WO2018198210A1 - Abnormal device discrimination device, method, and program - Google Patents
Abnormal device discrimination device, method, and program Download PDFInfo
- Publication number
- WO2018198210A1 WO2018198210A1 PCT/JP2017/016446 JP2017016446W WO2018198210A1 WO 2018198210 A1 WO2018198210 A1 WO 2018198210A1 JP 2017016446 W JP2017016446 W JP 2017016446W WO 2018198210 A1 WO2018198210 A1 WO 2018198210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveform
- abnormal
- coincidence
- degree
- abnormality
- Prior art date
Links
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 195
- 238000000034 method Methods 0.000 title claims description 37
- 230000005856 abnormality Effects 0.000 claims abstract description 70
- 239000002131 composite material Substances 0.000 claims description 52
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 238000000926 separation method Methods 0.000 description 27
- 238000004891 communication Methods 0.000 description 19
- 238000001514 detection method Methods 0.000 description 16
- 238000003860 storage Methods 0.000 description 14
- 230000007704 transition Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
Definitions
- the present invention relates to an abnormal device determination device, method, and program.
- the state of equipment is obtained by acquiring current consumption, power, vibration, etc. of electrical equipment deployed in factories, stores, offices, houses, etc. with sensors, etc., and analyzing the acquired information using various methods. There is known a method for discriminating the presence / absence or the like).
- Patent Document 1 discloses a measurement for acquiring measurement data indicating a time change of at least one of current consumption and power consumption of an electrical device.
- a configuration is disclosed that includes a data acquisition unit, a fluctuation component extraction unit that extracts fluctuation components related to fluctuations in current consumption and power consumption from measurement data, and a feature amount acquisition unit that acquires feature amounts of the fluctuation components.
- Patent Document 2 discloses a configuration in which combined power consumption data of a plurality of electric devices is separated into devices, and when the power consumption is significantly increased or decreased, the increase or decrease of the devices is estimated.
- Patent Document 3 discloses a measured harmonic component calculation result obtained by waveform analysis from the amount of electricity obtained from each component of the device connected to the power system, a failure of each component stored in advance, and an abnormality that is a precursor thereof. Calculate the harmonic component coincidence with multiple harmonic anomalous harmonic components consisting of the harmonic anomaly pattern that is estimated to be a harmonic anomaly.
- a failure estimation device that identifies harmonic abnormality patterns and outputs them as harmonic abnormality estimation results, and a plurality of failure probability conversion processing units that convert the harmonic abnormality estimation results output from each failure estimation device into failure probabilities
- a power quality evaluation system is disclosed that includes a failure probability estimation processing unit that estimates an overall abnormality estimation value of the device from the failure probability of each converted part.
- Patent Document 4 includes a current sensor that detects a load current of a spindle motor of a machine tool, and a normal tool of the machine tool is set for setting a reference value before the abnormality detection is determined. Is processed multiple times, and an allowable range setting means for setting the allowable range based on the reference value obtained from the measured value of the load current by the current sensor at this time is provided.
- a configuration is provided that includes an abnormality detecting means for determining that the tool is normal if the measured value is within the allowable range, and that the tool is abnormal if the measured value is outside the allowable range.
- the controller acquires the current waveform, voltage waveform, etc. from the measuring instrument installed in the electrical equipment in real time.
- the combined current waveforms of multiple electrical devices flowing through the main board of the distribution board are observed and transferred to the cloud server etc. via the communication network, and the waveforms are separated for each device on the cloud server, The use of device separation technology that estimates the power consumption for each device and the on / off status of each device is also under consideration.
- Non-Patent Document 1 acquires a current waveform (instantaneous waveform for one cycle) flowing in the main line using one current sensor attached to a distribution board, and current waveform information unique to each device is obtained.
- a system that estimates the power consumption of each device and discriminates the state of the device by analyzing the waveform in light of the provided waveform database is disclosed.
- the present invention was devised in view of the above problems, and its purpose is to detect which device has an abnormality when an abnormality is detected in a composite waveform of a plurality of devices. It is to provide a discrimination device, a method, and a program.
- means for detecting an abnormal waveform from a combined waveform of a plurality of devices, and removing the abnormal waveform from the combined waveform and separating the waveform into a device-specific waveform A means for identifying; a degree of coincidence calculating means for calculating a degree of coincidence between the time when each of the devices is turned on and the occurrence time of the abnormal waveform; and a means for determining which device has an abnormality based on the degree of coincidence Is provided.
- an abnormal waveform is detected from a combined waveform of a plurality of devices, the abnormal waveform is removed from the combined waveform, and then separated into waveforms for each device, and the separated waveform
- An abnormal device that identifies the state of the device from each other, calculates the degree of coincidence between the time when each device is on and the occurrence time of the abnormal waveform, and determines the device in which the abnormality occurred based on the degree of coincidence A determination method is provided.
- a process of detecting an abnormal waveform from a combined waveform of a plurality of devices, and removing the abnormal waveform from the combined waveform and separating the waveform into each device A process for identifying a state, a coincidence calculation process for calculating the degree of coincidence between the time when each device is turned on and the occurrence time of the abnormal waveform, and a device in which an abnormality has occurred is determined based on the degree of coincidence.
- a discrimination process and a program to be executed by a computer are provided.
- a semiconductor storage such as a computer-readable recording medium (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM) ROM) storing the above program, HDD (Hard Disk Drive), CD (Compact Disk), DVD (Digital Versatile Disk) and other non-transitory computer computer readable recording media are provided.
- a computer-readable recording medium for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM) ROM) storing the above program, HDD (Hard Disk Drive), CD (Compact Disk), DVD (Digital Versatile Disk) and other non-transitory computer computer readable recording media.
- the present invention when an abnormality is detected in a composite waveform of a plurality of devices, it is possible to determine which device has an abnormality.
- or (C) is a figure explaining the analysis of the related technique by this invention. It is a figure explaining the structure of one exemplary embodiment of this invention. It is a figure explaining one exemplary embodiment of the present invention. 5 is a flowchart illustrating the processing procedure of an exemplary embodiment of the present invention.
- or (F) is a figure explaining one illustrative embodiment of this invention.
- or (D) is a figure explaining one illustrative embodiment of this invention. It is a figure explaining one exemplary embodiment of the present invention. It is a figure explaining the structure of another exemplary embodiment of this invention.
- Embodiments of the present invention will be described. First, analysis of related technology according to the present invention will be described. According to related technology equipment separation technology, abnormality detection technology, etc., if an abnormality occurs in any of multiple devices to be separated from the combined waveforms of current and power of multiple devices, multiple devices are abnormal. It is possible to detect that has occurred.
- an abnormal waveform 2 is superimposed on a combined waveform 1 of current or power of an electric device (simply called “device”) A and device B.
- the synthesized waveform 1 is separated into the waveform 3 of the device A and the waveform 4 of the device B by the device separation technique.
- the abnormal waveform 2 may belong to the waveform 3 of the device A separated from the device, or may belong to the waveform 4 of the device B.
- An abnormal waveform is detected from a composite waveform of a plurality of devices
- the abnormal waveform is removed from the synthesized waveform and then separated into waveforms for each device to identify the state of the device,
- D Based on the degree of coincidence, a device in which an abnormality has occurred is determined.
- the operation time (on time) of each device separated from the device after removing the abnormal waveform and the occurrence time of the abnormal waveform It is possible to determine which device is abnormal based on the degree of coincidence.
- a device in which an abnormality has occurred may be determined based on the degree of coincidence. For example, the ratio of the number of times that the occurrence time of the abnormal waveform overlaps the on-state period of the device is calculated as the degree of coincidence with respect to the number of times the abnormal waveform has occurred, You may make it discriminate
- the degree of coincidence is calculated based on a sum of lengths of time in which the on-state period of the device and the period in which the abnormal waveform occurs overlap on the time axis, and the degree of coincidence is maximum.
- This device may be determined as a device in which an abnormality has occurred.
- it may be selected as a device suspected of being abnormal.
- a device having the highest degree of coincidence may be a device in which an abnormality has occurred, and another device may be a device suspected of being abnormal. Exemplary embodiments of the present invention are described below.
- FIG. 2 is a diagram illustrating the functional configuration of the abnormal device determination apparatus 100 according to an exemplary embodiment of the present invention.
- the abnormal device determination apparatus 100 includes a composite waveform acquisition unit 101, an abnormal waveform generation detection unit 102, a storage unit 103, an abnormal waveform removal unit 104, a device separation unit 105, and a state identification unit 106.
- a degree-of-matching calculation unit 107, a determination unit 108, and an output unit 109 will be described.
- the composite waveform acquisition unit 101 acquires composite waveform data of a plurality of devices that are subject to abnormality determination.
- the abnormal waveform generation detection unit 102 detects an abnormal waveform from the combined waveform data acquired by the combined waveform acquisition unit 101 and stores the generation time of the abnormal waveform in the storage unit 103.
- the abnormal waveform removing unit 104 removes abnormal waveforms from the combined waveform data.
- the device separation unit 105 separates the composite waveform from which the abnormal waveform has been removed into a waveform for each device.
- the state identification unit 106 estimates the time transition of the state of each device (for example, on or off state) from the waveform (time series data) separated for each device by the device separation unit 105, and obtains the time series data of the state. Output.
- the device separation unit 105 and the state identification unit 106 are shown as separate units for the purpose of simply explaining the functions, but the functions of the device separation unit 105 and the state identification unit 106 are combined into one unit (for example, Of course, the device separation unit 105) may be combined.
- the coincidence calculation unit 107 inputs time series data of the state (for example, on or off state) for each device identified by the state identifying unit 106, inputs the abnormal waveform generation time from the storage unit 103, and outputs the abnormal waveform generation time. And the ratio of the time when the device is on is calculated. For example, for m occurrence times t 1 ,..., T n of an abnormal waveform of n times, when the number of devices that overlap with the ON state of the device is m, (m / n) ⁇ 100 (%) It is good.
- FIG. 3 is a diagram illustrating the coincidence degree calculation unit 107 in FIG. 3A and 3B show time transitions of the on / off states of the devices A and B, which are separated by the device separation unit 105 and identified by the state identification unit 106.
- FIG. 3 is a diagram illustrating the coincidence degree calculation unit 107 in FIG. 3A and 3B show time transitions of the on / off states of the devices A and B, which are separated by the device separation unit 105 and identified by the state identification unit 106.
- FIG. 3C shows the abnormality as a rectangular wave (pulse waveform) according to the abnormal waveform generation time stored in the storage unit 103.
- the abnormal waveform generation time may be specified by the period of the start time and end time of the abnormal waveform, as will be described later, instead of the instantaneous time such as t 1 , t 2 ,.
- the determining unit 108 in FIG. 2 determines that an abnormality has occurred in, for example, a device having the highest degree of matching among a plurality of devices. In the example of FIG. 3, it is determined that an abnormality has occurred in the device A with the higher degree of matching.
- FIG. 4 is a flowchart illustrating the operation of an exemplary embodiment of the present invention.
- the synthesized waveform acquisition unit 101 acquires synthesized waveform data of a plurality of devices (step S1).
- the abnormal waveform generation detection unit 102 detects an abnormal waveform from the combined waveform data acquired by the combined waveform acquisition unit 101, and stores the generation time of the abnormal waveform in the storage unit 103 (step S2).
- the abnormal waveform removing unit 104 removes the abnormal waveform from the combined waveform data (step S3).
- the device separation unit 105 separates the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device of the device (step S4).
- the state identifying unit 106 identifies the state (for example, on or off) of each device from the waveform (time series data) separated for each device, and the time transition of the state of each device (time series of state) Data) is output (step S5).
- the coincidence calculation unit 107 inputs the time series data of the devices identified by the state identification unit 106, inputs the abnormal waveform occurrence time from the storage unit 103, and determines the number of occurrences of the abnormal waveform. On the other hand, the ratio of the number of times the occurrence time of the abnormal waveform overlaps with the ON state period of the device is calculated as the matching degree of the device (step S6).
- the determination unit 108 determines, for example, a device having the highest degree of coincidence among a plurality of devices as a device in which an abnormality has occurred (step S7).
- the output unit 109 outputs a determination result (information on a device in which an abnormality has occurred) (step S8).
- the combined waveform acquisition unit 101 may use an arbitrary sensor or the like as long as it is a device that acquires a combined waveform of a plurality of devices that are subject to abnormality determination (for example, a waveform obtained by combining power supply currents and power waveforms of a plurality of devices). .
- the composite waveform acquisition unit 101 may be configured to acquire a composite waveform via a communication unit from a sensor or the like that acquires composite waveforms of a plurality of devices that are subject to abnormality determination.
- FIG. 5A is a diagram schematically illustrating a configuration in which the composite waveform acquisition unit 101 acquires composite current waveforms of a plurality of devices from a controller such as HEMS / BEMS / SEMS / FEMS (Factory Energy Management System). is there.
- a controller such as HEMS / BEMS / SEMS / FEMS (Factory Energy Management System).
- HEMS / BEMS / SEMS / FEMS controller meter reading data (power consumption, etc.) of the smart meter 25. For example, it is acquired from the B route.
- the high-voltage power receiving facility 26 is suitable for high-voltage consumers, and the high-voltage power receiving facility 26 is not necessary for low-voltage consumers such as ordinary houses.
- the meter reading data (power consumption, current value, etc.) acquired by the communication device 24 from the smart meter 25 through the B route includes information on the power consumption of the entire building.
- at least one breaker (not shown) of the main breaker (not shown) and the branch breaker (not shown) to which the main power line of the distribution board 22 is connected may be connected to the main breaker or the branch breaker.
- a current sensor 23 that detects a flowing current (for example, a combined current consumption current of the devices A, B, and C) is provided, and current waveform data is transmitted from the current sensor 23 to the communication device 24 by wireless transmission or the like. May be.
- the current sensor 23 may be configured by a CT (Current-Transformer) (for example, a zero-phase current sequence (ZCT)), a Hall element, or the like.
- CT Current-Transformer
- ZCT zero-phase current sequence
- the current sensor 23 samples a current waveform (analog signal) with an analog-digital converter (not shown), converts it into a digital signal, compresses and encodes it with an encoder (not shown), and then sends it to the communication device 24 with Wi-SUN (Wireless Wireless transmission may be performed by Smart (Utility Network) or the like.
- the current waveform from the communication device 24 is received by the communication unit 115 of the combined waveform acquisition unit 101.
- the device A, the device B, and the device C are connected to the distribution board 22, but it is needless to say that the number of devices is not limited to three.
- FIG. 5A for the sake of simplicity, the device A, the device B, and the device C are connected to the distribution board 22, but it is needless to say that the number of devices is not limited to three.
- FIG. 5B illustrates a power supply current waveform (total power supply current waveform) acquired by a current sensor 23 connected to a main breaker (not shown) or a branch breaker of the distribution board 22 of FIG. 5A. It is. Note that the combined waveform acquisition unit 101 may acquire a combined power waveform from the communication device 24.
- the combined waveform acquisition unit 101 acquires time information when the combined waveform is acquired by the current sensor 23 together with the combined waveform from the communication device 24.
- the synthesized waveform is a power supply current waveform
- the time information at the sampling time of the synthesized waveform can be calculated from the start time of the synthesized waveform and the sampling frequency of the current sensor 23.
- the composite waveform acquisition unit 101 may associate the sample value of the composite waveform with the time information and store them in a memory or a buffer (not shown) such as a RAM.
- a part of the function of the abnormal device discriminating apparatus 100 is mounted on the communication device (HEMS / BEMS / SEMS / FEMS controller) 24, and the combined waveform acquisition unit 101 includes the current sensor 23 shown in FIG. It is good also as a structure.
- the abnormal waveform generation detection unit 102 reads the synthetic waveform data from the memory or buffer (for example, RAM) (not shown) of the synthetic waveform acquisition unit 101 and detects an abnormal waveform. An arbitrary method is used to detect the abnormal waveform.
- the abnormal waveform occurrence detection unit 102 in FIG. 2 may detect the abnormal waveform by determining whether or not the amplitude of the composite waveform is within an allowable range of a preset upper limit value and lower limit value.
- the method illustrated in FIG. 6B may be used as a method for detecting an abnormal waveform whose amplitude is within the allowable range of the upper limit value and the lower limit value set in advance (however, other methods such as frequency spectrum analysis) may be used. Method may be used).
- FIG. 6B shows a differential waveform of the composite waveform 1 including the abnormal waveform 2 of FIG.
- the abnormal waveform generation detection unit 102 in FIG. 2 obtains a differential coefficient (difference value) by differentiating (differing) the composite waveform 1 including the abnormal waveform 2 in FIG. 6A, and obtaining this as a threshold value (upper limit value or lower limit value). ) To detect an abnormal waveform section.
- the abnormal waveform 2 has a substantially triangular waveform in FIG. 6A, and the differential waveform of the abnormal waveform 2 is represented by a rectangular wave (pulse) in FIG. 6B.
- the combined waveform 1 of a plurality of devices is a periodic waveform composed of a sine waveform
- the differential waveform of FIG. 6B is a cosine waveform.
- the slope (derivative coefficient) (positive value) of the rise to the peak of the abnormal waveform 2 (substantially triangular wave) in FIG. 6A is larger than the maximum slope (derivative coefficient) of the original composite waveform 1 and is the upper limit value.
- the slope (derivative coefficient) (negative value) of the falling from the peak exceeding UL (positive value) is larger in absolute value than the negative absolute value of the slope (derivative coefficient) of the original composite waveform 1 Yes, below the lower limit LL (negative value).
- the abnormal waveform generation detection unit 102 crosses the generation time of the abnormal waveform 2 (the differential value exceeds the upper limit value and the lower limit value) depending on whether or not the differential value (difference value) of the composite waveform 1 is within the allowable range. Time) can be detected. That is, the differential value (difference value) of the composite waveform 1 changes within a predetermined range in a time interval in which a plurality of devices operate normally and the composite waveform changes smoothly. If an abnormal waveform appears while the composite waveform is moving smoothly, the difference between the previous sample value and the sample value of abnormal waveform 2 will exceed the upper limit or lower limit, and an abnormal waveform will be generated. The time (abnormal section) will be detected.
- the abnormal waveform generation detection unit 102 may predict the next sample value based on the predetermined number of sample values up to that point of the composite waveform 1 in FIG. .
- the predicted value ⁇ Y (n) of the composite waveform 1 at the sampling point n is used as the value of the composite waveform 1 at a predetermined number of sampling points s of the composite waveform 1 so far: Y (n ⁇ 1), Y (n -2), ..., Y (ns), and if the absolute value of the difference between the predicted value ⁇ Y (n) and the actual sample value Y (n) is greater than or equal to a predetermined value, it is determined as abnormal You may make it do.
- ⁇ Y (n) a 1 ⁇ Y (n ⁇ 1) +... + A s ⁇ Y (ns) May be used.
- the abnormal waveform generation detection unit 102 divides the combined waveform into predetermined time intervals, performs FFT (Fast Fourier Transform) or the like in each time interval, converts the waveform into the frequency domain, and is derived from the frequency spectrum component.
- the amount for example, the square root of the square addition of the even-order harmonic component, the square root of the square addition of the odd-order harmonic component, or THD (Total Harmonic Distortion)
- the abnormal section of the composite waveform may be determined by comparing with the threshold value.
- abnormality may be determined based on the magnitude of the power spectrum of a specific high frequency component.
- production detection part 102 learns the synthetic
- the like may be used to detect an outlier or the like and detect it as an abnormal waveform.
- the abnormal waveform generation detection unit 102 may not detect such a change in the composite waveform accompanying a change in the operation mode of the device as an abnormal waveform.
- the abnormal waveform generation detection unit 102 may include (a) a transition from an off state to an on state, (b) a transition from an on state to an off state, (c) a transition from a standby state to an on state, (d ) Among the transitions from the on state to the standby state, (a) and (b), or (c) and (d), or (a) to (d) transition of the current or power composite waveform
- learning may be performed as teacher data of a normal operation waveform, and a change in the composite waveform at the time of transition may not be detected as an abnormal waveform at the time of evaluation.
- the abnormal waveform removing unit 104 removes the abnormal waveform 2 from the synthesized waveform 1.
- the abnormal waveform removing unit 104 applies a low-pass filter having a predetermined cutoff frequency to the composite waveform 1 including the abnormal waveform 2 (for example, FIG. 6A), thereby removing the abnormal waveform 2 (FIG. 6 (FIG. 6 (A)).
- D may be acquired.
- the low-pass filter may be a FIR (Finite Impulse Response) filter.
- the abnormal waveform removal unit 104 converts time series data of the composite waveform 1 into a frequency domain using FFT or the like, sets a frequency component equal to or higher than a predetermined cutoff frequency to 0, and IFFT (Inverse FFT: Inverse Fast Fourier Transform) ) Etc. to return to the time domain, low pass filter calculation may be performed.
- IFFT Inverse FFT: Inverse Fast Fourier Transform
- the abnormal waveform removing unit 104 may generate a composite waveform from which the abnormal waveform 2 is removed by interpolating a time interval corresponding to the abnormal waveform 2 from the composite waveform 1. .
- the device separation unit 105 separates the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device using any method described in Non-Patent Document 1 or the like.
- the device separation unit 105 separates the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device by referring to a waveform database (not shown) that stores a waveform pattern during operation for each device and its feature amount. You may do it.
- the device separation unit 105 calculates a feature amount of the synthesized waveform for a predetermined time interval (for example, one cycle (20 milliseconds) or a plurality of cycles of the commercial power supply frequency, or a time interval in which one cycle is divided into a plurality of times).
- the waveform may be separated for each device based on the feature amount or the waveform pattern unique to the device.
- the waveform database may be provided in the device separation unit 105 or may be provided outside the device separation unit 105.
- the device separation unit 105 may connect to a data server or the like via a communication network and access the waveform database of the data server.
- a waveform shape (waveform peak value, average value, effective value (root (mean ⁇ square), peak value, etc.) may be used as the feature amount of the waveform.
- a Fourier transform fast Fourier transform or discrete Fourier transform, or short-time fast Fourier transform or short-time discrete Fourier transform or the like is performed on a predetermined time window of the composite waveform 1 and the like, Value derived from square addition of amplitude of frequency spectrum component (for example, square root of square addition of even-order harmonic component, square root of square addition of even-order harmonic component, or THD (Total Harmonic Distortion))
- FIG. 5C to FIG. 5E schematically show current waveforms separated for each device by the device separation unit 105 for each of the devices 20C, 20B, and 20A.
- the state identification unit 106 estimates and identifies the time transition of the state of each device (for example, on state, off (standby) state) from the waveform data (time series) data separated for each device by the device separation unit 105. , Output time-series data of the state of each device.
- waveform database not shown
- waveform patterns and feature amounts corresponding to the states of the respective devices are stored, and the state identification unit 106 refers to the waveform database (not shown) to check the state of the waveform data in each time interval. May be estimated.
- FIG. 5F schematically shows time-series data of the state of the device A output by the state identification unit 106, for example, for the waveform of the device A 20A of FIG. 5A (FIG. 5E).
- a waveform pattern or a feature amount corresponding to each operation mode in the ON state (for example, the air volume of the air conditioner is strong, medium, weak, etc.) is stored in the waveform database. You may make it discriminate
- the degree-of-match calculation unit 107 inputs the time series data of the devices identified by the state identification unit 106, inputs the abnormal waveform generation time from the storage unit 103, and sets the abnormal waveform generation time and Calculate the proportion of the devices in the on-state time.
- the degree-of-match calculation unit 107 may calculate a ratio between a time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis and the period in which the device is on as the degree of coincidence. .
- the number of times that the abnormal waveform occurrence time coincides with the on-state time of device A and device B is three for both device A and device B (depending on how the abnormal waveform occurrence time is determined). The number of matches will be 3).
- a case where the time when the device A and the device B are in the ON state in a part of the time period of the abnormal waveform generation period is also regarded as coincident.
- the ON period only partially overlaps any of the three abnormal waveform generation periods T 1 , T 2 , and T 3 .
- the degree of coincidence of the equipment may be a value obtained by dividing the sum of the time in which the abnormal waveform occurs and the period in which the equipment is on on the time axis by dividing the sum by the period in which the abnormal waveform has occurred, as a percentage.
- the degree of coincidence of device B is less than 100%.
- the determination unit 108 determines the device having the highest degree of coincidence as a device in which an abnormality corresponding to the abnormal waveform has occurred. At this time, if there are multiple devices that have almost the same degree of coincidence, or a slight difference, or the difference is not statistically significant, these devices, together with the device with the highest degree of coincidence, are suspected of being abnormal. It is good also as a structure selected as an apparatus to be called. At this time, the device having the highest degree of coincidence may be selected as a device in which an abnormality has occurred, and another device may be selected as a device suspected of being abnormal.
- a maintenance person or the like may individually check the presence or absence of each abnormality for a plurality of devices determined to be suspected of abnormality. Similarly, for equipment determined to be abnormal, maintenance personnel or the like may investigate whether there is an abnormality and take necessary measures (for example, repair / part replacement).
- the output unit 109 may output the determination result of the presence or absence of abnormality in the determination unit 108 to a display device or the like.
- the output unit 109 may be configured to notify the maintenance person's terminal or the HEMS / BEMS / SEMS / FEMS controller of FIG. 5A via a communication network.
- FIG. 8 is a diagram illustrating a configuration in which the abnormal device determination device 100 is mounted on a computer system as another embodiment of the present invention.
- a computer system such as a server computer includes a processor (CPU (Central Processing Unit), data processing device) 111, a semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM. (Electrically Erasable and mProgrammable ROM), HDD (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc), etc., a storage device 112, a display device 113, and a communication interface 114 I have.
- the communication interface 114 may function as the communication unit 115 in FIG.
- the 2 may output the determination result to the display device 113, for example.
- the storage device 112 may be the same device as the storage unit 103 in FIG.
- the storage device 112 stores a program that realizes the function of the abnormal device determination device 100 of FIG. 2, and the processor 111 reads and executes the program, thereby realizing the abnormal device determination device 100 of the above-described embodiment. You may make it do.
- the computer system of FIG. 8 may be implemented as a cloud server that provides an abnormal device determination service to a client as a cloud service.
- the combined waveform of the plurality of devices is not limited only to the current waveform and the power waveform, but at least a sensor (vibration sensor, acoustic sensor, etc.) that obtains a combined waveform of signals from a plurality of signal sources.
- a sensor vibration sensor, acoustic sensor, etc.
- the synthesized signal sensed by one may be used.
- a transient waveform such as a single triangular wave (such as a glitch) has been described as an example of an abnormal waveform.
- AC (Alternating Current) ripple ripple (ripple noise) or the like repeatedly appears.
- waveform such as noise
- DC level fluctuation such as DC (Direct Current) offset noise.
- Patent Documents 1-4 and Non-Patent Document 1 described above are incorporated herein by reference.
- the embodiments and examples can be changed and adjusted based on the basic technical concept.
- Various combinations or selections of various disclosed elements are possible within the scope of the claims of the present invention. . That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
- An abnormal device discriminating apparatus comprising:
- Appendix 2 The abnormal device determination apparatus according to appendix 1, wherein the determination unit determines a device in which an abnormality has occurred based on the magnitude of the degree of coincidence.
- the degree of coincidence calculation means calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred, 3.
- the abnormal device determination device according to appendix 1 or 2, wherein the determination unit determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
- the degree of coincidence calculating means calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis,
- the abnormal device discriminating apparatus according to appendix 1 or 2, wherein the determination unit discriminates a device having the highest degree of coincidence from a device in which an abnormality has occurred.
- Appendix 7 The abnormal device determination method according to appendix 6, wherein the determination unit determines a device in which an abnormality has occurred based on the magnitude of the degree of coincidence.
- the degree of coincidence is calculated based on the length of time in which the on-state period of the device and the period in which the abnormal waveform occurs overlap on the time axis, 8.
- (Appendix 11) A process of detecting an abnormal waveform from a composite waveform of multiple devices; Processing to identify the state of the device by removing the abnormal waveform from the composite waveform and then separating the waveform into a device-specific waveform; A degree of coincidence calculation process for calculating a degree of coincidence between the on-time of each device and the occurrence time of the abnormal waveform; A discrimination process for discriminating a device in which an abnormality has occurred based on the degree of coincidence; A program that causes a computer to execute.
- Appendix 12 The program according to appendix 11, wherein the discrimination process discriminates a device in which an abnormality has occurred based on the degree of coincidence.
- the degree of coincidence calculation processing calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred, The program according to appendix 11 or 12, wherein the determination processing determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
- the degree of coincidence calculation processing calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis, The program according to appendix 11 or 12, wherein the determination processing determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
- Appendix 15 The program according to any one of appendices 11 to 14, wherein the determination unit selects a device suspected of being abnormal when there are a plurality of devices having substantially the same degree of coincidence.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
The present invention makes it possible to discriminate in which device an abnormality has occurred when the abnormality is detected in the combined waveform of a plurality of devices. An abnormal device discrimination device is provided with: a means for detecting an abnormal waveform from the combined waveform of a plurality of devices; a means for removing the abnormal waveform from the combined waveform; a means for separating the combined waveform from which the abnormal waveform is removed into the waveform of each device and identifying the state of said each device; a means for calculating the degree of coincidence between time during which said each device is in the on-state and time when the abnormal waveform has occurred; and a means for discriminating, on the basis of the degree of coincidence, a device in which an abnormality has occurred.
Description
本発明は、異常機器判別装置、方法、プログラムに関する。
The present invention relates to an abnormal device determination device, method, and program.
工場や、店舗、事業所、家屋等に配備された電気機器の消費電流や電力あるいは振動等をセンサ等で取得し、取得された情報を、各種手法で分析することにより、装置の状態(異常の有無等)を判別する手法が知られている。
The state of equipment (abnormality) is obtained by acquiring current consumption, power, vibration, etc. of electrical equipment deployed in factories, stores, offices, houses, etc. with sensors, etc., and analyzing the acquired information using various methods. There is known a method for discriminating the presence / absence or the like).
電気機器の電源電流や電力をモニタすることで稼働状況を推定する関連技術として、例えば特許文献1には、電気機器の消費電流及び消費電力の少なくとも一方の時間変化を示す測定データを取得する測定データ取得部と、消費電流及び消費電力の変動に関する変動成分を測定データから抽出する変動成分抽出部と、変動成分の特徴量を取得する特徴量取得部と備えた構成が開示されている。
As a related technique for estimating the operating status by monitoring the power supply current and power of an electrical device, for example, Patent Document 1 discloses a measurement for acquiring measurement data indicating a time change of at least one of current consumption and power consumption of an electrical device. A configuration is disclosed that includes a data acquisition unit, a fluctuation component extraction unit that extracts fluctuation components related to fluctuations in current consumption and power consumption from measurement data, and a feature amount acquisition unit that acquires feature amounts of the fluctuation components.
また、特許文献2には、複数の電気機器の合成消費電力データを機器分離し、消費電力に大幅な増減があった場合に機器の増減を推定する構成が開示されている。
Further, Patent Document 2 discloses a configuration in which combined power consumption data of a plurality of electric devices is separated into devices, and when the power consumption is significantly increased or decreased, the increase or decrease of the devices is estimated.
さらに、特許文献3には、電力系統に接続される装置の各構成部品から得られる電気量から波形分析された実測高調波成分計算結果と予め記憶される各部品の故障やその前兆となる異常を示す高調波異常と推定される高調波異常パターンからなる複数の高調波異常高調波成分との高調波成分一致度を計算し、高調波成分一致度から各部品の異常や故障の前兆となる高調波異常パターンを特定し、高調波異常推定結果として出力する故障推定装置と、各故障推定装置から出力される高調波異常推定結果をそれぞれ故障確率に変換する複数の故障確率変換処理部と、変換された各部品の故障確率から前記装置の全体異常推定値を推定する故障確率推定処理部とを備えた電力品質評価システムが開示されている。
Furthermore, Patent Document 3 discloses a measured harmonic component calculation result obtained by waveform analysis from the amount of electricity obtained from each component of the device connected to the power system, a failure of each component stored in advance, and an abnormality that is a precursor thereof. Calculate the harmonic component coincidence with multiple harmonic anomalous harmonic components consisting of the harmonic anomaly pattern that is estimated to be a harmonic anomaly. A failure estimation device that identifies harmonic abnormality patterns and outputs them as harmonic abnormality estimation results, and a plurality of failure probability conversion processing units that convert the harmonic abnormality estimation results output from each failure estimation device into failure probabilities, A power quality evaluation system is disclosed that includes a failure probability estimation processing unit that estimates an overall abnormality estimation value of the device from the failure probability of each converted part.
波形から異常を判定する関連技術として、例えば特許文献4には、工作機器の主軸モータの負荷電流を検出する電流センサを具備し、異常検出判定前に基準値設定のため工作機器の正常な工具による加工を複数回行い、この時の電流センサによる負荷電流の測定値から得られた基準値を基に許容範囲を設定する許容範囲設定手段を備え、異常検出判定時に、電流センサによる負荷電流の測定値が許容範囲内であれば工具は正常とし、許容範囲外であれば工具は異常とする異常検出手段を備えた構成が開示されている。
As a related technique for determining an abnormality from a waveform, for example, Patent Document 4 includes a current sensor that detects a load current of a spindle motor of a machine tool, and a normal tool of the machine tool is set for setting a reference value before the abnormality detection is determined. Is processed multiple times, and an allowable range setting means for setting the allowable range based on the reference value obtained from the measured value of the load current by the current sensor at this time is provided. A configuration is provided that includes an abnormality detecting means for determining that the tool is normal if the measured value is within the allowable range, and that the tool is abnormal if the measured value is outside the allowable range.
なお、HEMS(Home Energy Management System)、BEMS(Building Energy Management System)、SEMS(Store Energy Management System)等では、コントローラが電気機器に設置された測定器からの電流波形、電圧波形等をリアルタイムで取得する構成のほか、分電盤の主幹等に流れる、複数の電気機器の合成電流波形を観測して通信網を介してクラウドサーバ等に転送し、クラウドサーバ上で機器毎に波形を分離し、機器毎の消費電力量や、機器毎のオン、オフを推定する機器分離技術の利用も検討されている。
In addition, in HEMS (Home Energy Management System), BEMS (Building Energy Management System), SEMS (Store Energy Management System), etc., the controller acquires the current waveform, voltage waveform, etc. from the measuring instrument installed in the electrical equipment in real time. In addition to the configuration to be observed, the combined current waveforms of multiple electrical devices flowing through the main board of the distribution board are observed and transferred to the cloud server etc. via the communication network, and the waveforms are separated for each device on the cloud server, The use of device separation technology that estimates the power consumption for each device and the on / off status of each device is also under consideration.
例えば、非特許文献1には、分電盤に取り付けた1つの電流センサを用いて基幹線に流れている電流波形(1周期分の瞬時波形)を取得し、各機器固有の電流波形情報を備えた波形データベースに照らして、波形解析することにより、機器ごとの消費電力を推定し、機器の状態を判別するシステムが開示されている。
For example, Non-Patent Document 1 acquires a current waveform (instantaneous waveform for one cycle) flowing in the main line using one current sensor attached to a distribution board, and current waveform information unique to each device is obtained. A system that estimates the power consumption of each device and discriminates the state of the device by analyzing the waveform in light of the provided waveform database is disclosed.
以下に関連技術の分析を与える。
The following is an analysis of related technologies.
上記した関連技術によれば、複数の機器の電流や電力等の合成波形から、分離対象である複数の機器のいずれかに異常が発生した場合、複数の機器に異常が発生したことは検知することはできる。
According to the related technology described above, when an abnormality occurs in any of a plurality of devices to be separated, it is detected that an abnormality has occurred in a plurality of devices from a composite waveform such as current and power of the plurality of devices. I can.
しかしながら、どの機器に異常が発生したかを判別することはできない、という課題がある。
However, there is a problem that it is impossible to determine which device has an abnormality.
本発明は上記課題に鑑みて創案されたものであって、その目的は、複数の機器の合成波形に異常が検知された場合に、どの機器に異常が発生したかを判別可能とする異常機器判別装置、方法、プログラムを提供することにある。
The present invention was devised in view of the above problems, and its purpose is to detect which device has an abnormality when an abnormality is detected in a composite waveform of a plurality of devices. It is to provide a discrimination device, a method, and a program.
本発明の1つの側面によれば、複数の機器の合成波形から異常波形を検出する手段と、前記合成波形から前記異常波形を除去した上で機器毎の波形に分離し、前記機器の状態を識別する手段と、前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出する一致度算出手段と、前記一致度に基づき、異常が発生した機器を判別する判定手段とを備えた異常機器判別装置が提供される。
According to one aspect of the present invention, means for detecting an abnormal waveform from a combined waveform of a plurality of devices, and removing the abnormal waveform from the combined waveform and separating the waveform into a device-specific waveform, A means for identifying; a degree of coincidence calculating means for calculating a degree of coincidence between the time when each of the devices is turned on and the occurrence time of the abnormal waveform; and a means for determining which device has an abnormality based on the degree of coincidence Is provided.
本発明の他の1つの側面によれば、複数の機器の合成波形から異常波形を検出し、前記合成波形から前記異常波形を除去した上で機器毎の波形に分離し、前記分離された波形から前記機器の状態を識別し、前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出し、前記一致度に基づき、異常が発生した機器を判別する、異常機器判別方法が提供される。
According to another aspect of the present invention, an abnormal waveform is detected from a combined waveform of a plurality of devices, the abnormal waveform is removed from the combined waveform, and then separated into waveforms for each device, and the separated waveform An abnormal device that identifies the state of the device from each other, calculates the degree of coincidence between the time when each device is on and the occurrence time of the abnormal waveform, and determines the device in which the abnormality occurred based on the degree of coincidence A determination method is provided.
本発明の他の1つの側面によれば、複数の機器の合成波形から異常波形を検出する処理と、前記合成波形から前記異常波形を除去した上で機器毎の波形に分離し、前記機器の状態を識別する処理と、前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出する一致度算出処理と、前記一致度に基づき、異常が発生した機器を判別する判別処理と、コンピュータに実行させるプログラムが提供される。
According to another aspect of the present invention, a process of detecting an abnormal waveform from a combined waveform of a plurality of devices, and removing the abnormal waveform from the combined waveform and separating the waveform into each device, A process for identifying a state, a coincidence calculation process for calculating the degree of coincidence between the time when each device is turned on and the occurrence time of the abnormal waveform, and a device in which an abnormality has occurred is determined based on the degree of coincidence. A discrimination process and a program to be executed by a computer are provided.
本発明によれば、上記プログラムを記憶したコンピュータ読み出し可能な記録媒体(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM))等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等のnon-transitory computer readable recording mediumが提供される。
According to the present invention, a semiconductor storage such as a computer-readable recording medium (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM) ROM) storing the above program, HDD (Hard Disk Drive), CD (Compact Disk), DVD (Digital Versatile Disk) and other non-transitory computer computer readable recording media are provided.
本発明によれば、複数の機器の合成波形に異常が検知された場合に、どの機器に異常が発生したかを判別することを可能としている。
According to the present invention, when an abnormality is detected in a composite waveform of a plurality of devices, it is possible to determine which device has an abnormality.
本発明の実施形態について説明する。はじめに、本発明による関連技術の分析について説明する。関連技術の機器分離技術、異常検知技術等によれば、複数の機器の電流や電力等の合成波形から、分離対象である複数の機器のいずれかに異常が発生した場合、複数の機器に異常が発生したことは検知することはできる。
Embodiments of the present invention will be described. First, analysis of related technology according to the present invention will be described. According to related technology equipment separation technology, abnormality detection technology, etc., if an abnormality occurs in any of multiple devices to be separated from the combined waveforms of current and power of multiple devices, multiple devices are abnormal. It is possible to detect that has occurred.
しかしながら、どの機器に異常が発生したかを判別することはできない。以下、図1を参照して説明する。
However, it is impossible to determine which device has an abnormality. Hereinafter, a description will be given with reference to FIG.
図1(A)を参照すると、電気機器(単に「機器」と称する)Aと機器Bの電流又は電力の合成波形1に異常波形2が重畳している。合成波形1を機器分離技術により、機器Aの波形3と機器Bの波形4に分離したとする。この場合、異常波形2は、機器分離された機器Aの波形3に属するものであってもよいし、機器Bの波形4に属するものであってもよい。
Referring to FIG. 1A, an abnormal waveform 2 is superimposed on a combined waveform 1 of current or power of an electric device (simply called “device”) A and device B. Assume that the synthesized waveform 1 is separated into the waveform 3 of the device A and the waveform 4 of the device B by the device separation technique. In this case, the abnormal waveform 2 may belong to the waveform 3 of the device A separated from the device, or may belong to the waveform 4 of the device B.
すなわち、図1(B)に示すように、
(機器Aの波形+異常波形)+機器Bの波形⇒(異常波形を含む合成波形)
が成り立ち、また、図1(C)に示すように、
機器Aの波形+(機器Bの波形+異常波形)⇒(異常波形を含む合成波形)
が成り立つ。 That is, as shown in FIG.
(Device A waveform + Abnormal waveform) + Device B waveform => (Composite waveform including abnormal waveform)
As shown in FIG. 1C,
Waveform of device A + (waveform of device B + abnormal waveform) ⇒ (composite waveform including abnormal waveform)
Holds.
(機器Aの波形+異常波形)+機器Bの波形⇒(異常波形を含む合成波形)
が成り立ち、また、図1(C)に示すように、
機器Aの波形+(機器Bの波形+異常波形)⇒(異常波形を含む合成波形)
が成り立つ。 That is, as shown in FIG.
(Device A waveform + Abnormal waveform) + Device B waveform => (Composite waveform including abnormal waveform)
As shown in FIG. 1C,
Waveform of device A + (waveform of device B + abnormal waveform) ⇒ (composite waveform including abnormal waveform)
Holds.
このように、機器分離だけでは、異常波形2が機器Aと機器Bのどちらの波形に属するものであるか、判別することはできない。
As described above, it is not possible to determine whether the abnormal waveform 2 belongs to the waveform of the device A or the device B only by the device separation.
なお、機器分離によって、どの機器において異常が発生したかを判別する場合、各機器についてそれぞれ正常と異常について教師データを備える必要ある。
In addition, when determining which device has an abnormality due to device separation, it is necessary to provide teacher data for normality and abnormality for each device.
また、異常の種類が複数ある場合、異常の種類に応じて、各機器の教師データを備える必要があるという問題があった。
Also, when there are multiple types of abnormalities, there is a problem that it is necessary to provide teacher data for each device according to the type of abnormality.
その結果、教師データが増えることによりデータベースの容量が大きくなることや、機器分離の精度が低下してしまうという問題があった。
As a result, there is a problem that the capacity of the database increases due to an increase in teacher data, and the accuracy of device separation decreases.
上記課題を解決する本発明の一形態によれば、
(a)複数の機器の合成波形から異常波形を検出し、
(b)前記合成波形から前記異常波形を除去した上で機器毎の波形に分離して前記機器の状態を識別し、
(c)前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出し、
(d)前記一致度に基づき、異常が発生した機器を判別する、
上記一連の処理をプロセッサで実行する装置が提供される。 According to one aspect of the present invention for solving the above problems,
(A) An abnormal waveform is detected from a composite waveform of a plurality of devices,
(B) The abnormal waveform is removed from the synthesized waveform and then separated into waveforms for each device to identify the state of the device,
(C) calculating the degree of coincidence between the time when each device is turned on and the time when the abnormal waveform occurs;
(D) Based on the degree of coincidence, a device in which an abnormality has occurred is determined.
An apparatus for executing the above-described series of processing with a processor is provided.
(a)複数の機器の合成波形から異常波形を検出し、
(b)前記合成波形から前記異常波形を除去した上で機器毎の波形に分離して前記機器の状態を識別し、
(c)前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出し、
(d)前記一致度に基づき、異常が発生した機器を判別する、
上記一連の処理をプロセッサで実行する装置が提供される。 According to one aspect of the present invention for solving the above problems,
(A) An abnormal waveform is detected from a composite waveform of a plurality of devices,
(B) The abnormal waveform is removed from the synthesized waveform and then separated into waveforms for each device to identify the state of the device,
(C) calculating the degree of coincidence between the time when each device is turned on and the time when the abnormal waveform occurs;
(D) Based on the degree of coincidence, a device in which an abnormality has occurred is determined.
An apparatus for executing the above-described series of processing with a processor is provided.
本発明によれば、各機器の正常動作の教師データさえ備えていればよく、異常波形を除去した上で機器分離した各機器の動作時刻(オン状態の時刻)と異常波形の発生時刻との一致度により、どの機器が異常であるかを判定することができる。
According to the present invention, it is only necessary to provide teacher data for normal operation of each device, and the operation time (on time) of each device separated from the device after removing the abnormal waveform and the occurrence time of the abnormal waveform It is possible to determine which device is abnormal based on the degree of coincidence.
本発明の一形態において、前記一致度の大きさに基づき、異常が発生した機器を判別するようにしてもよい。例えば、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、前記一致度が最大の機器を異常が発生した機器と判別するようにしてもよい。
In one embodiment of the present invention, a device in which an abnormality has occurred may be determined based on the degree of coincidence. For example, the ratio of the number of times that the occurrence time of the abnormal waveform overlaps the on-state period of the device is calculated as the degree of coincidence with respect to the number of times the abnormal waveform has occurred, You may make it discriminate | determine from the apparatus which generate | occur | produced.
本発明の一形態において、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さの総和に基づき、前記一致度を算出し、前記一致度が最大の機器を異常が発生した機器と判別するようにしてもよい。あるいは、前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択するようにしてもよい。この場合、例えば、前記一致度が最大の機器を異常が発生している機器とし、他の機器を異常が疑われる機器としてもよい。本発明の例示的な実施形態について以下に説明する。
In one aspect of the present invention, the degree of coincidence is calculated based on a sum of lengths of time in which the on-state period of the device and the period in which the abnormal waveform occurs overlap on the time axis, and the degree of coincidence is maximum. This device may be determined as a device in which an abnormality has occurred. Alternatively, when there are a plurality of devices having substantially the same degree of coincidence, it may be selected as a device suspected of being abnormal. In this case, for example, a device having the highest degree of coincidence may be a device in which an abnormality has occurred, and another device may be a device suspected of being abnormal. Exemplary embodiments of the present invention are described below.
図2は、本発明の例示的な一実施形態の異常機器判別装置100の機能構成を説明する図である。図2を参照すると、異常機器判別装置100は、合成波形取得部101と、異常波形発生検知部102と、記憶部103と、異常波形除去部104と、機器分離部105と、状態識別部106と、一致度算出部107と、判別部108と、出力部109を備えている。以下、各部の概略を説明する。
FIG. 2 is a diagram illustrating the functional configuration of the abnormal device determination apparatus 100 according to an exemplary embodiment of the present invention. Referring to FIG. 2, the abnormal device determination apparatus 100 includes a composite waveform acquisition unit 101, an abnormal waveform generation detection unit 102, a storage unit 103, an abnormal waveform removal unit 104, a device separation unit 105, and a state identification unit 106. A degree-of-matching calculation unit 107, a determination unit 108, and an output unit 109. Hereinafter, the outline of each part will be described.
合成波形取得部101は、異常判定対象の複数の機器の合成波形データを取得する。
The composite waveform acquisition unit 101 acquires composite waveform data of a plurality of devices that are subject to abnormality determination.
異常波形発生検知部102は、合成波形取得部101で取得した合成波形データから異常波形を検出し、異常波形の発生時刻を記憶部103に記憶する。
The abnormal waveform generation detection unit 102 detects an abnormal waveform from the combined waveform data acquired by the combined waveform acquisition unit 101 and stores the generation time of the abnormal waveform in the storage unit 103.
異常波形除去部104は、合成波形データから異常波形を除去する。
The abnormal waveform removing unit 104 removes abnormal waveforms from the combined waveform data.
機器分離部105は、異常波形が除去された合成波形を、機器毎の波形に分離する。
The device separation unit 105 separates the composite waveform from which the abnormal waveform has been removed into a waveform for each device.
状態識別部106は、機器分離部105で機器毎に分離された波形(時系列データ)から、各機器の状態(例えば、オン、オフ状態)の時間推移を推定し、状態の時系列データを出力する。なお、図2では、単に機能の説明のために、機器分離部105と状態識別部106を別のユニットとして示しているが、機器分離部105と状態識別部106の機能を一つのユニット(例えば機器分離部105)にまとめてもよいことは勿論である。
The state identification unit 106 estimates the time transition of the state of each device (for example, on or off state) from the waveform (time series data) separated for each device by the device separation unit 105, and obtains the time series data of the state. Output. In FIG. 2, the device separation unit 105 and the state identification unit 106 are shown as separate units for the purpose of simply explaining the functions, but the functions of the device separation unit 105 and the state identification unit 106 are combined into one unit (for example, Of course, the device separation unit 105) may be combined.
一致度算出部107は、状態識別部106で識別された機器毎の状態(例えばオン、オフ状態)の時系列データを入力し、記憶部103から異常波形発生時刻を入力し、異常波形発生時刻と機器のオン状態の時刻が一致する割合を算出する。例えば、n回の異常波形の各発生時刻t1,・・・,tnに対して、機器のオン状態と重なる個数がm個の場合、(m/n)×100(%)を一致度としてもよい。
The coincidence calculation unit 107 inputs time series data of the state (for example, on or off state) for each device identified by the state identifying unit 106, inputs the abnormal waveform generation time from the storage unit 103, and outputs the abnormal waveform generation time. And the ratio of the time when the device is on is calculated. For example, for m occurrence times t 1 ,..., T n of an abnormal waveform of n times, when the number of devices that overlap with the ON state of the device is m, (m / n) × 100 (%) It is good.
図3は、図2の一致度算出部107を説明する図である。図3の(a)、(b)は機器分離部105で機器分離され、状態識別部106で識別された、機器Aと機器Bのオン、オフ状態の時間推移を表している。
FIG. 3 is a diagram illustrating the coincidence degree calculation unit 107 in FIG. 3A and 3B show time transitions of the on / off states of the devices A and B, which are separated by the device separation unit 105 and identified by the state identification unit 106. FIG.
図3の(c)は、記憶部103に記憶される異常波形発生時刻にしたがって異常を矩形波(パルス波形)として示したものである。なお、異常波形発生時刻として、t1、t2、・・・のような瞬時時刻ではなく、後述するように、異常波形の開始時刻と終了時刻の期間で指定するようにしてもよい。
FIG. 3C shows the abnormality as a rectangular wave (pulse waveform) according to the abnormal waveform generation time stored in the storage unit 103. It should be noted that the abnormal waveform generation time may be specified by the period of the start time and end time of the abnormal waveform, as will be described later, instead of the instantaneous time such as t 1 , t 2 ,.
図3の例では、3回の異常波形の発生時刻t1、t2、t3の各時刻において、機器Aは全てオン状態であるため(3回一致)、機器Aの一致度は、(3/3)×100=100%となる。
In the example of FIG. 3, since the devices A are all in the on state (matched three times) at the times of occurrence of the abnormal waveform three times t 1 , t 2 , t 3 , the matching degree of the device A is ( 3/3) × 100 = 100%.
また、機器Bでは、3回の異常波形の発生時刻t1、t2、t3において、時刻t2でのみ機器Bがオン状態であるため(1回一致)、機器Bの一致度は、(1/3)×100=33%となる。
In addition, in the device B, since the device B is in the on state only at the time t 2 at the occurrence times t 1 , t 2 , and t 3 of the abnormal waveform three times, the coincidence degree of the device B is (1/3) × 100 = 33%.
図2の判別部108は、複数の機器のうち、例えば一致度が最大となる機器で異常が発生したものと判定する。図3の例では、一致度が高い方の機器Aで異常が発生したと判定する。
The determining unit 108 in FIG. 2 determines that an abnormality has occurred in, for example, a device having the highest degree of matching among a plurality of devices. In the example of FIG. 3, it is determined that an abnormality has occurred in the device A with the higher degree of matching.
図4は、本発明の例示的な一実施形態の動作を説明する流れ図である。図4を参照すると、合成波形取得部101は、複数の機器の合成波形データを取得する(ステップS1)。
FIG. 4 is a flowchart illustrating the operation of an exemplary embodiment of the present invention. Referring to FIG. 4, the synthesized waveform acquisition unit 101 acquires synthesized waveform data of a plurality of devices (step S1).
次に、異常波形発生検知部102は、合成波形取得部101で取得した合成波形データから異常波形を検出し、異常波形の発生時刻を記憶部103に記憶する(ステップS2)。
Next, the abnormal waveform generation detection unit 102 detects an abnormal waveform from the combined waveform data acquired by the combined waveform acquisition unit 101, and stores the generation time of the abnormal waveform in the storage unit 103 (step S2).
次に、異常波形除去部104は、合成波形データから異常波形を除去する(ステップS3)。
Next, the abnormal waveform removing unit 104 removes the abnormal waveform from the combined waveform data (step S3).
次に、機器分離部105は、異常波形が除去された合成波形から、機器の機器毎の波形に分離する(ステップS4)。
Next, the device separation unit 105 separates the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device of the device (step S4).
次に、状態識別部106は、機器毎に分離された波形(時系列データ)から、各機器の状態(例えば、オン、オフ)を識別し、各機器の状態の時間推移(状態の時系列データ)を出力する(ステップS5)。
Next, the state identifying unit 106 identifies the state (for example, on or off) of each device from the waveform (time series data) separated for each device, and the time transition of the state of each device (time series of state) Data) is output (step S5).
次に、一致度算出部107は、状態識別部106で識別された機器のオン、オフの時系列データを入力し、記憶部103から異常波形発生時刻を入力し、異常波形が発生した回数に対して、異常波形の発生時刻が機器のオン状態の期間と重なる回数の割合を該機器の一致度として算出する(ステップS6)。
Next, the coincidence calculation unit 107 inputs the time series data of the devices identified by the state identification unit 106, inputs the abnormal waveform occurrence time from the storage unit 103, and determines the number of occurrences of the abnormal waveform. On the other hand, the ratio of the number of times the occurrence time of the abnormal waveform overlaps with the ON state period of the device is calculated as the matching degree of the device (step S6).
次に、判別部108は、複数の機器のうち、例えば一致度が最大となる機器を、異常が発生した機器と判定する(ステップS7)。
Next, the determination unit 108 determines, for example, a device having the highest degree of coincidence among a plurality of devices as a device in which an abnormality has occurred (step S7).
次に、出力部109は、判別結果(異常が発生した機器の情報)を出力する(ステップS8)。
Next, the output unit 109 outputs a determination result (information on a device in which an abnormality has occurred) (step S8).
次に、図2のいくつかの機能ユニットについて詳細を説明する。まず、図2の合成波形取得部101について説明する。
Next, the details of some functional units in FIG. 2 will be described. First, the composite waveform acquisition unit 101 in FIG. 2 will be described.
合成波形取得部101は、異常判定対象の複数の機器の合成波形(例えば複数の機器の電源電流や電力波形を合成した波形)を取得する装置であれば、任意のセンサ等を用いてもよい。
The combined waveform acquisition unit 101 may use an arbitrary sensor or the like as long as it is a device that acquires a combined waveform of a plurality of devices that are subject to abnormality determination (for example, a waveform obtained by combining power supply currents and power waveforms of a plurality of devices). .
あるいは、合成波形取得部101は、異常判定対象の複数の機器の合成波形を取得するセンサ等から合成波形を通信手段を介して取得する構成としてもよい。
Alternatively, the composite waveform acquisition unit 101 may be configured to acquire a composite waveform via a communication unit from a sensor or the like that acquires composite waveforms of a plurality of devices that are subject to abnormality determination.
図5(A)は、合成波形取得部101が、HEMS/BEMS/SEMS/FEMS(Factory Energy Management System)等のコントローラから複数の機器の合成電流波形を取得する構成を模式的に例示した図である。図5(A)を参照すると、店舗、事業所、一般住宅等の建屋21内において、通信装置(HEMS/BEMS/SEMS/FEMSコントローラ)24は、スマートメータ25の検針データ(消費電力等)を例えばBルートから取得する。なお、高圧受電設備26は、高圧需要家向きのものであり、一般住宅等の低圧需要家の場合、高圧受電設備26は不要である。通信装置24がスマートメータ25からBルートで取得する検針データ(消費電力、電流値等)は、建屋全体の消費電力に関する情報を含む。あるいは、分電盤22の基幹電力線が接続されている主ブレーカ(不図示)および分岐ブレーカ(不図示)のうち、少なくとも1つのブレーカ(不図示)に、該主ブレーカ、または、該分岐ブレーカに流れる電流(例えば機器A、機器B、機器C等の消費電流の合成電流)を検出する電流センサ23を備え、電流センサ23から、通信装置24に無線伝送等で電流波形データを送信するようにしてもよい。電流センサ23は、CT(Current Transformer)(例えば零相変流器(Zero-phase-sequence Current Transformer:ZCT))やホール素子等で構成してもよい。電流センサ23は、不図示のアナログデジタル変換器で電流波形(アナログ信号)をサンプリングしデジタル信号に変換し不図示の符号化器で圧縮符号化した上で通信装置24に、Wi-SUN(Wireless Smart Utility Network)等により無線伝送するようにしてもよい。通信装置24からの電流波形は、合成波形取得部101の通信部115で受信される。なお、図5(A)では、簡単のため、分電盤22に機器A、機器B、機器Cが接続されているが、機器は3台に制限されるものでないことは勿論である。図5(B)は、図5(A)の分電盤22の不図示の主ブレーカまたは分岐ブレーカに接続された電流センサ23で取得された電源電流波形(総合電源電流波形)を例示する図である。なお、合成波形取得部101は、通信装置24から合成電力波形を取得してもよい。
FIG. 5A is a diagram schematically illustrating a configuration in which the composite waveform acquisition unit 101 acquires composite current waveforms of a plurality of devices from a controller such as HEMS / BEMS / SEMS / FEMS (Factory Energy Management System). is there. Referring to FIG. 5A, in a building 21 such as a store, business office, or general house, a communication device (HEMS / BEMS / SEMS / FEMS controller) 24 reads meter reading data (power consumption, etc.) of the smart meter 25. For example, it is acquired from the B route. Note that the high-voltage power receiving facility 26 is suitable for high-voltage consumers, and the high-voltage power receiving facility 26 is not necessary for low-voltage consumers such as ordinary houses. The meter reading data (power consumption, current value, etc.) acquired by the communication device 24 from the smart meter 25 through the B route includes information on the power consumption of the entire building. Alternatively, at least one breaker (not shown) of the main breaker (not shown) and the branch breaker (not shown) to which the main power line of the distribution board 22 is connected may be connected to the main breaker or the branch breaker. A current sensor 23 that detects a flowing current (for example, a combined current consumption current of the devices A, B, and C) is provided, and current waveform data is transmitted from the current sensor 23 to the communication device 24 by wireless transmission or the like. May be. The current sensor 23 may be configured by a CT (Current-Transformer) (for example, a zero-phase current sequence (ZCT)), a Hall element, or the like. The current sensor 23 samples a current waveform (analog signal) with an analog-digital converter (not shown), converts it into a digital signal, compresses and encodes it with an encoder (not shown), and then sends it to the communication device 24 with Wi-SUN (Wireless Wireless transmission may be performed by Smart (Utility Network) or the like. The current waveform from the communication device 24 is received by the communication unit 115 of the combined waveform acquisition unit 101. In FIG. 5A, for the sake of simplicity, the device A, the device B, and the device C are connected to the distribution board 22, but it is needless to say that the number of devices is not limited to three. FIG. 5B illustrates a power supply current waveform (total power supply current waveform) acquired by a current sensor 23 connected to a main breaker (not shown) or a branch breaker of the distribution board 22 of FIG. 5A. It is. Note that the combined waveform acquisition unit 101 may acquire a combined power waveform from the communication device 24.
合成波形取得部101は、通信装置24から合成波形とともに、該合成波形を電流センサ23で取得した時刻情報を取得する。合成波形が電源電流波形の場合、合成波形の始まりの時刻と、電流センサ23のサンプリング周波数から合成波形のサンプル時点の時刻情報を算出することができる。合成波形取得部101は、合成波形のサンプル値と時刻情報を関連付けて不図示のメモリやバッファ(例えばRAM等)に記憶するようにしてもよい。
The combined waveform acquisition unit 101 acquires time information when the combined waveform is acquired by the current sensor 23 together with the combined waveform from the communication device 24. When the synthesized waveform is a power supply current waveform, the time information at the sampling time of the synthesized waveform can be calculated from the start time of the synthesized waveform and the sampling frequency of the current sensor 23. The composite waveform acquisition unit 101 may associate the sample value of the composite waveform with the time information and store them in a memory or a buffer (not shown) such as a RAM.
なお、異常機器判別装置100の一部の機能を、通信装置(HEMS/BEMS/SEMS/FEMSコントローラ)24に実装し、合成波形取得部101として、図5(A)の電流センサ23を備えた構成としてもよい。
A part of the function of the abnormal device discriminating apparatus 100 is mounted on the communication device (HEMS / BEMS / SEMS / FEMS controller) 24, and the combined waveform acquisition unit 101 includes the current sensor 23 shown in FIG. It is good also as a structure.
次に、図2の異常波形発生検知部102について説明する。異常波形発生検知部102は、合成波形取得部101のメモリやバッファ(例えばRAM)(不図示)から、合成波形データを読み出し異常波形を検出する。異常波形の検出は任意の手法が用いられる。
Next, the abnormal waveform generation detection unit 102 in FIG. 2 will be described. The abnormal waveform generation detection unit 102 reads the synthetic waveform data from the memory or buffer (for example, RAM) (not shown) of the synthetic waveform acquisition unit 101 and detects an abnormal waveform. An arbitrary method is used to detect the abnormal waveform.
例えば、図2の異常波形発生検知部102は、合成波形の振幅が予め設定した上限値、下限値の許容範囲内にあるか否かを判定することで異常波形を検出してもよい。
For example, the abnormal waveform occurrence detection unit 102 in FIG. 2 may detect the abnormal waveform by determining whether or not the amplitude of the composite waveform is within an allowable range of a preset upper limit value and lower limit value.
図6(A)に示すような異常波形2は、そのピークが、合成波形1の最大振幅以下であり、波形の振幅が上記許容範囲内にあるか否かを判別しても、該異常波形2を検出することはできない。したがって、振幅が予め設定した上限値、下限値の許容範囲内にある異常波形を検出する手法として、例えば図6(B)に例示する手法を用いてもよい(ただし、周波数スペクトル分析等他の手法を用いてもよい)。
Even if it is determined whether the peak of the abnormal waveform 2 as shown in FIG. 6A is less than the maximum amplitude of the composite waveform 1 and the amplitude of the waveform is within the allowable range, 2 cannot be detected. Therefore, for example, the method illustrated in FIG. 6B may be used as a method for detecting an abnormal waveform whose amplitude is within the allowable range of the upper limit value and the lower limit value set in advance (however, other methods such as frequency spectrum analysis) may be used. Method may be used).
図6(B)は、図6(A)の異常波形2を含む合成波形1の微分波形を表している。図2の異常波形発生検知部102は、図6(A)の異常波形2を含む合成波形1を微分(差分)して微分係数(差分値)を求め、これを閾値(上限値又は下限値)と比較することで、異常波形の区間を検出するようにしてもよい。なお。簡単のため、図6(A)では、異常波形2を略三角波形状とし、図6(B)では、異常波形2の微分波形を矩形波(パルス)で表している。なお、図6(A)では、単に説明の容易化のため、複数の機器の合成波形1を正弦波形からなる周期波形とし、図6(B)の微分波形を余弦波形としている。
FIG. 6B shows a differential waveform of the composite waveform 1 including the abnormal waveform 2 of FIG. The abnormal waveform generation detection unit 102 in FIG. 2 obtains a differential coefficient (difference value) by differentiating (differing) the composite waveform 1 including the abnormal waveform 2 in FIG. 6A, and obtaining this as a threshold value (upper limit value or lower limit value). ) To detect an abnormal waveform section. Note that. For simplicity, the abnormal waveform 2 has a substantially triangular waveform in FIG. 6A, and the differential waveform of the abnormal waveform 2 is represented by a rectangular wave (pulse) in FIG. 6B. In FIG. 6A, for ease of explanation, the combined waveform 1 of a plurality of devices is a periodic waveform composed of a sine waveform, and the differential waveform of FIG. 6B is a cosine waveform.
図6(A)の異常波形2(略三角波)のピークへの立ち上がりの傾き(微分係数)(正値)は、元の合成波形1の最大の傾き(微分係数)よりもより大きく、上限値UL(正値)を超え、ピークからの立ち下がりの傾き(微分係数)(負値)は、その絶対値が、元の合成波形1の傾き(微分係数)の負の絶対値よりも大であり、下限値LL(負値)を下回っている。
The slope (derivative coefficient) (positive value) of the rise to the peak of the abnormal waveform 2 (substantially triangular wave) in FIG. 6A is larger than the maximum slope (derivative coefficient) of the original composite waveform 1 and is the upper limit value. The slope (derivative coefficient) (negative value) of the falling from the peak exceeding UL (positive value) is larger in absolute value than the negative absolute value of the slope (derivative coefficient) of the original composite waveform 1 Yes, below the lower limit LL (negative value).
このため、異常波形発生検知部102では、合成波形1の微分値(差分値)が許容範囲内にあるか否かで、異常波形2の発生時刻(微分値が上限値、下限値とクロスする時刻)を検出することができる。すなわち、複数の機器が正常に動作し、合成波形がなだらかに推移している時間区間では、合成波形1の微分値(差分値)は、予め定められた範囲内で推移している。合成波形がなだらかに推移している状態で異常波形が現れると、1つ前のサンプル値と異常波形2のサンプル値との差分値は、上限値又は下限値を超えることになり、異常波形発生時刻(異常区間)が検出されることになる。
For this reason, the abnormal waveform generation detection unit 102 crosses the generation time of the abnormal waveform 2 (the differential value exceeds the upper limit value and the lower limit value) depending on whether or not the differential value (difference value) of the composite waveform 1 is within the allowable range. Time) can be detected. That is, the differential value (difference value) of the composite waveform 1 changes within a predetermined range in a time interval in which a plurality of devices operate normally and the composite waveform changes smoothly. If an abnormal waveform appears while the composite waveform is moving smoothly, the difference between the previous sample value and the sample value of abnormal waveform 2 will exceed the upper limit or lower limit, and an abnormal waveform will be generated. The time (abnormal section) will be detected.
あるいは、異常波形発生検知部102は、図6(A)の合成波形1のそれまでの所定個数のサンプル値に基づき、次のサンプル値を予測し、異常の有無を判定するようにしてもよい。例えばサンプリングポイントnでの合成波形1の予測値^Y(n)を、合成波形1のそれまでの所定個数sのサンプリングポイントでの合成波形1の値:Y(n-1),Y(n-2), …,Y(n-s)から算出し、該予測値^Y(n)と実際のサンプル値Y(n)との差の絶対値が所定値以上であれば、異常と判定するようにしてもよい。特に制限されないが、サンプリングポイントnでの合成波形1の予測値^Y(n)として、例えば以下の線形予測:
^Y(n)=a1×Y(n-1)+・・・+as×Y(n-s)
を用いてもよい。 Alternatively, the abnormal waveformgeneration detection unit 102 may predict the next sample value based on the predetermined number of sample values up to that point of the composite waveform 1 in FIG. . For example, the predicted value ^ Y (n) of the composite waveform 1 at the sampling point n is used as the value of the composite waveform 1 at a predetermined number of sampling points s of the composite waveform 1 so far: Y (n−1), Y (n -2), ..., Y (ns), and if the absolute value of the difference between the predicted value ^ Y (n) and the actual sample value Y (n) is greater than or equal to a predetermined value, it is determined as abnormal You may make it do. Although not particularly limited, as the predicted value ^ Y (n) of the composite waveform 1 at the sampling point n, for example, the following linear prediction:
^ Y (n) = a 1 × Y (n−1) +... + A s × Y (ns)
May be used.
^Y(n)=a1×Y(n-1)+・・・+as×Y(n-s)
を用いてもよい。 Alternatively, the abnormal waveform
^ Y (n) = a 1 × Y (n−1) +... + A s × Y (ns)
May be used.
あるいは、異常波形発生検知部102は、合成波形を所定の時間区間毎に分割し、各時間区間でFFT(Fast Fourier Transform)等を行って周波数領域に変換し、周波数スペクトル成分から導出される特徴量(例えば偶数次高調波成分の2乗加算の平方根あるいは、奇数次高調波成分の2乗加算の平方根、あるいはTHD(Total Harmonic Distortion:全高調波歪)等)を求め、該特徴量を所定の閾値と比較することで、合成波形の異常区間を判定するようにしてもよい。あるいは、周波数スペクトルにおいて、特定の高周波成分のパワースペクトラムの大きさに基づき、異常を判定するようにしてもよい。
Alternatively, the abnormal waveform generation detection unit 102 divides the combined waveform into predetermined time intervals, performs FFT (Fast Fourier Transform) or the like in each time interval, converts the waveform into the frequency domain, and is derived from the frequency spectrum component. The amount (for example, the square root of the square addition of the even-order harmonic component, the square root of the square addition of the odd-order harmonic component, or THD (Total Harmonic Distortion)) is obtained, and the feature amount is determined. The abnormal section of the composite waveform may be determined by comparing with the threshold value. Alternatively, in the frequency spectrum, abnormality may be determined based on the magnitude of the power spectrum of a specific high frequency component.
あるいは、異常波形発生検知部102は、正常時の合成波形を学習しておき、検査時の合成波形に対して、正常時の電合成波形の分布に対する検査時のデータの外れ具合を表すマハラノビス距離等を用いて外れ値等を検出し、異常波形として検知するようにしてもよい。
Or the abnormal waveform generation | occurrence | production detection part 102 learns the synthetic | combination waveform at the time of normal, and the Mahalanobis distance showing the deviation | decrease degree of the data at the time of the test | inspection with respect to the distribution of the electric synthesis waveform at the time of normal with respect to the synthetic | combination waveform at the time of an inspection. Or the like may be used to detect an outlier or the like and detect it as an abnormal waveform.
なお、図6(C)に示すように、機器がオフ状態からオン状態に変化するとき(時刻t2)、消費電力波形は急激に立ち上がる。また、機器がオン状態からオフ状態に変化するとき(時刻t1)、消費電力波形は急激に立ち下がる。機器の消費電力を抑える待機状態とオン状態の間の状態遷移についても同様である。異常波形発生検知部102では、このような機器の動作モードの変化に伴う合成波形の変化を、異常波形として検知しないようにしてもよい。例えば、異常波形発生検知部102は、機器の(a)オフ状態からオン状態への遷移、(b)オン状態からオフ状態への遷移、(c)待機状態からオン状態への遷移、(d)オン状態から待機状態の遷移のうち、(a)と(b)、又は、(c)と(d)、又は、(a)~(d)の遷移における電流又は電力の合成波形の変動を、例えば正常動作波形の教師データとして学習しておき、評価時に、当該遷移時の合成波形の変動を異常波形として検知しない構成としてもよい。
As shown in FIG. 6C, when the device changes from the off state to the on state (time t 2 ), the power consumption waveform rises rapidly. In addition, when the device changes from the on state to the off state (time t 1 ), the power consumption waveform suddenly falls. The same applies to the state transition between the standby state and the on state that suppresses the power consumption of the device. The abnormal waveform generation detection unit 102 may not detect such a change in the composite waveform accompanying a change in the operation mode of the device as an abnormal waveform. For example, the abnormal waveform generation detection unit 102 may include (a) a transition from an off state to an on state, (b) a transition from an on state to an off state, (c) a transition from a standby state to an on state, (d ) Among the transitions from the on state to the standby state, (a) and (b), or (c) and (d), or (a) to (d) transition of the current or power composite waveform For example, learning may be performed as teacher data of a normal operation waveform, and a change in the composite waveform at the time of transition may not be detected as an abnormal waveform at the time of evaluation.
次に、図2の異常波形除去部104について説明する。異常波形除去部104は、合成波形1から異常波形2を除去する。異常波形除去部104は、異常波形2を含む合成波形1(例えば図6(A))に所定のカットオフ周波数のローパスフィルタを適用することで異常波形2を除去した合成波形1(図6(D)参照)を取得するようにしてもよい。ローパスフィルタはFIR(Finite Impulse Response)フィルタであってもよい。異常波形除去部104は、合成波形1の時系列データをFFT等を用いて周波数領域に変換し、所定のカットオフ周波数以上の周波数成分を0に設定し、IFFT(Inverse FFT:逆高速フーリエ変換)等を実行し時間領域に戻すことで、ローパスフィルタ演算を行うようにしてもよい。
Next, the abnormal waveform removing unit 104 in FIG. 2 will be described. The abnormal waveform removing unit 104 removes the abnormal waveform 2 from the synthesized waveform 1. The abnormal waveform removing unit 104 applies a low-pass filter having a predetermined cutoff frequency to the composite waveform 1 including the abnormal waveform 2 (for example, FIG. 6A), thereby removing the abnormal waveform 2 (FIG. 6 (FIG. 6 (A)). D) may be acquired. The low-pass filter may be a FIR (Finite Impulse Response) filter. The abnormal waveform removal unit 104 converts time series data of the composite waveform 1 into a frequency domain using FFT or the like, sets a frequency component equal to or higher than a predetermined cutoff frequency to 0, and IFFT (Inverse FFT: Inverse Fast Fourier Transform) ) Etc. to return to the time domain, low pass filter calculation may be performed.
あるいは、異常波形除去部104は、合成波形1から異常波形2に相当する時間区間を内挿(補間)(Interpolation)することで、異常波形2を除去した合成波形を生成するようにしてもよい。
Alternatively, the abnormal waveform removing unit 104 may generate a composite waveform from which the abnormal waveform 2 is removed by interpolating a time interval corresponding to the abnormal waveform 2 from the composite waveform 1. .
次に、図2の機器分離部105について説明する。機器分離部105は、非特許文献1等に記載された任意の手法を用いて、異常波形が除去された合成波形から機器毎の波形に分離する。機器分離部105は、異常波形が除去された合成波形に対して、機器毎の動作時の波形パターンやその特徴量を記憶した不図示の波形データベースを参照して、機器毎の波形に分離するようにしてもよい。すなわち、機器分離部105は、合成波形を所定の時間区間(例えば商用電源周波数の1サイクル(20ミリ秒)又は複数サイクル、あるいは、1サイクルを複数に区分した時間区間)に対する特徴量を計算し、該特徴量や、機器固有の波形パターンに基づき、機器毎の波形に分離するようにしてもよい。波形データベースは、機器分離部105内に備えてもよいし機器分離部105外に備えてもよい。例えば機器分離部105が通信ネットワークを介してデータサーバ等に接続し、データサーバの波形データベースにアクセスするようにしてもよい。波形の特徴量として、波形形状(波形ピーク値、平均値、実効値(root mean square)、波高値等)を用いてもよい。あるいは合成波形1の所定の時間窓に対してフーリエ変換(高速フーリエ変換又は離散フーリエ変換、あるいは、短時間高速フーリエ変換又は短時間離散フーリエ変換)等を用いて時間領域から周波数領域に変換し、周波数スペクトル成分の振幅の2乗加算等から導出される値(例えば偶数次高調波成分の2乗加算の平方根あるいは、偶数次高調波成分の2乗加算の平方根、あるいはTHD(Total Harmonic Distortion)等)を特徴量としてもよい。図5(C)~図5(E)は、機器分離部105によって機器20C、20B、20Aの各々について機器毎に分離された電流波形を模式的に表している。
Next, the device separation unit 105 in FIG. 2 will be described. The device separation unit 105 separates the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device using any method described in Non-Patent Document 1 or the like. The device separation unit 105 separates the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device by referring to a waveform database (not shown) that stores a waveform pattern during operation for each device and its feature amount. You may do it. That is, the device separation unit 105 calculates a feature amount of the synthesized waveform for a predetermined time interval (for example, one cycle (20 milliseconds) or a plurality of cycles of the commercial power supply frequency, or a time interval in which one cycle is divided into a plurality of times). The waveform may be separated for each device based on the feature amount or the waveform pattern unique to the device. The waveform database may be provided in the device separation unit 105 or may be provided outside the device separation unit 105. For example, the device separation unit 105 may connect to a data server or the like via a communication network and access the waveform database of the data server. A waveform shape (waveform peak value, average value, effective value (root (mean 等 square), peak value, etc.) may be used as the feature amount of the waveform. Alternatively, a Fourier transform (fast Fourier transform or discrete Fourier transform, or short-time fast Fourier transform or short-time discrete Fourier transform) or the like is performed on a predetermined time window of the composite waveform 1 and the like, Value derived from square addition of amplitude of frequency spectrum component (for example, square root of square addition of even-order harmonic component, square root of square addition of even-order harmonic component, or THD (Total Harmonic Distortion)) ) May be the feature amount. FIG. 5C to FIG. 5E schematically show current waveforms separated for each device by the device separation unit 105 for each of the devices 20C, 20B, and 20A.
次に、図2の状態識別部106について説明する。なお、前述したように、機器分離部105と状態識別部106を一つのユニットにまとめてもよい。状態識別部106は、機器分離部105によって機器毎に分離された波形データ(時系列)データから、各機器の状態(例えば、オン状態、オフ(待機)状態)の時間推移を推定・識別し、各機器の状態の時系列データを出力する。不図示の波形データベースに、各機器の状態に対応する波形パターンや特徴量を記憶しておき、状態識別部106では、不図示の波形データベースを参照して、波形データの各時間区間での状態を推定するようにしてもよい。図5(F)は、例えば図5(A)の機器A20Aの波形(図5(E))について、状態識別部106で出力した機器Aの状態の時系列データを模式的に示している。
Next, the state identification unit 106 in FIG. 2 will be described. Note that, as described above, the device separation unit 105 and the state identification unit 106 may be combined into one unit. The state identification unit 106 estimates and identifies the time transition of the state of each device (for example, on state, off (standby) state) from the waveform data (time series) data separated for each device by the device separation unit 105. , Output time-series data of the state of each device. In the waveform database (not shown), waveform patterns and feature amounts corresponding to the states of the respective devices are stored, and the state identification unit 106 refers to the waveform database (not shown) to check the state of the waveform data in each time interval. May be estimated. FIG. 5F schematically shows time-series data of the state of the device A output by the state identification unit 106, for example, for the waveform of the device A 20A of FIG. 5A (FIG. 5E).
なお、複数の機器(例えば図5(A)の機器A、機器B、機器C等)について、(機器Aがオン、機器B、機器Cがオフ)、(機器Bがオン、機器A、機器Cがオフ)、(機器Cがオン、機器A、機器Bがオフ)、(機器A、機器Bがオン、機器Cがオフ)、・・・、(機器A、機器B、機器Cが全てオン)等の組み合わせに対する波形パターン又は特徴量、さらに変動量等を事前に波形データベースに格納しておくか、組み合わせに対する波形パターン又は特徴量、さらに変動量等を機械学習した結果を波形データベースに格納し、機器分離部105での合成波形からの機器毎の波形分離と状態識別部106での各機器の状態の推定を連携して行うようにしてもよい。
For a plurality of devices (for example, device A, device B, device C, etc. in FIG. 5A) (device A is on, device B, device C is off), device B is on, device A, device (C is off), (device C is on, device A, device B is off), (device A, device B is on, device C is off), ..., (device A, device B, device C are all ON) waveform pattern or feature value for combination, etc., and fluctuation amount are stored in the waveform database in advance, or the waveform pattern or feature value for combination, and machine learning result of fluctuation amount etc. are stored in waveform database Then, waveform separation for each device from the synthesized waveform in the device separation unit 105 and state estimation of each device in the state identification unit 106 may be performed in cooperation.
さらに、機器によっては、オン状態での各動作モード(例えば空調機器の風量の強、中、弱等)に応じた波形パターン又は特徴量を波形データベースに格納しておき、状態識別部106では、機器毎に分離された波形から、オン状態の機器の動作モードを判別するようにしてもよい。この場合、異常波形が、機器のどの動作モードで発生するかを判別することも可能となる。
Further, depending on the device, a waveform pattern or a feature amount corresponding to each operation mode in the ON state (for example, the air volume of the air conditioner is strong, medium, weak, etc.) is stored in the waveform database. You may make it discriminate | determine the operation mode of the apparatus of an ON state from the waveform isolate | separated for every apparatus. In this case, it is possible to determine in which operation mode of the device an abnormal waveform occurs.
次に、図2の一致度算出部107について説明する。一致度算出部107は、前述したように、状態識別部106で識別された機器のオン、オフの時系列データを入力し、記憶部103から異常波形発生時刻を入力し、異常波形発生時刻と機器のオン状態の時刻が一致する割合を算出する。
Next, the coincidence degree calculation unit 107 in FIG. 2 will be described. As described above, the degree-of-match calculation unit 107 inputs the time series data of the devices identified by the state identification unit 106, inputs the abnormal waveform generation time from the storage unit 103, and sets the abnormal waveform generation time and Calculate the proportion of the devices in the on-state time.
あるいは、一致度算出部107は、機器のオン状態の期間と異常波形が発生した期間とが時間軸上で重なる時間と、機器のオン状態の期間との割合を一致度として算出してもよい。
Alternatively, the degree-of-match calculation unit 107 may calculate a ratio between a time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis and the period in which the device is on as the degree of coincidence. .
図7を参照すると、異常波形発生時刻と、機器Aと機器Bのオン状態の時刻が一致する回数は、機器Aと機器Bでともに3回である(異常波形発生時刻の取り方に応じて一致する回数は3回となる)。
Referring to FIG. 7, the number of times that the abnormal waveform occurrence time coincides with the on-state time of device A and device B is three for both device A and device B (depending on how the abnormal waveform occurrence time is determined). The number of matches will be 3).
この場合、異常波形発生期間の一部の時間区間で機器Aと機器Bのオン状態の時刻と重なる場合も一致とみなしている。機器Aにおいて、オンの期間は、3回の異常波形発生期間T1=t11-t12、T2=t21-t22、T3=t31-t32と時間的に完全にオーバラップしているが、機器Bにおいて、オンの期間は、3回の異常波形発生期間T1、T2、T3のいずれとも部分的にしかオーバラップしていない。
In this case, a case where the time when the device A and the device B are in the ON state in a part of the time period of the abnormal waveform generation period is also regarded as coincident. In the device A, the ON period is completely overlapped in time with three abnormal waveform generation periods T 1 = t 11 -t 12 , T 2 = t 21 -t 22 , and T 3 = t 31 -t 32 However, in the device B, the ON period only partially overlaps any of the three abnormal waveform generation periods T 1 , T 2 , and T 3 .
このため、異常波形が発生した期間と機器のオン状態の期間とが時間軸上で重なる時間の総和に基づき、機器の一致度を算出する場合、機器Aでは、該時間の総和は、
T1+T2+T3
となる。 For this reason, when calculating the degree of coincidence of the devices based on the sum of the time over which the period in which the abnormal waveform occurs and the on-state period of the device overlap on the time axis, in device A, the sum of the times is
T 1 + T 2 + T 3
It becomes.
T1+T2+T3
となる。 For this reason, when calculating the degree of coincidence of the devices based on the sum of the time over which the period in which the abnormal waveform occurs and the on-state period of the device overlap on the time axis, in device A, the sum of the times is
T 1 + T 2 + T 3
It becomes.
異常波形が発生した期間と機器のオン状態の期間とが時間軸上で重なる時間の総和を、異常波形が発生した期間で除算した値を百分率で表した値を、機器の一致度としてもよい。この場合、機器Aの一致度は、
(T1+T2+T3)/(T1+T2+T3)×100=100%
である。これに対して、機器Bの一致度は100%未満となる。 The degree of coincidence of the equipment may be a value obtained by dividing the sum of the time in which the abnormal waveform occurs and the period in which the equipment is on on the time axis by dividing the sum by the period in which the abnormal waveform has occurred, as a percentage. . In this case, the matching degree of the device A is
(T 1 + T 2 + T 3 ) / (T 1 + T 2 + T 3 ) × 100 = 100%
It is. On the other hand, the degree of coincidence of device B is less than 100%.
(T1+T2+T3)/(T1+T2+T3)×100=100%
である。これに対して、機器Bの一致度は100%未満となる。 The degree of coincidence of the equipment may be a value obtained by dividing the sum of the time in which the abnormal waveform occurs and the period in which the equipment is on on the time axis by dividing the sum by the period in which the abnormal waveform has occurred, as a percentage. . In this case, the matching degree of the device A is
(T 1 + T 2 + T 3 ) / (T 1 + T 2 + T 3 ) × 100 = 100%
It is. On the other hand, the degree of coincidence of device B is less than 100%.
次に、図2の判定部108について説明する。前述したように、判定部108は、一致度が最大の機器を、前記異常波形に対応する異常が発生した機器と判別する。その際、一致度がほぼ同一であるか、僅差、あるいは、その差が統計的に有意な差でない、複数の機器がある場合、これらの機器を、一致度が最大の機器とともに、異常が疑われる機器として選択する構成としてもよい。その際、一致度が最大の機器を異常が発生している機器とし、他の機器を異常が疑われる機器として選択してもよい。この場合、異常が疑われると判定された複数の機器等について保守担当者等がそれぞれの異常の有無等を個別に調査するようにしてもよい。異常と判定された機器についても同様に保守担当者等による異常の有無の調査を行い、必要な対策(例えば修理/部品交換等)を講じるようにしてもよい。
Next, the determination unit 108 in FIG. 2 will be described. As described above, the determination unit 108 determines the device having the highest degree of coincidence as a device in which an abnormality corresponding to the abnormal waveform has occurred. At this time, if there are multiple devices that have almost the same degree of coincidence, or a slight difference, or the difference is not statistically significant, these devices, together with the device with the highest degree of coincidence, are suspected of being abnormal. It is good also as a structure selected as an apparatus to be called. At this time, the device having the highest degree of coincidence may be selected as a device in which an abnormality has occurred, and another device may be selected as a device suspected of being abnormal. In this case, a maintenance person or the like may individually check the presence or absence of each abnormality for a plurality of devices determined to be suspected of abnormality. Similarly, for equipment determined to be abnormal, maintenance personnel or the like may investigate whether there is an abnormality and take necessary measures (for example, repair / part replacement).
次に、図2の出力部109について説明する。出力部109は、判定部108での異常の有無の判別結果を表示装置等に出力してもよい。あるいは、出力部109は、通信ネットワークを介して、保守担当者の端末、又は、図5(A)のHEMS/BEMS/SEMS/FEMSコントローラ等へ通知する構成としてもよい。
Next, the output unit 109 in FIG. 2 will be described. The output unit 109 may output the determination result of the presence or absence of abnormality in the determination unit 108 to a display device or the like. Alternatively, the output unit 109 may be configured to notify the maintenance person's terminal or the HEMS / BEMS / SEMS / FEMS controller of FIG. 5A via a communication network.
図8は、本発明の別の実施形態として、異常機器判別装置100をコンピュータシステムに実装した構成を例示した図である。図8を参照すると、サーバコンピュータ等のコンピュータシステムは、プロセッサ(CPU(Central Processing Unit)、データ処理装置)111、半導体メモリ(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM)等)、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等の少なくともいずれかを含む記憶装置112と、表示装置113と、通信インタフェース114を備えている。通信インタフェース114は、図5(A)の通信部115として機能させるようにしてもよい。また、図2の出力部109は、例えば表示装置113に判別結果を出力するようにしてもよい。記憶装置112は、図2の記憶部103と同一の装置であってもよい。記憶装置112に図2の異常機器判別装置100の機能を実現するプログラムを記憶しておき、プロセッサ111が、該プログラムを読み出して実行することで、上記した実施形態の異常機器判別装置100を実現するようにしてもよい。図8のコンピュータシステムは、異常機器判別サービスをクラウドサービスとしてクライアントに提供するクラウドサーバとして実装するようにしてもよい。
FIG. 8 is a diagram illustrating a configuration in which the abnormal device determination device 100 is mounted on a computer system as another embodiment of the present invention. Referring to FIG. 8, a computer system such as a server computer includes a processor (CPU (Central Processing Unit), data processing device) 111, a semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM. (Electrically Erasable and mProgrammable ROM), HDD (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc), etc., a storage device 112, a display device 113, and a communication interface 114 I have. The communication interface 114 may function as the communication unit 115 in FIG. 2 may output the determination result to the display device 113, for example. The storage device 112 may be the same device as the storage unit 103 in FIG. The storage device 112 stores a program that realizes the function of the abnormal device determination device 100 of FIG. 2, and the processor 111 reads and executes the program, thereby realizing the abnormal device determination device 100 of the above-described embodiment. You may make it do. The computer system of FIG. 8 may be implemented as a cloud server that provides an abnormal device determination service to a client as a cloud service.
上記実施形態では、複数の機器の合成波形は、電流波形、電力波形にのみ制限されるものでなく、複数の信号源からの信号の合成波形を得るセンサ(振動センサ、音響センサ等)の少なくとも一つでセンシングされた合成信号を用いてもよいことは勿論である。
In the above-described embodiment, the combined waveform of the plurality of devices is not limited only to the current waveform and the power waveform, but at least a sensor (vibration sensor, acoustic sensor, etc.) that obtains a combined waveform of signals from a plurality of signal sources. Of course, the synthesized signal sensed by one may be used.
なお、上記実施形態では、簡単のため、異常波形として、単発の三角波(グリッチ状等)等の過渡的な波形を例に説明したが、AC(Alternating Current)リップル(リップルノイズ)等、繰り返し現れるノイズ等の波形であってもよいし、DC(Direct Current)オフセットノイズ等、DCレベルの変動等の異常波形等であってよいことは勿論である。
In the above embodiment, for the sake of simplicity, a transient waveform such as a single triangular wave (such as a glitch) has been described as an example of an abnormal waveform. However, AC (Alternating Current) ripple (ripple noise) or the like repeatedly appears. Of course, it may be a waveform such as noise, or may be an abnormal waveform such as DC level fluctuation, such as DC (Direct Current) offset noise.
なお、上記の特許文献1-4、非特許文献1の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
It should be noted that the disclosures of Patent Documents 1-4 and Non-Patent Document 1 described above are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various combinations or selections of various disclosed elements (including each element of each claim, each element of each embodiment, each element of each drawing, etc.) are possible within the scope of the claims of the present invention. . That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
上記した実施形態は以下のように付記される(ただし、以下に制限されない)。
The above embodiment is appended as follows (however, it is not limited to the following).
(付記1)
複数の機器の合成波形から異常波形を検出する手段と、
前記合成波形から前記異常波形を除去する手段と、
前記異常波形を除去した合成波形を機器毎の波形に分離し前記機器の状態を識別する手段と、
前記各機器のオン状態の時刻と前記異常波形の発生時刻との一致度を算出する一致度算出手段と、
前記一致度に基づき、異常が発生した機器を判別する判別手段と、
を備えた異常機器判別装置。 (Appendix 1)
Means for detecting an abnormal waveform from a composite waveform of a plurality of devices;
Means for removing the abnormal waveform from the synthesized waveform;
Means for separating the synthesized waveform from which the abnormal waveform is removed into waveforms for each device and identifying the state of the device;
A degree of coincidence calculating means for calculating a degree of coincidence between the time when each of the devices is on and the occurrence time of the abnormal waveform;
Discrimination means for discriminating a device in which an abnormality has occurred based on the degree of coincidence;
An abnormal device discriminating apparatus comprising:
複数の機器の合成波形から異常波形を検出する手段と、
前記合成波形から前記異常波形を除去する手段と、
前記異常波形を除去した合成波形を機器毎の波形に分離し前記機器の状態を識別する手段と、
前記各機器のオン状態の時刻と前記異常波形の発生時刻との一致度を算出する一致度算出手段と、
前記一致度に基づき、異常が発生した機器を判別する判別手段と、
を備えた異常機器判別装置。 (Appendix 1)
Means for detecting an abnormal waveform from a composite waveform of a plurality of devices;
Means for removing the abnormal waveform from the synthesized waveform;
Means for separating the synthesized waveform from which the abnormal waveform is removed into waveforms for each device and identifying the state of the device;
A degree of coincidence calculating means for calculating a degree of coincidence between the time when each of the devices is on and the occurrence time of the abnormal waveform;
Discrimination means for discriminating a device in which an abnormality has occurred based on the degree of coincidence;
An abnormal device discriminating apparatus comprising:
(付記2)
前記判別手段は、前記一致度の大きさに基づき、異常が発生した機器を判別する、付記1に記載の異常機器判別装置。 (Appendix 2)
The abnormal device determination apparatus according toappendix 1, wherein the determination unit determines a device in which an abnormality has occurred based on the magnitude of the degree of coincidence.
前記判別手段は、前記一致度の大きさに基づき、異常が発生した機器を判別する、付記1に記載の異常機器判別装置。 (Appendix 2)
The abnormal device determination apparatus according to
(付記3)
前記一致度算出手段は、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記判定手段は、前記一致度が最大の機器を異常が発生した機器と判別する、付記1又は2に記載の異常機器判別装置。 (Appendix 3)
The degree of coincidence calculation means calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred,
3. The abnormal device determination device according toappendix 1 or 2, wherein the determination unit determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
前記一致度算出手段は、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記判定手段は、前記一致度が最大の機器を異常が発生した機器と判別する、付記1又は2に記載の異常機器判別装置。 (Appendix 3)
The degree of coincidence calculation means calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred,
3. The abnormal device determination device according to
(付記4)
前記一致度算出手段は、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さの総和に基づき、前記一致度を算出し、
前記判定部は、前記一致度が最大の機器を異常が発生した機器と判別する、付記1又は2に記載の異常機器判別装置。 (Appendix 4)
The degree of coincidence calculating means calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis,
The abnormal device discriminating apparatus according toappendix 1 or 2, wherein the determination unit discriminates a device having the highest degree of coincidence from a device in which an abnormality has occurred.
前記一致度算出手段は、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さの総和に基づき、前記一致度を算出し、
前記判定部は、前記一致度が最大の機器を異常が発生した機器と判別する、付記1又は2に記載の異常機器判別装置。 (Appendix 4)
The degree of coincidence calculating means calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis,
The abnormal device discriminating apparatus according to
(付記5)
前記判別手段は、前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、付記1乃至4のいずれか一に記載の異常機器判別装置。 (Appendix 5)
The abnormal device discriminating apparatus according to any one ofappendices 1 to 4, wherein the discriminating unit selects a device suspected of being abnormal when there are a plurality of devices having substantially the same degree of coincidence.
前記判別手段は、前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、付記1乃至4のいずれか一に記載の異常機器判別装置。 (Appendix 5)
The abnormal device discriminating apparatus according to any one of
(付記6)
複数の機器の合成波形から異常波形を検出し、
前記合成波形から前記異常波形を除去し、
前記異常波形を除去した合成波形を機器毎の波形に分離して前記機器の状態を識別し、
前記各機器のオン状態の時刻と前記異常波形の発生時刻との一致度を算出し、
前記一致度に基づき、異常が発生した機器を判別する、異常機器判別方法。 (Appendix 6)
Detect abnormal waveforms from composite waveforms of multiple devices,
Removing the abnormal waveform from the combined waveform;
Separate the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device, and identify the state of the device,
Calculate the degree of coincidence between the on-state time of each device and the occurrence time of the abnormal waveform,
An abnormal device determination method for determining a device in which an abnormality has occurred based on the degree of coincidence.
複数の機器の合成波形から異常波形を検出し、
前記合成波形から前記異常波形を除去し、
前記異常波形を除去した合成波形を機器毎の波形に分離して前記機器の状態を識別し、
前記各機器のオン状態の時刻と前記異常波形の発生時刻との一致度を算出し、
前記一致度に基づき、異常が発生した機器を判別する、異常機器判別方法。 (Appendix 6)
Detect abnormal waveforms from composite waveforms of multiple devices,
Removing the abnormal waveform from the combined waveform;
Separate the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device, and identify the state of the device,
Calculate the degree of coincidence between the on-state time of each device and the occurrence time of the abnormal waveform,
An abnormal device determination method for determining a device in which an abnormality has occurred based on the degree of coincidence.
(付記7)
前記判別手段は、前記一致度の大きさに基づき、異常が発生した機器を判別する、付記6に記載の異常機器判別方法。 (Appendix 7)
The abnormal device determination method according to appendix 6, wherein the determination unit determines a device in which an abnormality has occurred based on the magnitude of the degree of coincidence.
前記判別手段は、前記一致度の大きさに基づき、異常が発生した機器を判別する、付記6に記載の異常機器判別方法。 (Appendix 7)
The abnormal device determination method according to appendix 6, wherein the determination unit determines a device in which an abnormality has occurred based on the magnitude of the degree of coincidence.
(付記8)
前記一致度の算出にあたり、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記一致度が最大の機器を異常が発生した機器と判別する、付記6又は7に記載の異常機器判別方法。 (Appendix 8)
In calculating the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the ON state period of the device is calculated as the degree of coincidence with respect to the number of times the abnormal waveform has occurred.
8. The abnormal device determination method according to appendix 6 or 7, wherein the device having the highest degree of coincidence is determined as a device in which an abnormality has occurred.
前記一致度の算出にあたり、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記一致度が最大の機器を異常が発生した機器と判別する、付記6又は7に記載の異常機器判別方法。 (Appendix 8)
In calculating the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the ON state period of the device is calculated as the degree of coincidence with respect to the number of times the abnormal waveform has occurred.
8. The abnormal device determination method according to appendix 6 or 7, wherein the device having the highest degree of coincidence is determined as a device in which an abnormality has occurred.
(付記9)
前記一致度の算出にあたり、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さに基づき、前記一致度として算出し、
前記一致度が最大の機器を異常が発生した機器と判別する、付記6又は7に記載の異常機器判別方法。 (Appendix 9)
In calculating the degree of coincidence, the degree of coincidence is calculated based on the length of time in which the on-state period of the device and the period in which the abnormal waveform occurs overlap on the time axis,
8. The abnormal device determination method according to appendix 6 or 7, wherein the device having the highest degree of coincidence is determined as a device in which an abnormality has occurred.
前記一致度の算出にあたり、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さに基づき、前記一致度として算出し、
前記一致度が最大の機器を異常が発生した機器と判別する、付記6又は7に記載の異常機器判別方法。 (Appendix 9)
In calculating the degree of coincidence, the degree of coincidence is calculated based on the length of time in which the on-state period of the device and the period in which the abnormal waveform occurs overlap on the time axis,
8. The abnormal device determination method according to appendix 6 or 7, wherein the device having the highest degree of coincidence is determined as a device in which an abnormality has occurred.
(付記10)
前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、付記6乃至9のいずれか一に記載の異常機器判別方法。 (Appendix 10)
The abnormal device determination method according to any one of appendices 6 to 9, wherein when there are a plurality of devices having substantially the same degree of coincidence, the device is selected as a device suspected of being abnormal.
前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、付記6乃至9のいずれか一に記載の異常機器判別方法。 (Appendix 10)
The abnormal device determination method according to any one of appendices 6 to 9, wherein when there are a plurality of devices having substantially the same degree of coincidence, the device is selected as a device suspected of being abnormal.
(付記11)
複数の機器の合成波形から異常波形を検出する処理と、
前記合成波形から前記異常波形を除去した上で機器毎の波形に分離して前記機器の状態を識別する処理と、
前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出する一致度算出処理と、
前記一致度に基づき、異常が発生した機器を判別する判別処理と、
をコンピュータに実行させるプログラム。 (Appendix 11)
A process of detecting an abnormal waveform from a composite waveform of multiple devices;
Processing to identify the state of the device by removing the abnormal waveform from the composite waveform and then separating the waveform into a device-specific waveform;
A degree of coincidence calculation process for calculating a degree of coincidence between the on-time of each device and the occurrence time of the abnormal waveform;
A discrimination process for discriminating a device in which an abnormality has occurred based on the degree of coincidence;
A program that causes a computer to execute.
複数の機器の合成波形から異常波形を検出する処理と、
前記合成波形から前記異常波形を除去した上で機器毎の波形に分離して前記機器の状態を識別する処理と、
前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出する一致度算出処理と、
前記一致度に基づき、異常が発生した機器を判別する判別処理と、
をコンピュータに実行させるプログラム。 (Appendix 11)
A process of detecting an abnormal waveform from a composite waveform of multiple devices;
Processing to identify the state of the device by removing the abnormal waveform from the composite waveform and then separating the waveform into a device-specific waveform;
A degree of coincidence calculation process for calculating a degree of coincidence between the on-time of each device and the occurrence time of the abnormal waveform;
A discrimination process for discriminating a device in which an abnormality has occurred based on the degree of coincidence;
A program that causes a computer to execute.
(付記12)
前記判別処理は、前記一致度の大きさに基づき、異常が発生した機器を判別する、付記11に記載のプログラム。 (Appendix 12)
The program according to appendix 11, wherein the discrimination process discriminates a device in which an abnormality has occurred based on the degree of coincidence.
前記判別処理は、前記一致度の大きさに基づき、異常が発生した機器を判別する、付記11に記載のプログラム。 (Appendix 12)
The program according to appendix 11, wherein the discrimination process discriminates a device in which an abnormality has occurred based on the degree of coincidence.
(付記13)
前記一致度算出処理は、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記判定処理は、前記一致度が最大の機器を異常が発生した機器と判別する、付記11又は12に記載のプログラム。 (Appendix 13)
The degree of coincidence calculation processing calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred,
The program according to appendix 11 or 12, wherein the determination processing determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
前記一致度算出処理は、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記判定処理は、前記一致度が最大の機器を異常が発生した機器と判別する、付記11又は12に記載のプログラム。 (Appendix 13)
The degree of coincidence calculation processing calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred,
The program according to appendix 11 or 12, wherein the determination processing determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
(付記14)
前記一致度算出処理は、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さの総和に基づき、前記一致度を算出し、
前記判定処理は、前記一致度が最大の機器を異常が発生した機器と判別する、付記11又は12に記載のプログラム。 (Appendix 14)
The degree of coincidence calculation processing calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis,
The program according to appendix 11 or 12, wherein the determination processing determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
前記一致度算出処理は、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さの総和に基づき、前記一致度を算出し、
前記判定処理は、前記一致度が最大の機器を異常が発生した機器と判別する、付記11又は12に記載のプログラム。 (Appendix 14)
The degree of coincidence calculation processing calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis,
The program according to appendix 11 or 12, wherein the determination processing determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred.
(付記15)
前記判別手段は、前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、付記11乃至14のいずれか一に記載のプログラム。 (Appendix 15)
The program according to any one of appendices 11 to 14, wherein the determination unit selects a device suspected of being abnormal when there are a plurality of devices having substantially the same degree of coincidence.
前記判別手段は、前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、付記11乃至14のいずれか一に記載のプログラム。 (Appendix 15)
The program according to any one of appendices 11 to 14, wherein the determination unit selects a device suspected of being abnormal when there are a plurality of devices having substantially the same degree of coincidence.
1 合成波形
2 異常波形
3 機器Aの波形
4 機器Bの波形
20A 機器A
20B 機器B
20C 機器C
21 建屋
22 分電盤
23 電流センサ
24 通信装置(HEMS/BEMS/SEMS/FEMSコントローラ)
25 スマートメータ
26 高圧受電設備
100 異常機器判別装置
101 合成波形取得部
102 異常波形発生検知部
103 記憶部
104 異常波形除去部
105 機器分離部
106 状態識別部
107 一致度算出部
108 判別部
109 出力部
111 プロセッサ
112 記憶装置
113 表示装置
114 通信インタフェース
115 通信部 1 Composite Waveform 2Abnormal Waveform 3 Device A Waveform 4 Device B Waveform 20A Device A
20B Equipment B
20C Equipment C
21Building 22 Distribution board 23 Current sensor 24 Communication device (HEMS / BEMS / SEMS / FEMS controller)
25Smart Meter 26 High Voltage Power Receiving Equipment 100 Abnormal Device Discriminating Device 101 Composite Waveform Acquisition Unit 102 Abnormal Waveform Generation Detection Unit 103 Storage Unit 104 Abnormal Waveform Removal Unit 105 Device Separation Unit 106 State Discrimination Unit 107 Matching Level Calculation Unit 108 Discrimination Unit 109 Output Unit 111 Processor 112 Storage Device 113 Display Device 114 Communication Interface 115 Communication Unit
2 異常波形
3 機器Aの波形
4 機器Bの波形
20A 機器A
20B 機器B
20C 機器C
21 建屋
22 分電盤
23 電流センサ
24 通信装置(HEMS/BEMS/SEMS/FEMSコントローラ)
25 スマートメータ
26 高圧受電設備
100 異常機器判別装置
101 合成波形取得部
102 異常波形発生検知部
103 記憶部
104 異常波形除去部
105 機器分離部
106 状態識別部
107 一致度算出部
108 判別部
109 出力部
111 プロセッサ
112 記憶装置
113 表示装置
114 通信インタフェース
115 通信部 1 Composite Waveform 2
20B Equipment B
20C Equipment C
21
25
Claims (11)
- 複数の機器の合成波形から異常波形を検出する手段と、
前記合成波形から前記異常波形を除去する手段と、
前記異常波形を除去した合成波形を機器毎の波形に分離し前記機器の状態を識別する手段と、
前記各機器のオン状態の時刻と前記異常波形の発生時刻との一致度を算出する一致度算出手段と、
前記一致度に基づき、異常が発生した機器を判別する判別手段と、
を備えた異常機器判別装置。 Means for detecting an abnormal waveform from a composite waveform of a plurality of devices;
Means for removing the abnormal waveform from the synthesized waveform;
Means for separating the synthesized waveform from which the abnormal waveform is removed into waveforms for each device and identifying the state of the device;
A degree of coincidence calculating means for calculating a degree of coincidence between the time when each of the devices is on and the occurrence time of the abnormal waveform;
Discrimination means for discriminating a device in which an abnormality has occurred based on the degree of coincidence;
An abnormal device discriminating apparatus comprising: - 前記判別手段は、前記一致度の大きさに基づき、異常が発生した機器を判別する、請求項1に記載の異常機器判別装置。 The abnormal device determination device according to claim 1, wherein the determination unit determines a device in which an abnormality has occurred based on the magnitude of the degree of coincidence.
- 前記一致度算出手段は、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記判定手段は、前記一致度が最大の機器を異常が発生した機器と判別する、請求項1又は2に記載の異常機器判別装置。 The degree of coincidence calculation means calculates, as the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the on-state period of the device with respect to the number of times the abnormal waveform has occurred,
The abnormal device determination apparatus according to claim 1, wherein the determination unit determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred. - 前記一致度算出手段は、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さの総和に基づき、前記一致度を算出し、
前記判定部は、前記一致度が最大の機器を異常が発生した機器と判別する、請求項1又は2に記載の異常機器判別装置。 The degree of coincidence calculating means calculates the degree of coincidence based on the sum of lengths of time in which the period in which the device is on and the period in which the abnormal waveform occurs overlap on the time axis,
The abnormal device determination apparatus according to claim 1, wherein the determination unit determines that the device having the highest degree of coincidence is a device in which an abnormality has occurred. - 前記判別手段は、前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、請求項1乃至4のいずれか1項に記載の異常機器判別装置。 5. The abnormal device determination device according to claim 1, wherein, when there are a plurality of devices having substantially the same degree of coincidence, the determination unit selects the device as suspected of being abnormal.
- 複数の機器の合成波形から異常波形を検出し、
前記合成波形から前記異常波形を除去し、
前記異常波形を除去した合成波形を機器毎の波形に分離して前記機器の状態を識別し、
前記各機器のオン状態の時刻と前記異常波形の発生時刻との一致度を算出し、
前記一致度に基づき、異常が発生した機器を判別する、異常機器判別方法。 Detect abnormal waveforms from composite waveforms of multiple devices,
Removing the abnormal waveform from the combined waveform;
Separate the synthesized waveform from which the abnormal waveform has been removed into a waveform for each device, and identify the state of the device,
Calculate the degree of coincidence between the on-state time of each device and the occurrence time of the abnormal waveform,
An abnormal device determination method for determining a device in which an abnormality has occurred based on the degree of coincidence. - 前記判別手段は、前記一致度の大きさに基づき、異常が発生した機器を判別する、請求項6に記載の異常機器判別方法。 The abnormality determination method according to claim 6, wherein the determination unit determines an apparatus in which an abnormality has occurred based on the magnitude of the degree of coincidence.
- 前記一致度の算出にあたり、前記異常波形が発生した回数に対して、前記異常波形の発生時刻が前記機器のオン状態の期間と重なる回数の割合を前記一致度として算出し、
前記一致度が最大の機器を異常が発生した機器と判別する、請求項6又は7に記載の異常機器判別方法。 In calculating the degree of coincidence, the ratio of the number of times the occurrence time of the abnormal waveform overlaps the ON state period of the device is calculated as the degree of coincidence with respect to the number of times the abnormal waveform has occurred.
The abnormal device determination method according to claim 6 or 7, wherein the device having the highest degree of coincidence is determined as a device in which an abnormality has occurred. - 前記一致度の算出にあたり、前記機器のオン状態の期間と前記異常波形が発生した期間とが時間軸上で重なる時間の長さに基づき、前記一致度として算出し、
前記一致度が最大の機器を異常が発生した機器と判別する、請求項6又は7に記載の異常機器判別方法。 In calculating the degree of coincidence, the degree of coincidence is calculated based on the length of time in which the on-state period of the device and the period in which the abnormal waveform occurs overlap on the time axis,
The abnormal device determination method according to claim 6 or 7, wherein the device having the highest degree of coincidence is determined as a device in which an abnormality has occurred. - 前記一致度がほぼ同一の複数の機器がある場合、異常が疑われる機器として選択する、請求項6乃至9のいずれか1項に記載の異常機器判別方法。 10. The abnormal device determination method according to claim 6, wherein when there are a plurality of devices having substantially the same degree of coincidence, the device is selected as a device suspected of being abnormal.
- 複数の機器の合成波形から異常波形を検出する処理と、
前記合成波形から前記異常波形を除去した上で機器毎の波形に分離して前記機器の状態を識別する処理と、
前記各機器のオン状態の時刻と、前記異常波形の発生時刻との一致度を算出する一致度算出処理と、
前記一致度に基づき、異常が発生した機器を判別する判別処理と、
をコンピュータに実行させるプログラム。 A process of detecting an abnormal waveform from a composite waveform of multiple devices;
Processing to identify the state of the device by removing the abnormal waveform from the composite waveform and then separating the waveform into a device-specific waveform;
A degree of coincidence calculation process for calculating a degree of coincidence between the on-time of each device and the occurrence time of the abnormal waveform;
A discrimination process for discriminating a device in which an abnormality has occurred based on the degree of coincidence;
A program that causes a computer to execute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/016446 WO2018198210A1 (en) | 2017-04-25 | 2017-04-25 | Abnormal device discrimination device, method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/016446 WO2018198210A1 (en) | 2017-04-25 | 2017-04-25 | Abnormal device discrimination device, method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198210A1 true WO2018198210A1 (en) | 2018-11-01 |
Family
ID=63918087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016446 WO2018198210A1 (en) | 2017-04-25 | 2017-04-25 | Abnormal device discrimination device, method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018198210A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116226766A (en) * | 2023-05-08 | 2023-06-06 | 南洋电气集团有限公司 | High-voltage electrical apparatus running state monitoring system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965451A (en) * | 1995-08-28 | 1997-03-07 | Toshiba Corp | Supervisory control device |
JP2005004367A (en) * | 2003-06-10 | 2005-01-06 | Idemitsu Kosan Co Ltd | Operation support system for plants |
JP2007127554A (en) * | 2005-11-04 | 2007-05-24 | Matsushita Electric Works Ltd | Abnormality monitoring apparatus |
JP2012055100A (en) * | 2010-09-02 | 2012-03-15 | Yazaki Corp | Device for identifying electric apparatus being used and method for determining electric apparatus being used |
-
2017
- 2017-04-25 WO PCT/JP2017/016446 patent/WO2018198210A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965451A (en) * | 1995-08-28 | 1997-03-07 | Toshiba Corp | Supervisory control device |
JP2005004367A (en) * | 2003-06-10 | 2005-01-06 | Idemitsu Kosan Co Ltd | Operation support system for plants |
JP2007127554A (en) * | 2005-11-04 | 2007-05-24 | Matsushita Electric Works Ltd | Abnormality monitoring apparatus |
JP2012055100A (en) * | 2010-09-02 | 2012-03-15 | Yazaki Corp | Device for identifying electric apparatus being used and method for determining electric apparatus being used |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116226766A (en) * | 2023-05-08 | 2023-06-06 | 南洋电气集团有限公司 | High-voltage electrical apparatus running state monitoring system |
CN116226766B (en) * | 2023-05-08 | 2023-08-18 | 南洋电气集团有限公司 | High-voltage electrical apparatus running state monitoring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10241140B2 (en) | Systems and methods for monitoring power consumption | |
US9170986B2 (en) | Power quality meter and method of waveform anaylsis and compression | |
CN103329451B (en) | Device and method for fault detection and location determination | |
KR101352204B1 (en) | Apparatus and method for classification of power quality disturbances at power grids | |
Li et al. | A generic waveform abnormality detection method for utility equipment condition monitoring | |
de la Rosa et al. | A novel virtual instrument for power quality surveillance based in higher-order statistics and case-based reasoning | |
US20130066479A1 (en) | Energy consumption disaggregation system | |
US11237584B2 (en) | State change detection apparatus, method, and non-transitory medium | |
WO2018101363A1 (en) | State estimation device, method and program | |
JP6874843B2 (en) | State estimator, method and program | |
DK2718673T3 (en) | A method of analysis of the power consumption of a system having a plurality of electrical devices | |
JP7437584B2 (en) | Machine learning-based method and apparatus for power line disturbance classification | |
US11656280B2 (en) | Device for condition monitoring and protection of rotating electrical machines, and a method thereof | |
US20240405546A1 (en) | Systems and methods for automatically characterizing disturbances in an electrical system | |
JPWO2018142569A1 (en) | Diagnostic equipment for electric motors | |
US10295598B2 (en) | Method for determining the operating status of a spring charging motor for a LV or MV switching apparatus and a diagnostic system implementing said method | |
JP5418219B2 (en) | High voltage insulation monitoring device | |
WO2018198210A1 (en) | Abnormal device discrimination device, method, and program | |
JP5578982B2 (en) | Equipment failure evaluation system | |
CN112653465B (en) | System and method for eliminating low frequency offset components from digital data streams | |
JP7044170B2 (en) | Anomaly detectors, methods, and programs | |
Quek et al. | A low cost master and slave distributed intelligent meter for non-intrusive load classification and anomaly warning | |
JP2011217481A (en) | Ground fault direction detecting device | |
JP2018088052A (en) | Management apparatus, method and program | |
CN117693683A (en) | Electrical signal analysis and electrical appliance monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |