WO2018105353A1 - Method for producing nanoimprint mold - Google Patents
Method for producing nanoimprint mold Download PDFInfo
- Publication number
- WO2018105353A1 WO2018105353A1 PCT/JP2017/041323 JP2017041323W WO2018105353A1 WO 2018105353 A1 WO2018105353 A1 WO 2018105353A1 JP 2017041323 W JP2017041323 W JP 2017041323W WO 2018105353 A1 WO2018105353 A1 WO 2018105353A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- meth
- acrylate
- mold
- pattern
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 238000000576 coating method Methods 0.000 claims abstract description 77
- 239000011248 coating agent Substances 0.000 claims abstract description 76
- 239000000463 material Substances 0.000 claims abstract description 71
- 239000000203 mixture Substances 0.000 claims abstract description 49
- 239000000178 monomer Substances 0.000 claims abstract description 44
- 239000012298 atmosphere Substances 0.000 claims abstract description 22
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 17
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 15
- 239000003999 initiator Substances 0.000 claims abstract description 13
- -1 acryl group Chemical group 0.000 description 134
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 116
- 239000000758 substrate Substances 0.000 description 49
- 238000000034 method Methods 0.000 description 43
- 125000004432 carbon atom Chemical group C* 0.000 description 31
- 229910052731 fluorine Inorganic materials 0.000 description 21
- 239000011737 fluorine Substances 0.000 description 20
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 19
- 125000000217 alkyl group Chemical group 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 15
- 229910052594 sapphire Inorganic materials 0.000 description 15
- 239000010980 sapphire Substances 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 125000003545 alkoxy group Chemical group 0.000 description 14
- 125000000753 cycloalkyl group Chemical group 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 10
- 229910052726 zirconium Inorganic materials 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 150000004703 alkoxides Chemical class 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920002799 BoPET Polymers 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 125000001033 ether group Chemical group 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 238000009832 plasma treatment Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052719 titanium Chemical group 0.000 description 5
- 239000010936 titanium Chemical group 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 208000028659 discharge Diseases 0.000 description 4
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 230000007261 regionalization Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 125000002993 cycloalkylene group Chemical group 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 238000000016 photochemical curing Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 2
- BVQVLAIMHVDZEL-UHFFFAOYSA-N 1-phenyl-1,2-propanedione Chemical group CC(=O)C(=O)C1=CC=CC=C1 BVQVLAIMHVDZEL-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- 150000008062 acetophenones Chemical class 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 2
- BVQYIDJXNYHKRK-UHFFFAOYSA-N trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F BVQYIDJXNYHKRK-UHFFFAOYSA-N 0.000 description 2
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- JLLAWIKMLAQZCZ-UHFFFAOYSA-N (2,6-dichlorophenyl)-diphenylphosphorylmethanone Chemical compound ClC1=CC=CC(Cl)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 JLLAWIKMLAQZCZ-UHFFFAOYSA-N 0.000 description 1
- SUEDCWGEKSLKOM-UHFFFAOYSA-N (2,6-dimethoxyphenyl)-diphenylphosphorylmethanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 SUEDCWGEKSLKOM-UHFFFAOYSA-N 0.000 description 1
- ZODNDDPVCIAZIQ-UHFFFAOYSA-N (2-hydroxy-3-prop-2-enoyloxypropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)COC(=O)C=C ZODNDDPVCIAZIQ-UHFFFAOYSA-N 0.000 description 1
- ZMZHRHTZJDBLEX-UHFFFAOYSA-N (2-phenylphenyl) prop-2-enoate Chemical class C=CC(=O)OC1=CC=CC=C1C1=CC=CC=C1 ZMZHRHTZJDBLEX-UHFFFAOYSA-N 0.000 description 1
- TWJXPIPIJFVHNI-UHFFFAOYSA-N 1,1,2,2,3,3,3-heptafluoropropyl-tris(1,1,2,2,2-pentafluoroethoxy)silane Chemical compound FC(F)(F)C(F)(F)O[Si](OC(F)(F)C(F)(F)F)(OC(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)F TWJXPIPIJFVHNI-UHFFFAOYSA-N 0.000 description 1
- YJSLDPPMMSGNOX-UHFFFAOYSA-N 1,1,2,2,3,3,3-heptafluoropropyl-tris(trifluoromethoxy)silane Chemical compound FC(F)(F)O[Si](OC(F)(F)F)(OC(F)(F)F)C(F)(F)C(F)(F)C(F)(F)F YJSLDPPMMSGNOX-UHFFFAOYSA-N 0.000 description 1
- FKMRHLPAQLOPPF-UHFFFAOYSA-N 1,2-diethoxythioxanthen-9-one Chemical compound C(C)OC1=C(C=2C(C3=CC=CC=C3SC2C=C1)=O)OCC FKMRHLPAQLOPPF-UHFFFAOYSA-N 0.000 description 1
- QWQFVUQPHUKAMY-UHFFFAOYSA-N 1,2-diphenyl-2-propoxyethanone Chemical compound C=1C=CC=CC=1C(OCCC)C(=O)C1=CC=CC=C1 QWQFVUQPHUKAMY-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- HUDYANRNMZDQGA-UHFFFAOYSA-N 1-[4-(dimethylamino)phenyl]ethanone Chemical compound CN(C)C1=CC=C(C(C)=O)C=C1 HUDYANRNMZDQGA-UHFFFAOYSA-N 0.000 description 1
- WWVBRUMYFUDEJQ-UHFFFAOYSA-N 1-ethoxyethane-1,2-diol Chemical compound CCOC(O)CO WWVBRUMYFUDEJQ-UHFFFAOYSA-N 0.000 description 1
- NVNRCMRKQVEOMZ-UHFFFAOYSA-N 1-ethoxypropane-1,2-diol Chemical compound CCOC(O)C(C)O NVNRCMRKQVEOMZ-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- CSCSROFYRUZJJH-UHFFFAOYSA-N 1-methoxyethane-1,2-diol Chemical compound COC(O)CO CSCSROFYRUZJJH-UHFFFAOYSA-N 0.000 description 1
- OEYNWAWWSZUGDU-UHFFFAOYSA-N 1-methoxypropane-1,2-diol Chemical compound COC(O)C(C)O OEYNWAWWSZUGDU-UHFFFAOYSA-N 0.000 description 1
- QZKVUSSYPPWURQ-UHFFFAOYSA-N 1-methylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C QZKVUSSYPPWURQ-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- NKVCQMYWYHDOOF-UHFFFAOYSA-N 1-phenoxyethane-1,2-diol Chemical compound OCC(O)OC1=CC=CC=C1 NKVCQMYWYHDOOF-UHFFFAOYSA-N 0.000 description 1
- OYNSBCYAXHZQAD-UHFFFAOYSA-N 1-phenoxypropane-1,1,2-triol Chemical compound CC(O)C(O)(O)OC1=CC=CC=C1 OYNSBCYAXHZQAD-UHFFFAOYSA-N 0.000 description 1
- AQZGYPVAZWNDHV-UHFFFAOYSA-N 1-phenoxypropane-1,2-diol Chemical compound CC(O)C(O)OC1=CC=CC=C1 AQZGYPVAZWNDHV-UHFFFAOYSA-N 0.000 description 1
- AZHFJNDCNVLWNM-UHFFFAOYSA-N 1-propoxyethane-1,2-diol Chemical compound CCCOC(O)CO AZHFJNDCNVLWNM-UHFFFAOYSA-N 0.000 description 1
- YNIYOQAQRXIXIH-UHFFFAOYSA-N 1-propoxypropane-1,2-diol Chemical compound CCCOC(O)C(C)O YNIYOQAQRXIXIH-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- 125000004825 2,2-dimethylpropylene group Chemical group [H]C([H])([H])C(C([H])([H])[H])(C([H])([H])[*:1])C([H])([H])[*:2] 0.000 description 1
- XCBBNTFYSLADTO-UHFFFAOYSA-N 2,3-Octanedione Chemical compound CCCCCC(=O)C(C)=O XCBBNTFYSLADTO-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- NEJPQCCFZJOTDD-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate;2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C.CCN(CC)CCOC(=O)C(C)=C NEJPQCCFZJOTDD-UHFFFAOYSA-N 0.000 description 1
- PUBNJSZGANKUGX-UHFFFAOYSA-N 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=C(C)C=C1 PUBNJSZGANKUGX-UHFFFAOYSA-N 0.000 description 1
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- OADIZUFHUPTFAG-UHFFFAOYSA-N 2-[2-(2-ethylhexoxy)ethoxy]ethanol Chemical compound CCCCC(CC)COCCOCCO OADIZUFHUPTFAG-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- GVNHOISKXMSMPX-UHFFFAOYSA-N 2-[butyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCN(CCO)CCO GVNHOISKXMSMPX-UHFFFAOYSA-N 0.000 description 1
- JUVSRZCUMWZBFK-UHFFFAOYSA-N 2-[n-(2-hydroxyethyl)-4-methylanilino]ethanol Chemical compound CC1=CC=C(N(CCO)CCO)C=C1 JUVSRZCUMWZBFK-UHFFFAOYSA-N 0.000 description 1
- OJPDDQSCZGTACX-UHFFFAOYSA-N 2-[n-(2-hydroxyethyl)anilino]ethanol Chemical compound OCCN(CCO)C1=CC=CC=C1 OJPDDQSCZGTACX-UHFFFAOYSA-N 0.000 description 1
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- PCKZAVNWRLEHIP-UHFFFAOYSA-N 2-hydroxy-1-[4-[[4-(2-hydroxy-2-methylpropanoyl)phenyl]methyl]phenyl]-2-methylpropan-1-one Chemical compound C1=CC(C(=O)C(C)(O)C)=CC=C1CC1=CC=C(C(=O)C(C)(C)O)C=C1 PCKZAVNWRLEHIP-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- 125000004819 2-methylbutylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])[*:1])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- SDQROPCSKIYYAV-UHFFFAOYSA-N 2-methyloctane-1,8-diol Chemical compound OCC(C)CCCCCCO SDQROPCSKIYYAV-UHFFFAOYSA-N 0.000 description 1
- 125000004838 2-methylpentylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])[*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- ILPBINAXDRFYPL-UHFFFAOYSA-N 2-octene Chemical group CCCCCC=CC ILPBINAXDRFYPL-UHFFFAOYSA-N 0.000 description 1
- MWDGNKGKLOBESZ-UHFFFAOYSA-N 2-oxooctanal Chemical compound CCCCCCC(=O)C=O MWDGNKGKLOBESZ-UHFFFAOYSA-N 0.000 description 1
- HJIMAFKWSKZMBK-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F HJIMAFKWSKZMBK-UHFFFAOYSA-N 0.000 description 1
- CHHCCYVOJBBCIY-UHFFFAOYSA-N 3-chloro-n,n-dimethylaniline Chemical compound CN(C)C1=CC=CC(Cl)=C1 CHHCCYVOJBBCIY-UHFFFAOYSA-N 0.000 description 1
- 125000004820 3-methylbutylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])[*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- 125000004839 3-methylpentylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])C([H])([H])[*:1])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 1
- YDIYEOMDOWUDTJ-UHFFFAOYSA-N 4-(dimethylamino)benzoic acid Chemical compound CN(C)C1=CC=C(C(O)=O)C=C1 YDIYEOMDOWUDTJ-UHFFFAOYSA-N 0.000 description 1
- XYZWMVYYUIMRIZ-UHFFFAOYSA-N 4-bromo-n,n-dimethylaniline Chemical compound CN(C)C1=CC=C(Br)C=C1 XYZWMVYYUIMRIZ-UHFFFAOYSA-N 0.000 description 1
- 125000004840 4-methylpentylene group Chemical group [H]C([H])([H])C([H])(C([H])([H])[*:2])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- JXYDGSLNLKHVSD-UHFFFAOYSA-N C(CCCCCC)[Zr](CCCCCCC)(CCCCCCC)CCCCCCC Chemical compound C(CCCCCC)[Zr](CCCCCCC)(CCCCCCC)CCCCCCC JXYDGSLNLKHVSD-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DMWINQMHHCNMBM-UHFFFAOYSA-N ClC1=C(C(=O)P(C2=CC=CC3=CC=CC=C23)(C(C2=C(C=CC=C2Cl)Cl)=O)=O)C(=CC=C1)Cl.ClC1=C(C(=O)P(C2=CC=C(C=C2)CCC)(C(C2=C(C=CC=C2Cl)Cl)=O)=O)C(=CC=C1)Cl Chemical compound ClC1=C(C(=O)P(C2=CC=CC3=CC=CC=C23)(C(C2=C(C=CC=C2Cl)Cl)=O)=O)C(=CC=C1)Cl.ClC1=C(C(=O)P(C2=CC=C(C=C2)CCC)(C(C2=C(C=CC=C2Cl)Cl)=O)=O)C(=CC=C1)Cl DMWINQMHHCNMBM-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- ZGFPUTOTEJOSAY-UHFFFAOYSA-N FC1=C([Ti])C(F)=CC=C1N1C=CC=C1 Chemical compound FC1=C([Ti])C(F)=CC=C1N1C=CC=C1 ZGFPUTOTEJOSAY-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- AKNUHUCEWALCOI-UHFFFAOYSA-N N-ethyldiethanolamine Chemical compound OCCN(CC)CCO AKNUHUCEWALCOI-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- PRRGXULZOZTZDK-UHFFFAOYSA-N [(2,6-dichlorobenzoyl)-(2,5-dimethylphenyl)phosphoryl]-(2,6-dichlorophenyl)methanone Chemical compound CC1=CC=C(C)C(P(=O)(C(=O)C=2C(=CC=CC=2Cl)Cl)C(=O)C=2C(=CC=CC=2Cl)Cl)=C1 PRRGXULZOZTZDK-UHFFFAOYSA-N 0.000 description 1
- DNRISHWSPBDRTH-UHFFFAOYSA-N [(2,6-dichlorobenzoyl)-phenylphosphoryl]-(2,6-dichlorophenyl)methanone Chemical compound ClC1=CC=CC(Cl)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(Cl)C=CC=C1Cl DNRISHWSPBDRTH-UHFFFAOYSA-N 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- ZTCAGYRXUCWHPV-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,5-dimethylphenyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C=1C(=CC=C(C)C=1)C)C(=O)C1=C(OC)C=CC=C1OC ZTCAGYRXUCWHPV-UHFFFAOYSA-N 0.000 description 1
- QISAYNXDUCNISJ-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-phenylphosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(OC)C=CC=C1OC QISAYNXDUCNISJ-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- OQHMGFSAURFQAF-UHFFFAOYSA-N [2-hydroxy-3-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)COC(=O)C(C)=C OQHMGFSAURFQAF-UHFFFAOYSA-N 0.000 description 1
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 description 1
- AFPRJLBZLPBTPZ-UHFFFAOYSA-N acenaphthoquinone Chemical compound C1=CC(C(C2=O)=O)=C3C2=CC=CC3=C1 AFPRJLBZLPBTPZ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical class C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 125000006226 butoxyethyl group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000004978 cyclooctylene group Chemical group 0.000 description 1
- KOMDZQSPRDYARS-UHFFFAOYSA-N cyclopenta-1,3-diene titanium Chemical class [Ti].C1C=CC=C1.C1C=CC=C1 KOMDZQSPRDYARS-UHFFFAOYSA-N 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- IEYIKBYTBUOHHW-UHFFFAOYSA-N decane-1,10-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCCCCCCCCCO IEYIKBYTBUOHHW-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- VJYNTADJZPKUAF-UHFFFAOYSA-N diethoxy-methyl-(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](C)(OCC)CCC(F)(F)F VJYNTADJZPKUAF-UHFFFAOYSA-N 0.000 description 1
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical compound CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 1
- DIJRHOZMLZRNLM-UHFFFAOYSA-N dimethoxy-methyl-(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](C)(OC)CCC(F)(F)F DIJRHOZMLZRNLM-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- HZWAUDKTZOUQPD-UHFFFAOYSA-N diphenylphosphoryl-(2-methylphenyl)methanone Chemical compound CC1=CC=CC=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 HZWAUDKTZOUQPD-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- MIMSAEYHGMJGAH-UHFFFAOYSA-N ethoxy-dimethyl-(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](C)(C)CCC(F)(F)F MIMSAEYHGMJGAH-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920000587 hyperbranched polymer Polymers 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- QRLCLBZGWYJTHP-UHFFFAOYSA-N methoxy-dimethyl-(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](C)(C)CCC(F)(F)F QRLCLBZGWYJTHP-UHFFFAOYSA-N 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000006178 methyl benzyl group Chemical group 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- YLHXLHGIAMFFBU-UHFFFAOYSA-N methyl phenylglyoxalate Chemical compound COC(=O)C(=O)C1=CC=CC=C1 YLHXLHGIAMFFBU-UHFFFAOYSA-N 0.000 description 1
- NBFRQCOZERNGEX-UHFFFAOYSA-N n,n,3,5-tetramethylaniline Chemical group CN(C)C1=CC(C)=CC(C)=C1 NBFRQCOZERNGEX-UHFFFAOYSA-N 0.000 description 1
- CWOMTHDOJCARBY-UHFFFAOYSA-N n,n,3-trimethylaniline Chemical compound CN(C)C1=CC=CC(C)=C1 CWOMTHDOJCARBY-UHFFFAOYSA-N 0.000 description 1
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 1
- ISGXOWLMGOPVPB-UHFFFAOYSA-N n,n-dibenzylaniline Chemical compound C=1C=CC=CC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 ISGXOWLMGOPVPB-UHFFFAOYSA-N 0.000 description 1
- FZPXKEPZZOEPGX-UHFFFAOYSA-N n,n-dibutylaniline Chemical compound CCCCN(CCCC)C1=CC=CC=C1 FZPXKEPZZOEPGX-UHFFFAOYSA-N 0.000 description 1
- HKJNHYJTVPWVGV-UHFFFAOYSA-N n,n-diethyl-4-methylaniline Chemical compound CCN(CC)C1=CC=C(C)C=C1 HKJNHYJTVPWVGV-UHFFFAOYSA-N 0.000 description 1
- AJUXDFHPVZQOGF-UHFFFAOYSA-N n,n-dimethyl-1-naphthylamine Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1 AJUXDFHPVZQOGF-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- QMHNQZGXPNCMCO-UHFFFAOYSA-N n,n-dimethylhexan-1-amine Chemical compound CCCCCCN(C)C QMHNQZGXPNCMCO-UHFFFAOYSA-N 0.000 description 1
- IKZPRXHVTFNIEK-UHFFFAOYSA-N n,n-dimethylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C)C)=CC=C21 IKZPRXHVTFNIEK-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001127 nanoimprint lithography Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- LXTZRIBXKVRLOA-UHFFFAOYSA-N padimate a Chemical compound CCCCCOC(=O)C1=CC=C(N(C)C)C=C1 LXTZRIBXKVRLOA-UHFFFAOYSA-N 0.000 description 1
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 1
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 1
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- ZLGWXNBXAXOQBG-UHFFFAOYSA-N triethoxy(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)F ZLGWXNBXAXOQBG-UHFFFAOYSA-N 0.000 description 1
- NYIKUOULKCEZDO-UHFFFAOYSA-N triethoxy(3,3,4,4,5,5,6,6,6-nonafluorohexyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)F NYIKUOULKCEZDO-UHFFFAOYSA-N 0.000 description 1
- AVYKQOAMZCAHRG-UHFFFAOYSA-N triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F AVYKQOAMZCAHRG-UHFFFAOYSA-N 0.000 description 1
- MLXDKRSDUJLNAB-UHFFFAOYSA-N triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F MLXDKRSDUJLNAB-UHFFFAOYSA-N 0.000 description 1
- XQDKPCKQUIWESK-UHFFFAOYSA-N triethoxy-[5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluoro-2-(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)decyl]silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(C[Si](OCC)(OCC)OCC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F XQDKPCKQUIWESK-UHFFFAOYSA-N 0.000 description 1
- IJROHELDTBDTPH-UHFFFAOYSA-N trimethoxy(3,3,4,4,5,5,6,6,6-nonafluorohexyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)F IJROHELDTBDTPH-UHFFFAOYSA-N 0.000 description 1
- KGDRVNVVENRUAE-UHFFFAOYSA-N trimethoxy-[3-(1,2,2,3,3,4,4,5,5,6,6-undecafluorocyclohexyl)oxypropyl]silane Chemical compound CO[Si](OC)(OC)CCCOC1(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F KGDRVNVVENRUAE-UHFFFAOYSA-N 0.000 description 1
- RDYMVWVBSWCBKT-UHFFFAOYSA-N trimethoxy-[5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluoro-2-(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)decyl]silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(C[Si](OC)(OC)OC)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RDYMVWVBSWCBKT-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/40—Plastics, e.g. foam or rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
Definitions
- the present invention relates to a method for manufacturing a replica mold for nanoimprint lithography.
- the imprint technique is a method in which a pattern having a pattern corresponding to a pattern to be formed on a substrate is embossed onto a coating film formed on the substrate surface to thereby apply a pattern formed on the substrate surface.
- This is a technique for transferring to a film.
- a nano-order fine pattern can be formed on the coating film.
- imprint techniques a technique for forming ultrafine patterns of several hundreds to several nanometers (nm) is called a nanoimprint technique.
- the method is roughly classified into two types according to the characteristics of the material of the coating film (hereinafter referred to as “coating material”) formed on the substrate surface.
- coating material a material of the coating film formed on the substrate surface.
- One of them is a method of transferring the pattern to the coating film by heating and plastically deforming the coating film material to which the pattern is transferred, pressing the mold, cooling, and curing the coating film material. is there.
- Another one uses a mold or a substrate in which at least one of the substrates is light transmissive and forms a coating film by applying a coating material made of a liquid photocurable composition on the substrate.
- the pattern is transferred to the coating film by pressing the mold into contact with the coating film and then irradiating light through the mold or the substrate to cure the coating material.
- the photoimprint method of transferring a pattern by light irradiation is capable of forming a highly accurate pattern, and thus is widely used in nanoimprint technology, and is suitably used as a coating material in the method. Development of photocurable compositions is underway.
- adhesion between a substrate surface and a pattern obtained by curing a coating material, and releasability between the pattern and a mold (hereinafter referred to as “from a mold”). "Releasability" is important.
- the surface of the mold is treated with a fluorine treatment agent to provide mold release, and pentafluoropropane gas or the like is applied to the interface between the photocurable composition and the mold.
- a technique for imprinting with a fluorine-based gas is generally known.
- improvement of the adhesion to the substrate has been attempted by surface treatment of the substrate and the composition of the photocurable composition.
- a mold used in the nanoimprint technology is usually produced by forming a target pattern by electron beam lithography or optical lithography and used as a master mold. Quartz, silicon, sapphire, etc. are used as the material, and the master mold requires time for production and the production equipment is expensive, so one piece is very expensive. There is a problem such as contamination due to or damage. Generally, a resin replica mold is produced from a master mold, and imprinting is performed using the replica mold. In particular, the larger the area, the more serious the above-mentioned problem for the master mold.
- the replica mold is required to have a high-precision pattern forming ability and a releasability from the formed pattern.
- durability against repeated use hereinafter simply referred to as “repetitive durability”).
- a replica mold is often a laminate composed of a substrate layer such as a resin film and a concavo-convex pattern layer made of a coating material formed on the surface thereof, and the adhesion between the concavo-convex pattern layer and the substrate layer Furthermore, from the viewpoint of the cost of the replica mold, further improvement in the productivity of the replica mold is desired.
- replica mold in the present invention is exactly the same as a replica mold having a pattern forming surface of a concavo-convex pattern complementary to the concavo-convex pattern formed on the pattern forming surface of the master mold, and the master mold. It includes both replica molds having a pattern forming surface of a concavo-convex pattern.
- the adhesion between the concavo-convex pattern layer and the base material layer, and the peelability between the concavo-convex pattern layer formed from the coating material and the mold having the concavo-convex pattern for replica mold manufacture is also called “releasability from the mold”) by curing the substrate surface and the coating material in the nanoimprint technology. Similar to the relationship between the adhesiveness to the pattern to be formed and the releasability between the pattern and the mold, these are contradictory characteristics.
- the object of the present invention is to reduce the film thickness of the coating material on which the uneven pattern on the replica mold is formed and to change the pattern while maintaining the releasability between the replica mold and the coating material of the substrate. It is an object of the present invention to provide a replica mold manufacturing method capable of suppressing the decrease of the above.
- the present inventor has intensively studied to solve the above problems.
- mold release process a process to improve the mold release property of the replica mold
- the pattern surface on the replica mold transferred from the master mold is in the presence of H 2 O.
- the silane coupling agent and release the mold react with the silane coupling agent and release the mold, thereby suppressing the decrease in film thickness and pattern change of the coating material on which the uneven pattern on the replica mold is formed
- the present inventors have found that the releasability between the replica mold and the coating material of the base material can be obtained satisfactorily, and have completed the present invention.
- the present invention comprises a laminate comprising a base material layer and a pattern layer, using a photocurable composition containing a polymerizable monomer, a silicon compound and a photopolymerization initiator as a coating material.
- a method of manufacturing a replica mold for nanoimprinting wherein a laminate having a photocured film surface of a coating material formed by transferring a pattern with a mold is formed directly or indirectly on the base material layer.
- a method for producing a replica mold for nanoimprinting characterized in that after being subjected to a plasma atmosphere in the presence of 2 O, a release treatment is performed by reacting with a silane coupling agent.
- the atmospheric pressure in the plasma atmosphere is preferably 0.1 Pa to 100 Pa, and the partial pressure ratio of H 2 O in the plasma atmosphere is 0.001. It is preferable that it is above 0.03.
- the pattern of the nanoimprint replica mold preferably has a diameter of 10 nm to 5 ⁇ m and a height of 10 nm to 5 ⁇ m.
- the replica mold and the coating material on the substrate to be imprinted are suppressed while suppressing the decrease in the film thickness of the coating material on which the uneven pattern on the replica mold is formed and the change in the uneven pattern. It is possible to manufacture a nanoimprint replica mold having a high mold releasability.
- the manufacturing method of the present invention has not yet been clarified in detail about the factors that can suppress the decrease in the film thickness of the coating material on which the uneven pattern on the replica mold is formed and the change in the uneven pattern. Guesses as follows. That is, in order to improve the mold releasability between the replica mold and the coating material on the imprint substrate, the mold release treatment is necessary, but it is used to form an uneven pattern on the replica mold.
- the coating material is a photo-curable composition, and since ozone gas is generated by ⁇ ⁇ ⁇ V ozone treatment or vacuum ultraviolet light irradiation used in the mold release treatment, the coating material is etched by this ozone gas, As a result, it is presumed that the film thickness of the coating material has decreased and the uneven pattern has changed.
- the manufacturing method of the present invention since it is used in a plasma atmosphere in the presence of H 2 O, it is presumed that water molecules become OH ⁇ ions in the plasma atmosphere and the surface of the concavo-convex pattern is made hydrophilic. For this reason, since the ozone gas which etches a coating-film material is not generated, it is estimated that the reduction
- the present invention relates to a nanoimprint comprising a laminate comprising a base material layer and a pattern layer, using a photocurable composition containing a polymerizable monomer, a silicon compound and a photopolymerization initiator as a coating material.
- a method for producing a replica mold for nanoimprinting characterized in that after being subjected to a plasma atmosphere in the presence of O, a release treatment is performed by reacting with a silane coupling agent.
- the nanoimprint replica mold pattern manufactured by the method of the present invention has a diameter of 10 nm to 5 ⁇ m and a height of 10 nm to 5 ⁇ m from the viewpoint of being used for forming a semiconductor integrated circuit. Preferably there is.
- the production method of the present invention can also be applied to the production of a replica mold for nanoimprint having a pattern larger than that.
- the photocurable composition comprises a polymerizable monomer, a silicon compound, and a photopolymerization initiator.
- any known polymerizable monomer can be used without any limitation.
- the substrate layer and pattern such as high-precision pattern forming ability, mold releasability, repeated durability, resin film, etc. It is important to have excellent adhesion to the layer, and further to productivity. From the viewpoint of adhesion to the substrate layer such as a resin film and productivity, the photocurable monomer is preferable.
- polymerizable monomer having a (meth) acrylic group meaning a methacrylic group or an acrylic group
- polymerizable monomer having a (meth) acrylic group is a (meth) acrylic group-containing alkoxysilane represented by the general formula (3) which is a silicon compound described later and its hydrolysis. It shall not contain anything.
- the polymerizable monomer having a (meth) acryl group (hereinafter also simply referred to as “polymerizable monomer”) is not particularly limited, and is a known polymerizable used for photopolymerization.
- Monomers can be used.
- the polymerizable monomer include polymerizable monomers having a (meth) acryl group and containing no silicon atom in the molecule.
- These polymerizable monomers may be monofunctional polymerizable monomers having one (meth) acryl group in one molecule, or have two or more (meth) acryl groups in one molecule.
- a polyfunctional polymerizable monomer may be used.
- these monofunctional polymerizable monomers and polyfunctional polymerizable monomers can also be used in combination.
- a polymerizable monomer which has one (meth) acryl group in 1 molecule, methyl (meth) acrylate, ethyl (meth), for example Acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, isoamyl (meth) acrylate, Isomyristyl (meth) acrylate, n-lauryl (meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, long chain alkyl (meth) acrylate, n-butoxyethyl (meth) acrylate, butoxydi
- polyfunctional polymerizable monomer having two (meth) acryl groups in one molecule
- polymerizable monomer having three or more (meth) acrylate groups in one molecule, ethoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meta) ) Acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, Examples include ethoxylated pentaerythritol tetra (meth) acrylate and dipentaerythritol polyacrylate.
- polymerizable monomers may be used alone or in combination of a plurality of types.
- the photocurable composition used in the present invention contains a silicon compound in addition to the polymerizable monomer described above.
- silicon compounds it is more preferable to contain a silicon compound having a siloxane bond.
- the silicon compound having such a siloxane bond any known compound can be used, but alkoxysilanes or hydrolysates of alkoxysilanes can be used, and alkoxysilanes or alkoxysilanes can be used.
- the hydrolyzate of silanes for example, the following compounds can be used.
- alkoxysilanes or hydrolysates of alkoxysilanes As alkoxysilanes, in addition to a general alkoxysilane in which one or more alkoxy groups are bonded to a silicon atom, an aromatic ring such as a phenyl group, a naphthyl group, or a biphenyl group can be used as a group other than the alkoxy group.
- an alkoxysilane having a functional group such as an alkoxysilane, (meth) acryl group, epoxy group, thiol group, hydroxyl group, carboxyl group, phosphonium group or sulfonyl group, or an alkoxysilane having a halogen element such as fluorine or chlorine. It may be composed of a mixture thereof.
- the hydrolyzate of alkoxysilanes is a product of hydrolysis of a part or all of the alkoxy groups of the above alkoxysilanes, a polycondensate of alkoxysilane, and a hydrolysis of part or all of the alkoxy groups of the polycondensate. Meaning products and various mixtures thereof.
- the hydrolyzate of alkoxysilanes is preferable because the pattern transfer is easier as the dispersibility with the polymerizable monomer is better.
- the hydrolyzate of alkoxysilanes It is preferable to use a hydrolyzate of an alkoxysilane having a (meth) acryl group, and when the polymerizable monomer has an epoxy group, a hydrolyzate of an alkoxysilane containing an epoxy group is preferable. .
- alkoxysilanes that are alkoxysilanes, (meth) acryl group-containing alkoxysilanes, and alkoxysilanes having a halogen element will be described.
- general alkoxysilane or its hydrolyzate Among the alkoxysilanes, general alkoxysilanes include those represented by the general formula (1)
- An alkoxysilane represented by the formula (wherein R 1 is the same or different alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 10) can be preferably used.
- the resulting photocurable composition is advantageous for pattern transfer at a relatively lower pressure.
- R 1 which is an alkyl group having 1 to 4 carbon atoms includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, and a ter-butyl group. Of these, a methyl group and an ethyl group are preferable.
- alkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and polycondensates thereof.
- tetramethoxysilane, tetraethoxysilane, and polycondensates thereof are preferred because they are alcohols that can be easily removed after the formation of the coating film, and because of reactivity, in particular, the value of n or n Preferred is tetramethoxysilane having a mean value of 3 to 7 or a polycondensate of tetraethoxysilane.
- R 2 is a hydrogen atom or a methyl group
- R 3 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, or a polymethylene group having 3 to 10 carbon atoms
- R 4 is an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms
- R 5 is an alkyl group having 1 to 4 carbon atoms or 3 carbon atoms
- Alkoxysilane can be preferably used
- the hydrolyzate of the above (meth) acrylic group-containing alkoxysilane By using the hydrolyzate of the above (meth) acrylic group-containing alkoxysilane, a photocurable composition with good dispersibility can be obtained, purification by filtration is easy, and productivity is good, which is preferable.
- the photocurable composition contains a hydrolyzate of this (meth) acrylic group-containing alkoxysilane, the inorganic component and the organic component are relatively homogeneous in the fine structure of the photocured film obtained by photocuring. It is dispersed in a state (the dispersion state is not such that inorganic components are extremely aggregated). As a result, it is estimated that a uniform transfer pattern and a uniform residual film can be formed.
- R 2 is a hydrogen atom or a methyl group.
- a hydrogen atom is preferable because the photocuring speed when curing the photocurable composition is high.
- R 3 is an alkylene group having 1 to 10 carbon atoms or a cycloalkylene group having 3 to 10 carbon atoms.
- the alkylene group having 1 to 10 carbon atoms includes methylene group, ethylene group, propylene group, isopropylene group, cyclopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, cyclohexane Butylene group, cyclopropylmethylene group, 2,2-dimethylpropylene group, 2-methylbutylene group, 2-methyl-2-butylene group, 3-methylbutylene group, 3-methyl-2-butylene group, pentylene group, 2 -Pentylene group, 3-pentylene group, 2,3-dimethyl-2-butylene group, 3,3-dimethylbutylene group, 3,3-dimethyl-2-butylene group, 2-ethylbutylene group, hexylene group, 2- Hexylene group
- the alkylene group having 1 to 10 carbon atoms is preferably a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, a trimethylene group, or a tetramethylene group.
- the cycloalkylene group having 3 to 10 carbon atoms include a cyclopentylene group, a cyclohexylene group, and a cyclooctylene group.
- R 4 is an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
- the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group;
- Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclopropylmethyl group;
- examples of the aryl group having 6 to 12 carbon atoms include benzene derivatives such as a phenyl group and a benzyl group, a 1-naphthyl group, a 2-naphthyl group, and o- Naphthalene derivatives such as
- R 5 is an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 4 carbon atoms.
- the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group;
- Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclopropylmethyl group.
- R 5 is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group.
- L is an integer from 0 to 2
- m is an integer from 0 to 2
- k is an integer from 1 to 3
- l + m + k is 4.
- (meth) acrylic group-containing alkoxysilanes include trimethoxysilylmethylene (meth) acrylate, trimethoxysilyldimethylene (meth) acrylate, trimethoxysilyltrimethylene (meth) acrylate, triethoxy Silylmethylene (meth) acrylate, triethoxysilyldimethylene (meth) acrylate, triethoxysilyltrimethylene (meth) acrylate, tripropoxysilylmethylene (meth) acrylate, tripropoxysilylethylene (meth) acrylate, tripropoxysilyl trimethylene (Meth) acrylate, tributoxysilylmethylene (meth) acrylate, tributoxysilyldimethylene (meth) acrylate, tributoxysilyltrimethylene (meth) acryl , Triisopropoxysilylmethylene (meth) acrylate, triisopropoxysilyldimethylene
- alkoxysilane with halogen element As the alkoxysilane having a halogen element, the general formula (3)
- R 6 and R 8 are each an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms;
- R 7 is a fluorine-containing alkyl group, a fluorine-containing cycloalkyl group or a group containing A fluorine alkoxy ether group;
- a is an integer of 1 to 3
- the plurality of R 6 , R 7 and R 8 may be the same or different groups).
- R 6 and R 8 are an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group. Butyl group, sec-butyl group, isobutyl group, and ter-butyl group. Specifically, R 6 is more preferably a methyl group, an ethyl group, or a propyl group.
- R 7 is a fluorine-containing alkyl group, a fluorine-containing cycloalkyl group or a fluorine-containing alkoxy ether group.
- the fluorine-containing alkyl group means one obtained by substituting one or more hydrogen atoms of an alkyl group with a fluorine atom, and other fluorine-containing cycloalkyl groups or fluorine-containing alkoxy ether groups are also cycloalkyl groups.
- the fluorine-containing alkyl group and fluorine-containing alkoxy group preferably have 1 to 10 carbon atoms, and the fluorine-containing cycloalkyl group preferably has 3 to 10 carbon atoms. Further, the fluorine-containing alkoxy ether group in the present invention has the general formula (4)
- x is preferably 1 to 6
- y is preferably 5 to 50.
- fluorinated silane compounds include (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -triethoxysilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -Trimethoxysilane, nonafluorohexyltriethoxysilane, nonafluorohexyltrimethoxysilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl) -triethoxysilane, (tridecafluoro-1,1,2 , 2-tetrahydrooctyl) -trimethoxysilane, pentafluoro-1,1,2,2-tetrahydropentyltriethoxysilane, pentafluoro-1,1,2,2-tetrahydropentyltrimethoxysilane, (3,3, 3-trifluoropropyl) dimethylethoxysilane,
- Examples of the fluorinated silane compound having a fluorine-containing alkoxy ether group of the above general formula (4) include, for example, OPTOOL HD-1100TH manufactured by Daikin Industries, Ltd. Among these, the interaction between molecules is relatively weak and the molecular arrangement structure is disturbed, which is considered advantageous for surface releasability, and the ease of hydrolysis of the alkoxy group consisting of —OR 6 in the general formula (3). (Tridecafluoro-1,1,2,2-tetrahydrooctyl) -trimethoxysilane and (3,3,3-trifluoropropyl) trimethoxysilane are preferred.
- the silicon compound is represented by the general formula (2).
- Preferred is a hydrolyzed (meth) acrylic group-containing alkoxysilane, a general alkoxysilane represented by the general formula (1), and a (meth) acrylic group-containing general formula (2).
- What hydrolyzed the fluorinated silane compound of alkoxysilane and the alkoxysilane which has a halogen element represented by the said General formula (3) is more preferable, Furthermore, the mixture containing the metal alkoxide mentioned later other than these alkoxysilanes A product obtained by hydrolyzing is preferable.
- the preferable compounding quantity of the hydrolyzate of said alkoxysilane is, for example, when a photocurable composition contains the polymerizable monomer which has a (meth) acryl group as a polymerizable monomer.
- the hydrolyzate of the (meth) acrylic group-containing alkoxysilane obtained by hydrolyzing 3 to 300 parts by mass with respect to 100 parts by mass of the polymerizable monomer having a (meth) acrylic group Furthermore, in addition to the (meth) acryl group-containing alkoxysilane, in the case where the general alkoxysilane is included, it is preferable to blend a hydrolyzate obtained by hydrolyzing 10 mass parts to 250 mass parts of a general alkoxysilane, When the fluorinated silane compound is contained in addition to the previous composition, 0.001 to 4 parts by mass of the fluorinated silane compound, In addition to silanes, when a metal alkoxide described later is included, it is preferable to blend a hydrolyzate obtained by hydrolyzing 1 to 100 parts by weight of the metal alkoxide.
- the photocurable composition further includes a general formula (5) which is a metal alkoxide excluding alkoxylanes.
- M is zirconium or titanium; and R 9 is the same or different alkyl group having 1 to 10 carbon atoms).
- R 9 is more preferably an alkyl group having 2 to 4 carbon atoms from the viewpoint of an appropriate hydrolysis rate. Specifically, R 9 is preferably an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, or a ter-butyl group.
- suitable metal alkoxides include tetramethyltitanium alkoxide, tetraethyltitanium alkoxide, tetraisopropyltitanium alkoxide, tetrapropyltitanium alkoxide, tetraisobutyltitanium alkoxide, tetrabutyltitanium alkoxide, tetrasec-butyltitanium alkoxide, tetrater-butyltitanium.
- tetraethyl zirconium alkoxide tetraethyl zirconium alkoxide, tetraisopropyl zirconium alkoxide, tetrapropyl zirconium alkoxide, tetraisobutyl zirconium alkoxide, and tetrabutyl zirconium alkoxide are preferable.
- the photocurable composition used in the present invention is a hydrolyzate of alkoxysilanes, a hydrolyzate of zirconium alkoxide or titanium alkoxide, a polycondensate of zirconium alkoxide or titanium alkoxide, and an alkoxy group of the polycondensate.
- the photocurable composition may contain water, a hydrolysis catalyst, and the like.
- water, a hydrolysis catalyst, and the like used when preparing the photocurable composition are vacuum-dried in any step of the preparation, It may be removed by distillation, heating or the like. At that time, in the case where the solvent is removed at the same time, a necessary amount of the solvent may be appropriately added after removing water, the hydrolysis catalyst, and the like.
- Photopolymerization initiator Specific examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane-1- ON, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy- 2-methylpropionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-dimethylamino-2- (4 Acetophenone derivatives such as methylbenzyl) -1- (4-morph
- photopolymerization initiators are used alone or in admixture of two or more.
- ⁇ -diketone when used, it is preferably used in combination with a tertiary amine compound.
- Tertiary amine compounds that can be used in combination with ⁇ -diketone include N, N-dimethylaniline, N, N-diethylaniline, N, N-di-n-butylaniline, N, N-dibenzylaniline.
- acetophenone derivatives When used in nanoimprint technology, it is preferable to use acetophenone derivatives, acylphosphine oxide derivatives, o-acyloxime derivatives, and ⁇ -diketones.
- the amount of the photopolymerization initiator used is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
- a coating film is formed by applying a photocurable composition on a substrate according to a known method.
- the substrate is not particularly limited, and a plate, sheet, or film can be used.
- Specific examples include silicon wafers, quartz, glass, sapphire, various metal materials, ceramics such as alumina, aluminum nitride, silicon carbide, and silicon nitride, polyethylene terephthalate, polypropylene, polycarbonate, triacetyl cellulose, polystyrene, and cycloolefin resin.
- a sheet or film made of any known thermoplastic resin can be used.
- the photocured film which consists of a coating-film material used by this invention more on the base-material surface it can also surface-treat.
- the surface treatment include known methods such as flame treatment, corona discharge treatment in the atmosphere or nitrogen gas, atmospheric pressure plasma treatment, blast treatment, honing treatment, soot V ozone treatment, and the like.
- the coating material used in the present invention used in the present invention on the substrate
- there are known methods such as a spin coating method, a dipping method, a dispensing method, and an ink jet method.
- the thickness of the coating film is not particularly limited, and is usually 0.1 to 10 ⁇ m, and a coating film having a thickness of 0.01 to 0.1 ⁇ m can be suitably formed.
- a pattern can also be formed by incorporating processes appropriately.
- the pattern forming surface of the mold is brought into contact with the coating film.
- the coating material is applied to the pattern forming surface of the mold by the above-described coating method to form a coating film, and the coating film is brought into contact with the base material of the replica mold.
- the coating film formed on the pattern forming surface of the mold and having the pattern transferred may be integrated with the substrate.
- a mold having a pattern forming surface can be cured with a transparent material such as quartz or sapphire or thermoplastic so that the coated film material to which the pattern is transferred can be cured by light irradiation and a cured coating film can be formed. It is preferably formed of a resin. If the mold with the pattern forming surface is a material with poor transparency such as a silicon wafer, the replica mold material must be light transmissive, such as quartz, sapphire, or thermoplastic that has light transmissive properties. A resin is preferred.
- the photocurable composition used in the present invention can transfer a pattern at a relatively low pressure when pressing a mold.
- the pressure at this time is not particularly limited, but is in the range of 0.01 MPa to 3 MPa.
- the pattern can be transferred even at a pressure higher than the upper limit of the pressure.
- the coating film on which the pattern has been transferred is photocured.
- the pattern forming surface of the mold is kept in contact with the substrate layer including the coating film surface to which the pattern is transferred, or the mold
- a pattern is formed by applying a coating material on the pattern surface
- light is applied with the substrate in contact with the coating film on which the pattern on the pattern formation surface of the mold is transferred. Irradiate to cure the coating and to integrate the coating with the substrate.
- the light to be irradiated has a wavelength of 500 nm or less, and the light irradiation time is selected from the range of 0.1 to 300 seconds. Although it depends on the thickness of the coating film, it is usually 1 to 60 seconds.
- the atmosphere during photopolymerization can be polymerized even in the air, but in order to accelerate the photopolymerization reaction, photopolymerization in an atmosphere with little oxygen inhibition is preferred.
- a nitrogen gas atmosphere, an inert gas atmosphere, a fluorine gas atmosphere, a vacuum atmosphere, or the like is preferable.
- the surface of the laminate obtained by the above method is subjected to a mold release treatment.
- a mold release treatment agent such as a silane coupling agent containing fluorine.
- a pattern formation surface of a laminate that is a replica mold produced using a photocurable composition is subjected to a plasma atmosphere in the presence of H 2 O and then reacted with a silane coupling agent.
- a plasma atmosphere in the presence of H 2 O and then reacted with a silane coupling agent.
- OH ⁇ ions are generated from H 2 O in a plasma atmosphere to make the pattern formation surface hydrophilic.
- ozone gas for etching the coating material is not generated, it is presumed that a decrease in the thickness of the coating material and a change in the uneven pattern can be suppressed.
- H 2 O content is adjustable enclosed space.
- Plasma maintains the inert gas and reactive gas pressure in the chamber at a constant reduced pressure, and uses the impact ionization of electrons and gas molecules accelerated by the electric field generated by the DC voltage or high-frequency voltage applied between the electrodes. Generated.
- the plasma is composed of cations, electrons, and neutral atoms, and the plasma density increases as the voltage or pressure applied between the electrodes increases.
- the electron density of a film forming apparatus or an etching apparatus using plasma is about 10 16 to 10 20 m ⁇ 3 .
- the higher the plasma density the greater the damage to the coating material on the replica mold. From the viewpoint of the hydrophilic effect and the damage to the coating material, the applied voltage and pressure may be optimized.
- the atmospheric pressure in the plasma atmosphere is preferably performed under a pressure of 0.1 Pa to 100 Pa from the viewpoint of ease of plasma discharge.
- the atmosphere in which the plasma treatment is performed is preferably such that the partial pressure ratio of H 2 O is 0.01 or more in consideration of the abundance of hydroxyl groups, and the upper limit is 0.03 or less from the viewpoint of saturated water vapor pressure. Is preferred.
- liquid H 2 O can be added.
- Example 1 (Preparation of photocurable composition) 3.0 g of trimethoxysilyl trimethylene acrylate (KBS-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) as the (meth) acrylic group-containing alkoxysilane, and ethyl silicate 40 (tetraethoxysilane, manufactured by Colcoat Co., Ltd.) as a general alkoxysilane. While stirring, a mixture of 6.8 g of ethanol and 13.6 g of ethanol was gradually added with 3.6 g of ethanol / 1.6 g of water / 2 N-HCl 0.1 g of a 2N-HCl / ethanol mixed aqueous solution.
- KBS-5103 manufactured by Shin-Etsu Chemical Co., Ltd.
- ethyl silicate 40 tetraethoxysilane, manufactured by Colcoat Co., Ltd.
- the mixture is stirred at room temperature for 1 hour to obtain a mixture of a hydrolyzate of (meth) acryl group-containing alkoxysilane and a hydrolyzate of general alkoxysilane or a mixture of reaction products of a silicon compound. It was.
- polyethylene glycol diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-200
- ethoxylated bisphenol A diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A
- BPE-10 ethoxypolyethylene glycol acrylate
- NK ester AMP-10G ethoxypolyethylene glycol acrylate
- NK ester A-LEN-10 5.0 g
- tricyclodecane dimethanol diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-DCP
- polymerization inhibitor 0.0375 g of hydroquinone monomethyl ether and 0.005 g of butylhydroxytoluene were used.
- the above polymerizable monomer, photopolymerization initiator and polymerization inhibitor were mixed uniformly, and 2.0 g of the mixture was taken. 7.0 g of the silicon compound obtained above was added to 2.0 g of the mixture, and the mixture was stirred at room temperature for 15 minutes to obtain a photocurable composition.
- a 75 mm Ni mold having a pillar pattern with a height of 300 nm and a pitch of 300 nm and a PET film coated with the above-mentioned coating film are set in a nanoimprint apparatus (manufactured by SCIVAX, FLAN200), and vacuumed to 45 Pa.
- a Ni mold and a substrate made of a PET film coated with the above-mentioned coating film were brought into contact with each other, a pressure of 3.0 MPa was applied, and light was emitted from an LED 365 nm light source for 60 seconds to perform ⁇ V nanoimprinting. . Thereafter, the PET film was peeled from the Ni mold to produce a replica mold.
- the replica mold obtained above was set in a 108 A ⁇ toSp ⁇ terCoater made by Crestington, and in order to increase the H 2 O partial pressure ratio in the chamber, 0.1 ml of ultrapure water was dropped into the chamber in a chamber volume of 4000 ml. Thereafter, the chamber was sealed, the pressure was reduced to 10 Pa with a vacuum pump, and plasma treatment was performed for 120 seconds under the conditions of a discharge current value of 10 mA, a vacuum degree of 10 Pa, and a temperature of 25 ° C.
- a photocurable resist (SVX-01 manufactured by SCIVAX Co., Ltd.) was applied with a spin coater so as to have a thickness of 120 nm, and the sapphire substrate was manufactured by a nanoimprint apparatus (manufactured by SCIVAX Co., Ltd.). , FLAN200), the resist surface is set upward, vacuumed to 45 Pa, the contact between the replica mold and the sapphire substrate, a pressure of 3.0 MPa is applied, and light is emitted from an LED 365 nm light source for 60 seconds to perform V nanoimprint. It was.
- the PET film was peeled from the sapphire substrate, and pattern transfer was performed on the resist on the sapphire substrate.
- Evaluation of releasability when peeling the PET film from the sapphire substrate and measurement of the pattern height were performed.
- “ ⁇ ” indicates that the resist on the sapphire substrate is not peeled off
- “ ⁇ ” indicates that the resist is peeled in an area of 10% to 50% of the wafer area
- “ ⁇ ” indicates that the resist is peeled in an area of 50% or more.
- the above three-level evaluation was adopted.
- the pattern height was measured from the pattern cross section using a scanning electron microscope. In Table 1, when the pattern height was determined as “x”, the resist on the sapphire substrate was peeled off to the extent that the length could not be measured.
- Example 2 A replica mold was prepared in the same manner as in Example 1 except for the mold release process conditions (discharge current value, plasma processing time, presence of ultrapure water dripping in the chamber), and evaluation of mold release and pattern height were performed. Measurements were made. The results are shown in Table 1.
- Example 1 In the mold release treatment process of the replica mold, the plasma process was not performed and the film was immersed in the same silane coupling agent as in Example 1. The subsequent process was performed in the same manner as in Example 1 to produce a replica mold. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 1 shows the releasability and pattern height.
- the photocurable film side is irradiated with ultraviolet light at a distance of 3 mm from the lamp in a chamber equipped with a low-pressure mercury lamp without performing plasma processing. It was set and irradiated with ultraviolet light for 1 minute (Comparative Example 2), 2 minutes (Comparative Example 3), and 5 minutes (Comparative Example 4) in an atmospheric environment. Then, it was immediately immersed in the silane coupling agent similar to Example 1, and the subsequent process was performed similarly to Example 1, and the replica metal mold
- Example 2 shows the releasability and pattern height. Evaluation of releasability and pattern height were performed in the same manner as in Example 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
A method for producing a replica mold for nanoimprinting, which uses, as a coating film material, a photocurable composition that contains a polymerizable monomer, a silicon compound and a photopolymerization initiator, said replica mold being composed of a laminate that comprises a base material layer and a pattern layer. This method for producing a replica mold for nanoimprinting is characterized in that a laminate having a photocured film surface of the coating film material, which is directly or indirectly formed on the base material layer and has a pattern transferred by means of a mold, is subjected to a plasma atmosphere in the presence of H2O, and is subsequently reacted with a silane coupling agent for mold release.
Description
本発明は、ナノインプリントリソグラフィ用レプリカ金型の製造方法に関する。
The present invention relates to a method for manufacturing a replica mold for nanoimprint lithography.
近年、半導体集積回路は、より微細化され、高精度なものが要求されているが、このような微細な高精度の半導体集積回路の製造方法として、インプリント技術が広く適用されている。
In recent years, semiconductor integrated circuits are required to be miniaturized and have high precision, but imprint technology is widely applied as a method for manufacturing such fine high precision semiconductor integrated circuits.
インプリント技術とは、基板上に形成したいパターンに対応するパターンの凹凸を有する金型を、基板表面に形成された塗膜上に型押しすることにより、パターンを該基板表面に形成された塗膜に転写する技術であり、この技術を使用することによって、ナノオーダーの微細なパターンを塗膜に形成することができる。インプリント技術の中でも、特に、数百~数ナノメートル(nm)の超微細なパターンを形成する技術はナノインプリント技術と呼ばれている。
The imprint technique is a method in which a pattern having a pattern corresponding to a pattern to be formed on a substrate is embossed onto a coating film formed on the substrate surface to thereby apply a pattern formed on the substrate surface. This is a technique for transferring to a film. By using this technique, a nano-order fine pattern can be formed on the coating film. Among imprint techniques, a technique for forming ultrafine patterns of several hundreds to several nanometers (nm) is called a nanoimprint technique.
このインプリント技術について、その方法は、基板表面に形成する塗膜の材料(以下、「塗膜材」という)の特性により2種類に大別される。その1つは、パターンが転写される塗膜材を加熱して塑性変形させた後、金型を押し付け、冷却して、塗膜材を硬化させることによって、パターンを塗膜に転写する方法である。また、他の1つは、金型又は基板の少なくとも一方が光透過性であるものを使用し、基板上に液状の光硬化性組成物からなる塗膜材を塗布して塗膜を形成し、金型を押し付けて塗膜と接触させ、ついで、金型又は基板を介して光を照射して該塗膜材を硬化させることによって、パターンを塗膜に転写する方法である。これらの中でも、光照射によりパターンを転写する光インプリント法は、高精度のパターンを形成できるため、ナノインプリント技術において広く利用されるようになっており、該方法において塗膜材として好適に用いられる光硬化性組成物の開発が進められている。
Regarding this imprint technique, the method is roughly classified into two types according to the characteristics of the material of the coating film (hereinafter referred to as “coating material”) formed on the substrate surface. One of them is a method of transferring the pattern to the coating film by heating and plastically deforming the coating film material to which the pattern is transferred, pressing the mold, cooling, and curing the coating film material. is there. Another one uses a mold or a substrate in which at least one of the substrates is light transmissive and forms a coating film by applying a coating material made of a liquid photocurable composition on the substrate. The pattern is transferred to the coating film by pressing the mold into contact with the coating film and then irradiating light through the mold or the substrate to cure the coating material. Among these, the photoimprint method of transferring a pattern by light irradiation is capable of forming a highly accurate pattern, and thus is widely used in nanoimprint technology, and is suitably used as a coating material in the method. Development of photocurable compositions is underway.
ナノインプリント技術による、例えば、半導体集積回路の製造においては、基板表面と塗膜材を硬化させて得られるパターンとの密着性、及び該パターンと金型との剥離性(以下、「金型からの離型性」という)が重要になる。金型からの離型性については、金型表面にフッ素系処理剤で表面処理を施して離型性を付与する技術、光硬化性組成物と金型との界面にペンタフルオロプロパンガス等のフッ素系ガスを介在させてインプリントする技術が一般的に知られている。一方、基板との密着性は、基板の表面処理、光硬化性組成物の組成によって改善が試みられている。
For example, in the manufacture of a semiconductor integrated circuit by nanoimprint technology, adhesion between a substrate surface and a pattern obtained by curing a coating material, and releasability between the pattern and a mold (hereinafter referred to as “from a mold”). "Releasability" is important. For mold release from the mold, the surface of the mold is treated with a fluorine treatment agent to provide mold release, and pentafluoropropane gas or the like is applied to the interface between the photocurable composition and the mold. A technique for imprinting with a fluorine-based gas is generally known. On the other hand, improvement of the adhesion to the substrate has been attempted by surface treatment of the substrate and the composition of the photocurable composition.
ナノインプリント技術で用いられる金型は、通常、電子線リソグラフィ、光リソグラフィによって目的のパターンを形成することにより作製され、マスター金型として使用される。その材質としては、石英、シリコン、サファイア等が用いられ、該マスター金型は、作製に時間を要し、製造設備も高価なことから、1枚が非常に高価となる、また、塗膜材による汚染や、破損の恐れ等の問題がある。一般的に、マスター金型から樹脂製のレプリカ金型が作製され、レプリカ金型でインプリントが行われている。特に、大面積化になるほど、マスター金型についての上記の問題が深刻になる。
A mold used in the nanoimprint technology is usually produced by forming a target pattern by electron beam lithography or optical lithography and used as a master mold. Quartz, silicon, sapphire, etc. are used as the material, and the master mold requires time for production and the production equipment is expensive, so one piece is very expensive. There is a problem such as contamination due to or damage. Generally, a resin replica mold is produced from a master mold, and imprinting is performed using the replica mold. In particular, the larger the area, the more serious the above-mentioned problem for the master mold.
レプリカ金型についても、マスター金型と同様に、高精度のパターン形成能、形成されたパターンからの離型性が要求され、加えて、繰り返しの使用に対する耐久性(以下、単に「繰り返し耐久性」という)等が要求される。レプリカ金型は、樹脂フィルム等の基材層及びその表面に形成された塗膜材からなる凹凸パターン層から構成される積層体であることが多く、凹凸パターン層と基材層との密着性、さらには、レプリカ金型のコストの点から、レプリカ金型の生産性についても、より一層の改善が望まれている。
As with the master mold, the replica mold is required to have a high-precision pattern forming ability and a releasability from the formed pattern. In addition, durability against repeated use (hereinafter simply referred to as “repetitive durability”). ") Is required. A replica mold is often a laminate composed of a substrate layer such as a resin film and a concavo-convex pattern layer made of a coating material formed on the surface thereof, and the adhesion between the concavo-convex pattern layer and the substrate layer Furthermore, from the viewpoint of the cost of the replica mold, further improvement in the productivity of the replica mold is desired.
本発明における用語「レプリカ金型」とは、マスター金型のパターン形成面に形成された凹凸パターンと補形をなす凹凸パターンのパターン形成面を有するレプリカ金型、及びマスター金型と全く同一の凹凸パターンのパターン形成面を有するレプリカ金型の両方を含む。
The term “replica mold” in the present invention is exactly the same as a replica mold having a pattern forming surface of a concavo-convex pattern complementary to the concavo-convex pattern formed on the pattern forming surface of the master mold, and the master mold. It includes both replica molds having a pattern forming surface of a concavo-convex pattern.
レプリカ金型の製造において、凹凸パターン層と基材層との密着性、及び塗膜材から形成された凹凸パターン層と、レプリカ金型製造用の凹凸パターンを有する金型との剥離性(レプリカ金型の製造におけるパターンと金型との剥離性も、ナノインプリント技術の場合と同様に、「金型からの離型性」という)は、ナノインプリント技術における基板表面と塗膜材を硬化させて得られるパターンとの密着性、及び該パターンと金型との離型性の関係と同様に、相反する特性である。
In the manufacture of replica molds, the adhesion between the concavo-convex pattern layer and the base material layer, and the peelability between the concavo-convex pattern layer formed from the coating material and the mold having the concavo-convex pattern for replica mold manufacture (replicas) As with the nanoimprint technology, the releasability between the pattern and the mold in the mold production is also called “releasability from the mold”) by curing the substrate surface and the coating material in the nanoimprint technology. Similar to the relationship between the adhesiveness to the pattern to be formed and the releasability between the pattern and the mold, these are contradictory characteristics.
インプリント技術に関連して、生産性を高めるため、塗膜材自体に、これらの相反する特性を持たせるように、塗膜材に、フッ素系界面活性剤、シリコーン系化合物を添加することが提案されている(特許文献1参照)。また、レプリカ金型の製造に関連して、凹凸パターン層を形成する塗膜材として、(メタ)アクリレート及び光重合開始剤とともに、フッ素化されたハイパーブランチポリマーを含有させた光重合性組成物を使用したレプリカ金型が提案されている(特許文献2参照)。しかし、基材によっては、塗膜材の濡れ性が悪く、基材との密着性及び金型からの離型性の両立という点では、改善の余地があった。
In order to increase productivity in relation to imprint technology, it is possible to add a fluorosurfactant or silicone compound to the coating material so that the coating material itself has these contradictory characteristics. It has been proposed (see Patent Document 1). In addition, in connection with the production of replica molds, a photopolymerizable composition containing a fluorinated hyperbranched polymer together with (meth) acrylate and a photopolymerization initiator as a coating film material for forming an uneven pattern layer A replica mold using a metal is proposed (see Patent Document 2). However, depending on the base material, the wettability of the coating material is poor, and there is room for improvement in terms of both the adhesion to the base material and the releasability from the mold.
光硬化性組成物からなる塗膜材を塗布してなる光硬化性転写シートを用いた凹凸パターンの形成方法において、マスター金型から転写したパターン面にΜVオゾン処理を施すことで、転写層の表面の低分子量物質を分解除去して、生産性および離型性の向上を図ることが提案されている(特許文献3参照)。
In the method for forming a concavo-convex pattern using a photocurable transfer sheet obtained by applying a coating material made of a photocurable composition, the pattern surface transferred from the master mold is subjected to ΜV ozone treatment, so that the transfer layer It has been proposed to improve productivity and releasability by decomposing and removing low molecular weight substances on the surface (see Patent Document 3).
また、レプリカ金型のマスター金型から転写したパターン面に、波長183nm以下の真空紫外光を照射し、表面を親水化させ、シランカップリング剤と反応させて離型性の向上を図る方法も提案されている(特許文献4参照)。
There is also a method of improving the releasability by irradiating the pattern surface transferred from the master mold of the replica mold with vacuum ultraviolet light having a wavelength of 183 nm or less, hydrophilizing the surface, and reacting with the silane coupling agent. It has been proposed (see Patent Document 4).
しかしながら、本発明者らが、上記特許文献3に記載の方法にて、レプリカ金型を製造したところ、レプリカ金型上の凹凸パターンが形成された塗膜材の膜厚が大幅に減少し、さらに、塗膜材に形成された凹凸パターンの深さが減少することが判明した。さらに、該レプリカ金型を用いて、インプリント基板へのパターン形成を行ったところ、レプリカ金型と被インプリント基板上の塗膜材との離型性が十分ではなく、インプリント基板上の塗膜材が前記基板から剥がれる場合があることが判明した。
However, when the inventors manufactured a replica mold by the method described in Patent Document 3, the film thickness of the coating material on which the uneven pattern on the replica mold was formed was significantly reduced. Furthermore, it has been found that the depth of the uneven pattern formed on the coating material is reduced. Furthermore, when the pattern was formed on the imprint substrate using the replica mold, the releasability between the replica mold and the coating material on the imprint substrate was not sufficient, and the imprint substrate It has been found that the coating material may be peeled off from the substrate.
一方で、上記特許文献4に記載の方法にて、製造したレプリカ金型を用いて、インプリント基板へのパターン形成を行ったところ、レプリカ金型と基板上の塗膜材との離型性は良好であったが、レプリカ金型上の凹凸パターンが形成された塗膜材の膜厚の減少や、塗膜材に形成された凹凸パターン深さの減少が生じていることが判明した。
On the other hand, when the pattern was formed on the imprint substrate using the manufactured replica mold by the method described in Patent Document 4, the releasability between the replica mold and the coating material on the substrate was determined. It was found that the film thickness of the coating material on which the uneven pattern on the replica mold was formed and the depth of the uneven pattern formed on the coating material were reduced.
したがって、本発明の目的はレプリカ金型と基材の塗膜材との離型性を維持しながら、レプリカ金型上の凹凸パターンが形成された塗膜材の膜厚の減少や、パターン変化の減少を抑制することが可能なレプリカ金型の製造方法を提供することにある。
Therefore, the object of the present invention is to reduce the film thickness of the coating material on which the uneven pattern on the replica mold is formed and to change the pattern while maintaining the releasability between the replica mold and the coating material of the substrate. It is an object of the present invention to provide a replica mold manufacturing method capable of suppressing the decrease of the above.
本発明者は、上記課題を解決するため鋭意検討を行った。レプリカ金型の離型性を向上させるために行う処理(以下「離型処理」とも言う)について検討を行った結果、マスター金型から転写したレプリカ金型上のパターン面をH2O存在下でプラズマ照射した後、シランカップリング剤と反応させて離型処理することで、レプリカ金型上の凹凸パターンが形成された塗膜材の膜厚の減少や、パターン変化の減少を抑制することができ、レプリカ金型と基材の塗膜材との離型性が良好に得られることを見出し、本発明を完成するに至った。
The present inventor has intensively studied to solve the above problems. As a result of studying a process to improve the mold release property of the replica mold (hereinafter also referred to as “mold release process”), the pattern surface on the replica mold transferred from the master mold is in the presence of H 2 O. After irradiating with plasma, react with the silane coupling agent and release the mold, thereby suppressing the decrease in film thickness and pattern change of the coating material on which the uneven pattern on the replica mold is formed Thus, the present inventors have found that the releasability between the replica mold and the coating material of the base material can be obtained satisfactorily, and have completed the present invention.
すなわち本発明は、重合性単量体、珪素化合物および光重合開始剤を含有する光硬化性組成物を塗膜材として使用して、基材層とパターン層とを含んでなる積層体からなるナノインプリント用レプリカ金型を製造する方法であって、前記基材層上に直接又は間接的に形成した、金型にてパターンを転写した塗膜材の光硬化膜面を有する積層体を、H2O存在下でプラズマ雰囲気に供した後、シランカップリング剤と反応させて離型処理することを特徴とするナノインプリント用レプリカ金型の製造方法である。
That is, the present invention comprises a laminate comprising a base material layer and a pattern layer, using a photocurable composition containing a polymerizable monomer, a silicon compound and a photopolymerization initiator as a coating material. A method of manufacturing a replica mold for nanoimprinting, wherein a laminate having a photocured film surface of a coating material formed by transferring a pattern with a mold is formed directly or indirectly on the base material layer. A method for producing a replica mold for nanoimprinting, characterized in that after being subjected to a plasma atmosphere in the presence of 2 O, a release treatment is performed by reacting with a silane coupling agent.
上記本発明のナノインプリント用レプリカ金型の製造方法において、前記プラズマ雰囲気における雰囲気圧が0.1Pa以上100Pa以下であることが好ましく、さらに、前記プラズマ雰囲気中のH2Oの分圧比が0.001以上0.03以下であることが好ましい。また、前記ナノインプリント用レプリカ金型のパターンが、直径が10nm以上5μm以下、高さが10nm以上5μm以下であることが好ましい。
In the method for producing a replica mold for nanoimprinting of the present invention, the atmospheric pressure in the plasma atmosphere is preferably 0.1 Pa to 100 Pa, and the partial pressure ratio of H 2 O in the plasma atmosphere is 0.001. It is preferable that it is above 0.03. The pattern of the nanoimprint replica mold preferably has a diameter of 10 nm to 5 μm and a height of 10 nm to 5 μm.
本発明によれば、レプリカ金型上の凹凸パターンが形成された塗膜材の膜厚の減少や、凹凸パターンの変化を抑制しつつ、レプリカ金型と被インプリント基板上の塗膜材との離型性が高いナノインプリント用レプリカ金型を製造することが可能となる。
According to the present invention, the replica mold and the coating material on the substrate to be imprinted are suppressed while suppressing the decrease in the film thickness of the coating material on which the uneven pattern on the replica mold is formed and the change in the uneven pattern. It is possible to manufacture a nanoimprint replica mold having a high mold releasability.
本発明の製造方法によって、レプリカ金型上の凹凸パターンが形成された塗膜材の膜厚の減少や、凹凸パターンの変化を抑制できる要因について詳細には判明していないが、本発明者らは以下のとおり推測している。すなわち、レプリカ金型とインプリント基板上の塗膜材との離型性を向上させるためには、前記離型処理が必要であるが、レプリカ金型上に凹凸パターンを形成するために用いられている塗膜材は、光硬化性組成物であり、前記離型処理に用いられるΜVオゾン処理や真空紫外光照射によってオゾンガスが生成されるため、このオゾンガスによって、塗膜材がエッチングされ、その結果、塗膜材の膜厚の減少や、凹凸パターンの変化が生じたものと推測される。一方本発明の製造方法では、H2Oの存在下でプラズマ雰囲気下に供するため、水分子がプラズマ雰囲気下でOH-イオンとなり、凹凸パターン表面を親水化しているものと推測される。このため、塗膜材をエッチングするオゾンガスが発生しないため、塗膜材の膜厚の減少や、凹凸パターンの変化が抑制できるものと推測される。
Although the manufacturing method of the present invention has not yet been clarified in detail about the factors that can suppress the decrease in the film thickness of the coating material on which the uneven pattern on the replica mold is formed and the change in the uneven pattern. Guesses as follows. That is, in order to improve the mold releasability between the replica mold and the coating material on the imprint substrate, the mold release treatment is necessary, but it is used to form an uneven pattern on the replica mold. The coating material is a photo-curable composition, and since ozone gas is generated by オ ゾ ン V ozone treatment or vacuum ultraviolet light irradiation used in the mold release treatment, the coating material is etched by this ozone gas, As a result, it is presumed that the film thickness of the coating material has decreased and the uneven pattern has changed. On the other hand, in the manufacturing method of the present invention, since it is used in a plasma atmosphere in the presence of H 2 O, it is presumed that water molecules become OH − ions in the plasma atmosphere and the surface of the concavo-convex pattern is made hydrophilic. For this reason, since the ozone gas which etches a coating-film material is not generated, it is estimated that the reduction | decrease of the film thickness of a coating-film material and the change of an uneven | corrugated pattern can be suppressed.
本発明は、重合性単量体、珪素化合物および光重合開始剤を含有する光硬化性組成物を塗膜材として使用して、基材層とパターン層とを含んでなる積層体からなるナノインプリント用レプリカ金型を製造する方法であって、前記基材層上に直接又は間接的に形成した、金型にてパターンを転写した塗膜材の光硬化膜面を有する積層体を、H2O存在下でプラズマ雰囲気に供した後、シランカップリング剤と反応させて離型処理することを特徴とするナノインプリント用レプリカ金型の製造方法である。
The present invention relates to a nanoimprint comprising a laminate comprising a base material layer and a pattern layer, using a photocurable composition containing a polymerizable monomer, a silicon compound and a photopolymerization initiator as a coating material. a method of manufacturing a use replica mold, said directly or indirectly formed on the base layer, the laminate having a light cured film surface of the coating film material has been transferred pattern in the mold, H 2 A method for producing a replica mold for nanoimprinting, characterized in that after being subjected to a plasma atmosphere in the presence of O, a release treatment is performed by reacting with a silane coupling agent.
なお、本発明の方法にて製造されるナノインプリント用レプリカ金型のパターンとしては、半導体集積回路を形成するために用いられるとの観点から直径が10nm以上5μm以下、高さが10nm以上5μm以下であることが好ましい。勿論それ以上のパターンを有するナノインプリント用レプリカ金型の製造にも本発明の製造方法を適用することができる。
The nanoimprint replica mold pattern manufactured by the method of the present invention has a diameter of 10 nm to 5 μm and a height of 10 nm to 5 μm from the viewpoint of being used for forming a semiconductor integrated circuit. Preferably there is. Of course, the production method of the present invention can also be applied to the production of a replica mold for nanoimprint having a pattern larger than that.
以下、順を追って説明する。先ず、塗膜材として使用される光硬化性組成物について説明する。
Hereafter, I will explain in order. First, the photocurable composition used as a coating material will be described.
(光硬化性組成物)
光硬化性組成物は、重合性単量体、珪素化合物および光重合開始剤を含んでなるものである。本発明では、公知の重合性単量体を何ら制限されず用いることができるが、高精度のパターン形成能、金型からの離型性、繰り返し耐久性、樹脂フィルム等の基材層とパターン層との密着性、さらには、生産性に優れていることが重要であり、樹脂フィルム等の基材層との密着性や、生産性の観点から見ると、光硬化性の単量体が好ましい。また、高精度のパターン形成を低圧力で行う場合を勘案すると、一般的に、パターンを形成する光硬化性組成物の粘度が低い方が有利であることから、重合性単量体としては、好ましくは、(メタ)アクリル基(メタクリル基又はアクリル基を意味する)を有する重合性単量体を含有するものが使用される。なお、本発明において使用する用語「(メタ)アクリル基を有する重合性単量体」は、後述する珪素化合物である一般式(3)で示される(メタ)アクリル基含有アルコキシシラン及びその加水分解物を含まないものとする。 (Photocurable composition)
The photocurable composition comprises a polymerizable monomer, a silicon compound, and a photopolymerization initiator. In the present invention, any known polymerizable monomer can be used without any limitation. However, the substrate layer and pattern such as high-precision pattern forming ability, mold releasability, repeated durability, resin film, etc. It is important to have excellent adhesion to the layer, and further to productivity. From the viewpoint of adhesion to the substrate layer such as a resin film and productivity, the photocurable monomer is preferable. In addition, considering the case where high-precision pattern formation is performed at a low pressure, generally, the lower the viscosity of the photocurable composition that forms the pattern, the more advantageous, Preferably, those containing a polymerizable monomer having a (meth) acrylic group (meaning a methacrylic group or an acrylic group) are used. The term “polymerizable monomer having a (meth) acrylic group” used in the present invention is a (meth) acrylic group-containing alkoxysilane represented by the general formula (3) which is a silicon compound described later and its hydrolysis. It shall not contain anything.
光硬化性組成物は、重合性単量体、珪素化合物および光重合開始剤を含んでなるものである。本発明では、公知の重合性単量体を何ら制限されず用いることができるが、高精度のパターン形成能、金型からの離型性、繰り返し耐久性、樹脂フィルム等の基材層とパターン層との密着性、さらには、生産性に優れていることが重要であり、樹脂フィルム等の基材層との密着性や、生産性の観点から見ると、光硬化性の単量体が好ましい。また、高精度のパターン形成を低圧力で行う場合を勘案すると、一般的に、パターンを形成する光硬化性組成物の粘度が低い方が有利であることから、重合性単量体としては、好ましくは、(メタ)アクリル基(メタクリル基又はアクリル基を意味する)を有する重合性単量体を含有するものが使用される。なお、本発明において使用する用語「(メタ)アクリル基を有する重合性単量体」は、後述する珪素化合物である一般式(3)で示される(メタ)アクリル基含有アルコキシシラン及びその加水分解物を含まないものとする。 (Photocurable composition)
The photocurable composition comprises a polymerizable monomer, a silicon compound, and a photopolymerization initiator. In the present invention, any known polymerizable monomer can be used without any limitation. However, the substrate layer and pattern such as high-precision pattern forming ability, mold releasability, repeated durability, resin film, etc. It is important to have excellent adhesion to the layer, and further to productivity. From the viewpoint of adhesion to the substrate layer such as a resin film and productivity, the photocurable monomer is preferable. In addition, considering the case where high-precision pattern formation is performed at a low pressure, generally, the lower the viscosity of the photocurable composition that forms the pattern, the more advantageous, Preferably, those containing a polymerizable monomer having a (meth) acrylic group (meaning a methacrylic group or an acrylic group) are used. The term “polymerizable monomer having a (meth) acrylic group” used in the present invention is a (meth) acrylic group-containing alkoxysilane represented by the general formula (3) which is a silicon compound described later and its hydrolysis. It shall not contain anything.
以下、(メタ)アクリル基を有する重合性単量体について説明する。
Hereinafter, the polymerizable monomer having a (meth) acryl group will be described.
((メタ)アクリル基を有する重合性単量体(重合性単量体))
本発明において、(メタ)アクリル基を有する重合性単量体(以下、単に「重合性単量体」とも言う)は、特に制限されるものではなく、光重合に使用される公知の重合性単量体を使用することができる。この重合性単量体の例としては、(メタ)アクリル基を有し、分子中に珪素原子を含まない重合性単量体が挙げられる。これら重合性単量体は、1分子中に1つの(メタ)アクリル基を有する単官能重合性単量体であってもよいし、1分子中に2つ以上の(メタ)アクリル基を有する多官能重合性単量体であってもよい。さらには、これら単官能重合性単量体及び多官能重合性単量体を組み合わせて使用することもできる。 (Polymerizable monomer having (meth) acrylic group (polymerizable monomer))
In the present invention, the polymerizable monomer having a (meth) acryl group (hereinafter also simply referred to as “polymerizable monomer”) is not particularly limited, and is a known polymerizable used for photopolymerization. Monomers can be used. Examples of the polymerizable monomer include polymerizable monomers having a (meth) acryl group and containing no silicon atom in the molecule. These polymerizable monomers may be monofunctional polymerizable monomers having one (meth) acryl group in one molecule, or have two or more (meth) acryl groups in one molecule. A polyfunctional polymerizable monomer may be used. Furthermore, these monofunctional polymerizable monomers and polyfunctional polymerizable monomers can also be used in combination.
本発明において、(メタ)アクリル基を有する重合性単量体(以下、単に「重合性単量体」とも言う)は、特に制限されるものではなく、光重合に使用される公知の重合性単量体を使用することができる。この重合性単量体の例としては、(メタ)アクリル基を有し、分子中に珪素原子を含まない重合性単量体が挙げられる。これら重合性単量体は、1分子中に1つの(メタ)アクリル基を有する単官能重合性単量体であってもよいし、1分子中に2つ以上の(メタ)アクリル基を有する多官能重合性単量体であってもよい。さらには、これら単官能重合性単量体及び多官能重合性単量体を組み合わせて使用することもできる。 (Polymerizable monomer having (meth) acrylic group (polymerizable monomer))
In the present invention, the polymerizable monomer having a (meth) acryl group (hereinafter also simply referred to as “polymerizable monomer”) is not particularly limited, and is a known polymerizable used for photopolymerization. Monomers can be used. Examples of the polymerizable monomer include polymerizable monomers having a (meth) acryl group and containing no silicon atom in the molecule. These polymerizable monomers may be monofunctional polymerizable monomers having one (meth) acryl group in one molecule, or have two or more (meth) acryl groups in one molecule. A polyfunctional polymerizable monomer may be used. Furthermore, these monofunctional polymerizable monomers and polyfunctional polymerizable monomers can also be used in combination.
重合性単量体の例を具体的に例示すれば、1分子中に1つの(メタ)アクリル基を有する単官能重合性単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、長鎖アルキル(メタ)アクリレート、n-ブトキシエチル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート、グリシジル(メタ)アクリレート、メトキシエチレングリコール変性(メタ)アクリレート、エトキシエチレングリコール変性(メタ)アクリレート、プロポキシエチレングリコール変性(メタ)アクリレート、メトキシプロピレングリコール変性(メタ)アクリレート、エトキシプロピレングリコール変性(メタ)アクリレート、プロポキシプロピレングリコール変性(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンタン(メタ)アクリレート誘導体、アクリロイルモルホリン等の脂肪族アクリレート;ベンジル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエチレングリコール変性(メタ)アクリレート、フェノキシプロピレングリコール変性(メタ)アクリレート、ヒドロキシフェノキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ヒドロフェノキシキシエチレングリコール変性(メタ)アクリレート、ヒドロキシフェノキシプロピレングリコール変性(メタ)アクリレート、アルキルフェノールエチレングリコール変性(メタ)アクリレート、アルキルフェノールプロピレングリコール変性(メタ)アクリレート、分子内にο-フェニルフェノール基を有する単量体等の芳香環を有する(メタ)アクリレート等が挙げられる。
If the example of a polymerizable monomer is illustrated concretely, as a monofunctional polymerizable monomer which has one (meth) acryl group in 1 molecule, methyl (meth) acrylate, ethyl (meth), for example Acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, isoamyl (meth) acrylate, Isomyristyl (meth) acrylate, n-lauryl (meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, long chain alkyl (meth) acrylate, n-butoxyethyl (meth) acrylate, butoxydiethylene glycol ( Meta) Acu Rate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butoxyethyl (meth) acrylate, 2-ethylhexyl-diglycol (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Acrylate, dicyclopentanyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, hydroxyethyl (meth) acrylamide, 2- (2- Vinyloxyethoxy) ethyl (meth) acrylate, glycidyl (meth) acrylate, methoxyethylene glycol modified (meth) acrylate, ethoxyethylene glycol modified (meth) acrylic Propoxyethylene glycol modified (meth) acrylate, methoxypropylene glycol modified (meth) acrylate, ethoxypropylene glycol modified (meth) acrylate, propoxypropylene glycol modified (meth) acrylate, isobornyl (meth) acrylate, adamantane (meth) acrylate Derivatives, aliphatic acrylates such as acryloylmorpholine; benzyl (meth) acrylate, phenoxymethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethylene glycol modified (meth) acrylate, phenoxypropylene glycol modified (meth) acrylate, hydroxyphenoxy Ethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate , Hydrophenoxyethylene glycol modified (meth) acrylate, hydroxyphenoxypropylene glycol modified (meth) acrylate, alkylphenol ethylene glycol modified (meth) acrylate, alkylphenol propylene glycol modified (meth) acrylate, having ο-phenylphenol group in the molecule Examples thereof include (meth) acrylate having an aromatic ring such as a monomer.
1分子中に2つの(メタ)アクリル基を有する多官能重合性単量体(2官能重合性単量体)としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリオレフィングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、ジオキサングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、フルオレン構造を有するジ(メタ)アクリレート等の芳香環を有するジ(メタ)アクリレートが挙げられる。
As a polyfunctional polymerizable monomer (bifunctional polymerizable monomer) having two (meth) acryl groups in one molecule, for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Polyolefin glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, 2-hydroxy-1,3-dimethacryloxypropane, dioxane glycol di (meth) acrylate , Tricyclodecane dimethanol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, glycerin di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (Meth) acrylate 1,10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, Aliphatic di (meth) acrylates such as butylethylpropanediol di (meth) acrylate and 3-methyl-1,5-pentanediol di (meth) acrylate; ethoxylated bisphenol A di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate having an aromatic ring such as A di (meth) acrylate, ethoxylated bisphenol F di (meth) acrylate, and di (meth) acrylate having a fluorene structure.
さらに、該多官能重合性単量体において、1分子中に3つ以上の(メタ)アクリレート基を有する重合性単量体としては、エトキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリアクリレートが挙げられる。
Furthermore, in this polyfunctional polymerizable monomer, as the polymerizable monomer having three or more (meth) acrylate groups in one molecule, ethoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meta) ) Acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, Examples include ethoxylated pentaerythritol tetra (meth) acrylate and dipentaerythritol polyacrylate.
また、上記重合性単量体は、単独でも良いし、複数種類のものを組み合わせて使用しても良い。
In addition, the polymerizable monomers may be used alone or in combination of a plurality of types.
次に、珪素化合物について説明する。
Next, the silicon compound will be described.
(珪素化合物)
本発明で使用される光硬化性組成物では、上記した重合性単量体に加えて、珪素化合物を含有する。珪素化合物の中でも、シロキサン結合を有する珪素化合物を含有することがより好ましい。このようなシロキサン結合を有する珪素化合物としては、公知の如何なる化合物をも使用することが可能であるが、アルコキシシラン類又はアルコキシシラン類の加水分解物を使用することができ、アルコキシシラン類又はアルコキシシラン類の加水分解物としては、例えば、下記のような化合物を使用できる。 (Silicon compound)
The photocurable composition used in the present invention contains a silicon compound in addition to the polymerizable monomer described above. Among silicon compounds, it is more preferable to contain a silicon compound having a siloxane bond. As the silicon compound having such a siloxane bond, any known compound can be used, but alkoxysilanes or hydrolysates of alkoxysilanes can be used, and alkoxysilanes or alkoxysilanes can be used. As the hydrolyzate of silanes, for example, the following compounds can be used.
本発明で使用される光硬化性組成物では、上記した重合性単量体に加えて、珪素化合物を含有する。珪素化合物の中でも、シロキサン結合を有する珪素化合物を含有することがより好ましい。このようなシロキサン結合を有する珪素化合物としては、公知の如何なる化合物をも使用することが可能であるが、アルコキシシラン類又はアルコキシシラン類の加水分解物を使用することができ、アルコキシシラン類又はアルコキシシラン類の加水分解物としては、例えば、下記のような化合物を使用できる。 (Silicon compound)
The photocurable composition used in the present invention contains a silicon compound in addition to the polymerizable monomer described above. Among silicon compounds, it is more preferable to contain a silicon compound having a siloxane bond. As the silicon compound having such a siloxane bond, any known compound can be used, but alkoxysilanes or hydrolysates of alkoxysilanes can be used, and alkoxysilanes or alkoxysilanes can be used. As the hydrolyzate of silanes, for example, the following compounds can be used.
(アルコキシシラン類又はアルコキシシラン類の加水分解物)
アルコキシシラン類としては、アルコキシ基が珪素原子に対して1つ以上結合している一般的なアルコキシシランの他に、アルコキシ基を除く基として、フェニル基、ナフチル基、ビフェニル基等の芳香環を有するアルコキシシラン、(メタ)アクリル基、エポキシ基、チオール基、水酸基、カルボキシル基、ホスホニウム基、スルホニル基等の官能基を有するアルコキシシラン、フッ素、塩素等のハロゲン元素を有するアルコキシシランであってもよく、それらの混合物から構成されていても良い。 (Alkoxysilanes or hydrolysates of alkoxysilanes)
As alkoxysilanes, in addition to a general alkoxysilane in which one or more alkoxy groups are bonded to a silicon atom, an aromatic ring such as a phenyl group, a naphthyl group, or a biphenyl group can be used as a group other than the alkoxy group. Even an alkoxysilane having a functional group such as an alkoxysilane, (meth) acryl group, epoxy group, thiol group, hydroxyl group, carboxyl group, phosphonium group or sulfonyl group, or an alkoxysilane having a halogen element such as fluorine or chlorine. It may be composed of a mixture thereof.
アルコキシシラン類としては、アルコキシ基が珪素原子に対して1つ以上結合している一般的なアルコキシシランの他に、アルコキシ基を除く基として、フェニル基、ナフチル基、ビフェニル基等の芳香環を有するアルコキシシラン、(メタ)アクリル基、エポキシ基、チオール基、水酸基、カルボキシル基、ホスホニウム基、スルホニル基等の官能基を有するアルコキシシラン、フッ素、塩素等のハロゲン元素を有するアルコキシシランであってもよく、それらの混合物から構成されていても良い。 (Alkoxysilanes or hydrolysates of alkoxysilanes)
As alkoxysilanes, in addition to a general alkoxysilane in which one or more alkoxy groups are bonded to a silicon atom, an aromatic ring such as a phenyl group, a naphthyl group, or a biphenyl group can be used as a group other than the alkoxy group. Even an alkoxysilane having a functional group such as an alkoxysilane, (meth) acryl group, epoxy group, thiol group, hydroxyl group, carboxyl group, phosphonium group or sulfonyl group, or an alkoxysilane having a halogen element such as fluorine or chlorine. It may be composed of a mixture thereof.
アルコキシシラン類の加水分解物は、上記アルコキシシラン類のアルコキシ基の一部又は全部の加水分解による生成物、アルコキシシランの重縮合体、該重縮合体のアルコキシ基の一部又は全部の加水分解による生成物及びこれらの種々の混合物を意味する。
The hydrolyzate of alkoxysilanes is a product of hydrolysis of a part or all of the alkoxy groups of the above alkoxysilanes, a polycondensate of alkoxysilane, and a hydrolysis of part or all of the alkoxy groups of the polycondensate. Meaning products and various mixtures thereof.
アルコキシシラン類の加水分解物は、重合性単量体との分散性がより良いほど、パターン転写が容易になるため好ましい。その場合、重合性単量体が有する官能基に応じて、例えば、重合性単量体が(メタ)アクリル基を有する重合性単量体である場合には、アルコキシシラン類の加水分解物として、(メタ)アクリル基を有するアルコキシシランの加水分解物を使用することが好ましく、重合性単量体がエポキシ基を有するものである場合には、エポキシ基含有するアルコキシシランの加水分解物が好ましい。
The hydrolyzate of alkoxysilanes is preferable because the pattern transfer is easier as the dispersibility with the polymerizable monomer is better. In that case, depending on the functional group of the polymerizable monomer, for example, when the polymerizable monomer is a polymerizable monomer having a (meth) acryl group, the hydrolyzate of alkoxysilanes It is preferable to use a hydrolyzate of an alkoxysilane having a (meth) acryl group, and when the polymerizable monomer has an epoxy group, a hydrolyzate of an alkoxysilane containing an epoxy group is preferable. .
アルコキシシラン類である一般的なアルコキシシラン、(メタ)アクリル基含有アルコキシシラン、ハロゲン元素を有するアルコキシシランについて説明する。
General alkoxysilanes that are alkoxysilanes, (meth) acryl group-containing alkoxysilanes, and alkoxysilanes having a halogen element will be described.
(一般的なアルコキシシラン又はその加水分解物)
アルコキシシラン類の内、一般的なアルコキシシランとしては、一般式(1) (General alkoxysilane or its hydrolyzate)
Among the alkoxysilanes, general alkoxysilanes include those represented by the general formula (1)
アルコキシシラン類の内、一般的なアルコキシシランとしては、一般式(1) (General alkoxysilane or its hydrolyzate)
Among the alkoxysilanes, general alkoxysilanes include those represented by the general formula (1)
(式中、R1は、同種又は異種の炭素数1~4のアルキル基であり、nは1~10の整数である)で示されるアルコキシシランを好ましく用いることができる。
An alkoxysilane represented by the formula (wherein R 1 is the same or different alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 10) can be preferably used.
上記アルコキシシランの加水分解物を用いることにより、基材への密着性を良くすることができる。また、上記アルコキシシランの中でも、nが1を超えるものを使用した場合、得られる光硬化性組成物は、より比較的低い圧力でのパターンの転写に有利となる。
By using the above alkoxysilane hydrolyzate, adhesion to the substrate can be improved. Further, among the above alkoxysilanes, when n is more than 1, the resulting photocurable composition is advantageous for pattern transfer at a relatively lower pressure.
一般式(1)において、炭素数1~4のアルキル基であるR1は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ter-ブチル基が挙げられ、なかでも、メチル基、エチル基が好ましい。
In the general formula (1), R 1 which is an alkyl group having 1 to 4 carbon atoms includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, and a ter-butyl group. Of these, a methyl group and an ethyl group are preferable.
これらアルコキシシランを具体的に例示すれば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、及びそれらの重縮合物が挙げられる。なかでも、塗膜を形成した後、容易に除去できるアルコールであること、反応性等の理由から、テトラメトキシシラン、テトラエトキシシラン、及びそれらの重縮合物が好ましく、特に、nの値又はnの平均値が3~7となるテトラメトキシシラン、又はテトラエトキシシランの重縮合物が好ましい。
Specific examples of these alkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and polycondensates thereof. Of these, tetramethoxysilane, tetraethoxysilane, and polycondensates thereof are preferred because they are alcohols that can be easily removed after the formation of the coating film, and because of reactivity, in particular, the value of n or n Preferred is tetramethoxysilane having a mean value of 3 to 7 or a polycondensate of tetraethoxysilane.
((メタ)アクリル基含有アルコキシシラン又はその加水分解物)
(メタ)アクリル基含有アルコキシシランとしては、一般式(2) ((Meth) acrylic group-containing alkoxysilane or hydrolyzate thereof)
As the (meth) acryl group-containing alkoxysilane, the general formula (2)
(メタ)アクリル基含有アルコキシシランとしては、一般式(2) ((Meth) acrylic group-containing alkoxysilane or hydrolyzate thereof)
As the (meth) acryl group-containing alkoxysilane, the general formula (2)
(式中、R2は、水素原子又はメチル基であり;R3は、炭素数1~10のアルキレン基、炭素数3~10のシクロアルキレン基又は炭素数3~10のポリメチレン基であり;R4は、炭素数1~4のアルキル基、炭素数3~4のシクロアルキル基又は炭素数6~12のアリール基であり;R5は、炭素数1~4のアルキル基又は炭素数3~4のシクロアルキル基であり;lは1~3の整数であり、mは0~2の整数であり、kは1~3の整数であり、l+m+kは4であり;R2、R3、R4及びR5がそれぞれ複数存在する場合には、その複数のR2、R3、R4及びR5は、同種又は異種の基であってよい)で示される(メタ)アクリル基含有アルコキシシランを好ましく用いることができる。
(Wherein R 2 is a hydrogen atom or a methyl group; R 3 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, or a polymethylene group having 3 to 10 carbon atoms; R 4 is an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms; R 5 is an alkyl group having 1 to 4 carbon atoms or 3 carbon atoms A cycloalkyl group of ˜4; l is an integer of 1 to 3, m is an integer of 0 to 2, k is an integer of 1 to 3, and l + m + k is 4; R 2 , R 3 , R 4 and R 5 each having a plurality thereof, the plurality of R 2 , R 3 , R 4 and R 5 may be the same or different groups). Alkoxysilane can be preferably used.
上記(メタ)アクリル基含有アルコキシシランの加水分解物を使用することにより、分散性のよい光硬化性組成物が得られ、濾過による精製が容易となり、生産性が良好となり好ましい。また、光硬化性組成物がこの(メタ)アクリル基含有アルコキシシランの加水分解物を含む場合、光硬化により得られる光硬化膜の微細な構造において、無機成分と有機成分とが比較的均質な状態で分散したものとなる(無機成分が極端に凝集したような分散状態とはならない)。その結果、均一な転写パターン、及び均一な残膜を形成することができるものと推定される。
By using the hydrolyzate of the above (meth) acrylic group-containing alkoxysilane, a photocurable composition with good dispersibility can be obtained, purification by filtration is easy, and productivity is good, which is preferable. When the photocurable composition contains a hydrolyzate of this (meth) acrylic group-containing alkoxysilane, the inorganic component and the organic component are relatively homogeneous in the fine structure of the photocured film obtained by photocuring. It is dispersed in a state (the dispersion state is not such that inorganic components are extremely aggregated). As a result, it is estimated that a uniform transfer pattern and a uniform residual film can be formed.
前記一般式(2)において、R2は水素原子又はメチル基である。なかでも、水素原子の方が、光硬化性組成物を硬化させる際の光硬化速度が速いので好ましい。
In the general formula (2), R 2 is a hydrogen atom or a methyl group. Among these, a hydrogen atom is preferable because the photocuring speed when curing the photocurable composition is high.
R3は、炭素数1~10のアルキレン基又は炭素数3~10のシクロアルキレン基である。具体的には、炭素数1~10のアルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、シクロプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、シクロブチレン基、シクロプロピルメチレン基、2,2-ジメチルプロピレン基、2-メチルブチレン基、2-メチル-2-ブチレン基、3-メチルブチレン基、3-メチル-2-ブチレン基、ペンチレン基、2-ペンチレン基、3-ペンチレン基、2,3-ジメチル-2-ブチレン基、3,3-ジメチルブチレン基、3,3-ジメチル-2-ブチレン基、2-エチルブチレン基、ヘキシレン基、2-ヘキシレン基、3-ヘキシレン基、2-メチルペンチレン基、2-メチル-2-ペンチレン基、2-メチル-3-ペンチレン基、3-メチルペンチレン基、3-メチル-2-ペンチレン基、3-メチル-3-ペンチレン基、4-メチルペンチレン基、4-メチル-2-ペンチレン基、2,2-ジメチル-3-ペンチレン基、2,3-ジメチル-3-ペンチレン基、2,4-ジメチル-3-ペンチレン基、4,4-ジメチル-2-ペンチレン基、3-エチル-3-ペンチレン基、ヘプチレン基、2-ヘプチレン基、3-ヘプチレン基、2-メチル-2-ヘキシレン基、2-メチル-3-ヘキシレン基、5-メチルヘキシレン基、5-メチル-2-ヘキシレン基、2-エチルヘキシレン基、6-メチル-2-ヘプチレン基、4-メチル-3-ヘプチレン基、オクチレン基、2-オクチレン基、3-オクチレン基、2-プロピルペンチレン基、2,4,4-トリメチルペンチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等が挙げられる。なかでも、炭素数1~10のアルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、トリメチレン基、テトラメチレン基が好ましい。炭素数3~10のシクロアルキレン基としては、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基等が挙げられる。
R 3 is an alkylene group having 1 to 10 carbon atoms or a cycloalkylene group having 3 to 10 carbon atoms. Specifically, the alkylene group having 1 to 10 carbon atoms includes methylene group, ethylene group, propylene group, isopropylene group, cyclopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, cyclohexane Butylene group, cyclopropylmethylene group, 2,2-dimethylpropylene group, 2-methylbutylene group, 2-methyl-2-butylene group, 3-methylbutylene group, 3-methyl-2-butylene group, pentylene group, 2 -Pentylene group, 3-pentylene group, 2,3-dimethyl-2-butylene group, 3,3-dimethylbutylene group, 3,3-dimethyl-2-butylene group, 2-ethylbutylene group, hexylene group, 2- Hexylene group, 3-hexylene group, 2-methylpentylene group, 2-methyl-2-pentylene group, 2-methyl-3-pentylene group, 3-methylpentylene group, 3-methyl-2-pentylene group, 3-methyl-3-pentylene group, 4-methylpentylene group, 4-methyl-2-pentylene group, 2,2-dimethyl-3-pentylene Group, 2,3-dimethyl-3-pentylene group, 2,4-dimethyl-3-pentylene group, 4,4-dimethyl-2-pentylene group, 3-ethyl-3-pentylene group, heptylene group, 2-heptylene Group, 3-heptylene group, 2-methyl-2-hexylene group, 2-methyl-3-hexylene group, 5-methylhexylene group, 5-methyl-2-hexylene group, 2-ethylhexylene group, 6- Methyl-2-heptylene group, 4-methyl-3-heptylene group, octylene group, 2-octylene group, 3-octylene group, 2-propylpentylene group, 2,4,4-trimethylpentylene group, Methylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, and the like. Of these, the alkylene group having 1 to 10 carbon atoms is preferably a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, a trimethylene group, or a tetramethylene group. Examples of the cycloalkylene group having 3 to 10 carbon atoms include a cyclopentylene group, a cyclohexylene group, and a cyclooctylene group.
R4は、炭素数1~4のアルキル基、炭素数3~4のシクロアルキル基又は炭素数6~12のアリール基である。具体的には、炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基;炭素数3~4のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロプロピルメチル基;炭素数6~12のアリール基としてはフェニル基、ベンジル基等のベンゼン誘導体、1-ナフチル基、2-ナフチル基、o-メチルナフチル基等のナフタレン誘導体が挙げられ、なかでも、メチル基、エチル基が好ましい。
R 4 is an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Specifically, examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group; Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclopropylmethyl group; examples of the aryl group having 6 to 12 carbon atoms include benzene derivatives such as a phenyl group and a benzyl group, a 1-naphthyl group, a 2-naphthyl group, and o- Naphthalene derivatives such as a methyl naphthyl group can be mentioned, and among them, a methyl group and an ethyl group are preferable.
R5は、炭素数1~4のアルキル基又は炭素数3~4のシクロアルキル基である。具体的には、炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基;炭素数3~4のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロプロピルメチル基が挙げられる。具体的には、R5は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基であることが好ましい。
R 5 is an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 4 carbon atoms. Specifically, examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group; Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclopropylmethyl group. Specifically, R 5 is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group.
lは0~2の整数であり、mは0~2の整数であり、kは1~3の整数であり、l+m+kは4である。
L is an integer from 0 to 2, m is an integer from 0 to 2, k is an integer from 1 to 3, and l + m + k is 4.
このような(メタ)アクリル基含有アルコキシシランを具体的に例示すれば、トリメトキシシリルメチレン(メタ)アクリレート、トリメトキシシリルジメチレン(メタ)アクリレート、トリメトキシシリルトリメチレン(メタ)アクリレート、トリエトキシシリルメチレン(メタ)アクリレート、トリエトキシシリルジメチレン(メタ)アクリレート、トリエトキシシリルトリメチレン(メタ)アクリレート、トリプロポキシシリルメチレン(メタ)アクリレート、トリプロポキシシリルエチレ(メタ)アクリレート、トリプロポキシシリルトリメチレン(メタ)アクリレート、トリブトキシシリルメチレン(メタ)アクリレート、トリブトキシシリルジメチレン(メタ)アクリレート、トリブトキシシリルトリメチレン(メタ)アクリレート、トリイソプロポキシシリルメチレン(メタ)アクリレート、トリイソプロポキシシリルジメチレン(メタ)アクリレート、トリイソプロポキシシリルトリメチレン(メタ)アクリレート、ジメトキシメチルシリルメチレン(メタ)アクリレート、ジメトキシメチルシリルジメチレン(メタ)アクリレート、ジメトキシメチルシリルトリメチレン(メタ)アクリレート、ジエトキシメチルシリルメチレン(メタ)アクリレート、ジエトキシメチルシリルジメチレン(メタ)アクリレート、ジエトキシメチルシリルトリメチレン(メタ)アクリレート、ジメトキシエチルシリルメチレン(メタ)アクリレート、ジメトキシエチルシリルジメチレン(メタ)アクリレート、ジメトキシエチルシリルトリメチレン(メタ)アクリレート、ジエトキシエチルシリルメチレン(メタ)アクリレート、ジエトキシエチルシリルジメチレン(メタ)アクリレート、ジエトキシエチルシリルトリメチレン(メタ)アクリレート、メトキシジメチルシリルメチレン(メタ)アクリレート、メトキシジメチルシリルジメチレン(メタ)アクリレート、メトキシジメチルシリルトリメチレン(メタ)アクリレート、エトキシジメチルシリルメチレン(メタ)アクリレート、エトキシジメチルシリルジメチレン(メタ)アクリレート、エトキシジメチルシリルトリメチレン(メタ)アクリレート、メトキシジエチルシリルメチレン(メタ)アクリレート、メトキシジエチルシリルジメチレン(メタ)アクリレート、メトキシジエチルシリルトリメチレン(メタ)アクリレート、エトキシジエチルシリルメチレン(メタ)アクリレート、エトキシジエチルシリルジメチレン(メタ)アクリレート、エトキシジエチルシリルトリメチレン(メタ)アクリレート等が挙げられる。なかでも、トリメトキシシリルトリメチレン(メタ)アクリレート、トリエトキシシリルトリメチレン(メタ)アクリレートが好ましい。
Specific examples of such (meth) acrylic group-containing alkoxysilanes include trimethoxysilylmethylene (meth) acrylate, trimethoxysilyldimethylene (meth) acrylate, trimethoxysilyltrimethylene (meth) acrylate, triethoxy Silylmethylene (meth) acrylate, triethoxysilyldimethylene (meth) acrylate, triethoxysilyltrimethylene (meth) acrylate, tripropoxysilylmethylene (meth) acrylate, tripropoxysilylethylene (meth) acrylate, tripropoxysilyl trimethylene (Meth) acrylate, tributoxysilylmethylene (meth) acrylate, tributoxysilyldimethylene (meth) acrylate, tributoxysilyltrimethylene (meth) acryl , Triisopropoxysilylmethylene (meth) acrylate, triisopropoxysilyldimethylene (meth) acrylate, triisopropoxysilyltrimethylene (meth) acrylate, dimethoxymethylsilylmethylene (meth) acrylate, dimethoxymethylsilyldimethylene ( (Meth) acrylate, dimethoxymethylsilyltrimethylene (meth) acrylate, diethoxymethylsilylmethylene (meth) acrylate, diethoxymethylsilyldimethylene (meth) acrylate, diethoxymethylsilyltrimethylene (meth) acrylate, dimethoxyethylsilylmethylene (Meth) acrylate, dimethoxyethylsilyldimethylene (meth) acrylate, dimethoxyethylsilyltrimethylene (meth) acrylate, die Xylethylsilylmethylene (meth) acrylate, diethoxyethylsilyldimethylene (meth) acrylate, diethoxyethylsilyltrimethylene (meth) acrylate, methoxydimethylsilylmethylene (meth) acrylate, methoxydimethylsilyldimethylene (meth) acrylate, Methoxydimethylsilyltrimethylene (meth) acrylate, ethoxydimethylsilylmethylene (meth) acrylate, ethoxydimethylsilyldimethylene (meth) acrylate, ethoxydimethylsilyltrimethylene (meth) acrylate, methoxydiethylsilylmethylene (meth) acrylate, methoxydiethyl Silyldimethylene (meth) acrylate, methoxydiethylsilyltrimethylene (meth) acrylate, ethoxydiethylsilylmeth Examples include tylene (meth) acrylate, ethoxydiethylsilyldimethylene (meth) acrylate, and ethoxydiethylsilyltrimethylene (meth) acrylate. Of these, trimethoxysilyltrimethylene (meth) acrylate and triethoxysilyltrimethylene (meth) acrylate are preferable.
(ハロゲン元素を有するアルコキシシラン)
ハロゲン元素を有するアルコキシシランとしては、一般式(3) (Alkoxysilane with halogen element)
As the alkoxysilane having a halogen element, the general formula (3)
ハロゲン元素を有するアルコキシシランとしては、一般式(3) (Alkoxysilane with halogen element)
As the alkoxysilane having a halogen element, the general formula (3)
(式中、R6及びR8は、それぞれ、炭素数1~10のアルキル基又は炭素数3~10のシクロアルキル基であり;R7は、含フッ素アルキル基、含フッ素シクロアルキル基又は含フッ素アルコキシエーテル基であり;aは1~3の整数であり、bは0~2の整数であり、ただし、a+b=1~3であり;R6、R7及びR8がそれぞれ複数存在する場合には、その複数のR6、R7及びR8は、それぞれ同一であっても、異なる基であってもよい)で示されるフッ素化シラン化合物が挙げられる。このフッ素化シラン化合物の加水分解物を使用することにより、基材とパターンとの密着性、及び金型からの離型性を向上することができる。
(Wherein R 6 and R 8 are each an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms; R 7 is a fluorine-containing alkyl group, a fluorine-containing cycloalkyl group or a group containing A fluorine alkoxy ether group; a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b = 1 to 3; and a plurality of R 6 , R 7 and R 8 are present. In some cases, the plurality of R 6 , R 7 and R 8 may be the same or different groups). By using the hydrolyzate of this fluorinated silane compound, the adhesion between the substrate and the pattern and the releasability from the mold can be improved.
上記一般式(3)において、R6及びR8は、炭素数1~10のアルキル基又は炭素数3~10のシクロアルキル基であり、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ter-ブチル基が挙げられる。具体的には、R6は、メチル基、エチル基、プロピル基であることがより好ましい。
In the general formula (3), R 6 and R 8 are an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group. Butyl group, sec-butyl group, isobutyl group, and ter-butyl group. Specifically, R 6 is more preferably a methyl group, an ethyl group, or a propyl group.
R7は、含フッ素アルキル基、含フッ素シクロアルキル基又は含フッ素アルコキシエーテル基である。ここで含フッ素アルキル基とは、アルキル基の1又は2以上の水素原子をフッ素原子に置換したものを意味し、その他の含フッ素シクロアルキル基又は含フッ素アルコキシエーテル基も同様にそれぞれシクロアルキル基、アルコキシエーテル基の1又は2以上の水素原子をフッ素原子に置換したものを意味する。含フッ素アルキル基、及び含フッ素アルコキシ基の炭素数は1~10が好ましく、含フッ素シクロアルキル基の炭素数は3~10が好ましい。また、本発明における含フッ素アルコキシエーテル基は、一般式(4)
R 7 is a fluorine-containing alkyl group, a fluorine-containing cycloalkyl group or a fluorine-containing alkoxy ether group. Here, the fluorine-containing alkyl group means one obtained by substituting one or more hydrogen atoms of an alkyl group with a fluorine atom, and other fluorine-containing cycloalkyl groups or fluorine-containing alkoxy ether groups are also cycloalkyl groups. Means an alkoxy ether group in which one or more hydrogen atoms are substituted with fluorine atoms. The fluorine-containing alkyl group and fluorine-containing alkoxy group preferably have 1 to 10 carbon atoms, and the fluorine-containing cycloalkyl group preferably has 3 to 10 carbon atoms. Further, the fluorine-containing alkoxy ether group in the present invention has the general formula (4)
(式中、xは1以上の整数であり、yは2以上の整数である)で表されるアルコキシエーテル基において1又は2以上の水素原子をフッ素原子に置換したものが好ましい。一般式(4)において、xは1~6、yは5~50が好ましい。
In the alkoxy ether group represented by the formula (wherein x is an integer of 1 or more and y is an integer of 2 or more), one in which one or more hydrogen atoms are substituted with fluorine atoms is preferable. In the general formula (4), x is preferably 1 to 6, and y is preferably 5 to 50.
これらフッ素化シラン化合物を具体的に例示すれば、(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)-トリエトキシシラン、(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)-トリメトキシシラン、ノナフルオロヘキシルトリエトキシシラン、ノナフルオロヘキシルトリメトキシシラン、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)-トリエトキシシラン、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)-トリメトキシシラン、ペンタフルオロ-1,1,2,2-テトラヒドロペンチルトリエトキシシラン、ペンタフルオロ-1,1,2,2-テトラヒドロペンチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)ジメチルエトキシシラン、(3,3,3-トリフルオロプロピル)ジメチルメトキシシラン、(3,3,3-トリフルオロプロピル)メチルジエトキシシラン、(3,3,3-トリフルオロプロピル)メチルジメトキシシラン、(3,3,3-トリフルオロプロピル)トリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、パーフルオロプロピルトリエトキシシラン、パーフルオロプロピルトリメトキシシラン、5,5,6,6,7,7,8,8,9,9,10,10,10-トリデカフルオロ-2-(トリデカフルオロヘキシル)デシルトリエトキシシラン、5,5,6,6,7,7,8,8,9,9, 10,10,10-トリデカフルオロ-2-(トリデカフルオロヘキシル)デシルトリメトキシシラン、パーフルオロドデシル-1H,1H,2H,2H-トリエトキシシラン、パーフルオロドデシル-1H,1H,2H,2H-トリメトキシシラン、パーフルオロテトラデシル-1H,1H,2H,2H-トリエトキシシラン、パーフルオロテトラデシル-1H,1H,2H,2H-トリメトキシシラン、3-(パーフルオロシクロヘキシルオキシ)プロピルトリメトキシシラン等が挙げられ、上記一般式(4)の含フッ素アルコキシエーテル基を有するフッ素化シラン化合物の例としては、商品名としては、例えば、ダイキン工業株式会社製オプツールHD-1100THが挙げられる。これらの中でも、分子同士の相互作用が比較的弱く分子配列構造の乱れから表面剥離性に有利と思われる点、前記一般式(3)の-OR6からなるアルコキシ基の加水分解のし易さを考慮すると、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)-トリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシランが好ましい。
Specific examples of these fluorinated silane compounds include (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -triethoxysilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -Trimethoxysilane, nonafluorohexyltriethoxysilane, nonafluorohexyltrimethoxysilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl) -triethoxysilane, (tridecafluoro-1,1,2 , 2-tetrahydrooctyl) -trimethoxysilane, pentafluoro-1,1,2,2-tetrahydropentyltriethoxysilane, pentafluoro-1,1,2,2-tetrahydropentyltrimethoxysilane, (3,3, 3-trifluoropropyl) dimethylethoxysilane, (3,3,3-trifluoropropyl) dimethyl Methoxysilane, (3,3,3-trifluoropropyl) methyldiethoxysilane, (3,3,3-trifluoropropyl) methyldimethoxysilane, (3,3,3-trifluoropropyl) triethoxysilane, ( 3,3,3-trifluoropropyl) trimethoxysilane, perfluoropropyltriethoxysilane, perfluoropropyltrimethoxysilane, 5,5,6,6,7,7,8,8,9,9,10, 10,10-tridecafluoro-2- (tridecafluorohexyl) decyltriethoxysilane, 5,5,6,6,7,7,8,8,9,9, 10,10,10-tridecafluoro -2- (Tridecafluorohexyl) decyltrimethoxysilane, perfluorododecyl-1H, 1H, 2H, 2H-triethoxysilane, perfluorododecyl-1H, 1H, 2H, 2H-trimeth Sisilane, perfluorotetradecyl-1H, 1H, 2H, 2H-triethoxysilane, perfluorotetradecyl-1H, 1H, 2H, 2H-trimethoxysilane, 3- (perfluorocyclohexyloxy) propyltrimethoxysilane, etc. Examples of the fluorinated silane compound having a fluorine-containing alkoxy ether group of the above general formula (4) include, for example, OPTOOL HD-1100TH manufactured by Daikin Industries, Ltd. Among these, the interaction between molecules is relatively weak and the molecular arrangement structure is disturbed, which is considered advantageous for surface releasability, and the ease of hydrolysis of the alkoxy group consisting of —OR 6 in the general formula (3). (Tridecafluoro-1,1,2,2-tetrahydrooctyl) -trimethoxysilane and (3,3,3-trifluoropropyl) trimethoxysilane are preferred.
本発明で使用される光硬化性組成物において、珪素化合物は、例えば、重合性単量体が(メタ)アクリル基を有する重合性単量体を含有する場合、前記一般式(2)で表される(メタ)アクリル基含有アルコキシシランを加水分解したものが好ましく、前記一般式(1)で表される一般的なアルコキシシラン、前記一般式(2)で表される(メタ)アクリル基含有アルコキシシラン及び前記一般式(3)で表されるハロゲン元素を有するアルコキシシランのフッ素化シラン化合物を加水分解したものがより好ましく、さらに、これらアルコキシシラン類の他に、後述する金属アルコキシドを含む混合物を加水分解したものが好ましい。
In the photocurable composition used in the present invention, for example, when the polymerizable monomer contains a polymerizable monomer having a (meth) acryl group, the silicon compound is represented by the general formula (2). Preferred is a hydrolyzed (meth) acrylic group-containing alkoxysilane, a general alkoxysilane represented by the general formula (1), and a (meth) acrylic group-containing general formula (2). What hydrolyzed the fluorinated silane compound of alkoxysilane and the alkoxysilane which has a halogen element represented by the said General formula (3) is more preferable, Furthermore, the mixture containing the metal alkoxide mentioned later other than these alkoxysilanes A product obtained by hydrolyzing is preferable.
本発明において、上記のアルコキシシラン類の加水分解物の好ましい配合量は、例えば、光硬化性組成物が、重合性単量体として(メタ)アクリル基を有する重合性単量体を含有する場合、(メタ)アクリル基を有する重合性単量体100重量部に対して3質量部~300質量部を加水分解した前記(メタ)アクリル基含有アルコキシシランの加水分解物を配合することが好ましく、さらに、(メタ)アクリル基含有アルコキシシランに加えて、前記一般的なアルコキシシランを含む場合、一般的なアルコキシシラン10質量部~250質量部を加水分解した加水分解物を配合することが好ましく、前の組成物に加えて、前記フッ素化シラン化合物を含む場合、フッ素化シラン化合物0.001質量部~4質量部、さらに、これらアルコキシシラン類の他に、後述する金属アルコキシドを含む場合、金属アルコキシド1質量部~100重量部を加水分解した加水分解物を配合することが好ましい。
In this invention, the preferable compounding quantity of the hydrolyzate of said alkoxysilane is, for example, when a photocurable composition contains the polymerizable monomer which has a (meth) acryl group as a polymerizable monomer. The hydrolyzate of the (meth) acrylic group-containing alkoxysilane obtained by hydrolyzing 3 to 300 parts by mass with respect to 100 parts by mass of the polymerizable monomer having a (meth) acrylic group, Furthermore, in addition to the (meth) acryl group-containing alkoxysilane, in the case where the general alkoxysilane is included, it is preferable to blend a hydrolyzate obtained by hydrolyzing 10 mass parts to 250 mass parts of a general alkoxysilane, When the fluorinated silane compound is contained in addition to the previous composition, 0.001 to 4 parts by mass of the fluorinated silane compound, In addition to silanes, when a metal alkoxide described later is included, it is preferable to blend a hydrolyzate obtained by hydrolyzing 1 to 100 parts by weight of the metal alkoxide.
本発明において、光硬化性組成物には、さらに、アルコキシラン類を除く金属アルコキシドである一般式(5)
In the present invention, the photocurable composition further includes a general formula (5) which is a metal alkoxide excluding alkoxylanes.
(式中、Mは、ジルコニウム又はチタニウムであり;R9は、同種又は異種の炭素数1~10のアルキル基である)で示される金属アルコキシドの加水分解物を含むことができる。
(Wherein, M is zirconium or titanium; and R 9 is the same or different alkyl group having 1 to 10 carbon atoms).
また、R9は、適度な加水分解速度という点から炭素数2~4のアルキル基がより好ましい。具体的には、R9は、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ter-ブチル基であることが好ましい。
R 9 is more preferably an alkyl group having 2 to 4 carbon atoms from the viewpoint of an appropriate hydrolysis rate. Specifically, R 9 is preferably an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, or a ter-butyl group.
好適な金属アルコキシドを例示すれば、テトラメチルチタニウムアルコキシド、テトラエチルチタニウムアルコキシド、テトライソプロピルチタニウムアルコキシド、テトラプロピルチタニウムアルコキシド、テトライソブチルチタニウムアルコキシド、テトラブチルチタニウムアルコキシド、テトラsec-ブチルチタニウムアルコキシド、テトラter-ブチルチタニウムアルコキシド、テトラペンチルジルコニウムアルコキシド、テトラヘプチルチタニウムアルコキシド、テトラヘキシルチタニウムアルコキシド、テトラヘプチルチタニウムアルコキシド、テトラオクチルチタニウムアルコキシド、テトラノニルチタニウムアルコキシド、テトラデシルチタニウムアルコキシド、テトラメチルジルコニウムアルコキシド、テトラエチルジルコニウムアルコキシド、テトライソプロピルジルコニウムアルコキシド、テトラプロピルジルコニウムアルコキシド、テトライソブチルジルコニウムアルコキシド、テトラブチルジルコニウムアルコキシド、テトラsec-ブチルジルコニウムアルコキシド、テトラter-ブチルジルコニウムアルコキシド、テトラペンチルジルコニウムアルコキシド、テトラヘキシルジルコニウムアルコキシド、テトラヘプチルジルコニウムアルコキシド、テトラオクチルジルコニウムアルコキシド、テトラノニルジルコニウムアルコキシド、テトラデシルジルコニウムアルコキシドが挙げられる。その中でも、テトラエチルジルコニウムアルコキシド、テトライソプロピルジルコニウムアルコキシド、テトラプロピルジルコニウムアルコキシド、テトライソブチルジルコニウムアルコキシド、テトラブチルジルコニウムアルコキシドが好ましい。
Examples of suitable metal alkoxides include tetramethyltitanium alkoxide, tetraethyltitanium alkoxide, tetraisopropyltitanium alkoxide, tetrapropyltitanium alkoxide, tetraisobutyltitanium alkoxide, tetrabutyltitanium alkoxide, tetrasec-butyltitanium alkoxide, tetrater-butyltitanium. Alkoxide, tetrapentyl zirconium alkoxide, tetraheptyl titanium alkoxide, tetrahexyl titanium alkoxide, tetraheptyl titanium alkoxide, tetraoctyl titanium alkoxide, tetranonyl titanium alkoxide, tetradecyl titanium alkoxide, tetramethyl zirconium alkoxide, tetraethy Zirconium alkoxide, tetraisopropyl zirconium alkoxide, tetrapropyl zirconium alkoxide, tetraisobutyl zirconium alkoxide, tetrabutyl zirconium alkoxide, tetra sec-butyl zirconium alkoxide, tetra tert-butyl zirconium alkoxide, tetrapentyl zirconium alkoxide, tetrahexyl zirconium alkoxide, tetraheptyl zirconium Examples thereof include alkoxide, tetraoctyl zirconium alkoxide, tetranonyl zirconium alkoxide, and tetradecyl zirconium alkoxide. Among these, tetraethyl zirconium alkoxide, tetraisopropyl zirconium alkoxide, tetrapropyl zirconium alkoxide, tetraisobutyl zirconium alkoxide, and tetrabutyl zirconium alkoxide are preferable.
本発明で使用する光硬化性組成物が、アルコキシシラン類の加水分解物や、ジルコニウムアルコキシド又はチタニウムアルコキシドの加水分解物、ジルコニウムアルコキシド又はチタニウムアルコキシドの重縮合体、該重縮合体のアルコキシ基の一部又は全部の加水分解物、並びにジルコニウムアルコキシド又はチタニウムアルコキシドとアルコキシシラン類との反応生成物(ジルコニウムアルコキシド又はチタニウムアルコキシドとアルコキシシラン類との重縮合体、該重縮合体のアルコキシ基の一部又は全部の加水分解による生成物及びこれらの種々の混合物である)を含む場合、その調製のために、光硬化性組成物は、水や加水分解触媒等を含んでいてもよい。なお、光硬化性組成物を調製する際に使用される水や加水分解触媒等は、調製された光硬化性組成物の保存安定性を良くするため、調製の任意の工程において、真空乾燥、蒸留、加熱等により除去しても良い。その際、溶媒が同時に除去される場合には、水や加水分解触媒等を除去した後に、適宜、必要量の溶媒を加えても良い。
The photocurable composition used in the present invention is a hydrolyzate of alkoxysilanes, a hydrolyzate of zirconium alkoxide or titanium alkoxide, a polycondensate of zirconium alkoxide or titanium alkoxide, and an alkoxy group of the polycondensate. Part or all of the hydrolyzate, and the reaction product of zirconium alkoxide or titanium alkoxide and alkoxysilane (polycondensate of zirconium alkoxide or titanium alkoxide and alkoxysilane, part of alkoxy group of the polycondensate or For the preparation thereof, the photocurable composition may contain water, a hydrolysis catalyst, and the like. In addition, in order to improve the storage stability of the prepared photocurable composition, water, a hydrolysis catalyst, and the like used when preparing the photocurable composition are vacuum-dried in any step of the preparation, It may be removed by distillation, heating or the like. At that time, in the case where the solvent is removed at the same time, a necessary amount of the solvent may be appropriately added after removing water, the hydrolysis catalyst, and the like.
次に、光重合開始剤について説明する。
Next, the photopolymerization initiator will be described.
(光重合開始剤)
光重合開始剤としては、具体的に、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モリホリン-4-イル-フェニル)ブタン-1-オン等のアセトフェノン誘導体;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,6-トリメチルベンゾイルフェニルホスフィン酸メチルエステル、2-メチルベンゾイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸イソプロピルエステル、ビス-(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス-(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等のo-アシルオキシム誘導体;ジアセチル、アセチルベンゾイル、ベンジル、2,3-ペンタジオン、2,3-オクタジオン、4,4’-ジメトキシベンジル、4,4’-オキシベンジル、カンファーキノン、9,10-フェナンスレンキノン、アセナフテンキノン等のα-ジケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾインアルキルエーテル;2,4-ジエトキシチオキサンソン、2-クロロチオキサンソン、メチルチオキサンソン等のチオキサンソン誘導体;ベンゾフェノン、p,p’-ジメチルアミノベンゾフェノン、p,p’-メトキシベンゾフェノン等のベンゾフェノン誘導体;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン誘導体が好適に使用される。 (Photopolymerization initiator)
Specific examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane-1- ON, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy- 2-methylpropionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-dimethylamino-2- (4 Acetophenone derivatives such as methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butan-1-one; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2 , 6-Dichlorobenzoyldiphenylphosphine oxide, 2,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, bis- (2,6-dichlorobenzoyl) phenylphosphine Oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide Bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4- Trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis- (2,5,6- Acylphosphine oxide derivatives such as trimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)], ethanone, 1- [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol O-acyloxime derivatives such as -3-yl]-, 1- (o-acetyloxime); diacetyl, acetylbenzoyl, benzyl, 2,3-pentadione, 2,3-octadione, 4,4′-dimethoxybenzyl, Α-diketones such as 4,4′-oxybenzyl, camphorquinone, 9,10-phenanthrenequinone, and acenaphthenequinone; benzoin alkyl ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin propyl ether; 2,4- Thioxanthone derivatives such as diethoxythioxanthone, 2-chlorothioxanthone, methylthioxanthone; benzophenone derivatives such as benzophenone, p, p′-dimethylaminobenzophenone, p, p′-methoxybenzophenone; bis (η5-2, 4-cyclopentadien-1-yl) A titanocene derivative such as -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium is preferably used.
光重合開始剤としては、具体的に、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モリホリン-4-イル-フェニル)ブタン-1-オン等のアセトフェノン誘導体;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,6-トリメチルベンゾイルフェニルホスフィン酸メチルエステル、2-メチルベンゾイルジフェニルホスフィンオキサイド、ピバロイルフェニルホスフィン酸イソプロピルエステル、ビス-(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス-(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等のo-アシルオキシム誘導体;ジアセチル、アセチルベンゾイル、ベンジル、2,3-ペンタジオン、2,3-オクタジオン、4,4’-ジメトキシベンジル、4,4’-オキシベンジル、カンファーキノン、9,10-フェナンスレンキノン、アセナフテンキノン等のα-ジケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾインアルキルエーテル;2,4-ジエトキシチオキサンソン、2-クロロチオキサンソン、メチルチオキサンソン等のチオキサンソン誘導体;ベンゾフェノン、p,p’-ジメチルアミノベンゾフェノン、p,p’-メトキシベンゾフェノン等のベンゾフェノン誘導体;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン誘導体が好適に使用される。 (Photopolymerization initiator)
Specific examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane-1- ON, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy- 2-methylpropionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-dimethylamino-2- (4 Acetophenone derivatives such as methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butan-1-one; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2 , 6-Dichlorobenzoyldiphenylphosphine oxide, 2,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, bis- (2,6-dichlorobenzoyl) phenylphosphine Oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide Bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4- Trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis- (2,5,6- Acylphosphine oxide derivatives such as trimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)], ethanone, 1- [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol O-acyloxime derivatives such as -3-yl]-, 1- (o-acetyloxime); diacetyl, acetylbenzoyl, benzyl, 2,3-pentadione, 2,3-octadione, 4,4′-dimethoxybenzyl, Α-diketones such as 4,4′-oxybenzyl, camphorquinone, 9,10-phenanthrenequinone, and acenaphthenequinone; benzoin alkyl ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin propyl ether; 2,4- Thioxanthone derivatives such as diethoxythioxanthone, 2-chlorothioxanthone, methylthioxanthone; benzophenone derivatives such as benzophenone, p, p′-dimethylaminobenzophenone, p, p′-methoxybenzophenone; bis (η5-2, 4-cyclopentadien-1-yl) A titanocene derivative such as -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium is preferably used.
これら光重合開始剤は、単独で又は2種以上を混合して使用される。
These photopolymerization initiators are used alone or in admixture of two or more.
また、α-ジケトンを用いる場合には、第3級アミン化合物と組み合わせて用いることが好ましい。α-ジケトンと組み合わせて用いることのできる第3級アミン化合物としては、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジ-n-ブチルアニリン、N,N-ジベンジルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジエチル-p-トルイジン、N,N-ジメチル-m-トルイジン、p-ブロモ-N,N-ジメチルアニリン、m-クロロ-N,N-ジメチルアニリン、p-ジメチルアミノベンズアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸、p-ジメチルアミノ安息香酸エチルエステル、p-ジメチルアミノ安息香酸アミルエステル、N,N-ジメチルアンスラニリックアシッドメチルエステル、N,N-ジヒドロキシエチルアニリン、N,N-ジヒドロキシエチル-p-トルイジン、p-ジメチルアミノフェネチルアルコール、p-ジメチルアミノスチルベン、N,N-ジメチル-3,5-キシリジン、4-ジメチルアミノピリジン、N,N-ジメチル-α-ナフチルアミン、N,N-ジメチル-β-ナフチルアミン、トリブチルアミン、トリプロピルアミン、トリエチルアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N,N-ジメチルヘキシルアミン、N,N-ジメチルドデシルアミン、N,N-ジメチルステアリルアミン、N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルメタクリレート、2,2’-(n-ブチルイミノ)ジエタノール等が挙げられる。
In addition, when α-diketone is used, it is preferably used in combination with a tertiary amine compound. Tertiary amine compounds that can be used in combination with α-diketone include N, N-dimethylaniline, N, N-diethylaniline, N, N-di-n-butylaniline, N, N-dibenzylaniline. N, N-dimethyl-p-toluidine, N, N-diethyl-p-toluidine, N, N-dimethyl-m-toluidine, p-bromo-N, N-dimethylaniline, m-chloro-N, N- Dimethylaniline, p-dimethylaminobenzaldehyde, p-dimethylaminoacetophenone, p-dimethylaminobenzoic acid, p-dimethylaminobenzoic acid ethyl ester, p-dimethylaminobenzoic acid amyl ester, N, N-dimethylanthranic acid methyl Ester, N, N-dihydroxyethylaniline, N, N-dihydroxyethyl-p-toluidine, p Dimethylaminophenethyl alcohol, p-dimethylaminostilbene, N, N-dimethyl-3,5-xylidine, 4-dimethylaminopyridine, N, N-dimethyl-α-naphthylamine, N, N-dimethyl-β-naphthylamine, tri Butylamine, tripropylamine, triethylamine, N-methyldiethanolamine, N-ethyldiethanolamine, N, N-dimethylhexylamine, N, N-dimethyldodecylamine, N, N-dimethylstearylamine, N, N-dimethylaminoethyl methacrylate N, N-diethylaminoethyl methacrylate, 2,2 ′-(n-butylimino) diethanol, and the like.
ナノインプリント技術に使用する場合には、アセトフェノン誘導体、アシルホスフィンオキサイド誘導体、o-アシルオキシム誘導体、α-ジケトンを使用することが好ましい。
When used in nanoimprint technology, it is preferable to use acetophenone derivatives, acylphosphine oxide derivatives, o-acyloxime derivatives, and α-diketones.
本発明において、上記光重合開始剤の使用量は、前記重合性単量体100質量部に対して、1~10質量部であることが好ましい。
In the present invention, the amount of the photopolymerization initiator used is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
(光硬化性組成物を用いたパターンの転写方法)
上述した光硬化性組成物を塗膜材として使用し、金型(マスター金型又はマスター金型から形成されたレプリカ金型)のパターンを転写する方法について説明する。 (Pattern transfer method using a photocurable composition)
A method for transferring a pattern of a mold (a master mold or a replica mold formed from a master mold) using the above-described photocurable composition as a coating material will be described.
上述した光硬化性組成物を塗膜材として使用し、金型(マスター金型又はマスター金型から形成されたレプリカ金型)のパターンを転写する方法について説明する。 (Pattern transfer method using a photocurable composition)
A method for transferring a pattern of a mold (a master mold or a replica mold formed from a master mold) using the above-described photocurable composition as a coating material will be described.
まず、光硬化性組成物を基材上に公知の方法に従って塗布することにより、塗膜を形成する。該基材としては、特に制限されるものではなく、板状、シート状、フィルム状のものを使用できる。具体的には、シリコンウェハ、石英、ガラス、サファイア、各種金属材料、アルミナ・窒化アルミニウム・炭化珪素・窒化珪素等のセラミックス、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、トリアセチルセルロース、ポリスチレン、シクロオレフィン樹脂のような公知の熱可塑性樹脂からなるシートや、フィルムを使用することができる。なお、基材表面には、本発明で使用される塗膜材よりなる光硬化膜との密着性を、より改善するために、表面処理を施すこともできる。表面処理としては、例えば、火炎処理、大気中や窒素ガス中でのコロナ放電処理、大気圧プラズマ処理、ブラスト処理、ホーニング処理、ΜVオゾン処理等、公知の方法を挙げることができる。
First, a coating film is formed by applying a photocurable composition on a substrate according to a known method. The substrate is not particularly limited, and a plate, sheet, or film can be used. Specific examples include silicon wafers, quartz, glass, sapphire, various metal materials, ceramics such as alumina, aluminum nitride, silicon carbide, and silicon nitride, polyethylene terephthalate, polypropylene, polycarbonate, triacetyl cellulose, polystyrene, and cycloolefin resin. A sheet or film made of any known thermoplastic resin can be used. In addition, in order to improve the adhesiveness with the photocured film which consists of a coating-film material used by this invention more on the base-material surface, it can also surface-treat. Examples of the surface treatment include known methods such as flame treatment, corona discharge treatment in the atmosphere or nitrogen gas, atmospheric pressure plasma treatment, blast treatment, honing treatment, soot V ozone treatment, and the like.
本発明で使用される塗膜材を上記基材上に塗布する方法としては、スピンコート法、ディッピング法、ディスペンス法、インクジェット法のような公知の方法がある。塗膜の厚みは、特に制限されるものではなく、通常0.1~10μmであり、0.01~0.1μmの厚みの塗膜も好適に形成できる。
As a method of applying the coating material used in the present invention on the substrate, there are known methods such as a spin coating method, a dipping method, a dispensing method, and an ink jet method. The thickness of the coating film is not particularly limited, and is usually 0.1 to 10 μm, and a coating film having a thickness of 0.01 to 0.1 μm can be suitably formed.
薄く塗布するためは、本発明で使用される光硬化性組成物を有機溶媒にて希釈して塗布することも可能であり、その場合は、用いる有機溶媒の沸点、揮発性に応じて、乾燥工程を適宜組み込むことによって、パターンを形成することもできる。
In order to apply thinly, it is also possible to dilute and apply the photocurable composition used in the present invention with an organic solvent, and in that case, depending on the boiling point and volatility of the organic solvent to be used, drying is possible. A pattern can also be formed by incorporating processes appropriately.
次に、金型のパターン形成面を前記塗膜と接触させる。
Next, the pattern forming surface of the mold is brought into contact with the coating film.
パターンの転写方法について、他の態様によれば、金型のパターン形成面に塗膜材を上記の塗布方法で塗布して塗膜を形成し、該塗膜をレプリカ金型の基材と接触させ、金型のパターン形成面上に形成され、パターンが転写された塗膜を基材と一体化させるようにしてもよい。パターン形成面を有する金型は、光照射を介して、パターンが転写された塗膜材を硬化させ、硬化した塗膜を形成できるように、透明な材質、例えば、石英やサファイアや、熱可塑性樹脂で形成されていることが好ましい。パターン形成面を有する金型が、シリコンウェハ等の透明性に劣る材質の場合は、レプリカ金型の素材は光透過性でなければならず、光透過性を有する石英や、サファイアや、熱可塑性樹脂であることが好ましい。
With respect to the pattern transfer method, according to another aspect, the coating material is applied to the pattern forming surface of the mold by the above-described coating method to form a coating film, and the coating film is brought into contact with the base material of the replica mold. The coating film formed on the pattern forming surface of the mold and having the pattern transferred may be integrated with the substrate. A mold having a pattern forming surface can be cured with a transparent material such as quartz or sapphire or thermoplastic so that the coated film material to which the pattern is transferred can be cured by light irradiation and a cured coating film can be formed. It is preferably formed of a resin. If the mold with the pattern forming surface is a material with poor transparency such as a silicon wafer, the replica mold material must be light transmissive, such as quartz, sapphire, or thermoplastic that has light transmissive properties. A resin is preferred.
本発明で使用される光硬化性組成物は、金型を押し付ける際に比較的低圧でパターンを転写することができる。この際の圧力は、特に制限されるものではないが、0.01MPa~3MPaの範囲である。なお、当然のことながら、上記圧力の上限値以上の圧力でもパターンの転写は可能である。
The photocurable composition used in the present invention can transfer a pattern at a relatively low pressure when pressing a mold. The pressure at this time is not particularly limited, but is in the range of 0.01 MPa to 3 MPa. As a matter of course, the pattern can be transferred even at a pressure higher than the upper limit of the pressure.
その後、パターンが転写された塗膜を光硬化させる。パターンが基材上で形成されている場合には、金型のパターン形成面と、パターンが転写された塗膜面を含む基材層とを接触させた状態のままで、又は、金型のパターン面に塗膜材を塗布することによってパターンが形成される場合には、金型のパターン形成面上のパターンが転写された塗膜に対して、基材を接触させた状態で、光を照射して、塗膜を硬化させるとともに、塗膜を基材と一体化させる。照射する光は、波長が500nm以下で、光の照射時間は、0.1~300秒の範囲から選択される。塗膜の厚み等にもよるが、通常、1~60秒である。
Then, the coating film on which the pattern has been transferred is photocured. When the pattern is formed on the substrate, the pattern forming surface of the mold is kept in contact with the substrate layer including the coating film surface to which the pattern is transferred, or the mold When a pattern is formed by applying a coating material on the pattern surface, light is applied with the substrate in contact with the coating film on which the pattern on the pattern formation surface of the mold is transferred. Irradiate to cure the coating and to integrate the coating with the substrate. The light to be irradiated has a wavelength of 500 nm or less, and the light irradiation time is selected from the range of 0.1 to 300 seconds. Although it depends on the thickness of the coating film, it is usually 1 to 60 seconds.
光重合時の雰囲気として、大気下でも重合可能であるが、光重合反応を促進する上で、酸素阻害の少ない雰囲気下での光重合が好ましい。例えば、窒素ガス雰囲気下、不活性ガス雰囲気下、フッ素系ガス雰囲気下、真空雰囲気下等が好ましい。
The atmosphere during photopolymerization can be polymerized even in the air, but in order to accelerate the photopolymerization reaction, photopolymerization in an atmosphere with little oxygen inhibition is preferred. For example, a nitrogen gas atmosphere, an inert gas atmosphere, a fluorine gas atmosphere, a vacuum atmosphere, or the like is preferable.
光硬化後、硬化した塗膜から金型を分離することにより、基材層と、基材層上に、光硬化した塗膜(光硬化膜)によりパターンが形成されたパターン層との積層体が得られる。
After photocuring, by separating the mold from the cured coating, a laminate of the base layer and a pattern layer in which a pattern is formed on the base layer by a photocured coating (photocured film) Is obtained.
(レプリカ金型の製造)
レプリカ金型として使用するためには、上記方法により得られた積層体について、その表面に離型処理を施す。離型処理としては、フッ素を含有するシランカップリング剤等の離型処理剤を反応させることが好ましく行われる。該シランカップリング剤を反応させることにより、積層体表面と他物質との剥離性を向上させることができるが、単に積層体の表面に該シランカップリング剤を塗布したのみだと、表面に単に付着しているだけのため、十分な離型性が得られない。そのため、該シランカップリング剤を表面に反応させる必要がある。本発明の製造方法では、光硬化性組成物を用いて作製したレプリカ金型となる積層体のパターン形成面にH2O存在下でプラズマ雰囲気に供した後、シランカップリング剤と反応させることが特徴である。プラズマ雰囲気においてH2OからOH-イオンが生成しパターン形成面を親水化しているものと推測される。前述したとおり、本発明の製造方法では、塗膜材をエッチングするオゾンガスが発生しないため、塗膜材の膜厚の減少や、凹凸パターンの変化が抑制できるものと推測される。 (Manufacture of replica molds)
In order to use it as a replica mold, the surface of the laminate obtained by the above method is subjected to a mold release treatment. As the mold release treatment, it is preferable to react a mold release treatment agent such as a silane coupling agent containing fluorine. By reacting the silane coupling agent, the peelability between the surface of the laminate and other substances can be improved, but if the silane coupling agent is simply applied to the surface of the laminate, Since it is only adhered, sufficient releasability cannot be obtained. Therefore, it is necessary to react the silane coupling agent on the surface. In the production method of the present invention, a pattern formation surface of a laminate that is a replica mold produced using a photocurable composition is subjected to a plasma atmosphere in the presence of H 2 O and then reacted with a silane coupling agent. Is a feature. It is presumed that OH − ions are generated from H 2 O in a plasma atmosphere to make the pattern formation surface hydrophilic. As described above, in the manufacturing method of the present invention, since ozone gas for etching the coating material is not generated, it is presumed that a decrease in the thickness of the coating material and a change in the uneven pattern can be suppressed.
レプリカ金型として使用するためには、上記方法により得られた積層体について、その表面に離型処理を施す。離型処理としては、フッ素を含有するシランカップリング剤等の離型処理剤を反応させることが好ましく行われる。該シランカップリング剤を反応させることにより、積層体表面と他物質との剥離性を向上させることができるが、単に積層体の表面に該シランカップリング剤を塗布したのみだと、表面に単に付着しているだけのため、十分な離型性が得られない。そのため、該シランカップリング剤を表面に反応させる必要がある。本発明の製造方法では、光硬化性組成物を用いて作製したレプリカ金型となる積層体のパターン形成面にH2O存在下でプラズマ雰囲気に供した後、シランカップリング剤と反応させることが特徴である。プラズマ雰囲気においてH2OからOH-イオンが生成しパターン形成面を親水化しているものと推測される。前述したとおり、本発明の製造方法では、塗膜材をエッチングするオゾンガスが発生しないため、塗膜材の膜厚の減少や、凹凸パターンの変化が抑制できるものと推測される。 (Manufacture of replica molds)
In order to use it as a replica mold, the surface of the laminate obtained by the above method is subjected to a mold release treatment. As the mold release treatment, it is preferable to react a mold release treatment agent such as a silane coupling agent containing fluorine. By reacting the silane coupling agent, the peelability between the surface of the laminate and other substances can be improved, but if the silane coupling agent is simply applied to the surface of the laminate, Since it is only adhered, sufficient releasability cannot be obtained. Therefore, it is necessary to react the silane coupling agent on the surface. In the production method of the present invention, a pattern formation surface of a laminate that is a replica mold produced using a photocurable composition is subjected to a plasma atmosphere in the presence of H 2 O and then reacted with a silane coupling agent. Is a feature. It is presumed that OH − ions are generated from H 2 O in a plasma atmosphere to make the pattern formation surface hydrophilic. As described above, in the manufacturing method of the present invention, since ozone gas for etching the coating material is not generated, it is presumed that a decrease in the thickness of the coating material and a change in the uneven pattern can be suppressed.
プラズマ雰囲気下に供する空間としては、H2O含有量を容易にコントロールすることができることから、H2O含有量が調節可能な密閉空間であることが好ましい。プラズマは、チャンバー内に不活性ガスや反応性ガス圧力を一定の減圧状態に保ち、電極間に印加した直流電圧や高周波電圧などによる電界によって加速された電子とガス分子との衝突電離を利用して生成される。
The space to be subjected to plasma atmosphere, because it can be easily controlled of H 2 O content is preferably H 2 O content is adjustable enclosed space. Plasma maintains the inert gas and reactive gas pressure in the chamber at a constant reduced pressure, and uses the impact ionization of electrons and gas molecules accelerated by the electric field generated by the DC voltage or high-frequency voltage applied between the electrodes. Generated.
プラズマは、陽イオン、電子、中性原子から構成され、電極間に印加する電圧や圧力が大きいほどプラズマ密度は大きくなる。プラズマを利用する成膜装置やエッチング装置の電子密度は1016~1020m-3程度である。プラズマ密度を高めるほど、レプリカ金型上の塗膜材へのダメージが大きくなり好ましくない。親水効果、塗膜材のダメージの観点から、印加電圧や圧力を最適化すればよい。上記プラズマ雰囲気における雰囲気圧は、プラズマ放電のしやすさの観点から、0.1Pa以上100Pa以下の圧力下で行われることが好ましい。また、前記プラズマ処理を施す雰囲気は、水酸基の存在量を考慮すると、H2Oの分圧比が0.01以上であることが好ましく、上限は飽和水蒸気圧の観点から0.03以下であることが好ましい。プラズマ処理を施すチャンバー内のH2Oの分圧比を高めるために、液体のH2Oを加えることもできる。
The plasma is composed of cations, electrons, and neutral atoms, and the plasma density increases as the voltage or pressure applied between the electrodes increases. The electron density of a film forming apparatus or an etching apparatus using plasma is about 10 16 to 10 20 m −3 . The higher the plasma density, the greater the damage to the coating material on the replica mold. From the viewpoint of the hydrophilic effect and the damage to the coating material, the applied voltage and pressure may be optimized. The atmospheric pressure in the plasma atmosphere is preferably performed under a pressure of 0.1 Pa to 100 Pa from the viewpoint of ease of plasma discharge. In addition, the atmosphere in which the plasma treatment is performed is preferably such that the partial pressure ratio of H 2 O is 0.01 or more in consideration of the abundance of hydroxyl groups, and the upper limit is 0.03 or less from the viewpoint of saturated water vapor pressure. Is preferred. In order to increase the partial pressure ratio of H 2 O in the chamber for plasma treatment, liquid H 2 O can be added.
以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.
(実施例1)
(光硬化性組成物の調製)
(メタ)アクリル基含有アルコキシシランとしてトリメトキシシリルトリメチレンアクリレート(信越化学工業(株)製、KBM-5103)3.0g、一般的なアルコキシシランとしてエチルシリケート40(コルコート(株)製テトラエトキシシランの平均5量体物)6.8g、及びエタノール13.6gの混合物に、攪拌しながら、エタノール3.6g/水1.6g/2N-HCl 0.1gの2N-HCl/エタノール混合水溶液を徐々に滴下し、室温下、1時間攪拌して、(メタ)アクリル基含有アルコキシシランの加水分解物及び一般的なアルコキシシランの加水分解物の混合物又は反応生成物からなる珪素化合物の混合液を得た。 Example 1
(Preparation of photocurable composition)
3.0 g of trimethoxysilyl trimethylene acrylate (KBS-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) as the (meth) acrylic group-containing alkoxysilane, and ethyl silicate 40 (tetraethoxysilane, manufactured by Colcoat Co., Ltd.) as a general alkoxysilane. While stirring, a mixture of 6.8 g of ethanol and 13.6 g of ethanol was gradually added with 3.6 g of ethanol / 1.6 g of water / 2 N-HCl 0.1 g of a 2N-HCl / ethanol mixed aqueous solution. The mixture is stirred at room temperature for 1 hour to obtain a mixture of a hydrolyzate of (meth) acryl group-containing alkoxysilane and a hydrolyzate of general alkoxysilane or a mixture of reaction products of a silicon compound. It was.
(光硬化性組成物の調製)
(メタ)アクリル基含有アルコキシシランとしてトリメトキシシリルトリメチレンアクリレート(信越化学工業(株)製、KBM-5103)3.0g、一般的なアルコキシシランとしてエチルシリケート40(コルコート(株)製テトラエトキシシランの平均5量体物)6.8g、及びエタノール13.6gの混合物に、攪拌しながら、エタノール3.6g/水1.6g/2N-HCl 0.1gの2N-HCl/エタノール混合水溶液を徐々に滴下し、室温下、1時間攪拌して、(メタ)アクリル基含有アルコキシシランの加水分解物及び一般的なアルコキシシランの加水分解物の混合物又は反応生成物からなる珪素化合物の混合液を得た。 Example 1
(Preparation of photocurable composition)
3.0 g of trimethoxysilyl trimethylene acrylate (KBS-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) as the (meth) acrylic group-containing alkoxysilane, and ethyl silicate 40 (tetraethoxysilane, manufactured by Colcoat Co., Ltd.) as a general alkoxysilane. While stirring, a mixture of 6.8 g of ethanol and 13.6 g of ethanol was gradually added with 3.6 g of ethanol / 1.6 g of water / 2 N-HCl 0.1 g of a 2N-HCl / ethanol mixed aqueous solution. The mixture is stirred at room temperature for 1 hour to obtain a mixture of a hydrolyzate of (meth) acryl group-containing alkoxysilane and a hydrolyzate of general alkoxysilane or a mixture of reaction products of a silicon compound. It was.
重合性単量体として、ポリエチレングリコールジアクリレート(新中村化学工業(株)製、NKエステル A-200)2.5g、エトキシ化ビスフェノールAジアクリレート(新中村化学工業(株)製、NKエステル A-BPE-10)7.5g、フェノキシポリエチレングリコールアクリレート(新中村化学工業(株)製、NKエステル AMP-10G)5.0g、エトキシ化o-フェニルフェノールアクリレート(新中村化学工業(株)製、NKエステル A-LEN-10)5.0g、トリシクロデカンジメタノールジアクリレート(新中村化学工業(株)製、NKエステル A-DCP)5.0gを使用した。
As a polymerizable monomer, 2.5 g of polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-200), ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A) -BPE-10) 7.5 g, phenoxypolyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester AMP-10G) 5.0 g, ethoxylated o-phenylphenol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) NK ester A-LEN-10 (5.0 g) and tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-DCP) 5.0 g were used.
光重合開始剤として、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリホリン-4-イル-フェニル)-ブタン-1-オン(BASFジャパン(株)製、IRGACΜRE(登録商標)379 EG)1.0gを使用した。
As a photopolymerization initiator, 2-dimethylamino-2- (4-methyl-benzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one (manufactured by BASF Japan Ltd., IRGAC RE ( (Registered trademark) 379 EG) 1.0 g was used.
重合禁止剤として、ハイドロキノンモノメチルエーテル0.0375g、ブチルヒドロキシトルエン0.005gを使用した。
As the polymerization inhibitor, 0.0375 g of hydroquinone monomethyl ether and 0.005 g of butylhydroxytoluene were used.
上記重合性単量体、光重合開始剤、重合禁止剤を均一に混合し、その混合物を2.0g分取した。該混合物2.0gに、上記で得られた珪素化合物7.0gを添加し、室温で15分間攪拌することにより光硬化性組成物を得た。
The above polymerizable monomer, photopolymerization initiator and polymerization inhibitor were mixed uniformly, and 2.0 g of the mixture was taken. 7.0 g of the silicon compound obtained above was added to 2.0 g of the mixture, and the mixture was stirred at room temperature for 15 minutes to obtain a photocurable composition.
(レプリカ金型の作製)
厚さ125μmの2軸延伸ポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)社製、両面易接着処理PETフィルム、コスモシャインA-4300:基材)上に、上記で得られた光硬化性組成物を7500rpm、300秒間でスピンコートし、光硬化性組成物を均一にコーティングした。 (Production of replica mold)
The photocurable composition obtained above on a 125 μm thick biaxially stretched polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., double-sided easy-adhesion treated PET film, Cosmo Shine A-4300: substrate) The product was spin-coated at 7500 rpm for 300 seconds to uniformly coat the photocurable composition.
厚さ125μmの2軸延伸ポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)社製、両面易接着処理PETフィルム、コスモシャインA-4300:基材)上に、上記で得られた光硬化性組成物を7500rpm、300秒間でスピンコートし、光硬化性組成物を均一にコーティングした。 (Production of replica mold)
The photocurable composition obtained above on a 125 μm thick biaxially stretched polyethylene terephthalate (PET) film (manufactured by Toyobo Co., Ltd., double-sided easy-adhesion treated PET film, Cosmo Shine A-4300: substrate) The product was spin-coated at 7500 rpm for 300 seconds to uniformly coat the photocurable composition.
フッ素を含有するシランカップリング剤(ダイキン工業(株)製、オプツールHD-2100TH)で離型処理を施し、リンス液(ダイキン工業(株)製、オプツールHD-TH)でリンス処理した径180nm、高さ300nm、ピッチ300nmのピラーパターンが形成された75mmのNi製金型と、上記塗膜がコーティングされたPETフィルムとをナノインプリント装置(SCIVAX(株)製、FLAN200)にセットし、45Paまで真空引きした後、Ni製金型と、上記塗膜がコーティングされたPETフィルムからなる基材とを接触させ、圧力3.0MPaをかけ、LED365nm光源から光を60秒間照射してΜVナノインプリントを行った。その後、PETフィルムをNi製金型から剥離し、レプリカ金型を作製した。
180 nm in diameter, which was subjected to mold release treatment with a fluorine-containing silane coupling agent (Optool HD-2100TH, manufactured by Daikin Industries, Ltd.) and rinsed with a rinsing liquid (Optool HD-TH, manufactured by Daikin Industries, Ltd.) A 75 mm Ni mold having a pillar pattern with a height of 300 nm and a pitch of 300 nm and a PET film coated with the above-mentioned coating film are set in a nanoimprint apparatus (manufactured by SCIVAX, FLAN200), and vacuumed to 45 Pa. After pulling, a Ni mold and a substrate made of a PET film coated with the above-mentioned coating film were brought into contact with each other, a pressure of 3.0 MPa was applied, and light was emitted from an LED 365 nm light source for 60 seconds to perform ΜV nanoimprinting. . Thereafter, the PET film was peeled from the Ni mold to produce a replica mold.
(レプリカ金型の離型処理)
上記で得られたレプリカ金型をCressington製108AμtoSpμtterCoaterにセットし、チャンバー内のH2O分圧比を高めるために、チャンバー体積4000mlに対して、0.1mlの超純水をチャンバー内に滴下した。その後、チャンバーを密閉し、真空ポンプでチャンバーを10Paまで減圧し、放電電流値10mA、真空度10Pa、温度25℃の条件でプラズマ処理を120秒間実施した。プラズマ処理後、直ちにシランカップリング剤(ダイキン工業(株)製、オプツールHD-1100TH)に20分間浸漬させて離型処理を施し、温度90℃のオーブンで1時間ベーキングした。最後に、リンス液(ダイキン工業(株)製、オプツールHD-TH)にレプリカ金型を浸漬させ、超音波洗浄して、余剰のシランカップリング剤を除去した。 (Release mold release process)
The replica mold obtained above was set in a 108 AμtoSpμterCoater made by Crestington, and in order to increase the H 2 O partial pressure ratio in the chamber, 0.1 ml of ultrapure water was dropped into the chamber in a chamber volume of 4000 ml. Thereafter, the chamber was sealed, the pressure was reduced to 10 Pa with a vacuum pump, and plasma treatment was performed for 120 seconds under the conditions of a discharge current value of 10 mA, a vacuum degree of 10 Pa, and a temperature of 25 ° C. Immediately after the plasma treatment, it was immersed in a silane coupling agent (Optool HD-1100TH, manufactured by Daikin Industries, Ltd.) for 20 minutes for release treatment, and baked in an oven at a temperature of 90 ° C. for 1 hour. Finally, the replica mold was immersed in a rinsing solution (Optool HD-TH, manufactured by Daikin Industries, Ltd.) and subjected to ultrasonic cleaning to remove excess silane coupling agent.
上記で得られたレプリカ金型をCressington製108AμtoSpμtterCoaterにセットし、チャンバー内のH2O分圧比を高めるために、チャンバー体積4000mlに対して、0.1mlの超純水をチャンバー内に滴下した。その後、チャンバーを密閉し、真空ポンプでチャンバーを10Paまで減圧し、放電電流値10mA、真空度10Pa、温度25℃の条件でプラズマ処理を120秒間実施した。プラズマ処理後、直ちにシランカップリング剤(ダイキン工業(株)製、オプツールHD-1100TH)に20分間浸漬させて離型処理を施し、温度90℃のオーブンで1時間ベーキングした。最後に、リンス液(ダイキン工業(株)製、オプツールHD-TH)にレプリカ金型を浸漬させ、超音波洗浄して、余剰のシランカップリング剤を除去した。 (Release mold release process)
The replica mold obtained above was set in a 108 AμtoSpμterCoater made by Crestington, and in order to increase the H 2 O partial pressure ratio in the chamber, 0.1 ml of ultrapure water was dropped into the chamber in a chamber volume of 4000 ml. Thereafter, the chamber was sealed, the pressure was reduced to 10 Pa with a vacuum pump, and plasma treatment was performed for 120 seconds under the conditions of a discharge current value of 10 mA, a vacuum degree of 10 Pa, and a temperature of 25 ° C. Immediately after the plasma treatment, it was immersed in a silane coupling agent (Optool HD-1100TH, manufactured by Daikin Industries, Ltd.) for 20 minutes for release treatment, and baked in an oven at a temperature of 90 ° C. for 1 hour. Finally, the replica mold was immersed in a rinsing solution (Optool HD-TH, manufactured by Daikin Industries, Ltd.) and subjected to ultrasonic cleaning to remove excess silane coupling agent.
(基板へのパターン転写)
単結晶サファイア基板のc面上に、光硬化性レジスト(SCIVAX(株)製SVX-01)をスピンコーターで厚さ120nmとなるように塗布し、前記サファイア基板をナノインプリント装置(SCIVAX(株)製、FLAN200)にレジスト面を上向きにセットし、45Paまで真空引きした後、レプリカ金型とサファイア基板を接触させ、圧力3.0MPaをかけ、LED365nm光源から光を60秒間照射してΜVナノインプリントを行った。その後、PETフィルムをサファイア基板から剥離し、サファイア基板上のレジストにパターン転写をおこなった。PETフィルムをサファイア基板から剥離する際の離型性評価、パターン高さの測定をおこなった。離型性評価の「○」は、サファイア基板上のレジスト剥がれなし、「△」はウェハ面積の10%~50%の領域でレジスト剥がれあり、「×」は50%以上の領域でレジスト剥がれあり、以上の三段階評価とした。また、パターン高さは走査型電子顕微鏡を用いてパターン断面から測長した。なお、表1でパターン高さ「×」と判定したものは、サファイア基板上のレジストが大部分で剥がれ、測長できなかった。 (Pattern transfer to the substrate)
On the c-plane of the single crystal sapphire substrate, a photocurable resist (SVX-01 manufactured by SCIVAX Co., Ltd.) was applied with a spin coater so as to have a thickness of 120 nm, and the sapphire substrate was manufactured by a nanoimprint apparatus (manufactured by SCIVAX Co., Ltd.). , FLAN200), the resist surface is set upward, vacuumed to 45 Pa, the contact between the replica mold and the sapphire substrate, a pressure of 3.0 MPa is applied, and light is emitted from an LED 365 nm light source for 60 seconds to perform V nanoimprint. It was. Thereafter, the PET film was peeled from the sapphire substrate, and pattern transfer was performed on the resist on the sapphire substrate. Evaluation of releasability when peeling the PET film from the sapphire substrate and measurement of the pattern height were performed. In the releasability evaluation, “◯” indicates that the resist on the sapphire substrate is not peeled off, “△” indicates that the resist is peeled in an area of 10% to 50% of the wafer area, and “×” indicates that the resist is peeled in an area of 50% or more. The above three-level evaluation was adopted. The pattern height was measured from the pattern cross section using a scanning electron microscope. In Table 1, when the pattern height was determined as “x”, the resist on the sapphire substrate was peeled off to the extent that the length could not be measured.
単結晶サファイア基板のc面上に、光硬化性レジスト(SCIVAX(株)製SVX-01)をスピンコーターで厚さ120nmとなるように塗布し、前記サファイア基板をナノインプリント装置(SCIVAX(株)製、FLAN200)にレジスト面を上向きにセットし、45Paまで真空引きした後、レプリカ金型とサファイア基板を接触させ、圧力3.0MPaをかけ、LED365nm光源から光を60秒間照射してΜVナノインプリントを行った。その後、PETフィルムをサファイア基板から剥離し、サファイア基板上のレジストにパターン転写をおこなった。PETフィルムをサファイア基板から剥離する際の離型性評価、パターン高さの測定をおこなった。離型性評価の「○」は、サファイア基板上のレジスト剥がれなし、「△」はウェハ面積の10%~50%の領域でレジスト剥がれあり、「×」は50%以上の領域でレジスト剥がれあり、以上の三段階評価とした。また、パターン高さは走査型電子顕微鏡を用いてパターン断面から測長した。なお、表1でパターン高さ「×」と判定したものは、サファイア基板上のレジストが大部分で剥がれ、測長できなかった。 (Pattern transfer to the substrate)
On the c-plane of the single crystal sapphire substrate, a photocurable resist (SVX-01 manufactured by SCIVAX Co., Ltd.) was applied with a spin coater so as to have a thickness of 120 nm, and the sapphire substrate was manufactured by a nanoimprint apparatus (manufactured by SCIVAX Co., Ltd.). , FLAN200), the resist surface is set upward, vacuumed to 45 Pa, the contact between the replica mold and the sapphire substrate, a pressure of 3.0 MPa is applied, and light is emitted from an LED 365 nm light source for 60 seconds to perform V nanoimprint. It was. Thereafter, the PET film was peeled from the sapphire substrate, and pattern transfer was performed on the resist on the sapphire substrate. Evaluation of releasability when peeling the PET film from the sapphire substrate and measurement of the pattern height were performed. In the releasability evaluation, “◯” indicates that the resist on the sapphire substrate is not peeled off, “△” indicates that the resist is peeled in an area of 10% to 50% of the wafer area, and “×” indicates that the resist is peeled in an area of 50% or more. The above three-level evaluation was adopted. The pattern height was measured from the pattern cross section using a scanning electron microscope. In Table 1, when the pattern height was determined as “x”, the resist on the sapphire substrate was peeled off to the extent that the length could not be measured.
(実施例2~6)
レプリカ金型の離型処理条件(放電電流値、プラズマ処理時間、チャンバー内の超純水滴下有無)以外は実施例1と同様にしてレプリカ金型を作製し、離型性評価とパターン高さ測定をおこなった。結果を表1に示す。 (Examples 2 to 6)
A replica mold was prepared in the same manner as in Example 1 except for the mold release process conditions (discharge current value, plasma processing time, presence of ultrapure water dripping in the chamber), and evaluation of mold release and pattern height were performed. Measurements were made. The results are shown in Table 1.
レプリカ金型の離型処理条件(放電電流値、プラズマ処理時間、チャンバー内の超純水滴下有無)以外は実施例1と同様にしてレプリカ金型を作製し、離型性評価とパターン高さ測定をおこなった。結果を表1に示す。 (Examples 2 to 6)
A replica mold was prepared in the same manner as in Example 1 except for the mold release process conditions (discharge current value, plasma processing time, presence of ultrapure water dripping in the chamber), and evaluation of mold release and pattern height were performed. Measurements were made. The results are shown in Table 1.
(比較例1)
レプリカ金型の離型処理工程において、プラズマ処理を実施せずに実施例1と同様のシランカップリング剤に浸漬させ、その後の工程は実施例1と同様におこない、レプリカ金型を作製した。こうして作製したレプリカ金型を用いて、サファイア基板上の光硬化性レジストにパターン転写をおこなった。離型性とパターン高さを表1に示す。 (Comparative Example 1)
In the mold release treatment process of the replica mold, the plasma process was not performed and the film was immersed in the same silane coupling agent as in Example 1. The subsequent process was performed in the same manner as in Example 1 to produce a replica mold. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 1 shows the releasability and pattern height.
レプリカ金型の離型処理工程において、プラズマ処理を実施せずに実施例1と同様のシランカップリング剤に浸漬させ、その後の工程は実施例1と同様におこない、レプリカ金型を作製した。こうして作製したレプリカ金型を用いて、サファイア基板上の光硬化性レジストにパターン転写をおこなった。離型性とパターン高さを表1に示す。 (Comparative Example 1)
In the mold release treatment process of the replica mold, the plasma process was not performed and the film was immersed in the same silane coupling agent as in Example 1. The subsequent process was performed in the same manner as in Example 1 to produce a replica mold. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 1 shows the releasability and pattern height.
(比較例2~4)
レプリカ金型の離型処理工程において、プラズマ処理を実施せずに、低圧水銀ランプを備えたチャンバーに、レプリカ金型をランプとの距離3mmにて、光硬化膜側に紫外光照射されるようセットし、大気環境下で1分間(比較例2)、2分間(比較例3)、5分間(比較例4)紫外光を照射した。その後、直ちに実施例1と同様のシランカップリング剤に浸漬させ、その後の工程は実施例1と同様におこない、レプリカ金型を作製した。こうして作製したレプリカ金型を用いて、サファイア基板上の光硬化性レジストにパターン転写をおこなった。離型性とパターン高さを表2に示す。離型性評価、及びパターン高さは実施例1と同様にして行った。 (Comparative Examples 2 to 4)
In the mold release process of the replica mold, the photocurable film side is irradiated with ultraviolet light at a distance of 3 mm from the lamp in a chamber equipped with a low-pressure mercury lamp without performing plasma processing. It was set and irradiated with ultraviolet light for 1 minute (Comparative Example 2), 2 minutes (Comparative Example 3), and 5 minutes (Comparative Example 4) in an atmospheric environment. Then, it was immediately immersed in the silane coupling agent similar to Example 1, and the subsequent process was performed similarly to Example 1, and the replica metal mold | die was produced. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 2 shows the releasability and pattern height. Evaluation of releasability and pattern height were performed in the same manner as in Example 1.
レプリカ金型の離型処理工程において、プラズマ処理を実施せずに、低圧水銀ランプを備えたチャンバーに、レプリカ金型をランプとの距離3mmにて、光硬化膜側に紫外光照射されるようセットし、大気環境下で1分間(比較例2)、2分間(比較例3)、5分間(比較例4)紫外光を照射した。その後、直ちに実施例1と同様のシランカップリング剤に浸漬させ、その後の工程は実施例1と同様におこない、レプリカ金型を作製した。こうして作製したレプリカ金型を用いて、サファイア基板上の光硬化性レジストにパターン転写をおこなった。離型性とパターン高さを表2に示す。離型性評価、及びパターン高さは実施例1と同様にして行った。 (Comparative Examples 2 to 4)
In the mold release process of the replica mold, the photocurable film side is irradiated with ultraviolet light at a distance of 3 mm from the lamp in a chamber equipped with a low-pressure mercury lamp without performing plasma processing. It was set and irradiated with ultraviolet light for 1 minute (Comparative Example 2), 2 minutes (Comparative Example 3), and 5 minutes (Comparative Example 4) in an atmospheric environment. Then, it was immediately immersed in the silane coupling agent similar to Example 1, and the subsequent process was performed similarly to Example 1, and the replica metal mold | die was produced. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 2 shows the releasability and pattern height. Evaluation of releasability and pattern height were performed in the same manner as in Example 1.
(比較例5)
レプリカ金型の離型処理工程において、プラズマ処理を実施せずに、誘電体バリア放電エキシマランプ(中心波長172nm、半値幅14nm、放射照度10mW/cm2、183nm以下の積算相対強度90%)を備えたチャンバーに、レプリカ金型をランプとの距離3mmにて、光硬化膜側に真空紫外光照射されるようセットし、大気圧から真空引きし、真空度100Pa(酸素濃度200ppm)で、2分間、エキシマランプにより真空紫外光を照射した。その後、直ちに実施例1と同様のシランカップリング剤に浸漬させ、その後の工程は実施例1と同様におこない、レプリカ金型を作製した。こうして作製したレプリカ金型を用いて、サファイア基板上の光硬化性レジストにパターン転写をおこなった。離型性とパターン高さを表2に示す。離型性評価、及びパターン高さは実施例1と同様にして行った。 (Comparative Example 5)
A dielectric barrier discharge excimer lamp (center wavelength 172 nm, half-value width 14 nm, irradiance 10 mW / cm 2 , integrated relative intensity 90% or less of 183 nm) without performing plasma treatment in the mold release process of the replica mold In the chamber provided, the replica mold was set at a distance of 3 mm from the lamp so that the photocured film side was irradiated with vacuum ultraviolet light, evacuated from atmospheric pressure, and at a vacuum degree of 100 Pa (oxygen concentration 200 ppm), 2 Irradiated with vacuum ultraviolet light with an excimer lamp for a minute. Then, it was immediately immersed in the silane coupling agent similar to Example 1, and the subsequent process was performed similarly to Example 1, and the replica metal mold | die was produced. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 2 shows the releasability and pattern height. Evaluation of releasability and pattern height were performed in the same manner as in Example 1.
レプリカ金型の離型処理工程において、プラズマ処理を実施せずに、誘電体バリア放電エキシマランプ(中心波長172nm、半値幅14nm、放射照度10mW/cm2、183nm以下の積算相対強度90%)を備えたチャンバーに、レプリカ金型をランプとの距離3mmにて、光硬化膜側に真空紫外光照射されるようセットし、大気圧から真空引きし、真空度100Pa(酸素濃度200ppm)で、2分間、エキシマランプにより真空紫外光を照射した。その後、直ちに実施例1と同様のシランカップリング剤に浸漬させ、その後の工程は実施例1と同様におこない、レプリカ金型を作製した。こうして作製したレプリカ金型を用いて、サファイア基板上の光硬化性レジストにパターン転写をおこなった。離型性とパターン高さを表2に示す。離型性評価、及びパターン高さは実施例1と同様にして行った。 (Comparative Example 5)
A dielectric barrier discharge excimer lamp (center wavelength 172 nm, half-value width 14 nm, irradiance 10 mW / cm 2 , integrated relative intensity 90% or less of 183 nm) without performing plasma treatment in the mold release process of the replica mold In the chamber provided, the replica mold was set at a distance of 3 mm from the lamp so that the photocured film side was irradiated with vacuum ultraviolet light, evacuated from atmospheric pressure, and at a vacuum degree of 100 Pa (oxygen concentration 200 ppm), 2 Irradiated with vacuum ultraviolet light with an excimer lamp for a minute. Then, it was immediately immersed in the silane coupling agent similar to Example 1, and the subsequent process was performed similarly to Example 1, and the replica metal mold | die was produced. Using the replica mold thus produced, pattern transfer was performed on the photocurable resist on the sapphire substrate. Table 2 shows the releasability and pattern height. Evaluation of releasability and pattern height were performed in the same manner as in Example 1.
Claims (4)
- 重合性単量体、珪素化合物および光重合開始剤を含有する光硬化性組成物を塗膜材として使用して、基材層とパターン層とを含んでなる積層体からなるナノインプリント用レプリカ金型を製造する方法であって、前記基材層上に直接又は間接的に形成した、金型にてパターンを転写した塗膜材の光硬化膜面を有する積層体を、H2O存在下でプラズマ雰囲気に供した後、シランカップリング剤と反応させて離型処理することを特徴とするナノインプリント用レプリカ金型の製造方法。 Nanoimprint replica mold comprising a laminate comprising a base material layer and a pattern layer, using a photocurable composition containing a polymerizable monomer, a silicon compound and a photopolymerization initiator as a coating material In the presence of H 2 O, a laminate having a photocured film surface of a coating material formed by transferring a pattern with a mold formed directly or indirectly on the base material layer. A method for producing a replica mold for nanoimprinting, which is subjected to a release treatment after being subjected to a plasma atmosphere and then reacted with a silane coupling agent.
- 前記プラズマ雰囲気における雰囲気圧が0.1Pa以上100Pa以下であることを特徴とする請求項1に記載のナノインプリント用レプリカ金型の製造方法。 The method for producing a replica mold for nanoimprint according to claim 1, wherein the atmospheric pressure in the plasma atmosphere is 0.1 Pa or more and 100 Pa or less.
- 前記プラズマ雰囲気中のH2Oの分圧比が0.001以上0.03以下であることを特徴とする請求項1、または2に記載のナノインプリント用レプリカ金型の製造方法。 3. The method for producing a replica mold for nanoimprint according to claim 1, wherein a partial pressure ratio of H 2 O in the plasma atmosphere is 0.001 or more and 0.03 or less.
- 前記ナノインプリント用レプリカ金型のパターンが、直径が10nm以上5μm以下、高さが10nm以上5μm以下であることを特徴とする請求項1~3のいずれか一項に記載のナノインプリント用レプリカ金型の製造方法。 4. The replica mold for nanoimprint according to claim 1, wherein the pattern of the replica mold for nanoimprint has a diameter of 10 nm to 5 μm and a height of 10 nm to 5 μm. Production method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-236427 | 2016-12-06 | ||
JP2016236427 | 2016-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105353A1 true WO2018105353A1 (en) | 2018-06-14 |
Family
ID=62491808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041323 WO2018105353A1 (en) | 2016-12-06 | 2017-11-16 | Method for producing nanoimprint mold |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018105353A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021111668A (en) * | 2020-01-08 | 2021-08-02 | コネクテックジャパン株式会社 | Method of forming a conductive part that forms a pattern on a substrate |
JP2023518791A (en) * | 2020-08-25 | 2023-05-08 | エルジー・ケム・リミテッド | Large-area holographic optical element replication method and large-area holographic optical element replicated thereby |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008207475A (en) * | 2007-02-27 | 2008-09-11 | Institute Of Physical & Chemical Research | Method for manufacturing replica mold and replica mold |
WO2014168237A1 (en) * | 2013-04-12 | 2014-10-16 | 株式会社カネカ | Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor |
JP2015037169A (en) * | 2013-08-16 | 2015-02-23 | 大日本印刷株式会社 | Imprint system and imprint method |
JP2015131481A (en) * | 2013-12-12 | 2015-07-23 | 株式会社トクヤマ | Method for manufacturing replica die for nanoimprint |
-
2017
- 2017-11-16 WO PCT/JP2017/041323 patent/WO2018105353A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008207475A (en) * | 2007-02-27 | 2008-09-11 | Institute Of Physical & Chemical Research | Method for manufacturing replica mold and replica mold |
WO2014168237A1 (en) * | 2013-04-12 | 2014-10-16 | 株式会社カネカ | Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor |
JP2015037169A (en) * | 2013-08-16 | 2015-02-23 | 大日本印刷株式会社 | Imprint system and imprint method |
JP2015131481A (en) * | 2013-12-12 | 2015-07-23 | 株式会社トクヤマ | Method for manufacturing replica die for nanoimprint |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021111668A (en) * | 2020-01-08 | 2021-08-02 | コネクテックジャパン株式会社 | Method of forming a conductive part that forms a pattern on a substrate |
JP7382835B2 (en) | 2020-01-08 | 2023-11-17 | コネクテックジャパン株式会社 | Wiring formation method for semiconductor devices |
TWI872160B (en) * | 2020-01-08 | 2025-02-11 | 日商肯耐克科技股份有限公司 | Method for forming wiring on semiconductor device |
JP2023518791A (en) * | 2020-08-25 | 2023-05-08 | エルジー・ケム・リミテッド | Large-area holographic optical element replication method and large-area holographic optical element replicated thereby |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5762245B2 (en) | Composition for photo-curable nanoimprint, pattern formation method using the composition, and replica mold for nanoimprint having a cured product of the composition | |
KR101597880B1 (en) | Photo-curable nanoimprint composition, method for forming pattern using the composition, and nanoimprint replica mold comprising cured product of composition | |
JP5755229B2 (en) | Composition for photocurable imprint and method for forming pattern using the composition | |
JP6082237B2 (en) | Manufacturing method of silicon substrate having texture structure | |
JP5804987B2 (en) | Composition for photo-curable nanoimprint, pattern formation method using the composition, and replica mold for nanoimprint having a cured product of the composition | |
JP6522322B2 (en) | Method of manufacturing replica mold for nanoimprinting | |
KR101552526B1 (en) | Three-Dimensional Pattern Forming Material | |
JP5975814B2 (en) | Photocurable nanoimprint composition and pattern formation method | |
JP5362186B2 (en) | Resin composition for nanoimprint | |
WO2013154075A1 (en) | Method for manufacturing article having fine pattern on surface thereof | |
JP2018130716A (en) | Method of producing laminate having modifiable surface | |
TW201422651A (en) | Imprinting photo-curable resin composition, method for producing imimprinting mold, and imprinting mold | |
JP5968041B2 (en) | Photocurable nanoimprint composition and pattern formation method | |
JP2014063863A (en) | Photocurable nanoimprint composition and method for forming pattern | |
JP6008628B2 (en) | Pattern production method using photocurable nanoimprinting composition | |
JP2014065853A (en) | Composition for photocurable nanoimprint and method of forming pattern | |
JP6128952B2 (en) | Photocurable nanoimprint composition and pattern formation method | |
JP2019076889A (en) | Production method of water-repellent laminate | |
WO2018105353A1 (en) | Method for producing nanoimprint mold | |
JP6073166B2 (en) | Photocurable nanoimprint composition and pattern formation method | |
JP6128990B2 (en) | Photocurable nanoimprint composition and pattern formation method | |
JP6452557B2 (en) | Manufacturing method of surface-modifiable laminates | |
JP6099539B2 (en) | Pattern formation method | |
JP2019153625A (en) | Method for manufacturing composition for photocurable nano imprint and composition for photocurable nano imprint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877685 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877685 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |