[go: up one dir, main page]

WO2018199703A1 - 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018199703A1
WO2018199703A1 PCT/KR2018/004974 KR2018004974W WO2018199703A1 WO 2018199703 A1 WO2018199703 A1 WO 2018199703A1 KR 2018004974 W KR2018004974 W KR 2018004974W WO 2018199703 A1 WO2018199703 A1 WO 2018199703A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
pucch
reporting
pusch
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2018/004974
Other languages
English (en)
French (fr)
Inventor
강지원
양석철
김형태
박종현
염건일
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP18791726.5A priority Critical patent/EP3618322B1/en
Priority to KR1020197029171A priority patent/KR102095547B1/ko
Priority to KR1020207020881A priority patent/KR102446700B1/ko
Priority to CN201880041373.XA priority patent/CN110771073B/zh
Priority to KR1020207008721A priority patent/KR102137116B1/ko
Priority to JP2019558483A priority patent/JP7229938B2/ja
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of WO2018199703A1 publication Critical patent/WO2018199703A1/ko
Anticipated expiration legal-status Critical
Priority to US16/665,541 priority patent/US10778312B2/en
Priority to US16/906,742 priority patent/US11251851B2/en
Priority to US17/581,179 priority patent/US11742919B2/en
Priority to US18/222,195 priority patent/US11968014B2/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for reporting channel state information (CSI) and an apparatus for supporting the same.
  • CSI channel state information
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
  • SP semi-persistent
  • SP semi-persistent
  • an object of the present specification is to provide a method for resolving a collision between a PUSCH resource for SP CSI reporting and a specific uplink resource.
  • a method performed by a terminal may include activation of a semi-persistent (SP) CSI report ( Receiving downlink control information (DCI) indicating an activation from a base station, the downlink control information is scrambled with a specific RNTI distinguished from a Cell-Radio Network Temporary Identity (C-RNTI) Become; And reporting the semi-fixed CSI to the base station via a physical uplink shared channel (PUSCH) based on the received downlink control information.
  • SP semi-persistent
  • DCI downlink control information
  • C-RNTI Cell-Radio Network Temporary Identity
  • the SP CSI report is characterized by including a first SP CSI report and a second SP CSI report.
  • the method may further include receiving, from the base station, a PUSCH resource for reporting the SP CSI.
  • the SP CSI is reported to the base station through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the specific uplink resource is a PUCCH resource or a PUSCH resource on a mini-slot.
  • the SP CSI through the PUCCH is reported in a slot associated with the collision.
  • the method may further include determining an uplink resource for performing the SP CSI report.
  • the SP CSI is reported through the PUSCH.
  • the present disclosure provides a terminal for reporting channel state information (CSI) in a wireless communication system, comprising: an RF module (radio frequency module) for transmitting and receiving a radio signal; And a processor that is functionally connected to the RF module, wherein the processor includes downlink control information (DCI) indicating activation of a semi-persistent (SP) CSI report.
  • DCI downlink control information
  • SP semi-persistent
  • Is received from a base station and the downlink control information is scrambled with a specific RNTI distinguished from a Cell-Radio Network Temporary Identity (C-RNTI); And report the semi-fixed CSI to the base station through a physical uplink shared channel (PUSCH) based on the received downlink control information.
  • PUSCH physical uplink shared channel
  • scrambling the DCI with a separate RNTI from the C-RNTI or the SPS-C-RNTI may reduce power consumption of the UE. It works.
  • the present invention when a PUSCH resource for SP CSI reporting collides with a specific resource having a higher priority than the corresponding PUSCH resource, the present invention has an effect of increasing system performance by performing transmission on a specific resource having a higher priority. have.
  • FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
  • FIG. 5 shows an example of a block diagram of a transmitter consisting of an analog beamformer and an RF chain.
  • FIG. 6 shows an example of a block diagram of a transmitting end composed of a digital beamformer and an RF chain.
  • FIG 7 illustrates an example of an analog beam scanning method according to various embodiments of the present disclosure.
  • FIG. 8 illustrates an example of a PUSCH CSI report mode.
  • FIG. 9 illustrates an example of a PUCCH CSI report mode.
  • FIG. 10 shows an example of a self-contained subframe structure to which the method proposed in this specification can be applied.
  • FIG. 11 is a flowchart illustrating an example of an operation method of a terminal that performs an SP CSI report proposed in the present specification.
  • FIG. 12 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • FIG. 14 is a diagram illustrating an example of an RF module of a wireless communication device to which the method proposed in this specification can be applied.
  • FIG. 15 is a diagram illustrating still another example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the term 'base station (BS)' refers to a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and a generation NB (gNB).
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP access point
  • gNB generation NB
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • eLTE eNB An eLTE eNB is an evolution of an eNB that supports connectivity to EPC and NGC.
  • gNB Node that supports NR as well as connection with NGC.
  • New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
  • NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
  • Non-standalone NR A deployment configuration where a gNB requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-Standalone E-UTRA Deployment configuration in which the eLTE eNB requires gNB as an anchor for control plane connection to NGC.
  • User plane gateway The endpoint of the NG-U interface.
  • FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • the NG-RAN consists of gNBs that provide control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE (User Equipment).
  • RRC control plane
  • the gNBs are interconnected via an Xn interface.
  • the gNB is also connected to the NGC via an NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
  • the plurality of subcarrier intervals may be represented by an integer N (or, Can be derived by scaling. Further, even if it is assumed that very low subcarrier spacing is not used at very high carrier frequencies, the used numerology may be selected independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM numerologies supported in the NR system may be defined as shown in Table 1.
  • the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
  • Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
  • each radio frame is It consists of 10 subframes having a section of.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
  • the transmission of an uplink frame number i from a user equipment (UE) is greater than the start of the corresponding downlink frame at the corresponding UE. You must start before.
  • slots within a subframe Numbered in increasing order of within a radio frame They are numbered in increasing order of.
  • One slot is Consists of consecutive OFDM symbols of, Is determined according to the numerology and slot configuration used. Slot in subframe Start of OFDM symbol in the same subframe Is aligned with the beginning of time.
  • Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols of a downlink slot or an uplink slot can be used.
  • Table 2 shows numerology Shows the number of OFDM symbols per slot for a normal CP in Table 3, This indicates the number of OFDM symbols per slot for the extended CP in.
  • an antenna port In relation to physical resources in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined so that the channel on which the symbol on the antenna port is carried can be inferred from the channel on which another symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be deduced from the channel carrying the symbol on another antenna port, then the two antenna ports are quasi co-located or QC / QCL. quasi co-location relationship.
  • the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid is in the frequency domain
  • one subframe includes 14 x 2 u OFDM symbols, but is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers, and Is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
  • the numerology And one resource grid for each antenna port p.
  • FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
  • each element of the resource grid for antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe. Index pair when referring to a resource element in a slot This is used. From here, to be.
  • Numerology Resource elements for antenna and antenna port p Is a complex value Corresponds to If there is no risk of confusion, or if no specific antenna port or numerology is specified, the indices p and Can be dropped, so the complex value is or This can be
  • the physical resource block (physical resource block) is in the frequency domain It is defined as consecutive subcarriers. On the frequency domain, the physical resource blocks can be zero Numbered until. At this time, a physical resource block number on the frequency domain And resource elements The relationship between is given by Equation 1.
  • the terminal may be configured to receive or transmit using only a subset of the resource grid.
  • the set of resource blocks set to be received or transmitted by the UE is from 0 on the frequency domain. Numbered until.
  • Physical uplink control signaling should be able to carry at least hybrid-ARQ acknowledgment, CSI report (including beamforming information if possible), and scheduling request.
  • At least two transmission methods are supported for an uplink control channel (UL control channel) supported by the NR system.
  • UL control channel uplink control channel
  • the uplink control channel may be transmitted in a short duration around the uplink symbol (s) transmitted last in the slot.
  • the uplink control channel is time-division-multiplexed and / or frequency-division-multiplexed with the UL data channel in the slot.
  • transmission of one symbol unit of a slot is supported.
  • the short uplink control information (UCI) and data are frequency-divided between the UE and the terminals when at least the physical resource block (PRB) for the short UCI and data does not overlap. -Multiplexed.
  • Whether symbol (s) in the slot for transmitting the short PUCCH are supported at least 6 GHz or more to support time division multiplexing (TDM) of short PUCCHs from different terminals in the same slot; Mechanisms for notifying the terminal are supported.
  • TDM time division multiplexing
  • the UCI and RS are multiplexed to a given OFDM symbol by frequency division multiplexing (FDM); and 2)
  • FDM frequency division multiplexing
  • At least, short-term PUCCH over a 2-symbol duration of the slot is supported.
  • the subcarrier spacing between the downlink (DL) / uplink (UL) data and the short-term PUCCH in the same slot is supported.
  • a semi-static configuration is supported in which a PUCCH resource of a given terminal in a slot, ie short PUCCHs of different terminals, can be time division multiplexed within a given duration in the slot.
  • PUCCH resources include a time domain, a frequency domain, and, if applicable, a code domain.
  • the short-term PUCCH may be extended to the end of the slot from the terminal perspective. In this case, an explicit gap symbol is unnecessary after the short-term PUCCH.
  • Frequency division multiplexing may be performed by a terminal.
  • the uplink control channel may be transmitted in long-duration over a plurality of uplink symbols to improve coverage.
  • the uplink control channel is frequency division multiplexed with the uplink data channel in the slot.
  • a UCI carried by a long duration UL control channel with at least a Peak to Average Power Ratio (PAPR) design may be transmitted in one slot or multiple slots.
  • PAPR Peak to Average Power Ratio
  • Transmission using multiple slots is allowed in at least some cases for a total duration (eg 1 ms).
  • time division multiplexing between RS and UCI is supported for DFT-S-OFDM.
  • the long UL part of the slot may be used for long time PUCCH transmission. That is, a long time PUCCH is supported for both an uplink dedicated slot (UL-only slot) and a slot having a variable number of symbols composed of at least four symbols.
  • the UCI may be repeated in N slots (N> 1), where the N slots may or may not be contiguous in slots for which a long time PUCCH is allowed. .
  • Simultaneous transmission of PUSCH and PUCCH is supported for at least long PUCCH. That is, even if data exists, uplink control on PUCCH resources is transmitted.
  • UCI in PUSCH is supported.
  • Intra-TTI slot frequency hopping is supported within TTI.
  • TDM and FDM between short-term PUCCH and long-term PUCCH are supported for other terminals in at least one slot.
  • the PRB (or multiple PRBs) is the minimum resource unit size for the uplink control channel.
  • frequency resources and hopping may not be spread over carrier bandwidth.
  • the UE specific RS is used for NR-PUCCH transmission.
  • the set of PUCCH resources is set by higher layer signaling, and the PUCCH resources in the set are indicated by downlink control information (DCI).
  • DCI downlink control information
  • the timing between the data reception and the hybrid-ARQ acknowledgment transmission should be able to be indicated dynamically (at least with the RRC).
  • the combination of a semi-static configuration and dynamic signaling (for at least some type of UCI information) is used to determine the PUCCH resources for the 'long and short PUCCH format'.
  • the PUCCH resource includes a time domain, a frequency domain, and, if applicable, a code domain.
  • uplink transmission of at least a single HARQ-ACK bit is at least supported.
  • mechanisms are supported to enable frequency diversity.
  • a time interval between scheduling request (SR) resources set for the UE may be smaller than one slot.
  • Beam management in NR is defined as follows.
  • Beam determination the TRP (s) or the UE selecting its transmit / receive beam.
  • Beam measurement an operation in which the TRP (s) or the UE measures the characteristics of the received beamforming signal.
  • Beam reporting the UE reporting information of the beamformed signal based on the beam measurement.
  • Beam sweeping an operation of covering a spatial region using beams transmitted and / or received during a time interval in a predetermined manner.
  • Tx / Rx beam correspondence (correspondence) at the TRP and the UE is defined as follows.
  • the Tx / Rx beam correspondence in the TRP is maintained if at least one of the following is met.
  • the TRP may determine the TRP receive beam for uplink reception based on downlink measurements of the UE for one or more transmit beams of the TRP.
  • the TRP may determine the TRP Tx beam for downlink transmission based on the uplink measurement of the TRP for one or more Rx beams of the TRP.
  • the Tx / Rx beam correspondence at the UE is maintained if at least one of the following is met.
  • the UE may determine the UE Tx beam for uplink transmission based on the downlink measurement of the UE for one or more Rx beams of the UE.
  • the UE may determine the UE receive beam for downlink reception based on the indication of the TRP based on uplink measurement for one or more Tx beams.
  • TRP capability indication of UE beam response related information is supported.
  • the following DL L1 / L2 beam management procedure is supported within one or multiple TRPs.
  • P-1 Used to enable UE measurement for different TRP Tx beams to support the selection of TRP Tx beams / UE Rx beam (s).
  • Beamforming in TRP generally includes intra / inter-TRP Tx beam sweeps in different beam sets.
  • Beamforming at the UE it typically includes a UE Rx beam sweep from a set of different beams.
  • P-2 UE measurements for different TRP Tx beams are used to change the inter / intra-TRP Tx beam (s).
  • P-3 UE measurement for the same TRP Tx beam is used to change the UE Rx beam when the UE uses beam forming.
  • At least aperiodic reporting triggered by the network is supported in P-1, P-2 and P-3 related operations.
  • the UE measurement based on RS for beam management (at least CSI-RS) consists of K (total number of beams) beams, and the UE reports the measurement results of the selected N Tx beams.
  • N is not necessarily a fixed number.
  • Procedures based on RS for mobility purposes are not excluded.
  • the reporting information includes information indicating the measurand for the N beam (s) and the N DL transmission beams if at least N ⁇ K.
  • the UE may report a CRI (CSI-RS resource indicator) of N'.
  • the UE may be configured with the following higher layer parameters for beam management.
  • N 1 reporting setting, M ⁇ 1 resource setting
  • the links between the report setup and the resource setup are established in the agreed CSI measurement setup.
  • CSI-RS based P-1 and P-2 are supported with resource and reporting configuration.
  • -P-3 can be supported with or without reporting settings.
  • a reporting setting that includes at least the following:
  • Time domain operations e.g., aperiodic, periodic, semi-persistent
  • a resource setting that includes at least the following:
  • RS type at least NZP CSI-RS
  • Each CSI-RS resource set includes K ⁇ 1 CSI-RS resources (some parameters of K CSI-RS resources may be the same, e.g. port number, time domain operation, density and period)
  • NR supports the next beam report considering the L group with L> 1.
  • Measurement quantity for the N1 beam (supporting L1 RSRP and CSI reporting (if CSI-RS is for CSI acquisition))
  • Group-based beam reporting as described above may be configured in units of UEs.
  • NR supports that the UE can trigger a mechanism to recover from beam failure.
  • a beam failure event occurs when the quality of the beam pair link of the associated control channel is low enough (eg compared to a threshold, timeout of the associated timer).
  • the mechanism for recovering from beam failure (or failure) is triggered when a beam failure occurs.
  • the network is explicitly configured in the UE with resources for transmitting UL signals for recovery purposes.
  • the configuration of resources is supported where the base station listens from all or part of the direction (eg, random access region).
  • the UL transmission / resource reporting a beam failure may be located at the same time instance as the PRACH (resource orthogonal to the PRACH resource) or at a different time instance (configurable for UE) than the PRACH. Transmission of the DL signal is supported so that the UE can monitor the beam to identify new potential beams.
  • the NR supports beam management regardless of beam-related indications. If a beam related indication is provided, the information about the UE side beam forming / receiving procedure used for CSI-RS based measurement may be indicated to the UE via QCL.
  • parameters for delay, doppler, average gain, etc. used in the LTE system, as well as spatial parameters for beamforming at the receiver, will be added. And / or parameters related to angle of departure from the base station reception beamforming perspective may be included.
  • NR supports the use of the same or different beams in the control channel and corresponding data channel transmissions.
  • the UE may be configured to monitor the NR-PDCCH on M beam pair links simultaneously.
  • the maximum values of M ⁇ 1 and M may depend at least on the UE capabilities.
  • the UE may be configured to monitor the NR-PDCCH on different beam pair link (s) in different NR-PDCCH OFDM symbols.
  • Parameters related to UE Rx beam setup for monitoring the NR-PDCCH on multiple beam pair links are configured by higher layer signaling or MAC CE and / or are considered in the search space design.
  • NR supports the indication of the spatial QCL assumption between the DL RS antenna port (s) and the DL RS antenna port (s) for demodulation of the DL control channel.
  • candidate signaling methods for beam indication for NR-PDCCH i.e., configuration method for monitoring NR-PDCCH
  • MAC CE signaling RRC signaling
  • DCI signaling spec transparent and / or implicit methods, and combinations of these signaling methods. to be.
  • the NR For reception of a unicast DL data channel, the NR supports the indication of the spatial QCL assumption between the DL RS antenna port and the DMRS antenna port of the DL data channel.
  • Information indicative of the RS antenna port is indicated via DCI (downlink grant). This information also indicates a DMRS antenna port and a QCL RS antenna port.
  • the different set of DMRS antenna ports for the DL data channel can be represented as QCL with another set of RS antenna ports.
  • the analog beamforming technique is a beamforming technique applied to the initial multi-antenna structure. This is a method of branching an analog signal that has completed digital signal processing into a plurality of paths, and then applying a phase shift (PS) and power amplifier (PA) setting to each path to form a beam. Can mean.
  • PS phase shift
  • PA power amplifier
  • a structure is required in which a PA and a PS connected to each antenna process an analog signal derived from a single digital signal.
  • the PA and the PS process a complex weight.
  • FIG. 5 shows an example of a block diagram of a transmitter consisting of an analog beamformer and an RF chain. 5 is merely for convenience of description and does not limit the scope of the present invention.
  • an RF chain refers to a processing block in which a baseband (BB) signal is converted into an analog signal.
  • BB baseband
  • beam accuracy is determined according to the characteristics of the device of the PA and the PS, and may be advantageous for narrowband transmission due to the control characteristics of the device.
  • the multiplexing gain for increasing the transmission rate is relatively small.
  • beamforming for each terminal based on orthogonal resource allocation may not be easy.
  • beamforming is performed at the digital stage using a baseband (BB) process to maximize diversity and multiplexing gain in a MIMO environment.
  • BB baseband
  • 6 shows an example of a block diagram of a transmitting end composed of a digital beamformer and an RF chain. 6 is merely for convenience of description and does not limit the scope of the present invention.
  • beamforming may be performed as precoding is performed in the BB process.
  • the RF chain includes a PA. This is because, in the case of the digital beamforming technique, the complex weight derived for beamforming is applied directly to the transmission data.
  • the digital beamforming technique can maximize the maximum transmission rate of a single terminal (or user) based on the system capacity increase and the enhanced beam gain.
  • the digital beamforming-based MIMO scheme is introduced in the existing 3G / 4G (eg, LTE (-A)) system.
  • a massive MIMO environment may be considered in which the transmit / receive antenna is greatly increased.
  • the number of transmit / receive antennas may increase to tens or hundreds or more.
  • the transmitter must perform signal processing for hundreds of antennas through a BB process for digital signal processing. Accordingly, the complexity of signal processing is very large, and the complexity of hardware implementation can be very large since the number of RF chains is required as many antennas.
  • the transmitter needs independent channel estimation for all antennas.
  • the transmitting end needs feedback information for a huge MIMO channel composed of all antennas, pilot and / or feedback overhead may be very large.
  • a hybrid transmitter configuration method combining analog beamforming and digital beamforming is required, instead of exclusively selecting one of analog beamforming and digital beamforming.
  • analog beamforming may be used in a pure analog beamforming transceiver and a hybrid beamforming transceiver.
  • analog beam scanning may perform estimation on one beam at the same time. Therefore, the beam training time required for beam scanning is proportional to the total number of candidate beams.
  • Equation 2 the estimated time t s for the entire transmit / receive beam may be expressed by Equation 2 below.
  • Equation 2 t s denotes a time required for one beam scanning, K T denotes the number of transmit beams, and K R denotes the number of receive beams.
  • FIG. 7 illustrates an example of an analog beam scanning method according to various embodiments of the present disclosure. 7 is merely for convenience of description and does not limit the scope of the invention.
  • the terminal feeds back an identifier (eg, ID) of the beam having the highest signal strength to the base station. That is, as the number of individual beams increases as the number of transmit / receive antennas increases, longer training time may be required.
  • ID an identifier
  • analog beamforming changes the magnitude and phase angle of the continuous waveform in the time domain after the digital-to-analog converter (DAC), unlike digital beamforming, a training interval for individual beams needs to be guaranteed. There is. Therefore, as the length of the training interval increases, the efficiency of the system may decrease (that is, the loss of the system may increase).
  • CSI Channel state information
  • the UE receives a pilot signal (reference signal) for channel estimation from the base station, calculates channel state information (CSI), and reports it to the base station.
  • a pilot signal reference signal
  • CSI channel state information
  • the base station transmits a data signal based on the CSI information fed back from the terminal.
  • CSI information fed back by a UE includes channel quality information (CQI), a precoding matrix index (PMI), and a rank indicator (RI).
  • CQI channel quality information
  • PMI precoding matrix index
  • RI rank indicator
  • the CQI feedback is radio channel quality information provided to the base station for the purpose of providing a guide on which modulation & coding scheme (MCS) to apply when transmitting data (for link adaptation).
  • MCS modulation & coding scheme
  • the terminal feeds back a high CQI value so that the base station transmits data by applying a relatively high modulation order and a low channel coding rate. Data will be transmitted with a relatively low modulation order and a high channel coding rate.
  • the PMI feedback is preferred precoding matrix information provided to the base station for the purpose of providing a guide on which MIMO precoding scheme to apply when the base station installs multiple antennas.
  • the UE estimates the downlink MIMO channel between the base station and the terminal from the pilot signal and recommends through the PMI feedback which MIMO precoding the base station should apply.
  • the base station and the terminal share a codebook consisting of a plurality of precoding matrices, and each MIMO precoding matrix has a unique index in the codebook.
  • the terminal minimizes the amount of feedback information of the terminal by feeding back the index corresponding to the most preferred MIMO precoding matrix in the codebook as PMI.
  • PMI values do not have to consist of only one index.
  • the final 8tx MIMO precoding matrix must be combined only by combining two indices (first PMI & second PMI).
  • RI feedback is based on the preferred number of transmission layers provided to the base station for the purpose of providing a guide for the number of transmission layers preferred by the terminal when the base station and the terminal is equipped with multiple antennas to enable multi-layer transmission through spatial multiplexing. Information about this.
  • RI has a close relationship with PMI. This is because, according to the number of transport layers, the base station must know what precoding to apply to each layer.
  • PMI codebook can be defined based on single layer transmission and then PMI can be defined and fed back according to the number of layers.
  • this method has a disadvantage in that the amount of PMI / RI feedback information increases greatly as the number of transport layers increases. There is this.
  • PMI codebooks are defined according to the number of transport layers. That is, N size Nt x R matrices are defined in the codebook for R-layer transmission (where R is the number of layers, Nt is the number of transmit antenna ports, and N is the size of the codebook).
  • the size of the PMI codebook is defined regardless of the number of transport layers.
  • PMI / RI is defined as such a structure, so the number of transport layers (R) is consistent with the rank value of the precoding matrix (Nt x R matrix), and thus the term rank indicator (RI) is used.
  • PMI / RI described herein is not necessarily limited to mean the index value of the precoding matrix and the rank value of the precoding matrix represented by the Nt x R matrix like the PMI / RI in the LTE system.
  • the PMI described herein represents preferred MIMO precoder information among MIMO precoders applicable to the transmitter, and the form of the precoder is not limited to the linear precoder that can be expressed in a matrix as in the LTE system.
  • the RI described herein includes all feedback information indicating a preferred number of transport layers in a broader sense than the RI in LTE.
  • CSI information may be obtained in the entire system frequency domain, or may be obtained in some frequency domains. In particular, in a broadband system, it may be useful to obtain and feed back CSI information for some preferred frequency domain (e.g. subband) for each terminal.
  • some preferred frequency domain e.g. subband
  • CSI feedback is performed through an uplink channel.
  • periodic CSI feedback is performed through a PUCCH (physical uplink control channel)
  • aperiodic CSI feedback uses a PUSCH (physical uplink shared channel), which is an uplink data channel. Is done through.
  • Aperiodic CSI feedback means that the base station temporarily feeds back only when the CSI feedback information is desired.
  • the base station triggers CSI feedback through a downlink control channel such as PDCCH / ePDCCH.
  • FIG. 8 illustrates an example of a PUSCH CSI report mode.
  • PUCCH CSI reporting mode is also defined for periodic CSI feedback through PUCCH.
  • FIG. 9 illustrates an example of a PUCCH CSI report mode.
  • a time point for transmitting CQI and PMI and a time point for transmitting RI differ according to each CSI reporting mode.
  • reporting mode 1-0 only RI is transmitted at a specific PUCCH transmission, and wideband CQI is transmitted at another PUCCH transmission.
  • PUCCH reporting type is defined according to the type of CSI information configured at a specific PUCCH transmission time.
  • the reporting type for transmitting only RI corresponds to type3
  • the reporting type for transmitting only wideband CQI corresponds to type4.
  • the RI feedback period and offset value and the CQI / PMI feedback period and offset value are set to the UE through an upper layer message.
  • the CSI feedback information is included in uplink control information (UCI).
  • UCI uplink control information
  • Pilot or RS (reference signal) in the LTE system can be largely divided into the following.
  • Measurement RS Pilot for Channel Status Measurement
  • CSI measurement / reporting use (short term measurement): purpose of link adaptation, rank adaptation, closed loop MIMO precoding, etc.
  • Positioning RS pilot for terminal position estimation
  • MBSFN RS Pilot for Multi-cast / Broadcast Service
  • CRS Cell-specific RS
  • UE-specific RS is used for CSI measurement (use 1A) only for reception (use 2) for CSI-RS and downlink data channel (PDSCH).
  • CSI-RS is an RS designed exclusively for CSI measurement and feedback. It has a much lower RS overhead than CRS. CSI supports up to four multi-antenna ports, while CSI-RS supports up to eight multi-antenna ports. It is designed to be.
  • UE-specific RS is designed for demodulation of data channel. Unlike CRS, UE-specific RS is characterized in that MIMO precoding technique applied to data transmission to corresponding UE is RS applied to pilot signal.
  • the UE-specific RS does not need to be transmitted as many as the number of antenna ports like CRS and CSI-RS, but only as many as the number of transport layers (transmission rank).
  • the UE-specific RS is transmitted for a data channel reception purpose of the corresponding UE in the same resource region as the data channel resource region allocated to each UE through the scheduler of the base station, the UE-specific RS is characterized as a terminal-specific RS.
  • CRS is cell-specific because it is always transmitted in the same pattern within the system bandwidth so that all UEs in the cell can use it for measurement and demodulation purposes.
  • Sounding RS is designed as Measurement RS
  • DMRS Demodulation RS
  • PUSCH uplink data channel
  • PUCCH uplink control channel
  • the TDD (Time Division Duplexing) structure considered in the NR system is a structure that processes both uplink (UL) and downlink (DL) in one subframe. This is to minimize latency of data transmission in the TDD system, and the structure is referred to as a self-contained subframe structure.
  • 10 shows an example of a self-contained subframe structure to which the method proposed in this specification can be applied. 10 is merely for convenience of description and does not limit the scope of the invention.
  • one subframe includes 14 orthogonal frequency division multiplexing (OFDM) symbols as in the case of legacy LTE.
  • OFDM orthogonal frequency division multiplexing
  • region 1002 denotes a downlink control region
  • region 1004 denotes an uplink control region.
  • regions other than the region 1002 and the region 1004 may be used for transmitting downlink data or uplink data.
  • uplink control information and downlink control information are transmitted in one self-contained subframe.
  • uplink data or downlink data is transmitted in one self-contained subframe.
  • downlink transmission and uplink transmission may proceed sequentially, and transmission of downlink data and reception of uplink ACK / NACK may be performed. .
  • a base station eNodeB, eNB, gNB
  • a terminal user equipment (UE)
  • UE user equipment
  • a time gap is required for the process or the process of switching from the reception mode to the transmission mode.
  • some OFDM symbol (s) may be set to a guard period (GP).
  • the 3GPP NR will support three time-domain behaviors related to CSI reporting. Similarly, reporting for (analog) beam management can also support some or all of the following three time-domain behaviors.
  • CSI reporting When activated, CSI reporting is started (at a specific interval), and when deactivated, CSI reporting is stopped.
  • the periodic CSI report performs the CSI report with the RRC set period and slot offset.
  • DL RS downlink reference signal
  • DL RS for beam management also includes some or all of the following three time-domain behaviors.
  • the DL RS for the beam management is basically to include the CSI-RS, other downlink signals may be utilized.
  • mobility RS mobility RS, beam RS, synchronization signal (SS), SS block, DL DMRSs (e.g. PBCH DMRS, PDCCH DMRS) and the like may be utilized.
  • SS synchronization signal
  • DL DMRSs e.g. PBCH DMRS, PDCCH DMRS
  • CSI-RS measurement When activated, CSI-RS measurement starts (at a specific interval). When deactivated, CSI-RS measurement is stopped.
  • the periodic CSI-RS performs CSI-RS measurement with an RRC set period and slot offset.
  • a zero-power (ZP) CSI-RS based interference measurement scheme used in LTE will be supported for an interference measurement resource (IMR) assigned by a base station to a user equipment during CSI acquisition.
  • IMR interference measurement resource
  • -zero-power At least one of the CSI-RS based interference measurement method and the DMRS based interference measurement method will be supported.
  • ZP CSI-RS-based IMR has been set up via RRC signaling in LTE system, while NR will support dynamic setup and also supports three time-domain behaviors as follows.
  • AP is aperiodic
  • SP is semi-persistent
  • PR is simply expressed periodically.
  • Example 1 AP CSI reporting with AP / SP / PR NZP CSI-RS for channel measurement and AP / SP / PR ZP CSI-RS for interference measurement
  • Example 2 SP CSI reporting with AP / SP / PR NZP CSI-RS for channel measurement and AP / SP / PR ZP CSI-RS for interference measurement
  • AP RS / IMR is used only for AP reporting
  • SP RS / IMR is used only for AP or SP reporting.
  • the present invention is not limited thereto.
  • both the RS and the IMR will be included in the resource setting, and their use, that is, for channel estimation or interference estimation, may be indicated by setting for each link in the measurement setting.
  • PUCCH In NR (New Rat), PUCCH considers short PUCCH and long PUCCH.
  • the short PUCCH may be transmitted using one or two OFDM symbols in a time domain and one or more physical resource blocks (PRBs) in a frequency domain.
  • PRBs physical resource blocks
  • Table 4 below shows an example of the PUCCH format defined in NR.
  • PUCCH format 0 and PUCCH format 2 may be short PUCCH, and PUCCH format 1, PUCCH format 3 and PUCCH format 4 may be long PUCCH.
  • long PUCCH may be used to select 4 to 12 OFDM symbols in the time domain. And may be transmitted using one or more physical resource blocks (PRBs) in the frequency domain.
  • PRBs physical resource blocks
  • the short PUCCH may be used primarily for fast acknowledgment (ACK) or non-acknowledge (NACK) feedback for DL (Downlink) data in a salping self-contained slot structure.
  • ACK fast acknowledgment
  • NACK non-acknowledge
  • the long PUCCH may be used for ACK / NACK and CSI feedback by occupying a certain resource for each terminal similarly to the PUCCH of LTE.
  • the minimum number of symbols of the long PUCCH is 4 symbols.
  • Subcarrier spacing configuration Slots are in increasing order within one subframe, i.e. Numbered in increasing order within a radio frame Numbered as.
  • OFDM symbols in the slot may be classified as 'downlink (D)', 'flexible (X)', or 'uplink (U)'.
  • the UE may assume that downlink transmission will occur only in the 'downlink' or only in the 'flexible' symbol.
  • the UE may assume that uplink transmission will occur only in the 'uplink' or only in the 'flexible' symbols.
  • the number of OFDM symbols included in one slot in the NR may be 14 or 7.
  • the slot structure is not only DL (downlink), UL (uplink), but also DL dominant structure (eg PDCCH, PDSCH and short PUCCH coexist in the slot), UL dominant (eg There may be various structures such as a PDCCH and a PUSCH in a slot) structure.
  • a plurality of PUCCH formats may be defined in the short PUCCH and the long PUCCH having the same number of symbols (for example, according to the maximum number of terminals or channel coding schemes that can be multiplexed) and a payload that can be transmitted for each PUCCH format.
  • the size may vary.
  • the LTE (-A) system supports aperiodic CSI reporting and periodic CSI reporting, and CSI reporting is performed through PUSCH and PUCCH, respectively.
  • Semi-persistent CSI reporting corresponds to CSI reporting that is not supported in LTE (-A) system.
  • This method is characterized by operating in conjunction with semi-persistent PUSCH resource allocation information (similar to semi-persistent scheduling (SPS) in LTE systems) in conjunction with CSI reporting activation. It is done.
  • semi-persistent PUSCH resource allocation information similar to semi-persistent scheduling (SPS) in LTE systems
  • the terminal when the terminal receives the CSI reporting activation message, the terminal starts the CSI report to the base station through the PUSCH resource designated in advance or through the SPS information transmitted along with the CSI reporting activation message.
  • the CSI reporting activation may be indicated through an L1 (eg DCI) message or an L2 (eg MAC CE) message.
  • L1 eg DCI
  • L2 eg MAC CE
  • the SPS information may be transmitted as L1 (eg DCI), L2 (eg MAC CE), or L3 (eg RRC) control information.
  • L1 eg DCI
  • L2 eg MAC CE
  • L3 eg RRC
  • the SPS information may be a temporal characteristic (eg period, slot offset), frequency characteristic (eg PRB indexes), code characteristic (eg sequence), and / or spatial characteristic (eg DMRS port) of a PUSCH resource. Can be configured.
  • a temporal characteristic eg period, slot offset
  • frequency characteristic eg PRB indexes
  • code characteristic eg sequence
  • / or spatial characteristic eg DMRS port
  • Some or all of the SPS information may be preset or specified (by L1 signaling, L2 signaling, or L3 signaling) rather than a CSI reporting activation time point.
  • the UE may start CSI reporting through a predetermined SPS resource while receiving a CSI reporting activation message.
  • the CSI reporting activation message may indicate a preset PUSCH activation.
  • the resource information for the SPS includes not only resource allocation (RA) information, which is frequency resource scheduling information, but also period and slot / The subframe offset information may be included together.
  • RA resource allocation
  • the frequency resource information may further include PUSCH hopping pattern information according to a reporting time point.
  • the SPS information (eg RA) is designated at the same time as the CSI reporting activation time point, (1) when the CSI reporting activation is indicated by L1 (DCI), the SPS information is also indicated by L1, and (2) CSI When reporting activation is indicated as L2 (MAC CE), the SPS information may also be indicated as L2.
  • the SPS activation / release information for the PUSCH is a terminal using an RNTI (ie C-RNTI) and another RNTI (ie SPS-C-RNTI) that carries general one shot DL / UL scheduling information. By transmitting to, it is set to be distinguished in the PDCCH decoding step.
  • RNTI ie C-RNTI
  • SPS-C-RNTI another RNTI
  • RNTI eg C-RNTI in LTE
  • RNTI for one shot scheduling e.g SPS-C-RNTI in LTE
  • a method of granting a separate RNTI may be considered.
  • whether the corresponding UL grant is for PUSCH SPS in the DCI field and SP CSI reporting can be indicated as a 1 (or 2) bit field.
  • the method proposed in the present specification is to use an RNTI separate from the C-RNTI for the SPS PUSCH in the DCI for indicating activation or deactivation of the SP-CSI through the PUSCH.
  • An example of the separate RNTI may be expressed as SP-CSI-RNTI.
  • the reason is that using a separate RNTI can reduce the probability of misdetection for the DCI of the UE and add a valid bit to the DCI.
  • the SP CSI reporting through the PUSCH is different from the SPS scheduling in LTE, which is used for the purpose of VoIP service, in that it may be used for controlling interference with neighbor cells.
  • the SP CSI transmission through the PUSCH has a certain period and always transmits or reports the CSI in the corresponding period, which is different from the SPS scheduling that does not perform UL transmission when there is no data to transmit.
  • SPS C-RNTI for VoIP service use and SP CSI reporting
  • one bit (or one field) is (UL- for VoIP service use).
  • the purpose of indicating activation or release (or deactivation) for the SPS PUSCH carrying the SCH, and the other 1 bit (or one field) is set to indicate the activation or release for the SPS PUSCH transmitting the CSI report, respectively. Can be.
  • one UL grant may indicate activation or release (or deactivation) for only one or both of the two SPS PUSCHs.
  • the CSI reporting triggering (or activation) indication may be performed by a C-RNTI that allocates a one shot PUSCH. have.
  • PUSCH SPS can be used not only for the SP CSI reporting purpose but also for the continuous UL data transmission such as VoIP service as in the Salpin LTE system.
  • the allocated PUSCH SPS may be utilized for both SP CSI reporting and UL data transmission.
  • whether data and CSI are simultaneously transmitted may be indicated in the CSI report (payload) (in an independent field).
  • data and CSI reporting information may be divided into different time, frequency, code, and / or spatial resources within the allocated SPS PUSCH resource.
  • data and CSI reporting information may be distinguished through a DMRS sequence, a DMRS port (s), a scrambling sequence, and the like.
  • the method refers to a method of turning on or off CSI reporting with PUCCH (PUCCH resource selected and selected) upon CSI reporting activation for one or a plurality of PUCCH resources configured in RRC.
  • PUCCH PUCCH resource selected and selected
  • the CSI reporting activation message may be transmitted together with information indicating whether to perform the corresponding CSI reporting using a specific PUCCH resource or in advance.
  • the PUCCH resource may include a time, frequency, sequence, and / or spatial resource of the PUCCH.
  • the spatial resource may be, for example, a PUCCH DMRS port indicator.
  • a PUCCH resource release operation may be defined along with or separately from CSI reporting deactivation.
  • an operation in which a plurality of PUCCHs set to RRC is automatically reset due to a release of a specific PUCCH resource may be defined.
  • the PUCCH resource release indication may be signaled together with or separately from a reporting deactivation indication.
  • the PUCCH resource release indication is signaled separately from the CSI reporting deactivation indication, CSI reporting is deactivated, but if there is a possibility of re-activating CSI reporting through the same PUCCH resource in the future, the PUCCH resource release may not be indicated. have.
  • Semi-persistent reporting using the PUCCH is a specific PUCCH type (eg long PUCCH) or specific PUCCH configuration (eg short PUCCH or long PUCCH, specific PUCCH format (s) more than X symbols and / or Y PRB) in consideration of UCI payload size. Limited application may apply.
  • the method refers to a method of supporting SP CSI reporting by using both PUSCH and PUCCH.
  • the terminal when the base station transmits UL resource allocation information along with a CSI reporting activation message (which may include PUCCH resource selection information) to the terminal, the terminal performs the first CSI report through the allocated PUSCH resource, and then CSI reporting may be performed through configured (or selected) PUCCH resources.
  • a CSI reporting activation message which may include PUCCH resource selection information
  • the allocated SPS PUSCH resource no longer exists, and the UE does not receive CSI reporting deactivation from the base station, or the allocated SPS PUSCH resource is further increased. If collision or overlapping occurs with important UL (or DL) resources (eg PUSCH with mimi-slot (PUSCH for URLLC), PUCCH), CSI reporting is performed with PUCCH instead of SPS PUSCH in the corresponding slot or collision area. Can be.
  • important UL (or DL) resources eg PUSCH with mimi-slot (PUSCH for URLLC), PUCCH
  • CSI reporting is performed with PUCCH instead of SPS PUSCH in the corresponding slot or collision area. Can be.
  • the SP CSI report may report high resolution CSI through the PUSCH and low resolution CSI through the PUCCH.
  • the SP CSI report through the PUCCH may be configured to have a dependency on the CSI information reported through the PUSCH in consideration of the limitation of the PUCCH payload size.
  • the entire CSI ie, RI, PMI, CQI, and CRI if necessary
  • the entire CSI ie, RI, PMI, CQI, and CRI if necessary
  • some CSI eg PMI only
  • the SP CSI reporting through the PUCCH may be configured to have a dependency on the CSI information reported through the PUSCH in consideration of the limitation of the PUCCH payload size.
  • a PMI codebook subset which is a reference in a subsequent PUCCH report, may be determined based on the reported PMI value.
  • candidate PMIs to be reported to the PUCCH are limited based on the PMI reported by the PUSCH according to a specific rule, thereby reducing the PMI payload size when the PUCCH is reported.
  • the 'specific rule' may be a rule promised between the base station and the terminal or may follow a method of directly setting or designating a codebook subset without a specific rule.
  • the W1 value included in the PUSCH CSI report is maintained, only the W2 value may be transmitted in the subsequent PUCCH CSI report.
  • each W2 may be sequentially transmitted through continuous PUCCH transmission.
  • the RI value may be set to transmit the differential RI value in the PUCCH based on the RI value sent to the PUSCH, thereby reducing the payload size of the PUCCH.
  • the base station may designate a CSI parameter to be updated at each reporting time point.
  • the UE may directly determine the CSI parameter to update and report which CSI parameter has been updated along with the CSI.
  • the CSI not subject to the partial CSI update may assume and calculate a value of the most recently reported PUSCH CSI (e.g. CRI, RI).
  • CQI and PMI e.g. W2 only
  • CRI, RI, and W1 assume and calculate the most recently reported value through PUSCH.
  • the BS may instruct a PUCCH-based aperiodic CSI / SP CSI report through a separate instruction.
  • the CSI value transmitted through the PUCCH may have a dependency on the CSI value reported by the PUSCH, thereby enabling efficient CSI reporting even with a small payload size.
  • the PUSCH CSI report as a reference may be dynamically indicated through L1 or L2 signaling, or semi-statically determined through L3 (RRC) signaling.
  • PUCCH-based CSI reporting and PUSCH-based CSI reporting may be included in one reporting setting or may be included in independent reporting settings.
  • the base station may inform the terminal through a separate indicator that there is an association between reporting settings or links included in the measurement setting.
  • subsequent PUCCH-based CSI report information may also be differently understood (or interpreted). May occur.
  • an operation for transmitting an ACK / NACK by an eNB for an initial PUSCH transmission (eg, # n-th slot) is defined (eg, # (n + k) slot), # (n + k) If the ACK is received by the UE at this point in time, the UE may continue to perform the PUCCH transmission normally proposed.
  • the terminal again performs the first PUSCH transmission along a previously defined or set timeline (eg, at the time of # (n + k + k2)). You can retransmit and repeat the above operation.
  • a maximum number of re-transmissions for PUSCH transmission may be defined or set.
  • the terminal (assuming that the base station is normally received) is determined by the following. Initiates PUCCH transmission.
  • the UE when receiving a UL grant indicating the PUSCH retransmission from the base station in the middle (eg, within a specific pre-defined or configured time interval after the initial PUSCH), the UE initializes all associated operations by performing the PUSCH retransmission ( For example, all PUCCHs that have been transmitted can be stopped and restarted.
  • the DCI includes a new data indicator field, so that it may be recognized as indicating retransmission by toggling.
  • PUSCH resource allocation information, PUCCH resource allocation / selection information, and reporting activation information are together or Separately it may be signaled from the base station to the terminal.
  • reporting activation and PUCCH allocation / selection information may be transmitted together (in MAC CE), and PUSCH resource allocation information may be transmitted separately in DCI.
  • the UE (1) does not perform a CSI report until the DCI for PUSCH resource allocation is received from the base station.
  • the UE performs the first CSI report through the PUSCH and then uses the PUCCH resource. Subsequent CSI reporting can be performed.
  • the UE may start performing CSI reporting through the (selected) PUCCH resource regardless of the time point of receiving the PUSCH resource allocation information.
  • the PUCCH-based CSI report information performed after the PUSCH-based CSI report may have a dependency on the PUSCH-based CSI report information.
  • the PUCCH-based CSI report information performed before the corresponding PUSCH-based CSI report may not have a dependency on the PUSCH-based CSI report information.
  • PUCCH resources described herein collectively mean PUCCH time, frequency, code, and / or spatial resources.
  • the PUCCH resource may be set differently for each time point.
  • PUCCH resource information allocated at different time points may be set or indicated in sequence form.
  • Candidate PUCCH resource information is more preferably set to RRC information, and which PUCCH resource to perform CSI report indicating through which is more dynamic through Medium Access Control (MAC) Control Element (MAC) and / or DCI Can be indicated.
  • MAC Medium Access Control
  • MAC Medium Access Control
  • DCI DCI
  • the (NR) system supports both PUCCH-based SP reporting and PUSCH-based SP reporting, and the base station may select or configure which UL resource to perform SP CSI reporting.
  • the UL resource designation is semi-statically set to RRC, it may be included as a parameter of a reporting setting.
  • a method of dynamically setting the UL resource designation to L1 signaling or L2 signaling may be possible.
  • a plurality of candidate UL resources may be previously set in RRC in a plurality of reporting settings or a single reporting setting.
  • the plurality of (candidate) UL resources may include one or a plurality of PUCCH resources and / or one or a plurality of PUSCH resources.
  • the base station can be explicitly or implicitly designated through L1 and / or L2 signaling.
  • an implicit indication it may be designated to perform (CSI) reporting by PUCCH upon activation with DL DCI and to report by PUSCH upon activation with UL DCI including UL Resource Allocation (RA RA).
  • CSI CSI reporting by PUCCH upon activation with DL DCI
  • PUSCH UL DCI including UL Resource Allocation (RA RA).
  • RA RA UL Resource Allocation
  • subsequent (CSI) reporting may use PUCCH.
  • the reporting timing can indicate which PUCCH resource to use.
  • MAC CE-based SP CSI reporting is also used (when the base station deactivates). For continuous CSI reporting, it may be more desirable to perform DCI-based SP CSI reporting in PUSCH and MAC CE-based SP CSI reporting in PUCCH.
  • the Resource Allocation (RA) field for the PUSCH may be transmitted together.
  • the SP CSI reporting mechanism that is maintained until the receipt of the deactivation instruction (CSI reporting) does not deactivation during DCI misdetection, which may cause severe interference and power waste of the terminal. It may be more desirable.
  • the L1 / L2 explicit / implicit indication message may be indicated together with or separately from the CSI reporting activation message.
  • the semi-static / dynamic UL resource selection scheme can be applied to aperiodic CSI reporting as well as semi-persistent CSI reporting.
  • a final UL to perform the aperiodic CSI reporting through L1 and / or L2 implicit or explicit indication Resources can be specified.
  • the PUSCH resource or the PUCCH resource may be deactivated together during semi-persistent reporting deactivation.
  • the CSI report is not sent after the corresponding slot, (2) the CSI report is stopped after all remaining CSI feedback parameters are transmitted, or (3) CSI reporting may be stopped after a point in time set (or designated) by the base station.
  • CSI feedback information may be sequentially divided and transmitted through various reporting time points due to the limitation of payload size as in LTE when CSI reporting through PUCCH.
  • the terminal when the terminal receives the reporting deactivation message from the base station in the middle of such reporting, the occupied PUSCH resource or PUCCH resource may be maintained until the remaining information is transmitted.
  • the reporting may be stopped based on a slot for returning an ACK for the PDSCH transmitting the MAC CE.
  • ACK / NACK for the corresponding PDCCH may be defined.
  • reporting may be stopped based on the slot returning the ACK.
  • the CSI report may be maintained until the n + kth ((n + k) -th) slot which is the ACK reply time.
  • the CSI reporting start time may also be initiated by the CSI reporting after a predetermined time point (or set by the base station) based on the slot time when the reporting activation DCI (or reporting activation MAC CE) is received, or the reporting activation DCI (or reporting activation MAC).
  • the report may be started after a predetermined time point (or set by the base station) on the basis of the slot time point for transmitting the ACK for the CE).
  • CSI reporting information can be divided several times.
  • CSI reporting on PUCCH in LTE or hybrid CSI feedback in Rel.14 LTE there may be CSI reporting on PUCCH in LTE or hybrid CSI feedback in Rel.14 LTE.
  • the CSI payload size to be sent to each reporting instance may vary.
  • a method using only one PUSCH / PUCCH format that supports the same maximum payload size for each CSI reporting time point and (2) a plurality of different max payload sizes for each CSI reporting time point.
  • a method of using different PUCCH / PUSCH formats may be considered.
  • UCI code rate can be changed at every CSI reporting time. Therefore, UL power control mechanism is defined to perform power boosting when high code rate is used and power de-boosting when low code rate is used. can do.
  • the PUSCH / PUCCH format change pattern promised in time according to the CSI feedback information configuration (e.g. CSI reporting mode in LTE) may be defined.
  • each CSI parameter group may be transmitted sequentially over a different PUCCH transmission instance. Can be.
  • the consistency of the number of PUCCH symbols may not be guaranteed due to flexible TDD operation, so the PUCCH resources available for each CSI reporting instance may be inconsistent.
  • unequal grouping of CSI parameters may be desirable in terms of CSI payload size.
  • the UE may transmit NR-PUCCH for different UL Tx beams in different NR-PUCCH OFDM symbols.
  • the combination of semi-static configuration and dynamic signaling (for at least certain types of UCI information) is used to determine both PUCCH resources for the 'long PUCCH format and the short PUCCH format'.
  • Two NR-PUCCHs may be transmitted from one UE on the same slot in a TDM manner.
  • Two NR-PUCCHs may be short PUCCH.
  • Two NR-PUCCHs may be a long PUCCH and a short PUCCH.
  • the CSI feedback information is divided into several parts and sequentially transmitted to various PUCCHs in different subframes.
  • the supportable UCI payload size on PUCCH may be very wide depending on the type of PUCCH (ie, PUCCH in long-duration or PUCCH in short-duration) and the number of PUCCH symbols (or PUCCH duration).
  • the maximum UCI payload size that can be supported on the PUCCH can be significantly increased in the long-duration up to several hundred bits in the case of PUCCH (or long PUCCH).
  • NR supports three time domain operations of CSI reporting (aperiodic, semi-fixed (or semi-permanent or semi-persistent) and periodic CSI reporting).
  • PUCCH can be used for periodic and semi-fixed CSI reporting similarly to LTE.
  • joint use of PUSCH and PUCCH may also be considered in CSI reporting as previously discussed.
  • the CSI feedback may be updated using the PUCCH in the case of semi-fixed CSI reporting.
  • aperiodic CSI reporting was supported only over PUSCH in LTE, aperiodic CSI reporting for PUCCH may be considered in NR.
  • One of the main motivations for using PUCCH for aperiodic CSI reporting may be to support immediate, fast CSI reporting, for example in slots.
  • the corresponding PUCCH for CSI triggering DCI, CSI-RS and CSI reporting may exist in the same slot.
  • a PUCCH (or short PUCCH) in a short duration may be an appropriate candidate similar to a fast ACK / NACK report.
  • This feature may only need to be supported for very light CSI feedback, taking into account CSI calculation time only.
  • FIG. 11 is a flowchart illustrating an example of an operation method of a terminal that performs an SP CSI report proposed in the present specification.
  • the terminal receives downlink control information (DCI) indicating the activation of a semi-persistent (SP) CSI report from the base station (S1110).
  • DCI downlink control information
  • SP semi-persistent
  • the downlink control information may be scrambled with a specific RNTI distinguished from a Cell-Radio Network Temporary Identity (C-RNTI).
  • C-RNTI Cell-Radio Network Temporary Identity
  • an advantage of using a separate RNTI from the C-RNTI is that the UE can reduce the probability of misdetection for the DCI and add a valid bit to the DCI.
  • the terminal sets the semi-static CSI as the base station through a physical uplink shared channel (PUSCH) based on the received downlink control information (S1120).
  • PUSCH physical uplink shared channel
  • the SP CSI report may include a first SP CSI report and a second SP CSI report.
  • the SP CSI report may be transmitted in several parts, and the second SP CSI report may be performed after the first SP CSI report.
  • the UE may receive a PUSCH resource to report the SP CSI from the base station before or after performing S1110.
  • the SP CSI may be reported to the base station through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the PUSCH resource reporting the SP CSI is dropped (or not transmitted), and the collided PUCCH resource or (for CSI reporting purposes) separately.
  • the SP CSI (or piggyback the SP CSI to the PUCCH) may be reported using the configured PUCCH.
  • the PUSCH resource is dropped (or not transmitted), and the collided (mini-slot or one shot)
  • the SP CSI may be reported using a PUSCH resource or a PUCCH configured separately (for CSI reporting purposes).
  • the mini-slot is less than or equal to a certain number that may consist of 2, 4, or 7 symbols.
  • the slot may be composed of symbols.
  • the SP CSI through the PUCCH may be reported in a slot related to the collision.
  • the terminal may determine an uplink resource to perform the SP CSI report before performing step S1120.
  • the terminal reports the SP CSI through a PUSCH
  • the DCI is a downlink DCI
  • the UE may report the SP CSI through a PUCCH. have.
  • the SP CSI reporting through the PUSCH is different from the SPS scheduling in LTE, which is used for the purpose of VoIP service, in that it may be used for controlling interference with neighbor cells.
  • the SP CSI transmission through the PUSCH has a certain period and always transmits or reports the CSI in the corresponding period, which is different from the SPS scheduling that does not perform UL transmission when there is no data to transmit.
  • FIG. 12 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system includes a base station (or network) 1210 and a terminal 1220.
  • the base station 1210 includes a processor 1211, a memory 1212, and a communication module 1213.
  • the processor 1211 implements the functions, processes, and / or methods proposed in FIGS. 1 to 11. Layers of the wired / wireless interface protocol may be implemented by the processor 1211.
  • the memory 1212 is connected to the processor 1211 and stores various information for driving the processor 1211.
  • the communication module 1213 is connected to the processor 1211 and transmits and / or receives a wired / wireless signal.
  • the communication module 1213 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 1220 includes a processor 1221, a memory 1222, and a communication module (or RF unit) 1223.
  • the processor 1221 implements the functions, processes, and / or methods proposed in FIGS. 1 to 11. Layers of the air interface protocol may be implemented by the processor 1221.
  • the memory 1222 is connected to the processor 1221 and stores various information for driving the processor 1221.
  • the communication module 1223 is connected to the processor 1221 to transmit and / or receive a radio signal.
  • the memories 1212 and 1222 may be inside or outside the processors 1211 and 1221, and may be connected to the processors 1211 and 1221 by various well-known means.
  • the base station 1210 and / or the terminal 1220 may have a single antenna or multiple antennas.
  • FIG. 13 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • FIG. 13 illustrates the terminal of FIG. 12 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 1310, an RF module (or RF unit) 1335, and a power management module 1305). ), Antenna 1340, battery 1355, display 1315, keypad 1320, memory 1330, SIM card Subscriber Identification Module card) 1325 (this configuration is optional), a speaker 1345, and a microphone 1350.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 1310 implements the functions, processes, and / or methods proposed in FIGS. 1 to 11.
  • the layer of the air interface protocol may be implemented by the processor 1310.
  • the memory 1330 is connected to the processor 1310 and stores information related to the operation of the processor 1310.
  • the memory 1330 may be inside or outside the processor 1310 and may be connected to the processor 1310 by various well-known means.
  • the user enters command information such as a telephone number, for example, by pressing (or touching) a button on the keypad 1320 or by voice activation using the microphone 1350.
  • the processor 1310 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 1325 or the memory 1330. In addition, the processor 1310 may display command information or driving information on the display 1315 for the user to recognize and for convenience.
  • the RF module 1335 is connected to the processor 1310 to transmit and / or receive an RF signal.
  • the processor 1310 communicates command information to the RF module 1335 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 1335 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
  • the antenna 1340 functions to transmit and receive radio signals.
  • the RF module 1335 may deliver the signal and convert the signal to baseband for processing by the processor 1310.
  • the processed signal may be converted into audible or readable information output through the speaker 1345.
  • FIG. 14 is a diagram illustrating an example of an RF module of a wireless communication device to which the method proposed in this specification can be applied.
  • FIG. 14 illustrates an example of an RF module that may be implemented in a frequency division duplex (FDD) system.
  • FDD frequency division duplex
  • the processor described in FIGS. 12 and 13 processes the data to be transmitted and provides an analog output signal to the transmitter 1410.
  • the analog output signal is filtered by a low pass filter (LPF) 1411 to remove images caused by digital-to-analog conversion (ADC), and an upconverter ( Up-converted from baseband to RF by a Mixer 1412, amplified by a Variable Gain Amplifier (VGA) 1413, the amplified signal is filtered by a filter 1414, and a power amplifier Further amplified by Amplifier (PA) 1415, routed through duplexer (s) 1450 / antenna switch (s) 1460, and transmitted via antenna 1470.
  • LPF low pass filter
  • ADC analog-to-analog conversion
  • VGA Variable Gain Amplifier
  • the antenna 1470 receives signals from the outside and provides the received signals, which are routed through the antenna switch (s) 1460 / duplexers 1450 and the receiver 1420. Is provided.
  • the received signals are amplified by a Low Noise Amplifier (LNA) 1423, filtered by a bandpass filter 1424, and received from RF by a down converter (Mixer 1425). Downconvert to baseband.
  • LNA Low Noise Amplifier
  • the down-converted signal is filtered by a low pass filter (LPF) 1426 and amplified by VGA 1743 to obtain an analog input signal, which is provided to the processor described in FIGS. 12 and 13.
  • LPF low pass filter
  • a local oscillator (LO) generator 1440 provides transmit and receive LO signals to the generate and up converter 1412 and down converter 1425, respectively.
  • LO local oscillator
  • Phase Locked Loop (PLL) 1430 also receives control information from the processor to generate transmit and receive LO signals at appropriate frequencies and provides control signals to LO generator 1440.
  • circuits shown in FIG. 14 may be arranged differently from the configuration shown in FIG. 14.
  • FIG. 15 is a diagram illustrating still another example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 15 illustrates an example of an RF module that may be implemented in a time division duplex (TDD) system.
  • TDD time division duplex
  • the transmitter 1510 and the receiver 1520 of the RF module in the TDD system have the same structure as the transmitter and receiver of the RF module in the FDD system.
  • the RF module of the TDD system will be described only for the structure that differs from the RF module of the FDD system, and the description of the same structure will be described with reference to FIG. 14.
  • the signal amplified by the transmitter's power amplifier (PA) 1515 is routed through a band select switch (1550), a band pass filter (BPF) 1560, and antenna switch (s) 1570. And is transmitted via the antenna 1580.
  • PA power amplifier
  • BPF band pass filter
  • s antenna switch
  • the antenna 1580 receives signals from the outside and provides the received signals, which signals antenna switch (s) 1570, band pass filter 1560 and band select switch 1550. Routed through, and provided to a receiver 1520.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the CSI reporting method in the wireless communication system of the present invention has been described with reference to the example applied to the NR system and the 5G system, but can be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 CSI를 보고하는 방법을 제공한다. 본 명세서에서, 단말에 의해 수행되는 채널 상태 정보(channel state information, CSI)를 보고(report)하는 방법은, 반-고정적(semi-persistent, SP) CSI 보고의 활성화(activation)를 지시하는 하향링크 제어 정보(downlink control information, DCI)를 기지국으로부터 수신하는 단계, 상기 하향링크 제어 정보는 C-RNTI(Cell-Radio Network Temporary Identity)와 구분되는 특정 RNTI로 스크램블(scramble)되며; 및 상기 수신된 하향링크 제어 정보에 기초하여 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)를 통해 상기 반-고정적 CSI를 상기 기지국으로 보고하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 채널 상태 정보(channel state information, CSI)를 보고하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 PUSCH를 통한 반-고정적(semi-persistent, SP) CSI 보고의 활성화 또는 비활성화를 지시하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 반-고정적(semi-persistent, SP) CSI를 PUSCH 및/또는 PUCCH를 통해 보고하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 SP CSI 보고를 위한 PUSCH 자원과 특정 상향링크 자원 간 충돌이 발생하는 경우, 이를 해결하기 위한 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 채널 상태 정보(channel state information, CSI)를 보고(report)하는 방법에 있어서, 단말에 의해 수행되는 방법은, 반-고정적(semi-persistent, SP) CSI 보고의 활성화(activation)를 지시하는 하향링크 제어 정보(downlink control information, DCI)를 기지국으로부터 수신하는 단계, 상기 하향링크 제어 정보는 C-RNTI(Cell-Radio Network Temporary Identity)와 구분되는 특정 RNTI로 스크램블(scramble)되며; 및 상기 수신된 하향링크 제어 정보에 기초하여 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)를 통해 상기 반-고정적 CSI를 상기 기지국으로 보고하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SP CSI 보고는 제 1 SP CSI 보고와 제 2 SP CSI 보고를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SP CSI를 보고할 PUSCH 자원을 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 PUSCH 자원과 특정 상향링크 자원이 충돌하는 경우, 상기 SP CSI는 물리 상향링크 제어 채널(physical uplink control channel, PUCCH)을 통해 상기 기지국으로 보고되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 상향링크 자원은 PUCCH 자원 또는 미니-슬롯(mini-slot) 상의PUSCH 자원인 것을 특징으로 한다.
또한, 본 명세서에서 상기 PUCCH를 통한 SP CSI는 상기 충돌과 관련된 슬롯(slot)에서 보고되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SP CSI 보고를 수행할 상향링크 자원(uplink resource)를 결정하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 DCI가 상향링크(uplink) DCI인 경우, 상기 SP CSI는 상기 PUSCH를 통해 보고되는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 채널 상태 정보(channel state information, CSI)를 보고(report)하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 반-고정적(semi-persistent, SP) CSI 보고의 활성화(activation)를 지시하는 하향링크 제어 정보(downlink control information, DCI)를 기지국으로부터 수신하며, 상기 하향링크 제어 정보는 C-RNTI(Cell-Radio Network Temporary Identity)와 구분되는 특정 RNTI로 스크램블(scramble)되며; 및 상기 수신된 하향링크 제어 정보에 기초하여 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)를 통해 상기 반-고정적 CSI를 상기 기지국으로 보고하도록 설정되는 것을 특징으로 한다.
본 명세서는 SP CSI 보고의 활성화 또는 비활성화에 대한 지시를 DCI로 수행하는 경우, C-RNTI 또는 SPS-C-RNTI와 별개의 RNTI로 DCI를 스크램블링(scrambling)함으로써, 단말의 전력 소모를 줄일 수 있는 효과가 있다.
또한, 본 명세서는 SP CSI 보고를 위한 PUSCH 자원과 해당 PUSCH 자원보다 우선 순위가 높은 특정 자원이 충돌하는 경우, 우선 순위가 높은 특정 자원에서의 전송을 수행하도록 함으로써, 시스템 성능을 높일 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 5는 아날로그 빔포머(analog beamformer) 및 RF 체인(RF chain)으로 구성되는 송신단(transmitter)의 블록도(block diagram)의 일례를 나타낸다.
도 6은 디지털 빔포머(digital beamformer) 및 RF 체인으로 구성되는 송신단의 블록도의 일례를 나타낸다.
도 7은 본 발명의 다양한 실시 예들에 따른 아날로그 빔 스캐닝 방식의 일례를 나타낸다.
도 8은 PUSCH CSI 보고 모드의 일례를 나타낸 도이다.
도 9는 PUCCH CSI 보고 모드의 일례를 나타낸 도이다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다.
도 11은 본 명세서에서 제안하는 SP CSI 보고를 수행하는 단말의 동작 방법의 일례를 나타낸 순서도이다.
도 12는 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 13은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
도 14는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
도 15는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(generation NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2018004974-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2018004974-appb-T000001
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2018004974-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2018004974-appb-I000003
이고,
Figure PCTKR2018004974-appb-I000004
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2018004974-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2018004974-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2018004974-appb-I000007
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2018004974-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2018004974-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2018004974-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2018004974-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2018004974-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2018004974-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2018004974-appb-I000014
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure PCTKR2018004974-appb-I000015
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure PCTKR2018004974-appb-I000016
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure PCTKR2018004974-appb-T000002
Figure PCTKR2018004974-appb-T000003
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2018004974-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2018004974-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2018004974-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2018004974-appb-I000020
이다. 상기
Figure PCTKR2018004974-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 4와 같이, 뉴머롤로지
Figure PCTKR2018004974-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure PCTKR2018004974-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2018004974-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2018004974-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2018004974-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2018004974-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2018004974-appb-I000028
이다.
뉴머롤로지
Figure PCTKR2018004974-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2018004974-appb-I000030
는 복소 값(complex value)
Figure PCTKR2018004974-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2018004974-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2018004974-appb-I000033
또는
Figure PCTKR2018004974-appb-I000034
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2018004974-appb-I000035
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure PCTKR2018004974-appb-I000036
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure PCTKR2018004974-appb-I000037
와 자원 요소들
Figure PCTKR2018004974-appb-I000038
간의 관계는 수학식 1과 같이 주어진다.
Figure PCTKR2018004974-appb-M000001
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure PCTKR2018004974-appb-I000039
까지 번호가 매겨진다.
상향링크 제어 채널(Uplink control channel)
물리 상향링크 제어 시그널링(physical uplink control signaling)은 적어도 hybrid-ARQ acknowledgement, CSI 보고(CSI report)(가능하다면 빔포밍(beamforming) 정보 포함), 및 스케줄링 요청(scheduling request)을 운반할 수 있어야 한다.
NR 시스템에서 지원하는 상향링크 제어 채널(UL control channel)에 대해 적어도 두 가지 전송 방법이 지원된다.
상향링크 제어 채널은 슬롯(slot)의 마지막으로 전송된 상향링크 심볼(들) 주위에서 단기간(short duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내에서 상향링크 데이터 채널(UL data channel)과 시간-분할-다중화(time-division-multiplexed) 및/또는 주파수-분할-다중화(frequency-division-multiplexed)된다. 단기간의 상향링크 제어 채널에 대해, 슬롯의 1 심볼 단위 전송이 지원된다.
- 짧은 상향링크 제어 정보(Uplink Control Information, UCI) 및 데이터는 적어도 짧은 UCI 및 데이터에 대한 물리 자원 블록(Physical Resource Block, PRB)이 중첩되지 않는 경우 단말(UE) 및 단말들 사이에서 주파수-분할-다중화된다.
- 동일한 슬롯 내의 상이한 단말들로부터의 짧은 PUCCH(short PUCCH)의 시간 분할 다중화(Time Division Multiplexing, TDM)를 지원하기 위해, 짧은 PUCCH를 전송할 슬롯 내의 심볼(들)이 적어도 6GHz 이상에서 지원되는지 여부를 단말에게 알리는 메커니즘(mechanism)이 지원된다.
- 1 심볼 기간(1-symbol duration)에 대해서는 적어도 1) 참조 신호 (Reference Signal, RS)가 다중화되면 UCI와 RS는 주파수 분할 다중화(Frequency Division Multiplexing, FDM) 방식으로 주어진 OFDM 심볼에 다중화되는 점 및 2) 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격(subcarrier spacing)이 동일한 점이 지원된다.
- 적어도, 슬롯의 2 심볼 기간(2-symbol duration)에 걸친 단기간의 PUCCH가 지원된다. 이 때, 동일한 슬롯에서 하향링크(DL)/상향링크(UL) 데이터와 단기간의 PUCCH 사이의 서브캐리어 간격이 동일하다.
- 적어도, 슬롯내의 주어진 단말의 PUCCH 자원 즉, 상이한 단말들의 짧은 PUCCH들은 슬롯에서 주어진 지속 기간(duration) 내에 시분할 다중화될 수 있는 반-정적 구성(semi-static configuration)이 지원된다.
- PUCCH 자원에는 시간 영역(time domain), 주파수 영역(frequency domain), 및 적용 가능한 경우에는 코드 영역(code domain)이 포함된다.
- 단기간의 PUCCH는 단말 관점에서 슬롯의 끝까지 확장될 수 있다. 이 때, 단기 간의 PUCCH 이후 명시적인 갭 심볼(explicit gap symbol)이 불필요하다.
- 짧은 상향링크 부분(short UL part)을 갖는 슬롯(즉, DL 중심의 슬롯(DL-centric slot))에 대해, 데이터가 짧은 상향링크 부분에서 스케줄링(scheduling)되면 '짧은 UCI' 및 데이터는 하나의 단말에 의해 주파수 분할 다중화될 수 있다.
상향링크 제어 채널은 커버리지(coverage)를 개선하기 위하여 다수의 상향링크 심볼들에 걸쳐 장기간(long-duration)에 전송될 수 있다. 이 경우, 상향링크 제어 채널은 슬롯 내의 상향링크 데이터 채널과 주파수 분할 다중화된다.
- 적어도 PAPR(Peak to Average Power Ratio)이 낮은 설계로 장시간의 상향링크 제어 채널(long duration UL control channel)에 의해 운반되는 UCI는 하나의 슬롯 또는 다수의 슬롯들에서 전송될 수 있다.
- 다수의 슬롯들을 이용하는 전송은 적어도 일부의 경우에 총 지속 시간(total duration)(예: 1ms) 동안 허용된다.
- 장시간의 상향링크 제어 채널의 경우, RS와 UCI 간의 시간 분할 다중화(TDM)는 DFT-S-OFDM에 대해 지원된다.
- 슬롯의 긴 상향링크 부분(long UL part)은 장시간의 PUCCH 전송에 이용될 수 있다. 즉, 장시간의 PUCCH는 상향링크 전용 슬롯(UL-only slot)과 최소 4개의 심볼들로 구성되는 가변 개수의 심볼들을 갖는 슬롯 모두에 대해 지원된다.
- 적어도 1 또는 2 비트 UCI에 대해, 상기 UCI는 N 개의 슬롯(N>1) 내에서 반복될 수 있으며, 상기 N 개의 슬롯은 장시간의 PUCCH가 허용되는 슬롯들에서 인접하거나 또는 인접하지 않을 수 있다.
- 적어도 긴 PUCCH(long PUCCH)에 대해 PUSCH와 PUCCH의 동시 전송(simultaneous transmission)이 지원된다. 즉, 데이터가 존재하는 경우에도 PUCCH 자원에 대한 상향링크 제어가 전송된다. 또한, PUCCH-PUSCH 동시 전송 외에도, PUSCH에서의 UCI가 지원된다.
- TTI 내에서의 슬롯 주파수 호핑(intra-TTI slot frequency hopping)이 지원된다.
- DFT-s-OFDM 파형(waveform)이 지원된다.
- 전송 안테나 다이버시티(transmit antenna diversity)가 지원된다.
단기간의 PUCCH와 장기간의 PUCCH 사이의 TDM 및 FDM은 적어도 하나의 슬롯에서 다른 단말들에 대해 지원된다. 주파수 영역에서, PRB(또는 다수의 PRB들)는 상향링크 제어 채널에 대한 최소 자원 단위 크기(minimum resource unit size)이다. 호핑(hopping)이 이용되는 경우, 주파수 자원 및 호핑은 캐리어 대역폭(carrier bandwidth)으로 확산되지 않을 수 있다. 또한, 단말 특정 RS는 NR-PUCCH 전송에 이용된다. PUCCH 자원들의 집합(set)은 상위 계층 시그널링(higher layer signaling)에 의해 설정되고, 설정된 집합 내의 PUCCH 자원은 하향링크 제어 정보(Downlink Control Information, DCI)에 의해 지시된다.
DCI의 일부로서, 데이터 수신(data reception)과 hybrid-ARQ acknowledgement 전송 간의 타이밍(timing)은 다이나믹하게(dynamically) (적어도 RRC와 함께) 지시될 수 있어야 한다. 반-정적 구성(semi-static configuration) 및(적어도 일부 유형의 UCI 정보에 대한) 다이나믹한 시그널링(dynamic signaling)의 결합은 '긴 및 짧은 PUCCH 포맷'에 대한 PUCCH 자원을 결정하기 위해 이용된다. 여기에서, PUCCH 자원은 시간 영역, 주파수 영역, 및 적용 가능한 경우에는 코드 영역을 포함한다. PUSCH 상의 UCI 즉, UCI에 대한 스케줄된 자원의 일부를 사용하는 것은 UCI와 데이터의 동시 전송의 경우에 지원된다.
또한, 적어도 단일 HARQ-ACK 비트의 상향링크 전송이 적어도 지원된다. 또한, 주파수 다이버시티(frequency diversity)를 가능하게 하는 메커니즘이 지원된다. 또한, URLLC(Ultra-Reliable and Low-Latency Communication)의 경우, 단말에 대해 설정된 스케줄링 요청(SR) 자원들 간의 시간 간격(time interval)은 한 슬롯보다 작을 수 있다.
빔 관리(Beam management)
NR에서 빔 관리는 다음과 같이 정의된다.
빔 관리(Beam management): DL 및 UL 송수신에 사용될 수 있는 TRP(들) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 L1/L2 절차들의 세트로서, 적어도 다음 사항들을 포함한다:
- 빔 결정: TRP (들) 또는 UE가 자신의 송신 / 수신 빔을 선택하는 동작.
- 빔 측정: TRP (들) 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 보고: UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 시간 간격 동안 송신 및 / 또는 수신된 빔을 이용하여 공간 영역을 커버하는 동작.
또한, TRP 및 UE에서의 Tx / Rx 빔 대응(correspondence)는 다음과 같이 정의된다.
- TRP에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- TRP는 TRP의 하나 이상의 송신 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 수신을 위한 TRP 수신 빔을 결정할 수 있다.
- TRP는 TRP의 하나 이상의 Rx 빔들에 대한 TRP의 상향링크 측정에 기초하여 하향링크 전송에 대한 TRP Tx 빔을 결정할 수 있다.
- UE에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- UE는 UE의 하나 이상의 Rx 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 전송을 위한 UE Tx 빔을 결정할 수 있다.
- UE는 하나 이상의 Tx 빔에 대한 상향링크 측정에 기초한 TRP의 지시에 기초하여 하향링크 수신을 위한 UE 수신 빔을 결정할 수 있다.
- TRP로 UE 빔 대응 관련 정보의 능력 지시가 지원된다.
다음과 같은 DL L1 / L2 빔 관리 절차가 하나 또는 다수의 TRP들 내에서 지원된다.
P-1: TRP Tx 빔 / UE Rx 빔 (들)의 선택을 지원하기 위해 상이한 TRP Tx 빔에 대한 UE 측정을 가능하게 하기 위해 사용된다.
- TRP에서의 빔포밍의 경우 일반적으로 서로 다른 빔 세트에서 인트라(intra)/인터(inter)-TRP Tx 빔 스윕(sweep)을 포함한다. UE에서의 빔포밍을 위해, 그것은 통상적으로 상이한 빔들의 세트로부터의 UE Rx 빔 sweep를 포함한다.
P-2: 상이한 TRP Tx 빔에 대한 UE 측정이 인터/인트라-TRP Tx 빔(들)을 변경하도록 하기 위해 사용된다.
P-3: UE가 빔 포밍을 사용하는 경우에 동일한 TRP Tx 빔에 대한 UE 측정이 UE Rx 빔을 변경시키는데 사용된다.
적어도 네트워크에 의해 트리거된 비주기적 보고(apreiodic reporting)는 P-1, P-2 및 P-3 관련 동작에서 지원된다.
빔 관리 (적어도 CSI-RS)를 위한 RS에 기초한 UE 측정은 K (빔의 총 개수) 빔으로 구성되며, UE는 선택된 N개의 Tx 빔들의 측정 결과를 보고한다. 여기서, N은 반드시 고정된 수는 아니다. 이동성 목적을 위한 RS에 기반한 절차는 배제되지 않는다. 보고 정보는 적어도 N <K 인 경우 N 개의 빔 (들)에 대한 측정량 및 N 개의 DL 송신 빔을 나타내는 정보를 포함한다. 특히, UE가 K'> 1 논-제로-파워 (NZP) CSI- RS 자원들에 대해, UE는 N'의 CRI (CSI-RS 자원 지시자)를 보고 할 수 있다.
UE는 빔 관리를 위해 다음과 같은 상위 계층 파라미터(higher layer parameter)들로 설정될 수 있다.
- N=1 보고 설정(setting), M≥1 자원 설정
- 보고 설정과 자원 설정 간의 링크들은 합의된 CSI 측정 설정에서 설정된다.
- CSI-RS 기반 P-1 및 P-2는 자원 및 보고 설정으로 지원된다.
- P-3은 보고 설정의 유무에 관계없이 지원될 수 있다.
- 적어도 이하 사항들을 포함하는 보고 설정(reporting setting)
- 선택된 빔을 나타내는 정보
- L1 측정 보고(L1 measurement reporting)
- 시간 영역 동작(예: 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 반-지속적(semi-persistent) 동작)
- 여러 주파수 세분성(frequency granularity)이 지원되는 경우의 주파수 세분성
- 적어도 이하 사항들을 포함하는 리소스 설정(resource setting)
- 시간 영역 동작(예: 비주기적 동작, 주기적 동작, 반-지속적 동작)
- RS 유형: 적어도 NZP CSI-RS
- 적어도 하나의 CSI-RS 자원 세트. 각 CSI-RS 자원 세트는 K≥1 CSI-RS 자원들을 포함(K개의 CSI-RS 자원들의 일부 파라미터들은 동일할 수 있다. 예를 들어, 포트 번호, 시간 영역 동작, 밀도 및 주기)
또한, NR은 L> 1 인 L 그룹을 고려하여 다음 빔 보고를 지원한다.
- 최소한의 그룹을 나타내는 정보
- N1 빔에 대한 측정량(measurement quantity)(L1 RSRP 및 CSI 보고 지원 (CSI-RS가 CSI 획득을 위한 경우))
- 적용 가능한 경우, Nl개의 DL 송신 빔을 나타내는 정보
상술한 바와 같은 그룹 기반의 빔 보고는 UE 단위로 구성할 수 있다. 또한, 상기 그룹 기반의 빔 보고는 UE 단위로 턴-오프(turn-off) 될 수 있다(예를 들어, L = 1 또는 Nl = 1인 경우).
NR은 UE가 빔 실패로부터 복구하는 메커니즘을 트리거할 수 있음을 지원한다.
빔 실패(beam failure) 이벤트는 연관된 제어 채널의 빔 쌍 링크(beam pair link)의 품질이 충분히 낮을 때 발생한다(예를 들어 임계 값과의 비교, 연관된 타이머의 타임 아웃). 빔 실패(또는 장애)로부터 복구하는 메커니즘은 빔 장애가 발생할 때 트리거된다.
네트워크는 복구 목적으로 UL 신호를 전송하기 위한 자원을 갖는 UE에 명시적으로 구성한다. 자원들의 구성은 기지국이 전체 또는 일부 방향으로부터(예를 들어, random access region) 청취(listening)하는 곳에서 지원된다.
빔 장애를 보고하는 UL 송신/자원은 PRACH (PRACH 자원에 직교하는 자원)와 동일한 시간 인스턴스(instance)에 또는 PRACH와 다른 시간 인스턴스(UE에 대해 구성 가능)에 위치할 수 있다. DL 신호의 송신은 UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 지원된다.
NR은 빔 관련 지시(beam-related indication)에 관계 없이 빔 관리를 지원한다. 빔 관련 지시가 제공되는 경우, CSI-RS 기반 측정을 위해 사용된 UE 측 빔 형성 / 수신 절차에 관한 정보는 QCL을 통해 UE에 지시될 수 있다.
NR에서 지원할 QCL 파라미터로는 LTE 시스템에서 사용하던 delay, Doppler, average gain등에 대한 파라미터 뿐만 아니라 수신단에서의 빔포밍을 위한 공간 파라미터가 추가될 예정이며, 단말 수신 빔포밍 관점에서 angle of arrival 관련 파라미터 및/또는 기지국 수신 빔포밍 관점에서 angle of departure 관련 파라미터들이 포함될 수 있다.
NR은 제어 채널 및 해당 데이터 채널 전송에서 동일하거나 다른 빔을 사용하는 것을 지원한다.
빔 쌍 링크 블로킹(beam pair link blocking)에 대한 견고성(robustness)를 지원하는 NR-PDCCH 전송을 위해, UE는 동시에 M개의 빔 쌍 링크상에서 NR-PDCCH를 모니터링하도록 구성될 수 있다. 여기서, M≥1 및 M의 최대값은 적어도 UE 능력에 의존할 수 있다.
UE는 상이한 NR-PDCCH OFDM 심볼들에서 상이한 빔 쌍 링크(들)상의 NR-PDCCH를 모니터링하도록 구성될 수 있다. 다수의 빔 쌍 링크들 상에서 NR-PDCCH를 모니터링하기 위한 UE Rx 빔 설정과 관련된 파라미터는 상위 계층 시그널링 또는 MAC CE에 의해 구성되거나 및 / 또는 탐색 공간 설계에서 고려된다.
적어도, NR은 DL RS 안테나 포트(들)과 DL 제어 채널의 복조를 위한 DL RS 안테나 포트(들) 사이의 공간 QCL 가정의 지시를 지원한다. NR-PDCCH(즉, NR-PDCCH를 모니터링하는 구성 방법)에 대한 빔 지시를 위한 후보 시그널링 방법은 MAC CE 시그널링, RRC 시그널링, DCI 시그널링, 스펙 transparent 및/또는 암시적 방법, 및 이들 시그널링 방법의 조합이다.
유니 캐스트 DL 데이터 채널의 수신을 위해, NR은 DL RS 안테나 포트와 DL 데이터 채널의 DMRS 안테나 포트 사이의 공간 QCL 가정의 지시를 지원한다.
RS 안테나 포트를 나타내는 정보는 DCI (다운 링크 허가)를 통해 표시된다. 또한, 이 정보는 DMRS 안테나 포트와 QCL 되어 있는 RS 안테나 포트를 나타낸다. DL 데이터 채널에 대한 DMRS 안테나 포트의 상이한 세트는 RS 안테나 포트의 다른 세트와 QCL로서 나타낼 수 있다.
하이브리드 빔포밍(Hybrid beamforming)
다중 안테나(multiple antenna)를 이용하는 기존의 빔 형성(beamforming) 기술은 빔 형성 가중치 벡터(weight vector)/프리코딩 벡터(precoding vector)를 적용하는 위치에 따라 아날로그 빔 형성(analog beamforming) 기법과 디지털 빔 형성(digital beamforming) 기법으로 구분될 수 있다.
아날로그 빔 형성 기법은 초기 다중 안테나 구조에 적용된 빔 형성 기법이다. 이는, 디지털 신호 처리가 완료된 아날로그 신호를 다수의 경로로 분기한 후, 각 경로에 대해 위상 쉬프트(Phase-Shift, PS)와 전력 증폭기(Power Amplifier, PA) 설정을 적용하여 빔을 형성하는 기법을 의미할 수 있다.
아날로그 빔 형성을 위해서는, 각 안테나에 연결된 PA와 PS가 단일 디지털 신호로부터 파생된 아날로그 신호를 처리(process)하는 구조가 요구된다. 다시 말해, 아날로그 단에서 상기 PA 및 상기 PS가 복소 가중치(complex weight를 처리한다.
도 5는 아날로그 빔포머(analog beamformer) 및 RF 체인(RF chain)으로 구성되는 송신단(transmitter)의 블록도(block diagram)의 일례를 나타낸다. 도 5는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 5에서, RF 체인은 기저대역(baseband, BB) 신호가 아날로그 신호로 변환되는 처리 블록을 의미한다. 아날로그 빔 형성 기법은 상기 PA와 상기 PS의 소자의 특성에 따라 빔의 정확도가 결정되고, 상기 소자의 제어 특성상 협대역(narrowband) 전송에 유리할 수 있다.
또한, 아날로그 빔 형성 기법의 경우, 다중 스트림(stream) 전송을 구현하기 어려운 하드웨어 구조로 구성되므로, 전송률 증대를 위한 다중화 이득(multiplexing gain)이 상대적으로 작다. 또한, 이 경우, 직교 자원할당 기반의 단말 별 빔 형성이 용이하지 않을 수도 있다.
이와 달리, 디지털 빔 형성 기법의 경우, MIMO 환경에서 다이버시티(diversity)와 다중화 이득을 최대화하기 위해 BB(Baseband) 프로세스를 이용하여 디지털 단에서 빔 형성이 수행된다.
도 6은 디지털 빔포머(digital beamformer) 및 RF 체인으로 구성되는 송신단의 블록도의 일례를 나타낸다. 도 6은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 6의 경우, 빔 형성은 BB 프로세스에서 프리코딩이 수행됨에 따라 수행될 수 있다. 여기에서, RF 체인은 PA를 포함한다. 이는, 디지털 빔 형성 기법의 경우, 빔 형성을 위해 도출된 복소 가중치가 송신 데이터에 직접적으로 적용되기 때문이다.
또한, 단말 별로 상이한 빔 형성이 수행될 수 있으므로, 동시에 다중 사용자 빔 형성을 지원할 수 있다. 뿐만 아니라, 직교 자원이 할당된 단말 별로 독립적인 빔 형성이 가능하므로, 스케줄링의 유연성이 향상되고, 이에 따라, 시스템 목적에 부합하는 송신단의 운용이 가능하다. 또한, 광대역 전송을 지원하는 환경에서 MIMO-OFDM과 같은 기술이 적용되는 경우에, 부반송파(subcarrier) 별로 독립적인 빔이 형성될 수도 있다.
따라서, 디지털 빔 형성 기법은 시스템의 용량 증대와 강화된 빔 이득을 기반으로 하여 단일 단말(또는 사용자)의 최대 전송률을 극대화할 수 있다. 상술한 바와 같은 특징에 기반하여, 기존의 3G/4G(예: LTE(-A)) 시스템에서는 디지털 빔포밍 기반의 MIMO 기법이 도입되었다.
NR 시스템에서, 송수신 안테나가 크게 증가하는 거대(massive) MIMO 환경이 고려될 수 있다. 일반적으로 셀룰러(cellular) 통신에서는 MIMO 환경에 적용되는 최대 송수신 안테나가 8개로 가정된다. 그러나, 거대 MIMO 환경이 고려됨에 따라, 상기 송수신 안테나의 수는 수십 또는 수백 개 이상으로 증가할 수 있다.
이 때, 거대 MIMO 환경에서 앞서 설명된 디지털 빔 형성 기술이 적용되면, 송신단은 디지털 신호 처리를 위하여 BB 프로세스를 통해 수백 개의 안테나에 대한 신호 처리를 수행해야 한다. 이에 따라, 신호 처리의 복잡도가 매우 커지고, 안테나 수만큼의 RF 체인이 필요하므로 하드웨어 구현의 복잡도도 매우 커질 수 있다.
또한, 송신단은 모든 안테나에 대해 독립적인 채널 추정(channel estimation)이 필요하다. 뿐만 아니라, FDD 시스템의 경우, 송신단은 모든 안테나로 구성된 거대 MIMO 채널에 대한 피드백 정보가 필요하므로, 파일럿(pilot) 및/또는 피드백 오버헤드가 매우 커질 수 있다.
반면, 거대 MIMO 환경에서 앞서 설명된 아날로그 빔 형성 기술이 적용되면, 송신단의 하드웨어 복잡도는 상대적으로 낮다.
이에 반해, 다수 안테나를 이용한 성능의 증가 정도는 매우 작으며, 자원 할당의 유연성이 낮아질 수 있다. 특히, 광대역 전송 시, 주파수 별로 빔을 제어하는 것이 용이하지 않다.
따라서, 거대 MIMO 환경에서는 아날로그 빔 형성과 디지털 빔 형성 기법 중 한 개 만을 배타적으로 선택하는 것이 아닌, 아날로그 빔 형성과 디지털 빔 형성 구조가 결합된 하이브리드(hybrid) 형태의 송신단 구성 방식이 필요하다.
아날로그 빔 스캐닝(analog beam scanning)
일반적으로, 아날로그 빔포밍은 순수 아날로그 빔포밍 송수신단과 하이브리드 빔포밍 송수신단에서 이용될 수 있다. 이 때, 아날로그 빔 스캐닝은 동일한 시간에 한 개의 빔에 대한 추정을 수행할 수 있다. 따라서, 빔 스캐닝에 필요한 빔 트레이닝(beam training) 시간은 전체 후보 빔의 수에 비례하게 된다.
상술한 바와 같이, 아날로그 빔 포밍의 경우, 송수신단 빔 추정을 위하여 시간 영역에서의 빔 스캐닝 과정이 반드시 요구된다. 이 때, 전체 송수신 빔에 대한 추정 시간 ts는 아래 수학식 2와 같이 표현될 수 있다.
Figure PCTKR2018004974-appb-M000002
수학식 2에서, ts는 하나의 빔 스캐닝을 위해 필요한 시간을 의미하고, KT는 송신 빔의 수를 의미하고, KR은 수신 빔의 수를 의미한다.
도 7은 본 발명의 다양한 실시 예들에 따른 아날로그 빔 스캐닝 방식의 일례를 나타낸다. 도 7은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 7의 경우, 전체 송신 빔의 수 KT가 L이고, 전체 수신 빔의 수 KR가 1인 경우가 가정된다. 이 경우, 전체 후보 빔의 개수는 총 L개가 되므로, 시간 영역에서 L개의 자연 영역이 요구된다.
다시 말해, 아날로그 빔 추정을 위하여 단일 시간 구간에서 1개의 빔 추정만이 수행될 수 있으므로, 도 7에 나타난 바와 같이, 전체 L개의 빔(P1 내지 PL) 추정을 수행하기 위하여 L개의 시간 구간이 요구된다. 단말은 아날로그 빔 추정 절차가 종료된 후, 가장 높은 신호 세기를 갖는 빔의 식별자(예: ID)를 기지국으로 피드백한다. 즉, 송수신 안테나 수의 증가에 따라 개별 빔 수가 증가할 수록, 보다 긴 트레이닝 시간이 요구될 수 있다.
아날로그 빔포밍은 DAC(Digital-to-Analog Converter) 이후에 시간 영역의 연속적인 파형(continuous waveform)의 크기와 위상각을 변화시키기 때문에, 디지털 빔포밍과 달리 개별 빔에 대한 트레이닝 구간이 보장될 필요가 있다. 따라서, 상기 트레이닝 구간의 길이가 증가할수록 시스템의 효율이 감소(즉, 시스템의 손실(loss)이 증가)될 수 있다.
채널 상태 정보(Channel state information:CSI) 피드백(feedback)
LTE 시스템을 포함한 대부분의 cellular system에서 단말은 채널 추정을 위한 파일럿 신호 (reference signal)를 기지국으로부터 수신하여 CSI(channel state information)을 계산하고 이를 기지국에게 보고한다.
기지국은 단말로부터 피드백 받은 CSI 정보를 토대로 데이터 신호를 전송한다.
LTE 시스템에서 단말이 피드백하는 CSI 정보에는 CQI(channel quality information), PMI(precoding matrix index), RI(rank indicator)가 있다.
CQI 피드백은 기지국이 데이터를 전송할 때 어떤 MCS(modulation & coding scheme)을 적용할 지에 대한 가이드를 제공하려는 목적(link adaptation용도)으로 기지국에게 제공하는 무선 채널 품질 정보이다.
기지국과 단말 사이에 무선 품질이 높으면 단말은 높은 CQI 값을 피드백하여 기지국은 상대적으로 높은 modulation order와 낮은 channel coding rate을 적용하여 데이터를 전송할 것이고, 반대의 경우 단말은 낮은 CQI 값을 피드백하여 기지국은 상대적으로 낮은 modulation order와 높은 channel coding rate을 적용하여 데이터를 전송할 것이다.
PMI 피드백은 기지국이 다중 안테나를 설치한 경우, 어떠한 MIMO precoding scheme을 적용할 지에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 preferred precoding matrix 정보이다.
단말은 파일럿 신호로부터 기지국과 단말간의 downlink MIMO channel을 추정하여 기지국이 어떠한 MIMO precoding을 적용하면 좋을 지를 PMI 피드백을 통해 추천한다.
LTE 시스템에서는 PMI 구성에 있어 행렬 형태로 표현 가능한 linear MIMO precoding만 고려한다.
기지국과 단말은 다수의 precoding 행렬들로 구성된 코드북을 공유하고 있고, 코드북 내에 각각의 MIMO precoding 행렬은 고유의 index를 갖고 있다.
따라서, 단말은 코드북 내에서 가장 선호하는 MIMO precoding 행렬에 해당하는 인덱스를 PMI로서 피드백함으로써 단말의 피드백 정보량을 최소화한다.
PMI 값이 꼭 하나의 인덱스로만 이루어져야 하는 것은 아니다. 일례로, LTE 시스템에서 송신 안테나 포트 수가 8개인 경우, 두 개의 인덱스들(first PMI & second PMI)을 결합하여야만 최종적인 8tx MIMO precoding행렬을 도출할 수 있도록 구성되어 있다.
RI 피드백은 기지국과 단말이 다중 안테나를 설치하여 spatial multiplexing을 통한 multi-layer전송이 가능한 경우, 단말이 선호하는 전송 layer의 수에 대한 가이드를 제공하려는 목적으로 기지국에게 제공하는 선호하는 전송 layer수에 대한 정보이다.
RI는 PMI와 매우 밀접한 관계를 지닌다. 그것은 전송 레이어 수에 따라 기지국은 각각의 레이어에 어떠한 precoding을 적용해야 하는지 알 수 있어야 하기 때문이다.
PMI/RI 피드백 구성에 있어 single layer 전송을 기준으로 PMI 코드북을 구성한 뒤 layer별로 PMI를 정의하여 피드백 할 수 있으나, 이러한 방식은 전송 레이어의 수의 증가에 따라 PMI/RI피드백 정보량이 크게 증가하는 단점이 있다.
따라서, LTE 시스템에서는 각각의 전송 레이어의 수에 따른 PMI 코드북을 정의하였다. 즉, R-layer전송을 위해서 크기 Nt x R 행렬 N개를 코드북 내에 정의한다 (여기서, R은 layer수, Nt는 송신안테나 포트 수, N은 코드북의 크기).
따라서, LTE에서는 전송 레이어의 수에 무관하게 PMI 코드북의 크기가 정의된다. 결국 이러한 구조로 PMI/RI를 정의하다 보니 전송 레이어 수(R)는 결국 precoding 행렬(Nt x R 행렬)의 rank값과 일치하게 되므로 rank indicator(RI)라는 용어를 사용하게 되었다.
본 명세서에서 기술되는 PMI/RI는 꼭 LTE 시스템에서의 PMI/RI처럼 Nt x R 행렬로 표현되는 precoding 행렬의 인덱스 값과 precoding 행렬의 rank값을 의미하는 것으로 제한되지는 않는다.
본 명세서에게 기술되는 PMI는 전송단에서 적용 가능한 MIMO precoder중에서 선호하는 MIMO precoder정보를 나타내는 것으로, 그 precoder의 형태가 LTE시스템에서처럼 행렬로 표현 가능한 linear precoder만으로 한정되지 않는다. 또한, 본 명세서에서 기술되는 RI는 LTE에서의 RI보다 더 넓은 의미로 선호하는 전송 레이어 수를 나타내는 피드백 정보를 모두 포함한다.
CSI 정보는 전체 시스템 주파수 영역에서 구해질 수도 있고, 일부 주파수 영역에서 구해질 수도 있다. 특히, 광대역 시스템에서는 단말 별로 선호하는 일부 주파수 영역(e.g. subband)에 대한 CSI정보를 구해서 피드백하는 것이 유용할 수 있다.
LTE시스템에서 CSI 피드백은 uplink 채널을 통해 이루어 지는데, 일반적으로 주기적인 CSI 피드백은 PUCCH(physical uplink control channel)를 통해 이루어 지고, 비주기적인 CSI피드백은 uplink data 채널인 PUSCH(physical uplink shared channel)을 통해 이루어 진다.
비주기적인 CSI 피드백은 기지국이 CSI 피드백 정보를 원할 때에만 일시적으로 피드백하는 것을 의미하는 것으로, 기지국이 PDCCH/ePDCCH와 같은 downlink control channel을 통해 CSI피드백을 trigger한다.
LTE 시스템에서는 CSI 피드백이 trigger되었을 때, 단말이 어떠한 정보를 피드백해야 하는 지가 도 8과 같이 PUSCH CSI reporting mode로 구분되어 있고, 단말이 어떠한 PUSCH CSI reporting mode로 동작해야 할지는 상위 계층 메시지를 통해 단말에게 미리 알려준다.
도 8은 PUSCH CSI 보고 모드의 일례를 나타낸 도이다.
PUCCH를 통한 주기적 CSI 피드백에 대해 PUCCH CSI reporting mode 역시 정의된다.
도 9는 PUCCH CSI 보고 모드의 일례를 나타낸 도이다.
PUCCH의 경우, PUSCH보다 한번에 보낼 수 있는 데이터 양(payload size)이 작으므로 보내고자 하는 CSI정보를 한번에 보내기가 어렵다.
따라서, 각 CSI reporting mode에 따라 CQI및 PMI를 전송하는 시점과 RI를 전송하는 시점이 다르다. 예를 들어, reporting mode 1-0에서는 특정 PUCCH전송시점에는 RI만 전송하고, 다른 PUCCH전송시점에 wideband CQI를 전송한다. 특정 PUCCH 전송 시점에 구성되는 CSI정보의 종류에 따라 PUCCH reporting type이 정의된다. 예를 들어, 상기 예에서 RI만 전송하는 reporting type은 type3에 해당하고, wideband CQI만 전송하는 reporting type은 type4에 해당한다. RI 피드백 주기 및 offset값과 CQI/PMI 피드백 주기 및 offset값은 상위 계층 메시지를 통해 단말에게 설정된다.
상기 CSI feedback 정보는 uplink control information (UCI)에 포함된다.
LTE에서 기준 신호들(Reference signals in LTE)
LTE system에서 파일럿 혹은 RS(reference signal)의 용도는 크게 다음으로 나눌 수 있다.
1. Measurement RS : 채널 상태 측정용 파일럿
A. CSI measurement/reporting 용도 (short term measurement): Link adaptation, rank adaptation, closed loop MIMO precoding 등의 목적
B. Long term measurement/reporting 용도: Handover, cell selection/reselection등의 목적
2. Demodulation RS: 물리 채널 수신용 파일럿
3. Positioning RS: 단말 위치 추정용 파일럿
4. MBSFN RS: Multi-cast/Broadcast 서비스를 위한 파일럿
LTE Rel-8에서는 대부분의 하향링크 물리 채널에 대한 measurement(용도 1A/B) 및 demodulation(용도 2)을 위해 CRS(Cell-specific RS)를 사용하였으나, 안테나 수가 많아짐에 따른 RS overhead 문제를 해결하기 위해 LTE Advanced (Rel-10) 부터는 CSI measurement(용도 1A) 전용으로 CSI-RS와 하향링크 데이터 채널(PDSCH)에 대한 수신 (용도 2) 전용으로 UE-specific RS를 사용한다.
CSI-RS는 CSI 측정 및 피드백 전용으로 설계된 RS로 CRS에 비해 매우 낮은 RS overhead를 갖는 것이 특징이며, CRS는 4개의 다중 안테나 포트까지 지원하는데 반해, CSI-RS는 8개의 다중 안테나 포트까지 지원 가능하도록 설계되었다. UE-specific RS는 데이터 채널의 demodulation전용으로 설계되어 CRS 와 달리 해당 UE에게 데이터 전송 시 적용된 MIMO precoding기법이 파일럿 신호에 동일하게 적용된 RS (precoded RS)라는 점이 특징이다.
따라서, UE-specific RS는 CRS, CSI-RS처럼 안테나 포트의 개수만큼 전송될 필요가 없고, 전송 layer의 개수 (전송 rank)만큼만 전송되면 된다.
또한, UE-specific RS는 기지국의 scheduler를 통해 각 UE에게 할당된 데이터 채널 자원 영역과 동일한 자원 영역에 해당 UE의 데이터 채널 수신 용도로 전송되므로, 단말 특정적인 RS라는 특징이 있다.
CRS는 cell 내의 모든 UE가 measurement 및 demodulation용도로 사용할 수 있도록 시스템 대역폭 내에서 동일한 패턴으로 항상 전송되므로 셀 특정적이다.
LTE 상향링크에서는 Measurement RS 로 Sounding RS(SRS)가 설계되었으며, 상향링크 데이터 채널(PUSCH)에 대한Demodulation RS (DMRS)와 ACK/NACK 및 CSI 피드백을 위한 상향링크 컨트롤 채널(PUCCH)에 대한 DMRS가 각각 설계되었다.
Self-contained 서브프레임 구조
NR 시스템에서 고려되는 TDD(Time Division Duplexing) 구조는 상향링크(Uplink, UL)와 하향링크(Downlink, DL)를 하나의 서브프레임(subframe)에서 모두 처리하는 구조이다. 이는, TDD 시스템에서 데이터 전송의 지연(latency)을 최소화하기 위한 것이며, 상기 구조는 self-contained 서브프레임(self-contained subframe) 구조로 지칭된다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 10을 참고하면, legacy LTE의 경우와 같이, 하나의 서브프레임이 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(symbol)들로 구성되는 경우가 가정된다.
도 10에서, 영역 1002는 하향링크 제어 영역(downlink control region)을 의미하고, 영역 1004는 상향링크 제어 영역(uplink control region)을 의미한다. 또한, 영역 1002 및 영역 1004 이외의 영역(즉, 별도의 표시가 없는 영역)은 하향링크 데이터(downlink data) 또는 상향링크 데이터(uplink data)의 전송을 위해 이용될 수 있다.
즉, 상향링크 제어 정보(uplink control information) 및 하향링크 제어 정보(downlink control information)는 하나의 self-contained 서브프레임에서 전송된다. 반면, 데이터(data)의 경우, 상향링크 데이터 또는 하향링크 데이터가 하나의 self-contained 서브프레임에서 전송된다.
도 10에 나타난 구조를 이용하는 경우, 하나의 self-contained 서브프레임 내에서, 하향링크 전송과 상향링크 전송이 순차적으로 진행되며, 하향링크 데이터의 전송 및 상향링크 ACK/NACK의 수신이 수행될 수 있다.
결과적으로, 데이터 전송의 에러가 발생하는 경우, 데이터의 재전송까지 소요되는 시간이 감소할 수 있다. 이를 통해, 데이터 전달과 관련된 지연이 최소화될 수 있다.
도 10과 같은 self-contained 서브프레임 구조에서, 기지국(eNodeB, eNB, gNB) 및/또는 단말(terminal, UE(User Equipment))이 전송 모드(transmission mode)에서 수신 모드(reception mode)로 전환하는 과정 또는 수신 모드에서 전송 모드로 전환하는 과정을 위한 시간 갭(time gap)이 요구된다. 상기 시간 갭과 관련하여, 상기 self-contained 서브프레임에서 하향링크 전송 이후에 상향링크 전송이 수행되는 경우, 일부 OFDM 심볼(들)이 보호 구간(Guard Period, GP)으로 설정될 수 있다.
3GPP NR에서 CSI reporting 관련 다음 세 가지 time-domain behavior를 지원할 예정이다. 유사하게, (analog) beam management를 위한 reporting 역시 아래 세 가지 time-domain behavior 중 일부 혹은 전부를 지원할 수 있다.
- Aperiodic CSI reporting
- Triggering시만 CSI 보고 수행
- Semi-persistent CSI reporting
활성화(Activation)되면, CSI 보고를 (특정 주기로) 시작하고, 비활성화(Deactivation)되면, CSI 보고를 중단한다.
주기적 CSI 보고(Periodic CSI reporting)
주기적 CSI 보고는 RRC 설정된 주기와 slot offset으로 CSI 보고를 수행한다.
또한, CSI acquisition시 채널 측정을 위한 DL RS(하향링크 참조신호) 역시 아래 세 가지 time-domain behavior를 지원할 예정이고, 유사하게 beam management를 위한 DL RS 역시 아래 세 가지 time-domain behavior 중 일부 혹은 전부를 지원할 수 있다.
Beam management를 위한 DL RS로는 기본적으로 CSI-RS가 포함될 예정이고, 다른 하향링크 신호도 활용될 수 있다.
다른 하향링크 신호의 예시로, mobility RS, beam RS, synchronization signal(SS), SS block, DL DMRSs(e.g. PBCH DMRS, PDCCH DMRS) 등이 활용될 수 있다.
- Aperiodic CSI-RS
- Triggering시만 CSI-RS 측정 수행
- Semi-persistent CSI-RS
활성화(Activation) 되면 CSI-RS 측정을 (특정 주기로) 시작하고, 비활성화(Deactivation)되면 CSI-RS 측정을 중단한다.
주기적 CSI-RS(Periodic CSI-RS)
주기적 CSI-RS는 RRC 설정된 주기와 slot offset으로 CSI-RS 측정을 수행한다.
또한, CSI acquisition시 기지국이 단말에게 지정하는 간섭 측정 자원 (interference measurement resource: IMR)에 LTE에서도 활용되던 zero-power(ZP) CSI-RS 기반 간섭 측정 방식이 지원될 예정이며, 추가로 NZP(non-zero-power) CSI-RS 기반 간섭 측정 방식이나 DMRS 기반 간섭 측정 방식 중 적어도 하나의 방식이 지원될 예정이다.
특히 LTE 시스템에서는 ZP CSI-RS기반 IMR이 반정적으로 설정(via RRC signaling)되었는데 반해, NR에서는 동적으로 설정하는 방식이 지원될 예정이며, 역시 아래와 같은 세 가지 time-domain behavior를 지원할 예정이다.
- Aperiodic IMR with ZP CSI-RS
- Semi-persistent IMR with ZP CSI-RS
- Periodic IMR with ZP CSI-RS
따라서, CSI 측정 및 보고를 구성하는 채널 추정, 간섭 추정 및 보고에 대해 아래와 같이 다양한 time domain behavior들의 조합들이 가능하다.
이하에서 설명의 편의를 위해 AP는 aperiodic, SP는 semi-persistent, PR은 periodic으로 간단히 표현하기로 한다.
예 1) 채널 측정을 위한 AP / SP / PR NZP CSI-RS 및 간섭 측정을 위한 AP / SP / PR ZP CSI-RS를 가지는 AP CSI 보고
예 2) 채널 측정을 위한 AP / SP / PR NZP CSI-RS 및 간섭 측정을 위한 AP / SP / PR ZP CSI-RS를 가지는 SP CSI 보고
예 3) 채널 측정을 위한 PR NZP CSI-RS 및 간섭 측정을 위한 PR ZP CSI-RS를 가지는 PR CSI 보고
상기 예시들에서 AP RS/IMR은 AP reporting에만, SP RS/IMR은 AP 혹은 SP reporting에만 PR RS/IMR은 모든 reporting에 대해 사용됨을 가정하였으나, 이에 제한되는 것은 아니다.
또한, RS와 IMR은 모두 resource setting에 포함될 것이며, 이들의 용도 즉, 채널 추정용인지 또는 간섭 추정용인지는 measurement setting에서 각 링크에 대한 설정을 통해 지시될 수 있다.
NR(New Rat)에서 PUCCH는 짧은 PUCCH(short PUCCH)와 긴 PUCCH(long PUCCH)를 고려한다.
상기 short PUCCH는 시간 영역(time domain)으로 하나 또는 두 개의 OFDM symbol들을 사용하고, 주파수 영역(frequency domain)으로 하나 이상의 PRB(physical resource block)들을 사용하여 전송될 수 있다.
아래 표 4는 NR에서 정의하고 있는 PUCCH format의 일례를 나타낸 표이다.
Figure PCTKR2018004974-appb-T000004
표 4에서, PUCCH format 0 및 PUCCH format 2는 short PUCCH일 수 있고, PUCCH format 1, PUCCH format 3 및 PUCCH format 4는 long PUCCH일 수 있다.다음, long PUCCH는 시간 영역에서 4 내지 12 OFDM 심볼들을 사용하며, 주파수 영역에서 하나 혹은 그 이상의 PRB(physical resource block)들을 사용하여 전송될 수 있다.
상기 short PUCCH는 앞서 살핀 self-contained slot structure에서 주로 DL(Downlink) data에 대한 빠른(fast) ACK(acknowledge) 또는 NACK(non-acknowledge)의 피드백 용도로 사용될 수 있다.
그리고, 상기 long PUCCH는 LTE의 PUCCH와 유사하게 단말 별로 일정 자원을 점유하여 ACK/NACK 및 CSI 피드백 용도로 사용될 수 있다.
상기 long PUCCH의 최소 심볼 수는 4 심볼이다.
이는 NR에서 다양한 슬롯 구조(slot structure) 또는 슬롯 포맷(slot format)을 고려하고 있기 때문이다.
NR에서 정의하는 슬롯(slot)에 대해 간단히 살펴본다.
서브캐리어 간격 설정(subcarrier spacing configuration
Figure PCTKR2018004974-appb-I000040
)에 대해, 슬롯들은 하나의 subframe 내에서 증가하는 순서 즉,
Figure PCTKR2018004974-appb-I000041
로 numbered되며, 하나의 (radio) frame 내에서 증가하는 순서로
Figure PCTKR2018004974-appb-I000042
로 numbered된다.
Figure PCTKR2018004974-appb-I000043
은 순환 전치(cyclic prefix)에 의존하는 슬롯에서 연속하는 OFDM 심볼들(
Figure PCTKR2018004974-appb-I000044
)이 있다.
subframe에서 슬롯
Figure PCTKR2018004974-appb-I000045
의 시작은 동일 subframe에서 OFDM symbol
Figure PCTKR2018004974-appb-I000046
의 시작과 시간에서 일치(align)되어 있다.
슬롯에서 OFDM 심볼들은 'downlink(D)', 'flexible(X)', 또는 'uplink(U)'로 분류될 수 있다.
다운링크 슬롯에서, 단말은 '다운링크(downlink)'에서 또는 'flexible' symbol에서만 downlink 전송이 발생할 것으로 가정할 수 있다.
업링크 슬롯에서, 단말은 '업링크(uplink)'에서 또는 'flexible' 심볼들에서만 uplink 전송이 발생할 것으로 가정할 수 있다.
참고로, NR에서 하나의 slot에 포함된 OFDM 심볼 수는 14개 또는 7개일 수 있다.
또한, 슬롯 구조(slot structure)는 DL(downlink), UL(uplink) 뿐만 아니라, DL 지배적인(dominant) 구조(e.g. PDCCH, PDSCH와 short PUCCH가 slot 내에 공존), UL 지배적인(dominant) (e.g. PDCCH와 PUSCH가 slot 내에 공존) 구조 등 다양한 구조가 존재할 수 있다.
또한, 동일 심볼 수를 갖는 short PUCCH와 long PUCCH에 (예를 들어, multiplexing할 수 있는 최대 단말 수 또는 channel coding 방식에 따라) 복수 개의 PUCCH format이 정의될 수 있으며, 각 PUCCH format별로 전송할 수 있는 payload 크기가 다를 수 있다.
앞에서 언급한 것처럼, LTE(-A) 시스템은 비주기적(aperiodic) CSI 보고(reporting)과 주기적(periodic) CSI 보고(reporting)을 지원하고, CSI 보고는 각각 PUSCH와 PUCCH를 통해 수행된다.
반-고정적(Semi-persistent) CSI 보고는 LTE(-A)시스템에서 지원되지 않는 CSI 보고 방식에 해당한다.
따라서, 본 명세서에서는 반-고정적(semi-persistent, SP) CSI 보고를 지원하는 경우, 어떤 상향링크(uplink, UL) 자원을 통해 CSI 보고를 수행할 지에 대한 방법을 제공한다.
PUSCH를 통한 반-고정적 CSI 보고(Semi-persistent CSI reporting on PUSCH)
먼저, PUSCH를 통해 반-고정적 CSI 보고를 수행하는 방법에 대해 살펴보기로 한다.
이 방법은, 반-고정적(semi-persistent) PUSCH 자원 할당(resource allocation) 정보(LTE 시스템에서의 semi-persistent scheduling(SPS)와 유사)를 CSI 보고 활성화(reporting activation)과 연동시켜 동작시키는 것을 특징으로 한다.
즉, 단말이 CSI 보고 활성화(reporting activation) 메시지를 수신하였을 때, 상기 단말은 미리 또는 상기 CSI 보고 활성화 메시지와 함께 전달된 SPS 정보를 통해 지정된 PUSCH 자원을 통해 CSI 보고를 기지국으로 시작한다.
상기 CSI 보고 활성화(reporting activation)은 L1(예: DCI) 메시지 또는 L2(예: MAC CE) 메시지를 통해 지시될 수 있다.
그리고, 상기 SPS 정보는 L1(예: DCI), L2(예: MAC CE), 또는 L3(예: RRC) 제어정보로 전달될 수 있다.
또한, 상기 SPS 정보는 PUSCH 자원의 시간적 특성(e.g. 주기, 슬롯 오프셋(slot offset)), 주파수 특성(e.g. PRB indexes), 코드 특성(e.g. sequence), 및/또는 공간 특성(e.g. DMRS port)등으로 구성될 수 있다.
상기 SPS 정보 중 일부 또는 전부가 CSI 보고 활성화(reporting activation) 시점 보다 (L1 signaling, L2 signaling 또는 L3 signaling으로) 미리 설정 또는 지정될 수 있다.
만약 상기 SPS 정보가 CSI reporting activation보다 미리 설정 또는 지정되는 경우, 단말은 CSI reporting activation 메시지를 수신함과 동시에 미리 지정된 SPS 자원을 통해 CSI 보고를 시작할 수 있다.
즉, CSI reporting activation 메시지는 기 설정된 PUSCH 활성화(activation)을 함께 지시할 수 있다.
SPS에 대한 자원 정보가 L2 또는 L3 signaling으로 미리 설정되는 경우, 상기 SPS에 대한 자원 정보는 주파수 자원 스케쥴링(scheduling) 정보인 자원 할당(resource allocation, RA) 정보뿐만 아니라 시간 자원 정보인 주기 및 슬롯/서브프래임 오프셋(slot/subframe offset) 정보를 함께 포함할 수 있다.
또한, 상기 주파수 자원 정보에 보고(reporting) 시점에 따른 PUSCH 호핑 패턴(hopping pattern) 정보가 추가로 포함될 수 있다.
상기 SPS 정보(e.g. RA)가 CSI 보고 활성화(reporting activation) 시점과 동시에 지정되고, (1) CSI reporting activation이 L1(DCI)으로 지시되는 경우, 상기 SPS 정보도 L1으로 지시되고, (2) CSI reporting activation이 L2(MAC CE)으로 지시되는 경우, 상기 SPS 정보도 L2로 지시될 수 있다.
LTE 시스템에서 PUSCH에 대한 SPS 활성화/해지(activation/release) 정보는 일반적인 one shot DL/UL scheduling 정보를 전달하는 RNTI(i.e. C-RNTI)와 다른 RNTI(i.e. SPS-C-RNTI)를 사용하여 단말로 전달됨으로써, PDCCH decoding 단계에서 구분되도록 설정되었다.
SP 보고 활성화/비활성화(reporting activation/deactivation) 정보를 전달함에 있어, one shot scheduling용 RNTI(e.g. C-RNTI in LTE)를 사용하던지, PUSCH SPS용 RNTI를 사용하던 지(e.g. SPS-C-RNTI in LTE), 또는 별도의 RNTI를 부여하는 방법을 고려할 수 있다.
만약 SP 보고 활성화/비활성화(reporting activation/deactivation) 정보의 전달에 PUSCH SPS용 RNTI(e.g. SPS-C-RNTI)와 공용으로 사용하는 경우, DCI field 내에 해당 UL grant가 PUSCH SPS 용인지, SP CSI reporting 용인지, (또는 두 가지 용도로 모두 사용되는지)를 1(또는 2) 비트 필드(bit field)로 지시할 수 있다.
앞서 설명한 내용을 다시 간략히 정리하면, NR에서는 PUSCH를 통한 반-고정적 CSI 보고가 지원된다. 그리고, PUSCH를 통한 SP-CSI는 DCI에 의해 활성화 / 비활성화된다.
본 명세서에서 제안하는 방법은 PUSCH를 통한 SP-CSI의 활성화 또는 비활성화의 지시를 위한 DCI에 SPS PUSCH에 대한 C-RNTI와 별도의 RNTI를 사용하는 것이다.
상기 별도의 RNTI의 일례를 SP-CSI-RNTI 등으로 표현될 수 있다.
즉, NR 시스템에서, VoIP 서비스 및 SP-CSI 보고 모두가 이용되는 경우, 각 이용에 대해 별도의 RNTI를 사용하는 것이 바람직할 수 있다.
그 이유는, 별도의 RNTI를 사용하는 것은 단말의 DCI에 대한 오검출(misdetection) 확률을 줄이고, DCI에 유효 비트를 추가할 수 있기 때문이다.
또한, PUSCH를 통한 SP CSI 보고는 주변 셀에 대한 간섭을 제어하는 목적으로 사용될 수 있는 점에서, VoIP 서비스 목적으로 사용되는 LTE에서의 SPS scheduling과 차이가 있다.
그리고, PUSCH를 통한 SP CSI 전송은 일정 주기를 가지고 항상 해당 주기에서 CSI를 전송 또는 보고하는 점에서, 전송할 data가 없는 경우에는 UL 전송을 수행하지 않는 SPS scheduling과 차이가 있다.
추가적으로, SP CSI activation / deactivation (release)를 위한 RNTI를 PUSCH SPS용 RNTI(SPS C-RNTI)와 공동으로 사용하는 방법에 대해 보다 구체적으로 살펴본다.
상기 RNTI(SPS C-RNTI)를 사용하여(VoIP 서비스 용도 및 SP CSI 보고용) 전송되는 DCI에 2개의 비트 또는 field를 설정하고, 1 bit(또는 하나의 field)는 (VoIP 서비스 용도의 UL-SCH를 나르는) SPS PUSCH에 대한 activation 또는 release(or deactivation)를 지시하는 용도로, 다른 1 bit(또는 하나의 field)는 CSI report를 전송하는 SPS PUSCH에 대한 activation 혹은 release를 지시하는 용도로 각각 설정할 수 있다.
이를 통해, 하나의 UL grant를 사용하여 상기 두 SPS PUSCH 중 하나만 혹은 둘 모두에 대해 activation 혹은 release(or deactivation)를 지시할 수 있다.
그리고, 후술할 (one shot) PUSCH와 PUCCH를 함께 사용하여 SP-CSI 보고를 수행하는 방법이 지원될 경우, CSI reporting triggering(또는 activation) 지시는 one shot PUSCH를 할당하는 C-RNTI로 수행할 수 있다.
따라서, RNTI를 통해 multi-shot (SPS) PUSCH를 사용하는 CSI 보고 방식인지 또는 one shot PUSCH와 함께 PUCCH를 사용하여 CSI 보고를 수행하는 방식인지를 implicit하게 구분하도록 할 수 있다.
PUSCH SPS는 상기 SP CSI reporting 목적뿐만 아니라 앞서 살핀 LTE 시스템에서와 같이 VoIP 서비스와 같은 상시적인 UL data 전송을 위해서도 활용될 수 있다.
이러한 관점에서, 할당된 PUSCH SPS는 SP CSI reporting과 UL data 전송 모두를 위해 활용될 수도 있다.
이 경우, CSI reporting 시점에 데이터 버퍼(data buffer)가 빈 경우에는 해당 SPS CSI PUSCH를 통해 CSI만을 전송하고, 만약 data가 있으면서 다른 UL grant는 없는 경우 SPS CSI PUSCH에 data 전송을 허용할 수도 있다.
이러한 경우, data와 CSI가 동시 전송되는지 여부는 CSI report (payload)내에 (독립된 field로) 지시(indication)해줄 수 있다.
또는, data와 CSI 보고 정보를 할당된 SPS PUSCH 자원 내에서 서로 다른 시간, 주파수, 코드, 및/또는 공간 자원으로 구분할 수도 있다.
예를 들어, DMRS sequence, DMRS port(s), scrambling sequence 등을 통해 data와 CSI 보고 정보가 구분될 수 있다.
PUCCH를 통한 반-고정적 CSI 보고(Semi-persistent CSI reporting on PUCCH)
다음으로, PUCCH를 통해 SP CSI 보고를 수행하는 방법에 대해 살펴본다.
즉, 해당 방법은 RRC 설정된 하나 또는 복수의 PUCCH 자원들에 대해 CSI reporting activation 시 (PUCCH resource 선택 및 선택된) PUCCH로 CSI reporting을 ON 또는 OFF하는 방법을 말한다.
이 경우, CSI 보고 활성화(reporting activation) 메시지와 함께 또는 미리 특정 PUCCH 자원을 사용하여 해당 CSI 보고를 수행할지를 지정하는 정보가 함께 전송될 수 있다.
상기 PUCCH 자원은 PUCCH의 시간, 주파수, 코드(sequence), 및/또는 공간 자원을 포함할 수 있다.
상기 공간 자원은 일례로, PUCCH DMRS port indicator 등일 수 있다.
CSI 보고 비활성화(reporting deactivation)과 함께 또는 별도로 PUCCH 자원 해지(release) 동작이 정의될 수 있다.
예를 들어, RRC로 설정된 복수 개의 PUCCH들이 특정 PUCCH 자원이 release됨으로 인해 자동적으로 재설정되는 동작이 정의될 수 있다.
상기 PUCCH 자원 release 지시는 reporting deactivation 지시와 함께 혹은 별도로 signaling될 수 있다.
만약 상기 PUCCH 자원 release 지시가 CSI reporting deactivation 지시와 별도로 signaling되는 경우, CSI reporting은 deactivation되었으나, 향후 동일 PUCCH 자원을 통해 CSI 보고를 re-activation할 가능성이 있는 경우에는 상기 PUCCH 자원 release는 지시되지 않을 수도 있다.
상기 PUCCH를 이용한 semi-persistent reporting은 UCI payload size를 고려해 특정 PUCCH type (e.g. long PUCCH) 또는 특정 PUCCH 설정(e.g. X 심볼 및/또는 Y PRB보다 많은 short PUCCH 또는 long PUCCH, specific PUCCH format(s))에 제한적으로 적용될 수 있다.
PUCCH 및 PUSCH를 통한 반-고정적 CSI 보고(Semi-persistent CSI reporting on PUCCH and PUSCH)
다음으로, 앞에서 잠깐 언급한 PUCCH 및 PUSCH를 통해 SP-CSI 보고 방법에 대해 구체적으로 살펴본다.
즉, 해당 방법은 PUSCH와 PUCCH를 모두 사용하여 SP CSI reporting을 지원하는 방식을 말한다.
예를 들어, 기지국이 CSI reporting activation 메시지(PUCCH 자원 선택 정보 포함할 수 있음)과 함께 UL resource allocation 정보를 단말로 전송하면, 상기 단말은 할당 받은 PUSCH 자원을 통해 첫 번째 CSI 보고를 수행하고, 이후 CSI 보고는 설정된(또는 선택된) PUCCH 자원을 통해 수행될 수 있다.
또 다른 일례로, 단말은 SPS PUSCH를 통해 semi-persistent CSI 보고를 수행하다가 더 이상 할당된 SPS PUSCH 자원이 존재하지 않고, 기지국으로부터 CSI reporting deactivation을 수신하지 못한 경우, 또는 할당된 SPS PUSCH 자원이 더 중요한 UL(또는 DL) 자원 (e.g. PUSCH with mimi-slot(URLLC용 PUSCH), PUCCH)과 충돌(collision 또는 overlapping)이 발생하는 경우, 해당 slot 또는 충돌 영역에서 SPS PUSCH 대신 PUCCH로 CSI 보고를 수행할 수 있다.
또한, SP CSI 보고를 PUSCH와 PUCCH를 함께 사용하는 경우, PUSCH를 통해서 높은 해상도(high resolution) CSI를 보고하고, PUCCH로는 낮은 해상도(low resolution CSI)를 보고하도록 할 수 있다.
여기서, PUCCH를 통한 SP CSI 보고는 PUCCH payload size의 제한을 고려하여 PUSCH를 통해 보고하는 CSI 정보에 의존(dependency)를 갖도록 설정될 수 있다.
또는, PUSCH와 PUCCH를 함께 사용하여 SP CSI 보고를 수행하는 경우, PUSCH를 통해서 전체 CSI(즉, RI, PMI, CQI, 그리고 필요 시 CRI도 함께)를 보고하고, PUCCH로는 일부 CSI (e.g. PMI only, 또는 CQI only, 또는 PMI와 CQI only)를 보고하도록 할 수 있다.
마찬가지로, PUCCH를 통한 SP CSI 보고는 PUCCH payload size의 제한을 고려하여 PUSCH를 통해 보고한 CSI 정보에 dependency를 갖도록 설정될 수 있다.
예를 들어, PUSCH로 CSI 보고 시, 보고한 PMI 값을 기준으로 후속하는 PUCCH 보고에서의 기준이 되는 PMI codebook subset이 결정될 수 있다.
즉, 특정 규칙에 의해 PUSCH에서 보고한 PMI 기준으로 PUCCH로 보고할 candidate PMI들이 제한되어 PUCCH 보고 시 PMI payload size를 줄일 수 있다.
여기서, '특정 규칙'은 기지국과 단말 간 약속된 규칙이거나 또는 특정 규칙 없이 기지국이 codebook subset을 직접 설정 또는 지정하는 방식을 따르도록 할 수 있다.
예를 들어, PUSCH CSI 보고에 포함된 W1값을 유지함을 가정하면서 후속하는 PUCCH CSI 보고 시에는 W2값만을 전송하도록 할 수도 있다.
서브밴드(subband, SB) 별로 복수 개의 W2들을 전송해야 하는 경우, 연속적인 PUCCH 전송을 통해 각 W2를 순차적으로 전송할 수도 있다.
유사하게, PUSCH로 보고한 CQI값을 기준으로 PUCCH 보고 시에는 차등(differential) CQI 값 (기준 CQI 대비 차이값)을 전송하도록 할 수 있다.
RI 값 역시 마찬가지로 PUSCH로 보낸 RI값 기준으로 PUCCH에서는 differential RI값을 전송하도록 설정함으로써, PUCCH의 payload size를 줄일 수 있다.
상기 PUCCH 기반 CSI 전송에 있어 각 보고 시점에 update할 CSI parameter를 기지국이 지정하는 것도 가능하다.
또는, UE가 update할 CSI parameter를 직접 결정하고, CSI와 함께 어떤 CSI parameter를 업데이트 했는지를 보고할 수 있다.
이 때, CRI, RI 등의 update는 전체 CSI에 영향을 주기 때문에, 부분 CSI update로는 적절하지 않을 수 있다.
UE가 PUCCH를 통해 부분 CSI를 update하는 경우, 부분 CSI update 대상이 아닌 CSI는 (e.g. CRI, RI) 가장 최근에 보고한 PUSCH CSI의 값을 가정하고 계산할 수 있다.
예를 들어, CQI와 PMI (e.g. W2 only)가 update 된다고 할 때, CRI, RI, W1은 가장 최근 PUSCH를 통해 보고한 값을 가정하고 계산한다.
위의 방법은 하나의 semi-persistent CSI reporting에 PUCCH와 PUSCH가 함께 사용되는 것을 가정하였으나, 독립적인 복수 개의 비주기적(aperiodic) CSI reporting / SP CSI reporting에 PUCCH와 PUSCH를 함께 활용하는 방식으로 확장해서 적용할 수도 있다.
예를 들어, high resolution CSI 정보를 PUSCH(또는 연속적인 PUCCH)로 전송을 완료한 단말의 경우, 기지국이 별도의 지시를 통해 PUCCH 기반의 aperiodic CSI / SP CSI 보고를 지시할 수 있다.
이때, PUCCH를 통해 전송하는 CSI 값은 앞서 설명한 바와 같이 PUSCH에서 보고한 CSI값에 dependency를 갖도록 하여 적은 payload size로도 효율적인 CSI 보고가 되도록 할 수 있다.
이 때, PUCCH 기반 CSI 보고 지시 시, 기준이 되는 PUSCH CSI 보고에 대해 L1 또는 L2 signaling을 통해 동적으로 지시하거나, L3(RRC) signaling을 통해 반-정적(semi-static)으로 설정할 수 있다.
만약 기준이 되는 PUSCH CSI 보고에 대해 L3 signaling을 통해 반-정적으로 설정된 경우, PUCCH 기반 CSI 보고와 PUSCH 기반 CSI 보고는 하나의 reporting setting내에 포함되거나 또는, 각각 독립적인 reporting setting에 포함될 수 있다.
이 경우, CSI 계산 및 보고에 있어 dependency가 있다는 것을 알려주기 위해 reporting setting 간 또는 measurement setting 내에 포함된 link 간에 연관성이 있음을 별도의 지시자를 통해 기지국에서 단말로 알려줄 수 있다.
상기 PUSCH로 CSI 보고를 먼저 전송한 후, PUCCH로 CSI를 업데이트 하는 동작에 대해서, PUSCH 복조(decoding)에 에러가 발생한 경우, 후속되는 PUCCH 기반 CSI 보고 정보 역시 다르게 이해(또는 해석)될 수 있는 문제가 발생할 수 있다.
이를 해결하기 위해, 최초 PUSCH 전송(e.g., #n-th slot)에 대하여 기지국이 ACK/NACK을 보내주는 동작이 정의되는 경우(e.g., #(n+k) slot), #(n+k) 시점에 ACK이 단말로 수신되는 경우, 상기 단말은 정상적으로 제안하는 PUCCH 전송을 계속 수행할 수 있다.
하지만, #(n+k)시점에 NACK이 단말로 수신되는 경우, 상기 단말은 다시 사전에 정의 또는 설정된 timeline을 따라서(e.g., #(n+k+k2)시점에) 상기 최초 PUSCH 전송에 대해 재전송을 수행하고, 다시 위의 동작을 반복하도록 할 수 있다.
이때, PUSCH 전송에 대해 최대 몇 번의 re-transmission이 가능한지가 정의 또는 설정될 수 있다.
만약, 최초 PUSCH 전송(e.g., #n-th slot)에 대해 기지국이 ACK 또는 NACK을 보내주는 동작이 정의(또는 지원 또는 설정)되지 않는다면, 단말은 (기지국이 정상 수신할 것을 가정하고) 상기 후속되는 PUCCH 전송을 개시한다.
다만, 중간에(e.g., initial PUSCH 이후 특정 pre-defined 또는 configured time interval 이내에) 상기 PUSCH 재전송을 지시하는 UL grant를 기지국으로부터 수신하는 경우, 단말은 상기 PUSCH 재전송을 수행하는 것으로 모든 연관 동작을 초기화(e.g., 전송하던 PUCCH등은 모두 중단하고 새로 시작)하도록 할 수 있다.
이처럼, '재전송을 지시하는 UL grant'인지를 인식하는 방법으로, UL grant 내의 HARQ ID가 같을 때 재전송을 지시하는 것으로 인식하든지, 동일한 reporting setting을 지시하는지 여부로 재전송을 지시하는 것으로 인식하든 지, 또는 LTE 시스템과 유사하게 DCI에 new data indicator field가 포함되어 있어서 toggling 여부로 재전송을 지시하는 것으로 인식하든지 할 수 있다.
추가적으로, PUSCH와 PUCCH를 함께 사용하여 CSI 보고를 수행하는 동작을 위해, PUSCH 자원 할당(resource allocation) 정보, PUCCH 자원 할당/선택(resource allocation/selection) 정보, 보고 활성화(Reporting activation) 정보가 함께 또는 별도로 기지국에서 단말로 signaling 될 수 있다.
예를 들어, 보고 활성화(Reporting activation) 및 PUCCH 할당/선택(allocation/selection) 정보는 함께 (MAC CE로) 전송되고, PUSCH 자원 할당 정보는 DCI로 따로 전송될 수 있다.
이 경우, 단말은 (1) PUSCH 자원 할당에 대한 DCI를 기지국으로부터 수신하기 전까지는 CSI 보고를 수행하지 않고, PUSCH 자원 할당을 받는 경우, PUSCH를 통해 첫 CSI 보고를 수행한 후, PUCCH 자원을 통해 후속되는 CSI 보고를 수행할 수 있다.
또는, (2) 단말은 PUSCH 자원 할당 정보를 받는 시점과 무관하게 (선택된) PUCCH 자원을 통해 CSI 보고 수행을 시작할 수 있다. (2)의 경우, 단말이 어느 시점에 CSI 보고를 위한 PUSCH 자원 할당을 기지국으로부터 수신하면, PUSCH 기반 CSI 보고 이후에 수행되는 PUCCH 기반 CSI 보고 정보는 PUSCH 기반 CSI 보고 정보에 dependency를 갖게 할 수 있다.
그리고, 해당 PUSCH 기반 CSI 보고 이전에 수행되는 PUCCH 기반 CSI 보고 정보는 PUSCH 기반 CSI 보고 정보에 dependency가 없도록 할 수 있다.
본 명세서에서 기재하는 PUCCH 자원(resource)는 PUCCH 시간(time), 주파수(frequency), 코드(code), 및/또는 공간(spatial) 자원을 통칭한다.
또한, PUCCH 자원은 시점 별로 다르게 설정될 수 있다. 예를 들어, 서로 다른 시점에 할당되는 PUCCH 자원 정보는 sequence 형태로 설정 또는 지시될 수 있다.
후보(candidate) PUCCH 자원 정보들은 RRC 정보로 설정됨이 보다 바람직하며, 어느 PUCCH 자원을 통해 지시하는 CSI 보고를 수행할 지는 MAC(Medium Access Control) CE(Control Element) 및/또는 DCI를 통해 보다 동적으로 지시할 수 있다.
반-고정적/비주기적 보고를 위한 UL 자원 지시(UL resource indication for semi-persistent/aperiodic reporting)
앞서 살핀 제안하는 방식들의 적용에 있어, (NR) 시스템은 PUCCH 기반 SP reporting과 PUSCH 기반 SP reporting을 모두 지원하고, 어떤 UL 자원을 사용해서 SP CSI 보고를 수행할 지를 기지국이 선택 또는 설정할 수 있다.
상기 UL 자원 지정을 반-정적(semi-static)하게 RRC로 설정할 경우, reporting setting의 파라미터로 포함될 수 있다.
또는, 상기 UL 자원 지정을 L1 signaling 또는 L2 signaling으로 보다 동적으로 설정하는 방법도 가능할 수 있다.
이 경우, 복수 개의 reporting settings 또는 단일 reporting setting 내에 복수 개의 후보 UL 자원들이 미리 RRC 설정될 수 있다.
상기 복수 개의 (후보) UL 자원들은 하나 또는 복수 개의 PUCCH 자원들 및/또는 하나 또는 복수 개의 PUSCH 자원들을 포함할 수 있다.
이 중에 어떠한 UL 자원을 통해 CSI 보고를 수행할지는 L1 및/또는 L2 signaling을 통해 기지국이 explicit 또는 implicit하게 지정할 수 있다.
암시적 지시(implicit indication)의 일례로, DL DCI로 activation시 PUCCH로 (CSI) 보고를 수행하고, UL RA(Resource Allocation)이 포함된 UL DCI로 activation시 PUSCH로 보고하도록 지정될 수 있다.
후자의 경우(PUSCH로 보고), 후속되는 (CSI) 보고는 PUCCH를 사용할 수도 있다.
암시적 지시(implicit indication)의 또 다른 일례로, 서로 다른 보고 타이밍(reporting timing) 속성을 갖는 복수의 PUCCH 자원들이 RRC로 설정된 경우(e.g. different slot offset with same/integer-multiple period), 보고 타이밍(reporting timing)의 지시를 통해 어느 PUCCH 자원을 사용할지를 지시할 수 있다.
암시적 지시(implicit indication)의 또 다른 일례로, 만약 DCI 기반의 SP CSI reporting이 (정해진 회수만큼의 연속적인 CSI 보고를 위해) 도입되고, MAC CE 기반의 SP CSI reporting 역시 (기지국이 deactivate할 때까지 지속적인 CSI 보고를 위해) 도입된다면, DCI 기반 SP CSI reporting은 PUSCH로, MAC CE 기반 SP CSI reporting은 PUCCH로 수행하는 것이 보다 바람직할 수 있다.
이는, DCI로 SP CSI 보고를 지시하는 경우, PUSCH에 대한 RA(Resource Allocation) field가 함께 전송될 수 있다.
그리고, 정해진 회수만큼 CSI 보고를 수행한 후 자동적으로 멈추는 형태의 메커니즘이 정의된다면 DCI 오검출(misdetection)시의 위험성이 보다 약해져서 보다 빠르게 activation할 수 있는 DCI가 유리할 수 있다.
이에 반해, (CSI 보고) deactivation 지시 수신 시까지 지속적으로 유지되는 SP CSI reporting 메커니즘의 경우, DCI misdetection시 deactivation이 되질 않아 심각한 간섭 및 단말의 전력 낭비를 유발할 수 있기 때문에, MAC CE로 deactivation을 수행하는 것이 보다 바람직할 수 있다.
이와 같은 경우, 활성화/비활성화(activation/deactivation) 메시지를 전달하는 container가 DCI인지 또는 MAC CE인지에 따라 단말이 PUCCH를 사용할지 또는 PUSCH를 사용하여 SP CSI 보고를 수행할 지가 암시적(implicit)하게 전달될 수 있다.
상기 L1/L2 explicit/implicit indication 메시지는 CSI reporting activation message와 함께 혹은 별도로 지시될 수 있다.
별도로 지시되는 예시로, L1(Layer 1) 및/또는 L2(Layer 2) signaling으로 UL 자원을 미리 선택한 후, 후속되는 L1 및/또는 L2 signaling으로 해당(또는 선택된) UL 자원을 통한 CSI 보고 활성화(reporting activation)을 지시할 수 있다.
상기 semi-static/dynamic UL 자원 선택 방식은 semi-persistent CSI reporting 뿐만 아니라 aperiodic CSI reporting 에도 적용될 수 있다.
예를 들어, aperiodic CSI 보고를 위해 하나 또는 복수 개의 PUCCH 자원들 및/또는 하나 또는 복수 개의 PUSCH 자원들이 RRC 설정된 후, L1 및/또는 L2 implicit 또는 explicit indication을 통해 상기 aperiodic CSI 보고를 수행할 최종 UL 자원이 지정될 수 있다.
CSI 보고 활성화/비활성화 타이밍(CSI reporting activation/deactivation timing)
PUSCH 자원 또는 PUCCH 자원은 반-고정적 보고 비활성화(semi-persistent reporting deactivation) 시 함께 deactivate될 수 있다.
이 경우, 이러한 deactivate 시점에 대해서는 (1) 해당 slot 이후로 CSI 보고를 보내지 않거나, (2) 남은 CSI 피드백 파라미터(remaining CSI feedback parameter)를 모두 전송한 후, CSI 보고를 중단하거나, 또는 (3) 기지국이 설정(또는 지정)한 시점 이후로 CSI 보고를 중단할 수 있다.
상기 (2)의 경우, PUCCH를 통한 CSI reporting시 LTE에서처럼 페이로드 사이즈(payload size)의 제한 때문에 여러 보고 시점들을 통해 CSI 피드백 정보를 순차적으로 분할하여 전송할 수 있다.
이 경우, 이러한 보고 중간에 reporting deactivation 메시지를 단말이 기지국으로부터 수신한 경우, 나머지 정보를 다 보낼 때까지는 점유하는 PUSCH 자원 또는 PUCCH 자원을 유지할 수 있다.
또는, 단말이 MAC CE로 reporting deactivation 메시지를 수신 시, 상기 MAC CE를 전송하는 PDSCH에 대한 ACK을 회신하는 slot을 기준으로 상기 보고를 중단할 수도 있다.
또는, 단말이 DCI로 reporting deactivation 메시지를 수신하더라도 해당 PDCCH에 대한 ACK/NACK이 정의될 수도 있다.
이 경우도 ACK을 회신하는 slot을 기준으로 (CSI) 보고가 중단될 수 있다.
이 경우, 단말이 reporting deactivation 메시지를 n번째(n-th) slot에 수신하였어도 ACK 회신 시점인 n+k번째((n+k)-th) slot 이전까지는 CSI 보고를 유지할 수 있다.
CSI reporting 시작 시점 역시, reporting activation DCI(또는 reporting activation MAC CE)를 수신한 slot 시점을 기준으로 정해진 (또는 기지국이 설정한) 시점 이후부터 CSI 보고를 개시하던지, 또는 reporting activation DCI(또는 reporting activation MAC CE)에 대한 ACK을 송신한 slot 시점을 기준으로 정해진 (또는 기지국이 설정한) 시점 이후부터 보고를 개시할 수 있다.
SP CSI 보고(reporting)을 위한 PUCCH/PUSCH 자원(양) 할당
다음으로, SP CSI 보고를 위한 PUCCH 또는 PUSCH 자원 할당 방법에 대해 살펴보기로 한다.
SP CSI reporting시 한번에 전송할 수 있는 payload 크기의 제한 때문에, CSI 보고 정보를 몇 차례로 나누어 전송할 수 있다.
예를 들어, LTE에서 PUCCH 상에서 CSI reporting 또는 Rel.14 LTE에서 하이브리드(hybrid) CSI feedback이 있을 수 있다.
이 때, 각 reporting instance에 보낼 CSI payload size가 가변할 수 있다.
이를 위해, (1) CSI reporting 시점마다 동일한 최대 페이로드(max payload) 사이즈를 지원하는 하나의 PUSCH/PUCCH format만 사용하는 방법과, (2) CSI reporting 시점마다 상이한 max payload 사이즈를 지원하는 복수의 서로 다른 PUCCH/PUSCH format을 사용하는 방법을 고려할 수 있다.
(1)의 경우, CSI reporting 시점마다 UCI code rate이 가변할 수 있으므로, high code rate을 사용하는 경우 power boosting을 하고, low code rate을 사용하는 경우 power de-boosting을 하는 UL power control 메커니즘을 정의할 수 있다.
또한, (2)의 경우, 어느 보고 시점에 어느 PUSCH/PUCCH format을 사용할지를 반-정적(semi-static)/동적(dynamic)으로 기지국이 설정 또는 지정하는 동작이 필요할 수 있다.
또는, CSI 피드백 정보 구성(e.g. CSI reporting mode in LTE)에 따라 시간 상으로 약속된 PUSCH/PUCCH format 변화 패턴이 정의될 수 있다.
LTE PUCCH와 유사하게, CSI 피드백 파라미터들은 다수의 그룹들로 세분화될 필요가 있고, 각 PUCCH 상의 CSI 페이로드 크기에 대한 제한 때문에 각 CSI 파라미터 그룹은 상이한 PUCCH 전송 인스턴스(instance)를 통해 순차적으로 전송될 수 있다.
NR PUCCH에서, 유연한(flexible) TDD 동작으로 인해 PUCCH 심볼의 수에 대한 일관성이 보장되지 않을 수 있기 때문에, 각 CSI 보고 인스턴스에 대해 사용 가능한 PUCCH 자원이 일관성이 없을 수 있다.
따라서, 조각된(fragmented) CSI 파라미터를 갖는 PUCCH에 대한 CSI 보고의 경우는 CSI 페이로드 크기의 관점에서 CSI 파라미터의 동일하지 않는 그룹화가 바람직할 수 있다.
이하, CSI 보고 및 빔 관리(beam management)에 대한 PUCCH 설계와 관련된 사항에 대해 간략히 살펴본다.
빔 쌍 링크 차단(beam pair link blocking)에 대한 견고성(robustness)을 위한 다중 빔(multi-beam) 기반 NR-PUCCH 전송에 대한 연구가 진행되고 있다.
예를 들어, UE는 상이한 NR-PUCCH OFDM 심볼들에서 상이한 UL Tx 빔들에 대해 NR-PUCCH를 전송할 수 있다.
반-정적 구성과 (UCI 정보의 적어도 특정 타입들에 대해) 동적 signaling의 결합은 'long PUCCH format과 short PUCCH format'에 대한 PUCCH 자원 둘 다를 결정하는 데 사용된다.
2 개의 NR-PUCCH들은 TDM 방식으로 동일한 슬롯상에서 하나의 UE로부터 전송될 수 있다.
- 2 개의 NR-PUCCH는 short PUCCH일 수 있다.
- 2 개의 NR-PUCCH는 long PUCCH와 short PUCCH일 수 있다.
CSI 보고의 서로 다른 시간 영역 행동에 대한 PUCCH 자원
LTE에서는 PUCCH에서 지원 가능한 최대 UCI 페이로드 크기가 고정되어 CSI 보고에 매우 제한적이었으므로, PUCCH에 대한 CSI 보고는 경량의(light-weight) CSI 피드백에 대해서만 지원되었다.
PUCCH 페이로드 크기에 대한 제한으로 인해 CSI 피드백 정보는 여러 부분으로 분할되어 서로 다른 서브 프레임에 있는 여러 PUCCH로 순차적으로 전송되었다.
그리고, 무겁고(heavy), 비주기적인(aperiodic) CSI 보고는 PUSCH에서만 지원되었다.
그러나, NR에서는, PUCCH상의 지원 가능한 UCI 페이로드 크기는 PUCCH 타입 (즉, long-duration에서 PUCCH 또는 short-duration에서 PUCCH) 및 PUCCH 심볼 (또는 PUCCH duration)의 수에 따라 매우 광범위할 수 있다.
PUCCH에서 지원 가능한 최대 UCI 페이로드 크기는 long-duration에서 PUCCH(또는 long PUCCH)의 경우에는 수 백 비트까지 상당히 증가될 수 있다.
따라서, NR에서 CSI 보고를 위해 PUCCH의 보다 폭 넓고 유연한 사용이 고려될 수 있다.
살핀 것처럼, NR에서는 CSI 보고의 3 가지 시간 영역 동작 (비주기적, 반-고정적(또는 반-영구적 또는 반-지속적) 및 주기적 CSI 보고)가 지원된다.
PUCCH는 LTE와 유사하게 주기적 및 반-고정적 CSI 보고에 사용될 수 있다.
그러나, NR의 경우, CSI 보고 인스턴스(report instance) 당 최대 지원 가능한 CSI 피드백의 페이로드 크기가 동적이고, 유연한 TDD 슬롯 구성과 관련하여 일관성을 유지하는 것은 거의 불가능하다.
과도한 CSI 조각화(fragmentation) 및 보고 지연을 피하려면 CSI 페이로드 크기에 따라 CSI 보고 인스턴스마다 다른 PUCCH 포맷 / duration을 허용하는 것이 더 바람직하다.
이와 관련하여, 앞서 살핀 것처럼 CSI 보고에 PUSCH와 PUCCH의 공동 사용도 고려할 수 있다.
예를 들어, 전체 CSI 피드백에 PUSCH를 먼저 사용하면, 반-고정적 CSI 보고의 경우 PUCCH를 사용하여 CSI 피드백을 업데이트 할 수 있다.
반-고정적 / 주기적 CSI 보고에 대한 CSI 보고 인스턴스 당 일치하지 않는 PUCCH format / duration을 고려한다.
비록 비주기적인 CSI 보고가 LTE에서 PUSCH를 통해서만 지원되었지만, PUCCH에 대한 비주기적인 CSI 보고는 NR에서 고려될 수 있다.
비주기적인 CSI 보고에 PUCCH를 사용하는 주된 동기 중 하나는 예를 들어 슬롯에서, 즉각적이고, 빠른 CSI 보고를 지원하는 것일 수 있다.
CSI triggering DCI, CSI-RS 및 CSI 보고를 위한 해당 PUCCH는 동일한 슬롯 내에 존재할 수 있다.
이와 관련하여 short PUCCH는 슬롯의 끝에 위치 할 수 있고, 최대 2 개의 심볼을 점유하기 때문에 short duration에서 PUCCH (또는 short PUCCH)는 빠른 ACK / NACK 보고와 유사하게 적절한 후보가 될 수 있다.
이 기능은 CSI 계산 시간만 고려하여 매우 가벼운 CSI 피드백에 대해서만 지원되어야 할 수 있다.
또한, 신속하고 매우 가벼운 CSI 피드백에 대한 short PUCCH 상에서 비주기적인 CSI 보고를 고려할 수 있다.
도 11은 본 명세서에서 제안하는 SP CSI 보고를 수행하는 단말의 동작 방법의 일례를 나타낸 순서도이다.
먼저, 단말은 반-고정적(semi-persistent, SP) CSI 보고의 활성화(activation)를 지시하는 하향링크 제어 정보(downlink control information, DCI)를 기지국으로부터 수신한다(S1110).
여기서, 상기 하향링크 제어 정보는 C-RNTI(Cell-Radio Network Temporary Identity)와 구분되는 특정 RNTI로 스크램블(scramble)될 수 있다.
여기서, C-RNTI와 별도의 RNTI를 사용하는 것에 대한 장점은 단말의 DCI에 대한 오검출(misdetection) 확률을 줄이고, DCI에 유효 비트를 추가할 수 있다는 점이다.
이후, 상기 단말은 상기 수신된 하향링크 제어 정보에 기초하여 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)를 통해 상기 반-고정적 CSI를 상기 기지국으로 한다(S1120).
여기서, 상기 SP CSI 보고는 제 1 SP CSI 보고와 제 2 SP CSI 보고를 포함할 수 있다.
일례로, 상기 SP CSI 보고의 양이 많은 경우, 상기 SP CSI 보고는 몇 차례로 나누어서 전송될 수 있으며, 상기 제 1 SP CSI 보고 이후에 상기 제 2 SP CSI 보고가 수행될 수 있다.
또한, 상기 단말은 S1110 수행 이전 또는 이후에, 상기 SP CSI를 보고할 PUSCH 자원을 상기 기지국으로부터 수신할 수 있다.
여기서, 상기 PUSCH 자원과 특정 상향링크 자원이 충돌하는 경우, 상기 SP CSI는 물리 상향링크 제어 채널(physical uplink control channel, PUCCH)을 통해 상기 기지국으로 보고될 수 있다.
구체적으로, 상기 SP CSI를 보고하는 PUSCH 자원과 PUCCH 자원이 충돌하는 경우, 상기 SP CSI를 보고하는 PUSCH 자원을 drop(또는 전송하지 않음)하고, 상기 충돌된 PUCCH 자원 또는 (CSI 보고 용도로) 별도로 설정된 PUCCH를 이용하여 상기 SP CSI를(또는 상기 SP CSI를 PUCCH에 피기백하여) 보고할 수 있다.
또는, 상기 SP CSI를 보고하는 PUSCH 자원과 (mini-slot 또는 one shot) PUSCH 자원이 충돌하는 경우, 상기 PUSCH 자원을 drop(또는 전송하지 않음)하고, 상기 충돌된 (mini-slot 또는 one shot) PUSCH 자원 또는 (CSI 보고 용도로) 별도로 설정된 PUCCH를 이용하여 상기 SP CSI를 보고할 수 있다.여기서, 상기 미니-슬롯(mini-slot)은 2, 4 또는 7 symbols로 구성될 수 있는 특정 개수 이하의 심볼로 구성되는 슬롯을 의미할 수 있다.
그리고, 상기 PUCCH를 통한 SP CSI는 상기 충돌과 관련된 슬롯(slot)에서 보고될 수 있다.
또한, 상기 단말은 S1120 단계를 수행하기 전에, 상기 SP CSI 보고를 수행할 상향링크 자원(uplink resource)를 결정할 수 있다.
상기 단말은 구체적으로, 상기 DCI가 상향링크(uplink) DCI인 경우, PUSCH를 통해 상기 SP CSI를 보고하고, 상기 DCI가 하향링크(downlink) DCI인 경우, PUCCH를 통해 상기 SP CSI를 보고할 수 있다.
앞서 설명한, PUSCH를 통한 SP CSI 보고는 주변 셀에 대한 간섭을 제어하는 목적으로 사용될 수 있는 점에서, VoIP 서비스 목적으로 사용되는 LTE에서의 SPS scheduling과 차이가 있다.
그리고, PUSCH를 통한 SP CSI 전송은 일정 주기를 가지고 항상 해당 주기에서 CSI를 전송 또는 보고하는 점에서, 전송할 data가 없는 경우에는 UL 전송을 수행하지 않는 SPS scheduling과 차이가 있다.
본 발명이 적용될 수 있는 장치 일반
도 12는 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 12를 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1210)와 단말(1220)을 포함한다.
기지국(1210)는 프로세서(processor, 1211), 메모리(memory, 1212) 및 통신 모듈(communication module, 1213)을 포함한다.
프로세서(1211)는 앞서 도 1 내지 도 11에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1211)에 의해 구현될 수 있다. 메모리(1212)는 프로세서(1211)와 연결되어, 프로세서(1211)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1213)은 프로세서(1211)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1213)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1220)은 프로세서(1221), 메모리(1222) 및 통신 모듈(또는 RF부)(1223)을 포함한다. 프로세서(1221)는 앞서 도 1 내지 도 11에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1221)에 의해 구현될 수 있다. 메모리(1222)는 프로세서(1221)와 연결되어, 프로세서(1221)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1223)는 프로세서(1221)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1212, 1222)는 프로세서(1211, 1221) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1211, 1221)와 연결될 수 있다.
또한, 기지국(1210) 및/또는 단말(1220)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 13은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 13에서는 앞서 도 12의 단말을 보다 상세히 예시하는 도면이다.
도 13을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1310), RF 모듈(RF module)(또는 RF 유닛)(1335), 파워 관리 모듈(power management module)(1305), 안테나(antenna)(1340), 배터리(battery)(1355), 디스플레이(display)(1315), 키패드(keypad)(1320), 메모리(memory)(1330), 심카드(SIM(Subscriber Identification Module) card)(1325)(이 구성은 선택적임), 스피커(speaker)(1345) 및 마이크로폰(microphone)(1350)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1310)는 앞서 도 1 내지 도 11에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1310)에 의해 구현될 수 있다.
메모리(1330)는 프로세서(1310)와 연결되고, 프로세서(1310)의 동작과 관련된 정보를 저장한다. 메모리(1330)는 프로세서(1310) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1310)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1320)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1350)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1310)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1325) 또는 메모리(1330)로부터 추출할 수 있다. 또한, 프로세서(1310)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1315) 상에 디스플레이할 수 있다.
RF 모듈(1335)는 프로세서(1310)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1310)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1335)에 전달한다. RF 모듈(1335)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1340)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1335)은 프로세서(1310)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1345)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
도 14는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
구체적으로, 도 14는 FDD(Frequency Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
먼저, 전송 경로에서, 도 12 및 도 13에서 기술된 프로세서는 전송될 데이터를 프로세싱하여 아날로그 출력 신호를 송신기(1410)에 제공한다.
송신기(1410) 내에서, 아날로그 출력 신호는 디지털-대-아날로그 변환(ADC)에 의해 야기되는 이미지들을 제거하기 위해 저역 통과 필터(Low Pass Filter,LPF)(1411)에 의해 필터링되고, 상향 변환기(Mixer, 1412)에 의해 기저대역으로부터 RF로 상향 변환되고, 가변이득 증폭기(Variable Gain Amplifier,VGA)(1413)에 의해 증폭되며, 증폭된 신호는 필터(1414)에 의해 필터링되고, 전력 증폭기(Power Amplifier,PA)(1415)에 의해 추가로 증폭되며, 듀플렉서(들)(1450)/안테나 스위치(들)(1460)을 통해 라우팅되고, 안테나(1470)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1470)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1460)/듀플렉서들 (1450)을 통해 라우팅되고, 수신기(1420)으로 제공된다.
수신기(1420)내에서, 수신된 신호들은 저잡음 증폭기(Low Noise Amplifier, LNA)(1423)에 의해 증폭되며, 대역통과 필터(1424)에 의해 필터링되고, 하향 변환기(Mixer,1425)에 의해 RF로부터 기저대역으로 하향 변환된다.
상기 하향 변환된 신호는 저역 통과 필터(LPF,1426)에 의해 필터링되며, VGA(1427)에 의해 증폭되어 아날로그 입력 신호를 획득하고, 이는 도 12 및 도 13에서 기술된 프로세서에 제공된다.
또한, 로컬 오실레이터 (local oscillator, LO) 발생기(1440)는 전송 및 수신 LO 신호들을 발생 및 상향 변환기(1412) 및 하향 변환기(1425)에 각각 제공한다.
또한, 위상 고정 루프(Phase Locked Loop,PLL)(1430)은 적절한 주파수들에서 전송 및 수신 LO 신호들을 생성하기 위해 프로세서로부터 제어 정보를 수신하고, 제어 신호들을 LO 발생기(1440)에 제공한다.
또한, 도 14에 도시된 회로들은 도 14에 도시된 구성과 다르게 배열될 수도 있다.
도 15는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
구체적으로, 도 15는 TDD(Time Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
TDD 시스템에서의 RF 모듈의 송신기(1510) 및 수신기(1520)은 FDD 시스템에서의 RF 모듈의 송신기 및 수신기의 구조와 동일하다.
이하, TDD 시스템의 RF 모듈은 FDD 시스템의 RF 모듈과 차이가 나는 구조에 대해서만 살펴보기로 하고, 동일한 구조에 대해서는 도 14의 설명을 참조하기로 한다.
송신기의 전력 증폭기(Power Amplifier,PA)(1515)에 의해 증폭된 신호는 밴드 선택 스위치(Band Select Switch,1550), 밴드 통과 필터(BPF,1560) 및 안테나 스위치(들)(1570)을 통해 라우팅되고, 안테나(1580)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1580)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1570), 밴드 통과 필터(1560) 및 밴드 선택 스위치(1550)을 통해 라우팅되고, 수신기(1520)으로 제공된다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 CSI 보고 방법은 NR 시스템, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 채널 상태 정보(channel state information, CSI)를 보고(report)하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    반-고정적(semi-persistent, SP) CSI 보고의 활성화(activation)를 지시하는 하향링크 제어 정보(downlink control information, DCI)를 기지국으로부터 수신하는 단계,
    상기 하향링크 제어 정보는 C-RNTI(Cell-Radio Network Temporary Identity)와 구분되는 특정 RNTI로 스크램블(scramble)되며; 및
    상기 수신된 하향링크 제어 정보에 기초하여 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)를 통해 상기 반-고정적 CSI를 상기 기지국으로 보고하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 SP CSI 보고는 제 1 SP CSI 보고와 제 2 SP CSI 보고를 포함하는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 SP CSI를 보고하기 위한 PUSCH 자원을 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기 PUSCH 자원과 특정 상향링크 자원이 충돌하는 경우, 상기 SP CSI는 물리 상향링크 제어 채널(physical uplink control channel, PUCCH)을 통해 상기 기지국으로 보고되는 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    상기 특정 상향링크 자원은 PUCCH 자원 또는 미니-슬롯(mini-slot) 상의 PUSCH 자원인 것을 특징으로 하는 방법.
  6. 제 4항에 있어서,
    상기 PUCCH를 통한 SP CSI는 상기 충돌과 관련된 슬롯(slot)에서 보고되는 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 SP CSI 보고를 수행할 상향링크 자원(uplink resource)를 결정하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  8. 제 1항에 있어서,
    상기 DCI가 상향링크(uplink) DCI인 경우, 상기 SP CSI는 상기 PUSCH를 통해 보고되는 것을 특징으로 하는 방법.
  9. 무선 통신 시스템에서 채널 상태 정보(channel state information, CSI)를 보고(report)하는 단말에 있어서,
    무선 신호를 송수신하기 위한 RF 모듈(radio frequency module); 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    반-고정적(semi-persistent, SP) CSI 보고의 활성화(activation)를 지시하는 하향링크 제어 정보(downlink control information, DCI)를 기지국으로부터 수신하며,
    상기 하향링크 제어 정보는 C-RNTI(Cell-Radio Network Temporary Identity)와 구분되는 특정 RNTI로 스크램블(scramble)되며; 및
    상기 수신된 하향링크 제어 정보에 기초하여 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH)를 통해 상기 반-고정적 CSI를 상기 기지국으로 보고하도록 설정되는 것을 특징으로 하는 단말.
  10. 제 9항에 있어서,
    상기 SP CSI 보고는 제 1 SP CSI 보고와 제 2 SP CSI 보고를 포함하는 것을 특징으로 하는 단말.
PCT/KR2018/004974 2017-04-28 2018-04-27 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 Ceased WO2018199703A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020197029171A KR102095547B1 (ko) 2017-04-28 2018-04-27 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
KR1020207020881A KR102446700B1 (ko) 2017-04-28 2018-04-27 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
CN201880041373.XA CN110771073B (zh) 2017-04-28 2018-04-27 用于在无线通信系统中报告信道状态信息的方法及其设备
KR1020207008721A KR102137116B1 (ko) 2017-04-28 2018-04-27 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
JP2019558483A JP7229938B2 (ja) 2017-04-28 2018-04-27 無線通信システムにおけるチャネル状態情報を報告するための方法、およびこのための装置
EP18791726.5A EP3618322B1 (en) 2017-04-28 2018-04-27 Method for reporting channel state information in wireless communication system and apparatus therefor
US16/665,541 US10778312B2 (en) 2017-04-28 2019-10-28 Method for reporting channel state information in wireless communication system and apparatus therefor
US16/906,742 US11251851B2 (en) 2017-04-28 2020-06-19 Method for reporting channel state information in wireless communication system and apparatus therefor
US17/581,179 US11742919B2 (en) 2017-04-28 2022-01-21 Method for reporting channel state information in wireless communication system and apparatus therefor
US18/222,195 US11968014B2 (en) 2017-04-28 2023-07-14 Method for reporting channel state information in wireless communication system and apparatus therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762491322P 2017-04-28 2017-04-28
US62/491,322 2017-04-28
US201762501080P 2017-05-03 2017-05-03
US62/501,080 2017-05-03
US201762565185P 2017-09-29 2017-09-29
US62/565,185 2017-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/665,541 Continuation US10778312B2 (en) 2017-04-28 2019-10-28 Method for reporting channel state information in wireless communication system and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2018199703A1 true WO2018199703A1 (ko) 2018-11-01

Family

ID=63918649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004974 Ceased WO2018199703A1 (ko) 2017-04-28 2018-04-27 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (4) US10778312B2 (ko)
EP (1) EP3618322B1 (ko)
JP (1) JP7229938B2 (ko)
KR (3) KR102137116B1 (ko)
CN (1) CN110771073B (ko)
WO (1) WO2018199703A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021032284A1 (en) * 2019-08-19 2021-02-25 Nokia Technologies Oy Configured grant arrangement in beam-management networks
RU2792882C1 (ru) * 2019-06-10 2023-03-28 Нтт Докомо, Инк. Терминал и способ радиосвязи
JP2023513522A (ja) * 2020-02-07 2023-03-31 株式会社Nttドコモ タイプiiチャネル状態情報(csi)用のサウンディング参照信号(srs)アシストsdビーム及びfdベクトル報告

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018237990A1 (en) 2017-03-24 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent CSI feedback over PUSCH
US10790956B2 (en) 2017-08-11 2020-09-29 Futurewei Technologies, Inc. System and method for communicating time and frequency tracking signals using configurations for one port CSI-RSs
EP3709701A4 (en) * 2017-11-10 2021-07-07 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
US11303344B2 (en) * 2017-11-13 2022-04-12 Nec Corporation Methods and devices for beam report transmission and receiving
CN108418667B (zh) * 2017-11-17 2019-04-19 华为技术有限公司 测量csi-rs的方法和指示方法,网络设备、终端
EP3725020B1 (en) * 2018-01-12 2021-03-10 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for prioritizing channel state information reports
CN110351768B (zh) * 2018-04-04 2020-09-01 维沃移动通信有限公司 Csi报告的传输方法、终端设备和网络设备
US11212828B2 (en) * 2018-04-05 2021-12-28 Qualcomm Incorporated Appending an on-demand grant to a semi-persistent scheduling (SPS) grant
US11652526B2 (en) * 2019-04-30 2023-05-16 Ofinno, Llc Channel state information feedback for multiple transmission reception points
US12177886B2 (en) * 2019-10-03 2024-12-24 Ntt Docomo, Inc. Terminal and radio communication method
US20220408455A1 (en) * 2019-10-04 2022-12-22 Ntt Docomo, Inc. Terminal and communication method
EP4104576A4 (en) * 2020-02-14 2023-11-08 Qualcomm Incorporated DOWNLINK TRIGGERED CHANNEL STATE INFORMATION REPORTING ALLOWS SEMI-PERSISTENT SCHEDULING
WO2021184201A1 (en) * 2020-03-17 2021-09-23 Mediatek Singapore Pte. Ltd. Methods and apparatus of csi report to support reliable multicast transmission
US11277851B2 (en) * 2020-04-16 2022-03-15 Qualcomm Incorporated Slot structure for superposition transmission using a single antenna port
CN116615890A (zh) * 2020-12-28 2023-08-18 高通股份有限公司 信道状态信息的半持久报告
KR20230128477A (ko) * 2021-01-15 2023-09-05 엘지전자 주식회사 Csi 보고를 전송하는 방법, 사용자기기, 프로세싱 장치,저장 매체 및 컴퓨터 프로그램, 그리고 csi 보고를 수신하는 방법 및 기지국
CN115189826B (zh) * 2021-04-01 2024-11-19 华为技术有限公司 一种信息发送方法、接收方法及装置
CN120434812A (zh) * 2024-02-04 2025-08-05 北京三星通信技术研究有限公司 无线通信系统中的终端和基站及由其执行的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249578A1 (en) * 2010-01-08 2011-10-13 Shahrokh Nayeb Nazar Channel state information transmission for multiple carriers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121387B2 (ja) * 1987-11-16 1995-12-25 年臣 永田 有機排水の処理法
DE3738976A1 (de) * 1987-11-17 1989-05-24 Belland Ag Verfahren und vorrichtung zur herstellung von thermoplastischen kunststoffen
JPH0665652B2 (ja) * 1987-12-17 1994-08-24 三菱石油株式会社 パラキシレンの分離方法
JPH01160600A (ja) * 1987-12-17 1989-06-23 Sanyo Electric Co Ltd スチーマー
US8515440B2 (en) 2010-02-19 2013-08-20 Qualcomm Incorporated Computation of channel state feedback in systems using common reference signal interference cancelation
WO2013002576A2 (ko) * 2011-06-28 2013-01-03 엘지전자 주식회사 상향링크 신호 전송방법 및 수신방법과, 사용자기기 및 기지국
KR101505770B1 (ko) * 2011-07-15 2015-03-24 엘지전자 주식회사 채널 상태 보고 방법 및 장치
CN103875201B (zh) * 2011-09-30 2017-02-15 Lg电子株式会社 在无线通信系统中传送信道状态信息的方法和设备
EP2793414B1 (en) * 2011-12-16 2016-09-14 LG Electronics Inc. Method for measuring channel state information in a wireless access system and apparatus for same
CN103167615B (zh) 2011-12-19 2016-03-02 华为技术有限公司 信息的处理方法及装置
US9912430B2 (en) * 2012-07-06 2018-03-06 Samsung Electronics Co. Ltd. Method and apparatus for channel state information feedback reporting
GB2509973A (en) * 2013-01-21 2014-07-23 Sony Corp Reporting channel state information in a wireless communications system
US9749996B2 (en) * 2013-07-29 2017-08-29 Lg Electronics Inc. Method and device for performing coordinated multi-point transmission based on selection of transmission point
US9723651B2 (en) * 2014-11-10 2017-08-01 Qualcomm Incorporated Enhanced connection management for multiple access networks
US9876623B2 (en) * 2014-12-22 2018-01-23 Samsung Electronics Co., Ltd. Transmission of uplink control information in carrier aggregation with a large number of cells
JP6105672B2 (ja) * 2015-05-14 2017-03-29 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019004194A (ja) * 2015-11-05 2019-01-10 シャープ株式会社 端末装置、基地局装置および方法
US10517073B2 (en) * 2016-02-02 2019-12-24 Nec Corporation Method and device for resource allocation
EP3471311B1 (en) * 2016-06-23 2022-10-26 LG Electronics Inc. Method for reporting channel state in wireless communication system and device therefor
US10873439B2 (en) * 2016-12-16 2020-12-22 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing channel state information
AU2018237990A1 (en) * 2017-03-24 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent CSI feedback over PUSCH
US10771211B2 (en) * 2017-03-28 2020-09-08 Samsung Electronics Co., Ltd. Method and apparatus for channel state information (CSI) acquisition with DL and UL reference signals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249578A1 (en) * 2010-01-08 2011-10-13 Shahrokh Nayeb Nazar Channel state information transmission for multiple carriers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Independent and Joint Control of CSI-RS Transmission and CSI Reporting for NR MIMO", R1-1701681, 3GPP TSG RAN WG1 MEETING #88, 6 February 2017 (2017-02-06), Athens, Greece, XP051220556, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/> *
NOKIA ET AL.: "On the CSI Timing Relationships", R1-1705992, 3GPP TSG RAN WG1 MEETING *SPP SPRH #88BIS, 24 March 2017 (2017-03-24), Spokane, USA, XP051250812 *
SAMSUNG: "Discussion on CSI-RS Resource Allocation", R1-1705361, 3GPP TSG RAN WG1 MEETING #88BIS, 24 March 2017 (2017-03-24), Spokane, USA, XP051250672 *
SHARP: "UCI Reporting on PUCCH and PUSCH", R1-1705475, 3GPP TSG RAN WG1 MEETING #88BIS, 25 March 2017 (2017-03-25), Spokane, USA, XP051251952 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792882C1 (ru) * 2019-06-10 2023-03-28 Нтт Докомо, Инк. Терминал и способ радиосвязи
WO2021032284A1 (en) * 2019-08-19 2021-02-25 Nokia Technologies Oy Configured grant arrangement in beam-management networks
JP2023513522A (ja) * 2020-02-07 2023-03-31 株式会社Nttドコモ タイプiiチャネル状態情報(csi)用のサウンディング参照信号(srs)アシストsdビーム及びfdベクトル報告
US12413280B2 (en) 2020-02-07 2025-09-09 Ntt Docomo, Inc. Method of sounding reference signal (SRS)-assisted SD beam and FD vector reporting for type II channel state information (CSI)

Also Published As

Publication number Publication date
CN110771073B (zh) 2022-04-19
US11251851B2 (en) 2022-02-15
KR102137116B1 (ko) 2020-07-23
US10778312B2 (en) 2020-09-15
KR102095547B1 (ko) 2020-03-31
US20230361834A1 (en) 2023-11-09
KR102446700B1 (ko) 2022-09-26
US11968014B2 (en) 2024-04-23
CN110771073A (zh) 2020-02-07
US11742919B2 (en) 2023-08-29
JP7229938B2 (ja) 2023-02-28
KR20200035188A (ko) 2020-04-01
KR20200090947A (ko) 2020-07-29
JP2020518195A (ja) 2020-06-18
EP3618322B1 (en) 2024-01-03
KR20190119651A (ko) 2019-10-22
EP3618322A1 (en) 2020-03-04
EP3618322A4 (en) 2020-09-02
US20220149912A1 (en) 2022-05-12
US20200322025A1 (en) 2020-10-08
US20200067584A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018199703A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2018203704A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2019107873A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2018128365A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2019103562A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2018164332A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2019098762A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2018128376A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2019050380A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018203680A1 (ko) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
WO2018128351A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2019139288A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2019098798A1 (ko) 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 이를 위한 장치
WO2018174413A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2019164363A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019190236A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호(srs)를 전송하는 방법 및 이를 위한 장치
WO2019017751A1 (ko) 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018143665A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018203679A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2019108048A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2018212530A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2019103580A1 (ko) 무선 통신 시스템에서 csi 보고를 수행하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197029171

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019558483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018791726

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018791726

Country of ref document: EP

Effective date: 20191128