WO2018101537A1 - Eco-friendly polycarbonate resin composition having excellent adhesion - Google Patents
Eco-friendly polycarbonate resin composition having excellent adhesion Download PDFInfo
- Publication number
- WO2018101537A1 WO2018101537A1 PCT/KR2017/000471 KR2017000471W WO2018101537A1 WO 2018101537 A1 WO2018101537 A1 WO 2018101537A1 KR 2017000471 W KR2017000471 W KR 2017000471W WO 2018101537 A1 WO2018101537 A1 WO 2018101537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycarbonate resin
- weight
- glycidyl methacrylate
- plant
- ethylene
- Prior art date
Links
- 229920005668 polycarbonate resin Polymers 0.000 title claims abstract description 47
- 239000004431 polycarbonate resin Substances 0.000 title claims abstract description 47
- 239000000203 mixture Substances 0.000 title claims abstract description 38
- 229920001577 copolymer Polymers 0.000 claims abstract description 21
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000010146 3D printing Methods 0.000 claims abstract description 16
- 229920005989 resin Polymers 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 13
- 229920006026 co-polymeric resin Polymers 0.000 claims description 12
- -1 diol compound Chemical class 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 claims description 5
- 238000001746 injection moulding Methods 0.000 claims description 5
- 229960002479 isosorbide Drugs 0.000 claims description 5
- 150000002009 diols Chemical class 0.000 claims description 4
- 239000003063 flame retardant Substances 0.000 claims description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000003963 antioxidant agent Substances 0.000 claims description 2
- 239000012760 heat stabilizer Substances 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 abstract description 15
- 239000004417 polycarbonate Substances 0.000 abstract description 15
- 239000000853 adhesive Substances 0.000 abstract description 13
- 230000001070 adhesive effect Effects 0.000 abstract description 13
- 239000011229 interlayer Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- KLDXJTOLSGUMSJ-UNTFVMJOSA-N (3s,3ar,6s,6ar)-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-3,6-diol Chemical compound O[C@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-UNTFVMJOSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 239000005447 environmental material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229940117958 vinyl acetate Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0869—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
- C08L23/0884—Epoxide-containing esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present invention relates to an environment-friendly polycarbonate (PC) resin composition, and more particularly, to an ethylene-friendly and environmentally friendly, polyglyceride-containing polycarbonate containing plant-derived raw materials, and having a specific content of glycidyl methacrylate.
- PC polycarbonate
- the present invention relates to a polycarbonate resin composition which can be suitably used for improving the strength of printed materials by improving adhesion between layers in the form of 3D printing by improving adhesion strength in various forms.
- resins used in the method of laminating through extrusion of filaments include polylactic acid, acrylonitrile-butadiene-styrene, polycarbonate, polyimide, and the like.
- the present invention comprises (A) a polycarbonate resin, (B) a plant-derived component-containing polycarbonate resin, and (C) an ethylene-glycidyl methacrylate copolymer resin, wherein the resin Based on 100 parts by weight of the total of the components (A) to (C), (B) 2 to 25 parts by weight of a plant-derived component-containing polycarbonate resin, and (C) ethylene-glycidyl methacrylate copolymer resin 2 to 18 parts by weight, wherein the glycidyl methacrylate content in the ethylene-glycidyl methacrylate copolymer resin is 12% by weight or more based on 100% by weight of the ethylene-glycidyl methacrylate copolymer And a polycarbonate resin composition.
- a molded article prepared by extruding or injection molding the polycarbonate resin composition.
- the polycarbonate resin composition according to the present invention is different from the conventional polycarbonate composition for 3D printing, which is a non-environmental material, and by using a polycarbonate containing a plant-derived raw material mixed with a general polycarbonate, carbon dioxide emission It contributes to the suppression and further helps to prevent global warming, as well as exhibits improved adhesion, which makes it particularly suitable for 3D printing.
- polycarbonate resin (A) contained in the polycarbonate resin composition of the present invention an aromatic polycarbonate resin commonly used can be used.
- the aromatic polycarbonate resin may be prepared by reacting dihydric phenol with phosgene or by using an ester interchange reaction of dihydric phenol with a carbonate precursor, and a linear and / or branched polycarbonate homopolymer. And polyester copolymers and the like.
- the dihydric phenol is 2,2-bis (4-hydroxyphenyl) propane (ie bisphenol A), bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxy-3,5 -Dimethylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane and combinations thereof, wherein the carbonate precursor is from diphenyl carbonate, carbonyl halide, diaryl carbonate and combinations thereof Can be selected.
- the viscosity average molecular weight of said (A) polycarbonate resin it is more preferable that it is 21,000-25,000.
- the viscosity average molecular weight of the polycarbonate resin is within the above range, excellent compatibility during extrusion of the composition may occur less thermal decomposition.
- the (A) polycarbonate resin content in the composition of the present invention may be, for example, 57 to 96 parts by weight, more specifically 65 to 90 parts by weight, based on 100 parts by weight of the total of the resin components (A) to (C). It may be wealth. If the content of (A) polycarbonate resin in the composition is too small, there may be a problem in impact strength and heat resistance, on the contrary, too much may have a problem that the environmentally friendly advantages disappear.
- the plant-derived diol compound may be isosorbide, isomannide or isoidide, and more specifically, may be isosorbide of Formula 1 below.
- Isosorbide can be used produced by a known technique.
- the plant-derived component-containing polycarbonate resin (B) may be a plant-derived diol is 40% by weight or more, more specifically 50% by weight based on 100% by weight of the total diol.
- the heat resistance may be low, and pyrolysis may occur during the preparation of the composition.
- the viscosity-average molecular weight of the (B) plant-derived component-containing polycarbonate of the present invention may be 17,000 to 30,000.
- the said (B) plant-derived component containing polycarbonate resin content in the composition of this invention is 2-25 weight part based on 100 weight part of total of resin components (A)-(C), More specifically, 5-20 It may be part by weight. If the content of the (B) plant-derived component-containing polycarbonate resin in the composition is lower than the above-mentioned level, the biomass content of the composition is lowered, which leads to a lack of environmental friendliness. May occur.
- Ethylene-glycidyl methacrylate copolymer resin contained in the polycarbonate resin composition of this invention increases the kneading property of (A) polycarbonate resin and (B) plant-derived raw material containing polycarbonate resin, and It is used to improve the adhesive strength when bonding.
- ethylene-glycidyl methacrylate copolymer includes copolymers consisting of ethylene and glycidyl methacrylate as well as additional comonomers in addition to ethylene and glycidyl methacrylate. It is a concept containing the copolymer to make.
- Such further comonomers include, for example, vinyl monomers (eg vinyl acetate (VA)), acrylic monomers (eg methyl acrylate (MA), methyl methacrylate (MMA), ethyl acrylate). (EA), ethyl methacrylate (EMA), butyl acrylate (BA), butyl methacrylate (BMA), etc.) and combinations thereof may be used, but is not limited thereto.
- the glycidyl methacrylate (GMA) content in the (C) ethylene-glycidyl methacrylate copolymer resin is 12% by weight or more based on 100% by weight of the copolymer. If the glycidyl methacrylate content in the copolymer is lower than 12% by weight, the adhesion is significantly lowered. In addition, the glycidyl methacrylate content in the copolymer may be 25% by weight or less, more preferably 22% by weight or less, even more preferably 19% by weight or less. If the glycidyl methacrylate content in the copolymer is within the above range, the adhesion may be increased, thereby contributing to the improvement of the interlayer adhesion during 3D printing.
- the (C) ethylene-glycidyl methacrylate copolymer resin content in the composition of the present invention is 2 to 18 parts by weight based on 100 parts by weight of the total of the resin components (A) to (C), more specifically May be 5 to 15 parts by weight.
- the content of the (C) ethylene-glycidyl methacrylate copolymer resin in the composition is less than the above-mentioned level, the impact strength may decrease.
- the content of the ethylene-glycidyl methacrylate copolymer is less than the above-mentioned level, the content of the polycarbonate resin is relatively low. This may deteriorate and peeling may occur.
- the (C) ethylene-glycidyl methacrylate copolymer resin a mixture of resins having a glycidyl methacrylate (GMA) content of 12% by weight or more may be used.
- GMA glycidyl methacrylate
- composition of the present invention may further include additional components, such as ultraviolet absorbers, heat stabilizers, antioxidants, lubricants, flame retardants, flame retardant aids, etc. that are commonly added to the polycarbonate resin composition in addition to the above components.
- additional additive components may be, for example, 1 to 10 parts by weight based on 100 parts by weight of the total of the resin components (A) to (C), but is not limited thereto.
- the polycarbonate resin composition of the present invention can be suitably used for 3D printing because it shows an improved adhesive strength.
- a molded article produced by extruding or injection molding the polycarbonate resin composition.
- the molded article may be a filament for 3D printing.
- each component was added to the Super mixer with the composition shown in Table 1 and mixed for about 2 minutes, and then, the pellets were prepared by adding them to an extruder hopper.
- the extruder used a 12 barrel 30mm extruder from Japan Steel Works. RPM was set to 200 and the melting temperature was set for each part based on 290 ° C.
- Pellets of the prepared Example and Comparative Example compositions, IZOD impact adhesive strength specimens, CHARPY impact adhesive strength specimens, disc adhesive strength specimens, tensile adhesive strength specimens, color specimens were prepared at 290 °C using an injection machine.
- the physical properties of the produced specimens were measured or evaluated as follows, and the results are shown in Table 2 below.
- IZOD impact adhesive strength was measured according to IMPACT test equipment by injection molding into two gates facing each other in the shape according to ASTM D256. The higher the impact value, the higher the impact of the printout can be expected. The results are converted into the reference (100%) based on the results of Example 4.
- the CHARPY impact adhesion strength is shaped according to ISO 179 and injected into two gates facing each other to form a specimen and measured by IMPACT test equipment. The higher the impact value, the higher the impact of the printout can be expected. The results are converted into the reference (100%) based on the results of Example 4.
- Plate adhesion strength test is a method of predicting adhesion strength by injection molding two specimens facing each other on 80mm diameter circular specimens and comparing elongation (%) in which deformation occurs abruptly according to ASTM D790 test method. to be. The results are converted into the reference (100%) based on the results of Example 4.
- Relative strength was calculated as the product of the tensile strength and elongation of the tensile bond strength test specimen prepared according to ASTM D638. The higher the relative strength, the better the kneading ability of the produced resin. The results are converted into the reference (100%) based on the results of Example 4.
- the biomass content was calculated based on the calibration curve based on the measured values of the plant-derived raw material-containing polycarbonate by ASTM D6866-11.
- the extrudability test was evaluated based on visual inspection by rating five people from one step (bad extrudability) to five steps (good extrudability) for each sample. The final evaluation index was taken as the average of the total sum. The lower the extrudability grade, the worse the extrudability, which can cause problems in filament fabrication and 3D printing lamination.
- the pearl-like degree of the color specimens was evaluated by grading five levels (one pearl-like) to five (strong pearl-like) per sample based on visual inspection. The final evaluation index was taken as the average of the total sum. The higher the pearl-like grade, the poorer the kneading of the resin produced, and it may cause deterioration in appearance quality due to the dichroic problem when printed by 3D printing.
- compositions of Examples 1 to 9 were 70% or more of the results of Example 4, which are all based on IZOD impact adhesive strength, CHARPY impact adhesive strength, and disc adhesive strength, and at the same time, 2% biomass content.
- the above was satisfied and the extrudability grade 4.0 or more and the pearl-like grade 1.2 or less were also satisfied. When these properties are satisfied at the same time, it can be suitably used for eco-friendly 3D printing.
- Comparative Example 1 has low biomass content, which is inferior in eco-friendliness, and the remaining Comparative Examples are less than 30% of the results of Example 4, in which all physical properties are not related to extrudability and Pearl-like grades, so that the 3D printing output material It can be seen that it is not suitable as.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to an eco-friendly polycarbonate resin composition and, more specifically, to a polycarbonate resin composition, which comprises a polycarbonate containing a plant-derived component, thereby being eco-friendly, and also comprises an ethylene-glycidyl methacrylate copolymer having a specific amount of glycidyl methacrylate, thereby improving various forms of adhesive strength so as to be suitably usable for the purpose of increasing the strength of a printed product through the improvement of interlayer adhesive strength during 3D printing.
Description
본 발명은 친환경 폴리카보네이트(Polycarbonate, PC) 수지 조성물에 관한 것으로, 보다 상세하게는, 식물 유래 원료를 함유하는 폴리카보네이트를 포함함으로써 친환경적이며, 또한 특정 함량의 글리시딜메타크릴레이트를 갖는 에틸렌-글리시딜메타크릴레이트 공중합체를 포함함으로써 다양한 형태의 접착강도를 향상시켜 3D 프린팅 출력 시 층간 접착력 향상에 의한 출력물의 강도 증대목적에 적합하게 사용될 수 있는 폴리카보네이트 수지 조성물에 관한 것이다.The present invention relates to an environment-friendly polycarbonate (PC) resin composition, and more particularly, to an ethylene-friendly and environmentally friendly, polyglyceride-containing polycarbonate containing plant-derived raw materials, and having a specific content of glycidyl methacrylate. By including a glycidyl methacrylate copolymer, the present invention relates to a polycarbonate resin composition which can be suitably used for improving the strength of printed materials by improving adhesion between layers in the form of 3D printing by improving adhesion strength in various forms.
3D 프린팅에는 여러 가지 방식이 있다. 이중에서 필라멘트의 압출을 통해 적층하는 방식에 사용하는 수지는 폴리락트산, 아크릴로니트릴-부타디엔-스티렌, 폴리카보네이트, 폴리이미드 등이 있다.There are many ways to do 3D printing. Among them, resins used in the method of laminating through extrusion of filaments include polylactic acid, acrylonitrile-butadiene-styrene, polycarbonate, polyimide, and the like.
재료 압출 방식의 3D 프린팅에 적용하는 다양한 기술들이 소개되어 왔으며, 예컨대, 미국특허 제8920697호, 제8801990호, 제8460755호 및 미국공개특허 제2014-0141168호에는 지지 구조를 만들기 위한 다양한 원료들이 언급되어 있다. 또한, 미국공개특허 제2013-0224423호에는 적층 재료로 코어-쉘 구조의 결정성 수지가 개시되어 있다.Various techniques for 3D printing of material extrusion have been introduced, for example, US Pat. Nos. 8920697, 8801990, 8460755, and US Patent Publication No. 2014-0141168 mention various raw materials for making a support structure. It is. In addition, US Patent Publication No. 2013-0224423 discloses a crystalline resin having a core-shell structure as a laminate material.
그러나, 종래의 일반적인 3D 프린팅용 소재(예컨대, 폴리카보네이트)는 친환경성이 없는 소재였다.However, conventional general 3D printing materials (eg, polycarbonate) were materials that are not environmentally friendly.
본 발명의 목적은, 식물 유래 성분을 함유하는 폴리카보네이트를 포함하여 친환경성이 증대되고, 특정 함량의 글리시딜메타크릴레이트를 갖는 에틸렌-글리시딜메타크릴레이트 공중합체를 포함함으로써 다양한 형태의 접착강도를 향상시켜, 3D 프린팅에 특히 적합하게 사용될 수 있는 친환경 폴리카보네이트 수지 조성물을 제공하는 것이다.It is an object of the present invention to increase the environmental friendliness, including polycarbonates containing plant-derived components, and to include various forms of ethylene-glycidyl methacrylate copolymers having a specific content of glycidyl methacrylate. It is to provide an environmentally friendly polycarbonate resin composition that can be used particularly suitably for 3D printing by improving the adhesive strength.
상기한 기술적 과제를 해결하고자 본 발명은, (A) 폴리카보네이트 수지, (B) 식물 유래 성분 함유 폴리카보네이트 수지, 및 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지를 포함하며, 상기 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로, (B) 식물 유래 성분 함유 폴리카보네이트 수지를 2~25 중량부 포함하고, (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지를 2~18 중량부를 포함하며, 상기 에틸렌-글리시딜메타크릴레이트 공중합체 수지 내의 글리시딜메타크릴레이트 함량이, 에틸렌-글리시딜메타크릴레이트 공중합체 100중량%를 기준으로 12중량% 이상인, 폴리카보네이트 수지 조성물을 제공한다. In order to solve the above technical problem, the present invention comprises (A) a polycarbonate resin, (B) a plant-derived component-containing polycarbonate resin, and (C) an ethylene-glycidyl methacrylate copolymer resin, wherein the resin Based on 100 parts by weight of the total of the components (A) to (C), (B) 2 to 25 parts by weight of a plant-derived component-containing polycarbonate resin, and (C) ethylene-glycidyl methacrylate copolymer resin 2 to 18 parts by weight, wherein the glycidyl methacrylate content in the ethylene-glycidyl methacrylate copolymer resin is 12% by weight or more based on 100% by weight of the ethylene-glycidyl methacrylate copolymer And a polycarbonate resin composition.
본 발명의 다른 측면에 따르면, 상기 폴리카보네이트 수지 조성물을 압출 또는 사출 성형하여 제조된 성형품이 제공된다.According to another aspect of the present invention, there is provided a molded article prepared by extruding or injection molding the polycarbonate resin composition.
본 발명에 따른 폴리카보네이트 수지 조성물은, 친환경성이 없는 소재였던 종래의 일반적인 3D 프린팅용 폴리카보네이트 조성물과 달리, 식물 유래 원료 물질을 함유한 폴리카보네이트를 일반적인 폴리카보네이트와 혼합하여 사용함으로써, 이산화 탄소 배출 억제에 기여하고 나아가 지구온난화 방지에 도움이 됨은 물론, 향상된 접착성을 나타내기 때문에 3D 프린팅에 특히 적합하게 사용될 수 있다.The polycarbonate resin composition according to the present invention is different from the conventional polycarbonate composition for 3D printing, which is a non-environmental material, and by using a polycarbonate containing a plant-derived raw material mixed with a general polycarbonate, carbon dioxide emission It contributes to the suppression and further helps to prevent global warming, as well as exhibits improved adhesion, which makes it particularly suitable for 3D printing.
이하에서, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 폴리카보네이트 수지 조성물에 포함되는 (A) 폴리카보네이트 수지로는, 일반적으로 상용되고 있는 방향족 폴리카보네이트 수지를 사용할 수 있다.As the polycarbonate resin (A) contained in the polycarbonate resin composition of the present invention, an aromatic polycarbonate resin commonly used can be used.
상기 방향족 폴리카보네이트 수지는 디히드릭 페놀과 포스겐을 반응시키거나 디히드릭 페놀과 카보네이트 전구체(precursor)의 에스테르 상호 교환반응을 이용하여 제조된 것일 수 있으며, 선형 및/또는 분지형 폴리카보네이트 단일 중합체 및 폴리에스테르 공중합체 등을 포함한다.The aromatic polycarbonate resin may be prepared by reacting dihydric phenol with phosgene or by using an ester interchange reaction of dihydric phenol with a carbonate precursor, and a linear and / or branched polycarbonate homopolymer. And polyester copolymers and the like.
상기 디히드릭 페놀은 2,2-비스(4-하이드록시페닐)프로판(즉, 비스페놀 A), 비스(4-하이드록시페닐)메탄, 2,2-비스(4-하이드록시-3,5-디메틸페닐)프로판, 1,1-비스(4-하이드록시페닐)사이클로헥산 및 이들의 조합으로부터 선택될 수 있으며, 상기 카보네이트 전구체는 디페닐 카보네이트, 카보닐 할라이드, 디아릴 카보네이트 및 이들의 조합으로부터 선택될 수 있다. The dihydric phenol is 2,2-bis (4-hydroxyphenyl) propane (ie bisphenol A), bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxy-3,5 -Dimethylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane and combinations thereof, wherein the carbonate precursor is from diphenyl carbonate, carbonyl halide, diaryl carbonate and combinations thereof Can be selected.
상기 (A) 폴리카보네이트 수지의 점도평균분자량은 17,000~30,000인 것이 바람직하며, 21,000~25,000인 것이 보다 바람직하다. (A) 폴리카보네이트 수지의 점도평균분자량이 상기 범위 내이면 조성물 압출시 상용성이 우수하며 열분해가 적게 일어날 수 있다. It is preferable that it is 17,000-30,000, and, as for the viscosity average molecular weight of said (A) polycarbonate resin, it is more preferable that it is 21,000-25,000. (A) When the viscosity average molecular weight of the polycarbonate resin is within the above range, excellent compatibility during extrusion of the composition may occur less thermal decomposition.
본 발명의 조성물 내의 상기 (A) 폴리카보네이트 수지 함량은, 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로, 예컨대, 57~96 중량부일 수 있고, 보다 구체적으로는 65~90 중량부일 수 있다. 조성물 내의 (A) 폴리카보네이트 수지 함량이 지나치게 적으면 충격강도와 내열성에 문제가 있을 수 있고, 반대로 지나치게 많으면 환경 친화적인 장점이 사라지는 문제가 있을 수 있다.The (A) polycarbonate resin content in the composition of the present invention may be, for example, 57 to 96 parts by weight, more specifically 65 to 90 parts by weight, based on 100 parts by weight of the total of the resin components (A) to (C). It may be wealth. If the content of (A) polycarbonate resin in the composition is too small, there may be a problem in impact strength and heat resistance, on the contrary, too much may have a problem that the environmentally friendly advantages disappear.
본 발명의 폴리카보네이트 수지 조성물에 포함되는 (B) 식물 유래 성분 함유 폴리카보네이트 수지로는, 기존 폴리카보네이트의 용융중합에 사용되던 방향족 디올 화합물의 적어도 일부를 식물 유래 디올 화합물로 대체하여 용융중합 방식으로 제조된 것을 사용할 수 있다.(B) Plant-derived component-containing polycarbonate resin included in the polycarbonate resin composition of the present invention, by replacing at least a portion of the aromatic diol compound used in the melt polymerization of the existing polycarbonate with a plant-derived diol compound in a melt polymerization method The manufactured thing can be used.
일 구체예에서, 상기 식물 유래 디올 화합물은 이소소르비드, 이소만니드 또는 이소이디드 등일 수 있으며, 보다 구체적으로는 하기 화학식 1의 이소소르비드일 수 있다.In one embodiment, the plant-derived diol compound may be isosorbide, isomannide or isoidide, and more specifically, may be isosorbide of Formula 1 below.
[화학식 1][Formula 1]
이소소르비드는 공지의 기술로 제조되는 것을 사용할 수 있다.Isosorbide can be used produced by a known technique.
일 구체예에서, 상기 (B) 식물 유래 성분 함유 폴리카보네이트 수지로는 식물유래 디올이 전체 디올 100중량% 기준으로 40 중량% 이상인 것, 보다 구체적으로는 50 중량% 이상인 것을 사용할 수 있다. 식물 유래 디올의 함량이 지나치게 적으면 내열성이 낮아져 조성물 제조시 열분해가 발생할 수 있다. In one embodiment, the plant-derived component-containing polycarbonate resin (B) may be a plant-derived diol is 40% by weight or more, more specifically 50% by weight based on 100% by weight of the total diol. When the content of the plant-derived diol is too small, the heat resistance may be low, and pyrolysis may occur during the preparation of the composition.
일 구체예에서, 본 발명의 (B) 식물 유래 성분 함유 폴리카보네이트의 점도평균 분자량은 17,000~30,000 일 수 있다.In one embodiment, the viscosity-average molecular weight of the (B) plant-derived component-containing polycarbonate of the present invention may be 17,000 to 30,000.
본 발명의 조성물 내의 상기 (B) 식물 유래 성분 함유 폴리카보네이트 수지 함량은, 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로, 2~25 중량부이고, 보다 구체적으로는 5~20 중량부일 수 있다. 조성물 내의 (B) 식물 유래 성분 함유 폴리카보네이트 수지 함량이 상기한 수준보다 적으면 조성물의 Biomass 함량이 낮아져 친환경성이 부족해지고, 반대로 상기한 수준보다 많으면 (A) 폴리카보네이트 수지와의 혼련성 저하가 발생할 수 있다.The said (B) plant-derived component containing polycarbonate resin content in the composition of this invention is 2-25 weight part based on 100 weight part of total of resin components (A)-(C), More specifically, 5-20 It may be part by weight. If the content of the (B) plant-derived component-containing polycarbonate resin in the composition is lower than the above-mentioned level, the biomass content of the composition is lowered, which leads to a lack of environmental friendliness. May occur.
본 발명의 폴리카보네이트 수지 조성물에 포함되는 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지는 (A) 폴리카보네이트 수지와 (B) 식물 유래 원료 함유 폴리카보네이트 수지의 혼련성을 증대시키고, 수지 접착 시 접착강도를 향상시키기 위해 사용된다.(C) Ethylene-glycidyl methacrylate copolymer resin contained in the polycarbonate resin composition of this invention increases the kneading property of (A) polycarbonate resin and (B) plant-derived raw material containing polycarbonate resin, and It is used to improve the adhesive strength when bonding.
본 발명에 있어서, 용어 "에틸렌-글리시딜메타크릴레이트 공중합체"란 에틸렌과 글리시딜메타크릴레이트로 이루어지는 공중합체는 물론, 에틸렌과 글리시딜메타크릴레이트에 더하여 추가의 공단량체를 포함하는 공중합체를 포함하는 개념이다. 이러한 추가의 공단량체로는, 예컨대, 비닐계 단량체(예를 들어, 비닐아세테이트(VA)), 아크릴계 단량체(예를 들어, 메틸아크릴레이트(MA), 메틸메타크릴레이트(MMA), 에틸아크릴레이트(EA), 에틸메타크릴레이트(EMA), 부틸아크릴레이트(BA), 부틸메타크릴레이트(BMA) 등) 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 사용할 수 있으나, 이에 한정되지 않는다.In the present invention, the term "ethylene-glycidyl methacrylate copolymer" includes copolymers consisting of ethylene and glycidyl methacrylate as well as additional comonomers in addition to ethylene and glycidyl methacrylate. It is a concept containing the copolymer to make. Such further comonomers include, for example, vinyl monomers (eg vinyl acetate (VA)), acrylic monomers (eg methyl acrylate (MA), methyl methacrylate (MMA), ethyl acrylate). (EA), ethyl methacrylate (EMA), butyl acrylate (BA), butyl methacrylate (BMA), etc.) and combinations thereof may be used, but is not limited thereto.
본 발명에 있에서, (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지 내의 글리시딜메타크릴레이트(GMA) 함량은, 공중합체 100중량%를 기준으로, 12중량% 이상이다. 상기 공중합체 내의 글리시딜메타크릴레이트 함량이 12중량%보다 낮으면 접착성이 현저히 저하된다. 또한, 상기 공중합체 내의 글리시딜메타크릴레이트 함량은 25중량% 이하일 수 있고, 보다 바람직하게는 22중량% 이하일 수 있으며, 보다 더 바람직하게는 19중량% 이하일 수 있다. 공중합체 내의 글리시딜메타크릴레이트 함량이 상기한 범위 내이면 접착성이 증가되어 3D 프린팅 시 층간 접착력 향상에 기여할 수 있다.In the present invention, the glycidyl methacrylate (GMA) content in the (C) ethylene-glycidyl methacrylate copolymer resin is 12% by weight or more based on 100% by weight of the copolymer. If the glycidyl methacrylate content in the copolymer is lower than 12% by weight, the adhesion is significantly lowered. In addition, the glycidyl methacrylate content in the copolymer may be 25% by weight or less, more preferably 22% by weight or less, even more preferably 19% by weight or less. If the glycidyl methacrylate content in the copolymer is within the above range, the adhesion may be increased, thereby contributing to the improvement of the interlayer adhesion during 3D printing.
본 발명의 조성물 내의 상기 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지 함량은, 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로, 2~18 중량부이고, 보다 구체적으로는 5~15 중량부일 수 있다. 조성물 내의 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지 함량이 상기한 수준보다 적으면 충격강도 저하 문제가 발생할 수 있고, 반대로 상기한 수준보다 많으면 폴리카보네이트 수지의 함량이 상대적으로 적어져 물성이 나빠지고 박리현상이 발생할 수 있다.The (C) ethylene-glycidyl methacrylate copolymer resin content in the composition of the present invention is 2 to 18 parts by weight based on 100 parts by weight of the total of the resin components (A) to (C), more specifically May be 5 to 15 parts by weight. When the content of the (C) ethylene-glycidyl methacrylate copolymer resin in the composition is less than the above-mentioned level, the impact strength may decrease. On the contrary, when the content of the ethylene-glycidyl methacrylate copolymer is less than the above-mentioned level, the content of the polycarbonate resin is relatively low. This may deteriorate and peeling may occur.
본 발명의 조성물에는, 상기 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지로서, 글리시딜메타크릴레이트(GMA) 함량이 12중량% 이상인 수지들의 혼합 사용도 가능하다In the composition of the present invention, as the (C) ethylene-glycidyl methacrylate copolymer resin, a mixture of resins having a glycidyl methacrylate (GMA) content of 12% by weight or more may be used.
또한, 본 발명의 조성물에는 상기한 성분들 이외에 폴리카보네이트 수지 조성물에 통상적으로 첨가되는 추가의 성분들, 예컨대, 자외선 흡수제, 열안정제, 산화방지제, 활제, 난연제, 난연보조제 등이 더 포함될 수 있다. 이들 추가의 첨가제 성분의 함량은, 예컨대, 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로 1~10 중량부일 수 있으나, 이에 한정되는 것은 아니다.In addition, the composition of the present invention may further include additional components, such as ultraviolet absorbers, heat stabilizers, antioxidants, lubricants, flame retardants, flame retardant aids, etc. that are commonly added to the polycarbonate resin composition in addition to the above components. The content of these additional additive components may be, for example, 1 to 10 parts by weight based on 100 parts by weight of the total of the resin components (A) to (C), but is not limited thereto.
본 발명의 폴리카보네이트 수지 조성물은 향상된 접착강도를 나타내기 때문에 3D 프린팅에 적합하게 사용될 수 있다.The polycarbonate resin composition of the present invention can be suitably used for 3D printing because it shows an improved adhesive strength.
따라서, 본 발명의 다른 측면에 따르면, 상기 폴리카보네이트 수지 조성물을 압출 또는 사출 성형하여 제조된 성형품이 제공된다.Therefore, according to another aspect of the present invention, there is provided a molded article produced by extruding or injection molding the polycarbonate resin composition.
일 구체예에 따르면, 상기 성형품은 3D 프린팅용 필라멘트일 수 있다.According to one embodiment, the molded article may be a filament for 3D printing.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the scope of the present invention is not limited to these.
[[
실시예Example
]]
이하의 실시예와 비교예에서 사용된 각 성분들은 다음과 같다:Each component used in the following Examples and Comparative Examples is as follows:
(A): 점도평균분자량이 약 25,000인 비스페놀 A형 선형 폴리카보네이트(A): Bisphenol A linear polycarbonate having a viscosity average molecular weight of about 25,000
(B): 이소소르비드 함유 폴리카보네이트(B): isosorbide-containing polycarbonate
(미쯔비시 화학, DURABIO D7340IR)(Mitsubishi Chemical, DURABIO D7340IR)
(C1): 에틸렌-글리시딜메타크릴레이트 공중합체(C1): ethylene-glycidyl methacrylate copolymer
(GMA함량: 19중량%)(스미토모 화학) (GMA content: 19% by weight) (Sumitomo Chemical)
(C2): 에틸렌-글리시딜메타크릴레이트 공중합체(C2): ethylene-glycidyl methacrylate copolymer
(GMA함량: 12중량%)(스미토모 화학) (GMA content: 12% by weight) (Sumitomo Chemical)
(C3): 에틸렌-글리시딜메타크릴레이트-비닐아세테이트 공중합체(C3): ethylene-glycidyl methacrylate-vinylacetate copolymer
(GMA함량: 12중량%)(스미토모 화학) (GMA content: 12% by weight) (Sumitomo Chemical)
(C4): 에틸렌-글리시딜메타크릴레이트 공중합체(C4): ethylene-glycidyl methacrylate copolymer
(GMA함량: 8중량%)(아케마 화학) (GMA content: 8% by weight) (Akema Chemical)
(C5): 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체(C5): Ethylene-glycidyl methacrylate-methylacrylate copolymer
(GMA함량: 6중량%)(스미토모 화학) (GMA content: 6% by weight) (Sumitomo Chemical)
(C6): 에틸렌-글리시딜메타크릴레이트-메틸아크릴레이트 공중합체(C6): ethylene-glycidyl methacrylate-methylacrylate copolymer
(GMA함량: 3중량%)(스미토모 화학) (GMA content: 3% by weight) (Sumitomo Chemical)
하기 표 1의 조성으로 각 성분들을 Super 믹서에 투입하고 약 2분간 믹싱한 후, 이를 압출기 호퍼에 투입하여 펠렛을 제조하였다. 압출기는 12배럴의 Japan Steel Works의 30mm 압출기를 이용하였다. RPM은 200으로 하고 용융온도는 290℃를 기준으로 하여 부분별 설정하였다. Each component was added to the Super mixer with the composition shown in Table 1 and mixed for about 2 minutes, and then, the pellets were prepared by adding them to an extruder hopper. The extruder used a 12 barrel 30mm extruder from Japan Steel Works. RPM was set to 200 and the melting temperature was set for each part based on 290 ° C.
[표 1] (단위: 중량부)[Table 1] (Unit: parts by weight)
상기 제조된 실시예 및 비교예 조성물들의 펠렛을, 사출기를 이용하여 290℃에서 IZOD 충격접착강도 시편, CHARPY 충격접착강도 시편, 원판접착강도 시편, 인장 접착강도 시편, 칼라 시편을 제작하였다. 제작된 시편에 대하여 다음과 같이 물성을 측정 내지 평가하였으며, 그 결과를 하기 표 2에 나타내었다.Pellets of the prepared Example and Comparative Example compositions, IZOD impact adhesive strength specimens, CHARPY impact adhesive strength specimens, disc adhesive strength specimens, tensile adhesive strength specimens, color specimens were prepared at 290 ℃ using an injection machine. The physical properties of the produced specimens were measured or evaluated as follows, and the results are shown in Table 2 below.
IZOD 충격접착강도는 ASTM D256에 의거한 형상으로 서로 마주보는 2개의 게이트로 사출하여 시편을 성형하고, IMPACT 테스트 장비를 통하여 측정하였다. 높은 충격값을 보일수록 3D 프린터로 출력 시 출력물의 충격성이 높음을 예상할 수 있다. 결과는 실시예 4의 결과를 기준(100%)으로 환산한다.IZOD impact adhesive strength was measured according to IMPACT test equipment by injection molding into two gates facing each other in the shape according to ASTM D256. The higher the impact value, the higher the impact of the printout can be expected. The results are converted into the reference (100%) based on the results of Example 4.
CHARPY 충격접착강도는 ISO 179에 의거한 형상으로 서로 마주보는 2개의 게이트로 사출하여 시편을 성형하고, IMPACT 테스트 장비를 통하여 측정한다. 충격값이 높을수록 3D 프린터로 출력 시 출력물의 충격성이 높음을 예상할 수 있다. 결과는 실시예 4의 결과를 기준(100%)으로 환산한다.The CHARPY impact adhesion strength is shaped according to ISO 179 and injected into two gates facing each other to form a specimen and measured by IMPACT test equipment. The higher the impact value, the higher the impact of the printout can be expected. The results are converted into the reference (100%) based on the results of Example 4.
원판접착강도 테스트는 지름 80mm 원형시편에 서로 마주보는 2개의 게이트로 사출하여 시편을 성형하고, ASTM D790 테스트법에 의거하여 변형이 급격이 발생하는 신율(%)을 비교하여 접착강도를 예측하는 방법이다. 결과는 실시예 4의 결과를 기준(100%)으로 환산한다. Plate adhesion strength test is a method of predicting adhesion strength by injection molding two specimens facing each other on 80mm diameter circular specimens and comparing elongation (%) in which deformation occurs abruptly according to ASTM D790 test method. to be. The results are converted into the reference (100%) based on the results of Example 4.
Relative strength는 ASTM D638에 의거하여 제작된 인장 접착강도 시편의 접착강도와 신율의 곱으로 계산하였다. Relative strength가 높을수록 제조된 수지의 혼련성이 우수하다고 볼 수 있다. 결과는 실시예 4의 결과를 기준(100%)으로 환산한다. Relative strength was calculated as the product of the tensile strength and elongation of the tensile bond strength test specimen prepared according to ASTM D638. The higher the relative strength, the better the kneading ability of the produced resin. The results are converted into the reference (100%) based on the results of Example 4.
Biomass 함량은 식물 유래 원료 함유 폴리카보네이트를 함량별로 ASTM D6866-11으로 측정한 값을 바탕으로 검량선을 구하고, 그 검량선에 근거하여 계산하였다.The biomass content was calculated based on the calibration curve based on the measured values of the plant-derived raw material-containing polycarbonate by ASTM D6866-11.
압출성 테스트는 육안 검사를 기초로 하여 5명이 각 샘플당 1단계(압출성 나쁨) ~ 5단계(압출성 좋음)의 등급을 매겨서 평가하였다. 최종 평가지수는 전체 합에 대한 평균값으로 하였다. 압출성 등급이 낮을수록 압출성이 나빠서 필라멘트 제작 및 3D 프린팅 적층에도 문제를 야기시킬 수 있다.The extrudability test was evaluated based on visual inspection by rating five people from one step (bad extrudability) to five steps (good extrudability) for each sample. The final evaluation index was taken as the average of the total sum. The lower the extrudability grade, the worse the extrudability, which can cause problems in filament fabrication and 3D printing lamination.
칼라시편의 Pearl-like 정도는 육안검사를 기초로 하여 5명이 각 샘플당 1단계(약한 Pearl-like) ~ 5단계(강한 Pearl-like)의 등급을 매겨서 평가하였다. 최종 평가지수는 전체 합에 대한 평균값으로 하였다. Pearl-like 등급이 높을수록 제조된 수지의 혼련성이 나쁘다는 것을 의미하고, 3D 프린팅으로 출력시 이색성 문제로 외관 품질의 저하를 야기시킬 수 있다. The pearl-like degree of the color specimens was evaluated by grading five levels (one pearl-like) to five (strong pearl-like) per sample based on visual inspection. The final evaluation index was taken as the average of the total sum. The higher the pearl-like grade, the poorer the kneading of the resin produced, and it may cause deterioration in appearance quality due to the dichroic problem when printed by 3D printing.
[표 2]TABLE 2
상기 표 2의 결과로부터 알 수 있듯이, 실시예 1~9의 조성물들은 IZOD 충격접착강도, CHARPY 충격 접착강도, 원판접착강도가 모두 기준인 실시예 4 결과의 70% 이상이었고, 동시에 Biomass 함량 2% 이상을 만족하였으며, 압출성 등급 4.0 이상, Pearl-like 등급 1.2 이하도 함께 충족시켰다. 이와 같은 물성들을 동시에 만족할 때 친환경 3D 프린팅에 적합하게 사용될 수 있다. 반면 비교예 1은 Biomass 함량이 낮아 친환경성이 열악하고, 나머지 비교예들은 압출성 및 Pearl-like 등급과는 무관하게 모든 물성결과가 기준인 실시예 4 결과의 30% 이하에 머물러서 3D 프린팅 출력소재로서 적합하지 않음을 알 수 있다.As can be seen from the results of Table 2, the compositions of Examples 1 to 9 were 70% or more of the results of Example 4, which are all based on IZOD impact adhesive strength, CHARPY impact adhesive strength, and disc adhesive strength, and at the same time, 2% biomass content. The above was satisfied and the extrudability grade 4.0 or more and the pearl-like grade 1.2 or less were also satisfied. When these properties are satisfied at the same time, it can be suitably used for eco-friendly 3D printing. On the other hand, Comparative Example 1 has low biomass content, which is inferior in eco-friendliness, and the remaining Comparative Examples are less than 30% of the results of Example 4, in which all physical properties are not related to extrudability and Pearl-like grades, so that the 3D printing output material It can be seen that it is not suitable as.
Claims (10)
- (A) 폴리카보네이트 수지, (B) 식물 유래 성분 함유 폴리카보네이트 수지, 및 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지를 포함하며, (A) polycarbonate resin, (B) plant-derived component-containing polycarbonate resin, and (C) ethylene-glycidyl methacrylate copolymer resin,상기 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로, (B) 식물 유래 성분 함유 폴리카보네이트 수지를 2~25 중량부 포함하고, (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지를 2~18 중량부를 포함하며, (B) 2-25 weight part of plant-derived component containing polycarbonate resins based on a total of 100 weight part of said resin components (A)-(C), (C) ethylene-glycidyl methacrylate copolymer It contains 2 to 18 parts by weight of resin,상기 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지 내의 글리시딜메타크릴레이트 함량이, 에틸렌-글리시딜메타크릴레이트 공중합체 100중량%를 기준으로 12중량% 이상인, The glycidyl methacrylate content in the (C) ethylene-glycidyl methacrylate copolymer resin is 12% by weight or more based on 100% by weight of the ethylene-glycidyl methacrylate copolymer.폴리카보네이트 수지 조성물.Polycarbonate resin composition.
- 제1항에 있어서, (A) 폴리카보네이트 수지의 점도평균분자량은 17,000~30,000인 것을 특징으로 하는 폴리카보네이트 수지 조성물.The polycarbonate resin composition according to claim 1, wherein the viscosity average molecular weight of the polycarbonate resin (A) is 17,000 to 30,000.
- 제1항에 있어서, (B) 식물 유래 성분 함유 폴리카보네이트 수지 내의 식물 유래 성분은 식물 유래 디올 화합물인 것을 특징으로 하는 폴리카보네이트 수지 조성물.The polycarbonate resin composition according to claim 1, wherein the plant-derived component in the (B) plant-derived component-containing polycarbonate resin is a plant-derived diol compound.
- 제3항에 있어서, 상기 식물 유래 디올 화합물이 이소소르비드인 것을 특징으로 하는 폴리카보네이트 수지 조성물.The polycarbonate resin composition according to claim 3, wherein the plant-derived diol compound is isosorbide.
- 제3항에 있어서, (B) 식물 유래 성분 함유 폴리카보네이트 수지가 전체 디올 100중량%에 대하여 식물 유래 디올 화합물을 40 중량% 이상 함유하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.The polycarbonate resin composition according to claim 3, wherein (B) the plant-derived component-containing polycarbonate resin contains 40 wt% or more of the plant-derived diol compound with respect to 100 wt% of the total diols.
- 제1항에 있어서, (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지의 글리시딜메타크릴레이트 함량이, 에틸렌-글리시딜메타크릴레이트 공중합체 100중량%를 기준으로 12~25중량%인 것을 특징으로 하는 폴리카보네이트 수지 조성물.The glycidyl methacrylate content of the (C) ethylene-glycidyl methacrylate copolymer resin is 12-25 weight-% based on 100 weight% of ethylene- glycidyl methacrylate copolymers of Claim 1 It is% polycarbonate resin composition.
- 제1항에 있어서, 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로, (A) 폴리카보네이트 수지 65~90 중량부, (B) 식물 유래 성분 함유 폴리카보네이트 수지 5~20 중량부, 및 (C) 에틸렌-글리시딜메타크릴레이트 공중합체 수지 5~15 중량부를 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.According to claim 1, 65 to 90 parts by weight of the polycarbonate resin (A), 5 to 20 parts by weight of the plant-derived component-containing polycarbonate resin (B) based on 100 parts by weight of the total of the resin components (A) to (C) , And (C) 5 to 15 parts by weight of the ethylene-glycidyl methacrylate copolymer resin.
- 제1항에 있어서, 추가로 자외선 흡수제, 열안정제, 산화방지제, 활제, 난연제 및 난연보조제로부터 선택되는 하나 이상의 첨가제를, 수지 성분 (A) 내지 (C)의 총합 100 중량부를 기준으로 1~10 중량부 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.The method according to claim 1, further comprising at least one additive selected from ultraviolet absorbers, heat stabilizers, antioxidants, lubricants, flame retardants and flame retardant aids based on a total of 100 parts by weight of the resin components (A) to (C). A polycarbonate resin composition comprising a weight part.
- 제1항 내지 제8항 중 어느 한 항에 따른 폴리카보네이트 수지 조성물을 압출 또는 사출 성형하여 제조된 성형품.A molded article produced by extruding or injection molding the polycarbonate resin composition according to any one of claims 1 to 8.
- 제9항에 있어서, 상기 성형품은 3D 프린팅용 필라멘트인 것을 특징으로 하는 성형품.10. The molded article according to claim 9, wherein the molded article is a filament for 3D printing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0160162 | 2016-11-29 | ||
KR1020160160162A KR101864159B1 (en) | 2016-11-29 | 2016-11-29 | Environment-friendly polycarbonate resin composition with good adhesive properties |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101537A1 true WO2018101537A1 (en) | 2018-06-07 |
Family
ID=62242157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/000471 WO2018101537A1 (en) | 2016-11-29 | 2017-01-13 | Eco-friendly polycarbonate resin composition having excellent adhesion |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101864159B1 (en) |
WO (1) | WO2018101537A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110105763A (en) * | 2019-05-23 | 2019-08-09 | 北京闿明创新科技有限公司 | A kind of 3D printing composite material and preparation method |
CN115785571A (en) * | 2022-12-09 | 2023-03-14 | 万华化学(宁波)有限公司 | 3D printing polypropylene particle for large industrial model and outdoor building and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102138595B1 (en) * | 2018-12-21 | 2020-07-29 | 주식회사 삼양사 | Polycarbonate resin composition having excellent adhesive property |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8198366B2 (en) * | 2004-11-09 | 2012-06-12 | Idemitsu Kosan Co., Ltd. | Thermoplastic resin composition and molded body |
JP2013112754A (en) * | 2011-11-29 | 2013-06-10 | Mitsubishi Engineering Plastics Corp | Aromatic polycarbonate resin composition and molded article comprising the same |
KR20140138130A (en) * | 2012-02-20 | 2014-12-03 | 미쓰비시 가가꾸 가부시키가이샤 | Resin composition and molded body of same |
CN104830040A (en) * | 2015-04-28 | 2015-08-12 | 上海锦湖日丽塑料有限公司 | Polycarbonate composition for 3D printing technology and preparation method thereof |
KR20160029310A (en) * | 2014-09-05 | 2016-03-15 | 롯데케미칼 주식회사 | 3d printer filament using biodegradable resin composition having improved whiteness and mechanical properties |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070111009A1 (en) * | 2005-11-16 | 2007-05-17 | Morris Barry A | Multilayer composite structure with epoxide containing adhesive layer |
KR101067141B1 (en) * | 2008-12-31 | 2011-09-22 | 주식회사 삼양사 | Eco-friendly resin composition |
-
2016
- 2016-11-29 KR KR1020160160162A patent/KR101864159B1/en active Active
-
2017
- 2017-01-13 WO PCT/KR2017/000471 patent/WO2018101537A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8198366B2 (en) * | 2004-11-09 | 2012-06-12 | Idemitsu Kosan Co., Ltd. | Thermoplastic resin composition and molded body |
JP2013112754A (en) * | 2011-11-29 | 2013-06-10 | Mitsubishi Engineering Plastics Corp | Aromatic polycarbonate resin composition and molded article comprising the same |
KR20140138130A (en) * | 2012-02-20 | 2014-12-03 | 미쓰비시 가가꾸 가부시키가이샤 | Resin composition and molded body of same |
KR20160029310A (en) * | 2014-09-05 | 2016-03-15 | 롯데케미칼 주식회사 | 3d printer filament using biodegradable resin composition having improved whiteness and mechanical properties |
CN104830040A (en) * | 2015-04-28 | 2015-08-12 | 上海锦湖日丽塑料有限公司 | Polycarbonate composition for 3D printing technology and preparation method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110105763A (en) * | 2019-05-23 | 2019-08-09 | 北京闿明创新科技有限公司 | A kind of 3D printing composite material and preparation method |
CN110105763B (en) * | 2019-05-23 | 2021-10-15 | 北京闿明创新科技有限公司 | Composite material for 3D printing and preparation method thereof |
CN115785571A (en) * | 2022-12-09 | 2023-03-14 | 万华化学(宁波)有限公司 | 3D printing polypropylene particle for large industrial model and outdoor building and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101864159B1 (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2133392B1 (en) | Polylactic acid resin composition | |
EP1942146B1 (en) | Polycarbonate resin composition and plastic article | |
KR100961118B1 (en) | Glass fiber reinforced polycarbonate resin composition excellent in fluidity and impact resistance and its manufacturing method | |
KR101174089B1 (en) | Polyester/polycarbonate alloy resin composition and molded product using the same | |
KR101954063B1 (en) | Polycarbonate-abs alloy resin composition having improved electroplate adhesion and molded article comprising the same | |
US10081729B2 (en) | (Meth)acrylic copolymer, resin composition, and molded product of said resin composition | |
EP2025714B1 (en) | Glass fiber reinforced polycarbonate resin composition having excellent impact strength and flowability and method for preparing the same | |
WO2012091307A2 (en) | Flame retardant thermoplastic resin composition | |
WO2018101537A1 (en) | Eco-friendly polycarbonate resin composition having excellent adhesion | |
US7829617B2 (en) | Aromatic polycarbonate resin composition and molded object made from the same | |
CN101469117B (en) | Hydrolysis resistant, high tenacity and uvioresistant polycarbonate composition | |
CN110183839B (en) | High-filling polycarbonate material with good surface performance and preparation method thereof | |
KR20140085257A (en) | Polycarbonate resin composition and article produced therefrom | |
EP3564314A2 (en) | Thermoplastic resin composition and molded article using same | |
CN104530678B (en) | A kind of degradable flowing PC/PLA alloy materials high and preparation method thereof | |
KR102400080B1 (en) | Thermoplastic resin composition and article including same | |
CN114539757A (en) | Low-temperature-resistant and salt-fog-resistant polycarbonate composite material and preparation method thereof | |
KR20190066391A (en) | Thermoplastic resin composition and molded article using the same | |
KR101950060B1 (en) | Thermoplastic resin composition and article comprising the same | |
WO2014181921A1 (en) | Transparent polycarbonate composition and molded article comprising same | |
WO2019078417A1 (en) | Eco-friendly polycarbonate resin composition having high adhesive property and high stiffness | |
MXPA02002112A (en) | Improved flow carbonate polymer blends. | |
KR20170053760A (en) | Environment-friendly polycarbonate resin composition | |
KR102873046B1 (en) | Thermoplastic resin composition and molded article using the same | |
KR20190078826A (en) | Polycarbonate resin composition, method for preparing the resin composition and molded article comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17875592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17875592 Country of ref document: EP Kind code of ref document: A1 |