[go: up one dir, main page]

WO2018198769A1 - Surrounding environment recognition device, display control device - Google Patents

Surrounding environment recognition device, display control device Download PDF

Info

Publication number
WO2018198769A1
WO2018198769A1 PCT/JP2018/015182 JP2018015182W WO2018198769A1 WO 2018198769 A1 WO2018198769 A1 WO 2018198769A1 JP 2018015182 W JP2018015182 W JP 2018015182W WO 2018198769 A1 WO2018198769 A1 WO 2018198769A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
surrounding environment
map
travel risk
Prior art date
Application number
PCT/JP2018/015182
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 堀田
茂規 早瀬
工藤 真
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018198769A1 publication Critical patent/WO2018198769A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a surrounding environment recognition device and a display control device.
  • Patent Document 1 the risk potential of the subject vehicle calculated based on the predicted travel range of the subject vehicle and the risk potential of the subject calculated based on the predicted motion range of the subject are described.
  • a technique for generating a risk potential map that represents the risk of collision between the two for each position based on the overlap is disclosed.
  • the risk potential map expresses the degree of risk with a fine granularity (high accuracy) when driving at low speeds, while it is necessary to express a wide range of risks when driving at high speeds in order to judge the safety of the host vehicle.
  • a fine granularity high accuracy
  • the risk potential map expresses the degree of risk with a fine granularity (high accuracy) when driving at low speeds, while it is necessary to express a wide range of risks when driving at high speeds in order to judge the safety of the host vehicle.
  • a surrounding environment recognition device is mounted on a vehicle, recognizes the surrounding environment of the vehicle, and acquires own vehicle information related to the movement of the vehicle including the traveling speed of the vehicle.
  • the surrounding environment element acquisition unit for acquiring the surrounding environment element information for the surrounding environment elements of the vehicle, and the vehicle information and the surrounding environment element information, a plurality of surroundings of the vehicle
  • a travel risk level determining unit that determines a travel risk level at each position, and an interval between the plurality of positions in the front-rear direction of the vehicle changes according to a travel speed of the vehicle.
  • a display control device displays information related to the vehicle on a display device mounted on the vehicle, and displays travel risk levels at a plurality of positions around the vehicle.
  • a travel risk level map acquisition unit that acquires the travel risk level map
  • a travel risk level map display control unit that displays the travel risk level map acquired by the travel risk level map acquisition unit on the display device.
  • the display target range of the travel risk map around the vehicle changes according to the travel speed of the vehicle.
  • the present invention it is possible to obtain the degree of risk necessary for the safety judgment while suppressing the calculation amount and the memory consumption amount at both high speed running and low speed running.
  • FIG. 1 is a functional block diagram showing an example of the configuration of a travel control system 1 according to an embodiment of the present invention.
  • the travel control system 1 according to the present embodiment is mounted on a vehicle 2 and recognizes current and future risks in traveling of the vehicle 2 after recognizing the situation of obstacles such as a traveling road and surrounding vehicles around the vehicle 2. It is a system for judging and performing appropriate driving support and traveling control.
  • the travel control system 1 includes a surrounding environment recognition device 10, an in-vehicle display control device 20, a host vehicle position determination device 30, an external sensor group 40, a vehicle sensor group 50, a map information management device 60, a travel A control device 70, an actuator group 80, a display device 90, and the like are included.
  • the surrounding environment recognition device 10 is, for example, an ECU (Electronic Control Unit) mounted on the vehicle 2, and includes a processing unit 100, a storage unit 120, and a communication unit 130.
  • ECU Electronic Control Unit
  • the surrounding environment recognition device 10 may be integrated into the travel control device 70, the external sensor group 40, and the like.
  • the processing unit 100 includes, for example, a memory such as a CPU (Central Processing Unit) and a RAM (Random Access Memory).
  • the processing unit 100 includes a host vehicle information acquisition unit 101, a surrounding environment element acquisition unit 102, an environment element movement prediction unit 103, an existing time range determination unit 104, a travel risk as a part for realizing the functions of the surrounding environment recognition device 10.
  • the processing unit 100 executes processing corresponding to each unit by executing a predetermined operation program stored in the storage unit 120.
  • the own vehicle information acquisition unit 101 includes, as the own vehicle information related to the movement of the vehicle 2, for example, the position of the vehicle 2, the traveling speed, the steering angle, the operation amount of the accelerator, the operation amount of the brake, the control plan of the vehicle 2 Information such as a plan for controlling the vehicle 2 with such a trajectory and speed) is acquired from the own vehicle position determination device 30, the vehicle sensor group 50, the travel control device 70, the actuator group 80, and the like.
  • the vehicle information acquired by the vehicle information acquisition unit 101 is stored in the storage unit 120 as the vehicle information data group 121.
  • the surrounding environment element acquisition unit 102 as surrounding environment element information regarding various environment elements around the vehicle 2, for example, information on obstacles existing around the vehicle 2, features indicating road features around the vehicle 2, etc. Is acquired from the outside world sensor group 40 and the map information management device 60.
  • the obstacle existing around the vehicle 2 is, for example, other vehicles moving around the vehicle 2, such as moving vehicles such as bicycles and pedestrians, and parked stationary on the road around the vehicle 2. Vehicles, fallen objects, installations, etc.
  • the surrounding environment element information acquired by the surrounding environment element acquisition unit 102 is stored in the storage unit 120 as the surrounding environment element information data group 122.
  • the environment element movement prediction unit 103 is based on the surrounding environment element information data group 122 stored in the storage unit 120, and is a moving body such as another vehicle, bicycle, or pedestrian included in the environment element detected by the external sensor group 40. Predict how it will move in the future.
  • the movement prediction result of the moving body by the environment element movement prediction unit 103 is added to the surrounding environment element information corresponding to the moving body, and is stored in the storage unit 120 as the surrounding environment element information data group 122.
  • the existence time range determination unit 104 is configured to determine a predetermined position around the vehicle 2 based on the own vehicle information data group 121 stored in the storage unit 120 and the movement prediction result of the moving object by the environment element movement prediction unit 103.
  • a time range in which the vehicle 2 and environmental elements can exist is determined.
  • the vehicle 2 and the environmental element existing time range determined by the existing time range determining unit 104 are referred to as the own vehicle existing time range and the environmental element existing time range, respectively.
  • the own vehicle existing time range and the environmental element existing time range determined by the existing time range determining unit 104 are added to the own vehicle information and the surrounding environment element information, respectively, and the own vehicle information data group 121, the surrounding environment element information data Each group 122 is stored in the storage unit 120.
  • the travel risk determination unit 105 includes various parameters represented by the parameter data group 123 stored in the storage unit 120, vehicle information and surrounding environment element information represented by the vehicle information data group 121 and the surrounding environment element information data group 122, respectively. Based on the above, the travel risk around the vehicle 2 is determined.
  • the travel risk level map creation unit 106 creates a travel risk level map that represents the relationship between each position around the vehicle 2 and the travel risk level based on the travel risk level determination result by the travel risk level determination unit 105.
  • Information related to the travel risk map created by the travel risk map creating unit 106 is stored in the storage unit 120 as the travel risk map data group 124.
  • the travel risk map providing unit 107 provides information related to the travel risk map of the vehicle 2 based on the travel risk map data group 124 stored in the storage unit 120, other functions in the surrounding environment recognition device 10, This is provided to devices other than the surrounding environment recognition device 10 mounted on the vehicle 2.
  • the storage unit 120 includes, for example, a storage device such as an HDD (Hard Disk Drive), flash memory, ROM (Read Only Memory), and a memory such as a RAM (Random Access Memory).
  • the storage unit 120 stores a program executed by the processing unit 100, a data group necessary for realizing the system, and the like.
  • the vehicle information data group 121, the surrounding environment element information data group 122, the parameter data group 123, and the travel risk map data group 124 are particularly used as information for realizing the function of the surrounding environment recognition device 10. Is stored in the storage unit 120.
  • the own vehicle information data group 121 is a collection of data related to the vehicle 2.
  • the vehicle information data group 121 includes information on the position of the vehicle 2 acquired from the vehicle position determination device 30 and the state of the vehicle 2 acquired from the vehicle sensor group 50.
  • the vehicle information data group 121 also includes a time range in which the vehicle 2 can exist at the position around the vehicle 2, that is, information related to the vehicle existence time range described above.
  • the surrounding environment element information data group 122 is a collection of data related to the surrounding environment of the vehicle 2. For example, digital road map data related to roads around the vehicle 2 acquired from the map information management device 60, recognition data of various environmental elements around the vehicle 2 acquired from the external sensor group 40, and these are integrated and generated.
  • the surrounding environment element information data group 122 is included in the data.
  • Data indicating the movement prediction result of the moving body by the environment element movement prediction unit 103 is also included in the surrounding environment element information data group 122.
  • the surrounding environment element information data group 122 also includes information on a time range in which the environmental element can exist at each position around the vehicle 2, that is, the above-described environment element existence time range.
  • the surrounding environment element information data group 122 the above data is set for each of a plurality of environment elements.
  • “environmental element” means an information element that affects the traveling of the vehicle 2. For example, other vehicles in the vicinity of the vehicle 2, obstacles such as moving objects such as pedestrians and falling objects, road shapes such as lane and road boundary information, speed regulations, traffic rules such as one-way traffic and traffic lights, etc. The element is included in the “environment element” described above. Although these information elements have various properties, they all have a common point that they give meaning to a position or region in the space around the vehicle 2. Therefore, in the present embodiment, these information elements are handled as “environment elements” in a common framework, and are set as data accumulation targets in the surrounding environment element information data group 122.
  • time in the present embodiment is indicated in a time system based on a certain reference time point.
  • the vehicle 2 and the environmental element at each position around the current position of the vehicle 2 with the present time as the reference time point are determined in which time zone in the future (for example, 2 seconds to 3 seconds later). It can be indicated by the vehicle existence time range or the environmental element existence time range.
  • the above “time range” does not necessarily have a wide time, and a specific time point may be set as the own vehicle existing time range or the environmental element existing time range.
  • the probability distribution of the time when the vehicle 2 and the environmental element exist at each position around the current position of the vehicle 2 that is, the distribution of the existence probability of the vehicle 2 and the environmental element at each predetermined time interval at each position It may be shown as an existing time range or an environmental element existing time range.
  • the parameter data group 123 is a collection of data relating to parameters used by the travel risk map creating unit 106 in creating the travel risk map.
  • the parameter data group 123 includes data stored in the storage unit 120 in advance, for example, before shipment of the surrounding environment recognition device 10.
  • the travel risk map data group 124 includes data on a travel risk map indicating a relationship between each position around the vehicle 2 and the travel risk of the vehicle 2, that is, the risk when the vehicle 2 travels at the position. It is an aggregate.
  • the communication unit 130 transmits and receives data to and from other devices mounted on the vehicle 2 based on various protocols.
  • the communication unit 130 includes, for example, a network card that conforms to a communication standard such as Ethernet (registered trademark) or CAN (Controller Area Network).
  • the in-vehicle display control device 20 is connected to the display device 90, and includes a processing unit 200, a storage unit 220, a communication unit 230, and a screen input / output unit 240.
  • the in-vehicle display control device 20 sends a notification to the driver regarding driving support of the vehicle 2 through the display device 90 based on information output from the surrounding environment recognition device 10 and information output from the travel control device 70. It is configured to perform by voice and screen.
  • the processing unit 200 includes a memory such as a CPU and a RAM, for example.
  • the processing unit 200 includes a travel risk level map acquisition unit 201, a control plan information acquisition unit 202, and a travel risk level map display control unit 203 as parts for realizing the functions of the in-vehicle display control device 20.
  • the processing unit 200 performs a process corresponding to each unit by executing a predetermined operation program stored in the storage unit 220.
  • the driving risk map acquisition unit 201 acquires data of the driving risk map output from the surrounding environment recognition device 10 and stores the data in the storage unit 220.
  • the control plan information acquisition unit 202 acquires the control plan information of the vehicle 2 output from the travel control device 70 and stores it in the storage unit 220.
  • the travel risk map display control unit 203 displays the travel risk map on the screen of the display device 90 via the screen input / output unit 240 based on the travel risk map data stored in the storage unit 220.
  • the storage unit 220 includes, for example, a storage device such as an HDD, a flash memory, and a ROM, and a memory such as a RAM.
  • the storage unit 220 stores a program executed by the processing unit 200, a data group necessary for realizing the system, and the like.
  • the communication unit 230 transmits and receives data to and from other devices mounted on the vehicle 2 based on various protocols.
  • the communication unit 230 includes, for example, a network card that conforms to a communication standard such as Ethernet or CAN.
  • the screen input / output unit 240 outputs screen display information to the display device 90 and acquires touch panel operation information performed on the screen of the display device 90 by the user.
  • the own vehicle position determination device 30 is a device that measures the geographical position of the vehicle 2 and provides the information.
  • the own vehicle position determination device 30 is configured by, for example, a global navigation satellite system (GNSS) reception device.
  • GNSS global navigation satellite system
  • the own vehicle position determination device 30 may be configured to simply provide a positioning result based on the radio wave received from the GNSS satellite.
  • interpolation and error correction are performed on the positioning result by the radio wave received from the GNSS satellite.
  • the vehicle position determining device 30 may be configured as described above.
  • the external sensor group 40 is a sensor group that can recognize obstacles (other vehicles, bicycles, pedestrians, fallen objects, etc.) and characteristic objects (road signs, white lines, landmarks, etc.) around the vehicle 2. is there.
  • the outside world sensor group 40 includes, for example, a camera device, a radar, a laser radar, a sonar, and the like.
  • the external sensor group 40 is connected to the detected information about obstacles and features around the vehicle 2 (for example, relative distance and relative angle from the vehicle 2) and the external sensor group 40 and the surrounding environment recognition device 10.
  • the surrounding environment recognition device 10 is configured to obtain an output result from the external sensor group 40 through the in-vehicle network.
  • the external sensor group 40 is configured to perform processing for detecting an obstacle or a feature.
  • the surrounding environment recognition device uses signals and data output from the external sensor group 40. 10 and other devices may perform these detection processes.
  • the vehicle sensor group 50 is a device group that detects the state of various parts related to the movement of the vehicle 2 (for example, travel speed, steering angle, accelerator operation amount, brake operation amount, etc.). For example, the vehicle sensor group 50 periodically outputs these detected state quantities on an in-vehicle network such as CAN.
  • the surrounding environment recognition device 10 and other devices connected to the in-vehicle network are configured to be able to acquire the state quantities of various components output from the vehicle sensor group 50 through the in-vehicle network.
  • the map information management device 60 is a device that manages and provides digital map information around the vehicle 2.
  • the map information management device 60 is constituted by, for example, a navigation device.
  • the map information management device 60 includes, for example, digital road map data of a predetermined area including the periphery of the vehicle 2, and the vehicle on the map is based on the position information of the vehicle 2 determined by the own vehicle position determination device 30. 2, that is, a road or lane on which the vehicle 2 is traveling is specified.
  • it is comprised so that the present position of the specified vehicle 2 and its surrounding map data may be provided to the surrounding environment recognition apparatus 10 via vehicle-mounted networks, such as CAN.
  • the traveling control device 70 is an ECU for realizing an advanced driving assistance system (ADAS: Advanced Driver Assistance Systems) of the vehicle 2 for the purpose of improving the fuel consumption performance, safety, convenience, and the like of the vehicle 2. Based on the information output from the surrounding environment recognition device 10, the travel control device 70, for example, issues an instruction to the actuator group 80 to automatically control acceleration / deceleration and steering of the vehicle 2, or the in-vehicle display control device 20. Information provision and warning are output to the driver via the display device 90.
  • ADAS Advanced Driver Assistance Systems
  • Actuator group 80 is a device group that controls control elements such as steering, brakes, and accelerators that determine the movement of vehicle 2.
  • the actuator group 80 is configured to control the movement of the vehicle 2 based on operation information such as a steering wheel, a brake pedal, and an accelerator pedal by the driver and a target control value output from the travel control device 70.
  • FIG. 2 is a diagram showing an example of a travel risk map represented by the travel risk map data group 124 of the present embodiment.
  • the travel risk map data group 124 is data representing a travel risk map indicating the travel risk of the vehicle 2 at each position around the vehicle 2. As shown in FIG. 2, the travel risk map data group 124 includes, for example, a predetermined region ( ⁇ X B m to X F in the x direction) defined by an xy coordinate system centered on the current position of the vehicle 2.
  • the traveling risk R (x, y) of the vehicle 2 for each position of the coordinate values (x, y) where x and y are variables are represented in -Y R m to Y L m) in the m and y directions. It is shown.
  • the x-axis 250 is a central axis that penetrates the vehicle 2 in the front-rear direction, and the positive direction of the x-axis 250 corresponds to the front direction of the vehicle 2.
  • the y-axis 251 is a central axis that penetrates the front portion of the vehicle 2 in the left-right direction, and the positive direction of the y-axis 251 corresponds to the left direction of the vehicle 2.
  • the values that can be taken by the coordinate values (x, y) may be continuous values (for example, function expression) or discrete values (for example, grid expression). In the example of the travel risk map shown in FIG.
  • the cell length (distance in the x-axis direction between points corresponding to each cell) and cell width (distance in the y-axis direction between points corresponding to each cell) of the travel risk map expressed by the grid map ) are represented by d x and dy, respectively. That is, the cell length d x and cell width d y of each cell represent respectively the spacing in the longitudinal direction and the transverse direction of the vehicle 2 for each position running risk is shown in the traveling risk map. In the example of FIG. 2, d x and dy are common to all cells in the travel risk map, but different d x and dy may be used depending on the position of the cell.
  • the value of the travel risk R (x 17 , y ⁇ 4 ) stored in the cell of the coordinate value (x 17 , y ⁇ 4 ) is relative to the vehicle 2 corresponding to this coordinate value. This corresponds to the travel risk of the vehicle 2 at the position.
  • the value of the travel risk R (x, y) stored in each cell of FIG. 2 is normalized by integrating the risk due to the interaction between the vehicle 2 and the environmental elements around the vehicle 2 in the cell. The higher the value, the higher the degree of danger when the vehicle 2 travels.
  • the value of the travel risk R (x, y) of the vehicle 2 in each cell is represented by hatching, and the darker the hatching, the higher the travel risk.
  • the surrounding environment recognition device 10 of the travel control system 1 includes a vehicle 2 and a vehicle acquired from the own vehicle position determination device 30, the external sensor group 40, the vehicle sensor group 50, and the map information management device 60, which are external devices. 2. Based on the information about the surrounding environmental elements, the surrounding environment recognition process as described below is executed to create the travel risk map around the vehicle 2 as described above. Then, the generated travel risk degree map is output to the in-vehicle display control device 20 and the travel control device 70. For example, the travel control device 70 plans a trajectory that allows the vehicle 2 to travel safely based on the acquired travel risk degree map, and controls the travel of the vehicle 2 via the actuator group 80.
  • the in-vehicle display control device 20 displays, for example, the acquired travel risk map and the control plan information output from the travel control device 70, and presents the state of the travel control system 1 to the driver and the occupant. By these operations, driving assistance of the vehicle 2 is performed.
  • FIG. 3 is a diagram showing a surrounding environment recognition processing flow 500 executed by the surrounding environment recognition device 10 in the travel control system 1 of the present embodiment.
  • the vehicle information acquisition unit 101 waits for a predetermined time in step S501.
  • the process waits for a period of time until the driving risk map generation is triggered for the surrounding environment recognition device 10 without proceeding with the processing.
  • the trigger may be applied by a timer so that the travel risk map is generated at regular intervals, or may be applied on demand by detecting the necessity of updating the travel risk map.
  • the vehicle information acquisition unit 101 acquires information about the vehicle 2 from the vehicle information data group 121 of the storage unit 120 as the vehicle information necessary for the surrounding environment recognition process.
  • the position information of the vehicle 2 acquired from the own vehicle position determination device 30, the information related to the state of the vehicle 2 acquired from the vehicle sensor group 50, the control plan information of the vehicle 2 acquired from the travel control device 70, Etc. are acquired as own vehicle information.
  • the information on the state of the vehicle 2 may indicate the current state of the vehicle 2 such as the speed, acceleration, steering angle, accelerator opening degree, yaw rate, etc. of the vehicle 2 or an average of past predetermined times (for example, 1 second).
  • Statistical information related to the vehicle 2 may be shown like the speed, or predicted information related to the vehicle 2 like the predicted average speed for a predetermined time (for example, 5 seconds) in the future. As described above, these pieces of information are acquired from the own vehicle position determination device 30, the vehicle sensor group 50, the travel control device 70, and the like by the own vehicle information acquisition unit 101 at an appropriate timing via the vehicle network or the like. Information or information processed based on the information (for example, statistical information) is stored in the storage unit 120 as the vehicle information data group 121.
  • the surrounding environment element acquisition unit 102 acquires information about the environment elements around the vehicle 2 from the surrounding environment element information data group 122 of the storage unit 120 as the surrounding environment element information necessary for the surrounding environment recognition processing.
  • digital road map data related to roads around the vehicle 2 acquired from the map information management device 60 and recognition data of various environmental elements around the vehicle 2 acquired from the external sensor group 40 are acquired as peripheral environment element information.
  • the recognition data of environmental elements around the vehicle 2 includes obstacles (other vehicles, people, fallen objects, etc.), road shapes (road edges, white lines, stop lines, zebra zones, etc.), road surface conditions (freezing, puddles, pots) Information indicating the recognition status such as hall).
  • these pieces of information are acquired from the external sensor group 40 and the map information management device 60 by the peripheral environment element acquisition unit 102 through the vehicle network or the like at an appropriate timing, and are stored in the storage unit 120 in the peripheral environment element.
  • the information data group 122 is stored. This may be appropriately integrated by so-called fusion processing.
  • the environmental element movement prediction unit 103 determines whether or not environmental elements (vehicles, people, etc.) that can move around the vehicle 2 are within a predetermined time based on the surrounding environmental element information acquired in step S503.
  • the movement prediction information indicating how to move is generated.
  • recognition information relative position, moving direction, moving speed, etc.
  • surrounding conditions road shape, traffic rules, obstacles
  • the movement prediction information is expressed, for example, by a list of predetermined time (for example, 1 second, 2 seconds,...) And estimated position information at the time.
  • step S505 the travel risk level map creation unit 106 executes a travel risk level map parameter determination process based on the information related to the state of the vehicle 2 acquired as the vehicle information in step S502.
  • This driving risk map parameter determination process is a process for determining parameters related to the driving risk map created in the following steps and storing them in the storage unit 120 as part of the parameter data group 123. Details of the travel risk map parameter determination processing will be described below with reference to FIGS. 4 and 5.
  • step S506 the existence time range determination unit 104 determines the vehicle based on the vehicle information acquired in step S502 and the parameters related to the travel risk map determined in the travel risk map parameter determination process in step S505.
  • the vehicle presence time range determination process 600 for determining the second existence time range map is executed. Details of the vehicle existence time range determination processing 600 will be described below with reference to FIGS. 6 and 7.
  • step S507 the existence time range determination unit 104 determines an environment element existence time range determination process 700 that determines an existence time range map of each environment element based on the result of the surrounding environment element movement prediction performed in step S504. Execute. Details of the environment element existence time range determination processing 700 will be described below with reference to FIG.
  • the travel risk map creating unit 106 executes a travel risk map creating process 800 for creating a travel risk map around the vehicle 2 in step S508.
  • a travel risk map creating process 800 for creating a travel risk map around the vehicle 2 in step S508.
  • the vehicle 2 travels around the vehicle 2 Create a risk map. Details of the travel risk map creation processing 800 will be described below with reference to FIGS. 9 and 10.
  • the travel risk map providing unit 107 transmits the created travel risk map data to the in-vehicle display control device 20, the travel control device 70, and the like in step S509. Output.
  • the data format of the output travel risk map will be described below with reference to FIG.
  • step S501 After executing the above-described steps S501 to S509, the process returns to step S501, and these steps are repeatedly executed.
  • step S505 of FIG. 3 the driving risk map parameter determination process executed in step S505 of FIG. 3 will be described.
  • the expression format of the travel risk map is determined according to the policy described below, and the parameters corresponding to the expression format are determined.
  • the travel risk map is used, for example, when the travel control device 70 plans the travel path of the vehicle 2. If the target time of the planned travel path is T seconds, the travel risk map needs to represent at least a region where the vehicle 2 travels in T seconds.
  • the travel speed of the vehicle 2 is v, in the traveling direction of the vehicle 2 (x-axis direction)
  • the area to be expressed on the map extends in proportion to the traveling speed v.
  • the accuracy of the travel risk map required in the travel track planning changes according to the travel speed of the vehicle 2. For example, when it is necessary to control the vehicle 2 that sews a gap at a low speed, such as a parking lot or an alley, an expression with a fine granularity (for example, 10 cm) is required in the travel risk map.
  • a fine granularity for example, 10 cm
  • the travel risk map is displayed with a fine granularity (for example, 10 cm) with respect to the traveling direction of the vehicle 2. There is no need to express.
  • the danger level relating to vehicle travel is determined on a time scale, such as TTC (Time To Collation) used as an index of the collision risk degree. From these facts, it is considered that it is a time scale that requires a certain accuracy in the expression of the travel risk map.
  • TTC Time To Collation
  • a is a value corresponding to the expression accuracy of the travel risk map on the time scale.
  • the width d y of each cell in the transverse direction of the vehicle 2 is set to a constant value relative to the running speed v of the vehicle 2.
  • the vehicle 2 such that the area to proceed to T seconds is at least expressed on running the risk map, the length and d x and width d y of each cell, the number of cells is set.
  • the number of cells N x + in the traveling direction of the vehicle 2, that is, the positive x-axis direction, and the number of cells N y + and N y ⁇ in the lateral direction of the vehicle 2, that is, the y-axis positive and negative directions 8).
  • the number of cells N x + , N y + and N y ⁇ are all expressed as constants that do not depend on the traveling speed v. Therefore, the number of cells required for the travel risk map can always be kept constant regardless of the travel speed v of the vehicle 2. This means that the memory usage necessary for the travel risk map can be defined to a constant value, and it is easy to design with a built-in device with memory restrictions such as the surrounding environment recognition device 10. can do.
  • the lateral direction and the distance L y of the vehicle 2 travels within the predetermined time as described above is constant regardless of the traveling speed v, so as to satisfy the required accuracy in a fixed width d y of each cell
  • the risk map may be increased as the distance from the x-axis 250.
  • the cell width d y of each cell varies depending on the lateral position y n, similarly to the cell length d x a time on the scale, it can always be maintained the representation accuracy of a seconds. In this way, the number of cells N y + and N y ⁇ in the horizontal direction can be kept small compared to the case where the cell width dy is fixed, and thus the memory consumption can be further reduced.
  • the length d x of each cell of the travel risk map is determined based on the travel speed v of the vehicle 2 according to the policy described above, and each cell You can determine the width d y. And the parameter according to these determined values can be determined.
  • FIG. 4 is an example of a graph showing the relationship between the traveling speed v of the vehicle 2 and the cell length d x of the traveling risk map.
  • the horizontal axis represents the traveling speed v of the vehicle 2
  • the vertical axis represents the cell length d x of the driving risk map.
  • the cell length d x is changed in proportion to the traveling speed v while the traveling speed v is predetermined. when less than the value V th, the cell length d x a fixed value d x0. In this way, it is possible to avoid making the cell length d x smaller than necessary when the vehicle 2 is traveling at a low speed. That is, if the cell length d x is simply proportional to the speed, the cell length d x is required for the accuracy required for the recognition accuracy of the external sensor group 40 and the safety judgment when the traveling speed v is small.
  • the position of the vehicle 2 in the travel risk map may be changed according to the travel speed v of the vehicle 2.
  • the traveling speed v is low, that is, when the vehicle 2 travels at a low speed or stops, the vehicle 2 may travel backward due to the back travel. Therefore, in this case, it is important to express the degree of travel risk with respect to the rear of the vehicle 2, and it is necessary to satisfy X B > 0.
  • the traveling risk level in front of the vehicle 2 is excessively expressed.
  • the position of the vehicle 2 on the driving risk map is determined in the driving risk map parameter determination process.
  • the parameter is determined so as to change according to the traveling speed v. More specifically, for example, as shown in the graph of FIG. 5, the travel risk map of the anterior length X F and the rear length X B a may be set respectively according to the running speed v.
  • FIG. 5 is an example of a graph showing the relationship between the travel speed v of the vehicle 2 and the lengths X F and X B in the front-rear direction of the travel risk map and the number of cells N x + and N x ⁇ . In the graph 402 of FIG.
  • the horizontal axis represents the traveling speed v of the vehicle 2
  • the upper direction of the vertical axis represents the forward length X F of the traveling risk map, under the direction of the longitudinal axis of the rear length X B Represents.
  • Thick line 421 of the graph 402 represents the relationship between the traveling speed v and the front length X F in the present embodiment
  • the thick line 422 represents the relationship between the traveling speed v and the rear length X B according to this embodiment.
  • the horizontal axis represents the traveling speed v of the vehicle 2
  • the vertical axis represents the number of cells in the traveling risk map in the front-rear direction of the vehicle 2.
  • Dashed 431 of graph 403 represents the traveling speed v and the front cell number N x + relationship in the present embodiment
  • the dashed line 432 represents the traveling velocity v and the rear cell number N x- relationship in this embodiment.
  • a downward vertical axis in the graph 402 shows the one obtained by reversing the sign of the right side of equation (11) by a thick line 422.
  • the relationship between the number of front cells N x + and the front length X F and the relationship between the number of rear cells N x ⁇ and the rear length X B are as shown in the above-described equations (1) and (2), respectively. is there.
  • X F T ⁇ v + A lon ⁇ T 2/2 ⁇ (10)
  • X B ⁇ (X F ⁇ X F0 ) (11)
  • the longitudinal direction of the running risk map as described above because respectively control the length X F and X B while keeping the total number of cells in the constant position with respect to the traveling direction of the vehicle 2 in the traveling risk map This corresponds to changing (the number of rear cells N x ⁇ ) according to the traveling speed v. That is, in the example of the graph 402 in FIG. 5, as shown by the graph 403, the number of rear cells N x ⁇ changes according to the traveling speed v.
  • the current travel speed of the vehicle 2 may be used as the travel speed v of the vehicle 2, or an average over a past predetermined time (for example, 1 second). Statistical speeds such as speed may be used. Moreover, the prediction information regarding the vehicle 2 may be shown like a predicted average speed for a predetermined time in the future (for example, 5 seconds).
  • the cell position (cell length, cell width) of the travel risk map and the position of the vehicle 2 are set as described above, and parameters according to these setting results. Is stored in the storage unit 120 as the parameter data group 123. By creating a travel risk map using the parameters determined in this way, memory consumption is suppressed while satisfying the required accuracy and required range for the travel risk map necessary for judging the safety of the vehicle 2 for travel. Is possible.
  • FIG. 6 is a diagram illustrating an example of a flowchart of the own vehicle presence time range determination process 600.
  • the existence time range determination unit 104 acquires parameter data related to the travel risk map from the parameter data group 123 of the storage unit 120 in step S601.
  • the parameter data relating to the travel risk map acquired here is the parameter data determined in the travel risk map parameter determination process in step S505 in FIG. 3 or the ROM or the like in advance before shipping the surrounding environment recognition device 10.
  • the parameter data stored in the storage unit 120 is included.
  • the existence time range determination unit 104 determines the driving distance D (x, y) at the position (x, y) corresponding to each cell of the travel risk map in step S602. Subsequently, in step S603, the existence time range determination unit 104 considers the vehicle speed, acceleration, jerk, and the like of the vehicle 2 based on the driving distance D (x, y) determined in step S602. The existence time range TED (x, y) of is calculated. Then, in step S604, the existence time range determination unit 104 constructs an existence time range map of the vehicle 2 based on the calculation result of the existence time range TED (x, y) performed in step S603. Set in the car information data group 121. If the process of step S604 is executed, the existing time range determining unit 104 ends the own vehicle existing time range determining process 600.
  • FIG. 7 is a diagram showing an example of the existence time range map 300 of the vehicle 2 in the own vehicle information data group 121.
  • the driving distance D (x, y) determined in step S602 is a distance corresponding to the road until the vehicle 2 reaches the position of the coordinate value (x, y).
  • the trajectory for the corresponding position is, for example, a fan-shaped arc having a center point on the y-axis 321 in FIG. 7 and passing through the origin and the corresponding position, or a spline curve whose tangent line between the origin and the corresponding position is the x-axis 320. Etc. are considered.
  • a trajectory 331 with respect to (x a , y a ) and a trajectory 332 with respect to (x b , y b ) are shown.
  • the operating distance D (x, y) when the sector arc model is used is represented by the product of the sector radius r (x, y) and the sector central angle ⁇ (x, y).
  • the values of the radius r (x, y) and the central angle ⁇ (x, y) with respect to the coordinate value (x, y) can be calculated using the following equations (12) and (13), respectively.
  • r (x, y) (x 2 + y 2 ) / 2y (12)
  • ⁇ (x, y) arctan (x / (ry)) (13)
  • the existing time range TED (x, y) calculated in step S603 is a distribution expressing the probability that the vehicle 2 exists at the position at each time.
  • (x a, y a ) present time range TED (x a, y a) corresponding to a, (x b, y b) present time corresponding to the range TED (x b , Y b ) are represented as time probability distributions 301 and 302, respectively.
  • the time probability distributions 301 and 302 may be approximated.
  • the average arrival time T r (x, y) for the position may be treated as a representative value.
  • approximation may be made with a Gaussian distribution in which the average value ⁇ is T r (x, y) and the variance value ⁇ 2 is f (T r ).
  • the reason why the variance value ⁇ 2 is expressed by the function f of T r is that the time zone in which the vehicle 2 can exist stochastically increases as time elapses.
  • the average arrival time T r (x, y) is calculated, for example, by dividing the driving distance D (x, y) by the traveling speed v using the traveling speed v of the vehicle 2 described above.
  • the driving distance D (x, y) and the existence time range TED (x, y) need to be calculated for all cell positions in the travel risk map.
  • the driving distance D (x, y) does not change even if the traveling speed v of the vehicle 2 changes. Therefore, by storing the calculation result in the storage unit 120 in advance.
  • the driving distance D (x, y) can be determined with reference to it. Therefore, it is possible to reduce the calculation amount.
  • the driving distance D (x, y) changes according to the traveling speed v.
  • the above formula (14) is derived from the above formulas (12) and (13) when the driving distance D (x, y) has the characteristics as the following formula (15).
  • D (k ⁇ x, k ⁇ y) k ⁇ D (x, y) (15)
  • Expression (14) refers to the existence time range TED (x, y, V th ) when the existence time range TED (x, y, v) at an arbitrary velocity v ( ⁇ V th ) is the velocity V th . It means that it is obtained by. Therefore, in the present embodiment, the existing time range TED (x, y, V th ) at the speed V th is calculated in advance and stored in the storage unit 120 such as the ROM, so that steps S602 and S603 are performed. It is possible to greatly reduce the amount of calculation processing. When v ⁇ Vth , the cell size is fixed as described above, so that the driving distance D (x, y) is calculated in advance as in the case where the conventional cell size is not changed. By storing the data in the storage unit 120 such as a ROM, the amount of calculation can be reduced.
  • the cell length d x in the traveling direction of the vehicle 2 is set to be proportional to the traveling speed v, so that it is necessary to calculate the travel risk using the previous calculation result. It is possible to perform calculations and the amount of calculations is reduced. Unlike the present embodiment, when the cell size is changed without being proportional to the traveling speed v, it is difficult to perform the above-described pre-calculation, so the amount of calculation cannot be reduced. This point should be noted in the present invention.
  • FIG. 8 is a diagram illustrating an example of a flowchart of the environment element existence time range determination process 700.
  • the existence time range determination unit 104 refers to the surrounding environment element information data group 122 in step S701, and selects one of the environment elements existing around the vehicle 2.
  • step S702 the existence time range determination unit 104 determines whether the environmental element selected in step S701 is a moving body such as another vehicle, a bicycle, or a pedestrian. As a result, if the environmental element is a moving object, the process proceeds to step S703, and if not, the process proceeds to step S706.
  • step S702 If it is determined in step S702 that the environmental element is a moving object, the existence time range determination unit 104 refers to the surrounding environmental element information data group 122 in step S703, and obtains a movement prediction result for the environmental element selected in step S701. Get the information shown.
  • step S704 the existence time range determination unit 104 calculates the existence time range ETED (x, y) of the environment element at the position based on the movement prediction result of the environment element acquired in step S703.
  • the travel risk map is used to determine the risk of the trajectory of the vehicle 2, and therefore, it should not be assumed that the vehicle 2 draws a specific travel trajectory. Therefore, in the above-described own vehicle existence time range determination process 600, it is necessary to calculate the existence time range of the vehicle 2 for all cell positions.
  • the travel trajectory is predicted to determine the degree of risk. Therefore, the existence time range may be calculated only for the cell position related to the predicted travel path of the environment element indicated by the movement prediction result acquired in step S703.
  • the existence time range determination unit 104 sets the environment element existence time range map in the surrounding environment element information data group 122 based on the calculation result in step S705.
  • the existence time range determination unit 104 determines in step S706 whether all the environmental elements existing around the vehicle 2 have been selected in step S701. If there is an unselected environmental element, the process returns to step S701, and one of the environmental elements is selected in step S701, and then the process from step S702 onward is performed on the environmental element. On the other hand, when all the environmental elements have been selected, the existence time range determination unit 104 ends the environment element existence time range determination processing 700.
  • the travel risk map creation unit 106 calculates coordinate values (x, y) corresponding to each cell of the travel risk map according to the parameters determined by the travel risk map parameter determination process executed in step S505 of FIG. decide.
  • the travel risk determination unit 105 executes the vehicle 2 existence time range map created by the vehicle existence time range determination processing 600 executed in step S506 of FIG. 3 and the step S507 of FIG.
  • the travel risk degree R (x, y) at the coordinate value (x, y) is calculated using the existing time range map of each environmental element created by the environment element existing time range determination processing 700.
  • the travel risk level map creating unit 106 generates a travel risk level map based on the travel risk level R (x, y) calculated by the travel risk level determination unit 105, and travel risk level map data stored in the storage unit 120. Store in group 124.
  • the driving risk R (x, y) is, for example, a weighted integrated value of the risk caused by each environmental element, and is represented by, for example, the following expression (16).
  • R (x, y) w 1 ⁇ r 1 (x, y) +... + W n ⁇ r n (x, y) (16)
  • the travel risk, R (x, y) may be calculated by the maximum value of the weighting of risk posed by the environmental factors (maximum value of w i ⁇ r i (x, y)).
  • Running the risk r i on environmental element i using the present time range map of the vehicle 2 that has been generated in step S506 in FIG. 3, the presence time range map of each environmental elements generated in step S507 in FIG. 3 Calculated.
  • the driving risk at each position on the map is calculated.
  • a formula for calculating the travel risk R (x, y) of the vehicle 2 with respect to the environmental element i based on the probability distribution of the existence time range is expressed by, for example, the following formula (17).
  • p (x, y) (t) represents a probability distribution of the existence time range of the vehicle 2
  • p i (x, y) (t) represents the existence time range of the environmental element i. Represents a probability distribution.
  • the driving risk R (x, y ) May be calculated.
  • the above equation (18) is obtained by the function f (x) based on the absolute value of the difference between the representative value T repre of the existing time range of the vehicle 2 and the representative value T (i) repre of the existing time range of the environmental element i. It evaluates the driving risk.
  • the function f (x) is a function that decreases in value as x increases.
  • the magnitude of the function f (x) and the degree of attenuation are determined using, for example, the correction coefficients a and b according to the representative value T repre of the existing time range of the vehicle 2 and the vehicle speed of the vehicle 2. May be adjusted. Further, the probability distribution of the existence time range of the vehicle 2 and each environmental element may be approximated by a predetermined distribution (Gaussian distribution or the like) centered on the representative value, and the driving risk may be calculated by superimposing them.
  • the travel risk level of the vehicle 2 is highly accurate in a form that matches the actual situation. Can be calculated.
  • FIG. 9 is a diagram illustrating an example of a traveling road environment of the vehicle 2.
  • FIG. 9 shows a scene in which the vehicle 2 is traveling on an opposite two-lane road.
  • another vehicle 452 is parked on the road in the opposite lane near the vehicle 2, and the other vehicle 451 is about to pass the parked vehicle (other vehicle 452). Since this road is not wide enough, the other vehicle 451 needs to protrude into the opposite lane (the lane in which the vehicle 2 is traveling) in the process of overtaking the parked vehicle.
  • the other vehicle 453 is traveling at the same speed as the vehicle 2 in front of the vehicle 2.
  • areas 461, 462, and 463 indicated by hatching indicate the ranges of predicted traveling tracks of the other vehicles 451, 452, and 453, respectively.
  • 460 indicated by a dotted line indicates a predicted traveling path when the vehicle 2 continues traveling so far.
  • FIG. 10 is a generation example of a travel risk map in the scene shown in FIG.
  • the travel risk map 802 is more forward of the vehicle 2 than the travel risk map 801. (X Fb > X Fa ).
  • Regions 810 and 811 correspond to a non-road region and a roadside belt region on the traveling lane side of the vehicle 2, and a region 812 corresponds to a traveling lane region.
  • An area 813 corresponds to an oncoming lane area including a roadside zone, and an area 814 corresponds to a non-road area on the oncoming lane side.
  • regions 810 to 814 are not shown in the travel risk map 802, they are the same as the travel risk map 801.
  • the travel risk in the areas 810 to 814 shown in the travel risk maps 801 and 802 are recognized as road attributes indicated by static environmental elements, and the travel risk is assigned to the corresponding cell according to the respective travel risk models. It is obtained by integrating.
  • an area 815 of the travel risk map 801 and an area 817 of the travel risk map 802, an area 816 of the travel risk map 801, and an area 818 of the travel risk map 802 are travel risk levels by the other vehicles 451 and 452, respectively. Is expressed. Since the other vehicle 452 is a parked vehicle and continues to exist on the spot, a very high traveling risk is set in the vicinity of the other vehicle 452 regardless of the speed of the vehicle 2 as shown in regions 816 and 818. In these areas, the collision probability is 1 when the vehicle 2 travels through the corresponding position.
  • the other vehicle 451 is a moving vehicle, and the region where the vehicle 2 and the existence time range overlap varies depending on the relative speed with the vehicle 2.
  • the travel risk is set as in the area 815 in the travel risk map 801.
  • the traveling track of the vehicle 2 and the traveling track of the other vehicle 451 are the timing before the other vehicle 451 protrudes into the traveling lane of the vehicle 2. Intersect with each other in time. Therefore, the travel risk is set as in the area 817 in the travel risk map 802.
  • the travel control device 70 when the travel control device 70 performs travel control of the vehicle 2 using the travel risk map 801, the travel control device 70 avoids the region 815 in order to avoid a collision risk with the other vehicle 451. A track that travels to the left of the travel lane 812 is selected.
  • the travel control of the vehicle 2 is performed using the travel risk map 802, a track that travels in the center of the travel lane is selected without selecting an unnecessary avoidance track. In this way, it is possible to easily determine a safe and comfortable traveling path according to the situation.
  • FIG. 11 is an explanatory diagram showing an example of the data format 850 of the travel risk map output by the travel risk map providing unit 107 of the surrounding environment recognition device 10 according to the present embodiment. However, illustration of header information related to the communication protocol is omitted.
  • the driving risk map data output from the surrounding environment recognition apparatus 10 includes a total cell number 851, a cell number 852 in the X direction, a cell number 853 in the Y direction, and a cell in the X direction.
  • Length 854 cell length 855 in the Y direction, own vehicle position 856, own vehicle speed 857, travel risk information 858, and the like.
  • the total number of cells 851 is data indicating the total number of cells constituting the travel risk map, which is equivalent to the product of the number of cells 852 in the X direction and the number of cells 853 in the Y direction.
  • the cell length 854 in the X direction and the cell length 855 in the Y direction are data indicating the length in the front-rear direction and the left-right direction of the vehicle 2 of each cell in the travel risk map, respectively. is d x, it corresponds to the cell width d y.
  • the own vehicle position 856 is data indicating which cell position the vehicle 2 is set on the travel risk map, and is expressed by, for example, coordinates of (position in the X direction, position in the Y direction).
  • the own vehicle speed 857 is data indicating the traveling speed v of the vehicle 2 as a reference when the travel risk map is generated.
  • the traveling speed v of the vehicle 2 here may be a current speed, a statistical speed, or a speed based on a future prediction as described above.
  • the travel risk information 858 is data indicating information related to the travel risk of each cell in the travel risk map.
  • the driving risk is expressed by a numerical value (for example, 0 to 100) within a predetermined range. For example, the larger the numerical value, the higher the risk.
  • the value of the cell length 854 in the X direction is the value of the own vehicle speed 857 in the data of the travel risk map. Changes in proportion to As described with reference to FIG. 5, since the position of the vehicle 2 on the travel risk map changes according to the travel speed v, the value of the position 856 (particularly the x component) of the host vehicle is also the value of the host vehicle speed 857. It changes according to the value. On the other hand, other data values of reference numerals 851 to 853 and 855 do not change even if the value of the host vehicle speed 857 changes.
  • the output data length of the travel risk map is a fixed length. Therefore, in the travel control device 70 and the in-vehicle display control device 20 that receive and process the data of the travel risk map from the surrounding environment recognition device 10, the amount of memory used for the process related to the travel risk map is deterministically estimated. This has the advantage of being easy to design.
  • FIG. 12 is a diagram illustrating an example of a travel risk map display processing flow 900 executed by the in-vehicle display control device 20.
  • the travel risk level map acquisition unit 201 acquires the travel risk level map output from the surrounding environment recognition apparatus 10 according to the data format 850 of FIG. 11 in step S901.
  • control plan information acquisition unit 202 acquires the control plan information output from the travel control device 70 in step S902.
  • the control plan information includes information on the travel path determined by the travel control device 70 based on the travel risk map.
  • step S903 the travel risk map display control unit 203 generates screen information to be transmitted to the driver or the occupant using the travel risk map and the control plan information acquired in steps S901 and S902. . Then, the generated screen information is output to the display device 90 via the screen input / output unit 240 and displayed on the display device 90.
  • FIG. 13 is a diagram illustrating an example of a display screen in the display device 90.
  • Display screens 1001 and 1002 correspond to display screen examples when the travel risk maps 801 and 802 in FIG. 10 are acquired, respectively.
  • panels 1011 and 1021 for displaying cognitive information by sensors and maps are arranged on the left side of the display screens 1001 and 1002, respectively, and the travel risk map and the travel control device 70 are determined on the right side of the display screen.
  • Panels 1012, 1022 for displaying the travel trajectories are arranged. Note that the travel risk degree maps of the panels 1012, 1022 are represented by distance scales 1014, 1024 corresponding to the distance from the vehicle 2, respectively.
  • the traveling tracks 1013 and 1023 of the vehicle 2 are superimposed on the traveling risk map. Accordingly, the driver or the occupant can grasp what kind of situation (risk) the vehicle 2 has traveled or how the vehicle 2 will travel in the future.
  • a driver or an occupant may feel anxiety because he / she does not know what purpose the driving control system is controlling the vehicle. Therefore, like the display screens 1001 and 1002 of the present embodiment, by showing the determination contents (traveling trajectory) of the traveling control system 1 and the grounds (traveling risk degree map and cognitive information), the driver and the occupant's anxiety. It becomes possible to reduce.
  • the display screen 90 in the display device 90 has a feature. Specifically, on the display screen 1002, the travel speed v is larger than that on the display screen 1001, and thus the display target range of the travel risk map extends to the front (traveling direction) of the vehicle 2. Further, although not shown in the example of FIG. 13, the position of the vehicle 2 on the travel risk map similarly changes according to the travel speed v. Specifically, when the position of the vehicle 2 changes as described with reference to FIG. 5, the position of the vehicle 2 approaches the center of the travel risk map as the travel speed v decreases and decreases, It looks like it gradually shifts upward. As described above, the change in the target area of the travel risk map on the display screen and the position of the vehicle 2 in accordance with the change in the travel speed of the vehicle 2 is one of the features of the present embodiment.
  • the display target range of the travel risk map increases in proportion to the increase.
  • the entire travel risk map is reduced (for example, in the front-rear direction) and displayed during high-speed travel due to restrictions on the screen size of the display device 90 or the like. , It may be necessary not to display a part.
  • a method of expressing the travel risk map on a time scale instead of a distance scale by using the fact that the travel risk map extends in proportion to the speed of the vehicle 2 can be considered.
  • FIG. 14 is a diagram illustrating an example of a display screen in the display device 90 when each is expressed by a distance scale and a time scale.
  • a display screen 1003 is an example of a display screen on a distance scale when the traveling speed v of the vehicle 2 is smaller than the predetermined value Vth
  • the display screen 1004 shows that the traveling speed v of the vehicle 2 is predetermined.
  • the example of the display screen in the time scale in case it is more than the value Vth is shown.
  • panels 1031 and 1041 for displaying recognition information by sensors, maps, etc. are arranged on the left side, and a driving risk map and the right side are displayed.
  • Panels 1032 and 1042 for displaying the traveling tracks determined by the traveling control device 70 are arranged. Further, on the panels 1032 and 1042, the traveling tracks 1033 and 1043 of the vehicle 2 are superimposed and displayed on the traveling risk map.
  • the travel risk map is expressed by switching between the distance scale and the time scale according to the travel speed of the vehicle 2.
  • the display target range of the travel risk map is always constant even during high-speed travel, so that stable display is possible.
  • the required accuracy and requirements required for the safety judgment are set. While satisfying the range, the required number of cells in the travel risk map can always be kept constant. As a result, the amount of memory consumed by the travel risk map can be reduced and can be regulated to a constant value, and the design with a built-in device with memory restrictions becomes easy.
  • the calculation necessary for calculating the traveling risk is calculated in advance. It is possible to reduce the amount of calculation.
  • the surrounding environment recognition device 10 is mounted on the vehicle 2 and recognizes the surrounding environment of the vehicle 2.
  • the peripheral environment recognition apparatus 10 includes a host vehicle information acquisition unit 101 that acquires host vehicle information regarding movement of the vehicle 2 including the traveling speed of the vehicle 2, and a peripheral environment that acquires peripheral environment element information for environmental elements around the vehicle 2.
  • An element acquisition unit 102 and a travel risk determination unit 105 that determines travel risk levels at a plurality of positions around the vehicle 2 based on the vehicle information and the surrounding environment element information are provided.
  • the interval between a plurality of positions in the front-rear direction of the vehicle 2, that is, the length d x of each cell in the travel risk map changes according to the travel speed v of the vehicle 2. Since it did in this way, the danger required for judgment of safety can be calculated
  • the interval between a plurality of positions in the front-rear direction of the vehicle 2, that is, the length d x of each cell in the travel risk map is such that the travel speed v of the vehicle 2 when the travel speed v of the vehicle 2 is equal to or greater than a predetermined value Vth. It is assumed that it is constant when the traveling speed v of the vehicle 2 is less than a predetermined value Vth . Since it did in this way, when the vehicle 2 is drive
  • the number of the plurality of positions that is, the total number of cells in the travel risk map is constant with respect to the change in the travel speed v of the vehicle 2. Since it did in this way, in the apparatus which receives and processes the data of the driving risk map from the surrounding environment recognition device 10, the amount of memory used for the processing related to the driving risk map can be estimated deterministically. Can be simplified.
  • the surrounding environment recognition device 10 further includes a travel risk map creating unit 106 that creates a travel risk map that represents the relationship between each of a plurality of positions around the vehicle 2 and the travel risk. Since it did in this way, the crossing relationship on the time axis of the vehicle 2 and each environmental element was projected on the parameter
  • a travel risk map can be provided.
  • the surrounding environment recognition device 10 determines the own vehicle existing time range indicating the existing time range of the vehicle 2 for each of a plurality of positions around the vehicle 2 based on the own vehicle information, and the surrounding environment element information Is further provided with an existence time range determination unit 104 that determines an environment element existence time range that represents the existence time range of the environment element for each of a plurality of positions around the vehicle 2.
  • the travel risk level determination unit 105 determines travel risk levels at a plurality of positions based on the own vehicle presence time range and the environmental element presence time range determined by the presence time range determination unit 104. Since it did in this way, the driving
  • the in-vehicle display control device 20 displays information related to the vehicle 2 on the display device 90 mounted on the vehicle 2.
  • the in-vehicle display control device 20 has been acquired by a travel risk map acquisition unit 201 that acquires a travel risk map representing travel risk levels at a plurality of positions around the vehicle 2, and the travel risk map acquisition unit 201.
  • a travel risk map display control unit 203 that causes the display device 90 to display a travel risk map.
  • the display target range of the travel risk map around the vehicle 2 changes according to the travel speed v of the vehicle 2. Since it did in this way, the danger required for judgment of safety can be expressed with a driving
  • working is a traveling risk map.
  • the travel risk map is divided into a plurality of cells respectively corresponding to a plurality of positions, and the cell size in the travel risk map is such that the travel speed v of the vehicle 2 is equal to or greater than a predetermined value Vth. It changes according to the traveling speed v of the vehicle 2, and is constant when the traveling speed v of the vehicle 2 is less than a predetermined value Vth . Since it did in this way, when the vehicle 2 is drive
  • the position of the vehicle 2 in the travel risk map changes according to the travel speed v of the vehicle 2. Specifically, the position of the vehicle 2 approaches the center of the travel risk map as the travel speed v of the vehicle 2 decreases.
  • the travel risk map is expanded to a necessary range while suppressing an increase in calculation amount and memory consumption. can do.
  • the travel risk map is divided into a plurality of cells respectively corresponding to a plurality of positions.
  • the travel risk map is a time scale corresponding to the arrival time of the vehicle 2. It may be expressed as a distance scale corresponding to the distance from the vehicle 2 when the traveling speed v of the vehicle 2 is less than the predetermined value Vth . In this way, it is possible to display a stable and easy-to-see travel risk map with the display target range of the travel risk map always being constant even during high-speed travel.
  • each process of the surrounding environment recognition apparatus 10 is realized by executing a predetermined operation program using a processor and a RAM, but is realized by original hardware as necessary. It is also possible. Moreover, in said embodiment, the surrounding environment recognition apparatus 10, the vehicle-mounted display control apparatus 20, the own vehicle position determination apparatus 30, the external field sensor group 40, the vehicle sensor group 50, the map information management apparatus 60, the travel control apparatus 70, an actuator Although the group 80 and the display device 90 are described as separate devices, any two or more devices may be combined as necessary.
  • information such as an operation program, a table, and a file for realizing each process includes a nonvolatile semiconductor memory, a hard disk drive, an SSD (Solid State). Or a non-transitory data storage medium that can be read by a computer such as an IC card, an SD card, or a DVD.
  • control lines and information lines considered necessary for describing the embodiment are shown, and all control lines and information lines included in an actual product to which the present invention is applied are not necessarily shown. Not necessarily. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

This surrounding environment recognition device, which is installed in a vehicle and recognizes the environment surrounding the vehicle, is equipped with: a host-vehicle information acquisition unit which acquires host-vehicle information pertaining to the movement of the vehicle, including the traveling speed of the vehicle; a surrounding environment element acquisition unit which acquires surrounding environment element information about the environmental elements in the surroundings of the vehicle; and a travel risk determination unit which determines, on the basis of the host-vehicle information and the surrounding environment element information, the travel risk at each of a plurality of positions surrounding the vehicle, wherein the intervals between the plurality of positions in the front-to-rear direction of the vehicle change in accordance with the traveling speed of the vehicle.

Description

周辺環境認識装置、表示制御装置Ambient environment recognition device, display control device
 本発明は、周辺環境認識装置および表示制御装置に関する。 The present invention relates to a surrounding environment recognition device and a display control device.
 従来、自車両周辺に存在する様々な障害物によりもたらされる、自車両の走行に対する危険度を算出し、算出された危険度に応じて運転支援を行う装置が提案されている。このような装置に関して、下記特許文献1では、自車両の走行予測範囲に基づいて算出された自車のリスクポテンシャルと、対象物の移動予測範囲に基づいて算出された対象物のリスクポテンシャルとの重なりに基づいて、両者の衝突危険度を位置ごとに表現したリスクポテンシャルマップを生成する技術が開示されている。 Conventionally, there has been proposed an apparatus that calculates the degree of danger to the traveling of the host vehicle caused by various obstacles existing around the host vehicle and performs driving support according to the calculated degree of risk. With regard to such an apparatus, in Patent Document 1 below, the risk potential of the subject vehicle calculated based on the predicted travel range of the subject vehicle and the risk potential of the subject calculated based on the predicted motion range of the subject are described. A technique for generating a risk potential map that represents the risk of collision between the two for each position based on the overlap is disclosed.
日本国特開2011-253302号公報Japanese Unexamined Patent Publication No. 2011-253302
 リスクポテンシャルマップは、自車両の走行に対する安全性を判断するために、高速走行時には広い範囲の危険度を表現する必要がある一方で、低速走行時には細かい粒度(高い精度)で危険度を表現する必要がある。上記特許文献1では、リスクポテンシャルマップにおける危険度の算出地点の間隔を固定に設定しているため、高速走行時と低速走行時の両方について安全性の判断に必要な危険度を求めようとすると、広い範囲の危険度を細かい粒度で求めなければならない。その結果、危険度の算出地点数が膨大になり、装置の演算量やメモリ消費量が飛躍的に増大してしまうという問題がある。 The risk potential map expresses the degree of risk with a fine granularity (high accuracy) when driving at low speeds, while it is necessary to express a wide range of risks when driving at high speeds in order to judge the safety of the host vehicle. There is a need. In the above-mentioned patent document 1, since the interval between the risk calculation points in the risk potential map is set to be fixed, an attempt is made to obtain the risk necessary for the safety judgment for both high speed driving and low speed driving. A wide range of risks must be determined with a fine granularity. As a result, there is a problem that the number of risk calculation points becomes enormous, and the amount of calculation and memory consumption of the apparatus increase dramatically.
 本発明の第1の態様による周辺環境認識装置は、車両に搭載され、前記車両の周辺環境を認識するものであって、前記車両の走行速度を含む前記車両の動きに関する自車情報を取得する自車情報取得部と、前記車両の周辺の環境要素に対する周辺環境要素情報を取得する周辺環境要素取得部と、前記自車情報および前記周辺環境要素情報に基づいて、前記車両の周辺の複数の位置における走行危険度をそれぞれ決定する走行危険度決定部と、を備え、前記車両の前後方向における前記複数の位置の間隔は、前記車両の走行速度に応じて変化する。
 本発明の第2の態様による表示制御装置は、車両に搭載された表示装置に対して、前記車両に関する情報を表示させるものであって、前記車両の周辺の複数の位置における走行危険度を表した走行危険度マップを取得する走行危険度マップ取得部と、前記走行危険度マップ取得部により取得された前記走行危険度マップを前記表示装置に表示させる走行危険度マップ表示制御部と、を備え、前記車両の周辺における前記走行危険度マップの表示対象範囲は、前記車両の走行速度に応じて変化する。
A surrounding environment recognition device according to a first aspect of the present invention is mounted on a vehicle, recognizes the surrounding environment of the vehicle, and acquires own vehicle information related to the movement of the vehicle including the traveling speed of the vehicle. Based on the own vehicle information acquisition unit, the surrounding environment element acquisition unit for acquiring the surrounding environment element information for the surrounding environment elements of the vehicle, and the vehicle information and the surrounding environment element information, a plurality of surroundings of the vehicle A travel risk level determining unit that determines a travel risk level at each position, and an interval between the plurality of positions in the front-rear direction of the vehicle changes according to a travel speed of the vehicle.
A display control device according to a second aspect of the present invention displays information related to the vehicle on a display device mounted on the vehicle, and displays travel risk levels at a plurality of positions around the vehicle. A travel risk level map acquisition unit that acquires the travel risk level map, and a travel risk level map display control unit that displays the travel risk level map acquired by the travel risk level map acquisition unit on the display device. The display target range of the travel risk map around the vehicle changes according to the travel speed of the vehicle.
 本発明によれば、高速走行時と低速走行時の両方について、演算量やメモリ消費量を抑えつつ、安全性の判断に必要な危険度を求めることができる。 According to the present invention, it is possible to obtain the degree of risk necessary for the safety judgment while suppressing the calculation amount and the memory consumption amount at both high speed running and low speed running.
本発明の一実施形態に係る走行制御システムの構成の一例を示す機能ブロック図である。It is a functional block diagram showing an example of composition of a run control system concerning one embodiment of the present invention. 走行危険度マップの一例を示す図である。It is a figure which shows an example of a driving | running | working risk map. 周辺環境認識処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of a surrounding environment recognition process. 車両の走行速度と走行危険度マップのセル長さとの関係を示したグラフの一例を示す図である。It is a figure which shows an example of the graph which showed the relationship between the travel speed of a vehicle, and the cell length of a travel risk map. 車両の走行速度と走行危険度マップの前後方向の長さおよびセル数との関係を示したグラフの一例を示す図である。It is a figure which shows an example of the graph which showed the relationship between the running speed of a vehicle, the length of the front-back direction of a driving | running | working risk map, and the number of cells. 自車存在時間範囲決定処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the own vehicle existing time range determination process. 存在時間範囲マップの一例を示す図である。It is a figure which shows an example of an existing time range map. 環境要素存在時間範囲決定処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of an environmental element presence time range determination process. 車両の走行道路環境の一例を示す図である。It is a figure which shows an example of the driving road environment of a vehicle. 走行危険度マップの算出結果の一例を示す図である。It is a figure which shows an example of the calculation result of a driving | running | working risk degree map. 走行危険度マップのデータフォーマットの一例の説明図である。It is explanatory drawing of an example of the data format of a driving | running | working risk map. 走行危険度マップ表示処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of a driving | running | working risk degree map display process. 表示画面の例を示す図である。It is a figure which shows the example of a display screen. 距離スケールと時間スケールでそれぞれ表現した場合の表示画面の例を示す図である。It is a figure which shows the example of the display screen at the time of expressing with a distance scale and a time scale, respectively.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る走行制御システム1の構成の一例を示す機能ブロック図である。本実施形態に係る走行制御システム1は、車両2に搭載され、車両2の周辺における走行道路や周辺車両等の障害物の状況を認識した上で、車両2の走行における現在及び将来のリスクを判断し、適切な運転支援や走行制御を行うためのシステムである。図1に示すように、走行制御システム1は、周辺環境認識装置10、車載用表示制御装置20、自車位置決定装置30、外界センサ群40、車両センサ群50、地図情報管理装置60、走行制御装置70、アクチュエータ群80、表示装置90等を含んで構成される。 FIG. 1 is a functional block diagram showing an example of the configuration of a travel control system 1 according to an embodiment of the present invention. The travel control system 1 according to the present embodiment is mounted on a vehicle 2 and recognizes current and future risks in traveling of the vehicle 2 after recognizing the situation of obstacles such as a traveling road and surrounding vehicles around the vehicle 2. It is a system for judging and performing appropriate driving support and traveling control. As shown in FIG. 1, the travel control system 1 includes a surrounding environment recognition device 10, an in-vehicle display control device 20, a host vehicle position determination device 30, an external sensor group 40, a vehicle sensor group 50, a map information management device 60, a travel A control device 70, an actuator group 80, a display device 90, and the like are included.
 周辺環境認識装置10は、例えば、車両2に搭載されたECU(Electronic Control Unit)等であり、処理部100と、記憶部120と、通信部130と、を有する。なお、周辺環境認識装置10の形態に特に制限はなく、ECU以外のものを周辺環境認識装置10として用いてもよい。例えば、周辺環境認識装置10は、走行制御装置70や外界センサ群40等に統合されていてもよい。 The surrounding environment recognition device 10 is, for example, an ECU (Electronic Control Unit) mounted on the vehicle 2, and includes a processing unit 100, a storage unit 120, and a communication unit 130. In addition, there is no restriction | limiting in particular in the form of the surrounding environment recognition apparatus 10, You may use things other than ECU as the surrounding environment recognition apparatus 10. FIG. For example, the surrounding environment recognition device 10 may be integrated into the travel control device 70, the external sensor group 40, and the like.
 処理部100は、例えば、CPU(Central Processing Unit:中央演算処理装置)及びRAM(Random Access Memory)などのメモリを含んで構成される。処理部100は、周辺環境認識装置10の機能を実現するための部分として、自車情報取得部101、周辺環境要素取得部102、環境要素移動予測部103、存在時間範囲決定部104、走行危険度決定部105、走行危険度マップ作成部106、及び走行危険度マップ提供部107を有する。処理部100は、記憶部120に格納されている所定の動作プログラムを実行することで、これらの各部に対応する処理を行う。 The processing unit 100 includes, for example, a memory such as a CPU (Central Processing Unit) and a RAM (Random Access Memory). The processing unit 100 includes a host vehicle information acquisition unit 101, a surrounding environment element acquisition unit 102, an environment element movement prediction unit 103, an existing time range determination unit 104, a travel risk as a part for realizing the functions of the surrounding environment recognition device 10. A degree determination unit 105, a travel risk level map creation unit 106, and a travel risk level map provision unit 107. The processing unit 100 executes processing corresponding to each unit by executing a predetermined operation program stored in the storage unit 120.
 自車情報取得部101は、車両2の動きに関連する自車情報として、例えば車両2の位置、走行速度、操舵角、アクセルの操作量、ブレーキの操作量、車両2の制御計画(これからどのような軌道、速度で車両2を制御するかの計画)等の情報を、自車位置決定装置30、車両センサ群50、走行制御装置70、アクチュエータ群80等から取得する。自車情報取得部101により取得された自車情報は、自車情報データ群121として記憶部120に格納される。 The own vehicle information acquisition unit 101 includes, as the own vehicle information related to the movement of the vehicle 2, for example, the position of the vehicle 2, the traveling speed, the steering angle, the operation amount of the accelerator, the operation amount of the brake, the control plan of the vehicle 2 Information such as a plan for controlling the vehicle 2 with such a trajectory and speed) is acquired from the own vehicle position determination device 30, the vehicle sensor group 50, the travel control device 70, the actuator group 80, and the like. The vehicle information acquired by the vehicle information acquisition unit 101 is stored in the storage unit 120 as the vehicle information data group 121.
 周辺環境要素取得部102は、車両2の周辺における各種環境要素に関する周辺環境要素情報として、例えば車両2の周辺に存在する障害物の情報や、車両2の周辺における道路の特徴を示す特徴物等の情報を、外界センサ群40や地図情報管理装置60から取得する。なお、車両2の周辺に存在する障害物とは、例えば車両2の周囲を移動している他車両、自転車、歩行者等の移動体や、車両2の周囲の道路上で静止している駐車車両、落下物、設置物等である。周辺環境要素取得部102により取得された周辺環境要素情報は、周辺環境要素情報データ群122として記憶部120に格納される。 The surrounding environment element acquisition unit 102, as surrounding environment element information regarding various environment elements around the vehicle 2, for example, information on obstacles existing around the vehicle 2, features indicating road features around the vehicle 2, etc. Is acquired from the outside world sensor group 40 and the map information management device 60. The obstacle existing around the vehicle 2 is, for example, other vehicles moving around the vehicle 2, such as moving vehicles such as bicycles and pedestrians, and parked stationary on the road around the vehicle 2. Vehicles, fallen objects, installations, etc. The surrounding environment element information acquired by the surrounding environment element acquisition unit 102 is stored in the storage unit 120 as the surrounding environment element information data group 122.
 環境要素移動予測部103は、記憶部120に格納された周辺環境要素情報データ群122に基づいて、外界センサ群40で検出された環境要素に含まれる他車両、自転車、歩行者等の移動体が将来どのように移動するかを予測する。環境要素移動予測部103による移動体の移動予測結果は、当該移動体に対応する周辺環境要素情報に付加され、周辺環境要素情報データ群122として記憶部120に格納される。 The environment element movement prediction unit 103 is based on the surrounding environment element information data group 122 stored in the storage unit 120, and is a moving body such as another vehicle, bicycle, or pedestrian included in the environment element detected by the external sensor group 40. Predict how it will move in the future. The movement prediction result of the moving body by the environment element movement prediction unit 103 is added to the surrounding environment element information corresponding to the moving body, and is stored in the storage unit 120 as the surrounding environment element information data group 122.
 存在時間範囲決定部104は、記憶部120に格納された自車情報データ群121や、環境要素移動予測部103による移動体の移動予測結果に基づいて、車両2の周辺の所定位置に対して車両2や環境要素がそれぞれ存在し得る時間範囲を決定する。以下の説明では、存在時間範囲決定部104により決定された車両2と環境要素の存在時間範囲を、自車存在時間範囲、環境要素存在時間範囲とそれぞれ称する。存在時間範囲決定部104により決定された自車存在時間範囲と環境要素存在時間範囲は、上記の自車情報と周辺環境要素情報にそれぞれ付加され、自車情報データ群121、周辺環境要素情報データ群122として記憶部120にそれぞれ格納される。 The existence time range determination unit 104 is configured to determine a predetermined position around the vehicle 2 based on the own vehicle information data group 121 stored in the storage unit 120 and the movement prediction result of the moving object by the environment element movement prediction unit 103. A time range in which the vehicle 2 and environmental elements can exist is determined. In the following description, the vehicle 2 and the environmental element existing time range determined by the existing time range determining unit 104 are referred to as the own vehicle existing time range and the environmental element existing time range, respectively. The own vehicle existing time range and the environmental element existing time range determined by the existing time range determining unit 104 are added to the own vehicle information and the surrounding environment element information, respectively, and the own vehicle information data group 121, the surrounding environment element information data Each group 122 is stored in the storage unit 120.
 走行危険度決定部105は、記憶部120に格納されたパラメータデータ群123が表す各種パラメータや、自車情報データ群121、周辺環境要素情報データ群122がそれぞれ表す自車情報および周辺環境要素情報に基づいて、車両2の周辺の走行危険度を決定する。 The travel risk determination unit 105 includes various parameters represented by the parameter data group 123 stored in the storage unit 120, vehicle information and surrounding environment element information represented by the vehicle information data group 121 and the surrounding environment element information data group 122, respectively. Based on the above, the travel risk around the vehicle 2 is determined.
 走行危険度マップ作成部106は、走行危険度決定部105による走行危険度の決定結果に基づき、車両2の周辺の各位置と走行危険度との関係を表す走行危険度マップを作成する。走行危険度マップ作成部106により作成された走行危険度マップに関する情報は、走行危険度マップデータ群124として記憶部120に格納される。 The travel risk level map creation unit 106 creates a travel risk level map that represents the relationship between each position around the vehicle 2 and the travel risk level based on the travel risk level determination result by the travel risk level determination unit 105. Information related to the travel risk map created by the travel risk map creating unit 106 is stored in the storage unit 120 as the travel risk map data group 124.
 走行危険度マップ提供部107は、記憶部120に格納された走行危険度マップデータ群124に基づいて、車両2の走行危険度マップに関する情報を、周辺環境認識装置10内の他の機能や、車両2に搭載された周辺環境認識装置10以外の装置に提供する。 The travel risk map providing unit 107 provides information related to the travel risk map of the vehicle 2 based on the travel risk map data group 124 stored in the storage unit 120, other functions in the surrounding environment recognition device 10, This is provided to devices other than the surrounding environment recognition device 10 mounted on the vehicle 2.
 記憶部120は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、ROM(Read Only Memory)などの記憶装置や、RAM(Random Access Memory)などのメモリを含んで構成される。記憶部120は、処理部100が実行するプログラムや、本システムの実現に必要なデータ群などを格納している。本実施形態では、特に、周辺環境認識装置10の機能を実現するための情報として、自車情報データ群121、周辺環境要素情報データ群122、パラメータデータ群123、及び走行危険度マップデータ群124が記憶部120に格納される。 The storage unit 120 includes, for example, a storage device such as an HDD (Hard Disk Drive), flash memory, ROM (Read Only Memory), and a memory such as a RAM (Random Access Memory). The storage unit 120 stores a program executed by the processing unit 100, a data group necessary for realizing the system, and the like. In the present embodiment, the vehicle information data group 121, the surrounding environment element information data group 122, the parameter data group 123, and the travel risk map data group 124 are particularly used as information for realizing the function of the surrounding environment recognition device 10. Is stored in the storage unit 120.
 自車情報データ群121は、車両2に関するデータの集合体である。例えば、自車位置決定装置30から取得された車両2の位置や、車両センサ群50から取得された車両2の状態に関する情報が、自車情報データ群121に含まれる。また、車両2周辺の各位置について車両2が当該位置に存在し得る時間範囲、すなわち前述の自車存在時間範囲に関する情報も、自車情報データ群121に含まれる。 The own vehicle information data group 121 is a collection of data related to the vehicle 2. For example, the vehicle information data group 121 includes information on the position of the vehicle 2 acquired from the vehicle position determination device 30 and the state of the vehicle 2 acquired from the vehicle sensor group 50. In addition, the vehicle information data group 121 also includes a time range in which the vehicle 2 can exist at the position around the vehicle 2, that is, information related to the vehicle existence time range described above.
 周辺環境要素情報データ群122は、車両2の周辺環境に関するデータの集合体である。例えば、地図情報管理装置60から取得された車両2周辺の道路に関するデジタル道路地図データや、外界センサ群40から取得された車両2周辺の各種環境要素の認識データや、それらを統合して生成されたデータ等が、周辺環境要素情報データ群122に含まれる。また、環境要素移動予測部103による移動体の移動予測結果を示すデータも、周辺環境要素情報データ群122に含まれる。さらに、車両2周辺の各位置について環境要素が当該位置に存在し得る時間範囲、すなわち前述の環境要素存在時間範囲に関する情報も、周辺環境要素情報データ群122に含まれる。なお、周辺環境要素情報データ群122では、複数の環境要素のそれぞれに対して上記のようなデータが設定される。ここでいう「環境要素」とは、車両2の走行に対して影響を与える情報要素を意味する。例えば、車両2の周辺にある他車両、歩行者等の移動体や落下物等の障害物、車線や道路の境界情報等の道路形状、速度規制や一方通行や信号等の交通ルール等の情報要素が、上記の「環境要素」に含まれる。これらの情報要素は、性質としては様々であるが、いずれも車両2周辺の空間上の位置あるいは領域に意味を与えるものであるという共通点を持つ。そのため、本実施形態では、これらの情報要素を「環境要素」として共通の枠組みで扱い、周辺環境要素情報データ群122におけるデータの蓄積対象とする。 The surrounding environment element information data group 122 is a collection of data related to the surrounding environment of the vehicle 2. For example, digital road map data related to roads around the vehicle 2 acquired from the map information management device 60, recognition data of various environmental elements around the vehicle 2 acquired from the external sensor group 40, and these are integrated and generated. The surrounding environment element information data group 122 is included in the data. Data indicating the movement prediction result of the moving body by the environment element movement prediction unit 103 is also included in the surrounding environment element information data group 122. Furthermore, the surrounding environment element information data group 122 also includes information on a time range in which the environmental element can exist at each position around the vehicle 2, that is, the above-described environment element existence time range. In the surrounding environment element information data group 122, the above data is set for each of a plurality of environment elements. Here, “environmental element” means an information element that affects the traveling of the vehicle 2. For example, other vehicles in the vicinity of the vehicle 2, obstacles such as moving objects such as pedestrians and falling objects, road shapes such as lane and road boundary information, speed regulations, traffic rules such as one-way traffic and traffic lights, etc. The element is included in the “environment element” described above. Although these information elements have various properties, they all have a common point that they give meaning to a position or region in the space around the vehicle 2. Therefore, in the present embodiment, these information elements are handled as “environment elements” in a common framework, and are set as data accumulation targets in the surrounding environment element information data group 122.
 なお、本実施形態における「時間」とは、ある参照時点を基準とした時間系において示されるものである。好ましくは、現在を参照時点として、車両2の現在位置の周辺の各位置において車両2や環境要素が将来のどの時間帯(例えば、2秒後から3秒後)に存在し得るかを、自車存在時間範囲や環境要素存在時間範囲で示すことができる。ここで、上記の「時間範囲」とは、必ずしも幅を持った時間である必要はなく、ある特定の時点を自車存在時間範囲や環境要素存在時間範囲としてもよい。また、車両2の現在位置の周辺の各位置において車両2や環境要素が存在する時間の確率分布、すなわち各位置における所定の時間間隔ごとの車両2や環境要素の存在確率の分布を、自車存在時間範囲や環境要素存在時間範囲として示してもよい。 Note that “time” in the present embodiment is indicated in a time system based on a certain reference time point. Preferably, the vehicle 2 and the environmental element at each position around the current position of the vehicle 2 with the present time as the reference time point are determined in which time zone in the future (for example, 2 seconds to 3 seconds later). It can be indicated by the vehicle existence time range or the environmental element existence time range. Here, the above “time range” does not necessarily have a wide time, and a specific time point may be set as the own vehicle existing time range or the environmental element existing time range. Also, the probability distribution of the time when the vehicle 2 and the environmental element exist at each position around the current position of the vehicle 2, that is, the distribution of the existence probability of the vehicle 2 and the environmental element at each predetermined time interval at each position It may be shown as an existing time range or an environmental element existing time range.
 パラメータデータ群123は、走行危険度マップ作成部106が走行危険度マップの作成において用いるパラメータに関するデータの集合体である。パラメータデータ群123には、例えば周辺環境認識装置10の出荷前など、事前に記憶部120に保存されたデータも含まれる。 The parameter data group 123 is a collection of data relating to parameters used by the travel risk map creating unit 106 in creating the travel risk map. The parameter data group 123 includes data stored in the storage unit 120 in advance, for example, before shipment of the surrounding environment recognition device 10.
 走行危険度マップデータ群124は、車両2の周辺の各位置と、車両2の走行危険度、すなわち車両2が当該位置を走行する場合の危険度との関係を示す走行危険度マップに関するデータの集合体である。 The travel risk map data group 124 includes data on a travel risk map indicating a relationship between each position around the vehicle 2 and the travel risk of the vehicle 2, that is, the risk when the vehicle 2 travels at the position. It is an aggregate.
 通信部130は、各種プロトコルに基づいて、車両2に搭載された他の装置とデータの送受信を行う。通信部130は、例えば、Ethernet(登録商標)又はCAN(Controller Area Network)等の通信規格に準拠したネットワークカード等を含んで構成される。 The communication unit 130 transmits and receives data to and from other devices mounted on the vehicle 2 based on various protocols. The communication unit 130 includes, for example, a network card that conforms to a communication standard such as Ethernet (registered trademark) or CAN (Controller Area Network).
 車載用表示制御装置20は、表示装置90と接続されており、処理部200と、記憶部220と、通信部230と、画面入出力部240と、を有する。車載用表示制御装置20は、周辺環境認識装置10から出力される情報や、走行制御装置70から出力される情報に基づいて、車両2の運転支援に関する運転者への通知を、表示装置90を通じた音声や画面により行うように構成されている。 The in-vehicle display control device 20 is connected to the display device 90, and includes a processing unit 200, a storage unit 220, a communication unit 230, and a screen input / output unit 240. The in-vehicle display control device 20 sends a notification to the driver regarding driving support of the vehicle 2 through the display device 90 based on information output from the surrounding environment recognition device 10 and information output from the travel control device 70. It is configured to perform by voice and screen.
 処理部200は、例えば、CPU及びRAMなどのメモリを含んで構成される。処理部200は、車載用表示制御装置20の機能を実現するための部分として、走行危険度マップ取得部201、制御計画情報取得部202、走行危険度マップ表示制御部203、を有する。処理部200は、記憶部220に格納されている所定の動作プログラムを実行することで、これらの各部に対応する処理を行う。 The processing unit 200 includes a memory such as a CPU and a RAM, for example. The processing unit 200 includes a travel risk level map acquisition unit 201, a control plan information acquisition unit 202, and a travel risk level map display control unit 203 as parts for realizing the functions of the in-vehicle display control device 20. The processing unit 200 performs a process corresponding to each unit by executing a predetermined operation program stored in the storage unit 220.
 走行危険度マップ取得部201は、周辺環境認識装置10から出力された走行危険度マップのデータを取得し、記憶部220に格納する。 The driving risk map acquisition unit 201 acquires data of the driving risk map output from the surrounding environment recognition device 10 and stores the data in the storage unit 220.
 制御計画情報取得部202は、走行制御装置70から出力された車両2の制御計画情報を取得し、記憶部220に格納する。 The control plan information acquisition unit 202 acquires the control plan information of the vehicle 2 output from the travel control device 70 and stores it in the storage unit 220.
 走行危険度マップ表示制御部203は、記憶部220に格納された走行危険度マップのデータに基づいて、画面入出力部240を介して表示装置90の画面上に走行危険度マップを表示させる。 The travel risk map display control unit 203 displays the travel risk map on the screen of the display device 90 via the screen input / output unit 240 based on the travel risk map data stored in the storage unit 220.
 記憶部220は、例えば、HDD、フラッシュメモリ、ROMなどの記憶装置や、RAMなどのメモリを含んで構成される。記憶部220は、処理部200が実行するプログラムや、本システムの実現に必要なデータ群などを格納している。 The storage unit 220 includes, for example, a storage device such as an HDD, a flash memory, and a ROM, and a memory such as a RAM. The storage unit 220 stores a program executed by the processing unit 200, a data group necessary for realizing the system, and the like.
 通信部230は、各種プロトコルに基づいて、車両2に搭載された他の装置とデータの送受信を行う。通信部230は、例えば、Ethernet又はCAN等の通信規格に準拠したネットワークカード等を含んで構成される。 The communication unit 230 transmits and receives data to and from other devices mounted on the vehicle 2 based on various protocols. The communication unit 230 includes, for example, a network card that conforms to a communication standard such as Ethernet or CAN.
 画面入出力部240は、表示装置90への画面表示情報の出力や、ユーザが表示装置90の画面上で行ったタッチパネル操作情報の取得を行う。 The screen input / output unit 240 outputs screen display information to the display device 90 and acquires touch panel operation information performed on the screen of the display device 90 by the user.
 自車位置決定装置30は、車両2の地理的な位置を測位し、その情報を提供する装置である。自車位置決定装置30は、例えば、全地球航法衛星システム(GNSS)受信装置により構成される。その場合、自車位置決定装置30は、単純にGNSS衛星から受信する電波に基づいた測位結果を提供するように構成されていても良い。あるいは、車両2の移動速度や進行方位角など、外界センサ群40や車両センサ群50から取得可能な情報を活用して、GNSS衛星から受信した電波による測位結果に対して補間や誤差補正を行うように自車位置決定装置30を構成しても良い。 The own vehicle position determination device 30 is a device that measures the geographical position of the vehicle 2 and provides the information. The own vehicle position determination device 30 is configured by, for example, a global navigation satellite system (GNSS) reception device. In that case, the own vehicle position determination device 30 may be configured to simply provide a positioning result based on the radio wave received from the GNSS satellite. Alternatively, by using information that can be acquired from the external sensor group 40 and the vehicle sensor group 50 such as the moving speed and traveling azimuth of the vehicle 2, interpolation and error correction are performed on the positioning result by the radio wave received from the GNSS satellite. The vehicle position determining device 30 may be configured as described above.
 外界センサ群40は、車両2周辺の一定範囲の障害物(他車両、自転車、歩行者、落下物等)や特徴物(道路標識、白線、ランドマーク等)を認識することができるセンサ群である。外界センサ群40は、例えば、カメラ装置、レーダ、レーザーレーダ、ソナー等により構成される。外界センサ群40は、検出した車両2周辺の障害物や特徴物の情報(例えば、車両2からの相対距離と相対角度等)を、外界センサ群40や周辺環境認識装置10が接続されているCAN等の車載ネットワーク上に出力する。周辺環境認識装置10は、この車載ネットワークを通じて、外界センサ群40からの出力結果を取得できるように構成されている。なお、本実施形態では、外界センサ群40で障害物や特徴物を検出する処理を実施する構成になっているが、外界センサ群40から出力される信号やデータを用いて、周辺環境認識装置10や他装置でこれらの検出処理を行っても良い。 The external sensor group 40 is a sensor group that can recognize obstacles (other vehicles, bicycles, pedestrians, fallen objects, etc.) and characteristic objects (road signs, white lines, landmarks, etc.) around the vehicle 2. is there. The outside world sensor group 40 includes, for example, a camera device, a radar, a laser radar, a sonar, and the like. The external sensor group 40 is connected to the detected information about obstacles and features around the vehicle 2 (for example, relative distance and relative angle from the vehicle 2) and the external sensor group 40 and the surrounding environment recognition device 10. Output on an in-vehicle network such as CAN. The surrounding environment recognition device 10 is configured to obtain an output result from the external sensor group 40 through the in-vehicle network. In this embodiment, the external sensor group 40 is configured to perform processing for detecting an obstacle or a feature. However, the surrounding environment recognition device uses signals and data output from the external sensor group 40. 10 and other devices may perform these detection processes.
 車両センサ群50は、車両2の動きに関する各種部品の状態(例えば走行速度、操舵角、アクセルの操作量、ブレーキの操作量等)を検出する装置群である。車両センサ群50は、例えば、CAN等の車載ネットワーク上に、検出したこれらの状態量を定期的に出力する。車載ネットワークに接続された周辺環境認識装置10や他の装置は、この車載ネットワークを通じて、車両センサ群50から出力された各種部品の状態量を取得することができるように構成されている。 The vehicle sensor group 50 is a device group that detects the state of various parts related to the movement of the vehicle 2 (for example, travel speed, steering angle, accelerator operation amount, brake operation amount, etc.). For example, the vehicle sensor group 50 periodically outputs these detected state quantities on an in-vehicle network such as CAN. The surrounding environment recognition device 10 and other devices connected to the in-vehicle network are configured to be able to acquire the state quantities of various components output from the vehicle sensor group 50 through the in-vehicle network.
 地図情報管理装置60は、車両2周辺のデジタル地図情報を管理及び提供する装置である。地図情報管理装置60は、例えば、ナビゲーション装置等により構成される。地図情報管理装置60は、例えば、車両2の周辺を含む所定地域のデジタル道路地図データを備えており、自車位置決定装置30で決定された車両2の位置情報に基づき、地図上での車両2の現在位置、すなわち車両2が走行中の道路や車線を特定するように構成されている。また、特定した車両2の現在位置やその周辺の地図データを、CAN等の車載ネットワークを介して周辺環境認識装置10に提供するように構成されている。 The map information management device 60 is a device that manages and provides digital map information around the vehicle 2. The map information management device 60 is constituted by, for example, a navigation device. The map information management device 60 includes, for example, digital road map data of a predetermined area including the periphery of the vehicle 2, and the vehicle on the map is based on the position information of the vehicle 2 determined by the own vehicle position determination device 30. 2, that is, a road or lane on which the vehicle 2 is traveling is specified. Moreover, it is comprised so that the present position of the specified vehicle 2 and its surrounding map data may be provided to the surrounding environment recognition apparatus 10 via vehicle-mounted networks, such as CAN.
 走行制御装置70は、車両2の燃費性能、安全性、利便性等を高めることを目的として、車両2の先進運転支援システム(ADAS:Advanced Driver Assistance Systems)を実現するためのECUである。走行制御装置70は、周辺環境認識装置10から出力される情報に基づいて、例えば、アクチュエータ群80に指示を出して車両2の加減速や操舵を自動で制御したり、車載用表示制御装置20および表示装置90を介してドライバに情報提供や警告を出力したりする。 The traveling control device 70 is an ECU for realizing an advanced driving assistance system (ADAS: Advanced Driver Assistance Systems) of the vehicle 2 for the purpose of improving the fuel consumption performance, safety, convenience, and the like of the vehicle 2. Based on the information output from the surrounding environment recognition device 10, the travel control device 70, for example, issues an instruction to the actuator group 80 to automatically control acceleration / deceleration and steering of the vehicle 2, or the in-vehicle display control device 20. Information provision and warning are output to the driver via the display device 90.
 アクチュエータ群80は、車両2の動きを決定する操舵、ブレーキ、アクセル等の制御要素を制御する装置群である。アクチュエータ群80は、運転者によるハンドル、ブレーキペダル、アクセルペダル等の操作情報や、走行制御装置70から出力される目標制御値に基づいて、車両2の動きを制御するように構成されている。 Actuator group 80 is a device group that controls control elements such as steering, brakes, and accelerators that determine the movement of vehicle 2. The actuator group 80 is configured to control the movement of the vehicle 2 based on operation information such as a steering wheel, a brake pedal, and an accelerator pedal by the driver and a target control value output from the travel control device 70.
 図2は、本実施形態の走行危険度マップデータ群124が表す走行危険度マップの一例を示す図である。 FIG. 2 is a diagram showing an example of a travel risk map represented by the travel risk map data group 124 of the present embodiment.
 走行危険度マップデータ群124は、車両2の周辺の各位置における車両2の走行危険度を示す走行危険度マップを表すデータである。図2に示すように、走行危険度マップデータ群124は、例えば、車両2の現在位置を中心としたx-y座標系で規定される所定の領域(x方向で-Xm~Xm、y方向で-Ym~Ym)において、x、yがそれぞれ変数で表される座標値(x、y)の各位置に対する車両2の走行危険度R(x、y)を示したものである。ここで、x軸250は車両2を前後方向に貫く中心軸であり、x軸250の正方向は車両2の前方向に対応する。また、y軸251は車両2の前部を左右方向に貫く中心軸であり、y軸251の正方向は車両2の左方向に対応する。なお、座標値(x、y)の取り得る値は、連続値(例えば、関数表現)でも良いし、離散値(例えば、グリッド表現)でも良い。図2に示す走行危険度マップの例では、座標値(x、y)を離散値(x=x-5、x-4、・・・、x30、y=y-8、y-7、・・・、y)として、グリッドマップ上で走行危険度R(x、y)の値を表現している。 The travel risk map data group 124 is data representing a travel risk map indicating the travel risk of the vehicle 2 at each position around the vehicle 2. As shown in FIG. 2, the travel risk map data group 124 includes, for example, a predetermined region (−X B m to X F in the x direction) defined by an xy coordinate system centered on the current position of the vehicle 2. The traveling risk R (x, y) of the vehicle 2 for each position of the coordinate values (x, y) where x and y are variables are represented in -Y R m to Y L m) in the m and y directions. It is shown. Here, the x-axis 250 is a central axis that penetrates the vehicle 2 in the front-rear direction, and the positive direction of the x-axis 250 corresponds to the front direction of the vehicle 2. The y-axis 251 is a central axis that penetrates the front portion of the vehicle 2 in the left-right direction, and the positive direction of the y-axis 251 corresponds to the left direction of the vehicle 2. The values that can be taken by the coordinate values (x, y) may be continuous values (for example, function expression) or discrete values (for example, grid expression). In the example of the travel risk map shown in FIG. 2, coordinate values (x, y) are converted into discrete values (x = x −5 , x −4 ,..., X 30 , y = y −8 , y −7 , .., Y 8 ), the value of the travel risk R (x, y) is expressed on the grid map.
 以降の説明では、グリッドマップにより表現された走行危険度マップのセル長(各セルに対応する地点間のx軸方向の距離)およびセル幅(各セルに対応する地点間のy軸方向の距離)を、それぞれd、dで表すものとする。すなわち、各セルのセル長dとセル幅dは、走行危険度マップにおいて走行危険度が示された各位置の車両2の前後方向と横方向における間隔をそれぞれ表している。図2の例では、走行危険度マップ内のすべてのセルにおいてdとdを共通としているが、セルの位置に応じて異なるdやdを用いても良い。 In the following description, the cell length (distance in the x-axis direction between points corresponding to each cell) and cell width (distance in the y-axis direction between points corresponding to each cell) of the travel risk map expressed by the grid map ) Are represented by d x and dy, respectively. That is, the cell length d x and cell width d y of each cell represent respectively the spacing in the longitudinal direction and the transverse direction of the vehicle 2 for each position running risk is shown in the traveling risk map. In the example of FIG. 2, d x and dy are common to all cells in the travel risk map, but different d x and dy may be used depending on the position of the cell.
 以降では、走行危険度マップのx軸正方向に存在するセル(xを除く)の数を前方セル数Nx+、x軸負方向に存在するセルの数を後方セル数Nx-、y軸正方向に存在するセルの数(yを除く)を左側セル数Ny+、y軸負方向に存在するセルの数を右側セル数Ny-、でそれぞれ表すものとする。dとdが共通である場合は、図2に示す走行危険度マップの各方向の長さをそれぞれ表す前方長さX、後方長さX、左側長さY、右側長さYと、セル長d、セル幅dおよび前後左右の各セル数Nx+、Nx-、Ny+、Ny-との間には、以下の式(1)~(4)の関係が成立する。
 X=Nx+・d  ・・・(1)
 X=Nx-・d  ・・・(2)
 Y=Ny+・d  ・・・(3)
 Y=Ny-・d  ・・・(4)
In the following, a few number of forward cell N x of the cells present in the positive x-axis direction of the running the risk map (except x 0) +, number rear cell the number of cells present in the negative x N x-, y the number of cells present in the axial positive direction (except for y 0) number to the left cell N y +, the number of right cell number of cells present in the y-axis negative direction N y-, in which a represents respectively. When d x and dy are common, the front length X F , the rear length X B , the left length Y L , and the right length representing the length in each direction of the travel risk map shown in FIG. Between Y R and the cell length d x , cell width dy, and the number N x + , N x− , N y + , N y− of each of the front, rear, left and right cells, the following formulas (1) to (4) A relationship is established.
X F = N x + · d x (1)
X B = N x− · d x (2)
Y L = N y + · d y (3)
Y R = N y− · d y (4)
 図2において、例えば、座標値(x17、y-4)のセルに格納されている走行危険度R(x17、y-4)の値は、この座標値に相当する車両2からの相対位置における車両2の走行危険度に相当する。ここで、図2の各セルに格納されている走行危険度R(x、y)の値は、当該セルにおける車両2と車両2周辺の環境要素との相互作用による危険度を積算して正規化したものであり、その値が大きいほど、車両2が走行する際の危険度が高いことを示すものである。図2の例では、各セルでの車両2の走行危険度R(x、y)の値をハッチングで表しており、ハッチングが濃い箇所ほど、走行時の危険度が高いことを示している。 In FIG. 2, for example, the value of the travel risk R (x 17 , y −4 ) stored in the cell of the coordinate value (x 17 , y −4 ) is relative to the vehicle 2 corresponding to this coordinate value. This corresponds to the travel risk of the vehicle 2 at the position. Here, the value of the travel risk R (x, y) stored in each cell of FIG. 2 is normalized by integrating the risk due to the interaction between the vehicle 2 and the environmental elements around the vehicle 2 in the cell. The higher the value, the higher the degree of danger when the vehicle 2 travels. In the example of FIG. 2, the value of the travel risk R (x, y) of the vehicle 2 in each cell is represented by hatching, and the darker the hatching, the higher the travel risk.
 続いて、図3~図14を用いて走行制御システム1の動作について説明する。本実施形態における走行制御システム1の周辺環境認識装置10は、外部装置である自車位置決定装置30、外界センサ群40、車両センサ群50、地図情報管理装置60からそれぞれ取得した車両2や車両2周辺の環境要素に関する情報に基づいて、以下で説明するような周辺環境認識処理を実行し、前述のような車両2周辺の走行危険度マップを作成する。そして、生成した走行危険度マップを車載用表示制御装置20や走行制御装置70に出力する。走行制御装置70は、取得した走行危険度マップに基づいて、例えば、車両2の安全に走行可能な軌道を計画し、アクチュエータ群80を介して、車両2の走行を制御する。車載用表示制御装置20は、例えば、取得した走行危険度マップや走行制御装置70から出力される制御計画情報を表示し、走行制御システム1の状態を運転者や乗員に提示する。これらの動作により、車両2の運転支援が行われる。 Subsequently, the operation of the traveling control system 1 will be described with reference to FIGS. The surrounding environment recognition device 10 of the travel control system 1 according to the present embodiment includes a vehicle 2 and a vehicle acquired from the own vehicle position determination device 30, the external sensor group 40, the vehicle sensor group 50, and the map information management device 60, which are external devices. 2. Based on the information about the surrounding environmental elements, the surrounding environment recognition process as described below is executed to create the travel risk map around the vehicle 2 as described above. Then, the generated travel risk degree map is output to the in-vehicle display control device 20 and the travel control device 70. For example, the travel control device 70 plans a trajectory that allows the vehicle 2 to travel safely based on the acquired travel risk degree map, and controls the travel of the vehicle 2 via the actuator group 80. The in-vehicle display control device 20 displays, for example, the acquired travel risk map and the control plan information output from the travel control device 70, and presents the state of the travel control system 1 to the driver and the occupant. By these operations, driving assistance of the vehicle 2 is performed.
 図3は、本実施形態の走行制御システム1において、周辺環境認識装置10で実行される周辺環境認識処理フロー500を示す図である。 FIG. 3 is a diagram showing a surrounding environment recognition processing flow 500 executed by the surrounding environment recognition device 10 in the travel control system 1 of the present embodiment.
 まず、自車情報取得部101は、ステップS501において所定時間待機する。ここでは、周辺環境認識装置10に対して走行危険度マップ生成のトリガーがかかるまでの時間、処理を進めずに待機する。同トリガーは、走行危険度マップが一定時間毎に生成されるようにタイマーでかけても良いし、走行危険度マップの更新の必要性を検知してオンデマンドにかけても良い。 First, the vehicle information acquisition unit 101 waits for a predetermined time in step S501. Here, the process waits for a period of time until the driving risk map generation is triggered for the surrounding environment recognition device 10 without proceeding with the processing. The trigger may be applied by a timer so that the travel risk map is generated at regular intervals, or may be applied on demand by detecting the necessity of updating the travel risk map.
 次に、自車情報取得部101は、ステップS502において、周辺環境認識処理に必要な自車情報として、車両2に関する情報を記憶部120の自車情報データ群121から取得する。ここでは、自車位置決定装置30から取得された車両2の位置情報や、車両センサ群50から取得された車両2の状態に関する情報、走行制御装置70から取得された車両2の制御計画情報、等を自車情報として取得する。車両2の状態に関する情報とは、車両2の速度、加速度、舵角、アクセル開度、ヨーレート等、車両2の現在の状態を示すものでもよいし、過去所定時間(例えば、1秒間)の平均速度のように、車両2に関する統計的な情報を示すものでもよいし、将来所定時間(例えば、5秒間)の予測平均速度のように、車両2に関する予測情報を示すものでもよい。なお、これらの情報は前述のように、自車情報取得部101により、車両ネットワーク等を介して適切なタイミングで自車位置決定装置30や車両センサ群50、走行制御装置70等から取得された情報、あるいはそれらの情報に基づいて加工された情報(例えば、統計的な情報等)を、記憶部120に自車情報データ群121として格納されたものである。 Next, in step S502, the vehicle information acquisition unit 101 acquires information about the vehicle 2 from the vehicle information data group 121 of the storage unit 120 as the vehicle information necessary for the surrounding environment recognition process. Here, the position information of the vehicle 2 acquired from the own vehicle position determination device 30, the information related to the state of the vehicle 2 acquired from the vehicle sensor group 50, the control plan information of the vehicle 2 acquired from the travel control device 70, Etc. are acquired as own vehicle information. The information on the state of the vehicle 2 may indicate the current state of the vehicle 2 such as the speed, acceleration, steering angle, accelerator opening degree, yaw rate, etc. of the vehicle 2 or an average of past predetermined times (for example, 1 second). Statistical information related to the vehicle 2 may be shown like the speed, or predicted information related to the vehicle 2 like the predicted average speed for a predetermined time (for example, 5 seconds) in the future. As described above, these pieces of information are acquired from the own vehicle position determination device 30, the vehicle sensor group 50, the travel control device 70, and the like by the own vehicle information acquisition unit 101 at an appropriate timing via the vehicle network or the like. Information or information processed based on the information (for example, statistical information) is stored in the storage unit 120 as the vehicle information data group 121.
 次に、周辺環境要素取得部102は、ステップS503において、周辺環境認識処理に必要な周辺環境要素情報として、車両2周辺の環境要素に関する情報を記憶部120の周辺環境要素情報データ群122から取得する。ここでは、地図情報管理装置60から取得された車両2周辺の道路に関するデジタル道路地図データや、外界センサ群40から取得された車両2周辺の各種環境要素の認識データを、周辺環境要素情報として取得する。車両2周辺の環境要素の認識データには、障害物(他車両、人、落下物等)、道路形状(路端、白線、停止線、ゼブラゾーン等)、路面状態(凍結、水溜り、ポットホール等)などの認知状況を表す情報が含まれる。なお、これらの情報は前述のように、周辺環境要素取得部102により、車両ネットワーク等を介して適切なタイミングで外界センサ群40や地図情報管理装置60から取得され、記憶部120に周辺環境要素情報データ群122として格納されたものである。これは、いわゆるフュージョン処理により適切に統合されたものでも良い。 Next, in step S <b> 503, the surrounding environment element acquisition unit 102 acquires information about the environment elements around the vehicle 2 from the surrounding environment element information data group 122 of the storage unit 120 as the surrounding environment element information necessary for the surrounding environment recognition processing. To do. Here, digital road map data related to roads around the vehicle 2 acquired from the map information management device 60 and recognition data of various environmental elements around the vehicle 2 acquired from the external sensor group 40 are acquired as peripheral environment element information. To do. The recognition data of environmental elements around the vehicle 2 includes obstacles (other vehicles, people, fallen objects, etc.), road shapes (road edges, white lines, stop lines, zebra zones, etc.), road surface conditions (freezing, puddles, pots) Information indicating the recognition status such as hall). As described above, these pieces of information are acquired from the external sensor group 40 and the map information management device 60 by the peripheral environment element acquisition unit 102 through the vehicle network or the like at an appropriate timing, and are stored in the storage unit 120 in the peripheral environment element. The information data group 122 is stored. This may be appropriately integrated by so-called fusion processing.
 続いて、環境要素移動予測部103は、ステップS504において、ステップS503で取得した周辺環境要素情報に基づいて、車両2の周辺における移動可能な環境要素(車両、人等)が、所定時間の間にどのように移動するかを表す移動予測情報を生成する。ここでは、当該環境要素に関する周辺環境要素情報が表す認識情報(相対位置、移動方向、移動速度等)や、当該環境要素に関する周辺環境要素情報が表す周辺の状況(道路形状、交通ルール、障害物等)を鑑みて、環境要素ごとの動きを予測する。移動予測情報は、例えば、所定の時間(例えば、1秒後、2秒後、…)と当該時間での推定位置情報のリストで表現される。 Subsequently, in step S504, the environmental element movement prediction unit 103 determines whether or not environmental elements (vehicles, people, etc.) that can move around the vehicle 2 are within a predetermined time based on the surrounding environmental element information acquired in step S503. The movement prediction information indicating how to move is generated. Here, recognition information (relative position, moving direction, moving speed, etc.) represented by the surrounding environment element information related to the environment element, and surrounding conditions (road shape, traffic rules, obstacles) represented by the surrounding environment element information related to the environment element Etc.), the movement for each environmental element is predicted. The movement prediction information is expressed, for example, by a list of predetermined time (for example, 1 second, 2 seconds,...) And estimated position information at the time.
 次に、走行危険度マップ作成部106は、ステップS505において、ステップS502で自車情報として取得した車両2の状態に関する情報に基づいて、走行危険度マップパラメータ決定処理を実行する。この走行危険度マップパラメータ決定処理は、以降のステップで作成する走行危険度マップに関するパラメータを決定し、パラメータデータ群123の一部として記憶部120に格納するための処理である。走行危険度マップパラメータ決定処理の詳細は図4および図5を用いて以下で説明する。 Next, in step S505, the travel risk level map creation unit 106 executes a travel risk level map parameter determination process based on the information related to the state of the vehicle 2 acquired as the vehicle information in step S502. This driving risk map parameter determination process is a process for determining parameters related to the driving risk map created in the following steps and storing them in the storage unit 120 as part of the parameter data group 123. Details of the travel risk map parameter determination processing will be described below with reference to FIGS. 4 and 5.
 続いて、存在時間範囲決定部104は、ステップS506において、ステップS502で取得した自車情報と、ステップS505の走行危険度マップパラメータ決定処理で決定した走行危険度マップに関するパラメータとに基づいて、車両2の存在時間範囲マップを決定する自車存在時間範囲決定処理600を実行する。自車存在時間範囲決定処理600の詳細は図6及び図7を用いて以下で説明する。 Subsequently, in step S506, the existence time range determination unit 104 determines the vehicle based on the vehicle information acquired in step S502 and the parameters related to the travel risk map determined in the travel risk map parameter determination process in step S505. The vehicle presence time range determination process 600 for determining the second existence time range map is executed. Details of the vehicle existence time range determination processing 600 will be described below with reference to FIGS. 6 and 7.
 次に、存在時間範囲決定部104は、ステップS507において、ステップS504で行った周辺環境要素移動予測の結果に基づいて、各環境要素の存在時間範囲マップを決定する環境要素存在時間範囲決定処理700を実行する。環境要素存在時間範囲決定処理700の詳細は図8を用いて以下で説明する。 Next, in step S507, the existence time range determination unit 104 determines an environment element existence time range determination process 700 that determines an existence time range map of each environment element based on the result of the surrounding environment element movement prediction performed in step S504. Execute. Details of the environment element existence time range determination processing 700 will be described below with reference to FIG.
 続いて、走行危険度マップ作成部106は、ステップS508において、車両2周辺の走行危険度マップを作成する走行危険度マップ作成処理800を実行する。ここでは、ステップS506で決定した車両2の存在時間範囲マップと、ステップS507で決定した環境要素の存在時間範囲マップと、ステップS503で取得した周辺環境要素情報とに基づいて、車両2周辺の走行危険度マップを作成する。走行危険度マップ作成処理800の詳細は図9及び図10を用いて以下で説明する。 Subsequently, the travel risk map creating unit 106 executes a travel risk map creating process 800 for creating a travel risk map around the vehicle 2 in step S508. Here, based on the vehicle 2 existing time range map determined in step S506, the environmental element existing time range map determined in step S507, and the surrounding environment element information acquired in step S503, the vehicle 2 travels around the vehicle 2 Create a risk map. Details of the travel risk map creation processing 800 will be described below with reference to FIGS. 9 and 10.
 ステップS508の走行危険度マップ作成処理800が完了すると、走行危険度マップ提供部107は、ステップS509において、作成された走行危険度マップのデータを車載用表示制御装置20や走行制御装置70等に出力する。出力される走行危険度マップのデータフォーマットについては、図11を用いて以下で説明する。 When the travel risk map creation processing 800 in step S508 is completed, the travel risk map providing unit 107 transmits the created travel risk map data to the in-vehicle display control device 20, the travel control device 70, and the like in step S509. Output. The data format of the output travel risk map will be described below with reference to FIG.
 上述したステップS501~S509の処理を実行した後は、ステップS501に戻り、これらの処理を繰り返し実行する。 After executing the above-described steps S501 to S509, the process returns to step S501, and these steps are repeatedly executed.
<走行危険度マップパラメータ決定処理(S505)>
 次に、図3のステップS505で実行される走行危険度マップパラメータ決定処理について説明する。走行危険度マップパラメータ決定処理では、以下で説明するような方針に従って走行危険度マップの表現形式を決定し、その表現形式に対応したパラメータを決定する。
<Driving risk map parameter determination process (S505)>
Next, the driving risk map parameter determination process executed in step S505 of FIG. 3 will be described. In the travel risk map parameter determination process, the expression format of the travel risk map is determined according to the policy described below, and the parameters corresponding to the expression format are determined.
 走行危険度マップは、例えば、走行制御装置70が車両2の走行軌道を計画する際に用いられる。計画する走行軌道の対象時間をT秒とすると、走行危険度マップは、少なくとも車両2がT秒間に進む領域を表現する必要がある。車両2の走行速度がvである場合、車両2の進行方向(x軸方向)では、T秒間に車両2が進む距離Lは、L=T・vの式で表現され、走行危険度マップで表現すべき領域は走行速度vに比例して延びていく。一方、横方向(y軸方向)では、T秒間に車両2が進む距離Lは、旋回半径をrとすると、L=r・(1-cos(v・T/r))の式で表現される。ここで、横加速度が大きいと乗り心地が悪くなるため、許容される最大横加速度をAlatとすると、速度vのときの最小旋回半径は、r=v/Alatと定まる。これを上記式に代入して変形すると、以下の式(5)が得られる。
 L=(v/Alat)・(1-cos(Alat・T/v))  ・・・(5)
The travel risk map is used, for example, when the travel control device 70 plans the travel path of the vehicle 2. If the target time of the planned travel path is T seconds, the travel risk map needs to represent at least a region where the vehicle 2 travels in T seconds. When the travel speed of the vehicle 2 is v, in the traveling direction of the vehicle 2 (x-axis direction), the distance L x that the vehicle 2 travels in T seconds is expressed by the formula L x = T · v, and the travel risk level The area to be expressed on the map extends in proportion to the traveling speed v. On the other hand, in the lateral direction (y-axis direction), the distance L y traveled by the vehicle 2 in T seconds is expressed by the equation L y = r · (1−cos (v · T / r)) where r is the turning radius. Expressed. Here, when the lateral acceleration is large, the riding comfort is deteriorated. Therefore , when the maximum allowable lateral acceleration is A lat , the minimum turning radius at the speed v is determined as r = v 2 / A lat . By substituting this into the above equation, the following equation (5) is obtained.
L y = (v 2 / A lat ) · (1-cos (A lat · T / v)) (5)
 ここで、v=AlatT/wとすると、式(5)は以下の式(6)に変形できる。
 L=Alat(1-cosw)/w  ・・・(6)
Here, when v = A lat T / w, the equation (5) can be transformed into the following equation (6).
L y = A lat T 2 (1-cosw) / w 2 (6)
 式(6)において、wを0に近づけると、LはAlat/2に近づく。これは、車両2が進む横方向の距離Lは、走行速度vに拠らず、一定値Alat/2内に収まることを意味する。 In the formula (6), brought close to w in 0, L y approaches A lat T 2/2. This distance L y of lateral vehicle 2 progresses, irrespective of the running speed v, which means that within a certain value A lat T 2/2.
 一方、走行軌道の計画において必要となる走行危険度マップの精度は、車両2の走行速度に応じて変化する。例えば、駐車場や路地のように低速で隙間を縫うような車両2の制御が必要な場合は、走行危険度マップにおいて細かい粒度での表現(例えば、10cm)が求められる。一方、高速道路のように車両2が高速で走行している場合は、車両2を制御できる精度を考慮すると、車両2の進行方向に対して細かい粒度(例えば、10cm)で走行危険度マップを表現する必要はない。また一般的に、車両走行に関する危険度は、例えば衝突危険度の指標として用いられるTTC(Time To Collision)のように、時間のスケールで判断される。これらのことから、走行危険度マップの表現において一定の精度が要求されるのは、時間のスケールであると考えられる。 On the other hand, the accuracy of the travel risk map required in the travel track planning changes according to the travel speed of the vehicle 2. For example, when it is necessary to control the vehicle 2 that sews a gap at a low speed, such as a parking lot or an alley, an expression with a fine granularity (for example, 10 cm) is required in the travel risk map. On the other hand, when the vehicle 2 is traveling at a high speed like an expressway, in consideration of the accuracy with which the vehicle 2 can be controlled, the travel risk map is displayed with a fine granularity (for example, 10 cm) with respect to the traveling direction of the vehicle 2. There is no need to express. In general, the danger level relating to vehicle travel is determined on a time scale, such as TTC (Time To Collation) used as an index of the collision risk degree. From these facts, it is considered that it is a time scale that requires a certain accuracy in the expression of the travel risk map.
 そこで、以上のことを鑑み、本実施形態では、図2のようにグリッドマップで表現された走行危険度マップにおいて、車両2の進行方向すなわち前後方向における各セルの長さdを、車両2の走行速度vに応じて変化させる。具体的には、d=a・v(aは正の定数)の関係を満たすように、各セルの長さdを走行速度vに比例して変化させる。ここで、aは時間スケールにおける走行危険度マップの表現精度に相当する値である。一方、車両2の横方向における各セルの幅dは、車両2の走行速度vに対して一定の値に設定する。このとき、車両2がT秒間に進む領域が走行危険度マップ上で少なくとも表現されるように、各セルの長さdおよび幅dや、セルの数が設定される。例えば、車両2の進行方向すなわちx軸正方向のセル数Nx+と、車両2の横方向すなわちy軸正負方向のセル数Ny+及びNy-とは、それぞれ以下の式(7)、(8)で算出される。
 Nx+=L/d=T/a       ・・・(7)
 Ny±=L/d=Alat/2d  ・・・(8)
Therefore, in view of the above, in the present embodiment, in the travel risk map expressed by a grid map as shown in FIG. 2, the length d x of each cell in the traveling direction of the vehicle 2, that is, the front-rear direction is set as the vehicle 2. Is changed according to the traveling speed v. Specifically, the length d x of each cell is changed in proportion to the traveling speed v so as to satisfy the relationship d x = a · v (a is a positive constant). Here, a is a value corresponding to the expression accuracy of the travel risk map on the time scale. On the other hand, the width d y of each cell in the transverse direction of the vehicle 2 is set to a constant value relative to the running speed v of the vehicle 2. At this time, the vehicle 2 such that the area to proceed to T seconds is at least expressed on running the risk map, the length and d x and width d y of each cell, the number of cells is set. For example, the number of cells N x + in the traveling direction of the vehicle 2, that is, the positive x-axis direction, and the number of cells N y + and N y− in the lateral direction of the vehicle 2, that is, the y-axis positive and negative directions, 8).
N x + = L x / d x = T / a (7)
N y ± = L y / d y = A lat T 2 / 2d y (8)
 式(7)、(8)において、セル数Nx+、Ny+及びNy-は、いずれも走行速度vに拠らない定数で表現されている。そのため、走行危険度マップに必要なセル数は、車両2の走行速度vに関わらず常時一定値に保つことができる。これは、走行危険度マップに必要なメモリ使用量を一定値に規定することができることを意味しており、周辺環境認識装置10のようにメモリ制約がある組込み用の装置での設計を容易とすることができる。 In the equations (7) and (8), the number of cells N x + , N y + and N y− are all expressed as constants that do not depend on the traveling speed v. Therefore, the number of cells required for the travel risk map can always be kept constant regardless of the travel speed v of the vehicle 2. This means that the memory usage necessary for the travel risk map can be defined to a constant value, and it is easy to design with a built-in device with memory restrictions such as the surrounding environment recognition device 10. can do.
 また、上記のように、車両2の進行方向における各セルの長さdを車両2の走行速度vに比例して設定することにより、d=a・vと表すことができる。そのため、1つのセルに相当する距離を車両2が前方に走行する時間Txcellは、Txcell=d/v=aと算出され、走行速度vに依存せず一定となる。これは、例えばa=0.1と設定すれば、時間スケールで表現された走行危険度マップにおいて、0.1秒単位での表現精度を保つことができることを意味する。 Further, as described above, by setting the length d x of each cell in the traveling direction of the vehicle 2 in proportion to the traveling speed v of the vehicle 2, it can be expressed as d x = a · v. Therefore, the time T xcell in which the vehicle 2 travels forward a distance corresponding to one cell is calculated as T xcell = d x / v = a, and is constant regardless of the travel speed v. This means that, for example, if a = 0.1 is set, the expression accuracy in units of 0.1 seconds can be maintained in the travel risk map expressed in a time scale.
 一方、横方向については、前述のように車両2が所定時間内に進む距離Lは走行速度vに拠らず一定であるため、要求精度を満たすように各セルの幅dを固定で設定すればよい。例えば、0.1秒単位での表現精度を保ちたい場合、0.1秒間に車両2が横方向に進む距離は、前述の式(6)からL=Alat・(0.1)/2=Alat/200と求められる。そのため、d=Alat/200とすれば、横方向の要求精度を保つことができる。 On the other hand, the lateral direction and the distance L y of the vehicle 2 travels within the predetermined time as described above is constant regardless of the traveling speed v, so as to satisfy the required accuracy in a fixed width d y of each cell You only have to set it. For example, when it is desired to maintain the expression accuracy in units of 0.1 seconds, the distance that the vehicle 2 travels in the horizontal direction in 0.1 seconds can be calculated from the above equation (6) by L y = A lat · (0.1) 2 / 2 = A lat / 200. Therefore, if d y = A lat / 200, the required accuracy in the horizontal direction can be maintained.
 ただし、上記のようにして決定されたセル幅dの値が外界センサ群40の認識精度に比べて非常に小さい場合は、横方向の走行危険度マップが必要以上に細かく表現されてしまい、メモリを不要に消費することにつながる。そのため、このような場合は外界センサ群40の認識精度に合せてセル幅dを設定してもよい。 However, if the value of the cell width d y determined as described above is very small compared to the recognition accuracy of the external sensor group 40, travel risk map in the lateral direction it will be expressed finely than necessary, This leads to unnecessary consumption of memory. Therefore, such a case may be set cell width d y in accordance with the recognition accuracy of the external sensor group 40.
 また、セル幅dを走行危険度マップ全体で共通とせずに、x軸250から離れるほど大きくしてもよい。具体的には、例えば、各セルの横方向の位置y(ただしnは整数、図2の例ではnは-8から8までの整数))を、y=Alat・(a・n)/2と設定する。なお、aは前述のように、時間スケールにおける走行危険度マップの表現精度に相当する値であり、例えばa=0.1秒である。この場合、各セルのセル幅dは横位置yに応じて変化するが、時間スケール上ではセル長さdと同様に、常にa秒単位の表現精度を保つことができる。このようにすれば、セル幅dが固定である場合と比較して、横方向のセル数Ny+及びNy-を小さく抑えることができるため、さらなるメモリ消費量の削減が可能となる。 Also, without the common cell width d y throughout running the risk map may be increased as the distance from the x-axis 250. Specifically, for example, the horizontal position y n of each cell (where n is an integer, n is an integer from −8 to 8 in the example of FIG. 2)), y n = A lat · (a · n ) is set to 2/2. As described above, a is a value corresponding to the expression accuracy of the travel risk map on the time scale, for example, a = 0.1 seconds. In this case, the cell width d y of each cell varies depending on the lateral position y n, similarly to the cell length d x a time on the scale, it can always be maintained the representation accuracy of a seconds. In this way, the number of cells N y + and N y− in the horizontal direction can be kept small compared to the case where the cell width dy is fixed, and thus the memory consumption can be further reduced.
 本実施形態では、走行危険度マップパラメータ決定処理において、以上説明したような方針に従って、車両2の走行速度vに基づいて走行危険度マップの各セルの長さdを決定すると共に、各セルの幅dを決定することができる。そして、決定したこれらの値に応じたパラメータを決定することができる。 In the present embodiment, in the travel risk map parameter determination process, the length d x of each cell of the travel risk map is determined based on the travel speed v of the vehicle 2 according to the policy described above, and each cell You can determine the width d y. And the parameter according to these determined values can be determined.
 なお、前述のように各セルの長さdを車両2の走行速度vに比例して変化させる際には、例えば図4のグラフに示すように、所定速度未満ではdを変化させないようにすることが好ましい。図4は、車両2の走行速度vと走行危険度マップのセル長さdとの関係を示したグラフの一例である。図4のグラフ401において、横軸は車両2の走行速度vを表し、縦軸は走行危険度マップのセル長さdを表している。本実施形態では、グラフ401において折れ線411に示すように、走行速度vが所定値Vth以上のときには、セル長さdを走行速度vに比例して変化させる一方で、走行速度vが所定値Vthよりも小さいときには、セル長さdを固定値dx0とする。このようにすれば、車両2が低速で走行しているときに、セル長さdを必要以上に小さくしてしまうのを避けることができる。すなわち、セル長さdを単純に速度比例とすると、走行速度vが小さいときには、外界センサ群40の認識精度や安全性の判断に必要な要求精度に対して、セル長さdが必要以上に小さくなり、不要にメモリを消費してしまう。そこで、上記のように走行速度vが所定値Vthよりも小さいときには、セル長さdを固定値dx0とすることで、不要なメモリ消費を避けることができる。 Incidentally, when changing in proportion to the length d x of each cell as described above to the running speed v of the vehicle 2, for example, as shown in the graph of FIG. 4, so as not to change the d x is less than the predetermined speed It is preferable to make it. FIG. 4 is an example of a graph showing the relationship between the traveling speed v of the vehicle 2 and the cell length d x of the traveling risk map. In the graph 401 of FIG. 4, the horizontal axis represents the traveling speed v of the vehicle 2, the vertical axis represents the cell length d x of the driving risk map. In the present embodiment, as indicated by a broken line 411 in the graph 401, when the traveling speed v is equal to or greater than a predetermined value Vth , the cell length d x is changed in proportion to the traveling speed v while the traveling speed v is predetermined. when less than the value V th, the cell length d x a fixed value d x0. In this way, it is possible to avoid making the cell length d x smaller than necessary when the vehicle 2 is traveling at a low speed. That is, if the cell length d x is simply proportional to the speed, the cell length d x is required for the accuracy required for the recognition accuracy of the external sensor group 40 and the safety judgment when the traveling speed v is small. As a result, the memory is unnecessarily consumed. Therefore, when the travel speed v as described above is smaller than the predetermined value V th, by the cell length d x a fixed value d x0, you can avoid unnecessary memory consumption.
 また、上記では簡単のため、車両2が一定の走行速度vで走行していると仮定し、T秒間に車両2が進む距離LをL=T・vとして説明したが、実際には車両2が走行中に加速する場合もある。この場合、車両2の最大縦加速度をAlonとすると、T秒間に車両2が進む距離Lは以下の式(9)で表現される。
 L=T・v+Alon・T/2  ・・・(9)
In the above description, for the sake of simplicity, it is assumed that the vehicle 2 is traveling at a constant traveling speed v, and the distance L x traveled by the vehicle 2 in T seconds is described as L x = T · v. The vehicle 2 may accelerate while traveling. In this case, if the maximum longitudinal acceleration of the vehicle 2 is A lon , the distance L x that the vehicle 2 travels in T seconds is expressed by the following equation (9).
L x = T · v + A lon · T 2/2 ··· (9)
 グラフ401において破線412は、d=(T・v+Alon・T/2)/Nx+の関係を示す直線である。距離Lを式(9)で表現した場合、グラフ401に示すように、折れ線411の屈曲部分がこの破線412上に位置するようにVthが設定される。すなわち、dx0=(T・Vth+Alon・T/2)/Nx+の関係を満たすように、セル長さdを走行速度vに比例して変化させる走行速度vの閾値Vthを設定することで、車両2が走行中に加速する場合についても対応可能となる。 The broken line in the graph 401 412 is a straight line indicating the d x = (T · v + A lon · T 2/2) / N x + relationship. When the distance L x is expressed by Expression (9), V th is set so that the bent portion of the broken line 411 is positioned on the broken line 412 as shown in the graph 401. That, d x0 = (T · V th + A lon · T 2/2) / N x + a to satisfy the relation, the threshold V th of the driving speed v which changes in proportion to the cell length d x to the running speed v It is possible to cope with the case where the vehicle 2 accelerates while traveling.
 また、車両2の走行速度vに応じて、走行危険度マップにおける車両2の位置を変化させてもよい。例えば、走行速度vが大きいときには、車両2が後方に走行することはない。そのため、この場合は車両2の後方に対する走行危険度を表現する必要性がなく、図2に示した走行危険度マップの後方長さXをX=0としてよい。反対に、走行速度vが小さい場合、すなわち車両2の低速走行時や停止時には、車両2がバック走行により後方に向かって走行する可能性がある。そのため、この場合は車両2の後方に対する走行危険度を表現することが重要となり、X>0とする必要がある。その一方で、前述のようにv<Vthのときにセル長dを固定値dx0とすると、走行速度vが小さいときには走行危険度マップの前方長さXが距離Lよりも大きくなり、車両2の前方の走行危険度が過剰に表現されることになる。 Further, the position of the vehicle 2 in the travel risk map may be changed according to the travel speed v of the vehicle 2. For example, when the traveling speed v is high, the vehicle 2 does not travel backward. Therefore, in this case, there is no need to express the travel risk for the rear of the vehicle 2, and the rear length X B of the travel risk map shown in FIG. 2 may be set to X B = 0. On the contrary, when the traveling speed v is low, that is, when the vehicle 2 travels at a low speed or stops, the vehicle 2 may travel backward due to the back travel. Therefore, in this case, it is important to express the degree of travel risk with respect to the rear of the vehicle 2, and it is necessary to satisfy X B > 0. On the other hand, when the cell length d x is a fixed value d x0 when v <V th as described above, the front length X F of the travel risk map is larger than the distance L x when the travel speed v is low. Thus, the traveling risk level in front of the vehicle 2 is excessively expressed.
 そこで本実施形態では、上記のように車両2の前方の走行危険度が過剰に表現されるのを避けるため、走行危険度マップパラメータ決定処理において、走行危険度マップ上での車両2の位置を走行速度vに応じて変化させるように、パラメータを決定する。具体的には、例えば図5のグラフに示すように、走行速度vに応じて走行危険度マップの前方長さXと後方長さXをそれぞれ設定すればよい。図5は、車両2の走行速度vと走行危険度マップの前後方向の長さX、Xおよびセル数Nx+、Nx-との関係を示したグラフの一例である。図5のグラフ402において、横軸は車両2の走行速度vを表し、縦軸の上方向は走行危険度マップの前方長さXを表し、縦軸の下方向は後方長さXを表している。グラフ402の太線421は、本実施形態における走行速度vと前方長さXの関係を表し、太線422は、本実施形態における走行速度vと後方長さXの関係を表している。また、図5のグラフ403において、横軸は車両2の走行速度vを表し、縦軸は車両2の前後方向における走行危険度マップのセル数を表している。グラフ403の破線431は、本実施形態における走行速度vと前方セル数Nx+の関係を表し、破線432は、本実施形態における走行速度vと後方セル数Nx-の関係を表している。 Therefore, in the present embodiment, in order to avoid excessively expressing the driving risk in front of the vehicle 2 as described above, the position of the vehicle 2 on the driving risk map is determined in the driving risk map parameter determination process. The parameter is determined so as to change according to the traveling speed v. More specifically, for example, as shown in the graph of FIG. 5, the travel risk map of the anterior length X F and the rear length X B a may be set respectively according to the running speed v. FIG. 5 is an example of a graph showing the relationship between the travel speed v of the vehicle 2 and the lengths X F and X B in the front-rear direction of the travel risk map and the number of cells N x + and N x− . In the graph 402 of FIG. 5, the horizontal axis represents the traveling speed v of the vehicle 2, the upper direction of the vertical axis represents the forward length X F of the traveling risk map, under the direction of the longitudinal axis of the rear length X B Represents. Thick line 421 of the graph 402 represents the relationship between the traveling speed v and the front length X F in the present embodiment, the thick line 422 represents the relationship between the traveling speed v and the rear length X B according to this embodiment. In the graph 403 of FIG. 5, the horizontal axis represents the traveling speed v of the vehicle 2, and the vertical axis represents the number of cells in the traveling risk map in the front-rear direction of the vehicle 2. Dashed 431 of graph 403 represents the traveling speed v and the front cell number N x + relationship in the present embodiment, the dashed line 432 represents the traveling velocity v and the rear cell number N x- relationship in this embodiment.
 T秒間に車両2が加速しながら後方に進む距離Lx-は、車両2の後方走行における最大縦加速度をAlon-(ただしAlon-<0)とすると、前述の式(9)を用いて、Lx-=|T・v+Alon-・T/2|と表すことができる。そこで本実施形態では、例えばグラフ402において太線421、422にそれぞれ示すように、v<Vthのときに、以下の式(10)、(11)をそれぞれ満たすように、前方セル数Nx+および後方セル数Nx-を決定する。なお、グラフ402では縦軸の下方向(負方向)を後方長さXとしていることから、式(11)の右辺の符号を反転させたものを太線422で示している。ここで、前方セル数Nx+と前方長さXの関係、および後方セル数Nx-と後方長さXの関係は、前述の式(1)、(2)でそれぞれ示したとおりである。また、式(10)においてXF0は、v=Vthのときの前方長さXの値である。
 X=T・v+Alon・T/2  ・・・(10)
 X=-(X-XF0)  ・・・(11)
The distance L x− that the vehicle 2 travels backward while accelerating in T seconds is obtained by using the above-described equation (9), where A lon− (where A lon− <0) is the maximum longitudinal acceleration when the vehicle 2 travels backward. Te, L x- = | T · v + a lon- · T 2/2 | can be expressed as. Therefore, in the present embodiment, for example, as indicated by thick lines 421 and 422 in the graph 402, when v <V th , the number of forward cells N x + and the following expressions (10) and (11) are satisfied respectively : The number of backward cells N x− is determined. Incidentally, a downward vertical axis in the graph 402 (negative direction) from the fact that the rear length X B, shows the one obtained by reversing the sign of the right side of equation (11) by a thick line 422. Here, the relationship between the number of front cells N x + and the front length X F and the relationship between the number of rear cells N x− and the rear length X B are as shown in the above-described equations (1) and (2), respectively. is there. In Formula (10), X F0 is the value of the forward length X F when v = V th .
X F = T · v + A lon · T 2/2 ··· (10)
X B = − (X F −X F0 ) (11)
 上記のようにすることで、走行危険度マップに対する要求範囲(前方は距離L、後方は距離Lx-)を満たしながら、グラフ403に示すように、車両2の前後方向での合計セル数(Nx++Nx-+1)を、一定値Nx0に保つことができる。そのため、不要なメモリ消費を抑えることが可能となる。 In the manner described above, while meeting the requirements range for running the risk map (forward distance L x, rear distance L x-), as shown in the graph 403, the total number of cells in the longitudinal direction of the vehicle 2 (N x + + N x− +1) can be kept at a constant value N x0 . Therefore, unnecessary memory consumption can be suppressed.
 なお、上記のように走行危険度マップの前後方向について、合計セル数を一定に保ちながら長さXとXをそれぞれ制御するというのは、走行危険度マップにおける車両2の進行方向に対する位置(後方セル数Nx-)を走行速度vに応じて変化させることに相当する。すなわち、図5のグラフ402の例では、グラフ403で示すように、走行速度vに応じて後方セル数Nx-が変化することになる。 Note that the longitudinal direction of the running risk map as described above, because respectively control the length X F and X B while keeping the total number of cells in the constant position with respect to the traveling direction of the vehicle 2 in the traveling risk map This corresponds to changing (the number of rear cells N x− ) according to the traveling speed v. That is, in the example of the graph 402 in FIG. 5, as shown by the graph 403, the number of rear cells N x− changes according to the traveling speed v.
 以上説明した走行危険度マップの表現形式の決定方法において、車両2の走行速度vには、車両2の現在の走行速度を用いてもよいし、過去の所定時間(例えば、1秒間)における平均速度のように統計的な速度を用いてもよい。また、将来の所定時間(例えば、5秒間)の予測平均速度のように、車両2に関する予測情報を示すものでもよい。 In the method for determining the expression format of the travel risk map described above, the current travel speed of the vehicle 2 may be used as the travel speed v of the vehicle 2, or an average over a past predetermined time (for example, 1 second). Statistical speeds such as speed may be used. Moreover, the prediction information regarding the vehicle 2 may be shown like a predicted average speed for a predetermined time in the future (for example, 5 seconds).
 本実施形態の走行危険度マップパラメータ決定処理では、以上のようにして、走行危険度マップのセル位置(セル長、セル幅)や車両2の位置を設定し、これらの設定結果に応じたパラメータを決定して、パラメータデータ群123として記憶部120に格納する。こうして決定されたパラメータを用いて走行危険度マップを作成することにより、車両2の走行に対する安全性の判断に必要な走行危険度マップに対する要求精度や要求範囲を満たしつつ、メモリ消費量を抑えることが可能となる。 In the travel risk map parameter determination process of the present embodiment, the cell position (cell length, cell width) of the travel risk map and the position of the vehicle 2 are set as described above, and parameters according to these setting results. Is stored in the storage unit 120 as the parameter data group 123. By creating a travel risk map using the parameters determined in this way, memory consumption is suppressed while satisfying the required accuracy and required range for the travel risk map necessary for judging the safety of the vehicle 2 for travel. Is possible.
<自車存在時間範囲決定処理600(S506)>
 次に、図3のステップS506で実行される自車存在時間範囲決定処理600について説明する。図6は、自車存在時間範囲決定処理600のフローチャートの一例を示す図である。
<Own vehicle existing time range determination processing 600 (S506)>
Next, the own vehicle presence time range determination process 600 executed in step S506 of FIG. 3 will be described. FIG. 6 is a diagram illustrating an example of a flowchart of the own vehicle presence time range determination process 600.
 まず、存在時間範囲決定部104は、ステップS601において、記憶部120のパラメータデータ群123から走行危険度マップに関するパラメータデータを取得する。ここで取得される走行危険度マップに関するパラメータデータとは、図3のステップS505の走行危険度マップパラメータ決定処理で決定されたパラメータデータや、周辺環境認識装置10の出荷前に事前にROM等の記憶部120に保存されたパラメータデータが含まれるものである。 First, the existence time range determination unit 104 acquires parameter data related to the travel risk map from the parameter data group 123 of the storage unit 120 in step S601. The parameter data relating to the travel risk map acquired here is the parameter data determined in the travel risk map parameter determination process in step S505 in FIG. 3 or the ROM or the like in advance before shipping the surrounding environment recognition device 10. The parameter data stored in the storage unit 120 is included.
 次に、存在時間範囲決定部104は、ステップS602において、走行危険度マップの各セルに対応する位置(x、y)において、運転距離D(x、y)を決定する。続いて、存在時間範囲決定部104は、ステップS603において、ステップS602で決定した運転距離D(x、y)に基づき、車両2の車速、加速度、ジャーク等を考慮して、当該位置における車両2の存在時間範囲TED(x、y)を算出する。そして、存在時間範囲決定部104は、ステップS604において、ステップS603で行った存在時間範囲TED(x、y)の算出結果に基づき、車両2の存在時間範囲マップを構成し、記憶部120の自車情報データ群121に設定する。ステップS604の処理を実行したら、存在時間範囲決定部104は、自車存在時間範囲決定処理600を終了する。 Next, the existence time range determination unit 104 determines the driving distance D (x, y) at the position (x, y) corresponding to each cell of the travel risk map in step S602. Subsequently, in step S603, the existence time range determination unit 104 considers the vehicle speed, acceleration, jerk, and the like of the vehicle 2 based on the driving distance D (x, y) determined in step S602. The existence time range TED (x, y) of is calculated. Then, in step S604, the existence time range determination unit 104 constructs an existence time range map of the vehicle 2 based on the calculation result of the existence time range TED (x, y) performed in step S603. Set in the car information data group 121. If the process of step S604 is executed, the existing time range determining unit 104 ends the own vehicle existing time range determining process 600.
 図7を用いて、ステップS602とステップS603でそれぞれ行われる処理の詳細を説明する。図7は、自車情報データ群121における車両2の存在時間範囲マップ300の一例を示した図である。 Details of the processing performed in steps S602 and S603 will be described with reference to FIG. FIG. 7 is a diagram showing an example of the existence time range map 300 of the vehicle 2 in the own vehicle information data group 121.
 ステップS602で決定される運転距離D(x、y)とは、車両2が座標値(x、y)の位置に到達するまでの道のりに相当する距離である。該当位置に対する軌道は、例えば、図7のy軸321上に中心点を持ち原点と該当位置を通る扇形の弧や、原点と該当位置を通って原点との接線がx軸320であるスプライン曲線等が考えられる。図7に例示した存在時間範囲マップ300では、(x、y)に対する軌道331と、(x、y)に対する軌道332とを示している。例えば、扇形の弧のモデルを用いた場合の運転距離D(x、y)は、扇形の半径r(x、y)と扇形の中心角θ(x、y)との積で表される。座標値(x、y)に対する半径r(x、y)と中心角θ(x、y)の値は、以下の式(12)、(13)を用いてそれぞれ算出することが可能である。
 r(x、y)=(x+y)/2y ・・・(12)
 θ(x、y)=arctan(x/(r-y)) ・・・(13)
The driving distance D (x, y) determined in step S602 is a distance corresponding to the road until the vehicle 2 reaches the position of the coordinate value (x, y). The trajectory for the corresponding position is, for example, a fan-shaped arc having a center point on the y-axis 321 in FIG. 7 and passing through the origin and the corresponding position, or a spline curve whose tangent line between the origin and the corresponding position is the x-axis 320. Etc. are considered. In the existence time range map 300 illustrated in FIG. 7, a trajectory 331 with respect to (x a , y a ) and a trajectory 332 with respect to (x b , y b ) are shown. For example, the operating distance D (x, y) when the sector arc model is used is represented by the product of the sector radius r (x, y) and the sector central angle θ (x, y). The values of the radius r (x, y) and the central angle θ (x, y) with respect to the coordinate value (x, y) can be calculated using the following equations (12) and (13), respectively.
r (x, y) = (x 2 + y 2 ) / 2y (12)
θ (x, y) = arctan (x / (ry)) (13)
 ステップS603で算出する存在時間範囲TED(x、y)は、各時間において車両2が当該位置に存在する確率を表現した分布である。図7の存在時間範囲マップ300において、(x、y)に対応する存在時間範囲TED(x、y)と、(x、y)に対応する存在時間範囲TED(x、y)とは、それぞれ時間確率分布301、302のように表される。なお実際には、厳密な確率分布を求めるのは困難であるため、時間確率分布301、302を近似して扱ってもよい。例えば、当該位置に対する平均到達時間T(x、y)を代表値として扱ってもよい。また、平均値μをT(x、y)、分散値σをf(T)としたガウス分布で近似してもよい。ここで、分散値σをTの関数fで表現しているのは、時間が経過するほど車両2が存在し得る時間帯が確率的に拡がるためである。なお、平均到達時間T(x、y)は、例えば、上述した車両2の走行速度vを用いて、運転距離D(x、y)を走行速度vで除算することにより算出される。 The existing time range TED (x, y) calculated in step S603 is a distribution expressing the probability that the vehicle 2 exists at the position at each time. In the presence time range map 300 of FIG. 7, (x a, y a ) present time range TED (x a, y a) corresponding to a, (x b, y b) present time corresponding to the range TED (x b , Y b ) are represented as time probability distributions 301 and 302, respectively. In practice, since it is difficult to obtain a strict probability distribution, the time probability distributions 301 and 302 may be approximated. For example, the average arrival time T r (x, y) for the position may be treated as a representative value. Alternatively, approximation may be made with a Gaussian distribution in which the average value μ is T r (x, y) and the variance value σ 2 is f (T r ). Here, the reason why the variance value σ 2 is expressed by the function f of T r is that the time zone in which the vehicle 2 can exist stochastically increases as time elapses. The average arrival time T r (x, y) is calculated, for example, by dividing the driving distance D (x, y) by the traveling speed v using the traveling speed v of the vehicle 2 described above.
 ここで、運転距離D(x、y)や存在時間範囲TED(x、y)は、原則として、走行危険度マップにおけるすべてのセル位置に対して算出する必要がある。セルの大きさを固定とした場合は、車両2の走行速度vが変化しても運転距離D(x、y)は変わらないので、予め算出した結果を記憶部120に保存しておくことで、ステップS602ではそれを参照して運転距離D(x、y)を決定できる。そのため、演算量を軽減することが可能である。一方、本実施形態のように車両2の走行速度vに応じてセルの大きさを動的に変化させる場合、走行速度vに応じて運転距離D(x、y)が変化するので、原則として運転距離D(x、y)を毎回算出する必要がある。この場合、存在時間範囲TED(x、y)についても毎回算出する必要がある。その結果、セルの大きさを固定とした場合に比べて、演算量が多くなるという課題が生じる。 Here, in principle, the driving distance D (x, y) and the existence time range TED (x, y) need to be calculated for all cell positions in the travel risk map. When the cell size is fixed, the driving distance D (x, y) does not change even if the traveling speed v of the vehicle 2 changes. Therefore, by storing the calculation result in the storage unit 120 in advance. In step S602, the driving distance D (x, y) can be determined with reference to it. Therefore, it is possible to reduce the calculation amount. On the other hand, when the cell size is dynamically changed according to the traveling speed v of the vehicle 2 as in the present embodiment, the driving distance D (x, y) changes according to the traveling speed v. It is necessary to calculate the driving distance D (x, y) every time. In this case, it is necessary to calculate the existence time range TED (x, y) every time. As a result, there arises a problem that the amount of calculation increases compared to the case where the cell size is fixed.
 そこで本実施形態では、前述のように、セルの長さを走行速度vに比例するように設定することで、車両2の走行速度vに応じてセルの大きさを動的に変化させた場合でも、演算量の増加を抑えるようにしている。この点について、以下に説明する。 Therefore, in this embodiment, as described above, when the cell length is dynamically changed according to the traveling speed v of the vehicle 2 by setting the cell length to be proportional to the traveling speed v. However, the increase in calculation amount is suppressed. This point will be described below.
 車両2の走行速度v(≧Vth)における存在時間範囲をTED(x、y、v)と表現すると、これは以下の式(14)で示すような特徴を持つ。
 TED(x、y、v)
 =D(a・v、y)/v
 =(v/Vth)・D(a・Vth、y・Vth/v)/v
 =TED(x、y・Vth/v、Vth)          ・・・(14)
When the existence time range at the traveling speed v (≧ V th ) of the vehicle 2 is expressed as TED (x, y, v), this has the characteristics shown by the following formula (14).
TED (x, y, v)
= D (a · v, y) / v
= (V / V th ) · D (a · V th , y · V th / v) / v
= TED (x, y · V th / v, V th ) (14)
 上記の式(14)は、前述の式(12)、(13)により、運転距離D(x、y)が以下の式(15)のような特徴を持つことにより導かれる。
 D(k・x、k・y)=k・D(x、y)・・・(15)
The above formula (14) is derived from the above formulas (12) and (13) when the driving distance D (x, y) has the characteristics as the following formula (15).
D (k · x, k · y) = k · D (x, y) (15)
 式(14)は、任意の速度v(≧Vth)における存在時間範囲TED(x、y、v)が、速度Vthのときの存在時間範囲TED(x、y、Vth)を参照することにより得られることを意味している。したがって、本実施形態では、速度Vthのときの存在時間範囲TED(x、y、Vth)を事前に計算してROM等の記憶部120に格納しておくことで、ステップS602とステップS603の計算処理量を大幅に削減することが可能である。なお、v<Vthの場合は、前述のようにセルの大きさが固定であるため、従来のセルの大きさを変化させない場合と同様に、運転距離D(x、y)を事前に計算してROM等の記憶部120に格納しておくことで、演算量の削減を図れる。 Expression (14) refers to the existence time range TED (x, y, V th ) when the existence time range TED (x, y, v) at an arbitrary velocity v (≧ V th ) is the velocity V th . It means that it is obtained by. Therefore, in the present embodiment, the existing time range TED (x, y, V th ) at the speed V th is calculated in advance and stored in the storage unit 120 such as the ROM, so that steps S602 and S603 are performed. It is possible to greatly reduce the amount of calculation processing. When v < Vth , the cell size is fixed as described above, so that the driving distance D (x, y) is calculated in advance as in the case where the conventional cell size is not changed. By storing the data in the storage unit 120 such as a ROM, the amount of calculation can be reduced.
 このように、本実施形態では、車両2の進行方向におけるセルの長さdを走行速度vに比例するように設定することで、事前の計算結果を用いて走行危険度の算出に必要な演算を行うことを可能とし、演算量を低減している。なお、本実施形態とは異なり、走行速度vに比例させずにセルの大きさを変化させた場合は、上述のような事前計算は困難であるため、演算量を低減することができない。本発明では、この点についても留意すべきである。 As described above, in the present embodiment, the cell length d x in the traveling direction of the vehicle 2 is set to be proportional to the traveling speed v, so that it is necessary to calculate the travel risk using the previous calculation result. It is possible to perform calculations and the amount of calculations is reduced. Unlike the present embodiment, when the cell size is changed without being proportional to the traveling speed v, it is difficult to perform the above-described pre-calculation, so the amount of calculation cannot be reduced. This point should be noted in the present invention.
<環境要素存在時間範囲決定処理700(S507)>
 次に、図3のステップS507で実行される環境要素存在時間範囲決定処理700について説明する。図8は、環境要素存在時間範囲決定処理700のフローチャートの一例を示す図である。
<Environment Element Existing Time Range Determination Processing 700 (S507)>
Next, the environment element existence time range determination process 700 executed in step S507 of FIG. 3 will be described. FIG. 8 is a diagram illustrating an example of a flowchart of the environment element existence time range determination process 700.
 まず、存在時間範囲決定部104は、ステップS701において、周辺環境要素情報データ群122を参照し、車両2の周辺に存在する環境要素のうち一つを選択する。 First, the existence time range determination unit 104 refers to the surrounding environment element information data group 122 in step S701, and selects one of the environment elements existing around the vehicle 2.
 続いて、存在時間範囲決定部104は、ステップS702において、ステップS701で選択した環境要素が他車両、自転車、歩行者等の移動体であるか否かを判定する。その結果、環境要素が移動体である場合はステップS703に進み、移動体でない場合はステップS706に進む。 Subsequently, in step S702, the existence time range determination unit 104 determines whether the environmental element selected in step S701 is a moving body such as another vehicle, a bicycle, or a pedestrian. As a result, if the environmental element is a moving object, the process proceeds to step S703, and if not, the process proceeds to step S706.
 ステップS702で環境要素が移動体であると判定した場合、存在時間範囲決定部104は、ステップS703において、周辺環境要素情報データ群122を参照し、ステップS701で選択した環境要素に対する移動予測結果を示す情報を取得する。 If it is determined in step S702 that the environmental element is a moving object, the existence time range determination unit 104 refers to the surrounding environmental element information data group 122 in step S703, and obtains a movement prediction result for the environmental element selected in step S701. Get the information shown.
 続いて、存在時間範囲決定部104は、ステップS704において、ステップS703で取得した当該環境要素の移動予測結果に基づき、当該位置における環境要素の存在時間範囲ETED(x、y)を算出する。なお、走行危険度マップは、車両2の軌道の危険度を判断するためのものであるため、車両2が特定の走行軌道を描くことを前提としてはならない。そのため、前述の自車存在時間範囲決定処理600では、すべてのセル位置に対して車両2の存在時間範囲を算出する必要がある。一方、環境要素については、その走行軌道を予測して危険度を判断する。そのため、ステップS703で取得した移動予測結果が示す当該環境要素の予測走行軌道に関連するセル位置のみに対して、存在時間範囲を算出すればよい。 Subsequently, in step S704, the existence time range determination unit 104 calculates the existence time range ETED (x, y) of the environment element at the position based on the movement prediction result of the environment element acquired in step S703. Note that the travel risk map is used to determine the risk of the trajectory of the vehicle 2, and therefore, it should not be assumed that the vehicle 2 draws a specific travel trajectory. Therefore, in the above-described own vehicle existence time range determination process 600, it is necessary to calculate the existence time range of the vehicle 2 for all cell positions. On the other hand, with respect to environmental elements, the travel trajectory is predicted to determine the degree of risk. Therefore, the existence time range may be calculated only for the cell position related to the predicted travel path of the environment element indicated by the movement prediction result acquired in step S703.
 当該環境要素の存在時間範囲の算出が終わると、存在時間範囲決定部104は、ステップS705において、その算出結果に基づき、環境要素存在時間範囲マップを周辺環境要素情報データ群122に設定する。 When the calculation of the existence time range of the environment element ends, the existence time range determination unit 104 sets the environment element existence time range map in the surrounding environment element information data group 122 based on the calculation result in step S705.
 続いて、存在時間範囲決定部104は、ステップS706において、車両2の周辺に存在する全ての環境要素をステップS701で選択済みであるか否かを判定する。未選択の環境要素がある場合はステップS701に戻り、その中でいずれかの環境要素をステップS701で選択した後、当該環境要素に対して上記ステップS702以降の処理を行う。一方、全ての環境要素を選択済みである場合に、存在時間範囲決定部104は、環境要素存在時間範囲決定処理700を終了する。 Subsequently, the existence time range determination unit 104 determines in step S706 whether all the environmental elements existing around the vehicle 2 have been selected in step S701. If there is an unselected environmental element, the process returns to step S701, and one of the environmental elements is selected in step S701, and then the process from step S702 onward is performed on the environmental element. On the other hand, when all the environmental elements have been selected, the existence time range determination unit 104 ends the environment element existence time range determination processing 700.
 以上説明した自車存在時間範囲決定処理600および環境要素存在時間範囲決定処理700により、車両2の現在位置の周辺の各位置に対する車両2の存在時間範囲を表す自車存在時間範囲マップと、車両2の現在位置の周辺の各位置に対する各環境要素の存在時間範囲を表す環境要素存在時間範囲マップとが、それぞれ決定される。 A vehicle presence time range map representing the vehicle 2 existence time range for each position around the current position of the vehicle 2 by the vehicle existence time range determination process 600 and the environment element existence time range determination process 700 described above, An environment element existence time range map representing the existence time range of each environment element for each position around the current position of 2 is determined.
<走行危険度マップ作成処理800(S508)>
 次に、図3のステップS508で実行される走行危険度マップ作成処理800について説明する。
<Driving risk map creation processing 800 (S508)>
Next, the travel risk map creating process 800 executed in step S508 of FIG. 3 will be described.
 走行危険度マップ作成部106は、図3のステップS505で実行された走行危険度マップパラメータ決定処理により決定されたパラメータに従い、走行危険度マップの各セルに相当する座標値(x、y)を決定する。次に、走行危険度決定部105は、図3のステップS506で実行された自車存在時間範囲決定処理600によって作成された車両2の存在時間範囲マップと、図3のステップS507で実行された環境要素存在時間範囲決定処理700によって作成された各環境要素の存在時間範囲マップとを用いて、座標値(x、y)における走行危険度R(x、y)を算出する。続いて、走行危険度マップ作成部106は、走行危険度決定部105が算出した走行危険度R(x、y)に基づき、走行危険度マップを生成し、記憶部120の走行危険度マップデータ群124に格納する。 The travel risk map creation unit 106 calculates coordinate values (x, y) corresponding to each cell of the travel risk map according to the parameters determined by the travel risk map parameter determination process executed in step S505 of FIG. decide. Next, the travel risk determination unit 105 executes the vehicle 2 existence time range map created by the vehicle existence time range determination processing 600 executed in step S506 of FIG. 3 and the step S507 of FIG. The travel risk degree R (x, y) at the coordinate value (x, y) is calculated using the existing time range map of each environmental element created by the environment element existing time range determination processing 700. Subsequently, the travel risk level map creating unit 106 generates a travel risk level map based on the travel risk level R (x, y) calculated by the travel risk level determination unit 105, and travel risk level map data stored in the storage unit 120. Store in group 124.
 走行危険度R(x、y)は、例えば、各環境要素によりもたらされる危険度の重み付け積算値であり、例えば以下の式(16)で表される。ただし式(16)において、r、w(iは1からnの整数)は、環境要素iに関する走行危険度と重み付け係数をそれぞれ表す。
 R(x、y)=w・r(x、y)+・・・+w・r(x、y) ・・(16)
The driving risk R (x, y) is, for example, a weighted integrated value of the risk caused by each environmental element, and is represented by, for example, the following expression (16). However, in Formula (16), r i and w i (i is an integer from 1 to n) represent a driving risk and a weighting coefficient for the environmental element i, respectively.
R (x, y) = w 1 · r 1 (x, y) +... + W n · r n (x, y) (16)
 または、走行危険度R(x、y)は、各環境要素によりもたらされる危険度の重みづけの最大値(w・r(x、y)の最大値)により算出してもよい。 Or, the travel risk, R (x, y) may be calculated by the maximum value of the weighting of risk posed by the environmental factors (maximum value of w i · r i (x, y)).
 環境要素iに関する走行危険度rは、図3のステップS506で生成された車両2の存在時間範囲マップと、図3のステップS507で生成された各環境要素の存在時間範囲マップとを用いて算出される。一例としては、自車存在時間範囲マップにおける車両2の存在時間範囲の確率分布と、環境要素存在時間範囲マップにおける各環境要素の存在時間範囲の確率分布との重なり具合に基づいて、走行危険度マップの各位置における走行危険度が算出される。存在時間範囲の確率分布に基づいた環境要素iに対する車両2の走行危険度R(x、y)の算出式は、例えば、以下の式(17)で表される。ただし式(17)において、p(x、y)(t)は車両2の存在時間範囲の確率分布を表しており、pi(x、y)(t)は環境要素iの存在時間範囲の確率分布を表している。 Running the risk r i on environmental element i, using the present time range map of the vehicle 2 that has been generated in step S506 in FIG. 3, the presence time range map of each environmental elements generated in step S507 in FIG. 3 Calculated. As an example, based on the degree of overlap between the probability distribution of the existence time range of the vehicle 2 in the own vehicle existence time range map and the probability distribution of the existence time range of each environmental element in the environment element existence time range map, The driving risk at each position on the map is calculated. A formula for calculating the travel risk R (x, y) of the vehicle 2 with respect to the environmental element i based on the probability distribution of the existence time range is expressed by, for example, the following formula (17). However, in the equation (17), p (x, y) (t) represents a probability distribution of the existence time range of the vehicle 2, and p i (x, y) (t) represents the existence time range of the environmental element i. Represents a probability distribution.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 または、車両2の存在時間範囲の代表値Trepreと環境要素iの存在時間範囲の代表値T(i) repreを用いて、例えば以下の式(18)により、走行危険度R(x、y)を算出してもよい。 Alternatively , using the representative value T repre of the existing time range of the vehicle 2 and the representative value T (i) repre of the existing time range of the environmental element i, for example, according to the following equation (18), the driving risk R (x, y ) May be calculated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の式(18)は、車両2の存在時間範囲の代表値Trepreと環境要素iの存在時間範囲の代表値T(i) repreとの差分の絶対値に基づく関数f(x)により、走行危険度を評価するものである。関数f(x)は、xが大きくなるほど値が小さくなる関数であり、例えば補正係数a、bを用いて、f(x)=a・exp(-bx)等の式で表すことができる。 The above equation (18) is obtained by the function f (x) based on the absolute value of the difference between the representative value T repre of the existing time range of the vehicle 2 and the representative value T (i) repre of the existing time range of the environmental element i. It evaluates the driving risk. The function f (x) is a function that decreases in value as x increases. For example, the function f (x) can be expressed by an expression such as f (x) = a · exp (−bx 2 ) using correction coefficients a and b. .
 式(18)において関数f(x)の値の大きさや減衰の程度は、車両2の存在時間範囲の代表値Trepreや、車両2の車速に応じて、例えば上記補正係数a、bを用いて調整してもよい。また、代表値を中心とした所定の分布(ガウス分布等)により、車両2や各環境要素の存在時間範囲の確率分布を近似し、それらの重ね合わせにより走行危険度を算出してもよい。 In Expression (18), the magnitude of the function f (x) and the degree of attenuation are determined using, for example, the correction coefficients a and b according to the representative value T repre of the existing time range of the vehicle 2 and the vehicle speed of the vehicle 2. May be adjusted. Further, the probability distribution of the existence time range of the vehicle 2 and each environmental element may be approximated by a predetermined distribution (Gaussian distribution or the like) centered on the representative value, and the driving risk may be calculated by superimposing them.
 上記算出方式によれば、所定位置における車両2と各環境要素の時間軸上の交錯度合を評価して危険度を設定しているため、車両2の走行危険度を実態に合う形で高精度に算出することができる。 According to the above calculation method, since the risk level is set by evaluating the degree of intersection of the vehicle 2 and each environmental element on the time axis at a predetermined position, the travel risk level of the vehicle 2 is highly accurate in a form that matches the actual situation. Can be calculated.
 図9、図10を用いて、走行危険度マップ作成処理800により生成される走行危険度マップの例を説明する。 An example of the travel risk map generated by the travel risk map creation process 800 will be described with reference to FIGS.
 図9は、車両2の走行道路環境の一例を示した図である。図9では、車両2が対向二車線の道路を走行しているシーンが示されている。図9のシーンでは、車両2近傍の反対車線において他車両452が路上駐車しており、他車両451が当該駐車車両(他車両452)を追い越そうとしている。この道路は車線幅が十分に広くないため、他車両451が駐車車両を追い越す過程で、反対車線(車両2が走行している車線)にはみ出す必要がある。また、車両2の前方において、他車両453が車両2と同程度の速度で走行している。図9においてハッチングで示した領域461、462、463は、他車両451、452、453の予測走行軌道の範囲をそれぞれ示している。一方、点線で表した460は、車両2がこれまでの走行を継続した場合の予測走行軌道を示している。 FIG. 9 is a diagram illustrating an example of a traveling road environment of the vehicle 2. FIG. 9 shows a scene in which the vehicle 2 is traveling on an opposite two-lane road. In the scene of FIG. 9, another vehicle 452 is parked on the road in the opposite lane near the vehicle 2, and the other vehicle 451 is about to pass the parked vehicle (other vehicle 452). Since this road is not wide enough, the other vehicle 451 needs to protrude into the opposite lane (the lane in which the vehicle 2 is traveling) in the process of overtaking the parked vehicle. In addition, the other vehicle 453 is traveling at the same speed as the vehicle 2 in front of the vehicle 2. In FIG. 9, areas 461, 462, and 463 indicated by hatching indicate the ranges of predicted traveling tracks of the other vehicles 451, 452, and 453, respectively. On the other hand, 460 indicated by a dotted line indicates a predicted traveling path when the vehicle 2 continues traveling so far.
 図10は、図9に示したシーンにおける走行危険度マップの生成例である。図10左側の走行危険度マップ801は、速度v=V(>Vth)での走行危険度マップの例を示し、図10右側の走行危険度マップ802は、速度v=V(>V)での走行危険度マップの例を示している。上述のように、車両2の進行方向におけるセルの長さは、車両2の走行速度vに比例して大きくなるため、走行危険度マップ802は、走行危険度マップ801と比べて車両2の前方に長くなっていることがわかる(XFb>XFa)。 FIG. 10 is a generation example of a travel risk map in the scene shown in FIG. A travel risk map 801 on the left side of FIG. 10 shows an example of a travel risk map at a speed v = V a (> V th ), and a travel risk map 802 on the right side of FIG. 10 shows a speed v = V b (> An example of the travel risk map at V a ) is shown. As described above, since the length of the cell in the traveling direction of the vehicle 2 increases in proportion to the traveling speed v of the vehicle 2, the travel risk map 802 is more forward of the vehicle 2 than the travel risk map 801. (X Fb > X Fa ).
 走行危険度マップ801、802において、領域810~814では、異なる走行危険度がそれぞれ設定されている。なお、領域810、811は車両2の走行車線側の非車道領域と路側帯領域にそれぞれ相当し、領域812は走行車線領域に相当する。また、領域813は路側帯を含む対向車線領域に相当し、領域814は対向車線側の非車道領域に相当する。走行危険度マップ802ではこれらの領域810~814の図示を省略しているが、走行危険度マップ801と同様である。走行危険度マップ801、802に示した領域810~814の走行危険度は、静的な環境要素が示す道路属性として各領域を認識し、それぞれの走行危険度モデルに従って該当セルに走行危険度を積算することにより求められたものである。 In the travel risk maps 801 and 802, different travel risk levels are set in areas 810 to 814, respectively. Regions 810 and 811 correspond to a non-road region and a roadside belt region on the traveling lane side of the vehicle 2, and a region 812 corresponds to a traveling lane region. An area 813 corresponds to an oncoming lane area including a roadside zone, and an area 814 corresponds to a non-road area on the oncoming lane side. Although these regions 810 to 814 are not shown in the travel risk map 802, they are the same as the travel risk map 801. The travel risk in the areas 810 to 814 shown in the travel risk maps 801 and 802 are recognized as road attributes indicated by static environmental elements, and the travel risk is assigned to the corresponding cell according to the respective travel risk models. It is obtained by integrating.
 また、走行危険度マップ801の領域815及び走行危険度マップ802の領域817と、走行危険度マップ801の領域816及び走行危険度マップ802の領域818は、それぞれ他車両451、452による走行危険度が表現されたものである。他車両452は、駐車車両でありその場に存在し続けるため、領域816及び818に示すように、車両2の速度に関わらず、他車両452付近に非常に高い走行危険度が設定される。これらの領域において、車両2が該当位置を走行した場合の衝突確率は1である。一方、他車両451は、移動車両であり車両2と存在時間範囲が重なる領域は、車両2との相対速度に応じて変わってくる。例えば、車両2の走行速度がv=Vの場合は、他車両451が車両2の走行車線にはみ出してくるタイミングで、車両2の走行軌道と他車両451の走行軌道とが時間的に交錯する。そのため、走行危険度マップ801において領域815のように走行危険度が設定される。一方、車両2の走行速度が相対的に大きいv=Vの場合は、他車両451が車両2の走行車線にはみ出してくる前のタイミングで、車両2の走行軌道と他車両451の走行軌道とが時間的に交錯する。そのため、走行危険度マップ802において領域817のように走行危険度が設定される。 Further, an area 815 of the travel risk map 801 and an area 817 of the travel risk map 802, an area 816 of the travel risk map 801, and an area 818 of the travel risk map 802 are travel risk levels by the other vehicles 451 and 452, respectively. Is expressed. Since the other vehicle 452 is a parked vehicle and continues to exist on the spot, a very high traveling risk is set in the vicinity of the other vehicle 452 regardless of the speed of the vehicle 2 as shown in regions 816 and 818. In these areas, the collision probability is 1 when the vehicle 2 travels through the corresponding position. On the other hand, the other vehicle 451 is a moving vehicle, and the region where the vehicle 2 and the existence time range overlap varies depending on the relative speed with the vehicle 2. For example, if the running speed of the vehicle 2 is v = V a, at the timing when the other vehicle 451 comes protrudes driving lane of the vehicle 2, the traveling trajectory and temporally interlaced in running track and another vehicle 451 of the vehicle 2 To do. Therefore, the travel risk is set as in the area 815 in the travel risk map 801. On the other hand, when v = Vb where the traveling speed of the vehicle 2 is relatively high, the traveling track of the vehicle 2 and the traveling track of the other vehicle 451 are the timing before the other vehicle 451 protrudes into the traveling lane of the vehicle 2. Intersect with each other in time. Therefore, the travel risk is set as in the area 817 in the travel risk map 802.
 これに拠れば、例えば、走行制御装置70は、走行危険度マップ801を用いて車両2の走行制御を行う場合は、他車両451との衝突リスクの回避のため領域815を回避するように、走行車線812の左寄りを走行する軌道を選択する。一方、走行危険度マップ802を用いて車両2の走行制御を行う場合は、不要な回避軌道を選択せずに走行車線の中心を走行する軌道を選択する。このように、状況に応じた安全で快適な走行軌道の判断を容易に行うことが可能である。 Based on this, for example, when the travel control device 70 performs travel control of the vehicle 2 using the travel risk map 801, the travel control device 70 avoids the region 815 in order to avoid a collision risk with the other vehicle 451. A track that travels to the left of the travel lane 812 is selected. On the other hand, when the travel control of the vehicle 2 is performed using the travel risk map 802, a track that travels in the center of the travel lane is selected without selecting an unnecessary avoidance track. In this way, it is possible to easily determine a safe and comfortable traveling path according to the situation.
<走行危険度マップの出力データフォーマット>
 次に、走行危険度マップのデータフォーマットについて説明する。図11は、本実施形態における周辺環境認識装置10の走行危険度マップ提供部107が出力する走行危険度マップのデータフォーマット850の一例の説明図である。ただし、通信プロトコルに関するヘッダ情報等の図示は省略している。
<Output data format of travel risk map>
Next, the data format of the travel risk map will be described. FIG. 11 is an explanatory diagram showing an example of the data format 850 of the travel risk map output by the travel risk map providing unit 107 of the surrounding environment recognition device 10 according to the present embodiment. However, illustration of header information related to the communication protocol is omitted.
 周辺環境認識装置10から出力される走行危険度マップデータは、図11のデータフォーマット850に示すように、総セル数851、X方向のセル数852、Y方向のセル数853、X方向のセルの長さ854、Y方向のセルの長さ855、自車両位置856、自車速857、走行危険度情報858、等の各データにより構成される。 As shown in the data format 850 of FIG. 11, the driving risk map data output from the surrounding environment recognition apparatus 10 includes a total cell number 851, a cell number 852 in the X direction, a cell number 853 in the Y direction, and a cell in the X direction. Length 854, cell length 855 in the Y direction, own vehicle position 856, own vehicle speed 857, travel risk information 858, and the like.
 総セル数851は、走行危険度マップを構成するセルの総数を示すデータであり、これはX方向のセル数852とY方向のセル数853の積と同値である。X方向のセルの長さ854、Y方向のセルの長さ855は、走行危険度マップにおける各セルの車両2の前後方向と左右方向の長さをそれぞれ示すデータであり、それぞれ前述のセル長さd、セル幅dに該当する。自車両位置856は、走行危険度マップ上で車両2がどのセル位置に設定されているかを示すデータであり、例えば、(X方向の位置、Y方向の位置)の座標で表現される。これは、図5で説明したように、走行危険度マップ上での車両2の位置を走行速度vに応じて変化させる場合に必要となる情報である。自車速857は、当該走行危険度マップの生成の際に基準とした車両2の走行速度vを示すデータである。なお、ここでの車両2の走行速度vとは、前述のように、現在の速度でもよいし、統計的な速度でもよいし、将来の予測に基づく速度でもよい。走行危険度情報858は、走行危険度マップにおける各セルの走行危険度に関する情報を示すデータである。走行危険度は、所定の範囲の数値(例えば、0~100)で表現され、例えば、数値が大きいほど危険度が大きいことを意味する。 The total number of cells 851 is data indicating the total number of cells constituting the travel risk map, which is equivalent to the product of the number of cells 852 in the X direction and the number of cells 853 in the Y direction. The cell length 854 in the X direction and the cell length 855 in the Y direction are data indicating the length in the front-rear direction and the left-right direction of the vehicle 2 of each cell in the travel risk map, respectively. is d x, it corresponds to the cell width d y. The own vehicle position 856 is data indicating which cell position the vehicle 2 is set on the travel risk map, and is expressed by, for example, coordinates of (position in the X direction, position in the Y direction). This is information required when the position of the vehicle 2 on the travel risk map is changed according to the travel speed v as described with reference to FIG. The own vehicle speed 857 is data indicating the traveling speed v of the vehicle 2 as a reference when the travel risk map is generated. The traveling speed v of the vehicle 2 here may be a current speed, a statistical speed, or a speed based on a future prediction as described above. The travel risk information 858 is data indicating information related to the travel risk of each cell in the travel risk map. The driving risk is expressed by a numerical value (for example, 0 to 100) within a predetermined range. For example, the larger the numerical value, the higher the risk.
 本実施形態では、セルの長さ(d)が車両2の走行速度vに比例するため、走行危険度マップのデータでは、X方向のセルの長さ854の値が、自車速857の値に比例して変化する。また、図5で説明したように、走行危険度マップ上での車両2の位置が走行速度vに応じて変化するため、自車両の位置856(特にx成分)の値も、自車速857の値に応じて変化する。一方、それ以外の符号851~853、855の各データの値については、自車速857の値が変わっても変化しない。すなわち、総セル数851の値が変化しないため、走行危険度マップの出力データ長は固定長である。そのため、周辺環境認識装置10から走行危険度マップのデータを受信して処理を行う走行制御装置70や車載用表示制御装置20では、走行危険度マップに関する処理に使用するメモリ量を確定的に見積もることができ、設計が容易になるという利点がある。 In this embodiment, since the cell length (d x ) is proportional to the traveling speed v of the vehicle 2, the value of the cell length 854 in the X direction is the value of the own vehicle speed 857 in the data of the travel risk map. Changes in proportion to As described with reference to FIG. 5, since the position of the vehicle 2 on the travel risk map changes according to the travel speed v, the value of the position 856 (particularly the x component) of the host vehicle is also the value of the host vehicle speed 857. It changes according to the value. On the other hand, other data values of reference numerals 851 to 853 and 855 do not change even if the value of the host vehicle speed 857 changes. That is, since the value of the total number of cells 851 does not change, the output data length of the travel risk map is a fixed length. Therefore, in the travel control device 70 and the in-vehicle display control device 20 that receive and process the data of the travel risk map from the surrounding environment recognition device 10, the amount of memory used for the process related to the travel risk map is deterministically estimated. This has the advantage of being easy to design.
<車載用表示制御装置20の走行危険度マップ表示処理>
 次に、図12~図14を用いて車載用表示制御装置20の動作について説明する。図12は、車載用表示制御装置20により実行される走行危険度マップ表示処理フロー900の一例を示す図である。
<Driving risk map display processing of in-vehicle display control device 20>
Next, the operation of the in-vehicle display control device 20 will be described with reference to FIGS. FIG. 12 is a diagram illustrating an example of a travel risk map display processing flow 900 executed by the in-vehicle display control device 20.
 まず、走行危険度マップ取得部201は、ステップS901において、周辺環境認識装置10から図11のデータフォーマット850に従って出力された走行危険度マップを取得する。 First, the travel risk level map acquisition unit 201 acquires the travel risk level map output from the surrounding environment recognition apparatus 10 according to the data format 850 of FIG. 11 in step S901.
 次に、制御計画情報取得部202は、ステップS902において、走行制御装置70から出力された制御計画情報を取得する。制御計画情報の中には、走行制御装置70が上記走行危険度マップに基づいて決定した走行軌道の情報が含まれている。 Next, the control plan information acquisition unit 202 acquires the control plan information output from the travel control device 70 in step S902. The control plan information includes information on the travel path determined by the travel control device 70 based on the travel risk map.
 そして、走行危険度マップ表示制御部203は、ステップS903において、ステップS901とステップS902で取得した走行危険度マップと制御計画情報を用いて、運転者または乗員に伝達するための画面情報を生成する。そして、生成した画面情報を、画面入出力部240を介して表示装置90に出力し、表示装置90において表示させる。 In step S903, the travel risk map display control unit 203 generates screen information to be transmitted to the driver or the occupant using the travel risk map and the control plan information acquired in steps S901 and S902. . Then, the generated screen information is output to the display device 90 via the screen input / output unit 240 and displayed on the display device 90.
 図13は、表示装置90における表示画面の例を示す図である。表示画面1001、1002は、それぞれ図10の走行危険度マップ801、802を取得したときの表示画面例に相当する。本実施形態では、表示画面1001、1002の左側に、センサや地図等による認知情報を表示するパネル1011、1021がそれぞれ配置され、表示画面の右側に、走行危険度マップと走行制御装置70が決定した走行軌道を表示するパネル1012、1022がそれぞれ配置されている。なお、パネル1012、1022の走行危険度マップは、車両2からの距離に応じた距離スケール1014、1024でそれぞれ表現されている。 FIG. 13 is a diagram illustrating an example of a display screen in the display device 90. Display screens 1001 and 1002 correspond to display screen examples when the travel risk maps 801 and 802 in FIG. 10 are acquired, respectively. In the present embodiment, panels 1011 and 1021 for displaying cognitive information by sensors and maps are arranged on the left side of the display screens 1001 and 1002, respectively, and the travel risk map and the travel control device 70 are determined on the right side of the display screen. Panels 1012, 1022 for displaying the travel trajectories are arranged. Note that the travel risk degree maps of the panels 1012, 1022 are represented by distance scales 1014, 1024 corresponding to the distance from the vehicle 2, respectively.
 表示画面1001、1002では、パネル1012とパネル1022に示されるように、走行危険度マップ上に車両2の走行軌道1013、1023がそれぞれ重畳表示される。これにより、車両2がどのような状況(危険性)に基づいて走行したか、もしくはどのように今後走行していくかを、運転者または乗員が把握することができる。車両の自動運転制御では一般に、運転者や乗員は、走行制御システムがどのような意図で車両を制御しているのかわからないため、不安を感じることがある。そこで、本実施形態の表示画面1001、1002のように、走行制御システム1の判断内容(走行軌道)とその根拠(走行危険度マップ及び認知情報)を示すことにより、運転者や乗員の不安を軽減することが可能となる。 On the display screens 1001 and 1002, as shown in the panel 1012 and the panel 1022, the traveling tracks 1013 and 1023 of the vehicle 2 are superimposed on the traveling risk map. Accordingly, the driver or the occupant can grasp what kind of situation (risk) the vehicle 2 has traveled or how the vehicle 2 will travel in the future. In general, in the automatic driving control of a vehicle, a driver or an occupant may feel anxiety because he / she does not know what purpose the driving control system is controlling the vehicle. Therefore, like the display screens 1001 and 1002 of the present embodiment, by showing the determination contents (traveling trajectory) of the traveling control system 1 and the grounds (traveling risk degree map and cognitive information), the driver and the occupant's anxiety. It becomes possible to reduce.
 なお、本実施形態では、前述のように車両2の走行速度vに比例して進行方向のセルの長さが変化するため、表示装置90における表示画面の形態に特徴がある。具体的には、表示画面1002では、表示画面1001に比べて走行速度vが大きいため、走行危険度マップの表示対象範囲が車両2の前方(進行方向)に拡がっている。また、図13の例では示していないが、同様にして、走行危険度マップ上の車両2の位置も走行速度vに応じて変化する。具体的には、図5で説明したように車両2の位置が変化する場合は、走行速度vが減少して低速になるにつれて、車両2の位置が走行危険度マップの中心に近づき、画面上で上方向に次第にずれていくような見え方となる。このように、車両2の走行速度の変化に応じて、表示画面上の走行危険度マップの対象領域や車両2の位置が変化することは、本実施形態における特徴の一つである。 In addition, in this embodiment, since the length of the cell of the advancing direction changes in proportion to the traveling speed v of the vehicle 2 as described above, the display screen 90 in the display device 90 has a feature. Specifically, on the display screen 1002, the travel speed v is larger than that on the display screen 1001, and thus the display target range of the travel risk map extends to the front (traveling direction) of the vehicle 2. Further, although not shown in the example of FIG. 13, the position of the vehicle 2 on the travel risk map similarly changes according to the travel speed v. Specifically, when the position of the vehicle 2 changes as described with reference to FIG. 5, the position of the vehicle 2 approaches the center of the travel risk map as the travel speed v decreases and decreases, It looks like it gradually shifts upward. As described above, the change in the target area of the travel risk map on the display screen and the position of the vehicle 2 in accordance with the change in the travel speed of the vehicle 2 is one of the features of the present embodiment.
 なお、上記で説明した図13の画面表示方法では、車両2の速度vが増加すると、それに比例して走行危険度マップの表示対象範囲が拡大していく。しかし、走行危険度マップの表示対象範囲が拡大していくと、表示装置90の画面サイズの制約等から、高速走行時には走行危険度マップ全体を(例えば、前後方向に)縮小して表示したり、一部を表示しないようにしたりする必要が生じる。その結果、高速走行時には走行危険度マップが見えづらくなる可能性がある。そこで、走行危険度マップが車両2の速度に比例して伸びていくことを利用して、所定速度以上では走行危険度マップを距離スケールではなく時間スケールで表現するという方式も考えられる。 In the screen display method of FIG. 13 described above, as the speed v of the vehicle 2 increases, the display target range of the travel risk map increases in proportion to the increase. However, as the display target range of the travel risk map increases, the entire travel risk map is reduced (for example, in the front-rear direction) and displayed during high-speed travel due to restrictions on the screen size of the display device 90 or the like. , It may be necessary not to display a part. As a result, there is a possibility that the travel risk map becomes difficult to see during high speed travel. Therefore, a method of expressing the travel risk map on a time scale instead of a distance scale by using the fact that the travel risk map extends in proportion to the speed of the vehicle 2 can be considered.
 図14は、距離スケールと時間スケールでそれぞれ表現した場合の表示装置90における表示画面の例を示す図である。図14において、表示画面1003は、車両2の走行速度vが前述の所定値Vthよりも小さい場合の距離スケールでの表示画面例であり、表示画面1004は、車両2の走行速度vが所定値Vth以上である場合の時間スケールでの表示画面例を示している。これらの表示画面でも、図13に示した表示画面1001、1002と同様に、左側にはセンサや地図等による認知情報を表示するパネル1031、1041がそれぞれ配置され、右側には走行危険度マップと走行制御装置70が決定した走行軌道を表示するパネル1032、1042がそれぞれ配置されている。また、パネル1032、1042では、走行危険度マップ上に車両2の走行軌道1033、1043がそれぞれ重畳表示されている。 FIG. 14 is a diagram illustrating an example of a display screen in the display device 90 when each is expressed by a distance scale and a time scale. In FIG. 14, a display screen 1003 is an example of a display screen on a distance scale when the traveling speed v of the vehicle 2 is smaller than the predetermined value Vth , and the display screen 1004 shows that the traveling speed v of the vehicle 2 is predetermined. The example of the display screen in the time scale in case it is more than the value Vth is shown. In these display screens, as in the display screens 1001 and 1002 shown in FIG. 13, panels 1031 and 1041 for displaying recognition information by sensors, maps, etc. are arranged on the left side, and a driving risk map and the right side are displayed. Panels 1032 and 1042 for displaying the traveling tracks determined by the traveling control device 70 are arranged. Further, on the panels 1032 and 1042, the traveling tracks 1033 and 1043 of the vehicle 2 are superimposed and displayed on the traveling risk map.
 本表現方式において、v<Vthのときには、前述のように走行危険度マップのセル長さdが固定値dx0であるため、表示画面1003のように、時間スケールでは表現せずに、車両2からの距離に応じた距離スケール1034で表現した走行危険度マップを表示する。一方、v≧Vthになると、表示画面1004のように、車両2の到達時間に応じた時間スケール1044で表現した走行危険度マップを表示する。このように、車両2の走行速度に応じて、距離スケールと時間スケールとを切り替えて走行危険度マップを表現する。時間スケールで表現した場合、高速走行時でも常に走行危険度マップの表示対象範囲が一定になるため、安定して表示することが可能である。 In this expression method, when v <V th , the cell length d x of the travel risk map is the fixed value d x0 as described above, so that it is not expressed on the time scale like the display screen 1003. A travel risk map expressed by a distance scale 1034 corresponding to the distance from the vehicle 2 is displayed. On the other hand, when v ≧ V th , a travel risk map expressed by a time scale 1044 corresponding to the arrival time of the vehicle 2 is displayed as in the display screen 1004. Thus, the travel risk map is expressed by switching between the distance scale and the time scale according to the travel speed of the vehicle 2. When expressed on a time scale, the display target range of the travel risk map is always constant even during high-speed travel, so that stable display is possible.
 以上のように、本実施形態によれば、走行危険度マップのセルの長さ(d)を走行速度vに比例するように設定することにより、安全性の判断に必要な要求精度と要求範囲を満たしつつ、走行危険度マップにおいて必要なセル数を常時一定値に保つことが可能である。これにより、走行危険度マップによるメモリ消費量を軽減するとともに、一定値に規定することが可能となり、メモリ制約がある組込み用の装置での設計が容易となる。 As described above, according to the present embodiment, by setting the cell length (d x ) of the travel risk map so as to be proportional to the travel speed v, the required accuracy and requirements required for the safety judgment are set. While satisfying the range, the required number of cells in the travel risk map can always be kept constant. As a result, the amount of memory consumed by the travel risk map can be reduced and can be regulated to a constant value, and the design with a built-in device with memory restrictions becomes easy.
 また、本実施形態によれば、車両2の進行方向におけるセルの長さ(d)を走行速度vに比例するように設定することにより、走行危険度の算出に必要な演算を事前計算しておくことが可能となり、演算量を低減することができる。 In addition, according to the present embodiment, by setting the cell length (d x ) in the traveling direction of the vehicle 2 to be proportional to the traveling speed v, the calculation necessary for calculating the traveling risk is calculated in advance. It is possible to reduce the amount of calculation.
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。 According to the embodiment of the present invention described above, the following operational effects are obtained.
(1)周辺環境認識装置10は、車両2に搭載され、車両2の周辺環境を認識する。周辺環境認識装置10は、車両2の走行速度を含む車両2の動きに関する自車情報を取得する自車情報取得部101と、車両2の周辺の環境要素に対する周辺環境要素情報を取得する周辺環境要素取得部102と、自車情報および周辺環境要素情報に基づいて、車両2の周辺の複数の位置における走行危険度をそれぞれ決定する走行危険度決定部105と、を備える。車両2の前後方向における複数の位置の間隔、すなわち走行危険度マップの各セルの長さdは、車両2の走行速度vに応じて変化する。このようにしたので、高速走行時と低速走行時の両方について、演算量やメモリ消費量を抑えつつ、安全性の判断に必要な危険度を求めることができる。 (1) The surrounding environment recognition device 10 is mounted on the vehicle 2 and recognizes the surrounding environment of the vehicle 2. The peripheral environment recognition apparatus 10 includes a host vehicle information acquisition unit 101 that acquires host vehicle information regarding movement of the vehicle 2 including the traveling speed of the vehicle 2, and a peripheral environment that acquires peripheral environment element information for environmental elements around the vehicle 2. An element acquisition unit 102 and a travel risk determination unit 105 that determines travel risk levels at a plurality of positions around the vehicle 2 based on the vehicle information and the surrounding environment element information are provided. The interval between a plurality of positions in the front-rear direction of the vehicle 2, that is, the length d x of each cell in the travel risk map changes according to the travel speed v of the vehicle 2. Since it did in this way, the danger required for judgment of safety can be calculated | required, suppressing the amount of calculations and memory consumption amount at the time of both high-speed driving and low-speed driving.
(2)車両2の前後方向における複数の位置の間隔、すなわち走行危険度マップの各セルの長さdは、車両2の走行速度vが所定値Vth以上のときには車両2の走行速度vに比例して変化し、車両2の走行速度vが所定値Vth未満のときには一定であることとした。このようにしたので、車両2が低速で走行しているときに、車両2の前後方向における複数の位置の間隔が必要以上に小さくなって不要にメモリが消費されるのを避けることができる。 (2) The interval between a plurality of positions in the front-rear direction of the vehicle 2, that is, the length d x of each cell in the travel risk map is such that the travel speed v of the vehicle 2 when the travel speed v of the vehicle 2 is equal to or greater than a predetermined value Vth. It is assumed that it is constant when the traveling speed v of the vehicle 2 is less than a predetermined value Vth . Since it did in this way, when the vehicle 2 is drive | working at low speed, it can avoid that the space | interval of the several position in the front-back direction of the vehicle 2 becomes small more than needed, and memory is not consumed unnecessarily.
(3)車両2の走行速度vが所定値Vth未満のときには、車両2の走行速度vが減少するほど車両2の後方における複数の位置の数、すなわち走行危険度マップの後方長さXを増加することとした。このようにしたので、車両2がバック走行により後方に向かって走行する可能性がある場合に、必要な範囲で走行危険度を拡大させることができる。 (3) When the traveling speed v of the vehicle 2 is less than the predetermined value Vth , the number of a plurality of positions behind the vehicle 2, that is, the rear length X B of the traveling risk map, as the traveling speed v of the vehicle 2 decreases. It was decided to increase. Since it did in this way, when there exists a possibility that the vehicle 2 may drive | work back by back driving | running | working, a driving | running | working risk can be expanded in a required range.
(4)上記の複数の位置の数、すなわち走行危険度マップのセルの合計数は、車両2の走行速度vの変化に対して一定であることとした。このようにしたので、周辺環境認識装置10から走行危険度マップのデータを受信して処理を行う装置において、走行危険度マップに関する処理に使用するメモリ量を確定的に見積もることができるため、設計の容易化が可能である。 (4) The number of the plurality of positions, that is, the total number of cells in the travel risk map is constant with respect to the change in the travel speed v of the vehicle 2. Since it did in this way, in the apparatus which receives and processes the data of the driving risk map from the surrounding environment recognition device 10, the amount of memory used for the processing related to the driving risk map can be estimated deterministically. Can be simplified.
(5)車両2の横方向における複数の位置の間隔、すなわち走行危険度マップの各セルの幅dは、車両2の走行速度vの変化に対して一定であることとした。このようにしたので、横方向に対する危険度の要求精度を保ちつつ、演算量やメモリ消費量を抑えることができる。 (5) spacing of the plurality of positions in the transverse direction of the vehicle 2, that is, the width d y of each cell of the traveling risk map was set to be constant with changes in the traveling speed v of the vehicle 2. Since it did in this way, the amount of calculation and memory consumption can be suppressed, maintaining the required precision of the risk degree with respect to a horizontal direction.
(6)車両2の横方向における複数の位置の間隔、すなわち走行危険度マップの各セルの幅dは、車両2を前後方向に貫く中心軸であるx軸250から離れるほど大きくなることとしてもよい。このようにすれば、さらなるメモリ消費量の削減が可能となる。 (6) spacing a plurality of positions in the transverse direction of the vehicle 2, that is, the width d y of each cell of the traveling risk map as to become larger as the distance from the x-axis 250 is a central axis passing through the vehicle 2 in the longitudinal direction Also good. In this way, the memory consumption can be further reduced.
(7)周辺環境認識装置10は、車両2の周辺の複数の位置の各々と走行危険度との関係を表す走行危険度マップを作成する走行危険度マップ作成部106をさらに備える。このようにしたので、車両2と各環境要素との時間軸上の交錯関係を走行危険度という指標に投影して、車両2の走行危険度に対する評価結果を2次元空間上で分かりやすく示した走行危険度マップを提供することができる。 (7) The surrounding environment recognition device 10 further includes a travel risk map creating unit 106 that creates a travel risk map that represents the relationship between each of a plurality of positions around the vehicle 2 and the travel risk. Since it did in this way, the crossing relationship on the time axis of the vehicle 2 and each environmental element was projected on the parameter | index of driving | running | working risk, and the evaluation result with respect to the driving | running | working risk of the vehicle 2 was shown clearly in two-dimensional space. A travel risk map can be provided.
(8)周辺環境認識装置10は、自車情報に基づいて、車両2の周辺の複数の位置の各々に対する車両2の存在時間範囲を表す自車存在時間範囲を決定すると共に、周辺環境要素情報に基づいて、車両2の周辺の複数の位置の各々に対する環境要素の存在時間範囲を表す環境要素存在時間範囲を決定する存在時間範囲決定部104をさらに備える。走行危険度決定部105は、存在時間範囲決定部104により決定された自車存在時間範囲および環境要素存在時間範囲に基づいて、複数の位置における走行危険度をそれぞれ決定する。このようにしたので、車両2の周辺環境や環境要素の時間的な変化を考慮して、車両2の走行危険度を高精度に評価することができる。 (8) The surrounding environment recognition device 10 determines the own vehicle existing time range indicating the existing time range of the vehicle 2 for each of a plurality of positions around the vehicle 2 based on the own vehicle information, and the surrounding environment element information Is further provided with an existence time range determination unit 104 that determines an environment element existence time range that represents the existence time range of the environment element for each of a plurality of positions around the vehicle 2. The travel risk level determination unit 105 determines travel risk levels at a plurality of positions based on the own vehicle presence time range and the environmental element presence time range determined by the presence time range determination unit 104. Since it did in this way, the driving | running | working risk degree of the vehicle 2 can be evaluated with high precision in consideration of the temporal change of the surrounding environment of the vehicle 2 and an environmental element.
(9)車載用表示制御装置20は、車両2に搭載された表示装置90に対して、車両2に関する情報を表示させる。車載用表示制御装置20は、車両2の周辺の複数の位置における走行危険度を表した走行危険度マップを取得する走行危険度マップ取得部201と、走行危険度マップ取得部201により取得された走行危険度マップを表示装置90に表示させる走行危険度マップ表示制御部203と、を備える。車両2の周辺における走行危険度マップの表示対象範囲は、車両2の走行速度vに応じて変化する。このようにしたので、高速走行時と低速走行時の両方について、演算量やメモリ消費量を抑えつつ、安全性の判断に必要な危険度を走行危険度マップで表現することができる。 (9) The in-vehicle display control device 20 displays information related to the vehicle 2 on the display device 90 mounted on the vehicle 2. The in-vehicle display control device 20 has been acquired by a travel risk map acquisition unit 201 that acquires a travel risk map representing travel risk levels at a plurality of positions around the vehicle 2, and the travel risk map acquisition unit 201. A travel risk map display control unit 203 that causes the display device 90 to display a travel risk map. The display target range of the travel risk map around the vehicle 2 changes according to the travel speed v of the vehicle 2. Since it did in this way, the danger required for judgment of safety can be expressed with a driving | running | working risk degree map, suppressing the amount of calculations and memory consumption about both the time of high speed driving | running | working and low speed driving | running | working.
(10)走行危険度マップは、複数の位置にそれぞれ対応する複数のセルに分割されており、走行危険度マップにおけるセルの大きさは、車両2の走行速度vが所定値Vth以上のときには車両2の走行速度vに応じて変化し、車両2の走行速度vが所定値Vth未満のときには一定である。このようにしたので、車両2が低速で走行しているときに、走行危険度マップのセルが必要以上に小さくなって不要にメモリが消費されるのを避けることができる。 (10) The travel risk map is divided into a plurality of cells respectively corresponding to a plurality of positions, and the cell size in the travel risk map is such that the travel speed v of the vehicle 2 is equal to or greater than a predetermined value Vth. It changes according to the traveling speed v of the vehicle 2, and is constant when the traveling speed v of the vehicle 2 is less than a predetermined value Vth . Since it did in this way, when the vehicle 2 is drive | working at low speed, it can avoid that the cell of a driving | running | working risk map becomes small more than necessary and memory is not consumed unnecessarily.
(11)車両2の走行速度vが所定値Vth未満のときには、車両2の走行速度vに応じて、走行危険度マップにおける車両2の位置が変化する。具体的には、車両2の走行速度vが減少するほど、車両2の位置が走行危険度マップの中心に近づく。このようにしたので、車両2がバック走行により後方に向かって走行する可能性がある場合に、演算量やメモリ消費量の増加を抑えつつ、走行危険度マップを必要な範囲に拡大して表現することができる。 (11) When the travel speed v of the vehicle 2 is less than the predetermined value Vth , the position of the vehicle 2 in the travel risk map changes according to the travel speed v of the vehicle 2. Specifically, the position of the vehicle 2 approaches the center of the travel risk map as the travel speed v of the vehicle 2 decreases. As described above, when there is a possibility that the vehicle 2 travels backward due to the back travel, the travel risk map is expanded to a necessary range while suppressing an increase in calculation amount and memory consumption. can do.
(12)走行危険度マップは、複数の位置にそれぞれ対応する複数のセルに分割されており、車両2の走行速度vが所定値Vth以上のときには車両2の到達時間に応じた時間スケールで表現され、車両2の走行速度vが所定値Vth未満のときには車両2からの距離に応じた距離スケールで表現されることとしてもよい。このようにすれば、高速走行時でも常に走行危険度マップの表示対象範囲を一定として、見やすく安定した走行危険度マップの表示が可能である。 (12) The travel risk map is divided into a plurality of cells respectively corresponding to a plurality of positions. When the travel speed v of the vehicle 2 is equal to or higher than a predetermined value Vth , the travel risk map is a time scale corresponding to the arrival time of the vehicle 2. It may be expressed as a distance scale corresponding to the distance from the vehicle 2 when the traveling speed v of the vehicle 2 is less than the predetermined value Vth . In this way, it is possible to display a stable and easy-to-see travel risk map with the display target range of the travel risk map always being constant even during high-speed travel.
 なお、以上で説明した実施形態は一例であり、本発明はこれに限られない。すなわち、様々な応用が可能であり、あらゆる実施の形態が本発明の範囲に含まれる。 Note that the embodiment described above is an example, and the present invention is not limited to this. That is, various applications are possible, and all the embodiments are included in the scope of the present invention.
 例えば、上記実施形態では、周辺環境認識装置10の各処理を、プロセッサとRAMを用いて、所定の動作プログラムを実行することで実現しているが、必要に応じて独自のハードウェアで実現することも可能である。また、上記の実施形態では、周辺環境認識装置10、車載用表示制御装置20、自車位置決定装置30、外界センサ群40、車両センサ群50、地図情報管理装置60、走行制御装置70、アクチュエータ群80、表示装置90をそれぞれ個別の装置として記載しているが、必要に応じて任意のいずれか2つ以上の装置を組み合せて実現することも可能である。 For example, in the above-described embodiment, each process of the surrounding environment recognition apparatus 10 is realized by executing a predetermined operation program using a processor and a RAM, but is realized by original hardware as necessary. It is also possible. Moreover, in said embodiment, the surrounding environment recognition apparatus 10, the vehicle-mounted display control apparatus 20, the own vehicle position determination apparatus 30, the external field sensor group 40, the vehicle sensor group 50, the map information management apparatus 60, the travel control apparatus 70, an actuator Although the group 80 and the display device 90 are described as separate devices, any two or more devices may be combined as necessary.
 上記の各処理が、プロセッサが所定の動作プログラムを実行することで実現される場合、各処理を実現する動作プログラム、テーブル、ファイル等の情報は、不揮発性半導体メモリ、ハードディスクドライブ、SSD(Solid State Drive)等の記憶デバイス、または、ICカード、SDカード、DVD等の計算機で読み取り可能な非一時的データ記憶媒体に格納することができる。 When each of the above processes is realized by the processor executing a predetermined operation program, information such as an operation program, a table, and a file for realizing each process includes a nonvolatile semiconductor memory, a hard disk drive, an SSD (Solid State). Or a non-transitory data storage medium that can be read by a computer such as an IC card, an SD card, or a DVD.
 また、図面には、実施形態を説明するために必要と考えられる制御線及び情報線を示しており、必ずしも、本発明が適用された実際の製品に含まれる全ての制御線及び情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。 In the drawings, control lines and information lines considered necessary for describing the embodiment are shown, and all control lines and information lines included in an actual product to which the present invention is applied are not necessarily shown. Not necessarily. Actually, it may be considered that almost all the components are connected to each other.
 以上説明した実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Moreover, although various embodiment was described above, this invention is not limited to these content. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2017年第087322号(2017年4月26日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese patent application No. 087322 in 2017 (filed on Apr. 26, 2017)
 1:走行制御システム、2:車両、10:周辺環境認識装置、20:車載用表示制御装置、30:自車位置決定装置、40:外界センサ群、50:車両センサ群、60:地図情報管理装置、70:走行制御装置、80:アクチュエータ群、90:表示装置、100:処理部、101:自車情報取得部、102:周辺環境要素取得部、103:環境要素移動予測部、104:存在時間範囲決定部、105:走行危険度決定部、106:走行危険度マップ作成部、107:走行危険度マップ提供部、120:記憶部、121:自車情報データ群、122:周辺環境要素情報データ群、123:パラメータデータ群、124:走行危険度マップデータ群、130:通信部、200:処理部、201:走行危険度マップ取得部、202:制御計画情報取得部、203:走行危険度マップ表示制御部、220:記憶部、230:通信部、240:画面入出力部 1: driving control system, 2: vehicle, 10: surrounding environment recognition device, 20: vehicle-mounted display control device, 30: own vehicle position determination device, 40: external sensor group, 50: vehicle sensor group, 60: map information management Device: 70: travel control device, 80: actuator group, 90: display device, 100: processing unit, 101: own vehicle information acquisition unit, 102: surrounding environment element acquisition unit, 103: environment element movement prediction unit, 104: existence Time range determining unit, 105: driving risk determining unit, 106: driving risk map creating unit, 107: driving risk map providing unit, 120: storage unit, 121: own vehicle information data group, 122: surrounding environment element information Data group, 123: Parameter data group, 124: Driving risk map data group, 130: Communication unit, 200: Processing unit, 201: Driving risk map acquisition unit, 202: Control plan information Obtaining unit, 203: traveling risk map display control unit, 220: storage unit, 230: communication unit, 240: display output unit

Claims (13)

  1.  車両に搭載され、前記車両の周辺環境を認識する周辺環境認識装置であって、
     前記車両の走行速度を含む前記車両の動きに関する自車情報を取得する自車情報取得部と、
     前記車両の周辺の環境要素に対する周辺環境要素情報を取得する周辺環境要素取得部と、
     前記自車情報および前記周辺環境要素情報に基づいて、前記車両の周辺の複数の位置における走行危険度をそれぞれ決定する走行危険度決定部と、を備え、
     前記車両の前後方向における前記複数の位置の間隔は、前記車両の走行速度に応じて変化する周辺環境認識装置。
    A surrounding environment recognition device that is mounted on a vehicle and recognizes the surrounding environment of the vehicle,
    A host vehicle information acquisition unit for acquiring host vehicle information relating to the movement of the vehicle including a traveling speed of the vehicle;
    A peripheral environment element acquisition unit that acquires peripheral environment element information for environmental elements around the vehicle;
    A travel risk determining unit that determines the travel risk at a plurality of positions around the vehicle based on the vehicle information and the surrounding environment element information, and
    The surrounding environment recognition device in which the interval between the plurality of positions in the front-rear direction of the vehicle changes according to the traveling speed of the vehicle.
  2.  請求項1に記載の周辺環境認識装置において、
     前記車両の前後方向における前記複数の位置の間隔は、前記車両の走行速度が所定値以上のときには前記車両の走行速度に比例して変化し、前記車両の走行速度が前記所定値未満のときには一定である周辺環境認識装置。
    The surrounding environment recognition apparatus according to claim 1,
    The interval between the plurality of positions in the front-rear direction of the vehicle changes in proportion to the traveling speed of the vehicle when the traveling speed of the vehicle is greater than or equal to a predetermined value, and is constant when the traveling speed of the vehicle is less than the predetermined value. A surrounding environment recognition device.
  3.  請求項2に記載の周辺環境認識装置において、
     前記車両の走行速度が前記所定値未満のときには、前記車両の走行速度が減少するほど前記車両の後方における前記複数の位置の数が増加する周辺環境認識装置。
    In the surrounding environment recognition device according to claim 2,
    When the traveling speed of the vehicle is less than the predetermined value, the surrounding environment recognition device increases the number of the plurality of positions behind the vehicle as the traveling speed of the vehicle decreases.
  4.  請求項1に記載の周辺環境認識装置において、
     前記複数の位置の数は、前記車両の走行速度の変化に対して一定である周辺環境認識装置。
    The surrounding environment recognition apparatus according to claim 1,
    The surrounding environment recognition device in which the number of the plurality of positions is constant with respect to a change in travel speed of the vehicle.
  5.  請求項1に記載の周辺環境認識装置において、
     前記車両の横方向における前記複数の位置の間隔は、前記車両の走行速度の変化に対して一定である周辺環境認識装置。
    The surrounding environment recognition apparatus according to claim 1,
    The surrounding environment recognition device in which an interval between the plurality of positions in the lateral direction of the vehicle is constant with respect to a change in a traveling speed of the vehicle.
  6.  請求項5に記載の周辺環境認識装置において、
     前記車両の横方向における前記複数の位置の間隔は、前記車両を前後方向に貫く中心軸から離れるほど大きくなる周辺環境認識装置。
    In the surrounding environment recognition device according to claim 5,
    The surrounding environment recognition apparatus in which the interval between the plurality of positions in the lateral direction of the vehicle increases as the distance from the central axis that penetrates the vehicle in the front-rear direction increases.
  7.  請求項1に記載の周辺環境認識装置において、
     前記複数の位置の各々と前記走行危険度との関係を表す走行危険度マップを作成する走行危険度マップ作成部をさらに備える周辺環境認識装置。
    The surrounding environment recognition apparatus according to claim 1,
    A surrounding environment recognition device further comprising a travel risk level map creation unit that creates a travel risk level map representing a relationship between each of the plurality of positions and the travel risk level.
  8.  請求項1に記載の周辺環境認識装置において、
     前記自車情報に基づいて、前記複数の位置の各々に対する前記車両の存在時間範囲を表す自車存在時間範囲を決定すると共に、前記周辺環境要素情報に基づいて、前記複数の位置の各々に対する前記環境要素の存在時間範囲を表す環境要素存在時間範囲を決定する存在時間範囲決定部をさらに備え、
     前記走行危険度決定部は、前記自車存在時間範囲および前記環境要素存在時間範囲に基づいて、前記複数の位置における走行危険度をそれぞれ決定する周辺環境認識装置。
    The surrounding environment recognition apparatus according to claim 1,
    Based on the vehicle information, the vehicle presence time range representing the vehicle presence time range for each of the plurality of positions is determined, and based on the surrounding environment element information, An existence time range determination unit that determines an environment element existence time range that represents the existence time range of the environment element;
    The driving risk determination unit is a surrounding environment recognition device that determines driving risk at the plurality of positions based on the vehicle existence time range and the environment element existence time range.
  9.  車両に搭載された表示装置に対して、前記車両に関する情報を表示させる表示制御装置であって、
     前記車両の周辺の複数の位置における走行危険度を表した走行危険度マップを取得する走行危険度マップ取得部と、
     前記走行危険度マップ取得部により取得された前記走行危険度マップを前記表示装置に表示させる走行危険度マップ表示制御部と、を備え、
     前記車両の周辺における前記走行危険度マップの表示対象範囲は、前記車両の走行速度に応じて変化する表示制御装置。
    A display control device that displays information about the vehicle on a display device mounted on the vehicle,
    A travel risk map acquisition unit for acquiring a travel risk map representing the travel risk at a plurality of positions around the vehicle;
    A travel risk map display control unit that causes the display device to display the travel risk map acquired by the travel risk map acquisition unit;
    A display control device in which a display target range of the travel risk map around the vehicle changes according to a travel speed of the vehicle.
  10.  請求項9に記載の表示制御装置において、
     前記走行危険度マップは、前記複数の位置にそれぞれ対応する複数のセルに分割されており、
     前記走行危険度マップにおける前記セルの大きさは、前記車両の走行速度が所定値以上のときには前記車両の走行速度に応じて変化し、前記車両の走行速度が前記所定値未満のときには一定である表示制御装置。
    The display control device according to claim 9,
    The travel risk map is divided into a plurality of cells respectively corresponding to the plurality of positions,
    The size of the cell in the travel risk map changes according to the travel speed of the vehicle when the travel speed of the vehicle is greater than or equal to a predetermined value, and is constant when the travel speed of the vehicle is less than the predetermined value. Display control device.
  11.  請求項10に記載の表示制御装置において、
     前記車両の走行速度が前記所定値未満のときには、前記車両の走行速度に応じて、前記走行危険度マップにおける前記車両の位置が変化する表示制御装置。
    The display control apparatus according to claim 10,
    A display control device that changes a position of the vehicle in the travel risk map according to a travel speed of the vehicle when the travel speed of the vehicle is less than the predetermined value.
  12.  請求項11に記載の表示制御装置において、
     前記車両の走行速度が前記所定値未満のときには、前記車両の走行速度が減少するほど、前記車両の位置が前記走行危険度マップの中心に近づく表示制御装置。
    The display control device according to claim 11,
    When the travel speed of the vehicle is less than the predetermined value, the display control apparatus is such that the position of the vehicle approaches the center of the travel risk map as the travel speed of the vehicle decreases.
  13.  請求項9に記載の表示制御装置において、
     前記走行危険度マップは、前記複数の位置にそれぞれ対応する複数のセルに分割されており、
     前記走行危険度マップは、前記車両の走行速度が所定値以上のときには前記車両の到達時間に応じた時間スケールで表現され、前記車両の走行速度が前記所定値未満のときには前記車両からの距離に応じた距離スケールで表現される表示制御装置。
    The display control device according to claim 9,
    The travel risk map is divided into a plurality of cells respectively corresponding to the plurality of positions,
    The travel risk map is represented on a time scale according to the arrival time of the vehicle when the travel speed of the vehicle is greater than or equal to a predetermined value, and the distance from the vehicle when the travel speed of the vehicle is less than the predetermined value. A display control device that is represented by a corresponding distance scale.
PCT/JP2018/015182 2017-04-26 2018-04-11 Surrounding environment recognition device, display control device WO2018198769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087322A JP6838769B2 (en) 2017-04-26 2017-04-26 Surrounding environment recognition device, display control device
JP2017-087322 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018198769A1 true WO2018198769A1 (en) 2018-11-01

Family

ID=63919522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015182 WO2018198769A1 (en) 2017-04-26 2018-04-11 Surrounding environment recognition device, display control device

Country Status (2)

Country Link
JP (1) JP6838769B2 (en)
WO (1) WO2018198769A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111332310A (en) * 2018-11-30 2020-06-26 采埃孚主动安全股份有限公司 Identification of objects by indirect signal reflection
JP2022159094A (en) * 2021-03-31 2022-10-17 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハー Advanced driver assistance system for assisting the driver of a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467438B (en) * 2020-03-31 2023-07-18 华为技术有限公司 Path planning method, device, controller and moving object
JP7666261B2 (en) 2021-09-17 2025-04-22 トヨタ自動車株式会社 Map data, map update method, vehicle control method, and vehicle control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070998A (en) * 2006-09-13 2008-03-27 Hitachi Ltd Vehicle surrounding information display device
WO2009078294A1 (en) * 2007-12-19 2009-06-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Information display device
WO2011101988A1 (en) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 Risk degree calculation device
JP2011253302A (en) * 2010-06-01 2011-12-15 Toyota Motor Corp Risk calculation device for vehicle
WO2012033173A1 (en) * 2010-09-08 2012-03-15 株式会社豊田中央研究所 Moving-object prediction device, virtual-mobile-object prediction device, program, mobile-object prediction method, and virtual-mobile-object prediction method
JP2013196032A (en) * 2012-03-15 2013-09-30 Toyota Motor Corp Driving support device
JP2013196033A (en) * 2012-03-15 2013-09-30 Toyota Motor Corp Driving support device
JP2017047694A (en) * 2015-08-31 2017-03-09 日立オートモティブシステムズ株式会社 Vehicle control apparatus and vehicle control system
JP2017224237A (en) * 2016-06-17 2017-12-21 日立オートモティブシステムズ株式会社 Peripheral environment recognition device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070998A (en) * 2006-09-13 2008-03-27 Hitachi Ltd Vehicle surrounding information display device
WO2009078294A1 (en) * 2007-12-19 2009-06-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Information display device
WO2011101988A1 (en) * 2010-02-22 2011-08-25 トヨタ自動車株式会社 Risk degree calculation device
JP2011253302A (en) * 2010-06-01 2011-12-15 Toyota Motor Corp Risk calculation device for vehicle
WO2012033173A1 (en) * 2010-09-08 2012-03-15 株式会社豊田中央研究所 Moving-object prediction device, virtual-mobile-object prediction device, program, mobile-object prediction method, and virtual-mobile-object prediction method
JP2013196032A (en) * 2012-03-15 2013-09-30 Toyota Motor Corp Driving support device
JP2013196033A (en) * 2012-03-15 2013-09-30 Toyota Motor Corp Driving support device
JP2017047694A (en) * 2015-08-31 2017-03-09 日立オートモティブシステムズ株式会社 Vehicle control apparatus and vehicle control system
JP2017224237A (en) * 2016-06-17 2017-12-21 日立オートモティブシステムズ株式会社 Peripheral environment recognition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111332310A (en) * 2018-11-30 2020-06-26 采埃孚主动安全股份有限公司 Identification of objects by indirect signal reflection
JP2022159094A (en) * 2021-03-31 2022-10-17 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハー Advanced driver assistance system for assisting the driver of a vehicle
JP7633202B2 (en) 2021-03-31 2025-02-19 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハー Advanced driver assistance system for assisting vehicle drivers

Also Published As

Publication number Publication date
JP2018185668A (en) 2018-11-22
JP6838769B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6622148B2 (en) Ambient environment recognition device
CN112572451B (en) Method and apparatus for autonomous vehicle execution
JP7722921B2 (en) Vehicle Control
WO2020097011A2 (en) Vehicle trajectory modification for following
US9405727B2 (en) Driving support device, driving support method, and driving support program
WO2019152888A1 (en) Safety procedure analysis for obstacle avoidance in autonomous vehicle
US20190283751A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7188325B2 (en) Driving support device
CN111547051A (en) Control system and control method for determining trajectory of motor vehicle based on long-term interaction
JP6468261B2 (en) Automated driving system
JP7435787B2 (en) Route confirmation device and route confirmation method
CN113165670A (en) Intelligent driving method, device, storage medium and computer program
JP6508114B2 (en) Automatic operation control system of moving object
CN104340152A (en) Dynamic safety shields for situation assessment and decision making in collision avoidance tasks
WO2018198769A1 (en) Surrounding environment recognition device, display control device
JP7193202B2 (en) Motion prediction method and motion prediction device
KR20190045308A (en) A vehicle judging method, a traveling path correcting method, a vehicle judging device, and a traveling path correcting device
CN115158359B (en) Method and system for improving planning module of autonomous driving vehicle
JP7206048B2 (en) Driving characteristic estimation method and driving characteristic estimation device
WO2022158272A1 (en) Processing method, processing system, processing program, and processing device
JP7364111B2 (en) Processing method, processing system, processing program
CN115447607A (en) Method and device for planning vehicle trajectory
JP2020053069A (en) Automotive electronic control unit
US12179792B2 (en) Vehicle control
JP2020163968A (en) Vehicle drive assisting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792133

Country of ref document: EP

Kind code of ref document: A1