cell array CA via the wirings BL [1] to [n] are denoted as I B [1] to [n]. A current flowing from the current mirror circuit CM to the cell array CA via the wiring BLref is denoted as I Bref .
 回路WDDは、配線WD[1]乃至[n]及び配線WDrefと接続されている。回路WDDは、メモリセルMCに格納される第1のデータに対応する電位を、配線WD[1]乃至[n]に供給する機能を有する。また、回路WDDは、メモリセルMCrefに格納される参照データに対応する電位を、配線WDrefに供給する機能を有する。回路WLDは、配線WL[1]乃至[m]と接続されている。回路WLDは、データの書き込みを行うメモリセルMC又はメモリセルMCrefを選択するための信号を、配線WL[1]乃至[m]に供給する機能を有する。回路CLDは、配線RW[1]乃至[m]と接続されている。回路CLDは、第2のデータに対応する電位を、配線RW[1]乃至[m]に供給する機能を有する。 The circuit WDD is connected to the wirings WD [1] to [n] and the wiring WDref. The circuit WDD has a function of supplying a potential corresponding to the first data stored in the memory cell MC to the wirings WD [1] to [n]. Further, the circuit WDD has a function of supplying a potential corresponding to reference data stored in the memory cell MCref to the wiring WDref. The circuit WLD is connected to the wirings WL [1] to [m]. The circuit WLD has a function of supplying a signal for selecting the memory cell MC or the memory cell MCref to which data is written to the wirings WL [1] to [m]. The circuit CLD is connected to the wirings RW [1] to [m]. The circuit CLD has a function of supplying a potential corresponding to the second data to the wirings RW [1] to [m].
 オフセット回路OFSTは、配線BL[1]乃至[n]及び配線OL[1]乃至[n]と接続されている。オフセット回路OFSTは、配線BL[1]乃至[n]からオフセット回路OFSTに流れる電流量、及び/又は、配線BL[1]乃至[n]からオフセット回路OFSTに流れる電流の変化量を検出する機能を有する。また、オフセット回路OFSTは、検出結果を配線OL[1]乃至[n]に出力する機能を有する。なお、オフセット回路OFSTは、検出結果に対応する電流を配線OLに出力してもよいし、検出結果に対応する電流を電圧に変換して配線OLに出力してもよい。セルアレイCAとオフセット回路OFSTの間を流れる電流を、Iα[1]乃至[n]と表記する。 The offset circuit OFST is connected to the wirings BL [1] to [n] and the wirings OL [1] to [n]. The offset circuit OFST has a function of detecting a current amount flowing from the wirings BL [1] to [n] to the offset circuit OFST and / or a change amount of a current flowing from the wirings BL [1] to [n] to the offset circuit OFST. Have The offset circuit OFST has a function of outputting the detection result to the wirings OL [1] to [n]. Note that the offset circuit OFST may output a current corresponding to the detection result to the wiring OL, or may convert a current corresponding to the detection result into a voltage and output the voltage to the wiring OL. The current flowing between the cell array CA and the offset circuit OFST is expressed as I α [1] to [n].
 オフセット回路OFSTの構成例を図18に示す。図18に示すオフセット回路OFSTは、回路OC[1]乃至[n]を有する。また、回路OC[1]乃至[n]はそれぞれ、トランジスタTr21、トランジスタTr22、トランジスタTr23、容量素子C21、及び抵抗素子R1を有する。各素子の接続関係は図18に示す通りである。なお、容量素子C21の第1の電極及び抵抗素子R1の第1の端子と接続されたノードを、ノードNaとする。また、容量素子C21の第2の電極、トランジスタTr21のソース又はドレインの一方、及びトランジスタTr22のゲートと接続されたノードを、ノードNbとする。 FIG. 18 shows a configuration example of the offset circuit OFST. The offset circuit OFST illustrated in FIG. 18 includes circuits OC [1] to [n]. Each of the circuits OC [1] to [n] includes a transistor Tr21, a transistor Tr22, a transistor Tr23, a capacitor C21, and a resistor R1. The connection relationship of each element is as shown in FIG. Note that a node connected to the first electrode of the capacitor C21 and the first terminal of the resistor element R1 is referred to as a node Na. A node connected to the second electrode of the capacitor C21, one of the source or the drain of the transistor Tr21, and the gate of the transistor Tr22 is referred to as a node Nb.
 配線VrefLは電位Vrefを供給する機能を有し、配線VaLは電位Vaを供給する機能を有し、配線VbLは電位Vbを供給する機能を有する。また、配線VDDLは電位VDDを供給する機能を有し、配線VSSLは電位VSSを供給する機能を有する。ここでは、電位VDDが高電源電位であり、電位VSSが低電源電位である場合について説明する。また、配線RSTは、トランジスタTr21の導通状態を制御するための電位を供給する機能を有する。トランジスタTr22、トランジスタTr23、配線VDDL、配線VSSL、及び配線VbLによって、ソースフォロワ回路が構成される。 The wiring VrefL has a function of supplying the potential Vref, the wiring VaL has a function of supplying the potential Va, and the wiring VbL has a function of supplying the potential Vb. The wiring VDDL has a function of supplying the potential VDD, and the wiring VSSL has a function of supplying the potential VSS. Here, the case where the potential VDD is a high power supply potential and the potential VSS is a low power supply potential will be described. The wiring RST has a function of supplying a potential for controlling the conduction state of the transistor Tr21. The transistor Tr22, the transistor Tr23, the wiring VDDL, the wiring VSSL, and the wiring VbL constitute a source follower circuit.
 次に、回路OC[1]乃至[n]の動作例を説明する。なお、ここでは代表例として回路OC[1]の動作例を説明するが、回路OC[2]乃至[n]も同様に動作させることができる。まず、配線BL[1]に第1の電流が流れると、ノードNaの電位は、第1の電流と抵抗素子R1の抵抗値に応じた電位となる。また、このときトランジスタTr21はオン状態であり、ノードNbに電位Vaが供給される。その後、トランジスタTr21はオフ状態となる。 Next, an operation example of the circuits OC [1] to [n] will be described. In addition, although the operation example of circuit OC [1] is demonstrated here as a typical example, circuit OC [2] thru | or [n] can be operated similarly. First, when a first current flows through the wiring BL [1], the potential of the node Na becomes a potential corresponding to the first current and the resistance value of the resistance element R1. At this time, the transistor Tr21 is on, and the potential Va is supplied to the node Nb. Thereafter, the transistor Tr21 is turned off.
 次に、配線BL[1]に第2の電流が流れると、ノードNaの電位は、第2の電流と抵抗素子R1の抵抗値に応じた電位に変化する。このときトランジスタTr21はオフ状態であり、ノードNbはフローティング状態となっているため、ノードNaの電位の変化に伴い、ノードNbの電位は容量結合により変化する。ここで、ノードNaの電位の変化をΔVNaとし、容量結合係数を1とすると、ノードNbの電位はVa+ΔVNaとなる。そして、トランジスタTr22のしきい値電圧をVthとすると、配線OL[1]から電位Va+ΔVNa−Vthが出力される。ここで、Va=Vthすることにより、配線OL[1]から電位ΔVNaを出力することができる。 Next, when a second current flows through the wiring BL [1], the potential of the node Na changes to a potential corresponding to the second current and the resistance value of the resistance element R1. At this time, since the transistor Tr21 is in an off state and the node Nb is in a floating state, the potential of the node Nb changes due to capacitive coupling as the potential of the node Na changes. Here, if the change in the potential of the node Na is ΔV Na and the capacitive coupling coefficient is 1, the potential of the node Nb is Va + ΔV Na . When the threshold voltage of the transistor Tr22 and V th, the potential Va + ΔV Na -V th is output from the wiring OL [1]. Here, by Va = V th, it is possible to output the potential [Delta] V Na from the wiring OL [1].
 電位ΔVNaは、第1の電流から第2の電流への変化量、抵抗素子R1、及び電位Vrefに応じて定まる。ここで、抵抗素子R1と電位Vrefは既知であるため、電位ΔVNaから配線BLに流れる電流の変化量を求めることができる。 The potential ΔV Na is determined according to the amount of change from the first current to the second current, the resistance element R1, and the potential Vref. Here, since the resistance element R1 and the potential Vref is known, it is possible to determine the amount of change current flowing from the potential [Delta] V Na wiring BL.
 上記のようにオフセット回路OFSTによって検出された電流量、及び/又は電流の変化量に対応する信号は、配線OL[1]乃至[n]を介して活性化関数回路ACTVに入力される。 The signal corresponding to the amount of current detected by the offset circuit OFST and / or the amount of change in current as described above is input to the activation function circuit ACTV via the wirings OL [1] to [n].
 活性化関数回路ACTVは、配線OL[1]乃至[n]、及び、配線NIL[1]乃至[n]と接続されている。活性化関数回路ACTVは、オフセット回路OFSTから入力された信号を、あらかじめ定義された活性化関数に従って変換するための演算を行う機能を有する。活性化関数としては、例えば、シグモイド関数、tanh関数、softmax関数、ReLU関数、しきい値関数などを用いることができる。活性化関数回路ACTVによって変換された信号は、出力データとして配線NIL[1]乃至[n]に出力される。 The activation function circuit ACTV is connected to the wirings OL [1] to [n] and the wirings NIL [1] to [n]. The activation function circuit ACTV has a function of performing an operation for converting the signal input from the offset circuit OFST according to a predefined activation function. As the activation function, for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, or the like can be used. The signal converted by the activation function circuit ACTV is output as output data to the wirings NIL [1] to [n].
<半導体装置の動作例>
 上記の半導体装置MACを用いて、第1のデータと第2のデータの積和演算を行うことができる。以下、積和演算を行う際の半導体装置MACの動作例を説明する。
<Operation example of semiconductor device>
Using the semiconductor device MAC, the product-sum operation of the first data and the second data can be performed. Hereinafter, an operation example of the semiconductor device MAC when performing the product-sum operation will be described.
 図19に半導体装置MACの動作例のタイミングチャートを示す。図19には、図17における配線WL[1]、配線WL[2]、配線WD[1]、配線WDref、ノードNM[1,1]、ノードNM[2,1]、ノードNMref[1]、ノードNMref[2]、配線RW[1]、及び配線RW[2]の電位の推移と、電流I[1]−Iα[1]、及び電流IBrefの値の推移を示している。電流I[1]−Iα[1]は、配線BL[1]からメモリセルMC[1,1]、[2,1]に流れる電流の総和に相当する。 FIG. 19 shows a timing chart of an operation example of the semiconductor device MAC. 19 includes the wiring WL [1], the wiring WL [2], the wiring WD [1], the wiring WDref, the node NM [1,1], the node NM [2,1], and the node NMref [1] in FIG. , The transition of the potential of the node NMref [2], the wiring RW [1], and the wiring RW [2], and the transition of the values of the current I B [1] −I α [1] and the current I Bref . . The current I B [1] −I α [1] corresponds to the sum of currents flowing from the wiring BL [1] to the memory cells MC [1,1] and [2,1].
 なお、ここでは代表例として図17に示すメモリセルMC[1,1]、[2,1]及びメモリセルMCref[1]、[2]に着目して動作を説明するが、他のメモリセルMC及びメモリセルMCrefも同様に動作させることができる。 Here, as a representative example, the operation will be described focusing on the memory cells MC [1,1] and [2,1] and the memory cells MCref [1] and [2] shown in FIG. The MC and the memory cell MCref can be operated similarly.
[第1のデータの格納]
 まず、時刻T01−T02において、配線WL[1]の電位がハイレベルとなり、配線WD[1]の電位が接地電位(GND)よりもVPR−VW[1,1]大きい電位となり、配線WDrefの電位が接地電位よりもVPR大きい電位となる。また、配線RW[1]、及び配線RW[2]の電位が基準電位(REFP)となる。なお、電位VW[1,1]はメモリセルMC[1,1]に格納される第1のデータに対応する電位である。また、電位VPRは参照データに対応する電位である。これにより、メモリセルMC[1,1]及びメモリセルMCref[1]が有するトランジスタTr11がオン状態となり、ノードNM[1,1]の電位がVPR−VW[1,1]、ノードNMref[1]の電位がVPRとなる。
[Storage of first data]
First, at time T01-T02, the potential of the wiring WL [1] becomes high level, the potential of the wiring WD [1] becomes V PR −V W [1,1] higher than the ground potential (GND), and the wiring potential of WDref becomes the V PR greater potential than the ground potential. Further, the potentials of the wiring RW [1] and the wiring RW [2] are the reference potential (REFP). Note that the potential V W [1, 1] is a potential corresponding to the first data stored in the memory cell MC [1, 1]. The potential VPR is a potential corresponding to the reference data. Accordingly, the transistor Tr11 included in the memory cell MC [1,1] and the memory cell MCref [1] is turned on, and the potential of the node NM [1,1] is V PR −V W [1,1] and the node NMref. The potential of [1] becomes VPR .
 このとき、配線BL[1]からメモリセルMC[1,1]のトランジスタTr12に流れる電流IMC[1,1],0は、次の式で表すことができる。ここで、kはトランジスタTr12のチャネル長、チャネル幅、移動度、及びゲート絶縁膜の容量などで決まる定数である。また、VthはトランジスタTr12のしきい値電圧である。 At this time, a current I MC [1,1], 0 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [1,1] can be expressed by the following equation. Here, k is a constant determined by the channel length, channel width, mobility, capacitance of the gate insulating film, and the like of the transistor Tr12. V th is the threshold voltage of the transistor Tr12.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 また、配線BLrefからメモリセルMCref[1]のトランジスタTr12に流れる電流IMCref[1],0は、次の式で表すことができる。 Further, the current I MCref [1], 0 flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [1] can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 次に、時刻T02−T03において、配線WL[1]の電位がローレベルとなる。これにより、メモリセルMC[1,1]及びメモリセルMCref[1]が有するトランジスタTr11がオフ状態となり、ノードNM[1,1]及びノードNMref[1]の電位が保持される。 Next, at time T02 to T03, the potential of the wiring WL [1] is at a low level. Accordingly, the transistor Tr11 included in the memory cell MC [1,1] and the memory cell MCref [1] is turned off, and the potentials of the node NM [1,1] and the node NMref [1] are held.
 なお、前述の通り、トランジスタTr11としてOSトランジスタを用いることが好ましい。これにより、トランジスタTr11のリーク電流を抑えることができ、ノードNM[1,1]及びノードNMref[1]の電位を正確に保持することができる。 As described above, an OS transistor is preferably used as the transistor Tr11. Accordingly, leakage current of the transistor Tr11 can be suppressed, and the potentials of the node NM [1,1] and the node NMref [1] can be accurately held.
 次に、時刻T03−T04において、配線WL[2]の電位がハイレベルとなり、配線WD[1]の電位が接地電位よりもVPR−VW[2,1]大きい電位となり、配線WDrefの電位が接地電位よりもVPR大きい電位となる。なお、電位VW[2,1]はメモリセルMC[2,1]に格納される第1のデータに対応する電位である。これにより、メモリセルMC[2,1]及びメモリセルMCref[2]が有するトランジスタTr11がオン状態となり、ノードNM[2,1]の電位がVPR−VW[2,1]、ノードNMref[2]の電位がVPRとなる。 Next, at time T03-T04, the potential of the wiring WL [2] is at a high level, the potential of the wiring WD [1] is V PR −V W [2,1] higher than the ground potential, and the wiring WDref The potential becomes a potential VPR larger than the ground potential. Note that the potential V W [2, 1] is a potential corresponding to the first data stored in the memory cell MC [2, 1]. Accordingly, the transistor Tr11 included in the memory cell MC [2,1] and the memory cell MCref [2] is turned on, and the potential of the node NM [2,1] is V PR −V W [2,1] and the node NMref. The potential of [2] becomes VPR .
 このとき、配線BL[1]からメモリセルMC[2,1]のトランジスタTr12に流れる電流IMC[2,1],0は、次の式で表すことができる。 At this time, the current I MC [2,1], 0 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [2,1] can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 また、配線BLrefからメモリセルMCref[2]のトランジスタTr12に流れる電流IMCref[2],0は、次の式で表すことができる。 Further, the current I MCref [2], 0 flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [2] can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 次に、時刻T04−T05において、配線WL[2]の電位がローレベルとなる。これにより、メモリセルMC[2,1]及びメモリセルMCref[2]が有するトランジスタTr11がオフ状態となり、ノードNM[2,1]及びノードNMref[2]の電位が保持される。 Next, at time T04 to T05, the potential of the wiring WL [2] is at a low level. Accordingly, the transistor Tr11 included in the memory cell MC [2,1] and the memory cell MCref [2] is turned off, and the potentials of the node NM [2,1] and the node NMref [2] are held.
 以上の動作により、メモリセルMC[1,1]、[2,1]に第1のデータが格納され、メモリセルMCref[1]、[2]に参照データが格納される。 Through the above operation, the first data is stored in the memory cells MC [1,1] and [2,1], and the reference data is stored in the memory cells MCref [1] and [2].
 ここで、時刻T04−T05において、配線BL[1]及び配線BLrefに流れる電流を考える。配線BLrefには、電流源回路CSから電流が供給される。また、配線BLrefを流れる電流は、カレントミラー回路CM、メモリセルMCref[1]、[2]へ排出される。電流源回路CSから配線BLrefに供給される電流をICref、配線BLrefからカレントミラー回路CMへ排出される電流をICM,0とすると、次の式が成り立つ。 Here, currents flowing through the wiring BL [1] and the wiring BLref from time T04 to T05 are considered. A current is supplied from the current source circuit CS to the wiring BLref. Further, the current flowing through the wiring BLref is discharged to the current mirror circuit CM and the memory cells MCref [1] and [2]. When the current supplied from the current source circuit CS to the wiring BLref is I Cref and the current discharged from the wiring BLref to the current mirror circuit CM is I CM, 0 , the following equation is established.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 配線BL[1]には、電流源回路CSからの電流が供給される。また、配線BL[1]を流れる電流は、カレントミラー回路CM、メモリセルMC[1,1]、[2,1]へ排出される。また、配線BL[1]からオフセット回路OFSTに電流が流れる。電流源回路CSから配線BL[1]に供給される電流をIC,0、配線BL[1]からオフセット回路OFSTに流れる電流をIα,0とすると、次の式が成り立つ。 A current from the current source circuit CS is supplied to the wiring BL [1]. Further, the current flowing through the wiring BL [1] is discharged to the current mirror circuit CM and the memory cells MC [1,1], [2,1]. In addition, a current flows from the wiring BL [1] to the offset circuit OFST. When the current supplied from the current source circuit CS to the wiring BL [1] is I C, 0 and the current flowing from the wiring BL [1] to the offset circuit OFST is I α, 0 , the following equation is established.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
[第1のデータと第2のデータの積和演算]
 次に、時刻T05−T06において、配線RW[1]の電位が基準電位よりもVX[1]大きい電位となる。このとき、メモリセルMC[1,1]、及びメモリセルMCref[1]のそれぞれの容量素子C11には電位VX[1]が供給され、容量結合によりトランジスタTr12のゲートの電位が上昇する。なお、電位Vx[1]はメモリセルMC[1,1]及びメモリセルMCref[1]に供給される第2のデータに対応する電位である。
[Product-sum operation of first data and second data]
Next, at time T05 to T06, the potential of the wiring RW [1] is V X [1] larger than the reference potential. At this time, the potential V X [1] is supplied to the respective capacitive elements C11 of the memory cell MC [1,1] and the memory cell MCref [1], and the potential of the gate of the transistor Tr12 is increased by capacitive coupling. Note that the potential V x [1] is a potential corresponding to the second data supplied to the memory cell MC [1, 1] and the memory cell MCref [1].
 トランジスタTr12のゲートの電位の変化量は、配線RWの電位の変化量に、メモリセルの構成によって決まる容量結合係数を乗じた値となる。容量結合係数は、容量素子C11の容量、トランジスタTr12のゲート容量、及び寄生容量などによって算出される。以下では便宜上、配線RWの電位の変化量とトランジスタTr12のゲートの電位の変化量が同じ、すなわち容量結合係数が1であるとして説明する。実際には、容量結合係数を考慮して電位Vを決定すればよい。 The amount of change in the potential of the gate of the transistor Tr12 is a value obtained by multiplying the amount of change in the potential of the wiring RW by the capacitive coupling coefficient determined by the configuration of the memory cell. The capacitive coupling coefficient is calculated by the capacitance of the capacitive element C11, the gate capacitance of the transistor Tr12, the parasitic capacitance, and the like. Hereinafter, for the sake of convenience, description will be made assuming that the amount of change in potential of the wiring RW and the amount of change in potential of the gate of the transistor Tr12 are the same, that is, the capacitive coupling coefficient is 1. Actually, the potential V x may be determined in consideration of the capacitive coupling coefficient.
 メモリセルMC[1]及びメモリセルMCref[1]の容量素子C11に電位VX[1]が供給されると、ノードNN[1]及びノードNMref[1]の電位がそれぞれVX[1]上昇する。 When the potential V X [1] is supplied to the capacitor C11 of the memory cell MC [1] and the memory cell MCref [1], the potentials of the node NN [1] and the node NMref [1] are V X [1], respectively . To rise.
 ここで、時刻T05−T06において、配線BL[1]からメモリセルMC[1,1]のトランジスタTr12に流れる電流IMC[1,1],1は、次の式で表すことができる。 Here, from time T05 to T06, the current I MC [1,1], 1 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [1,1] can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 すなわち、配線RW[1]に電位VX[1]を供給することにより、配線BL[1]からメモリセルMC[1,1]のトランジスタTr12に流れる電流は、ΔIMC[1,1]=IMC[1,1],1−IMC[1,1],0増加する。 That is, by supplying the potential V X [1] to the wiring RW [1], the current flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [1,1] is ΔI MC [1,1] = I MC [1,1], 1 −I MC [1,1], 0 is increased.
 また、時刻T05−T06において、配線BLrefからメモリセルMCref[1]のトランジスタTr12に流れる電流IMCref[1],1は、次の式で表すことができる。 Further, current I MCref [1], 1 flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [1] from time T05 to T06 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 すなわち、配線RW[1]に電位VX[1]を供給することにより、配線BLrefからメモリセルMCref[1]のトランジスタTr12に流れる電流は、ΔIMCref[1]=IMCref[1],1−IMCref[1],0増加する。 That is, by supplying the potential V X [1] to the wiring RW [1], the current flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [1] is ΔI MCref [1] = I MCref [1], 1 -I MCref [1], incremented by 0 .
 また、配線BL[1]及び配線BLrefに流れる電流について考える。配線BLrefには、電流源回路CSから電流ICrefが供給される。また、配線BLrefを流れる電流は、カレントミラー回路CM、メモリセルMCref[1]、[2]へ排出される。配線BLrefからカレントミラー回路CMへ排出される電流をICM,1とすると、次の式が成り立つ。 Consider the current flowing through the wiring BL [1] and the wiring BLref. A current I Cref is supplied from the current source circuit CS to the wiring BLref. Further, the current flowing through the wiring BLref is discharged to the current mirror circuit CM and the memory cells MCref [1] and [2]. When the current discharged from the wiring BLref to the current mirror circuit CM is I CM, 1 , the following equation is established.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
 配線BL[1]には、電流源回路CSから電流Iが供給される。また、配線BL[1]を流れる電流は、カレントミラー回路CM、メモリセルMC[1,1]、[2,1]へ排出される。さらに、配線BL[1]からオフセット回路OFSTにも電流が流れる。配線BL[1]からオフセット回路OFSTに流れる電流をIα,1とすると、次の式が成り立つ。 The wiring BL [1], the current I C is supplied from the current source circuit CS. Further, the current flowing through the wiring BL [1] is discharged to the current mirror circuit CM and the memory cells MC [1,1], [2,1]. Further, a current also flows from the wiring BL [1] to the offset circuit OFST. When the current flowing from the wiring BL [1] to the offset circuit OFST is I α, 1 , the following equation is established.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
 そして、式(E1)乃至式(E10)から、電流Iα,0と電流Iα,1の差(差分電流ΔIα)は次の式で表すことができる。 From the equations (E1) to (E10) , the difference between the current I α, 0 and the current I α, 1 (differential current ΔI α ) can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
 このように、差分電流ΔIαは、電位VW[1,1]とVX[1]の積に応じた値となる。 Thus, the differential current ΔI α has a value corresponding to the product of the potentials V W [1, 1] and V X [1] .
 その後、時刻T06−T07において、配線RW[1]の電位は接地電位となり、ノードNM[1,1]及びノードNMref[1]の電位は時刻T04−T05と同様になる。 Thereafter, at time T06 to T07, the potential of the wiring RW [1] becomes the ground potential, and the potentials of the node NM [1,1] and the node NMref [1] are the same as those of the time T04-T05.
 次に、時刻T07−T08において、配線RW[1]の電位が基準電位よりもVX[1]大きい電位となり、配線RW[2]の電位が基準電位よりもVX[2]大きい電位となる。これにより、メモリセルMC[1,1]、及びメモリセルMCref[1]のそれぞれの容量素子C11に電位VX[1]が供給され、容量結合によりノードNM[1,1]及びノードNMref[1]の電位がそれぞれVX[1]上昇する。また、メモリセルMC[2,1]、及びメモリセルMCref[2]のそれぞれの容量素子C11に電位VX[2]が供給され、容量結合によりノードNM[2,1]及びノードNMref[2]の電位がそれぞれVX[2]上昇する。 Next, at time T07 to T08, the potential of the wiring RW [1] is V X [1] larger than the reference potential, and the potential of the wiring RW [2] is V X [2] larger than the reference potential. Become. As a result, the potential V X [1] is supplied to the respective capacitive elements C11 of the memory cell MC [1,1] and the memory cell MCref [1], and the node NM [1,1] and the node NMref [ 1] is increased by V X [1] . In addition, the potential V X [2] is supplied to the respective capacitor C11 of the memory cell MC [2,1] and the memory cell MCref [2], and the node NM [2,1] and the node NMref [2 ] are connected by capacitive coupling. ] Increases by V X [2] .
 ここで、時刻T07−T08において、配線BL[1]からメモリセルMC[2,1]のトランジスタTr12に流れる電流IMC[2,1],1は、次の式で表すことができる。 Here, at time T07-T08, the current I MC [2,1], 1 flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [2,1] can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
 すなわち、配線RW[2]に電位VX[2]を供給することにより、配線BL[1]からメモリセルMC[2,1]のトランジスタTr12に流れる電流は、ΔIMC[2,1]=IMC[2,1],1−IMC[2,1],0増加する。 That is, by supplying the potential V X [2] to the wiring RW [2], the current flowing from the wiring BL [1] to the transistor Tr12 of the memory cell MC [2, 1] is ΔI MC [2,1] = I MC [2,1], 1 −I MC [2,1], 0 increases.
 また、時刻T05−T06において、配線BLrefからメモリセルMCref[2]のトランジスタTr12に流れる電流IMCref[2],1は、次の式で表すことができる。 Further, current I MCref [2], 1 flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [2] from time T05 to T06 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 すなわち、配線RW[2]に電位VX[2]を供給することにより、配線BLrefからメモリセルMCref[2]のトランジスタTr12に流れる電流は、ΔIMCref[2]=IMCref[2],1−IMCref[2],0増加する。 That is, by supplying the potential V X [2] to the wiring RW [2], the current flowing from the wiring BLref to the transistor Tr12 of the memory cell MCref [2] is ΔI MCref [2] = I MCref [2], 1 -I MCref [2], incremented by 0 .
 また、配線BL[1]及び配線BLrefに流れる電流について考える。配線BLrefには、電流源回路CSから電流ICrefが供給される。また、配線BLrefを流れる電流は、カレントミラー回路CM、メモリセルMCref[1]、[2]へ排出される。配線BLrefからカレントミラー回路CMへ排出される電流をICM,2とすると、次の式が成り立つ。 Consider the current flowing through the wiring BL [1] and the wiring BLref. A current I Cref is supplied from the current source circuit CS to the wiring BLref. Further, the current flowing through the wiring BLref is discharged to the current mirror circuit CM and the memory cells MCref [1] and [2]. When the current discharged from the wiring BLref to the current mirror circuit CM is I CM, 2 , the following equation is established.
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
 配線BL[1]には、電流源回路CSから電流Iが供給される。また、配線BL[1]を流れる電流は、カレントミラー回路CM、メモリセルMC[1,1]、[2,1]へ排出される。さらに、配線BL[1]からオフセット回路OFSTにも電流が流れる。配線BL[1]からオフセット回路OFSTに流れる電流をIα,2とすると、次の式が成り立つ。 The wiring BL [1], the current I C is supplied from the current source circuit CS. Further, the current flowing through the wiring BL [1] is discharged to the current mirror circuit CM and the memory cells MC [1,1], [2,1]. Further, a current also flows from the wiring BL [1] to the offset circuit OFST. Assuming that the current flowing from the wiring BL [1] to the offset circuit OFST is I α, 2 , the following equation is established.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 そして、式(E1)乃至式(E8)、及び、式(E12)乃至式(E15)から、電流Iα,0と電流Iα,2の差(差分電流ΔIα)は次の式で表すことができる。 Then, from the equations (E1) to (E8) and the equations (E12) to (E15) , the difference between the current I α, 0 and the current I α, 2 (differential current ΔI α ) is expressed by the following equation. be able to.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
 このように、差分電流ΔIαは、電位VW[1,1]と電位VX[1]の積と、電位VW[2,1]と電位VX[2]の積と、を足し合わせた結果に応じた値となる。 As described above, the differential current ΔI α is obtained by adding the product of the potential V W [1, 1] and the potential V X [1] and the product of the potential V W [2, 1] and the potential V X [2]. The value depends on the combined result.
 その後、時刻T08−T09において、配線RW[1]、[2]の電位は接地電位となり、ノードNM[1,1]、[2,1]及びノードNMref[1]、[2]の電位は時刻T04−T05と同様になる。 After that, at times T08 to T09, the potentials of the wirings RW [1] and [2] become the ground potential, and the potentials of the nodes NM [1,1] and [2,1] and the nodes NMref [1] and [2] are It becomes the same as time T04-T05.
 式(E9)及び式(E16)に示されるように、オフセット回路OFSTに入力される差分電流ΔIαは、第1のデータ(重み)に対応する電位Vと、第2のデータ(入力データ)に対応する電位Vの積を足し合わせた結果に応じた値となる。すなわち、差分電流ΔIαをオフセット回路OFSTで計測することにより、第1のデータと第2のデータの積和演算の結果を得ることができる。 As shown in the equations (E9) and (E16), the difference current ΔI α input to the offset circuit OFST includes the potential V X corresponding to the first data (weight) and the second data (input data). ) corresponding to a value corresponding to the combined result plus the product of the potential V W. That is, by measuring the differential current ΔI α with the offset circuit OFST, it is possible to obtain a product-sum operation result of the first data and the second data.
 なお、上記では特にメモリセルMC[1,1]、[2,1]及びメモリセルMCref[1]、[2]に着目したが、メモリセルMC及びメモリセルMCrefの数は任意に設定することができる。メモリセルMC及びメモリセルMCrefの行数mを任意の数とした場合の差分電流ΔIαは、次の式で表すことができる。 In the above description, the memory cells MC [1,1] and [2,1] and the memory cells MCref [1] and [2] are particularly focused. However, the number of the memory cells MC and the memory cells MCref should be arbitrarily set. Can do. The differential current ΔIα when the number of rows m of the memory cell MC and the memory cell MCref is an arbitrary number can be expressed by the following equation.
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
 また、メモリセルMC及びメモリセルMCrefの列数nを増やすことにより、並列して実行される積和演算の数を増やすことができる。 Also, by increasing the number of columns n of the memory cells MC and the memory cells MCref, the number of product-sum operations executed in parallel can be increased.
 以上のように、半導体装置MACを用いることにより、第1のデータと第2のデータの積和演算を行うことができる。なお、メモリセルMC及びメモリセルMCrefとして図17に示す構成を用いることにより、少ないトランジスタ数で積和演算回路を構成することができる。そのため、半導体装置MACの回路規模の縮小を図ることができる。 As described above, by using the semiconductor device MAC, the product-sum operation of the first data and the second data can be performed. Note that by using the structure shown in FIG. 17 as the memory cell MC and the memory cell MCref, a product-sum operation circuit can be formed with a small number of transistors. Therefore, the circuit scale of the semiconductor device MAC can be reduced.
 半導体装置MACをニューラルネットワークにおける演算に用いる場合、メモリセルMCの行数mは一のニューロンに供給される入力データの数に対応させ、メモリセルMCの列数nはニューロンの数に対応させることができる。例えば、中間層において半導体装置MACを用いた積和演算を行う場合を考える。このとき、メモリセルMCの行数mは、入力層から供給される入力データの数(入力層のニューロンの数)に設定し、メモリセルMCの列数nは、中間層のニューロンの数に設定することができる。 When the semiconductor device MAC is used for computation in the neural network, the number of rows m of the memory cells MC corresponds to the number of input data supplied to one neuron, and the number of columns n of the memory cells MC corresponds to the number of neurons. Can do. For example, consider a case where a product-sum operation using the semiconductor device MAC is performed in the intermediate layer. At this time, the number of rows m of the memory cells MC is set to the number of input data (number of neurons in the input layer) supplied from the input layer, and the number of columns n of the memory cells MC is set to the number of neurons in the intermediate layer. Can be set.
 以上のように、半導体装置MACを用いることにより、ニューラルネットワークの積和演算を行うことができる。さらに、セルアレイCAに図17に示すメモリセルMC及びメモリセルMCrefを用いることにより、演算精度の向上、消費電力の削減、又は回路規模の縮小を図ることが可能な集積回路を提供することができる。 As described above, by using the semiconductor device MAC, the product-sum operation of the neural network can be performed. Further, by using the memory cell MC and the memory cell MCref shown in FIG. 17 for the cell array CA, an integrated circuit capable of improving calculation accuracy, reducing power consumption, or reducing the circuit scale can be provided. .
 なお、第1のデータ(重み)に対応する電位Vが任意の基準電位以上である場合を「正」、小さい場合を「負」とすることにより、積差演算を行なうことができる。よって、半導体装置MACは積差演算回路として機能することができる。 The product difference calculation can be performed by setting “positive” when the potential V X corresponding to the first data (weight) is equal to or higher than an arbitrary reference potential, and “negative” when the potential is smaller. Therefore, the semiconductor device MAC can function as a product difference arithmetic circuit.
 積差演算回路を用いて、突発的に生じたノイズの除去などを行なうことができる。一例として、図20(A)および(B)を示す。図20(A)および(B)は、トンネル内などの暗所を走行中の車両を示す画像である。図20(A)は、急に点灯した車両100の前照灯105の影響により、トンネル外に位置する車両110は視認できるものの、トンネル内にいる歩行者120および歩行者130の視認性が低下した状態を示している。 積 Sudden noise can be removed using a product difference arithmetic circuit. As an example, FIGS. 20A and 20B are shown. 20A and 20B are images showing a vehicle that is traveling in a dark place such as in a tunnel. FIG. 20A shows that the vehicle 110 positioned outside the tunnel can be visually recognized due to the influence of the headlight 105 of the vehicle 100 that is suddenly turned on, but the visibility of the pedestrian 120 and the pedestrian 130 inside the tunnel is reduced. Shows the state.
 図20(B)は、積差演算回路を用いた画像処理により、急に点灯した前照灯105の影響を軽減し、トンネル外に位置する車両110のみでなく、トンネル内にいる歩行者120および歩行者130の視認性も高めた状態を示している。なお、積差演算回路によって現在のフレーム画像と直前のフレーム画像の差分情報を取得し、該差分情報を用いて画像処理を行うこともできる。 In FIG. 20B, the image processing using the product difference arithmetic circuit reduces the influence of the headlight 105 that is suddenly turned on, and not only the vehicle 110 located outside the tunnel but also the pedestrian 120 inside the tunnel. In addition, the visibility of the pedestrian 130 is also improved. Note that difference information between the current frame image and the previous frame image can be acquired by the product difference calculation circuit, and image processing can be performed using the difference information.
 近年、自動運転向けや、サイドミラーおよびバックミラーとして車載イメージセンサが期待されている。本発明の一態様と、画素毎に感度を調整する仕組みと、を組み合わせることにより、他車のライトなどがまぶしい状況でも障害物や人を正確に検出することができる。 In recent years, in-vehicle image sensors are expected for automated driving and as side mirrors and rearview mirrors. By combining one embodiment of the present invention with a mechanism for adjusting sensitivity for each pixel, an obstacle or a person can be accurately detected even in a situation where the lights of other vehicles are dazzling.
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。 This embodiment mode can be combined with any of the other embodiment modes as appropriate.
(実施の形態3)
 本実施の形態においては、先の実施の形態で例示した表示装置15の一例について、図21乃至図23を用いて以下説明を行う。
(Embodiment 3)
In this embodiment, an example of the display device 15 illustrated in the above embodiment will be described below with reference to FIGS.
 図21は、先の実施の形態で例示した表示装置15に適用可能な表示装置700を示す上面図である。図21に示す表示装置700は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられたデマルチプレクサ703、ソースドライバ704およびゲートドライバ706と、画素部702、デマルチプレクサ703、およびゲートドライバ706を囲むように配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の基板701と第2の基板705は、シール材712によって封止されている。すなわち、画素部702、デマルチプレクサ703、およびゲートドライバ706は、第1の基板701とシール材712と第2の基板705によって封止されている。なお、図21には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる。 FIG. 21 is a top view showing a display device 700 applicable to the display device 15 exemplified in the previous embodiment. A display device 700 illustrated in FIG. 21 includes a pixel portion 702 provided over a first substrate 701, a demultiplexer 703 provided in the first substrate 701, a source driver 704 and a gate driver 706, a pixel portion 702, The sealant 712 is disposed so as to surround the demultiplexer 703 and the gate driver 706, and the second substrate 705 is provided so as to face the first substrate 701. Note that the first substrate 701 and the second substrate 705 are sealed with a sealant 712. That is, the pixel portion 702, the demultiplexer 703, and the gate driver 706 are sealed with the first substrate 701, the sealant 712, and the second substrate 705. Note that although not illustrated in FIG. 21, a display element is provided between the first substrate 701 and the second substrate 705.
 また、表示装置700は、第1の基板701上のシール材712によって囲まれている領域とは異なる領域に、画素部702、デマルチプレクサ703、ソースドライバ704、およびゲートドライバ706と、それぞれ電気的に接続されるFPC端子部708(FPC:Flexible printed circuit)が設けられる。また、FPC端子部708には、FPC716が接続され、FPC716によって画素部702、デマルチプレクサ703、ソースドライバ704、およびゲートドライバ706に各種信号等が供給される。また、画素部702、デマルチプレクサ703、ソースドライバ704、ゲートドライバ706、およびFPC端子部708には、信号線710が各々接続されている。FPC716により供給される各種信号等は、信号線710を介して、画素部702、デマルチプレクサ703、ソースドライバ704、ゲートドライバ706、およびFPC端子部708に与えられる。 In addition, the display device 700 includes a pixel portion 702, a demultiplexer 703, a source driver 704, and a gate driver 706 in different regions from the region surrounded by the sealant 712 on the first substrate 701. FPC terminal portion 708 (FPC: Flexible printed circuit) is provided. In addition, an FPC 716 is connected to the FPC terminal portion 708, and various signals are supplied to the pixel portion 702, the demultiplexer 703, the source driver 704, and the gate driver 706 by the FPC 716. A signal line 710 is connected to each of the pixel portion 702, the demultiplexer 703, the source driver 704, the gate driver 706, and the FPC terminal portion 708. Various signals and the like supplied from the FPC 716 are supplied to the pixel portion 702, the demultiplexer 703, the source driver 704, the gate driver 706, and the FPC terminal portion 708 through the signal line 710.
 また、表示装置700にゲートドライバ706を複数設けてもよい。また、表示装置700としては、ゲートドライバ706を画素部702と同じ第1の基板701に形成し、ソースドライバ704をソースドライバICとしている例を示しているが、この構成に限定されない。例えば、ソースドライバ704を第1の基板701に形成しても良い。なおソースドライバICは、COG(Chip On Glass)方法、ワイヤボンディング方法などで設けることができる。またデマルチプレクサ703は、省略することも可能である。 Further, a plurality of gate drivers 706 may be provided in the display device 700. In addition, as the display device 700, an example in which the gate driver 706 is formed over the same first substrate 701 as the pixel portion 702 and the source driver 704 is a source driver IC is shown; however, the structure is not limited to this. For example, the source driver 704 may be formed on the first substrate 701. Note that the source driver IC can be provided by a COG (Chip On Glass) method, a wire bonding method, or the like. Further, the demultiplexer 703 can be omitted.
 また、表示装置700は、様々な素子を有することが出来る。該素子の一例としては、例えば、エレクトロルミネッセンス(EL)素子(有機物および無機物を含むEL素子、有機EL素子、無機EL素子、LEDなど)、発光トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクトロウェッティング素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャッター(DMS)素子、インターフェロメトリック・モジュレーション(IMOD)素子など)、圧電セラミックディスプレイなどが挙げられる。 In addition, the display device 700 can have various elements. Examples of the element include, for example, an electroluminescence (EL) element (an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element, an LED, etc.), a light-emitting transistor (a transistor that emits light in response to a current), and electron emission. Element, liquid crystal element, electronic ink element, electrophoretic element, electrowetting element, plasma display panel (PDP), MEMS (micro electro mechanical system) display (for example, grating light valve (GLV), digital micromirror device (DMD), digital micro shutter (DMS) element, interferometric modulation (IMOD) element, etc.), piezoelectric ceramic display, and the like.
 また、EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク素子または電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。 An example of a display device using an EL element is an EL display. As an example of a display device using an electron-emitting device, there is a field emission display (FED), a SED type flat display (SED: Surface-conduction Electron-emitter Display), or the like. As an example of a display device using a liquid crystal element, there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like. An example of a display device using an electronic ink element or an electrophoretic element is electronic paper. Note that in the case of realizing a transflective liquid crystal display or a reflective liquid crystal display, part or all of the pixel electrode may have a function as a reflective electrode. For example, part or all of the pixel electrode may have aluminum, silver, or the like. Further, in that case, a memory circuit such as an SRAM can be provided under the reflective electrode. Thereby, power consumption can be further reduced.
 なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用することもできる。 Note that as a display method in the display device 700, a progressive method, an interlace method, or the like can be used. Further, the color elements controlled by the pixels when performing color display are not limited to three colors of RGB (R represents red, G represents green, and B represents blue). For example, it may be composed of four pixels: an R pixel, a G pixel, a B pixel, and a W (white) pixel. Alternatively, as in a pen tile arrangement, one color element may be configured by two colors of RGB, and two different colors may be selected and configured depending on the color element. Alternatively, one or more colors such as yellow, cyan, and magenta may be added to RGB. The size of the display area may be different for each dot of the color element. Note that the disclosed invention is not limited to a display device for color display, and can be applied to a display device for monochrome display.
 また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともいう。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有する素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合よりも、さらに消費電力を低減できる場合がある。 In addition, a colored layer (also referred to as a color filter) may be used in order to display white light (W) in a backlight (an organic EL element, an inorganic EL element, an LED, a fluorescent lamp, or the like) and display a full color display device. Good. For example, red (R), green (G), blue (B), yellow (Y), and the like can be used in appropriate combination for the colored layer. By using the colored layer, the color reproducibility can be increased as compared with the case where the colored layer is not used. At this time, white light in a region having no colored layer may be directly used for display by arranging a region having a colored layer and a region having no colored layer. By disposing a region that does not have a colored layer in part, a decrease in luminance due to the colored layer can be reduced during bright display, and power consumption can be reduced by about 20% to 30%. However, when a full color display is performed using a self-luminous element such as an organic EL element or an inorganic EL element, R, G, B, Y, and W may be emitted from elements having respective emission colors. By using a self-luminous element, power consumption may be further reduced as compared with the case where a colored layer is used.
 また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。 In addition, as a colorization method, in addition to a method (color filter method) in which part of the light emission from the white light emission described above is converted into red, green, and blue through a color filter, red, green, and blue light emission is performed. A method of using each (three-color method) or a method of converting a part of light emission from blue light emission into red or green (color conversion method, quantum dot method) may be applied.
 本実施の形態においては、表示素子として液晶素子およびEL素子を用いる構成について、図22および図23を用いて説明する。なお、図22は、図21に示す一点鎖線Q−Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、図23は、図21に示す一点鎖線Q−Rにおける断面図であり、表示素子としてEL素子を用いた構成である。 In this embodiment, a structure in which a liquid crystal element and an EL element are used as display elements will be described with reference to FIGS. Note that FIG. 22 is a cross-sectional view taken along one-dot chain line QR shown in FIG. FIG. 23 is a cross-sectional view taken along the alternate long and short dash line QR shown in FIG. 21, and includes an EL element as a display element.
 まず、図22および図23に示す共通部分について最初に説明し、次に異なる部分について以下説明する。 First, common parts shown in FIGS. 22 and 23 will be described first, and then different parts will be described below.
<表示装置の共通部分に関する説明>
 図22および図23に示す表示装置700は、引き回し配線部711と、画素部702と、デマルチプレクサ703と、FPC端子部708と、を有する。また、引き回し配線部711は、信号線710を有する。また、画素部702は、トランジスタ750および容量素子790を有する。また、デマルチプレクサ703は、トランジスタ752を有する。
<Description of common parts of display device>
A display device 700 illustrated in FIGS. 22 and 23 includes a lead wiring portion 711, a pixel portion 702, a demultiplexer 703, and an FPC terminal portion 708. Further, the lead wiring portion 711 includes a signal line 710. In addition, the pixel portion 702 includes a transistor 750 and a capacitor 790. In addition, the demultiplexer 703 includes a transistor 752.
 トランジスタ750およびトランジスタ752は、トップゲート型、ボトムゲート型、チャネルエッチ型、チャネル保護型、いずれでも良い。図22および図23はトップゲート型を図示している。トランジスタ750およびトランジスタ752の半導体層には、シリコン系半導体(アモルファスシリコン、多結晶シリコン等)、酸化物半導体(酸化亜鉛、酸化インジウム等)等を用いることができる。図22および図23は酸化物半導体を用いた場合を説明する。 The transistor 750 and the transistor 752 may be any of a top gate type, a bottom gate type, a channel etch type, and a channel protection type. 22 and 23 illustrate a top gate type. For the semiconductor layers of the transistor 750 and the transistor 752, a silicon-based semiconductor (amorphous silicon, polycrystalline silicon, or the like), an oxide semiconductor (zinc oxide, indium oxide, or the like), or the like can be used. 22 and 23 illustrate the case where an oxide semiconductor is used.
 容量素子790は、トランジスタ750が有する第1の酸化物半導体膜と、同一の酸化物半導体膜を加工する工程を経て形成される下部電極と、トランジスタ750が有するソース電極およびドレイン電極として機能する導電膜と、同一の導電膜を加工する工程を経て形成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ750が有する第2の絶縁膜として機能する絶縁膜、および第3の絶縁膜として機能する絶縁膜と、同一の絶縁膜を形成する工程を経て形成される絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電体として機能する絶縁膜が挟持された積層型の構造である。 The capacitor 790 includes a first oxide semiconductor film included in the transistor 750, a lower electrode formed through a step of processing the same oxide semiconductor film, and a conductive material functioning as a source electrode and a drain electrode included in the transistor 750. A film and an upper electrode formed through a process of processing the same conductive film. In addition, a step of forming the same insulating film as the second insulating film and the insulating film functioning as the third insulating film of the transistor 750 between the lower electrode and the upper electrode is formed. An insulating film formed through the above is provided. That is, the capacitor 790 has a stacked structure in which an insulating film functioning as a dielectric is sandwiched between a pair of electrodes.
 また、図22および図23において、トランジスタ750、トランジスタ752、および容量素子790上に平坦化絶縁膜770が設けられている。 22 and 23, a planarization insulating film 770 is provided over the transistor 750, the transistor 752, and the capacitor 790.
 平坦化絶縁膜770としては、ポリイミド樹脂、アクリル樹脂、ポリイミドアミド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹脂、エポキシ樹脂等の耐熱性を有する有機材料を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、平坦化絶縁膜770を形成してもよい。また、平坦化絶縁膜770を設けない構成としてもよい。 As the planarization insulating film 770, an organic material having heat resistance such as polyimide resin, acrylic resin, polyimide amide resin, benzocyclobutene resin, polyamide resin, or epoxy resin can be used. Note that the planarization insulating film 770 may be formed by stacking a plurality of insulating films formed using these materials. Further, the planarization insulating film 770 may be omitted.
 また、信号線710は、トランジスタ750、752のソース電極およびドレイン電極として機能する導電膜と同じ工程を経て形成される。なお、信号線710は、トランジスタ750、752のソース電極およびドレイン電極と異なる工程を経て形成された導電膜、例えば、ゲート電極として機能する酸化物半導体膜と同じ工程を経て形成される酸化物半導体膜を用いてもよい。信号線710として、例えば、銅元素を含む材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。 Further, the signal line 710 is formed through the same process as the conductive film functioning as the source and drain electrodes of the transistors 750 and 752. Note that the signal line 710 is a conductive film formed through a different process from the source and drain electrodes of the transistors 750 and 752, for example, an oxide semiconductor formed through the same process as an oxide semiconductor film functioning as a gate electrode. A membrane may be used. For example, when a material containing a copper element is used as the signal line 710, signal delay due to wiring resistance is small and display on a large screen is possible.
 また、FPC端子部708は、接続電極760、異方性導電膜780、およびFPC716を有する。なお、接続電極760は、トランジスタ750、752のソース電極およびドレイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は、FPC716が有する端子と異方性導電膜780を介して、電気的に接続される。 The FPC terminal portion 708 includes a connection electrode 760, an anisotropic conductive film 780, and an FPC 716. Note that the connection electrode 760 is formed through the same process as the conductive film functioning as the source and drain electrodes of the transistors 750 and 752. The connection electrode 760 is electrically connected to a terminal included in the FPC 716 through an anisotropic conductive film 780.
 また、第1の基板701および第2の基板705としては、例えばガラス基板を用いることができる。また、第1の基板701および第2の基板705として、可撓性を有する基板を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられる。 Further, as the first substrate 701 and the second substrate 705, for example, glass substrates can be used. Further, as the first substrate 701 and the second substrate 705, flexible substrates may be used. Examples of the flexible substrate include a plastic substrate.
 また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構造体778は、絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設けられる。なお、構造体778として、球状のスペーサを用いていても良い。 In addition, a structure body 778 is provided between the first substrate 701 and the second substrate 705. The structure body 778 is a columnar spacer obtained by selectively etching an insulating film, and is provided to control the distance (cell gap) between the first substrate 701 and the second substrate 705. Note that a spherical spacer may be used as the structure body 778.
 また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、カラーフィルタとして機能する着色膜736と、遮光膜738および着色膜736に接する絶縁膜734が設けられる。 Further, on the second substrate 705 side, a light shielding film 738 functioning as a black matrix, a colored film 736 functioning as a color filter, and an insulating film 734 in contact with the light shielding film 738 and the colored film 736 are provided.
<液晶素子を用いる表示装置の構成例>
 図22に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜772、導電膜774、および液晶層776を有する。導電膜774は、第2の基板705側に設けられ、対向電極としての機能を有する。図22に示す表示装置700は、導電膜772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによって光の透過、非透過が制御され画像を表示することができる。
<Configuration Example of Display Device Using Liquid Crystal Element>
A display device 700 illustrated in FIG. 22 includes a liquid crystal element 775. The liquid crystal element 775 includes a conductive film 772, a conductive film 774, and a liquid crystal layer 776. The conductive film 774 is provided on the second substrate 705 side and functions as a counter electrode. The display device 700 illustrated in FIG. 22 can display an image by controlling transmission and non-transmission of light by changing the alignment state of the liquid crystal layer 776 depending on voltages applied to the conductive films 772 and 774.
 また、導電膜772は、トランジスタ750が有するソース電極およびドレイン電極として機能する導電膜に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能する。また、導電膜772は、透明電極としての機能を有する。図22に示す表示装置700は、液晶層776でバックライトの光を透過して着色膜736を介して表示する、所謂透過型のカラー液晶表示装置である。 The conductive film 772 is connected to a conductive film functioning as a source electrode and a drain electrode of the transistor 750. The conductive film 772 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of a display element. The conductive film 772 functions as a transparent electrode. A display device 700 illustrated in FIG. 22 is a so-called transmissive color liquid crystal display device that transmits light from a backlight through a liquid crystal layer 776 and displays the light through a colored film 736.
 導電膜772としては、可視光において透光性のある導電膜、または可視光において反射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよい。 As the conductive film 772, a conductive film that is transparent to visible light or a conductive film that is reflective to visible light can be used. As the conductive film that transmits visible light, for example, a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used. As the conductive film having reflectivity in visible light, for example, a material containing aluminum or silver is preferably used.
 なお、図22において図示しないが、導電膜772、774の液晶層776と接する側に、それぞれ配向膜を設ける構成としてもよい。また、図22において図示しないが、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設けてもよい。例えば、偏光基板および位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。 Although not shown in FIG. 22, an alignment film may be provided on each side of the conductive films 772 and 774 in contact with the liquid crystal layer 776. Although not shown in FIG. 22, an optical member (an optical substrate) such as a polarizing member, a retardation member, or an antireflection member may be provided as appropriate. For example, circularly polarized light using a polarizing substrate and a retardation substrate may be used. Further, a backlight, a sidelight, or the like may be used as the light source.
 表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 When a liquid crystal element is used as the display element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
 また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要である。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。また、ブルー相を示す液晶材料は、視野角依存性が小さい。 In addition, when the horizontal electric field method is adopted, a liquid crystal exhibiting a blue phase without using an alignment film may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with several percent by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic, so that alignment treatment is unnecessary. Further, since it is not necessary to provide an alignment film, a rubbing process is not required, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. . A liquid crystal material exhibiting a blue phase has a small viewing angle dependency.
 また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。 In addition, when a liquid crystal element is used as a display element, a TN (Twisted Nematic) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe Field Switching) mode, an ASM (Axially Symmetrical Aligned MicroOcell) mode. A Compensated Birefringence mode, an FLC (Ferroelectric Liquid Crystal) mode, an AFLC (Antiferroelectric Liquid Crystal) mode, and the like can be used.
 また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASVモードなどを用いることができる。 Alternatively, a normally black liquid crystal display device such as a transmissive liquid crystal display device employing a vertical alignment (VA) mode may be used. There are several examples of the vertical alignment mode. For example, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV mode, and the like can be used.
<発光素子を用いる表示装置>
 図23に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜784、EL層786、および導電膜788を有する。図23に示す表示装置700は、発光素子782が有するEL層786が発光することによって、画像を表示することができる。
<Display device using light emitting element>
A display device 700 illustrated in FIG. 23 includes a light-emitting element 782. The light-emitting element 782 includes a conductive film 784, an EL layer 786, and a conductive film 788. The display device 700 illustrated in FIG. 23 can display an image when the EL layer 786 included in the light-emitting element 782 emits light.
 また、導電膜784は、トランジスタ750が有するソース電極およびドレイン電極として機能する導電膜に接続される。導電膜784は、平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能する。導電膜784としては、可視光において透光性のある導電膜、または可視光において反射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよい。 Further, the conductive film 784 is connected to a conductive film functioning as a source electrode and a drain electrode of the transistor 750. The conductive film 784 is formed over the planarization insulating film 770 and functions as a pixel electrode, that is, one electrode of a display element. As the conductive film 784, a conductive film that transmits visible light or a conductive film that reflects visible light can be used. As the conductive film that transmits visible light, for example, a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used. As the conductive film having reflectivity in visible light, for example, a material containing aluminum or silver is preferably used.
 また、図23に示す表示装置700には、平坦化絶縁膜770および導電膜784上に絶縁膜730が設けられる。絶縁膜730は、導電膜784の一部を覆う。なお、発光素子782はトップエミッション構造である。したがって、導電膜788は透光性を有し、EL層786が発する光を透過する。なお、本実施の形態においては、トップエミッション構造について、例示するが、これに限定されない。例えば、導電膜784側に光を射出するボトムエミッション構造や、導電膜784および導電膜788の双方に光を射出するデュアルエミッション構造にも適用することができる。 Further, in the display device 700 illustrated in FIG. 23, the insulating film 730 is provided over the planarization insulating film 770 and the conductive film 784. The insulating film 730 covers part of the conductive film 784. Note that the light-emitting element 782 has a top emission structure. Therefore, the conductive film 788 has a light-transmitting property and transmits light emitted from the EL layer 786. In the present embodiment, the top emission structure is illustrated, but is not limited thereto. For example, a bottom emission structure in which light is emitted to the conductive film 784 side or a dual emission structure in which light is emitted to both the conductive film 784 and the conductive film 788 can be used.
 また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重なる位置、引き回し配線部711、およびソースドライバ704に遮光膜738が設けられている。また、着色膜736および遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図23に示す表示装置700においては、着色膜736を設ける構成について例示したが、これに限定されない。例えば、EL層786を塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。 Further, a colored film 736 is provided at a position overlapping with the light emitting element 782, and a light shielding film 738 is provided at a position overlapping with the insulating film 730, the routing wiring portion 711, and the source driver 704. Further, the coloring film 736 and the light shielding film 738 are covered with an insulating film 734. A space between the light emitting element 782 and the insulating film 734 is filled with a sealing film 732. Note that in the display device 700 illustrated in FIG. 23, the structure in which the colored film 736 is provided is illustrated, but the present invention is not limited to this. For example, in the case where the EL layer 786 is formed by separate coating, the coloring film 736 may not be provided.
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態4)
 本実施の形態においては、先の実施の形態で例示した表示装置の自動車、およびその他の移動体への適用例について、図24および図25を用いて以下説明を行う。
(Embodiment 4)
In this embodiment, application examples of the display device described in the above embodiment to a vehicle and other moving objects will be described below with reference to FIGS.
<表示システムの移動体への適用例>
 上述した表示システムが有する表示装置について、移動体である自動車の運転席周辺に設ける場合の例について説明する。
<Example of application of display system to moving body>
An example in which the display device included in the above-described display system is provided in the vicinity of a driver's seat of an automobile that is a moving body will be described.
 例えば図24(A)は、運転席と助手席にベンチシートを採用した自動車の室内を示している。図24(A)では、ドア部に設けられた表示装置52A、ハンドルに設けられた表示装置52B、ベンチシートの座面の中央部に設けられた表示装置52Cを図示している。 For example, FIG. 24A shows the interior of an automobile in which bench seats are used for the driver's seat and the passenger seat. FIG. 24A illustrates a display device 52A provided at the door, a display device 52B provided at the handle, and a display device 52C provided at the center of the seat surface of the bench seat.
 表示装置52Aには、例えば、車体に設けられた撮像装置からの画像を表示部に映し出すことによって、ドアで遮られた視界を補完することができる。 The display device 52A can complement the view blocked by the door, for example, by displaying an image from an imaging device provided on the vehicle body on the display unit.
 表示装置52Bおよび52Cは、車体に設けられた撮像装置からの画像の他、ナビゲーション情報、スピードメーターやタコメーター等のメーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができる。また、表示装置に表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができる。表示装置52Bおよび52Cは、照明装置として用いることも可能である。 The display devices 52B and 52C have various other information such as navigation information, meters such as a speedometer and a tachometer, travel distance, oil supply amount, gear state, and air conditioner settings in addition to the image from the image pickup device provided on the vehicle body. Can be provided. In addition, display items, layouts, and the like displayed on the display device can be changed as appropriate according to user preferences. The display devices 52B and 52C can also be used as lighting devices.
 また図24(B)は、自動車の室内におけるフロントガラス周辺を表す図である。図24(B)では、ダッシュボードに取り付けられた表示装置53Aを図示している。 FIG. 24B is a diagram showing the periphery of the windshield in the interior of a car. FIG. 24B illustrates the display device 53A attached to the dashboard.
 表示装置53Aは、ナビゲーション情報、スピードメーターやタコメーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができる。また、表示装置に表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示装置53Aは、照明装置として用いることも可能である。 The display device 53A can provide various other information such as navigation information, a speedometer and a tachometer, a travel distance, an oil supply amount, a gear state, and an air conditioner setting. In addition, the display items, layout, and the like displayed on the display device can be appropriately changed according to the user's preference, and the design can be improved. The display device 53A can also be used as a lighting device.
 また表示装置53Aには、車体に設けられた撮像手段からの映像を映し出すことによって、車体に遮られた視界(死角)を補完することができる。すなわち、自動車の外側に設けられた撮像手段からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示装置53Aは、照明装置として用いることも可能である。 Also, the display device 53A can complement the field of view (dead angle) obstructed by the vehicle body by displaying an image from the imaging means provided on the vehicle body. That is, by displaying an image from the imaging means provided outside the automobile, the blind spot can be compensated and safety can be improved. Also, by displaying a video that complements the invisible part, it is possible to confirm the safety more naturally and without a sense of incongruity. The display device 53A can also be used as a lighting device.
<移動体の例>
 移動体の例について説明する。
<Example of moving body>
An example of the moving body will be described.
 本発明の一態様に係る表示システムは、自動車に限らず様々な移動体に用いることができる。これら移動体の具体例を図25(A)乃至(C)に示す。 The display system according to one embodiment of the present invention can be used not only for automobiles but also for various mobile objects. Specific examples of these moving objects are shown in FIGS.
 図25(A)はバス302である。本発明の一態様に係る移動体は、バス302に用いることができる。表示システムはバス302の外部の画像を撮像し、視認する際の画像の視認性を高めることができる。そのため、安全性が高められたバス302とすることができる。 FIG. 25A shows the bus 302. The moving body according to one embodiment of the present invention can be used for the bus 302. The display system can take an image outside the bus 302 and improve the visibility of the image when viewing the image. Therefore, the bus 302 can be improved in safety.
 図25(B)は電車303である。本発明の一態様に係る移動体は、電車303に用いることができる。表示システムは電車303の外部の画像を撮像し、視認する際の画像の視認性を高めることができる。そのため、安全性が高められた電車303とすることができる。 FIG. 25B shows the train 303. The moving body according to one embodiment of the present invention can be used for the train 303. The display system captures an image outside the train 303 and can improve the visibility of the image when viewing the image. Therefore, the train 303 can be improved in safety.
 図25(C)は飛行機304である。本発明の一態様に係る移動体は、飛行機304に用いることができる。表示システムは飛行機304の外部の画像を撮像し、視認する際の画像の視認性を高めることができる。そのため、安全性が高められた飛行機304とすることができる。 FIG. 25C shows the airplane 304. The moving body according to one embodiment of the present invention can be used for the airplane 304. The display system can take an image outside the airplane 304 and improve the visibility of the image when viewing the image. Therefore, the airplane 304 can be improved in safety.
<本明細書等の記載に関する付記>
 本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。
<Additional notes regarding the description of this specification>
In this specification and the like, the ordinal numbers “first”, “second”, and “third” are given to avoid confusion between components. Therefore, the number of components is not limited. Further, the order of the components is not limited.
 本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合や、複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。 In this specification and the like, in the block diagram, the components are classified by function and shown as independent blocks. However, in an actual circuit or the like, it is difficult to separate the components for each function, and there may be a case where a plurality of functions are involved in one circuit or a case where one function is involved over a plurality of circuits. Therefore, the blocks in the block diagram are not limited to the components described in the specification, and can be appropriately rephrased depending on the situation.
 なお図面において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。 Note that in the drawings, the same element, an element having a similar function, an element of the same material, or an element formed at the same time may be denoted by the same reference numeral, and repeated description thereof may be omitted.
 本明細書等において、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)と表記している。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子や、ソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。 In this specification and the like, in describing connection relations of transistors, “one of a source and a drain” (or a first electrode or a first terminal), “the other of a source and a drain” (or a second electrode, or a second Terminal). This is because the source and drain of a transistor vary depending on the structure or operating conditions of the transistor. Note that the names of the source and the drain of the transistor can be appropriately rephrased depending on the situation, such as a source (drain) terminal or a source (drain) electrode.
 また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。 In addition, in this specification and the like, voltage and potential can be described as appropriate. The voltage is a potential difference from a reference potential. For example, when the reference potential is a ground potential (ground potential), the voltage can be rephrased as a potential. The ground potential does not necessarily mean 0V. Note that the potential is relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
 本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。 In this specification and the like, a switch refers to a switch that is in a conductive state (on state) or a non-conductive state (off state) and has a function of controlling whether or not to pass a current. Alternatively, the switch refers to a switch having a function of selecting and switching a current flow path.
 一例としては、電気的スイッチ又は機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。 As an example, an electrical switch or a mechanical switch can be used. That is, the switch is not limited to a specific one as long as it can control the current.
 なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソースとドレインが電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソースとドレインが電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。 Note that when a transistor is used as a switch, the “conducting state” of the transistor means a state in which the source and drain of the transistor can be regarded as being electrically short-circuited. In addition, the “non-conducting state” of a transistor refers to a state where the source and drain of the transistor can be regarded as being electrically cut off. Note that when a transistor is operated as a simple switch, the polarity (conductivity type) of the transistor is not particularly limited.
 本明細書等において、AとBとが接続されている、とは、AとBとが直接接続されているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在するとき、AとBとの電気信号の授受を可能とするものをいう。 In this specification and the like, the term “A and B are connected” includes not only those in which A and B are directly connected, but also those that are electrically connected. Here, A and B are electrically connected. When there is an object having some electrical action between A and B, it is possible to send and receive electrical signals between A and B. It says that.
 10:表示システム、10A:表示システム、10B:表示システム、10C:表示システム、11:撮像装置、11A:撮像装置、12:特徴量出力回路、13:データベース、14:画像処理回路、15:表示装置、16:撮像データ、17:特徴量データ、18:補正用データ、19:検出用データ、20:送受信回路、21:ネットワーク、22:自動車、22A:自動車、23:データ処理回路、24:中継局、25:センサ、S11−S17:ステップ、S21−S26:ステップ、30:ニューラルネットワーク、31:入力層、32:中間層、33:出力層、34:フィルタ、35:畳み込みデータ、36:プーリングデータ、37:フィルタ、38:畳み込みデータ、39:プーリングデータ、40:全結合データ、41:出力データ、42:自動車、43:光源、44:照射方向、45:撮像方向、46:レンズ、47:水滴、48:鮮明領域、49:不鮮明領域、11_1−11_n:撮像装置、15_1−15_n:表示装置、S31−S34:ステップ、18A:画像、19A:画像、17A:特徴量データ、51:画像データ、700:表示装置、701:基板、702:画素部、703:デマルチプレクサ、704:ソースドライバ、705:基板、706:ゲートドライバ、708:FPC端子部、710:信号線、711:配線部、712:シール材、716:FPC、730:絶縁膜、732:封止膜、734:絶縁膜、736:着色膜、738:遮光膜、750:トランジスタ、752:トランジスタ、760:接続電極、770:平坦化絶縁膜、772:導電膜、774:導電膜、775:液晶素子、776:液晶層、778:構造体、780:異方性導電膜、782:発光素子、784:導電膜、786:EL層、788:導電膜、790:容量素子、52A−52C:表示装置、53A:表示装置、302:バス、303:電車、304:飛行機 10: Display system, 10A: Display system, 10B: Display system, 10C: Display system, 11: Imaging device, 11A: Imaging device, 12: Feature output circuit, 13: Database, 14: Image processing circuit, 15: Display Device: 16: imaging data, 17: feature data, 18: correction data, 19: detection data, 20: transmission / reception circuit, 21: network, 22: automobile, 22A: automobile, 23: data processing circuit, 24: Relay station, 25: sensor, S11-S17: step, S21-S26: step, 30: neural network, 31: input layer, 32: intermediate layer, 33: output layer, 34: filter, 35: convolution data, 36: Pooling data, 37: filter, 38: convolution data, 39: pooling data, 40: all combined data, 4 : Output data, 42: automobile, 43: light source, 44: irradiation direction, 45: imaging direction, 46: lens, 47: water drop, 48: clear region, 49: unclear region, 11_1-11_n: imaging device, 15_1-15_n : Display device, S31-S34: Step, 18A: Image, 19A: Image, 17A: Feature data, 51: Image data, 700: Display device, 701: Substrate, 702: Pixel unit, 703: Demultiplexer, 704: Source driver 705: Substrate 706: Gate driver 708: FPC terminal portion 710: Signal line 711: Wiring portion 712: Seal material 716: FPC 730: Insulating film 732: Sealing film 734: Insulating film, 736: Colored film, 738: Light shielding film, 750: Transistor, 752: Transistor, 760: Connection electrode, 770: Flat Insulating film, 772: conductive film, 774: conductive film, 775: liquid crystal element, 776: liquid crystal layer, 778: structure, 780: anisotropic conductive film, 782: light emitting element, 784: conductive film, 786: EL layer 788: conductive film, 790: capacitive element, 52A-52C: display device, 53A: display device, 302: bus, 303: train, 304: airplane

Claims (6)

  1.  撮像装置、表示装置、特徴量出力回路、画像処理回路、およびデータベースを有し、
     前記撮像装置は、撮像データを出力する機能を有し、
     前記特徴量出力回路は、前記撮像データの特徴量データを出力する機能を有し、
     前記データベースは、補正用データと、検出用データと、を有し、前記特徴量データに応じて前記補正用データを前記画像処理回路に出力する機能を有し、
     前記画像処理回路は、前記補正用データをもとに前記撮像データを補正することで画像データを生成する機能を有し、
     前記表示装置は、前記画像データに応じた表示を行う機能を有することを特徴とする表示システム。
    An imaging device, a display device, a feature output circuit, an image processing circuit, and a database;
    The imaging device has a function of outputting imaging data,
    The feature amount output circuit has a function of outputting feature amount data of the imaging data,
    The database includes correction data and detection data, and has a function of outputting the correction data to the image processing circuit according to the feature amount data.
    The image processing circuit has a function of generating image data by correcting the imaging data based on the correction data;
    The display system has a function of performing display according to the image data.
  2.  請求項1において、
     前記データベースは、前記特徴量データに一致または類似する前記検出用データを選び出して前記検出用データに対応する前記補正用データを前記画像処理回路に出力する機能を有することを特徴とする表示システム。
    In claim 1,
    The display system has a function of selecting the detection data that matches or is similar to the feature data and outputting the correction data corresponding to the detection data to the image processing circuit.
  3.  請求項1において、
     前記データベースは、前記特徴量データを学習用データとした機械学習により重みパラメータとなる前記検出用データを更新し、前記特徴量データに一致または類似する前記補正用データを推論することができる機能を有することを特徴とする表示システム。
    In claim 1,
    The database has a function of updating the detection data serving as a weight parameter by machine learning using the feature data as learning data, and inferring the correction data that matches or is similar to the feature data. A display system comprising:
  4.  撮像装置、表示装置、特徴量出力回路、画像処理回路、および送受信回路と、を有し、
     前記撮像装置は、撮像データを取得する機能を有し、
     前記特徴量出力回路は、前記撮像データの特徴量データを取得する機能を有し、
     前記特徴量データは、送受信回路を介して、補正用データと、検出用データとを有するデータベースに送信される機能を有し、
     前記画像処理回路は、前記送受信回路を介して、前記データベースから前記補正用データを受信し、前記補正用データをもとに前記撮像データを補正することで画像データを生成する機能を有し、
     前記表示装置は、前記画像データに応じた表示を行う機能を有することを特徴とする移動体。
    An imaging device, a display device, a feature amount output circuit, an image processing circuit, and a transmission / reception circuit;
    The imaging device has a function of acquiring imaging data,
    The feature amount output circuit has a function of acquiring feature amount data of the imaging data,
    The feature amount data has a function of being transmitted to a database having correction data and detection data via a transmission / reception circuit,
    The image processing circuit has a function of receiving the correction data from the database via the transmission / reception circuit, and generating image data by correcting the imaging data based on the correction data,
    The display device has a function of performing display according to the image data.
  5.  請求項4において、
     前記補正用データは、前記検出用データに対応するデータであり、
     前記検出用データは、前記特徴量データに一致または類似するデータであることを特徴とする移動体。
    In claim 4,
    The correction data is data corresponding to the detection data,
    The moving object, wherein the detection data is data that matches or is similar to the feature data.
  6.  請求項4において、
     前記補正用データは、前記特徴量データを学習用データとした機械学習により重みパラメータとなる前記検出用データを更新したデータベースにおいて、前記特徴量データを入力することで推論して得られるデータであることを特徴とする移動体。
    In claim 4,
    The correction data is data obtained by inference by inputting the feature amount data in a database in which the detection data serving as a weighting parameter is updated by machine learning using the feature amount data as learning data. A moving object characterized by that.
PCT/IB2018/052611 2017-04-28 2018-04-16 Display system and mobile body WO2018197984A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019514878A JPWO2018197984A1 (en) 2017-04-28 2018-04-16 Display system and moving object
JP2022182480A JP2023036577A (en) 2017-04-28 2022-11-15 Mobile body
JP2024081459A JP7707366B2 (en) 2017-04-28 2024-05-20 Mobile

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-089495 2017-04-28
JP2017089495 2017-04-28
JP2017125394 2017-06-27
JP2017-125394 2017-06-27

Publications (1)

Publication Number Publication Date
WO2018197984A1 true WO2018197984A1 (en) 2018-11-01

Family

ID=63920293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/052611 WO2018197984A1 (en) 2017-04-28 2018-04-16 Display system and mobile body

Country Status (2)

Country Link
JP (3) JPWO2018197984A1 (en)
WO (1) WO2018197984A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077251A (en) * 2018-11-08 2020-05-21 アイシン精機株式会社 Perimeter monitoring device
WO2021130593A1 (en) * 2019-12-27 2021-07-01 株式会社半導体エネルギー研究所 Imaging system
CN114506276A (en) * 2020-10-23 2022-05-17 欣兴电子股份有限公司 Rear view mirror with display function
JPWO2022101982A1 (en) * 2020-11-10 2022-05-19
JP2022553845A (en) * 2019-11-08 2022-12-26 アウトワード・インコーポレーテッド Generating Arbitrary Views
US11875451B2 (en) 2016-03-25 2024-01-16 Outward, Inc. Arbitrary view generation
US11972522B2 (en) 2016-03-25 2024-04-30 Outward, Inc. Arbitrary view generation
US11989820B2 (en) 2016-03-25 2024-05-21 Outward, Inc. Arbitrary view generation
US11989821B2 (en) 2016-03-25 2024-05-21 Outward, Inc. Arbitrary view generation
US12002149B2 (en) 2016-03-25 2024-06-04 Outward, Inc. Machine learning based image attribute determination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189293A (en) * 2001-09-07 2003-07-04 Matsushita Electric Ind Co Ltd Vehicle surrounding situation display device and image presentation system
JP2004260527A (en) * 2003-02-26 2004-09-16 Mitsubishi Heavy Ind Ltd Device and method for detecting object
JP2006160192A (en) * 2004-12-10 2006-06-22 Alpine Electronics Inc Vehicular drive supporting device
JP2010273328A (en) * 2009-04-20 2010-12-02 Fujifilm Corp Image processing apparatus, image processing method, and program
JP2014220655A (en) * 2013-05-08 2014-11-20 本田技研工業株式会社 Image display device for vehicle and image display method for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076988A (en) * 2001-09-05 2003-03-14 Mitsubishi Heavy Ind Ltd Vehicle identifying method and device
ATE311725T1 (en) * 2001-09-07 2005-12-15 Matsushita Electric Industrial Co Ltd DEVICE FOR DISPLAYING THE SURROUNDINGS OF A VEHICLE AND SYSTEM FOR PROVIDING IMAGE
JP5051263B2 (en) * 2010-04-02 2012-10-17 株式会社デンソー Vehicle rear view system
KR101968115B1 (en) * 2012-04-23 2019-08-13 엘지디스플레이 주식회사 Array substrate and method of fabricating the same
KR101451070B1 (en) * 2014-06-05 2014-10-15 주식회사 다이나맥스 Method to recognize license plates by removing recognition error by shadow and license plate recognition system
JP2016134129A (en) * 2015-01-22 2016-07-25 株式会社Jvcケンウッド Video display system, processing apparatus, video display method, and video display program
IL239129A0 (en) * 2015-06-01 2015-11-30 Brightway Vision Ltd Image enhancements for vehicle imaging systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189293A (en) * 2001-09-07 2003-07-04 Matsushita Electric Ind Co Ltd Vehicle surrounding situation display device and image presentation system
JP2004260527A (en) * 2003-02-26 2004-09-16 Mitsubishi Heavy Ind Ltd Device and method for detecting object
JP2006160192A (en) * 2004-12-10 2006-06-22 Alpine Electronics Inc Vehicular drive supporting device
JP2010273328A (en) * 2009-04-20 2010-12-02 Fujifilm Corp Image processing apparatus, image processing method, and program
JP2014220655A (en) * 2013-05-08 2014-11-20 本田技研工業株式会社 Image display device for vehicle and image display method for vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11989821B2 (en) 2016-03-25 2024-05-21 Outward, Inc. Arbitrary view generation
US11875451B2 (en) 2016-03-25 2024-01-16 Outward, Inc. Arbitrary view generation
US12002149B2 (en) 2016-03-25 2024-06-04 Outward, Inc. Machine learning based image attribute determination
US11989820B2 (en) 2016-03-25 2024-05-21 Outward, Inc. Arbitrary view generation
US11972522B2 (en) 2016-03-25 2024-04-30 Outward, Inc. Arbitrary view generation
JP2020077251A (en) * 2018-11-08 2020-05-21 アイシン精機株式会社 Perimeter monitoring device
JP7271908B2 (en) 2018-11-08 2023-05-12 株式会社アイシン Perimeter monitoring device
JP2022553845A (en) * 2019-11-08 2022-12-26 アウトワード・インコーポレーテッド Generating Arbitrary Views
JP7410289B2 (en) 2019-11-08 2024-01-09 アウトワード・インコーポレーテッド Generating arbitrary views
WO2021130593A1 (en) * 2019-12-27 2021-07-01 株式会社半導体エネルギー研究所 Imaging system
US11924589B2 (en) 2019-12-27 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Imaging system
JPWO2021130593A1 (en) * 2019-12-27 2021-07-01
JP7596305B2 (en) 2019-12-27 2024-12-09 株式会社半導体エネルギー研究所 Imaging System
CN114506276A (en) * 2020-10-23 2022-05-17 欣兴电子股份有限公司 Rear view mirror with display function
JPWO2022101982A1 (en) * 2020-11-10 2022-05-19
JP7499874B2 (en) 2020-11-10 2024-06-14 三菱電機株式会社 Sensor noise removal device and sensor noise removal method
JP2024107047A (en) * 2020-11-10 2024-08-08 三菱電機株式会社 Sensor noise removal device and sensor noise removal method

Also Published As

Publication number Publication date
JP2023036577A (en) 2023-03-14
JPWO2018197984A1 (en) 2020-03-19
JP2024116154A (en) 2024-08-27
JP7707366B2 (en) 2025-07-14

Similar Documents

Publication Publication Date Title
JP7707366B2 (en) Mobile
JP7068753B2 (en) Machine learning method, machine learning system
US20180005566A1 (en) Electronic device, operation method of the electronic device, and moving vehicle
US10017114B2 (en) Vehicle vision system with display
KR101358169B1 (en) Display Device and Method of Driving The Same
WO2018002774A1 (en) Electronic device, operation method of the electronic device, and moving vehicle
US11828947B2 (en) Vehicle and control method thereof
JP2024124515A (en) Display System
US10930205B2 (en) Display system and moving object
US9001027B2 (en) Electrowetting display device including reset signal lines that include notch electrodes and driving method thereof
JP2019020714A (en) Display system and data processing method
US10699628B2 (en) Display system and vehicle
KR20180020126A (en) Transparent display with controllable masking display
US20150234496A1 (en) Display device
CN110785321B (en) low cost camera
CN117445832A (en) Control vehicle displays for enhancement
US11341892B2 (en) Display driver having a capacitor group to assist driving an output line and electro-optical device thereof
WO2017218658A1 (en) Imaging systems having an electrowetting lens
WO2018002766A1 (en) Display device and moving body
WO2017221086A1 (en) Display device and mobile object
KR20250061032A (en) Display system, display driving method and automotive vehicle
KR20250079941A (en) Display device and automotive vehicle including it
WO2024048221A1 (en) Display device
WO2024024537A1 (en) Information processing device, information processing method, and information processing system
CN113844243A (en) Light modulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790876

Country of ref document: EP

Kind code of ref document: A1