WO2018104987A1 - ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 - Google Patents
ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 Download PDFInfo
- Publication number
- WO2018104987A1 WO2018104987A1 PCT/JP2016/005098 JP2016005098W WO2018104987A1 WO 2018104987 A1 WO2018104987 A1 WO 2018104987A1 JP 2016005098 W JP2016005098 W JP 2016005098W WO 2018104987 A1 WO2018104987 A1 WO 2018104987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- rotor
- compressor
- bearing
- gas supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0686—Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/0223—Control schemes therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/048—Bearings magnetic; electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/057—Bearings hydrostatic; hydrodynamic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5813—Cooling the control unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
- F16C32/0622—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
- F04D25/0613—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
- F04D25/064—Details of the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
- F04D25/0666—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump a sensor is integrated into the pump/motor design
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
Definitions
- the present invention relates to a compressor system including a gas bearing and a method of supplying gas to the compressor including the gas bearing.
- Patent Document 1 It is possible to support the rotor in a non-contact manner by generating dynamic pressure of gas on the bearing surface of the journal bearing or thrust bearing that supports the rotor of the compressor (Patent Document 1).
- Patent Document 1 a gas supply pipe communicating from the discharge chamber of the centrifugal compressor to the bearing is used. Since a part of the gas pressurized by the centrifugal compressor is supplied to the bearing through the gas supply pipe, the supplied gas is caught between the rotating rotor and the pad of the bearing to form a gas film, Pressure can be generated.
- the present invention relates to a gas supply to a gas bearing of a compressor, a compressor system and a gas supply method that can be used for a long time and can improve reliability while suppressing the cost of the apparatus.
- the purpose is to provide.
- a compressor system includes a compressor that sucks and compresses a gas, a rotor provided with the compressor, a gas bearing that supports the rotor, and an operation for supplying extracted gas from the gas boosted by the compressor to the gas bearing.
- a pressure generating gas supply system and a static pressure external gas supply system for supplying external gas from the outside of the compression unit to the gas bearing are provided.
- “External gas from the outside of the compression section” means external gas from the outside of the case that houses the compression section.
- the external gas supply system for static pressure preferably includes an external gas supply source capable of pumping external gas.
- the compressor system of the present invention preferably includes a tank that can be filled with external gas by an external gas supply source.
- the compressor system of the present invention has a bleed filling system for filling a tank with bleed air.
- the compressor system of the present invention preferably has a bleed air static pressure gas supply system for supplying bleed gas to the gas bearing.
- the compressor system of the present invention preferably has a pad cooling system for supplying the bleed air to the pad of the gas bearing.
- the compressor system of the present invention may include a motor that outputs a rotational driving force to the rotor, and a motor cooling system that leads to the vicinity of the motor inside the casing that houses the motor and supplies bleed air to the motor. preferable.
- the compressor system of the present invention preferably has a gas cooler that exchanges heat between the extracted air and a medium having a temperature lower than that of the extracted air.
- the compressor system of the present invention preferably has a control unit that intermittently uses an external gas supply system for static pressure.
- the present invention also relates to a method of supplying gas to a compressor having a gas bearing that supports the rotor, wherein the gas extracted from the gas boosted by the compressor is supplied to the gas bearing while the rotor is rotating.
- the rotational speed of the rotor is low with respect to the specified dynamic pressure full rotation speed, or when the gap amount between the rotor and the pad of the gas bearing is smaller than the specified value, from the outside of the compressor
- One of the external gas and the bleed gas is supplied to the gas bearing to generate a static pressure.
- the dynamic pressure sufficient rotational speed is preferably a rotational speed during starting or stopping of the compressor.
- the gap amount between the rotor and the pad of the gas bearing is smaller than the specified value, or the rotor Even when the vibration value of the shaft is larger than the specified value, it is preferable to generate static pressure by supplying either external gas or bleed gas to the gas bearing.
- the gas supply method of the present invention it is preferable to supply the gas in the tank to the gas bearing when an abnormality occurs in the external gas supply source.
- the extraction pressure and the external gas can be supplied to the gas bearing, thereby obtaining the dynamic pressure necessary for supporting the rotor.
- the bleed gas is supplied to the gas bearing, and when the rotation speed is relatively low, the external pressure is supplied to the gas bearing to assist the dynamic pressure with the static pressure. If it does so, even if it is the time of a comparatively low rotation speed, since sufficient pressure sufficient for support of a rotor can be ensured to a gas bearing, reliability can be improved.
- it is only necessary to operate the external gas supply source intermittently it is possible to provide a system that can be used for a long period of time while suppressing the cost by adopting an inexpensive pump device or the like even if the lifetime is short. .
- FIG. 1st Embodiment It is a schematic diagram which shows the structure of the compressor system which concerns on 1st Embodiment. It is a figure which shows typically the pad and housing of a gas bearing. It is a figure which shows the extraction supply system of the compressor system shown in FIG. It is a figure which shows the external gas supply system of the compressor system shown in FIG. It is a figure for demonstrating an example of the process of the gas supply method which concerns on 1st Embodiment. It is a figure which shows an example of the procedure of the gas supply method which concerns on 1st Embodiment. It is a figure for demonstrating the other example of the process of the gas supply method which concerns on 1st Embodiment.
- a compressor system 1 shown in FIG. 1 includes a compressor 10 having gas bearings 2A to 2C, an extraction supply system 3 that is a system for supplying gas to the gas bearings 2A to 2C, and an external gas supply system 4 (external gas for static pressure). Supply system), a recycling system 5, and a control unit 6.
- the compressor system 1 constitutes equipment such as a plant together with upstream and downstream processes.
- illustration of instruments such as a pressure sensor and a temperature sensor is omitted.
- the compressor 10 includes a rotor 11, a motor 12 that outputs a rotational driving force to the rotor 11, a casing 13 that houses the rotor 11 and the motor 12, journal bearings 2A and 2B, and a thrust bearing 2C. These bearings 2A, 2B, and 2C are all gas bearings in which gas is supplied in the present embodiment.
- the rotor 11 includes compression units 101 and 102 that compress the sucked gas.
- the compression unit 101 (first stage) located on one end side of the rotor 11 has a single or a plurality of impellers (impellers) that compress gas by the action of centrifugal force.
- the impeller is fixed around the rotation axis 11 ⁇ / b> A of the rotor 11.
- the compression unit 102 located on the other end side of the rotor 11 has a single or a plurality of impellers.
- the compression unit 102 (second stage) sucks and compresses the gas boosted by the compression unit 101.
- the gas discharged from the compression unit 101 is introduced into the compression unit 102 through the pressurization gas line 100.
- the motor 12 is built in the passenger compartment 13 and is disposed between the compression unit 101 and the compression unit 102.
- the motor 12 includes a motor rotor 121 fixed to the rotating shaft 11 ⁇ / b> A and a stator 122 that surrounds the motor rotor 121.
- the motor rotor 121 rotates with respect to the stator 122, and the entire rotor 11 including the compression portions 101 and 102 rotates by the rotational driving force output to the rotating shaft 11A.
- the vehicle compartment 13 includes an introduction unit 131 that introduces gas (process gas) supplied from an upstream process into the compression unit 101, and a discharge unit 132 that discharges the gas pressurized through the compression units 101 and 102 to the downstream process.
- the vehicle compartment 13 of this embodiment also serves as a casing for the motor 12.
- the journal bearings 2A and 2B are located on both sides of the motor 12 in the axial direction of the rotating shaft 11A extending in the horizontal direction, and support the rotating shaft 11A so as to be rotatable about the axis.
- the journal bearing 2 ⁇ / b> A includes a plurality of strip-shaped pads 21 (see also FIG. 2) and a housing 22 that holds these pads 21.
- the pad 21 is curved so as to follow the outer peripheral surface of the rotating shaft 11A.
- the dynamic pressure is generated in the gas entrained between the rotating rotating shaft 11 ⁇ / b> A and the pad 21, so that the rotor 11 can be lifted against its own weight and supported in a non-contact state with the pad 21.
- the dynamic pressure depends on the rotational speed (rotational speed) of the rotor 11, in order to reliably support the rotor 11 even at a low rotational speed, the gap between the inner peripheral surface of the pad 21 and the outer peripheral surface of the rotating shaft 11A A sufficient amount of process gas is supplied, and the floating of the rotor 11 is assisted by the pressure (static pressure) of the gas.
- the dimension (gap amount) of the gap between the inner peripheral surface of the pad 21 and the outer peripheral surface of the rotating shaft 11A is, for example, about 10 ⁇ m.
- journal bearing 2A is supplied with bleed gas from the gas pressurized by the compression unit 101 in order to apply dynamic pressure, and is supplied with external gas and bleed gas in order to apply static pressure.
- each pad 21 is supported by the housing 22 so as to be swingable about a pivot 23 located at the center of the plane.
- a plurality of dynamic pressure gas supply ports 221 are formed in the housing 22 along the edge 21 ⁇ / b> A of the pad 21.
- the rotor 11 is levitated by the dynamic pressure.
- the pad 21 swings when the gas is entrained, the rotor 11 can be lifted by efficiently generating dynamic pressure by the wedge action.
- the pad 21 and the housing 22 are formed with a plurality of static pressure gas supply ports 24 distributed in the plane of the pad 21. Due to the pressure of the gas ejected from these static pressure gas supply ports 24 toward the rotating shaft 11A facing the surface 21B of the pad 21, the rotor 11 floats even if it is not rotating.
- the housing 22 has a gas supply port (not shown) supplied to the back side of the pad 21 in order to suppress the temperature rise of the pad 21.
- the journal bearing 2B (FIG. 1) also includes a plurality of pads 21 and a housing 22 in the same manner as the journal bearing 2A.
- the thrust bearing 2C (FIG. 1) supports one end side of the rotating shaft 11A in the thrust direction.
- the thrust bearing 2 ⁇ / b> C includes pads 25 disposed on both sides of the flange 11 ⁇ / b> C provided on the rotating shaft 11 ⁇ / b> A, and a housing 26 that holds the pads 25.
- the pressure (static pressure) of the gas supplied between the pad 25 and the paddle 11C or the dynamic pressure generated in the gas entrained between the pad 11C and the pad 25 as the rotating shaft 11A rotates is the pad 11C.
- the thrust bearing 2C is also supplied with bleed air for applying a dynamic pressure and supplied with external gas or bleed air for applying a static pressure. Further, gas is supplied to the pad 25 of the thrust bearing 2C in order to suppress the temperature rise.
- the compressor system 1 generally includes an extraction supply system 3 (FIGS. 1 and 3), an external gas supply system 4 (FIGS. 1 and 4), and a recycling system 5 (FIG. 1) as systems through which gas flows. I have.
- the bleed air supply system 3 includes a filter 3F for removing foreign matter from the bleed air, dynamic pressure generation lines 31A to 31C branched downstream from the filter 3F, and regulating valves 301 and 302. ing.
- the extraction supply system 3 preferably includes pad cooling lines 32A to 32C indicated by broken lines, a motor cooling line 33, and an extraction static pressure assist line 34.
- the dynamic pressure generation lines 31A to 31C supply bleed gas, which is a part of the gas boosted by being compressed by the compression unit 101, to the gas bearings 2A to 2C, respectively.
- the dynamic pressure generating lines 31A to 31C are connected to the boosted gas line 100 via the filter 3F so that a part of the gas flowing through the boosted gas line 100 flows in as bleed air.
- the dynamic pressure generating lines 31A and 31B correspond to the journal bearings 2A and 2B, respectively, and the dynamic pressure generating line 31C corresponds to the thrust bearing 2C.
- the dynamic pressure generating lines 31A and 31B and the dynamic pressure generating line 31C are branched at a branch point X.
- the dynamic pressure generating line 31A communicates with the dynamic pressure gas supply port 221 (FIG. 2) of the journal bearing 2A, and the dynamic pressure generating line 31B communicates with the dynamic pressure gas supply port 221 of the journal bearing 2B.
- the dynamic pressure generating line 31C leads to a dynamic pressure gas supply port (not shown) of the thrust bearing 2C.
- An adjustment valve 301 capable of adjusting the flow rate of the gas flowing through the dynamic pressure generation lines 31A and 31B and an adjustment valve 302 capable of adjusting the flow rate of the gas flowing through the dynamic pressure generation line 31C downstream of the branch point X.
- the opening degree of the regulating valve 301 is a pressure difference between the pressure of the gas flowing into the dynamic pressure gas supply port 221 of each of the journal bearings 2A and 2B and the pressure of the atmosphere near the dynamic pressure gas supply port 221 from which the gas flows out. Alternatively, it can be controlled based on the flow rate of the gas flowing through the dynamic pressure gas supply port 221.
- the opening of the adjustment valve 302 is the pressure difference between the pressure of the gas flowing into the dynamic pressure gas supply port of the thrust bearing 2C and the pressure of the atmosphere near the dynamic pressure gas supply port from which the gas flows out, or the dynamic pressure. It can control based on the flow volume of the gas which flows through the pressure gas supply port.
- the pad cooling line 32A communicates with the back side of the pad 21 of the journal bearing 2A
- the pad cooling line 32B communicates with the back side of the pad 21 of the journal bearing 2B
- the pad cooling line 32C includes the thrust bearing 2C.
- the pad is cooled by the gas supplied from the supply port of the housing of each bearing to the back side of the pad through the pad cooling lines 32A to 32C. Thereby, the deformation of the pad is suppressed and the load capacity of the bearing is secured.
- the gas supplied from the dynamic pressure gas supply port 221 or the static pressure gas supply port 24 also contributes to cooling of the pad.
- An adjustment valve 303 capable of adjusting the flow rate of gas flowing through the pad cooling lines 32A and 32B and an adjustment valve 304 capable of adjusting the flow rate of gas flowing through the pad cooling line 32C are provided downstream of the filter 3F.
- the opening degree of each of the regulating valves 303 and 304 can be controlled based on the temperature of the pad detected using a temperature sensor (not shown) such as a thermocouple or thermistor.
- the extracted air extracted from the pressurized gas line 100 is supplied as a gas having a temperature contributing to cooling to each pad of the gas bearings 2A to 2C via the filter 3F, the adjusting valve 303 or the adjusting valve 304.
- the pressurized gas line 100 is provided with a gas cooler 39 that lowers the temperature of the extracted air by heat exchange with a cooling medium such as air or water.
- the position of the gas cooler 39 shown in FIG. 1 and FIG. 3 is an example, and the gas cooler 39 can also be arranged, for example, upstream of the filter 3F in the supply system 3 of the bleed air used for cooling.
- the motor cooling line 33 leads to the vicinity of the motor 12 in the passenger compartment 13 and cools the motor rotor 121 and the stator 122 using the bleed air in the same manner as the pad cooling lines 32A to 32C.
- the bleed air flows through the motor cooling line 33 and is supplied to the inside of the passenger compartment 13, and according to the pressure gradient in the passenger compartment 13, the gap between the motor rotor 121 and the stator 122 and the notch formed in the stator 122 are rotors. 11, the motor rotor 121 and the stator 122 are cooled while flowing toward the compression unit 101 in the axial direction.
- the motor cooling line 33 is provided with an adjustment valve 305 capable of adjusting the flow rate.
- the opening degree of the regulating valve 305 can be controlled based on the detected temperature of the motor rotor 121 or the stator 122.
- the bleed static pressure assist line 34 is connected to the static pressure assist lines 44A to 44C of the external gas supply system 4 (FIG. 1), and is connected to the gas bearings 2A to 2C via these static pressure assist lines 44A to 44C. Each supply bleed.
- the extraction static pressure assist line 34 is provided with a control valve 35 that can be opened and closed.
- the extraction static pressure assist line 34 can also be configured to supply the extraction gas directly to the gas bearings 2A to 2C without going through the static pressure assist lines 44A to 44C of the external gas supply system 4.
- the external gas supply system 4 obtains a gas film having a pressure necessary to support the rotary shaft 11A in a non-contact manner with the pads of the gas bearings 2A to 2C.
- the external gas from the outside is supplied to the gas bearings 2A to 2C, respectively.
- the external gas supply system 4 includes a process gas line 40 into which a process gas from an upstream process is introduced, a pump device 41 capable of pumping a process gas (external gas) supplied by the process gas line 40, a control valve 42, 43, a filter 4F for removing foreign substances from the process gas, and static pressure assist lines 44A to 44C branched downstream from the filter 4F.
- the pump device 41 which is an external gas supply source, uses the low-pressure drive air 41B as a power source to increase the pressure of the supplied process gas and pump it toward the gas bearings 2A to 2C.
- the pump device 41 since the external gas supply system 4 is used intermittently by operating the control valves 42 and 43, the pump device 41 is an inexpensive pump with a short life, for example, reciprocating motion. It is economical to employ a pump.
- the control valve 42 is provided in the process gas line 40, and the control valve 43 is provided downstream of the pump device 41.
- the static pressure assist lines 44A and 44B correspond to the journal bearings 2A and 2B, respectively, and the static pressure assist line 44C corresponds to the thrust bearing 2C.
- the static pressure assist line 44A communicates with the static pressure gas supply port 24 (FIG. 2) of the journal bearing 2A, and the static pressure assist line 44B communicates with the static pressure gas supply port 24 of the journal bearing 2B.
- the static pressure assist line 44C communicates with a static pressure gas supply port (not shown) of the thrust bearing 2C.
- the static pressure assist lines 44A and 44B are provided with an adjustment valve 401 capable of adjusting the flow rate.
- the static pressure assist line 44C is also provided with an adjustment valve 402 that can adjust the flow rate.
- the opening of the regulating valve 401 is the pressure difference between the pressure of the gas flowing into the static pressure gas supply port 24 of the journal bearings 2A and 2B and the pressure of the atmosphere near the static pressure gas supply port 24 from which the gas flows out, or Control can be performed based on the flow rate of the gas flowing through the static pressure gas supply port 24.
- the opening of the adjustment valve 402 is the pressure difference between the pressure of the gas flowing into the static pressure gas supply port of the thrust bearing 2C and the pressure of the atmosphere in the vicinity of the static pressure gas supply port from which the gas flows out, or the static pressure. It can control based on the flow volume of the gas which flows through the pressure gas supply port.
- the recycling system 5 includes bearing recycling lines 51A to 51C and a motor recycling line 52.
- the bearing recycling lines 51A to 51C allow the gas that contributes to the support of the rotor 11 or the cooling of the pads in each of the gas bearings 2A to 2C to flow out of the vehicle interior 13.
- the motor recycle line 52 causes the gas that has cooled the motor rotor 121 and the stator 122 to flow out of the vehicle interior 13 while flowing in the gap between the motor rotor 121 and the stator 122 toward the compression unit 101.
- the control unit 6 (FIG. 1) includes adjustment valves 301 to 305 and a control valve 35 provided in the extraction supply system 3, and adjustment valves 401 and 402 and control valves 42 and 43 provided in the external gas supply system 4. Control each action.
- FIG. 5A shows the rotational speed (rotational speed) of the rotor 11 from the start of the compressor 10 to the completion of the stop.
- FIG. 5B schematically shows the dynamic pressure generated in the gas bearings 2A and 2B as the rotor 11 rotates.
- the dynamic pressure generated in the gas bearings 2A and 2B is small, and it is insufficient to support the rotor 11 rotatably.
- the dynamic pressure generated in the gas bearings 2A and 2B is insufficient when the rotational speed of the rotor 11 is reduced.
- the gas bearing 2C as well, when the rotational speed decreases during start-up or stop, the dynamic pressure is insufficient to support the rotor 11 in the thrust direction.
- the specified rotational speed at which the dynamic pressure sufficient to support the rotor 11 can be reliably obtained in the gas bearings 2A to 2C is referred to as a dynamic pressure sufficient rotational speed R.
- the rotational speed of the rotor 11 is lower than the rotational speed R satisfying the dynamic pressure (period indicated by a thick line in FIG. 5C)
- the rotor 11 is supported by the dynamic pressure with sufficient pressure for the gas bearings 2A to 2C. It is necessary to assist with the static pressure of the gas supplied in
- Example 1 Prior to the start of the speed-up of the compressor 10 by supplying electric power to the motor 12 (step S11), the control unit 6 activates the pump device 41 and supplies gas to the gas bearings 2A to 2C. That is, the assist by static pressure is started (step S10).
- control valves 42 and 43 are opened by the control unit 6.
- the process gas supplied from the upstream process to the process gas line 40 is pumped by the pump device 41 to the gas bearings 2A to 2C through the static pressure assist lines 44A to 44C, thereby supporting the rotor 11 in a non-contact state.
- the control unit 6 adjusts the opening of the adjusting valve 401 for the journal bearings 2A and 2B and adjusts the thrust bearing 2C so that external gas can be supplied at a pressure necessary to support the rotor 11.
- the opening degree of the valve 402 is adjusted.
- the gas that has flowed out of the gas bearings 2A to 2C flows through the bearing recycling lines 51A to 51C, gathers, and is sucked into the compression unit 101.
- the gas after cooling the motor 12 flows through the motor recycle line 52 and merges with the outflow gas from the bearings 2A to 2C.
- the control unit 6 continues the assist by the static pressure until the detected rotational speed of the rotor 11 reaches the predetermined dynamic pressure satisfying rotational speed R (N in step S12). During this time, the dynamic pressure generated by the bleed gas supplied from the compression unit 101 to the gas bearings 2A to 2C through the pressurized gas line 100 and the dynamic pressure generating lines 31A to 31C gradually increases as the rotational speed increases.
- the supply pressure of the assisting static pressure may be decreased by adjusting the flow rate of the external gas using 401 and 402.
- the control unit 6 stops the pump device 41 and stops the supply of external gas to the gas bearings 2A to 2C (Ste S13).
- the control valves 42 and 43 are also closed. At this time, the pressure capable of supporting the rotor 11 is reliably obtained in the gas bearings 2A to 2C only by the dynamic pressure associated with the rotation of the rotor 11 without assistance by static pressure.
- step S14 the control unit 6 or other control device controls the rotational speed of the rotor 11 to be constant (see FIG. 5A), but the rotational speed of the rotor 11 is variably controlled within a predetermined range. May be.
- the control unit 6 adjusts the opening of the adjustment valve 301 for the journal bearings 2A and 2B so that the bleed air can be supplied to the gas bearings 2A to 2C at a pressure required to support the rotor 11, and the thrust bearing 2C. Adjusts the opening of the regulating valve 302.
- the control unit 6 opens the regulating valves 303 and 304, and bleeds the pads of the gas bearings 2A to 2C through the pad cooling lines 32A to 32C. By supplying, the pad is cooled.
- the control unit 6 opens the regulating valve 303 to the necessary limit so that the extraction of the flow rate necessary to cool the pads and avoid the deformation of the pads is supplied.
- the adjustment valve 304 is opened to the necessary limit. By cooling the pad to the necessary limit, the amount of extraction and the amount of recycling can be suppressed, and the efficiency of the compressor system 1 can be maintained.
- the temperature of the bleed air supplied to the bleed air supply system 3 can be detected, and the opening degree of the regulating valves 303 and 304 can be adjusted based on the temperature.
- the motor 12 generates heat during the operation of the compressor 10.
- the control unit 6 opens the adjustment valve 305 and supplies the bleed air to the motor rotor 121 and the stator 122 through the motor cooling line 33. Then, the motor 12 is cooled.
- the controller 6 activates the pump device 41 to compensate for the insufficient dynamic pressure in the gas bearings 2A to 2C (step S15).
- the assist by the static pressure of the external gas is continued until the rotation of the rotor 11 is stopped (Y in step S16).
- the control valves 42 and 43 are opened by the controller 6, and the external gas is pumped by the pump device 41 to the gas bearings 2A to 2C through the static pressure assist lines 44A to 44C.
- the flow rate of the external gas is adjusted by the adjusting valves 401 and 402 as necessary so that the static pressure that can compensate for the dynamic pressure that gradually decreases as the rotational speed decreases can be supplied to the gas bearings 2A to 2C.
- step S16 When the rotation of the rotor 11 is stopped and the operation of the compressor 10 is completely stopped (Y in step S16), the control unit 6 stops the pump device 41 and stops the supply of external gas to the gas bearings 2A to 2C. (Step S17). The control valves 42 and 43 are also closed.
- FIG. 7C shows a gap amount which is a floating amount of the rotor 11 with respect to the pad 21 of the gas bearings 2A and 2B.
- the gap amount corresponds to the distance between the surface of the pad 21 and the outer peripheral surface of the rotating shaft 11A.
- This gap amount may vary as indicated by c1 and c2 in FIG. 7C, for example.
- the gap amount between the pad of the gas bearing 2 ⁇ / b> C and the flange 11 ⁇ / b> C of the rotor 11 may similarly vary.
- the rotor 11 can be supported only by the dynamic pressure.
- an excessive load is applied to the gas bearings 2A to 2C due to strong vibration, a rapid change in flow rate, or the like.
- the gap amount may be insufficient with respect to the gap amount that can stably support the rotor 11.
- a gas for static pressure to assist the gas bearings to the gas bearings 2A to 2C.
- a vibration value of the rotating shaft 11A of the rotor 11 (hereinafter referred to as a shaft vibration value) can be used as an index for assisting with static pressure.
- a static pressure gas may be supplied to the gas bearings 2A to 2C.
- Example 2 another example (example 2) of the procedure of the gas supply method of the present embodiment will be described with reference to FIG. (Example 2)
- Example 2 from the start of the compressor 10 until the rotational speed of the rotor 11 reaches the dynamic pressure sufficient rotational speed R, the external gas is gasified using the pump device 41 as in the above-described Example 1.
- the gas bearings 2A to 2C are secured with a gas pressure capable of supporting the rotor 11.
- the control unit 6 supplies the static pressure gas (here, bleed).
- the gas bearings 2A to 2C are supplied to assist the dynamic pressure (step S25).
- the motor 12 and the gas bearings 2A to 2C can be cooled in the same manner as in Example 1.
- a gas supplied to the gas bearings 2A to 2C for assistance by static pressure either a gas (process gas) from the outside of the compressor 10 or a bleed gas from the compressor 101 can be used.
- bleed air is used (step S25). Therefore, the control valve 35 is opened, and the bleed air that has flowed into the bleed air static pressure assist line 34 from the boosted gas line 100 is supplied to the gas bearings 2A to 2C. If extraction is used exclusively for assistance by static pressure as in step S25, even if the pump device 41 breaks down, there is no effect on assistance by static pressure.
- the external gas sent by the pump device 41 may be used for assisting by static pressure.
- step S26 the supply of the gas for static pressure is continued until the support of the rotor 11 is released from the unstable state. If the unstable state is removed (Y in step S26), the supply of the static pressure extraction air is terminated (step S27), and necessary processing such as closing the control valve 35 is performed.
- the conditions for determining that the unstable state has been removed can be determined as appropriate. For example, the gap amount may exceed a specified value over a specified time, or the axial vibration value may exceed a specified value.
- step S28 If the rotational speed of the rotor 11 falls below the prescribed dynamic pressure sufficient rotational speed R while the compressor 10 is stopped (Y in step S28), the compressor 10 is in the same manner as in step S20 (S15 to S17) in FIG. Until completely stopped, external gas is supplied to the gas bearings 2A to 2C using the pump device 41 (step S20).
- a sufficient dynamic pressure sufficient to support the rotor 11 can be secured in the gas bearings 2A to 2C by supplementing the dynamic pressure that tends to be insufficient at a low rotational speed with the static pressure. Therefore, the reliability of the compressor system 1 can be improved.
- the bleed air is supplied to the gas bearings 2A to 2C and the rotor 11 is supported only by the dynamic pressure (S14 in FIG. 6). 8
- S24 to S28 in FIG. 8 assists the dynamic pressure with the static pressure of the external gas during the start and stop times when the rotation speed is lower than the dynamic pressure sufficient rotation speed R (S10 to S10 in FIG. 6 and FIG. 8).
- the pump device 41 that pumps the external gas only operates intermittently during a part of the process from the start of the compressor 10 to the end of the stop, and even if the pump device 41 having a short life is used, the pump device 41 is operated for a long time.
- the compressor system 1 can be used over a wide range. Therefore, by adopting the inexpensive pump device 41 even if the lifetime is short, the compressor system 1 that can be used for a long period of time while suppressing the cost can be realized.
- bleed gas is used instead of external gas, and therefore, regardless of the timing at which the external gas is supplied by the pump device 41 that operates intermittently, The pad and motor 12 can be cooled when needed.
- the rotor 11 is stably supported during operation by performing the assistance by the static pressure based on the gap amount and the shaft vibration value, and the reliability is further improved. Can do.
- the bleed gas from the gas boosted by the compression unit 101 is used as the dynamic pressure. It can also be used for generation.
- the bleed gas from the gas boosted by the compression unit 102 is used for pad cooling or motor 12 cooling, the bleed supply system (illustrated) through which the gas boosted by the compression unit 102 flows in order to reliably reduce the temperature of the boosted gas. It is preferable to provide a gas cooler.
- FIG. 9 the compressor system 7 of the second embodiment is different from the compressor system 1 (FIG. 1) of the first embodiment in that a tank 45 is provided.
- FIG. 9 items different from the first embodiment will be mainly described.
- symbol is attached
- an abnormality occurs in the check valve 41A and the pump device 41.
- a tank 45 capable of functioning as a backup tank and control valves 46 and 47 are provided.
- the control unit 8 can open and close the control valves 42, 43, 46 and 47.
- the tank 45 stores external gas filled up to a specified internal pressure. Even if an abnormality has occurred in the pump device 41 when static pressure is required, such as when the compressor 10 is started or stopped, the pressure of a sufficient pressure that can support the rotor 11 with only the gas in the tank 45 The capacity and internal pressure of the tank 45 are determined so that the gas can be supplied for a necessary time.
- the downstream side of the pump device 41 and the tank 45 are connected via a connection line 48.
- the external gas can be filled into the tank 45 by the pump device 41 through the connection line 48.
- the extraction filling line 36 branched from the pressurization gas line 100 is connected to the tank 45. It is also possible to fill the tank 45 with the extraction air through the extraction / filling line 36.
- control valves 43, 46, and 47 An example of operation of the control valves 43, 46, and 47 will be described with reference to FIGS. 10 (a) to 10 (c).
- the control unit 8 opens the control valve 46 provided in the connection line 48 as shown in FIG. 47 and 43 are closed.
- the closed valve is shown in black.
- both the control valves 46 and 43 can be opened to perform filling of the tank 45 by the pump device 41 and supply of external gas for static pressure by the pump device 41 in parallel. it can.
- the tank 45 and extraction are used as a backup at the time of abnormality occurrence of the pump apparatus 41.
- FIG. when starting the compressor 10, the occurrence of an abnormality in the pump device 41 is detected as described below (step S31). However, it is possible to periodically detect the occurrence of an abnormality in the pump device 41 during the operation of the compressor 10. The occurrence of an abnormality in the pump device 41 can be detected by, for example, a small pressure indicated by a pressure gauge provided in the pump device 41.
- step S31 it is determined whether or not the pump device 41 operates soundly (step S31). If an abnormality has occurred in the pump device 41 (N in step S31), the compressor 10 Interrupt the start. If the pump device 41 is healthy (Y in step S31), the compressor 10 is started (step S32). Then, in the same manner as in Example 1 and Example 2 described above, the external gas is supplied to the gas bearings 2A to 2C using the pump device 41 until the rotational speed of the rotor 11 reaches the dynamic pressure sufficient rotational speed R ( Steps S10 to S13). The control valve 46 is closed.
- the tank 45 is filled with gas until it reaches a prescribed tank internal pressure so as to function as a backup (steps S33 to S38). If the pump device 41 is healthy (Y in step S34), the pump device 41 fills the tank 45 with the process gas through the connection line 48 (steps S35, S37, S38). During filling, the control valve 46 is opened and the control valve 43 is closed. If an abnormality has occurred in the pump device 41 (N in step S34), the control valve 47 is opened and the control valve 46 is closed, whereby the extraction air is filled into the tank 45 through the extraction filling line 36 (steps S36 to S38). ).
- control valve 43 can be opened, and the static pressure gas can be supplied to the gas bearings 2A to 2C by the pump device 41.
- the pump device 41 and the bleed air can be used, the reliability of filling the tank 45 is improved.
- step S39 the operation is continued while detecting the gap amount (or shaft vibration value) (step S39).
- the motor 12 and the gas bearings 2A to 2C can be cooled by supplying the extraction air through the pad cooling lines 32A to 32C and the motor cooling line 33 of the extraction air supply system 3.
- step S40 the dynamic pressure assist for supplying the static pressure gas to the gas bearings 2A to 2C is started (step S40).
- the gas supplied to the gas bearings 2A to 2C to assist the dynamic pressure by static pressure is extracted from the external gas (process gas), the gas in the tank 45, and the gas pressurized by the compression unit 101. Either of these can be used.
- step S401 if the pump device 41 is healthy (Y in step S401), the external gas sent by the pump device 41 is used (step S402). If an abnormality has occurred in the pump device 41 (N in step S401), the internal pressure of the tank 45 is detected (step S403), and when the internal pressure of the tank 45 is equal to or higher than a specified value (Y), the control valves 46, 43 (FIG. 10B), the gas in the tank 45 is used for assistance by static pressure (step S404). If an abnormality occurs in the pump device 41, the process may be shifted to a process of stopping the compressor 10.
- Step S403 When the internal pressure of the tank 45 is lower than the specified value (N in Step S403), the control valve 35 is opened, and the bleed air is supplied to the gas bearings 2A to 2C through the bleed air static pressure assist line 34 (Step S405).
- step S41 the supply of the gas for static pressure is continued until the support of the rotor 11 is released from the unstable state. If the unstable state is removed (Y in step S41), the supply of the static pressure gas is terminated (step S42). Depending on the gas used, necessary processing such as stopping the pump device 41 and closing the control valves 42 and 43 or the control valve 35 is performed. Thereafter, the tank 45 is filled as necessary (steps S33 to S38 shown in FIG. 11).
- step S43 When the compressor 10 is stopped, if the rotational speed of the rotor 11 falls below the prescribed dynamic pressure sufficient rotational speed R (Y in step S43), the compressor 10 is similar to step S20 (S15 to S17) in FIG. Until the gas is completely stopped, external gas is supplied to the gas bearings 2A to 2C using the pump device 41 (step S44). After that, it is preferable to fill the tank 45 with the process gas by the pump device 41 in preparation for the next operation (steps S45 to S47). Then, the gas in the tank 45 can be supplied to the gas bearings 2A to 2C without starting the pump device 41 at the time of starting. Unlike the control examples shown in FIGS. 11 to 12, the tank 45 can be used preferentially over the pump device 41.
- step S402 regarding assistance by static pressure, when an abnormality such as a failure occurs in the pump device 41 while basically using the external gas sent by the pump device 41 (step S402). If the gas filled in the tank 45 is used (step S404) and there is no gas of sufficient pressure in the tank 45, the bleed air that can be obtained as long as the compressor 10 is operating can be used. (Step S405). Therefore, it is possible to give the system redundancy so as not to lose the static pressure assist function even when the pump device 41 is abnormal, and to improve the reliability of the compressor system 7.
- the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
- the configurations of various valves and lines shown in the above embodiments are merely examples, and can be designed with appropriate changes.
- the gap between the rotor 11 and the bearing pad is used.
- An amount can also be used. For example, in step S12 or step S14 of FIG. 6, when the gap amount is lower than the specified value (Y in steps S12 and S14), the static pressure gas that assists the dynamic pressure is supplied to the gas bearings 2A to 2C. Good.
- the thrust bearing 2C is not limited to a gas bearing, but may be a bearing such as an oil slide bearing, a rolling bearing, or a magnetic bearing.
- the compressor of the present invention is not limited to the first stage and second stage compression units 101 and 102 as in each of the above-described embodiments, and may include a single compression unit.
- a gas bearing housing can be installed outside the vehicle compartment 13.
- the compression part of an appropriate structure is employable.
- the motor 12 does not necessarily have to be built in the passenger compartment 13 and can be arranged outside the passenger compartment 13.
- the motor rotor 121 is coupled to the rotating shaft 11A protruding from the vehicle interior 13, and the motor rotor 121 and the stator 122 are accommodated in the casing.
- a line for sending bleed air may be configured in the casing.
- the power source of the compressor in the present invention is not limited to the motor 12 and can be configured such that a rotational driving force from an appropriate power source such as a steam turbine is input to the rotor 11.
- the compressor system of the present invention may include a main pump device and a sub pump device.
- the main pump device is used to supply process gas to the gas bearings 2A to 2C, and when an abnormality occurs in the main pump device, the sub pump device can be switched. In this case, even if the tank 45 is omitted, sufficient reliability can be ensured.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
特許文献1では、遠心圧縮機の吐出室から軸受まで連通するガス供給管を使用している。遠心圧縮機により昇圧したガスの一部がガス供給管を通じて軸受に供給されているので、供給されたガスが、回転するロータと軸受のパッドとの間に巻き込まれて気膜を形成し、動圧を生じさせることができる。
そのため、動圧方式に代えて、ポンプ等でガスを軸受まで圧送し、ロータの回転とは関係なく、軸受のパッドとロータとの間に供給されたガスの圧力(静圧)によりロータを支持する静圧方式を採用することも考えられる。しかし、ロータを支持するに足りる大きな圧力を得ることの可能なポンプ装置の寿命が短いという問題がある。必要な圧力に適合し、かつ長期に亘り使用可能なポンプ装置は、あるとしても非常に高価である。
「圧縮部の外部からの外部ガス」は、圧縮部を収容するケースの外部からの外部ガスを意味するものとする。
そうすると、相対的に低い回転数のときであっても、ロータの支持に足りる十分な圧力をガス軸受に確保することができるので、信頼性を向上させることができる。
しかも、外部ガス供給源を間欠的に作動させればよいため、寿命が短くても安価なポンプ装置等を採用することでコストを抑えつつ、長期に亘り使用可能なシステムを提供することができる。
〔第1実施形態〕
図1に示す圧縮機システム1は、ガス軸受2A~2Cを有する圧縮機10と、ガス軸受2A~2Cにガスを供給する系統である抽気供給系統3および外部ガス供給系統4(静圧用外部ガス供給系統)と、リサイクル系統5と、制御部6とを備えている。
圧縮機システム1は、それよりも上流、下流のプロセスと共にプラント等の設備を構成している。
図1において、圧力センサや温度センサ等の計器類の図示は省略している。
ロータ11には、吸い込んだガスを圧縮する圧縮部101,102が備えられている。ロータ11の一端側に位置する圧縮部101(第1段)は、遠心力の作用によりガスを圧縮する単一または複数のインペラ(羽根車)を有している。インペラはロータ11の回転軸11Aの軸回りに固定されている。
ロータ11の他端側に位置する圧縮部102も同様に単一または複数のインペラを有している。圧縮部102(第2段)は、圧縮部101により昇圧したガスを吸い込んで圧縮する。圧縮部101から吐出されたガスは、昇圧ガスライン100を通り圧縮部102へと導入される。
本実施形態の車室13は、モータ12のケーシングを兼ねている。
ジャーナル軸受2Aは、短冊状の複数のパッド21(図2も参照)と、これらのパッド21を保持するハウジング22とを備えている。パッド21は、回転軸11Aの外周面に倣うように湾曲している。
パッド21の内周面と回転軸11Aの外周面との間の間隙の寸法(ギャップ量)は、例えば、10μm程度である。
ハウジング22には、パッド21の端縁21Aに沿って複数の動圧用ガス供給口221が形成されている。これらの動圧用ガス供給口221からそれぞれ、回転軸11Aに向けて供給されるガス(抽気)は、ロータ11の回転に伴ってパッド21の周辺で流動するガスと共に、パッド21と回転軸11Aとの間の隙間に巻き込まれて動圧を発生させ、動圧によりロータ11が浮上する。ここで、ガスが巻き込まれることでパッド21が揺動するので、くさび作用により効率よく動圧を発生させてロータ11を浮上させることができる。
パッド25と鍔11Cとの間に供給されたガスの圧力(静圧)、または、回転軸11Aの回転に伴い鍔11Cとパッド25との間に巻き込まれるガスに生じた動圧が、鍔11Cの両側から作用することにより、鍔11Cと両側のパッド25とが非接触の状態でスラスト方向にロータ11が支持される。
スラスト軸受2Cにも、後述するように、動圧を作用させるために抽気が供給され、静圧を作用させるために外部のガスまたは抽気が供給される。また、スラスト軸受2Cのパッド25に、温度上昇を抑えるためにガスが供給される。
抽気供給系統3は、図3に示すように、抽気から異物を除去するフィルタ3Fと、フィルタ3Fよりも下流で分岐した動圧発生用ライン31A~31Cと、調整弁301,302とを有している。抽気供給系統3は、破線で示すパッド冷却用ライン32A~32Cと、モータ冷却用ライン33と、抽気静圧アシストライン34とを有していることが好ましい。
動圧発生用ライン31A~31Cは、昇圧ガスライン100を流れるガスの一部が抽気として流入するように、フィルタ3Fを介して昇圧ガスライン100に接続されている。
調整弁301の開度は、ジャーナル軸受2A,2Bの各々の動圧用ガス供給口221に流入するガスの圧力と、そのガスが流出する動圧用ガス供給口221付近の雰囲気の圧力との圧力差、または動圧用ガス供給口221を流れるガスの流量に基づいて制御することができる。
同様に、調整弁302の開度は、スラスト軸受2Cの動圧用ガス供給口に流入するガスの圧力と、そのガスが流出する動圧用ガス供給口付近の雰囲気の圧力との圧力差、または動圧用ガス供給口を流れるガスの流量に基づいて制御することができる。
なお、上述した動圧用ガス供給口221や静圧用ガス供給口24(図2)から供給されるガスも、パッドの冷却に寄与する。
調整弁303,304の各々の開度は、熱電対やサーミスタ等の温度センサ(図示しない)を用いて検出されたパッドの温度に基づいて制御することができる。
冷却の効率を向上させるため、昇圧ガスライン100に、空気や水等の冷却用媒体との熱交換により抽気の温度を下げるガスクーラ39が備えられることが好ましい。
図1、図3に示すガスクーラ39の位置は一例であり、冷却に用いられる抽気の供給系統3における例えばフィルタ3Fよりも上流側にガスクーラ39を配置することもできる。
抽気は、モータ冷却用ライン33を流れて車室13の内部に供給され、車室13内の圧力勾配に従い、モータロータ121とステータ122との間の間隙や、ステータ122に形成された切欠をロータ11の軸線方向に圧縮部101側へと流れながらモータロータ121およびステータ122を冷却する。
調整弁305の開度は、検出されたモータロータ121またはステータ122の温度に基づいて制御することができる。
抽気静圧アシストライン34には、開閉可能な制御弁35が設けられている。
次に、外部ガス供給系統4(図1、図4)は、回転軸11Aをガス軸受2A~2Cのパッドとは非接触に支持するのに必要な圧力の気膜を得るため、圧縮機10の外部からの外部ガスをガス軸受2A~2Cにそれぞれ供給する。
外部ガス供給系統4は、上流プロセスからのプロセスガスが導入されるプロセスガスライン40と、プロセスガスライン40により供給されるプロセスガス(外部ガス)を圧送可能なポンプ装置41と、制御弁42,43と、プロセスガスから異物を除去するフィルタ4Fと、フィルタ4Fよりも下流で分岐した静圧アシストライン44A~44Cとを備えている。
後述するように、外部ガス供給系統4は、制御弁42,43が操作されることにより、間欠的に使用されるので、ポンプ装置41として、寿命が短くても安価なポンプ、例えば、往復動ポンプを採用することが経済的である。
制御弁42はプロセスガスライン40に設けられており、制御弁43は、ポンプ装置41よりも下流に設けられている。
静圧アシストライン44Aは、ジャーナル軸受2Aの静圧用ガス供給口24(図2)へと通じ、静圧アシストライン44Bは、ジャーナル軸受2Bの静圧用ガス供給口24へと通じている。静圧アシストライン44Cは、スラスト軸受2Cの図示しない静圧用ガス供給口へと通じている。
調整弁401の開度は、ジャーナル軸受2A,2Bの静圧用ガス供給口24に流入するガスの圧力と、そのガスが流出する静圧用ガス供給口24付近の雰囲気の圧力との圧力差、または静圧用ガス供給口24を流れるガスの流量に基づいて制御することができる。
同様に、調整弁402の開度は、スラスト軸受2Cの静圧用ガス供給口に流入するガスの圧力と、そのガスが流出する静圧用ガス供給口付近の雰囲気の圧力との圧力差、または静圧用ガス供給口を流れるガスの流量に基づいて制御することができる。
上述のように、抽気供給系統3および外部ガス供給系統4によりガス軸受2A~2Cやモータ12に供給されたガスは、リサイクル系統5(図1)を通じて圧縮機10よりも上流に戻されて圧縮部101へと導入される。
リサイクル系統5は、軸受リサイクルライン51A~51Cと、モータリサイクルライン52とを備えている。
軸受リサイクルライン51A~51Cは、ガス軸受2A~2Cのそれぞれにおいてロータ11の支持またはパッドの冷却に寄与したガスを車室13の外側へと流出させる。
モータリサイクルライン52は、モータロータ121とステータ122との間の間隙等を圧縮部101に向けて流れながらモータロータ121およびステータ122を冷却したガスを車室13の外側へと流出させる。
図5(a)は、圧縮機10の始動開始から停止完了までのロータ11の回転数(回転速度)を示している。図5(b)は、ロータ11の回転に伴いガス軸受2A,2Bに発生する動圧を模式的に示している。
ここで、圧縮機10の始動開始から暫くの間は、ロータ11の回転数が低いため、ガス軸受2A,2Bに発生する動圧が小さく、ロータ11を回転可能に支持するには不足する。また、圧縮機10を停止させる際も、ロータ11の回転数が低下すると、ガス軸受2A,2Bに発生する動圧が不足する。
なお、ガス軸受2Cについても、始動中や停止中に回転数が低下すると、ロータ11をスラスト方向に支持するには動圧が不足する。
(例1)
モータ12に電力が供給されることで圧縮機10が昇速開始される(ステップS11)よりも前に、制御部6は、ポンプ装置41を起動し、ガス軸受2A~2Cへのガスの供給、つまり、静圧によるアシストを開始する(ステップS10)。
このとき、ロータ11を支持するために必要な圧力で外部ガスを供給できるように、制御部6により、ジャーナル軸受2A,2Bについては調整弁401の開度を調整し、スラスト軸受2Cについては調整弁402の開度を調整する。
ガス軸受2A~2Cから流出したガスは、軸受リサイクルライン51A~51Cをそれぞれ流れて集合し、圧縮部101へと吸入される。ガス軸受2A~2Cのパッドを冷却した後のガスも同様である。モータ12を冷却した後のガスは、モータリサイクルライン52を流れ、軸受2A~2Cからの流出ガスと合流する。
このとき、静圧によるアシストなしでも、ロータ11の回転に伴う動圧のみにより、ロータ11を支持可能な圧力がガス軸受2A~2Cに確実に得られている。
ここでは、制御部6あるいは他の制御装置により、ロータ11の回転数が一定となるように制御するが(図5(a)参照)、ロータ11の回転数を所定の範囲内で可変に制御してもよい。
なお、抽気供給系統3に供給される抽気の温度を検出し、その温度に基づいて調整弁303,304の開度を調整することもできる。
このとき、制御弁42,43が制御部6により開かれ、ポンプ装置41により、外部ガスが静圧アシストライン44A~44Cを通じてガス軸受2A~2Cへと圧送される。回転数の減少に伴い次第に減少する動圧を補うことのできる静圧をガス軸受2A~2Cに供給できるように、必要に応じて調整弁401,402により外部ガスの流量を調整する。
図7(c)は、ガス軸受2A,2Bのパッド21に対するロータ11の浮上量であるギャップ量を示している。ギャップ量は、パッド21の表面と回転軸11Aの外周面との間の距離に相当する。
このギャップ量は、例えば図7(c)にc1,c2で示すように、変動する場合がある。ガス軸受2Cのパッドとロータ11の鍔11Cとの間のギャップ量も、同様に変動する場合がある。例えば、定常運転中のロータ11の通常の負荷であれば動圧のみによりロータ11を支持できているところ、強い振動や、流量の急激な変化等によりガス軸受2A~2Cに過大な負荷が掛かった場合に、ギャップ量が、ロータ11を安定して支持可能なギャップ量に対して不足しうる。
静圧によるアシストを行う指標として、ギャップ量の他に、ロータ11の回転軸11Aの振動値(以下、軸振動値)を用いることもできる。軸振動値が規定値に対して大きいときに、静圧用のガスをガス軸受2A~2Cに供給すればよい。
(例2)
例2では、圧縮機10の始動開始から、ロータ11の回転数が動圧充足回転数Rに到達するまでの間は、上述の例1と同様に、ポンプ装置41を用いて外部ガスをガス軸受2A~2Cに供給することで(S10~S13)、ロータ11を支持可能なガスの圧力をガス軸受2A~2Cに確保する。
モータ12やガス軸受2A~2Cの冷却は、例1と同様にして行うことができる。
ここでは、抽気を使用するものとする(ステップS25)。そのため、制御弁35を開き、昇圧ガスライン100から抽気静圧アシストライン34に流入した抽気をガス軸受2A~2Cに供給する。
ステップS25のように、静圧によるアシストのために専ら抽気を用いると、ポンプ装置41が万が一故障したとしても、静圧によるアシストに影響ない。
不安定な状態を脱したと判定するための条件は、適宜に定めることができる。例えば、ギャップ量が規定の時間に亘り規定値を上回ったり、軸振動値が規定値を上回ったりすることが挙げられる。
本実施形態では、規定の動圧充足回転数Rに対して高い回転数のときは、ガス軸受2A~2Cに抽気を供給して動圧のみによりロータ11を支持しており(図6のS14、図8のS24~S28)、動圧充足回転数Rに対して低い回転数となる始動中および停止中は、外部ガスの静圧により動圧をアシストする(図6および図8のS10~S13、S20)。そのため、外部ガスを圧送するポンプ装置41は圧縮機10の始動開始から停止終了までのプロセスの一部で間欠的に作動するだけであり、寿命が短いポンプ装置41を用いていても、長期間に亘り圧縮機システム1を使用可能である。
したがって、寿命が短くても安価なポンプ装置41を採用することでコストを抑えつつ、長期に亘り使用可能であるとともに、信頼性の高い圧縮機システム1を実現することができる。
圧縮部102により昇圧したガスからの抽気をパッドの冷却やモータ12の冷却に用いる場合には、昇圧したガスの温度を確実に下げるため、圧縮部102により昇圧したガスが流れる抽気供給系統(図示しない)に、ガスクーラを設けることが好ましい。
次に、図9~図12を参照し、本発明の第2実施形態に係る圧縮機システム7について説明する。
第2実施形態の圧縮機システム7は、図9に示すように、タンク45を備える点が、第1実施形態の圧縮機システム1(図1)とは相違する。以下、第1実施形態と相違する事項を中心に述べる。第1実施形態と同様の構成には同じ符号を付している。
制御部8により、制御弁42,43,46,47の開閉が可能である。
ポンプ装置41(図9)により外部ガスをタンク45に充填するときは、制御部8により、図10(a)に示すように、接続ライン48に設けられている制御弁46を開き、制御弁47,43を閉める。図10(a)~(c)において、閉まっている弁を黒色で塗りつぶして示している。ポンプ装置41の能力によっては、制御弁46,43のいずれも開くことで、ポンプ装置41によるタンク45への充填と、ポンプ装置41による静圧用の外部ガスの供給とを並行して行うことができる。
第2実施形態では、ポンプ装置41の異常発生時のバックアップとして、タンク45と抽気とを用いる。
本実施形態では、圧縮機10の始動を開始するにあたり、下記で述べるように、ポンプ装置41の異常発生を検知する(ステップS31)。但し、圧縮機10の運転中、ポンプ装置41の異常発生を定期的に検知することもできる。
ポンプ装置41に異常が発生していることは、例えば、ポンプ装置41に設けられた圧力計が示す圧力が小さいことにより検知することができる。
ポンプ装置41が健全であるならば(ステップS31でY)、圧縮機10を始動させる(ステップS32)。そして、上述の例1や例2と同様に、ロータ11の回転数が動圧充足回転数Rに到達するまでの間、ポンプ装置41を用いて外部ガスをガス軸受2A~2Cに供給する(ステップS10~S13)。制御弁46は閉めておく。
ポンプ装置41が健全であるならば(ステップS34でY)、ポンプ装置41により、接続ライン48を通じてタンク45にプロセスガスを充填する(ステップS35,S37,S38)。充填中は、制御弁46を開き、制御弁43は閉める。
ポンプ装置41に異常が発生しているならば(ステップS34でN)、制御弁47を開き、制御弁46を閉めることで、抽気充填ライン36を通じて抽気をタンク45に充填する(ステップS36~S38)。その際、制御弁43を開いてポンプ装置41により静圧用ガスをガス軸受2A~2Cに供給することもできる。
上記のように、ポンプ装置41と抽気とを使用できることにより、タンク45への充填に関し信頼性が向上する。
運転中は、抽気供給系統3のパッド冷却用ライン32A~32Cやモータ冷却用ライン33を通じて抽気を供給することにより、モータ12やガス軸受2A~2Cを冷却することができる。
第2実施形態では、静圧により動圧をアシストするためガス軸受2A~2Cに供給するガスとして、外部ガス(プロセスガス)、タンク45内のガス、および圧縮部101により昇圧したガスからの抽気のいずれかを用いることができる。
ポンプ装置41に異常が発生していれば(ステップS401でN)、タンク45の内圧を検出し(ステップS403)、タンク45の内圧が規定値以上であるとき(Y)、制御弁46,43を開いて(図10(b))タンク45内のガスを静圧によるアシストに使用する(ステップS404)。
なお、ポンプ装置41に異常が発生しているならば、圧縮機10を停止させる処理に移行してもよい。
その後は、必要に応じて、タンク45への充填を行う(図11に示すステップS33~S38)。
その後、次の運転に備えて、ポンプ装置41によりタンク45にプロセスガスを充填しておくことが好ましい(ステップS45~S47)。
そうすると、始動時に、ポンプ装置41を作動させなくても、タンク45内のガスをガス軸受2A~2Cに供給することができる。
図11~図12に示す制御の例とは異なり、ポンプ装置41よりもタンク45を優先的に用いることもできる。
上記の各実施形態で示した種々の弁やラインの構成は一例であり、適宜に変更して設計することができる。
2A,2B ジャーナル軸受
2C スラスト軸受
3 抽気供給系統
3F フィルタ
4 外部ガス供給系統(静圧用外部ガス供給系統)
4F フィルタ
5 リサイクル系統
6 制御部
7 圧縮機システム
8 制御部
10 圧縮機
11 ロータ
11A 回転軸
11C 鍔
12 モータ
13 車室
21 パッド
21A 端縁
22 ハウジング
23 ピボット
24 静圧用ガス供給口
25 パッド
26 ハウジング
31A~31C 動圧発生用ライン(動圧発生用ガス供給系統)
32A~32C パッド冷却用ライン(パッド冷却用系統)
33 モータ冷却用ライン(モータ冷却用系統)
34 抽気静圧アシストライン(抽気静圧用ガス供給系統)
35 制御弁
36 抽気充填ライン(抽気充填系統)
39 ガスクーラ
40 プロセスガスライン
41 ポンプ装置(外部ガス供給源)
41A 逆止弁
42,43,46,47 制御弁
44A~44C 静圧アシストライン
45 タンク
48 接続ライン
51A~51C 軸受リサイクルライン
52 モータリサイクルライン
100 昇圧ガスライン
101,102 圧縮部
121 モータロータ
122 ステータ
131 導入部
132 吐出部
221 動圧用ガス供給口
301,302 調整弁
303,304 調整弁
305 調整弁
401,402 調整弁
R 動圧充足回転数(動圧充足回転速度)
X 分岐点
Claims (16)
- ガスを吸い込んで圧縮する圧縮部と、
前記圧縮部が備えられるロータと、
前記ロータを支持するガス軸受と、
前記圧縮部により昇圧した前記ガスからの抽気を前記ガス軸受に供給する動圧発生用ガス供給系統と、
前記圧縮部の外部からの外部ガスを前記ガス軸受に供給する静圧用外部ガス供給系統と、を有する、
ことを特徴とする圧縮機システム。 - 前記静圧用外部ガス供給系統は、
前記外部ガスを圧送可能な外部ガス供給源を備える、
請求項1に記載の圧縮機システム。 - 前記外部ガス供給源により前記外部ガスを充填可能なタンクを備える、
請求項2に記載の圧縮機システム。 - 前記抽気を前記タンクに充填する抽気充填系統を有する、
請求項3に記載の圧縮機システム。 - 前記抽気を前記ガス軸受に供給する抽気静圧用ガス供給系統を有する、
請求項1から4のいずれか一項に記載の圧縮機システム。 - 前記抽気を前記ガス軸受のパッドに供給するパッド冷却用系統を有する、
請求項1から5のいずれか一項に記載の圧縮機システム。 - 前記ロータに回転駆動力を出力するモータと、
前記モータを収容するケーシングの内部における前記モータの近傍へと通じ、前記抽気を前記モータに供給するモータ冷却用系統と、を有する、
請求項1から6のいずれか一項に記載の圧縮機システム。 - 前記抽気と、前記抽気よりも温度が低い媒体とを熱交換させるガスクーラを有する、
請求項6または7に記載の圧縮機システム。 - 前記静圧用外部ガス供給系統を間欠的に使用する制御部を有する、
請求項1から8のいずれか一項に記載の圧縮機システム。 - ロータを支持するガス軸受を備えた圧縮機にガスを供給する方法であって、
前記ロータが回転している間に亘り、前記圧縮機により昇圧した前記ガスからの抽気を前記ガス軸受に供給し、
前記ロータの回転速度が規定の動圧充足回転速度に対して低いとき、あるいは、前記ロータと前記ガス軸受のパッドとの間のギャップ量が規定値に対して小さいときは、
前記圧縮機の外部からの外部ガス、および前記抽気のいずれかを前記ガス軸受に供給して静圧を発生させる、
ことを特徴とするガス供給方法。 - 前記動圧充足回転速度は、前記圧縮機の始動中または停止中の回転速度である、
請求項10に記載のガス供給方法。 - 前記ロータの回転速度が前記動圧充足回転速度に対して高いときにおいて、
前記ロータと前記ガス軸受のパッドとの間のギャップ量が規定値に対して小さいか、あるいは、前記ロータの軸の振動値が規定値に対して大きい場合にも、
前記外部ガスおよび前記抽気のいずれかを前記ガス軸受に供給して静圧を発生させる、
請求項10または11に記載のガス供給方法。 - 前記圧縮機の外部にある外部ガス供給源により圧送される前記外部ガス、前記抽気、および、予め前記外部ガスあるいは前記抽気が充填されたタンク内のガスのいずれかを前記ガス軸受に供給して静圧を発生させる、
請求項10から12のいずれか一項に記載のガス供給方法。 - 前記外部ガス供給源に異常が発生した場合に、前記タンク内のガスを前記ガス軸受に供給する、
請求項13に記載のガス供給方法。 - 前記抽気を用いて、前記ガス軸受のパッドを冷却する、
請求項10から14のいずれか一項に記載のガス供給方法。 - 前記抽気を用いて、前記ロータに回転駆動力を出力するモータを冷却する、
請求項10から15のいずれか一項に記載のガス供給方法。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2016/005098 WO2018104987A1 (ja) | 2016-12-09 | 2016-12-09 | ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 |
| EP16923211.3A EP3508733B1 (en) | 2016-12-09 | 2016-12-09 | Compressor system provided with a gas bearing, and method for supplying gas to a compressor provided with a gas bearing |
| JP2017532181A JP6200127B1 (ja) | 2016-12-09 | 2016-12-09 | ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 |
| US15/578,489 US10900491B2 (en) | 2016-12-09 | 2016-12-09 | Compressor system including gas bearing, and method of supplying gas to compressor including gas bearing |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2016/005098 WO2018104987A1 (ja) | 2016-12-09 | 2016-12-09 | ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018104987A1 true WO2018104987A1 (ja) | 2018-06-14 |
Family
ID=59895782
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2016/005098 Ceased WO2018104987A1 (ja) | 2016-12-09 | 2016-12-09 | ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US10900491B2 (ja) |
| EP (1) | EP3508733B1 (ja) |
| JP (1) | JP6200127B1 (ja) |
| WO (1) | WO2018104987A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020077788A1 (zh) * | 2018-10-18 | 2020-04-23 | 珠海格力电器股份有限公司 | 压缩机用气体轴承的供气系统、操作方法及制冷系统 |
| WO2025177690A1 (ja) * | 2024-02-22 | 2025-08-28 | 三菱重工業株式会社 | コンプレッサ装置 |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102017220855A1 (de) | 2017-11-22 | 2019-05-23 | Robert Bosch Gmbh | Turbokompressor, insbesondere für ein Brennstoffzellensystem |
| CN111365254B (zh) * | 2018-12-25 | 2025-03-07 | 珠海格力电器股份有限公司 | 用于优化内部空间的压缩机 |
| WO2021067478A1 (en) * | 2019-09-30 | 2021-04-08 | Trane International Inc. | Cooling of a compressor shaft gas bearing |
| CN111608929B (zh) * | 2020-05-20 | 2022-04-01 | 无锡职业技术学院 | 一种具有气体轴承式离心压缩机的制冷系统 |
| CN111751220B (zh) * | 2020-06-22 | 2023-06-02 | 哈尔滨工业大学 | 一种考虑流固耦合的气体静压轴承性能计算方法 |
| CN114688062A (zh) * | 2020-12-25 | 2022-07-01 | 珠海格力电器股份有限公司 | 气悬浮压缩机的控制方法、装置、存储介质及压缩机 |
| US20220220976A1 (en) * | 2021-01-12 | 2022-07-14 | Emerson Climate Technologies, Inc. | Cooling system for centrifugal compressor and refrigeration system including same |
| CN113959116A (zh) * | 2021-09-27 | 2022-01-21 | 青岛海尔空调电子有限公司 | 压缩机轴承供气系统和气悬浮压缩机系统 |
| CN113883165A (zh) * | 2021-09-28 | 2022-01-04 | 永旭腾风新能源动力科技(北京)有限公司 | 用于微型燃气轮机转子系统的气路系统及微型燃气轮机 |
| CN113898474A (zh) * | 2021-10-19 | 2022-01-07 | 靳普科技(北京)有限公司 | 燃气轮机 |
| CN113969940B (zh) * | 2021-10-21 | 2025-09-09 | 韶关市纬泰技研有限公司 | 一种高稳定性、耐磨性的新型空气轴承 |
| CN114087290B (zh) * | 2021-11-08 | 2024-04-19 | 青岛海尔空调电子有限公司 | 用于悬浮轴承的供气系统及制冷系统 |
| EP4283728A1 (en) * | 2022-05-25 | 2023-11-29 | KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH | Gas bearing system, use of gas bearing means in a fuel cell system, fuel cell system, arrangement of systems with consumers of pressurized gas and vehicle |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5736436B2 (ja) * | 1978-04-14 | 1982-08-04 | ||
| JPS6220604A (ja) * | 1985-07-19 | 1987-01-29 | Yaskawa Electric Mfg Co Ltd | 気体軸受の給気方法と装置 |
| JPS63199994A (ja) * | 1987-02-16 | 1988-08-18 | Mitsubishi Electric Corp | 強制給油装置 |
| JP2009168241A (ja) * | 2008-01-21 | 2009-07-30 | Aisin Seiki Co Ltd | 回転シャフト装置および燃料電池システム |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2603539A (en) * | 1948-05-11 | 1952-07-15 | Oswald C Brewster | High-speed rotor |
| JPH0239644B2 (ja) * | 1982-05-13 | 1990-09-06 | Toshiba Machine Co Ltd | Kukijikukesochi |
| JPS59146410A (ja) * | 1984-01-19 | 1984-08-22 | Matsushita Electric Ind Co Ltd | 音響機器 |
| EP0212091A1 (de) * | 1985-06-10 | 1987-03-04 | INTERATOM Gesellschaft mit beschränkter Haftung | Abgasturbolader mit gasstatischem Lager |
| JP3482029B2 (ja) | 1995-02-23 | 2003-12-22 | 三菱重工業株式会社 | 軸受ガス供給装置 |
| JP3733701B2 (ja) * | 1997-06-26 | 2006-01-11 | ダイキン工業株式会社 | ターボ機械 |
| JP3932502B2 (ja) * | 1999-03-03 | 2007-06-20 | 独立行政法人理化学研究所 | 触針式形状測定センサとこれを用いたnc加工装置および形状測定方法 |
| JP4427248B2 (ja) | 2002-12-17 | 2010-03-03 | 株式会社東芝 | 気体軸受装置 |
| JP2014126038A (ja) | 2012-12-27 | 2014-07-07 | Mitsubishi Heavy Ind Ltd | 圧縮ユニット |
| US9279446B2 (en) * | 2013-03-09 | 2016-03-08 | Waukesha Bearings Corporation | Bearing with axial variation |
| US9429191B2 (en) * | 2013-10-11 | 2016-08-30 | General Electric Company | Journal bearing assemblies and methods of assembling same |
| US9410572B2 (en) * | 2014-05-12 | 2016-08-09 | Lufkin Industries, Llc | Five-axial groove cylindrical journal bearing with pressure dams for bi-directional rotation |
| CN106015032B (zh) | 2016-06-28 | 2018-05-22 | 杭州万辰机电科技有限公司 | 离心压缩机 |
-
2016
- 2016-12-09 EP EP16923211.3A patent/EP3508733B1/en active Active
- 2016-12-09 WO PCT/JP2016/005098 patent/WO2018104987A1/ja not_active Ceased
- 2016-12-09 JP JP2017532181A patent/JP6200127B1/ja active Active
- 2016-12-09 US US15/578,489 patent/US10900491B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5736436B2 (ja) * | 1978-04-14 | 1982-08-04 | ||
| JPS6220604A (ja) * | 1985-07-19 | 1987-01-29 | Yaskawa Electric Mfg Co Ltd | 気体軸受の給気方法と装置 |
| JPS63199994A (ja) * | 1987-02-16 | 1988-08-18 | Mitsubishi Electric Corp | 強制給油装置 |
| JP2009168241A (ja) * | 2008-01-21 | 2009-07-30 | Aisin Seiki Co Ltd | 回転シャフト装置および燃料電池システム |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020077788A1 (zh) * | 2018-10-18 | 2020-04-23 | 珠海格力电器股份有限公司 | 压缩机用气体轴承的供气系统、操作方法及制冷系统 |
| WO2025177690A1 (ja) * | 2024-02-22 | 2025-08-28 | 三菱重工業株式会社 | コンプレッサ装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2018104987A1 (ja) | 2018-12-06 |
| US20180306193A1 (en) | 2018-10-25 |
| EP3508733A1 (en) | 2019-07-10 |
| JP6200127B1 (ja) | 2017-09-20 |
| EP3508733B1 (en) | 2020-08-12 |
| EP3508733A4 (en) | 2019-08-28 |
| US10900491B2 (en) | 2021-01-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6200127B1 (ja) | ガス軸受を備えた圧縮機システム、およびガス軸受を備えた圧縮機にガスを供給する方法 | |
| CN106015032B (zh) | 离心压缩机 | |
| US9726196B2 (en) | System and cooling for rapid pressurization of a motor-bearing cooling loop for a hermetically sealed motor/compressor system | |
| US11542950B2 (en) | Vacuum pump | |
| JP6334549B2 (ja) | スラストの釣合いを取る圧縮機およびその方法 | |
| CN101571055B (zh) | 气体涡轮发电设备的运转方法 | |
| JP5056432B2 (ja) | 回転シャフト装置および燃料電池システム | |
| CN111183271B (zh) | 膨胀涡轮 | |
| US20210324862A1 (en) | Centrifugal pump for conveying a fluid | |
| KR20060127789A (ko) | 진공 배기 시스템 | |
| JP5906954B2 (ja) | 電動圧縮装置及び燃料電池用空気供給装置 | |
| JP2008215107A (ja) | 圧縮機 | |
| JP7057225B2 (ja) | ポンプ装置の羽根車隙間調整方法 | |
| GB2597563A (en) | Regenerative pump start and actuation stage for high-speed centrifugal fuel pump | |
| CN105392996A (zh) | 螺杆压缩机 | |
| KR20190095654A (ko) | 공기압축기 및 그 제어 방법 | |
| US4709785A (en) | Retrofit friction-hydrostatic emergency lubrication system for a large rotating shaft | |
| JP2007127006A (ja) | 2軸式ガスタービン,2軸式ガスタービンの運用方法,2軸式ガスタービンの制御方法、及び2軸式ガスタービンの軸受冷却方法。 | |
| JP5679896B2 (ja) | 給水式圧縮機 | |
| EP3578821B1 (en) | Rotary displacement compressor | |
| EP3803054B1 (en) | Axial load management system | |
| JPH06272698A (ja) | 遠心圧縮機の軸方向隙間制御法 | |
| JP2953212B2 (ja) | 制動ファン付膨張タービン | |
| WO2020127977A1 (en) | Subsea pump system with process lubricated bearings | |
| JP2005069013A (ja) | ガス供給装置及びその制御方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| ENP | Entry into the national phase |
Ref document number: 2017532181 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15578489 Country of ref document: US |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16923211 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2016923211 Country of ref document: EP Effective date: 20190405 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |