[go: up one dir, main page]

WO2018105358A1 - Photocoupler - Google Patents

Photocoupler Download PDF

Info

Publication number
WO2018105358A1
WO2018105358A1 PCT/JP2017/041431 JP2017041431W WO2018105358A1 WO 2018105358 A1 WO2018105358 A1 WO 2018105358A1 JP 2017041431 W JP2017041431 W JP 2017041431W WO 2018105358 A1 WO2018105358 A1 WO 2018105358A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
internal space
light receiving
reflecting
Prior art date
Application number
PCT/JP2017/041431
Other languages
French (fr)
Japanese (ja)
Inventor
和裕 山地
充昭 太田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018105358A1 publication Critical patent/WO2018105358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F55/00Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto

Definitions

  • This disclosure relates to photocouplers.
  • the light emitting element mounted on the primary side lead frame and the secondary side lead frame are mounted.
  • the light receiving elements thus arranged are arranged to face each other.
  • a light emitting diode (LED: Light Emitting Diode) is used as the light emitting element, and a photodiode is used as the light receiving element.
  • LED Light Emitting Diode
  • Each element and the lead frame are connected by a bonding wire.
  • the light emitting element and the light receiving element are sealed with a light transmissive resin.
  • Patent Document 2 discloses a photocoupler having a configuration different from the above.
  • the photocoupler disclosed in this document includes a light emitting element and a light receiving element provided on a substrate, a translucent first resin that seals the light emitting element and the light receiving element, and a translucent covering the periphery of the first resin.
  • the third resin is a white resin containing a reflective filler such as titanium oxide. The third resin diffuses and reflects the light emitted from the light emitting element and passed through the first resin, and returns to the first resin again.
  • the above-described conventional photocoupler has problems that the power loss is large and the transmission speed cannot be increased.
  • the problems in the case of the photocoupler having the general configuration disclosed in FIG. 5 of the above-mentioned Patent Document 1 are as follows. First, when a light-emitting diode is used as the light-emitting element, the transmission rate is 100 Mbps (megabits per second) at most, and the transmission rate cannot be increased any more. Even if the light emitting element is changed to a semiconductor laser element such as a vertical cavity surface emitting laser (VCSEL) element in order to perform high-speed communication on the order of Gbps (Gigabit per second), a lead frame is used. Therefore, the power loss due to impedance mismatching becomes large. Therefore, high-speed signal transmission cannot be performed after all.
  • VCSEL vertical cavity surface emitting laser
  • the problems in the case of the photocoupler having the configuration described in Patent Document 2 are as follows.
  • the LED When an LED is used as the light emitting element, the LED emits isotropic light, that is, it emits light having a power equal to all angles, so that it is reflected by the reflective third resin and is reflected on the light receiving element.
  • the reaching light is limited to a part emitted from the LED. For this reason, the power loss of light is large.
  • the semiconductor laser beam has a strong directivity, that is, the spread of the laser beam.
  • the small angle causes a problem, and the ratio of the light that is reflected by the third resin and reaches the light receiving element is reduced.
  • the photocoupler having the configuration of Patent Document 2 cannot use a semiconductor laser element, and therefore cannot perform high-speed communication in the Gbps order.
  • This disclosure takes the above-mentioned problems into consideration, and an object thereof is to provide a photocoupler capable of reducing the power loss of light and improving the signal transmission speed.
  • a photocoupler covers a substrate, a light emitting element that is disposed on the main surface of the substrate and emits laser light, a light receiving element that is disposed on the main surface of the substrate, and a main surface of the substrate.
  • a translucent resin member that seals the light emitting element and the light receiving element, and one or a plurality of mirrors disposed on the surface of the resin member are provided.
  • the one or more mirrors are arranged so that the laser light emitted from the light emitting element is guided to the light receiving surface of the light receiving element by each of the one mirror or the plurality of mirrors regularly reflecting incident light. ing.
  • the laser light is used for signal transmission, and the laser light is guided from the light emitting element to the light receiving element by the regular reflection at the mirror, so that the power loss of the light can be reduced. Furthermore, since a high-frequency compatible substrate can be used by arranging a light emitting element and a light receiving element on the substrate, it is suitable for high-speed signal transmission on the order of Gbps.
  • the surface of the resin member may include one or more reflecting surfaces that function as one or more mirrors.
  • the incident angle of the laser light on each reflecting surface is larger than the critical angle that is the angle at which the incident light is totally reflected.
  • the one or more reflecting surfaces described above may be configured to include a first reflecting surface and a second reflecting surface.
  • the first reflecting surface forms an angle of 45 degrees with the main surface of the substrate
  • the second reflecting surface forms an angle of 90 degrees with the first reflecting surface.
  • the light emitting element emits laser light toward the first reflecting surface.
  • the laser beam specularly reflected by the first reflecting surface reaches the second reflecting surface
  • the laser beam specularly reflected by the second reflecting surface reaches the light receiving surface of the light receiving element.
  • the incident angle of the laser beam to each of the first reflecting surface and the second reflecting surface is 45 degrees, which is a value larger than the critical angle of the resin material. Therefore, the first reflection surface and the second reflection surface can totally reflect incident light.
  • an angle of 45 degrees or 90 degrees it does not mean that the angle must be exactly 45 degrees or 90 degrees, and manufacturing errors are included within a range in which the optical path is not significantly shifted. Say the range.
  • the resin member may have a first groove and a second groove that are recessed from the surface opposite to the substrate toward the substrate.
  • the surface that defines the first groove includes the first reflective surface
  • the surface that defines the second groove includes the second reflective surface
  • the one or more mirrors may include a reflector disposed on the surface of the resin member.
  • the laser light is regularly reflected at the interface between the resin member and the reflecting plate. According to this configuration, the laser beam can be totally reflected by the reflecting plate regardless of the incident angle of the laser beam to the reflecting plate.
  • the resin member has a first internal space, and the surface defining the first internal space is a first lens surface protruding into the first internal space. May be included. In this case, the laser light emitted from the light emitting element reaches one of the one mirror or the plurality of mirrors after passing through the first lens surface.
  • the laser light emitted from the light emitting element can be collimated to make the light substantially parallel, so that the power loss of light can be further reduced.
  • the surface defining the first internal space may include a second lens surface protruding into the first internal space.
  • the laser light regularly reflected by one of the one mirror or the plurality of mirrors reaches the light receiving surface of the light receiving element after passing through the second lens surface.
  • the laser light can be condensed on the light receiving surface of the light receiving element, the light receiving surface of the light receiving element can be used even if there is a deviation in the arrangement of the light receiving elements when the light receiving element is mounted on the substrate. Laser light can be guided upward.
  • the substrate may be located on the opposite side to the first internal space with the first lens surface and the second lens surface interposed therebetween.
  • the substrate may be located on the opposite side of the first lens surface and the second lens surface with the first internal space interposed therebetween.
  • the resin member further includes a second internal space different from the first internal space, and a surface defining the second internal space is a second lens surface protruding into the second internal space. May be included.
  • the laser light regularly reflected by one of the one mirror or the plurality of mirrors reaches the light receiving surface of the light receiving element after passing through the second lens surface.
  • the resin member has an internal space
  • the surface defining the internal space may include a bottom surface and an upper surface that face each other with the internal space interposed therebetween.
  • the substrate is located on the opposite side of the internal space with the bottom surface in between.
  • the one or more mirrors may include a reflector disposed on the top surface.
  • the bottom surface includes a first lens surface that guides the laser light emitted from the light emitting element to the reflecting plate, and a second lens surface that guides the laser light regularly reflected by the reflecting plate to the light receiving surface of the light receiving element. Including. According to this configuration, the laser beam can be totally reflected by the reflecting plate regardless of the incident angle of the laser beam to the reflecting plate.
  • the light emitting element may include a vertical cavity surface emitting laser element.
  • the photocoupler may further include a first integrated circuit chip that is disposed on the main surface of the substrate and supplies a drive signal to the light emitting element.
  • the photocoupler may further include a second integrated circuit chip that is disposed on the main surface of the substrate and that processes an output signal of the light receiving element.
  • the photocoupler is disposed on the back surface of the substrate opposite to the main surface of the substrate, the first ground terminal for the light emitting element, and disposed on the back surface of the substrate. And a second ground terminal for the light receiving element separated from each other.
  • the substrate may be separated into a first substrate and a second substrate.
  • the light emitting element is disposed on the main surface of the first substrate
  • the light receiving element is disposed on the main surface of the second substrate.
  • the resin member includes a first sealing portion that seals the light emitting element by covering the main surface of the first substrate, and a second seal that seals the light receiving element by covering the main surface of the second substrate.
  • a top plate portion that connects the surface of the first sealing portion opposite to the first substrate and the surface of the second sealing portion opposite to the second substrate.
  • the surface of the top plate includes one or more reflecting surfaces that function as the one or more mirrors described above. The incident angle of the laser light on each reflecting surface is larger than the critical angle that is the angle at which the incident light is totally reflected.
  • the above configuration can be suitably used when it is necessary to increase the distance between the transmission-side terminal and the reception-side terminal of the photocoupler in order to improve the dielectric strength, such as a medical device. .
  • the first sealing portion has the first internal space, and the surface defining the first internal space is the first internal space.
  • a first lens surface protruding into the space may be included.
  • the laser light emitted from the light emitting element reaches one of the one reflecting surface or the plurality of reflecting surfaces after passing through the first lens surface.
  • the second sealing portion may have a second internal space, and the surface defining the second internal space may include a second lens surface protruding into the second internal space.
  • the laser beam specularly reflected by either the one reflecting surface or the plurality of reflecting surfaces reaches the light receiving surface of the light receiving element after passing through the second lens surface.
  • the laser light emitted from the light emitting element can be collimated to make the light substantially parallel, so that the power loss of light can be further reduced. Further, since the laser beam can be condensed on the light receiving surface of the light receiving element, even if a deviation occurs in the arrangement of the light receiving element when the light receiving element is mounted on the substrate, the laser beam is applied to the light receiving surface of the light receiving element. Can lead.
  • a photocoupler includes a substrate, a light emitting element that is disposed on the main surface of the substrate, emits laser light in a direction perpendicular to the substrate, and a light receiving element that is positioned on the main surface of the substrate.
  • a transparent resin member for sealing the light emitting element and the light receiving element is provided by covering the main surface of the substrate.
  • the refractive index of the resin member is larger than ⁇ 2.
  • the surface of the resin member includes a first reflection surface and a second reflection surface that regularly reflect incident light.
  • the first reflecting surface forms an angle of 45 degrees with the main surface of the substrate and is disposed at a position overlapping the light emitting element when viewed from a direction perpendicular to the substrate.
  • the second reflecting surface forms an angle of 90 degrees with the first reflecting surface, faces the first reflecting surface with a part of the resin member interposed therebetween, and receives light when viewed from a direction perpendicular to the substrate. It arrange
  • the laser light is used for signal transmission, and the laser light is guided from the light emitting element to the light receiving element by the regular reflection at the mirror, so that the power loss of the light can be reduced. Furthermore, since a high-frequency compatible substrate can be used by arranging a light emitting element and a light receiving element on the substrate, it is suitable for a high-speed response on the order of Gbps.
  • the resin member may have an internal space
  • the surface defining the internal space may include a bottom surface and an upper surface facing each other with the internal space interposed therebetween.
  • the substrate is located on the opposite side of the internal space with the bottom surface in between.
  • the bottom surface is located between the light emitting element and the first reflecting surface, is located between the first lens surface projecting into the internal space, and the light emitting element and the second reflecting surface, and projects into the internal space.
  • a second lens surface is located between the light emitting element and the first reflecting surface, is located between the first lens surface projecting into the internal space, and the light emitting element and the second reflecting surface, and projects into the internal space.
  • the laser light emitted from the light emitting element can be collimated to make the light substantially parallel, so that the power loss of light can be further reduced. Further, since the laser beam can be condensed on the light receiving surface of the light receiving element, even if a deviation occurs in the arrangement of the light receiving element when the light receiving element is mounted on the substrate, the laser beam is applied to the light receiving surface of the light receiving element. Can lead.
  • the photocoupler of the present disclosure it is possible to reduce light power loss and improve signal transmission speed.
  • FIG. 1 is an exploded perspective view showing a configuration of a photocoupler according to Embodiment 1.
  • FIG. It is a top view of the photocoupler of FIG.
  • FIG. 3 is a cross-sectional view taken along a cutting line III-III in FIG.
  • FIG. 4 is a diagram illustrating an optical path of a laser beam from a light emitting element to a light receiving element in the cross-sectional view of FIG. 3.
  • FIG. 4 is a flowchart showing an example of a method for manufacturing the photocoupler shown in FIGS. 1 to 3.
  • FIG. 7 is a cross-sectional view of a photocoupler according to a modification of the first embodiment.
  • FIG. FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to a second embodiment.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to Embodiment 3.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to a fourth embodiment.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a photocoupler according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a photocoupler according to a seventh embodiment.
  • FIG. 1 is an exploded perspective view showing the configuration of the photocoupler according to the first exemplary embodiment.
  • FIG. 2 is a plan view of the photocoupler of FIG.
  • FIG. 3 is a cross-sectional view taken along section line III-III in FIG.
  • directions parallel to the substrate are defined as an X direction and a Y direction, and a direction perpendicular to the substrate is defined as a Z direction.
  • the photocoupler includes a substrate 30, a light emitting element 31 that emits laser light, a light receiving element 32, integrated circuit (IC: Integrated Circuit) chips 33 and 34, and a resin member 60.
  • IC integrated Circuit
  • the substrate 30 is desirably made of a material having a small dielectric loss tangent when used at a high frequency.
  • a material having a small dielectric loss tangent when used at a high frequency.
  • an LGA (Land Grid Array) substrate can be used so that a high-frequency signal can be transmitted.
  • planar electrode terminals are arranged in a grid pattern to perform reflow soldering on the printed circuit board. In FIG. 3, four terminals 35 to 38 provided on the back surface 302 of the substrate 30 are representatively shown.
  • the light emitting element 31 is disposed on the main surface 301 of the substrate 30.
  • the light emitting element 31 is, for example, a vertical cavity surface emitting laser (VCSEL) element, and emits laser light in a direction perpendicular to the substrate 30 (+ Z direction).
  • the light emitting element 31 is fixed on the substrate 30 by, for example, solder, and is electrically connected to a conductive pattern (not shown) formed on the main surface 301 of the substrate 30 by a bonding wire (not shown).
  • the light receiving element 32 is disposed on the main surface 301 of the substrate 30.
  • the light receiving element 32 is, for example, a semiconductor photodetector such as a photodiode or a phototransistor.
  • the light receiving surface of the light receiving element 32 is directed above the substrate 30 (+ Z direction).
  • the light receiving element 32 is fixed on the substrate 30 by, for example, solder, and is electrically connected to a conductive pattern (not shown) formed on the main surface 301 of the substrate 30 by a bonding wire (not shown).
  • the integrated circuit chip 33 incorporates a signal processing circuit such as a driver circuit for the light emitting element 31.
  • the integrated circuit chip 34 incorporates a signal processing circuit such as a trans-impedance amplifier (TIA) that impedance-converts and amplifies the current signal output from the light-receiving element 32 and outputs it as a voltage signal.
  • TIA trans-impedance amplifier
  • planar electrode terminals are provided on the back surface 302 of the substrate 30.
  • planar electrode terminals include a primary side terminal (a ground terminal 35, a power supply terminal 36, and other signal terminals (not shown)) used for the light emitting element 31 and the integrated circuit chip 33, a light receiving element 32, and Secondary terminals used for the integrated circuit chip 34 (a ground terminal 37, a power supply terminal 38, and other signal terminals (not shown)) are included.
  • the primary side terminal and the secondary side terminal must be electrically separated.
  • the primary side ground terminal 35 and the secondary side ground terminal 37 are electrically separated from each other
  • the primary side power supply terminal 36 and the secondary side power supply terminal 38 are electrically separated from each other. Has been.
  • the resin member 60 is formed of a translucent resin material that transmits the laser light emitted from the light emitting element 31.
  • a translucent resin material that transmits the laser light emitted from the light emitting element 31.
  • an epoxy resin is used as the resin member 60.
  • Epoxy resin is almost transparent to laser light in the 850 nm band and has a refractive index of about 1.55.
  • the wavelength of the laser beam and the material of the resin member 60 are not limited to these.
  • the outer shape of the resin member 60 is a substantially rectangular parallelepiped shape, and includes the sealing portion 20 and the top plate portion 11.
  • the sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30, and seals the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34.
  • a rectangular parallelepiped hole 21 is formed on the surface of the sealing portion 20 opposite to the substrate 30 (hereinafter referred to as “upper surface 25”).
  • the bottom surface 22 of the hole 21 includes lens surfaces 23 and 24 protruding upward (+ Z direction).
  • the lens surfaces 23 and 24 function as semi-convex lenses.
  • the top plate 11 is provided so as to cover the hole 21.
  • the top plate 11 has grooves 12 and 14 that are recessed in a direction from the surface opposite to the substrate 30 (hereinafter referred to as “upper surface 17”) toward the substrate 30.
  • the plane that defines the groove 12 has a flat reflecting surface 13 that regularly reflects the laser beam.
  • the plane that defines the groove 14 has a flat reflecting surface 15 that regularly reflects the laser beam.
  • regular reflection refers to reflection with the same incident angle and reflection angle. Regular reflection is also called specular reflection.
  • the reflecting surfaces 13 and 15 are desirably so smooth that they regularly reflect all of the incident laser light, but may partially include scattered light. As a whole, each of the reflecting surfaces 13 and 15 forms a reflected beam having a reflection angle equal to the incident angle of the incident beam.
  • the reflecting surface 13 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30.
  • the reflection surface 15 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30 and forms an angle of 90 degrees with respect to the reflection surface 13.
  • the angle ⁇ 1 formed by the upper surface 17 of the top plate portion 11 and the reflecting surface 13 is 45 degrees.
  • the angle ⁇ 2 formed by the upper surface 17 of the top plate 11 and the reflecting surface 15 is 45 degrees.
  • the distance from the reflecting surface 13 to the main surface 301 of the substrate 30 is substantially equal to the distance from the reflecting surface 15 to the main surface 301 of the substrate 30.
  • the reflecting surface 13, the lens surface 23, and the light emitting element 31 overlap each other, and the lens surface 23 is located between the reflecting surface 13 and the light emitting element 31. It is desirable that the optical axis of the lens surface 23 passes through the center of the emission surface of the light emitting element 31.
  • the reflecting surface 15, the lens surface 24, and the light receiving element 32 overlap each other, and the lens surface 24 is located between the reflecting surface 15 and the light receiving element 32. ing. It is desirable that the optical axis of the lens surface 24 passes through the center of the light receiving surface of the light receiving element 32.
  • FIG. 4 is a diagram showing an optical path of a laser beam from the light emitting element to the light receiving element in the cross-sectional view of FIG.
  • the optical path 70 of the laser beam is indicated by a broken line in FIG.
  • the integrated circuit chip 33 drives the light emitting element 31 based on the input signal.
  • the light emitting element 31 emits laser light in a direction perpendicular to the substrate 30.
  • the laser light emitted from the light emitting element 31 is not necessarily a parallel light beam but has a spread.
  • the lens surface 23 collimates the laser light emitted from the light emitting element 31 into parallel light.
  • the laser light that has passed through the lens surface 23 passes through the internal space 61 defined by the hole portion 21 and then enters the top plate portion 11 from the lower surface 18 of the top plate portion 11. Thereafter, the laser beam is regularly reflected by the reflecting surface 13.
  • the refractive index of a translucent resin material such as an epoxy resin satisfies this total reflection condition.
  • the laser beam totally reflected by the reflecting surface 13 is again totally reflected by the reflecting surface 15 and travels toward the substrate 30.
  • the laser light enters the lens surface 24 after passing through the internal space 61 from the lower surface 18 of the top plate portion 11.
  • the laser light is condensed on the light receiving surface of the light receiving element 32 by the lens surface 24.
  • the light receiving element 32 converts an optical signal from the laser light into a current signal and outputs the current signal.
  • the integrated circuit chip 34 generates a voltage signal by impedance-converting and amplifying the current signal output from the light receiving element 32.
  • FIG. 5 is a flowchart showing an example of a manufacturing method of the photocoupler shown in FIGS.
  • step S100 light emitting element 31, light receiving element 32, and integrated circuit chips 33 and 34 are manufactured or prepared (step S100), and substrate 30 on which conductive patterns and electrodes are formed is manufactured. Alternatively, it is prepared (step S110). In this case, an assembly of substrates in a state where a large number of substrates 30 in FIG. 3 are connected in a matrix is manufactured.
  • step S120 the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34 are attached to each substrate 30 by soldering or the like.
  • the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34 are connected to a conductive pattern (not shown) on the main surface 301 of the substrate 30 by a bonding wire (not shown).
  • the sealing portion 20 made of an epoxy resin is formed on the main surface 301 of each substrate 30 by transfer molding using a mold (step S130).
  • the hole 21 and the lens surfaces 23 and 24 of FIG. 3 are integrally molded.
  • the top plate portion 11 made of an epoxy resin is attached to the upper surface 25 of the sealing portion 20 (step S140). Specifically, a state in which a large number of top plate portions 11 are connected in a matrix is manufactured in advance by transfer molding using a mold. The grooves 12 and 14 are also formed in the top plate 11 in advance by this transfer molding.
  • step S150 the assembly of the substrate 30 and the assembly of the top plate portion 11 are cut into individual substrates by dicing, thereby completing the photocoupler 1 (step S150).
  • the internal space 61 of the resin member 60 defined by the hole 21 and the lower surface 18 of the top plate portion 11 may communicate with the external space of the resin member 60.
  • the side surface portion in the Y direction among the side surface portions of the hole portion 21 may be provided, and the side surface portion in the X direction may not be provided. Only the side surface portion is provided, and the side surface portion in the Y direction may not be provided.
  • the shapes of the sealing portion 20 and the top plate portion 11 shown in FIGS. 1 to 3 are examples and can be arbitrarily changed.
  • the sealing portion 20 may have a substantially rectangular parallelepiped shape, and the lens surfaces 23 and 24 may be formed so as to protrude from the upper surface thereof.
  • the side surface portion of the hole portion 21 shown in FIGS. 1 to 3 is formed integrally with the top plate portion 11.
  • the lens surfaces 23 and 24 may be formed on the lower surface 18 of the top plate portion 11.
  • the surface that defines the internal space 61 of the resin member 60 includes the bottom surface 22 and the top surface 62 that face each other with the internal space 61 interposed therebetween.
  • the substrate 30 is located on the opposite side of the internal space 61 with the bottom surface 22 interposed therebetween.
  • Each of the lens surfaces 23 and 24 may be formed on either the bottom surface 22 or the top surface 62. In any case, the lens surfaces 23 and 24 are formed so as to protrude into the internal space 61.
  • the internal space 61 may be divided into two, and the lens surfaces 23 and 24 may be formed in the two internal spaces, respectively. This will be specifically described with reference to FIG.
  • FIG. 6 is a cross-sectional view of a photocoupler according to a modification of the first embodiment.
  • the resin member 60 of the photocoupler 1A in FIG. 6 has an internal space 61A and an internal space 61B.
  • Each of the internal spaces 61 ⁇ / b> A and 61 ⁇ / b> B may communicate with the external space of the resin member 60.
  • the surface defining the internal space 61A includes a bottom surface 22A including the lens surface 23 and an upper surface 62A.
  • the surface that defines the internal space 61B includes a bottom surface 22B including the lens surface 24 and an upper surface 62B.
  • the lens surface 23 may be provided on the upper surface 62A
  • the lens surface 24 may be provided on the upper surface 62B.
  • the photocoupler 1 of the present embodiment by using a semiconductor laser element such as a VCSEL with good directivity for the light emitting element 31, it is possible to reduce the proportion of light flying in an unnecessary direction like a light emitting diode. . Thereby, the power loss of light can be reduced.
  • the lens surface 23 above the light emitting element 31 on the transmitting side the laser light emitted from the light emitting element 31 can be collimated, so that no light loss occurs on the reflecting surface 13. Can be.
  • the lens surface 24 above the light receiving element 32 on the receiving side the laser light regularly reflected by the reflecting surface 15 can be efficiently condensed on the light receiving surface of the light receiving element 32. For example, even if a slight shift occurs in the mounting position of the light receiving element 32 on the substrate 30, the laser light can be condensed in the light receiving surface of the light receiving element 32, so that the power loss of light can be reduced.
  • reducing the power loss of light is particularly important for high-speed transmission of Gbps order or higher. This is because the higher the signal transmission speed, the lower the receiving sensitivity on the receiving side, and therefore it is required that the light power loss be as small as possible. Furthermore, by arranging the light emitting element 31 and the light receiving element 32 on the substrate 30, it becomes easy to cope with high-speed signal transmission. In the method using the lead frame, power loss due to impedance mismatch becomes large. For example, the transmission loss of high-speed signals can be suppressed by configuring the substrate 30 with an LGA substrate.
  • the manufacturing cost can be reduced by forming an optical mirror and lens using a resin member.
  • FIG. 7 is a cross-sectional view illustrating a configuration of the photocoupler according to the second embodiment.
  • the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.
  • the photocoupler 2 in FIG. 7 is characterized in that the angle formed between the reflecting surfaces 13 and 15 and the main surface of the substrate 30 is larger than 45 degrees.
  • the angle ⁇ 1 formed by the upper surface 17 of the top plate portion 11 and the reflecting surface 13 and the top plate portion is greater than 45 degrees.
  • the incident angle ⁇ i of the laser beam to the reflecting surface 13 and the reflecting angle ⁇ r of the laser beam from the reflecting surface 13 are larger than 45 degrees. Accordingly, in the case of FIG. 7, the laser light totally reflected on the reflecting surface 13 can be further totally reflected on the upper surface 17 of the top plate portion 11 and then reach the reflecting surface 15. The laser light totally reflected by the reflection surface 15 reaches the light receiving surface of the light receiving element 32 after passing through the lens surface 24. Since the other points of FIG. 7 are the same as those of FIG. 4, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • each reflecting surface may not be 45 degrees as long as it is larger than the critical angle.
  • the plurality of reflecting surfaces are arranged so that each of them reflects the incident light to guide the laser light emitted from the light emitting element 31 to the light receiving element 32. Even with such a configuration of the photocoupler 2, the same effects as those of the first embodiment can be obtained.
  • FIG. 8 is a cross-sectional view illustrating a configuration of the photocoupler according to the third embodiment.
  • the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.
  • the photocoupler 3 in FIG. 8 is characterized in that the angle formed by the reflecting surfaces 13 and 15 and the main surface of the substrate 30 is smaller than 45 degrees.
  • the angle ⁇ 1 formed by the top surface 17 of the top plate portion 11 and the reflecting surface 13 and the top plate portion is smaller than 45 degrees.
  • the angles ⁇ 1 and ⁇ 2 are larger than the critical angle that is the angle at which the incident light is totally reflected on the reflecting surface.
  • the incident angle ⁇ i of the laser beam to the reflecting surface 13 and the reflecting angle ⁇ r of the laser beam from the reflecting surface 13 are smaller than 45 degrees but larger than the critical angle. Accordingly, in the case of FIG. 8, the laser light totally reflected on the reflecting surface 13 can be further totally reflected on the lower surface 18 of the top plate portion 11 and then reach the reflecting surface 15. The laser light totally reflected by the reflection surface 15 reaches the light receiving surface of the light receiving element 32 after passing through the lens surface 24. Since the other points in FIG. 8 are the same as those in FIG. 4, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • each reflecting surface may be smaller than 45 degrees as long as it is larger than the critical angle.
  • the plurality of reflecting surfaces are arranged so that each of them reflects the incident light to guide the laser light emitted from the light emitting element 31 to the light receiving element 32. Even with such a configuration of the photocoupler 3, the same effects as in the first embodiment can be obtained.
  • FIG. 9 is a cross-sectional view showing the configuration of the photocoupler according to the fourth embodiment.
  • the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.
  • the resin member 60 does not have the internal space 61, and therefore differs from the resin member 60 of FIG. 4 in that it does not have the lens surfaces 23 and 24.
  • the photocoupler 4 includes a sealing portion 20 formed of a translucent resin material that transmits laser light.
  • the sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30, and seals the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34.
  • the sealing unit 20 has grooves 26 and 28 that are recessed in a direction from the upper surface 25 on the opposite side of the substrate 30 toward the substrate 30.
  • the plane that defines the groove 26 has a flat reflecting surface 27 that regularly reflects the laser beam.
  • the plane that defines the groove 26 has a flat reflecting surface 29 that regularly reflects the laser beam.
  • the reflection surface 27 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30.
  • the reflection surface 29 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30 and forms an angle of 90 degrees with respect to the reflection surface 27.
  • the angle ⁇ 1 formed by the upper surface 25 of the sealing part 20 and the reflecting surface 27 is 45 degrees.
  • the angle ⁇ 2 formed by the upper surface 25 of the sealing portion 20 and the reflecting surface 29 is 45 degrees.
  • the distance from the reflecting surface 27 to the main surface 301 of the substrate 30 is substantially equal to the distance from the reflecting surface 29 to the main surface 301 of the substrate 30.
  • the light emitting element 31 emits laser light in a direction perpendicular to the substrate 30.
  • the laser light reaches the reflection surface 29 after being totally reflected by the reflection surface 27.
  • the laser light totally reflected by the reflecting surface 29 reaches the light receiving surface of the light receiving element 32.
  • the laser light emitted from the light emitting element 31 is not necessarily a parallel light beam but has a spread, the laser light gradually increases in beam diameter. In this case, power loss of light can be suppressed by preventing the laser light from protruding from the reflecting surfaces 27 and 29 and the light receiving surface of the light receiving element 32.
  • the spread of the laser beam can be suppressed by forming the reflecting surfaces 27 and 29 into a curved surface so as to function as a concave mirror.
  • FIG. 10 is a cross-sectional view illustrating a configuration of the photocoupler according to the fifth embodiment.
  • the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.
  • the photocoupler 5 in FIG. 10 differs from the photocoupler 1 in FIG. 3 in that a reflecting plate 43 is provided on the upper surface 62 of the internal space 61 instead of the reflecting surfaces 13 and 15 provided on the upper surface of the resin member 60. Different. This will be specifically described below.
  • the resin member 60 is formed of a translucent resin material that transmits laser light, and the outer shape thereof is a substantially rectangular parallelepiped shape.
  • the resin member 60 includes a sealing portion 20 and a top plate portion 40.
  • the sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30 and has an internal space 61 defined by the hole 21.
  • the specific configuration of the sealing portion 20 is almost the same as that in FIG. 4 of the first embodiment, but the arrangement of the lens surface 23 is different from that in FIG. Specifically, as shown in FIG. 10, the optical axis of the lens surface 23 is shifted from the center of the emission surface of the light emitting element 31 when viewed from the direction perpendicular to the main surface 301 of the substrate 30.
  • the top plate part 40 is provided so as to cover the hole part 21.
  • the reflection plate 43 is provided on the lower surface 42 of the top plate portion 40 (that is, the upper surface 62 of the internal space 61).
  • the reflecting surface of the reflecting plate 43 (that is, the surface on the substrate 30 side) totally reflects incident light. Light hardly penetrates into the reflection plate 43.
  • the laser light emitted from the light emitting element 31 is refracted by the lens surface 23 and guided to the reflecting plate 43.
  • the laser light regularly reflected by the reflecting surface of the reflecting plate 43 is refracted by the lens surface 24 and collected on the light receiving surface of the light receiving element 32.
  • FIG. 11 is a cross-sectional view illustrating a configuration of the photocoupler according to the sixth embodiment.
  • the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.
  • the photocoupler 6 in FIG. 11 differs from the photocoupler 1 in FIG. 4 in that only the transmission-side lens surface 23 is provided and the hour-reception-side lens surface 24 is not provided. Furthermore, the photocoupler 6 in FIG. 11 differs from the photocoupler 1 in FIG. 4 in that a reflecting plate 54 is provided instead of the reflecting surfaces 13 and 15 provided in the resin member 60. The laser light is reflected at the interface between the reflecting plate 54 and the resin member 60. This will be specifically described below.
  • resin member 60 is formed of a translucent resin material that transmits laser light, and includes sealing portion 20 and top plate portion 50.
  • the sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30, and seals the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34.
  • a hole 21 is formed in the upper surface 25 of the sealing portion 20.
  • the bottom surface 22 of the hole 21 includes a lens surface 23 protruding upward.
  • the top plate part 11 is attached to the upper surface 25 of the sealing part 20 so as to cover the hole part 21.
  • a curved surface 53 is formed on the surface 51 of the top plate 11 opposite to the substrate 30.
  • a reflection plate 54 is provided so as to cover the curved surface 53.
  • the laser beam is reflected at the interface between the reflecting plate 54 and the resin member 60.
  • the reflection plate 54 functions as a concave mirror.
  • the laser light regularly reflected by the reflecting plate 54 is condensed on the light receiving surface of the light receiving element 32.
  • FIG. 12 is a cross-sectional view illustrating a configuration of the photocoupler according to the seventh embodiment.
  • the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.
  • the substrate 30 is different from the photocoupler 1 in FIG. 4 in that the substrate 30 is separated into a first substrate 30A and a second substrate 30B.
  • the light emitting element 31 and the integrated circuit chip 33 are disposed on the main surface 301A of the first substrate 30A, and the light receiving element 32, the integrated circuit chip 34, and the main surface 301B of the second substrate 30B. Is placed.
  • the first substrate 30A and the second substrate 30B are arranged along the same plane.
  • the resin member 60 is formed of a translucent resin material that transmits laser light, and includes a first sealing portion 20A, a second sealing portion 20B, and the top plate portion 11.
  • the first sealing unit 20A seals the light emitting element 31 and the integrated circuit chip 33 by covering the main surface 301A of the first substrate 30A.
  • the second sealing unit 20B seals the light receiving element 32 and the integrated circuit chip 34 by covering the main surface 301B of the second substrate 30B.
  • the top plate portion 11 connects the upper surface 25A of the first sealing portion 20A and the upper surface 25B of the second sealing portion 20B.
  • the top plate 11 includes a groove 12 that is recessed in the direction from the upper surface 17 opposite to the first substrate 30A toward the first substrate 30A, and the second substrate 30B from the upper surface 17 opposite to the second substrate 30B. And a groove 14 that is recessed in the direction toward the.
  • the plane that defines the groove 12 has a flat reflecting surface 13 that regularly reflects the laser beam.
  • the plane that defines the groove 14 has a flat reflecting surface 15 that regularly reflects the laser beam.
  • the reflective surface 13 forms an angle of 45 degrees with respect to the main surface 301A of the first substrate 30A.
  • the reflection surface 15 forms an angle of 45 degrees with respect to the main surface 301B of the second substrate 30B and forms an angle of 90 degrees with respect to the reflection surface 13.
  • the distance from the reflective surface 13 to the main surface 301A of the first substrate 30A is substantially equal to the distance from the reflective surface 15 to the main surface 301B of the second substrate 30B.
  • the first sealing portion 20A has a first internal space 61A defined by the hole portion 21A.
  • the bottom surface 22A of the hole 21A includes a first lens surface 23 protruding into the first internal space 61A.
  • the second sealing portion 20B has a second internal space 61B defined by the hole portion 21B.
  • the bottom surface 22B of the hole portion 21B includes a second lens surface 24 protruding into the second internal space 61B.
  • the reflecting surface 13, the lens surface 23, and the light emitting element 31 overlap, and the lens surface 23 is located between the reflecting surface 13 and the light emitting element 31. ing. It is desirable that the optical axis of the lens surface 23 passes through the center of the emission surface of the light emitting element 31.
  • the reflecting surface 15, the lens surface 24, and the light receiving element 32 overlap, and the lens surface 24 is located between the reflecting surface 15 and the light receiving element 32. Is located. It is desirable that the optical axis of the lens surface 24 passes through the center of the light receiving surface of the light receiving element 32.
  • the photocoupler 7 having the above configuration the same effects as those of the photocoupler 1 of the first embodiment are obtained. Further, the photocoupler 7 having the above-described configuration is required to increase the distance between the transmission-side terminal and the reception-side terminal of the photocoupler 7 in order to improve the dielectric strength according to the standard, such as a medical device. Is preferably used.
  • 1, 1A, 2-7 photocoupler 11, 40, 50 top plate part, 12, 14, 26, 28 groove part, 13, 15, 27, 29 reflective surface, 20 sealing part, 20A first sealing part , 20B second sealing part, 21, 21A, 21B hole part, 23, 24 lens surface, 30, 30A, 30B substrate, 31 light emitting element, 32 light receiving element, 33, 34 integrated circuit chip, 35, 37 ground terminal 36, 38 terminal, 43, 54 reflector, 60 resin member, 61, 61A, 61B internal space, 70 optical path, 301, 301A, 301B main surface, 302 back surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

A photocoupler (1) has one or a plurality of mirrors arranged on a surface of an optically transmissive resin member (60) encapsulating a light emitting element (31) and a light reception element (32). The one or a plurality of mirrors are arranged such that each of the one or plurality of mirrors specularly reflects incident light to guide laser light emitted from the light emitting element (31) to a light reception surface of the light reception element (32). Preferably, the surface of the resin member may include one or a plurality of reflecting surfaces (13, 15) that function as the one or plurality of mirrors. In this case, the incident angle of laser light to each of the reflecting surfaces (13, 15) is greater than a critical angle which is the angle at which the incident light is total internally reflected.

Description

フォトカプラPhoto coupler

 この開示は、フォトカプラに関する。 This disclosure relates to photocouplers.

 例えば、特開平08-008457号公報(特許文献1)の図5に開示された一般的な構成のフォトカプラでは、1次側リードフレームに搭載された発光素子と、2次側リードフレームに搭載された受光素子とが対向配置されている。発光素子として発光ダイオード(LED:Light Emitting Diode)が用いられ、受光素子としてフォトダイオードが用いられる。各素子とリードフレームとの間はボンディングワイヤによって接続される。発光素子および受光素子は光透過性樹脂によって封止されている。 For example, in the photocoupler having a general configuration disclosed in FIG. 5 of Japanese Patent Application Laid-Open No. 08-008457 (Patent Document 1), the light emitting element mounted on the primary side lead frame and the secondary side lead frame are mounted. The light receiving elements thus arranged are arranged to face each other. A light emitting diode (LED: Light Emitting Diode) is used as the light emitting element, and a photodiode is used as the light receiving element. Each element and the lead frame are connected by a bonding wire. The light emitting element and the light receiving element are sealed with a light transmissive resin.

 特開2015-026704号公報(特許文献2)は、上記と異なる構成のフォトカプラを開示している。具体的にこの文献のフォトカプラは、基板上に設けられた発光素子および受光素子と、発光素子および受光素子を封止する透光性の第1樹脂と、第1樹脂の周囲を覆う透光性の第2樹脂と、第1樹脂の上面を覆う反射性の第3樹脂を備える。第3樹脂は、例えば酸化チタンなどの反射性フィラーを含有する白色系の樹脂である。第3樹脂は、発光素子から射出され第1樹脂を通過した光を拡散反射して再び第1樹脂へ戻す。 Japanese Patent Laying-Open No. 2015-026704 (Patent Document 2) discloses a photocoupler having a configuration different from the above. Specifically, the photocoupler disclosed in this document includes a light emitting element and a light receiving element provided on a substrate, a translucent first resin that seals the light emitting element and the light receiving element, and a translucent covering the periphery of the first resin. Second resin and a reflective third resin covering the top surface of the first resin. The third resin is a white resin containing a reflective filler such as titanium oxide. The third resin diffuses and reflects the light emitted from the light emitting element and passed through the first resin, and returns to the first resin again.

特開平08-008457号公報Japanese Patent Laid-Open No. 08-008457 特開2015-026704号公報Japanese Patent Laying-Open No. 2015-026704

 上記の従来構成のフォトカプラは、パワーロスが大きく、また伝送速度を大きくできないという問題がある。 The above-described conventional photocoupler has problems that the power loss is large and the transmission speed cannot be increased.

 具体的に、上記の特許文献1の図5に開示された一般的な構成のフォトカプラの場合の問題点は次のとおりである。まず、発光素子として発光ダイオードを用いた場合には、せいぜい100Mbps(メガビット毎秒)の伝送速度であり、それ以上伝送速度を大きくすることができない。Gbps(ギガビット毎秒)オーダーの高速通信を行うために、発光素子を垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)素子などの半導体レーザ素子に変更したとしても、リードフレームを用いているためにインピーダンスミスマッチングに起因したパワーロスが大きくなってしまう。したがって、結局のところ高速信号伝送を行うことはできない。 Specifically, the problems in the case of the photocoupler having the general configuration disclosed in FIG. 5 of the above-mentioned Patent Document 1 are as follows. First, when a light-emitting diode is used as the light-emitting element, the transmission rate is 100 Mbps (megabits per second) at most, and the transmission rate cannot be increased any more. Even if the light emitting element is changed to a semiconductor laser element such as a vertical cavity surface emitting laser (VCSEL) element in order to perform high-speed communication on the order of Gbps (Gigabit per second), a lead frame is used. Therefore, the power loss due to impedance mismatching becomes large. Therefore, high-speed signal transmission cannot be performed after all.

 上記の特許文献2の構成のフォトカプラの場合の問題点は次のとおりである。発光素子としてLEDを用いた場合は、LEDは等方性の発光であるので、すなわち、全角度に等しいパワーの光を放出するので、上記の反射性の第3樹脂によって反射されて受光素子に届く光は、LEDから出射された一部分に限られる。このため、光のパワーロスが大きい。 The problems in the case of the photocoupler having the configuration described in Patent Document 2 are as follows. When an LED is used as the light emitting element, the LED emits isotropic light, that is, it emits light having a power equal to all angles, so that it is reflected by the reflective third resin and is reflected on the light receiving element. The reaching light is limited to a part emitted from the LED. For this reason, the power loss of light is large.

 また、Gbps(ギガビット毎秒)オーダーの高速信号伝送を行うために発光素子としてVCSEL素子などの半導体レーザ素子を用いた場合には、半導体レーザ光は指向性が強いために、すなわち、レーザ光の広がり角が小さい点が問題となって、上記の第3樹脂によって反射されて受光素子に到達する光の割合はかえって減少してしまう。このため、特許文献2の構成のフォトカプラでは、半導体レーザ素子を使用することができないので、Gbpsオーダーの高速通信を行うことはできない。 In addition, when a semiconductor laser element such as a VCSEL element is used as a light emitting element in order to perform high-speed signal transmission on the order of Gbps (gigabit per second), the semiconductor laser beam has a strong directivity, that is, the spread of the laser beam. The small angle causes a problem, and the ratio of the light that is reflected by the third resin and reaches the light receiving element is reduced. For this reason, the photocoupler having the configuration of Patent Document 2 cannot use a semiconductor laser element, and therefore cannot perform high-speed communication in the Gbps order.

 この開示は、上記の問題点を考慮したものであり、その目的は、光のパワーロスを低減させるとともに信号伝送速度を向上させることが可能なフォトカプラを提供することである。 This disclosure takes the above-mentioned problems into consideration, and an object thereof is to provide a photocoupler capable of reducing the power loss of light and improving the signal transmission speed.

 この開示の一局面によるフォトカプラは、基板と、基板の主面上に配置され、レーザ光を放射する発光素子と、基板の主面上に配置された受光素子と、基板の主面を覆うことによって、発光素子および受光素子を封止する透光性の樹脂部材と、樹脂部材の表面上に配置された1つまたは複数のミラーとを備える。上記の1つまたは複数のミラーは、当該1つのミラーまたは複数のミラーの各々が入射光を正反射することによって、発光素子から放射されたレーザ光を受光素子の受光面に導くように配置されている。 A photocoupler according to an aspect of the present disclosure covers a substrate, a light emitting element that is disposed on the main surface of the substrate and emits laser light, a light receiving element that is disposed on the main surface of the substrate, and a main surface of the substrate. Thus, a translucent resin member that seals the light emitting element and the light receiving element, and one or a plurality of mirrors disposed on the surface of the resin member are provided. The one or more mirrors are arranged so that the laser light emitted from the light emitting element is guided to the light receiving surface of the light receiving element by each of the one mirror or the plurality of mirrors regularly reflecting incident light. ing.

 上記の構成によれば、信号の伝達にレーザ光が用いられるとともに、ミラーでの正反射によって発光素子から受光素子にレーザ光が導かれるので、光のパワーロスを低減させることができる。さらに、基板上に発光素子および受光素子を配置することによって高周波対応の基板を用いることができるのであるので、Gbpsオーダーの高速信号伝送に適している。 According to the above configuration, the laser light is used for signal transmission, and the laser light is guided from the light emitting element to the light receiving element by the regular reflection at the mirror, so that the power loss of the light can be reduced. Furthermore, since a high-frequency compatible substrate can be used by arranging a light emitting element and a light receiving element on the substrate, it is suitable for high-speed signal transmission on the order of Gbps.

 一実施形態において、樹脂部材の表面は、1つまたは複数のミラーとして機能する1つまたは複数の反射面を含んでいてもよい。この場合、各反射面へのレーザ光の入射角は、入射光が全反射する角度である臨界角よりも大きい。このように、ミラーを樹脂部材の表面の反射面として構成することによって、簡単な構成で低コストでフォトカプラを製造することができる。 In one embodiment, the surface of the resin member may include one or more reflecting surfaces that function as one or more mirrors. In this case, the incident angle of the laser light on each reflecting surface is larger than the critical angle that is the angle at which the incident light is totally reflected. Thus, by configuring the mirror as a reflecting surface on the surface of the resin member, it is possible to manufacture a photocoupler with a simple configuration at low cost.

 上記の1つまたは複数の反射面は、第1の反射面および第2の反射面を含むように構成されていてもよい。この場合、第1の反射面は、基板の主面と45度の角度を成し、第2の反射面は、第1の反射面と90度の角度を成す。発光素子は、第1の反射面に向かってレーザ光を放射する。第1の反射面によって正反射されたレーザ光は、第2の反射面に到達し、第2の反射面によって正反射されたレーザ光は、受光素子の受光面に到達する。 The one or more reflecting surfaces described above may be configured to include a first reflecting surface and a second reflecting surface. In this case, the first reflecting surface forms an angle of 45 degrees with the main surface of the substrate, and the second reflecting surface forms an angle of 90 degrees with the first reflecting surface. The light emitting element emits laser light toward the first reflecting surface. The laser beam specularly reflected by the first reflecting surface reaches the second reflecting surface, and the laser beam specularly reflected by the second reflecting surface reaches the light receiving surface of the light receiving element.

 上記の構成によれば、第1の反射面および第2の反射面の各々へのレーザ光の入射角は45度になるので、樹脂材料の臨界角よりも大きな値である。したがって、第1の反射面および第2の反射面は、入射光を全反射することができる。なお、この明細書で45度または90度の角度を成すと言う場合は、厳密に45度または90度でなければならないという意味ではなく、光路が大幅にずれない範囲内で製造誤差を含めた範囲を言うものとする。 According to the above configuration, the incident angle of the laser beam to each of the first reflecting surface and the second reflecting surface is 45 degrees, which is a value larger than the critical angle of the resin material. Therefore, the first reflection surface and the second reflection surface can totally reflect incident light. In this specification, when an angle of 45 degrees or 90 degrees is defined, it does not mean that the angle must be exactly 45 degrees or 90 degrees, and manufacturing errors are included within a range in which the optical path is not significantly shifted. Say the range.

 上記の一実施形態において、樹脂部材は、基板と反対側の表面から基板に向かって窪んだ第1の溝部および第2の溝部を有していてもよい。この場合、第1の溝部を規定する表面は、第1の反射面を含み、第2の溝部を規定する表面は、第2の反射面を含む。 In the above embodiment, the resin member may have a first groove and a second groove that are recessed from the surface opposite to the substrate toward the substrate. In this case, the surface that defines the first groove includes the first reflective surface, and the surface that defines the second groove includes the second reflective surface.

 他の実施形態において、上記の1つまたは複数のミラーは、樹脂部材の表面上に配置された反射板を含んでいてもよい。レーザ光は、樹脂部材と反射板との界面において正反射される。この構成によれば、反射板へのレーザ光の入射角によらず、レーザ光は反射板によって全反射することができる。 In other embodiments, the one or more mirrors may include a reflector disposed on the surface of the resin member. The laser light is regularly reflected at the interface between the resin member and the reflecting plate. According to this configuration, the laser beam can be totally reflected by the reflecting plate regardless of the incident angle of the laser beam to the reflecting plate.

 上記の一実施形態および他の実施形態において、樹脂部材は、第1の内部空間を有し、第1の内部空間を規定する表面は、第1の内部空間に突出する第1のレンズ面を含んでいてもよい。この場合、発光素子から放射されたレーザ光は、第1のレンズ面を通過した後に上記の1つのミラーまたは複数のミラーのいずれかに到達する。 In the one embodiment and the other embodiments described above, the resin member has a first internal space, and the surface defining the first internal space is a first lens surface protruding into the first internal space. May be included. In this case, the laser light emitted from the light emitting element reaches one of the one mirror or the plurality of mirrors after passing through the first lens surface.

 上記の構成によれば、発光素子から放射されたレーザ光をコリメートすることによって略平行な光にできるので、光のパワーロスをさらに低減することができる。 According to the above configuration, the laser light emitted from the light emitting element can be collimated to make the light substantially parallel, so that the power loss of light can be further reduced.

 上記の一実施形態および他の実施形態において、第1の内部空間を規定する表面は、第1の内部空間に突出する第2のレンズ面を含んでいてもよい。この場合、上記の1つのミラーまたは複数のミラーのいずれかによって正反射されたレーザ光は、第2のレンズ面を通過した後に受光素子の受光面に到達する。 In the above-described embodiment and other embodiments, the surface defining the first internal space may include a second lens surface protruding into the first internal space. In this case, the laser light regularly reflected by one of the one mirror or the plurality of mirrors reaches the light receiving surface of the light receiving element after passing through the second lens surface.

 上記の構成によれば、受光素子の受光面でレーザ光を集光させることができるので、受光素子の基板上への実装時に受光素子の配置にずれが生じたとしても、受光素子の受光面上にレーザ光を導くことができる。 According to the above configuration, since the laser light can be condensed on the light receiving surface of the light receiving element, the light receiving surface of the light receiving element can be used even if there is a deviation in the arrangement of the light receiving elements when the light receiving element is mounted on the substrate. Laser light can be guided upward.

 上記の一実施形態および他の実施形態において、基板は、第1のレンズ面および第2のレンズ面を間に挟んで、第1の内部空間と反対側に位置していてもよい。もしくは、基板は、第1の内部空間を間に挟んで、第1のレンズ面および第2のレンズ面と反対側に位置していてもよい。 In the above-described embodiment and other embodiments, the substrate may be located on the opposite side to the first internal space with the first lens surface and the second lens surface interposed therebetween. Alternatively, the substrate may be located on the opposite side of the first lens surface and the second lens surface with the first internal space interposed therebetween.

 一変形例として、樹脂部材は、第1の内部空間と異なる第2の内部空間をさらに有し、第2の内部空間を規定する表面は、第2の内部空間に突出する第2のレンズ面を含んでいてもよい。この場合、上記の1つのミラーまたは複数のミラーのいずれかによって正反射されたレーザ光は、第2のレンズ面を通過した後に受光素子の受光面に到達する。 As a modification, the resin member further includes a second internal space different from the first internal space, and a surface defining the second internal space is a second lens surface protruding into the second internal space. May be included. In this case, the laser light regularly reflected by one of the one mirror or the plurality of mirrors reaches the light receiving surface of the light receiving element after passing through the second lens surface.

 さらに他の実施形態において、樹脂部材は内部空間を有し、内部空間を規定する表面は、内部空間を間に挟んで互いに対向する底面および上面を含んでいてもよい。この場合、基板は、底面を間に挟んで内部空間と反対側に位置する。さらに、1つまたは複数のミラーは、上面の上に配置された反射板を含んでいてもよい。この場合、底面は、発光素子から放射されたレーザ光を反射板に導く第1のレンズ面と、反射板によって正反射されたレーザ光を受光素子の受光面に導く第2のレンズ面とを含む。この構成によれば、反射板へのレーザ光の入射角によらず、レーザ光は反射板によって全反射することができる。 In still another embodiment, the resin member has an internal space, and the surface defining the internal space may include a bottom surface and an upper surface that face each other with the internal space interposed therebetween. In this case, the substrate is located on the opposite side of the internal space with the bottom surface in between. Furthermore, the one or more mirrors may include a reflector disposed on the top surface. In this case, the bottom surface includes a first lens surface that guides the laser light emitted from the light emitting element to the reflecting plate, and a second lens surface that guides the laser light regularly reflected by the reflecting plate to the light receiving surface of the light receiving element. Including. According to this configuration, the laser beam can be totally reflected by the reflecting plate regardless of the incident angle of the laser beam to the reflecting plate.

 上記の各実施形態において、発光素子は、垂直共振器面発光レーザ素子を含んでいてもよい。 In each of the above embodiments, the light emitting element may include a vertical cavity surface emitting laser element.

 上記の各実施形態において、フォトカプラは、基板の主面上に配置され、発光素子に駆動信号を供給する第1の集積回路チップをさらに備えていてもよい。 In each of the above embodiments, the photocoupler may further include a first integrated circuit chip that is disposed on the main surface of the substrate and supplies a drive signal to the light emitting element.

 上記の各実施形態において、フォトカプラは、基板の主面上に配置され、受光素子の出力信号を処理する第2の集積回路チップをさらに備えていてもよい。 In each of the above embodiments, the photocoupler may further include a second integrated circuit chip that is disposed on the main surface of the substrate and that processes an output signal of the light receiving element.

 上記の各実施形態において、フォトカプラは、基板の主面と反対の裏面上に配置された発光素子用の第1の接地端子と、基板の裏面上に配置され、第1の接地端子と電気的に分離された受光素子用の第2の接地端子とをさらに備えていてもよい。 In each of the above embodiments, the photocoupler is disposed on the back surface of the substrate opposite to the main surface of the substrate, the first ground terminal for the light emitting element, and disposed on the back surface of the substrate. And a second ground terminal for the light receiving element separated from each other.

 さらに他の実施形態において、基板は、第1の基板と第2の基板とに分離されていてもよい。この場合、発光素子は、第1の基板の主面上に配置され、受光素子は、第2の基板の主面上に配置される。樹脂部材は、第1の基板の主面を覆うことによって発光素子を封止する第1の封止部と、第2の基板の主面を覆うことによって受光素子を封止する第2の封止部と、第1の封止部の第1の基板と反対側の表面と第2の封止部の第2の基板と反対側の表面とを連結する天板部とを備える。天板部の表面は、前述の1つまたは複数のミラーとして機能する1つまたは複数の反射面を含む。各反射面へのレーザ光の入射角は、入射光が全反射する角度である臨界角よりも大きい。 In yet another embodiment, the substrate may be separated into a first substrate and a second substrate. In this case, the light emitting element is disposed on the main surface of the first substrate, and the light receiving element is disposed on the main surface of the second substrate. The resin member includes a first sealing portion that seals the light emitting element by covering the main surface of the first substrate, and a second seal that seals the light receiving element by covering the main surface of the second substrate. And a top plate portion that connects the surface of the first sealing portion opposite to the first substrate and the surface of the second sealing portion opposite to the second substrate. The surface of the top plate includes one or more reflecting surfaces that function as the one or more mirrors described above. The incident angle of the laser light on each reflecting surface is larger than the critical angle that is the angle at which the incident light is totally reflected.

 上記の構成は、医療機器などのように、規格上、絶縁耐力を向上させるためにフォトカプラの送信側の端子と受信側の端子との距離を離す必要がある場合に好適に用いることができる。 The above configuration can be suitably used when it is necessary to increase the distance between the transmission-side terminal and the reception-side terminal of the photocoupler in order to improve the dielectric strength, such as a medical device. .

 上記のように第1および第2の基板に分離された構成において、第1の封止部は、第1の内部空間を有し、第1の内部空間を規定する表面は、第1の内部空間に突出する第1のレンズ面を含んでいてもよい。この場合、発光素子から放射されたレーザ光は、第1のレンズ面を通過した後に、上記1つの反射面または複数の反射面のいずれかに到達する。さらに、第2の封止部は、第2の内部空間を有し、第2の内部空間を規定する表面は、第2の内部空間に突出する第2のレンズ面を含んでいてよい。この場合、上記1つの反射面または複数の反射面のいずれかによって正反射されたレーザ光は、第2のレンズ面を通過した後に受光素子の受光面に到達する。 In the configuration separated into the first and second substrates as described above, the first sealing portion has the first internal space, and the surface defining the first internal space is the first internal space. A first lens surface protruding into the space may be included. In this case, the laser light emitted from the light emitting element reaches one of the one reflecting surface or the plurality of reflecting surfaces after passing through the first lens surface. Further, the second sealing portion may have a second internal space, and the surface defining the second internal space may include a second lens surface protruding into the second internal space. In this case, the laser beam specularly reflected by either the one reflecting surface or the plurality of reflecting surfaces reaches the light receiving surface of the light receiving element after passing through the second lens surface.

 上記の構成によれば、発光素子から放射されたレーザ光をコリメートすることによって略平行な光にできるので、光のパワーロスをさらに低減することができる。さらに、受光素子の受光面でレーザ光を集光させることができるので、受光素子の基板上への実装時に受光素子の配置にずれが生じたとしても、受光素子の受光面上にレーザ光を導くことができる。 According to the above configuration, the laser light emitted from the light emitting element can be collimated to make the light substantially parallel, so that the power loss of light can be further reduced. Further, since the laser beam can be condensed on the light receiving surface of the light receiving element, even if a deviation occurs in the arrangement of the light receiving element when the light receiving element is mounted on the substrate, the laser beam is applied to the light receiving surface of the light receiving element. Can lead.

 この開示の他の局面によるフォトカプラは、基板と、基板の主面上に配置され、レーザ光を基板と垂直方向に向けて放射する発光素子と、基板の主面上に位置する受光素子と、基板の主面を覆うことによって、発光素子および受光素子を封止する透光性の樹脂部材を備える。樹脂部材の屈折率は√2よりも大きい。樹脂部材の表面は、入射光を正反射する第1の反射面および第2の反射面を含む。第1の反射面は、基板の主面と45度の角度を成し、かつ基板に垂直な方向から見て発光素子と重なる位置に配置される。第2の反射面は、第1の反射面と90度の角度を成し、かつ樹脂部材の一部を間に挟んで第1の反射面と対向し、かつ基板に垂直方向から見て受光素子の受光面と重なる位置に配置される。 A photocoupler according to another aspect of the present disclosure includes a substrate, a light emitting element that is disposed on the main surface of the substrate, emits laser light in a direction perpendicular to the substrate, and a light receiving element that is positioned on the main surface of the substrate. A transparent resin member for sealing the light emitting element and the light receiving element is provided by covering the main surface of the substrate. The refractive index of the resin member is larger than √2. The surface of the resin member includes a first reflection surface and a second reflection surface that regularly reflect incident light. The first reflecting surface forms an angle of 45 degrees with the main surface of the substrate and is disposed at a position overlapping the light emitting element when viewed from a direction perpendicular to the substrate. The second reflecting surface forms an angle of 90 degrees with the first reflecting surface, faces the first reflecting surface with a part of the resin member interposed therebetween, and receives light when viewed from a direction perpendicular to the substrate. It arrange | positions in the position which overlaps with the light-receiving surface of an element.

 上記の構成によれば、信号の伝達にレーザ光が用いられるとともに、ミラーでの正反射によって発光素子から受光素子にレーザ光が導かれるので、光のパワーロスを低減させることができる。さらに、基板上に発光素子および受光素子を配置することによって高周波対応の基板を用いることができるのであるので、Gbpsオーダーの高速応答に適している。 According to the above configuration, the laser light is used for signal transmission, and the laser light is guided from the light emitting element to the light receiving element by the regular reflection at the mirror, so that the power loss of the light can be reduced. Furthermore, since a high-frequency compatible substrate can be used by arranging a light emitting element and a light receiving element on the substrate, it is suitable for a high-speed response on the order of Gbps.

 上記の他の局面において、樹脂部材は、内部空間を有し、内部空間を規定する表面は、内部空間を間に挟んで互いに対向する底面および上面を含んでいてもよい。この場合、基板は、底面を間に挟んで内部空間と反対側に位置する。底面は、発光素子と第1の反射面との間に位置し、内部空間に突出する第1のレンズ面と、発光素子と第2の反射面との間に位置し、内部空間に突出する第2のレンズ面とを含む。 In the other aspect described above, the resin member may have an internal space, and the surface defining the internal space may include a bottom surface and an upper surface facing each other with the internal space interposed therebetween. In this case, the substrate is located on the opposite side of the internal space with the bottom surface in between. The bottom surface is located between the light emitting element and the first reflecting surface, is located between the first lens surface projecting into the internal space, and the light emitting element and the second reflecting surface, and projects into the internal space. A second lens surface.

 上記の構成によれば、発光素子から放射されたレーザ光をコリメートすることによって略平行な光にできるので、光のパワーロスをさらに低減することができる。さらに、受光素子の受光面でレーザ光を集光させることができるので、受光素子の基板上への実装時に受光素子の配置にずれが生じたとしても、受光素子の受光面上にレーザ光を導くことができる。 According to the above configuration, the laser light emitted from the light emitting element can be collimated to make the light substantially parallel, so that the power loss of light can be further reduced. Further, since the laser beam can be condensed on the light receiving surface of the light receiving element, even if a deviation occurs in the arrangement of the light receiving element when the light receiving element is mounted on the substrate, the laser beam is applied to the light receiving surface of the light receiving element. Can lead.

 上記のように本開示のフォトカプラによれば、光のパワーロスを低減させるとともに信号伝送速度を向上させることができる。 As described above, according to the photocoupler of the present disclosure, it is possible to reduce light power loss and improve signal transmission speed.

実施の形態1によるフォトカプラの構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of a photocoupler according to Embodiment 1. FIG. 図1のフォトカプラの平面図である。It is a top view of the photocoupler of FIG. 図2の切断線III-IIIに沿う断面図である。FIG. 3 is a cross-sectional view taken along a cutting line III-III in FIG. 図3の断面図において、発光素子から受光素子に至るレーザビームの光路を示す図である。FIG. 4 is a diagram illustrating an optical path of a laser beam from a light emitting element to a light receiving element in the cross-sectional view of FIG. 3. 図1~図3に示すフォトカプラの製造方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a method for manufacturing the photocoupler shown in FIGS. 1 to 3. FIG. 実施の形態1の変形例によるフォトカプラの断面図である。7 is a cross-sectional view of a photocoupler according to a modification of the first embodiment. FIG. 実施の形態2のフォトカプラの構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to a second embodiment. 実施の形態3のフォトカプラの構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a photocoupler according to Embodiment 3. FIG. 実施の形態4のフォトカプラの構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to a fourth embodiment. 実施の形態5のフォトカプラの構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a photocoupler according to a fifth embodiment. 実施の形態6のフォトカプラの構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a photocoupler according to a sixth embodiment. 実施の形態7のフォトカプラの構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a photocoupler according to a seventh embodiment.

 以下、実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. The same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

 <実施の形態1>
 [フォトカプラの全体構成]
 図1は、実施の形態1によるフォトカプラの構成を示す分解斜視図である。図2は、図1のフォトカプラの平面図である。図3は、図2の切断線III-IIIに沿う断面図である。なお、以下の説明では、基板に平行な方向をX方向およびY方向とし、基板に垂直な方向をZ方向とする。
<Embodiment 1>
[Overall configuration of photocoupler]
FIG. 1 is an exploded perspective view showing the configuration of the photocoupler according to the first exemplary embodiment. FIG. 2 is a plan view of the photocoupler of FIG. FIG. 3 is a cross-sectional view taken along section line III-III in FIG. In the following description, directions parallel to the substrate are defined as an X direction and a Y direction, and a direction perpendicular to the substrate is defined as a Z direction.

 図1~図3を参照して、フォトカプラは、基板30と、レーザ光を放射する発光素子31と、受光素子32と、集積回路(IC:Integrated Circuit)チップ33,34と、樹脂部材60とを備える。 1 to 3, the photocoupler includes a substrate 30, a light emitting element 31 that emits laser light, a light receiving element 32, integrated circuit (IC: Integrated Circuit) chips 33 and 34, and a resin member 60. With.

 基板30は、高周波での使用時に誘電正接の小さな材料を用いるのが望ましい。高周波信号の伝送が可能なように、たとえば、LGA(Land Grid Array)基板を用いることができる。LGA基板の裏面には、プリント基板に対してリフロー半田付けを行うために平面電極端子が格子状に並べられている。図3では、基板30の裏面302に設けられた4つの端子35~38が代表的に示されている。 The substrate 30 is desirably made of a material having a small dielectric loss tangent when used at a high frequency. For example, an LGA (Land Grid Array) substrate can be used so that a high-frequency signal can be transmitted. On the back surface of the LGA substrate, planar electrode terminals are arranged in a grid pattern to perform reflow soldering on the printed circuit board. In FIG. 3, four terminals 35 to 38 provided on the back surface 302 of the substrate 30 are representatively shown.

 発光素子31は、基板30の主面301上に配置される。発光素子31は、たとえば、垂直共振器面発光レーザ(VCSEL)素子であり、基板30に垂直な方向(+Z方向)に向けてレーザ光を放射する。発光素子31は、たとえば、半田によって基板30上に固定され、基板30の主面301上に形成された導電パターン(不図示)とボンディングワイヤ(不図示)によって電気的に接続される。 The light emitting element 31 is disposed on the main surface 301 of the substrate 30. The light emitting element 31 is, for example, a vertical cavity surface emitting laser (VCSEL) element, and emits laser light in a direction perpendicular to the substrate 30 (+ Z direction). The light emitting element 31 is fixed on the substrate 30 by, for example, solder, and is electrically connected to a conductive pattern (not shown) formed on the main surface 301 of the substrate 30 by a bonding wire (not shown).

 受光素子32は、基板30の主面301上に配置される。受光素子32は、たとえば、フォトダイオードまたはフォトトランジスタなどの半導体光検出器である。受光素子32の受光面は基板30の上方(+Z方向)に向けられている。受光素子32は、たとえば、半田によって基板30上に固定され、基板30の主面301上に形成された導電パターン(不図示)とボンディングワイヤ(不図示)によって電気的に接続される。 The light receiving element 32 is disposed on the main surface 301 of the substrate 30. The light receiving element 32 is, for example, a semiconductor photodetector such as a photodiode or a phototransistor. The light receiving surface of the light receiving element 32 is directed above the substrate 30 (+ Z direction). The light receiving element 32 is fixed on the substrate 30 by, for example, solder, and is electrically connected to a conductive pattern (not shown) formed on the main surface 301 of the substrate 30 by a bonding wire (not shown).

 集積回路チップ33は、発光素子31のドライバ回路などの信号処理回路を内蔵する。集積回路チップ34は、受光素子32から出力された電流信号をインピーダンス変換して増幅し、電圧信号として出力するトランスインピーダンスアンプ(TIA:Trans-Impedance Amplifier)などの信号処理回路を内蔵する。 The integrated circuit chip 33 incorporates a signal processing circuit such as a driver circuit for the light emitting element 31. The integrated circuit chip 34 incorporates a signal processing circuit such as a trans-impedance amplifier (TIA) that impedance-converts and amplifies the current signal output from the light-receiving element 32 and outputs it as a voltage signal.

 前述のように、基板30の裏面302上には複数の平面電極端子が設けられている。これらの平面電極端子は、発光素子31および集積回路チップ33のために用いられる1次側の端子(接地端子35、電源端子36、およびその他の信号端子(不図示))と、受光素子32および集積回路チップ34のために用いられる2次側の端子(接地端子37、電源端子38、およびその他の信号端子(不図示))とを含む。フォトカプラとして使用するために1次側の端子と2次側の端子とは電気的に分離されていなければならない。たとえば、1次側の接地端子35と2次側の接地端子37とは互いに電気的に分離されており、1次側の電源端子36と2次側の電源端子38とは互いに電気的に分離されている。 As described above, a plurality of planar electrode terminals are provided on the back surface 302 of the substrate 30. These planar electrode terminals include a primary side terminal (a ground terminal 35, a power supply terminal 36, and other signal terminals (not shown)) used for the light emitting element 31 and the integrated circuit chip 33, a light receiving element 32, and Secondary terminals used for the integrated circuit chip 34 (a ground terminal 37, a power supply terminal 38, and other signal terminals (not shown)) are included. In order to be used as a photocoupler, the primary side terminal and the secondary side terminal must be electrically separated. For example, the primary side ground terminal 35 and the secondary side ground terminal 37 are electrically separated from each other, and the primary side power supply terminal 36 and the secondary side power supply terminal 38 are electrically separated from each other. Has been.

 樹脂部材60は、発光素子31から放射されたレーザ光を透過する透光性の樹脂材料によって形成される。樹脂部材60として、たとえば、エポキシ樹脂が用いられる。エポキシ樹脂は850nm帯のレーザ光に対してほぼ透明であり、約1.55の屈折率を有する。なお、レーザ光の波長および樹脂部材60の材料はこれらに限定されるものでない。 The resin member 60 is formed of a translucent resin material that transmits the laser light emitted from the light emitting element 31. As the resin member 60, for example, an epoxy resin is used. Epoxy resin is almost transparent to laser light in the 850 nm band and has a refractive index of about 1.55. The wavelength of the laser beam and the material of the resin member 60 are not limited to these.

 樹脂部材60は、図1~図3の例では、外形が略直方体形状であり、封止部20と天板部11とを備える。封止部20は、基板30の主面301を覆うように形成され、発光素子31、受光素子32、集積回路チップ33,34を封止する。 1 to 3, the outer shape of the resin member 60 is a substantially rectangular parallelepiped shape, and includes the sealing portion 20 and the top plate portion 11. The sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30, and seals the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34.

 封止部20の基板30と反対側の表面(以下、「上面25」と称する)には、直方体状の穴部21が形成される。穴部21の底面22は、上方(+Z方向)に突出するレンズ面23,24を含む。レンズ面23,24は、半凸レンズとして機能する。 A rectangular parallelepiped hole 21 is formed on the surface of the sealing portion 20 opposite to the substrate 30 (hereinafter referred to as “upper surface 25”). The bottom surface 22 of the hole 21 includes lens surfaces 23 and 24 protruding upward (+ Z direction). The lens surfaces 23 and 24 function as semi-convex lenses.

 穴部21を覆うように天板部11が設けられる。天板部11は、基板30と反対側の表面(以下、「上面17」と称する)から基板30に向かう方向に窪む溝部12,14を有する。溝部12を規定する平面は、レーザ光を正反射する平坦な反射面13を有する。同様に、溝部14を規定する平面は、レーザ光を正反射する平坦な反射面15を有する。 The top plate 11 is provided so as to cover the hole 21. The top plate 11 has grooves 12 and 14 that are recessed in a direction from the surface opposite to the substrate 30 (hereinafter referred to as “upper surface 17”) toward the substrate 30. The plane that defines the groove 12 has a flat reflecting surface 13 that regularly reflects the laser beam. Similarly, the plane that defines the groove 14 has a flat reflecting surface 15 that regularly reflects the laser beam.

 ここで、正反射とは入射角と反射角とが等しい反射を言う。正反射は鏡面反射とも称する。なお、反射面13,15は、入射されたレーザ光を全て正反射するほどに平滑であるのが望ましいが、一部に散乱光を含んでいてもよい。全体的に見れば、反射面13,15の各々によって、入射ビームの入射角に等しい反射角を有する反射ビームが形成される。 Here, regular reflection refers to reflection with the same incident angle and reflection angle. Regular reflection is also called specular reflection. The reflecting surfaces 13 and 15 are desirably so smooth that they regularly reflect all of the incident laser light, but may partially include scattered light. As a whole, each of the reflecting surfaces 13 and 15 forms a reflected beam having a reflection angle equal to the incident angle of the incident beam.

 反射面13は、基板30の主面301に対して45度の角度を成している。反射面15は、基板30の主面301に対して45度の角度を成すとともに、反射面13に対して90度の角度を成している。図3の場合には、天板部11の上面17と基板30の主面301とが略平行であるので、天板部11の上面17と反射面13との成す角度θ1が45度であり、天板部11の上面17と反射面15との成す角度θ2が45度である。さらに、反射面13から基板30の主面301までの距離は、反射面15から基板30の主面301までの距離に略等しい。 The reflecting surface 13 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30. The reflection surface 15 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30 and forms an angle of 90 degrees with respect to the reflection surface 13. In the case of FIG. 3, since the upper surface 17 of the top plate portion 11 and the main surface 301 of the substrate 30 are substantially parallel, the angle θ 1 formed by the upper surface 17 of the top plate portion 11 and the reflecting surface 13 is 45 degrees. The angle θ 2 formed by the upper surface 17 of the top plate 11 and the reflecting surface 15 is 45 degrees. Further, the distance from the reflecting surface 13 to the main surface 301 of the substrate 30 is substantially equal to the distance from the reflecting surface 15 to the main surface 301 of the substrate 30.

 基板30の主面301に垂直な方向から見て、反射面13、レンズ面23、発光素子31は重なっており、レンズ面23は反射面13と発光素子31との間に位置している。レンズ面23の光軸が発光素子31の出射面の中心を通るのが望ましい。同様に、基板30の主面301に垂直な方向から見て、反射面15、レンズ面24、受光素子32は重なっており、レンズ面24は反射面15と受光素子32との間に位置している。レンズ面24の光軸が受光素子32の受光面の中心を通るのが望ましい。 When viewed from a direction perpendicular to the main surface 301 of the substrate 30, the reflecting surface 13, the lens surface 23, and the light emitting element 31 overlap each other, and the lens surface 23 is located between the reflecting surface 13 and the light emitting element 31. It is desirable that the optical axis of the lens surface 23 passes through the center of the emission surface of the light emitting element 31. Similarly, when viewed from the direction perpendicular to the main surface 301 of the substrate 30, the reflecting surface 15, the lens surface 24, and the light receiving element 32 overlap each other, and the lens surface 24 is located between the reflecting surface 15 and the light receiving element 32. ing. It is desirable that the optical axis of the lens surface 24 passes through the center of the light receiving surface of the light receiving element 32.

 [フォトカプラの動作]
 次に、図1~図3で説明したフォトカプラ1の動作について説明する。
[Operation of photocoupler]
Next, the operation of the photocoupler 1 described with reference to FIGS. 1 to 3 will be described.

 図4は、図3の断面図において、発光素子から受光素子に至るレーザビームの光路を示す図である。レーザビームの光路70は、図4において破線で示されている。 FIG. 4 is a diagram showing an optical path of a laser beam from the light emitting element to the light receiving element in the cross-sectional view of FIG. The optical path 70 of the laser beam is indicated by a broken line in FIG.

 入力信号に基づいて集積回路チップ33は発光素子31を駆動する。これによって、基板30に垂直方向に向けて発光素子31はレーザ光を放射する。発光素子31から放射されたレーザ光は、必ずしも平行光線ではなく広がりを有している。レンズ面23は、発光素子31から放射されたレーザ光を平行光にコリメートする。 The integrated circuit chip 33 drives the light emitting element 31 based on the input signal. As a result, the light emitting element 31 emits laser light in a direction perpendicular to the substrate 30. The laser light emitted from the light emitting element 31 is not necessarily a parallel light beam but has a spread. The lens surface 23 collimates the laser light emitted from the light emitting element 31 into parallel light.

 レンズ面23を通過したレーザ光は、穴部21によって規定される内部空間61を通過した後に、天板部11の下面18から天板部11に入射する。その後、レーザ光は反射面13で正反射される。 The laser light that has passed through the lens surface 23 passes through the internal space 61 defined by the hole portion 21 and then enters the top plate portion 11 from the lower surface 18 of the top plate portion 11. Thereafter, the laser beam is regularly reflected by the reflecting surface 13.

 ここで、反射面13への入射角θiと反射角θrとは45度に等しい。樹脂部材60の屈折率をnとすれば、sinθ0=nを満たす臨界角θ0よりも入射角θiが大きければ、反射面13への入射光は全反射する。入射角θiが45度の場合、屈折率nが√2よりも大きければ、入射光は全反射する。エポキシ樹脂などの透光性の樹脂材料の屈折率はこの全反射の条件を満たしている。 Here, the incident angle θi to the reflecting surface 13 and the reflection angle θr are equal to 45 degrees. If the refractive index of the resin member 60 is n, the incident light on the reflecting surface 13 is totally reflected if the incident angle θi is larger than the critical angle θ 0 that satisfies sin θ 0 = n. When the incident angle θi is 45 degrees, the incident light is totally reflected if the refractive index n is larger than √2. The refractive index of a translucent resin material such as an epoxy resin satisfies this total reflection condition.

 反射面13で全反射されたレーザ光は、反射面15で再び全反射され、基板30に向かう。レーザ光は、天板部11の下面18から内部空間61を通過した後に、レンズ面24に入射する。レーザ光は、レンズ面24によって受光素子32の受光面に集光される。受光素子32は、レーザ光による光信号を電流信号に変換して出力する。集積回路チップ34は、受光素子32から出力された電流信号をインピーダンス変換して増幅することによって電圧信号を生成する。 The laser beam totally reflected by the reflecting surface 13 is again totally reflected by the reflecting surface 15 and travels toward the substrate 30. The laser light enters the lens surface 24 after passing through the internal space 61 from the lower surface 18 of the top plate portion 11. The laser light is condensed on the light receiving surface of the light receiving element 32 by the lens surface 24. The light receiving element 32 converts an optical signal from the laser light into a current signal and outputs the current signal. The integrated circuit chip 34 generates a voltage signal by impedance-converting and amplifying the current signal output from the light receiving element 32.

 以上によって、入力信号に応じた出力信号がフォトカプラ1によって生成される。
 [フォトカプラの製造方法]
 図5は、図1~図3に示すフォトカプラの製造方法の一例を示すフローチャートである。
As described above, an output signal corresponding to the input signal is generated by the photocoupler 1.
[Photocoupler manufacturing method]
FIG. 5 is a flowchart showing an example of a manufacturing method of the photocoupler shown in FIGS.

 図3および図5を参照して、まず、発光素子31、受光素子32、集積回路チップ33,34が製造または準備されるとともに(ステップS100)、導電パターンおよび電極が形成された基板30が製造もしくは準備される(ステップS110)。この場合、図3の基板30が行列状に多数連結された状態である基板の集合体が製造される。 Referring to FIGS. 3 and 5, first, light emitting element 31, light receiving element 32, and integrated circuit chips 33 and 34 are manufactured or prepared (step S100), and substrate 30 on which conductive patterns and electrodes are formed is manufactured. Alternatively, it is prepared (step S110). In this case, an assembly of substrates in a state where a large number of substrates 30 in FIG. 3 are connected in a matrix is manufactured.

 次に、発光素子31、受光素子32、集積回路チップ33,34が各基板30に半田等によって取り付けられる(ステップS120)。発光素子31、受光素子32、集積回路チップ33,34は、基板30の主面301上の導電パターン(不図示)とボンディングワイヤ(不図示)などによって接続される。 Next, the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34 are attached to each substrate 30 by soldering or the like (step S120). The light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34 are connected to a conductive pattern (not shown) on the main surface 301 of the substrate 30 by a bonding wire (not shown).

 次に、金型を利用したトランスファー成形によって、エポキシ樹脂からなる封止部20が各基板30の主面301上に形成される(ステップS130)。このトランスファー成形によって、図3の穴部21およびレンズ面23,24が一体成形される。 Next, the sealing portion 20 made of an epoxy resin is formed on the main surface 301 of each substrate 30 by transfer molding using a mold (step S130). By this transfer molding, the hole 21 and the lens surfaces 23 and 24 of FIG. 3 are integrally molded.

 次に、エポキシ樹脂から成る天板部11が封止部20の上面25に取り付けられる(ステップS140)。具体的には、天板部11が行列状に多数連結された状態のものが、金型を利用したトランスファー成形によって予め製造される。溝部12,14もこのトランスファー成形によって天板部11に予め形成される。 Next, the top plate portion 11 made of an epoxy resin is attached to the upper surface 25 of the sealing portion 20 (step S140). Specifically, a state in which a large number of top plate portions 11 are connected in a matrix is manufactured in advance by transfer molding using a mold. The grooves 12 and 14 are also formed in the top plate 11 in advance by this transfer molding.

 その後、基板30の集合体および天板部11の集合体がダイシングによって個々の基板に切り分けられることによってフォトカプラ1が完成する(ステップS150)。 Thereafter, the assembly of the substrate 30 and the assembly of the top plate portion 11 are cut into individual substrates by dicing, thereby completing the photocoupler 1 (step S150).

 [変形例]
 以下に示す変形例においても、上述したフォトカプラ1の構成と同様の機能を奏することができる。
[Modification]
Also in the modification shown below, the function similar to the structure of the photocoupler 1 mentioned above can be show | played.

 まず、図1~図3において、穴部21と天板部11の下面18によって規定される樹脂部材60の内部空間61は、樹脂部材60の外部空間と連通していてもよい。たとえば、穴部21の側面部のうちY方向の側面部のみが設けられており、X方向の側面部は設けられていなくてもよいし、逆に、穴部21の側面部のうちX方向の側面部のみが設けられており、Y方向の側面部は設けられていなくてもよい。 First, in FIG. 1 to FIG. 3, the internal space 61 of the resin member 60 defined by the hole 21 and the lower surface 18 of the top plate portion 11 may communicate with the external space of the resin member 60. For example, only the side surface portion in the Y direction among the side surface portions of the hole portion 21 may be provided, and the side surface portion in the X direction may not be provided. Only the side surface portion is provided, and the side surface portion in the Y direction may not be provided.

 図1~図3で示した封止部20および天板部11の形状は一例であって任意に変更することができる。たとえば、封止部20を略直方体形状とし、その上面に突出するようにレンズ面23,24を形成してもよい。この場合、図1~図3に示す穴部21の側面部は、天板部11と一体的に成形される。 The shapes of the sealing portion 20 and the top plate portion 11 shown in FIGS. 1 to 3 are examples and can be arbitrarily changed. For example, the sealing portion 20 may have a substantially rectangular parallelepiped shape, and the lens surfaces 23 and 24 may be formed so as to protrude from the upper surface thereof. In this case, the side surface portion of the hole portion 21 shown in FIGS. 1 to 3 is formed integrally with the top plate portion 11.

 レンズ面23,24は、天板部11の下面18に形成してもよい。言い替えると、樹脂部材60の内部空間61を規定する表面は、内部空間61を間に挟んで互いに対向する底面22と上面62を含む。この場合、基板30は、底面22を間に挟んで内部空間61の反対側に位置する。レンズ面23,24の各々は、底面22および上面62のいずれに形成されていてもよい。いずれに形成される場合も、レンズ面23,24は内部空間61に突出するように形成される。 The lens surfaces 23 and 24 may be formed on the lower surface 18 of the top plate portion 11. In other words, the surface that defines the internal space 61 of the resin member 60 includes the bottom surface 22 and the top surface 62 that face each other with the internal space 61 interposed therebetween. In this case, the substrate 30 is located on the opposite side of the internal space 61 with the bottom surface 22 interposed therebetween. Each of the lens surfaces 23 and 24 may be formed on either the bottom surface 22 or the top surface 62. In any case, the lens surfaces 23 and 24 are formed so as to protrude into the internal space 61.

 内部空間61が2つに分割され、2つの内部空間にレンズ面23,24がそれぞれ形成されていてもよい。具体的に図6を参照して説明する。 The internal space 61 may be divided into two, and the lens surfaces 23 and 24 may be formed in the two internal spaces, respectively. This will be specifically described with reference to FIG.

 図6は、実施の形態1の変形例によるフォトカプラの断面図である。図6のフォトカプラ1Aの樹脂部材60は、内部空間61Aと内部空間61Bとを有する。内部空間61A,61Bの各々は樹脂部材60の外部空間と連通していてもよい。内部空間61Aを規定する表面は、レンズ面23を含む底面22Aと上面62Aとを含む。内部空間61Bを規定する表面は、レンズ面24を含む底面22Bと上面62Bとを含む。図6の場合と異なり、レンズ面23は上面62Aに設けられていてもよく、レンズ面24は上面62Bに設けられていてもよい。 FIG. 6 is a cross-sectional view of a photocoupler according to a modification of the first embodiment. The resin member 60 of the photocoupler 1A in FIG. 6 has an internal space 61A and an internal space 61B. Each of the internal spaces 61 </ b> A and 61 </ b> B may communicate with the external space of the resin member 60. The surface defining the internal space 61A includes a bottom surface 22A including the lens surface 23 and an upper surface 62A. The surface that defines the internal space 61B includes a bottom surface 22B including the lens surface 24 and an upper surface 62B. Unlike the case of FIG. 6, the lens surface 23 may be provided on the upper surface 62A, and the lens surface 24 may be provided on the upper surface 62B.

 [効果]
 本実施の形態のフォトカプラ1によれば、指向性の良いVCSELなどの半導体レーザ素子を発光素子31に用いることで、発光ダイオードのように不要な方向に飛ぶ光の割合を減少させることができる。これにより、光のパワーロスを低減することができる。また、送信側である発光素子31の上方にレンズ面23を配置することによって、発光素子31から放射されたレーザ光をコリメートすることができ、これによって反射面13で光のロスが発生しないようにできる。さらに、受信側である受光素子32の上方にレンズ面24を配置することによって、反射面15で正反射したレーザ光を受光素子32の受光面に効率良く集光することができる。たとえば、基板30上での受光素子32の実装位置に多少のずれが生じたとしても、受光素子32の受光面内にレーザ光を集光できるので、光のパワーロスを低減することができる。
[effect]
According to the photocoupler 1 of the present embodiment, by using a semiconductor laser element such as a VCSEL with good directivity for the light emitting element 31, it is possible to reduce the proportion of light flying in an unnecessary direction like a light emitting diode. . Thereby, the power loss of light can be reduced. In addition, by arranging the lens surface 23 above the light emitting element 31 on the transmitting side, the laser light emitted from the light emitting element 31 can be collimated, so that no light loss occurs on the reflecting surface 13. Can be. Furthermore, by arranging the lens surface 24 above the light receiving element 32 on the receiving side, the laser light regularly reflected by the reflecting surface 15 can be efficiently condensed on the light receiving surface of the light receiving element 32. For example, even if a slight shift occurs in the mounting position of the light receiving element 32 on the substrate 30, the laser light can be condensed in the light receiving surface of the light receiving element 32, so that the power loss of light can be reduced.

 上記のように光のパワーロスを低減させることは、Gbpsオーダー以上の高速伝送において特に重要である。なぜなら、信号伝送速度が高速になるほど受信側での受信感度が低下するので光のパワーロスができるだけ小さいことが求められるからである。さらに、発光素子31および受光素子32を基板30に配置することによって高速信号伝送への対応が容易になる。リードフレームを用いる方法ではインピーダンスミスマッチによるパワーロスが大きくなるが、たとえば、基板30をLGA基板によって構成することによって高速信号の伝送ロスを抑えることができる。 As described above, reducing the power loss of light is particularly important for high-speed transmission of Gbps order or higher. This is because the higher the signal transmission speed, the lower the receiving sensitivity on the receiving side, and therefore it is required that the light power loss be as small as possible. Furthermore, by arranging the light emitting element 31 and the light receiving element 32 on the substrate 30, it becomes easy to cope with high-speed signal transmission. In the method using the lead frame, power loss due to impedance mismatch becomes large. For example, the transmission loss of high-speed signals can be suppressed by configuring the substrate 30 with an LGA substrate.

 また、図1~図3に示す反射面13,15およびレンズ面23,24のように、樹脂部材を用いて光学用のミラーおよびレンズを形成することによって、製造コストを抑えることができる。 In addition, as in the case of the reflecting surfaces 13 and 15 and the lens surfaces 23 and 24 shown in FIGS. 1 to 3, the manufacturing cost can be reduced by forming an optical mirror and lens using a resin member.

 <実施の形態2>
 図7は、実施の形態2のフォトカプラの構成を示す断面図である。図7では、発光素子から受光素子に至るレーザビームの光路が破線で示されている。
<Embodiment 2>
FIG. 7 is a cross-sectional view illustrating a configuration of the photocoupler according to the second embodiment. In FIG. 7, the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.

 図7のフォトカプラ2は、反射面13,15と基板30の主面との成す角度が45度よりも大きい点に特徴がある。図7の場合には、天板部11の上面17と基板30の主面301とが略平行であるので、天板部11の上面17と反射面13との成す角度θ1および天板部11の上面17と反射面15との成す角度θ2は、45度よりも大きくなる。 The photocoupler 2 in FIG. 7 is characterized in that the angle formed between the reflecting surfaces 13 and 15 and the main surface of the substrate 30 is larger than 45 degrees. In the case of FIG. 7, since the upper surface 17 of the top plate portion 11 and the main surface 301 of the substrate 30 are substantially parallel, the angle θ 1 formed by the upper surface 17 of the top plate portion 11 and the reflecting surface 13 and the top plate portion The angle θ 2 formed by the upper surface 17 of 11 and the reflecting surface 15 is greater than 45 degrees.

 上記の構成の場合、反射面13へのレーザ光の入射角θiおよび反射面13からのレーザ光の反射角θrは、45度よりも大きくなる。これによって、図7の場合には、反射面13において全反射されたレーザ光は、天板部11の上面17でさらに全反射された後に、反射面15に到達するようにできる。そして、反射面15によって全反射されたレーザ光は、レンズ面24を通過した後に受光素子32の受光面に到達する。図7のその他の点は図4の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。 In the case of the above configuration, the incident angle θi of the laser beam to the reflecting surface 13 and the reflecting angle θr of the laser beam from the reflecting surface 13 are larger than 45 degrees. Accordingly, in the case of FIG. 7, the laser light totally reflected on the reflecting surface 13 can be further totally reflected on the upper surface 17 of the top plate portion 11 and then reach the reflecting surface 15. The laser light totally reflected by the reflection surface 15 reaches the light receiving surface of the light receiving element 32 after passing through the lens surface 24. Since the other points of FIG. 7 are the same as those of FIG. 4, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

 このように、レーザ光の反射面は3つ以上であってもよく、この場合に各反射面の反射角は臨界角よりも大きければ45度でなくてもよい。複数の反射面は、各々が入射光を全反射することによって発光素子31から放射されたレーザ光を受光素子32に導くように配置される。このようなフォトカプラ2の構成であっても、実施の形態1の場合と同様の効果を奏する。 Thus, there may be three or more reflecting surfaces of the laser beam, and in this case, the reflecting angle of each reflecting surface may not be 45 degrees as long as it is larger than the critical angle. The plurality of reflecting surfaces are arranged so that each of them reflects the incident light to guide the laser light emitted from the light emitting element 31 to the light receiving element 32. Even with such a configuration of the photocoupler 2, the same effects as those of the first embodiment can be obtained.

 <実施の形態3>
 図8は、実施の形態3のフォトカプラの構成を示す断面図である。図8では、発光素子から受光素子に至るレーザビームの光路が破線で示されている。
<Embodiment 3>
FIG. 8 is a cross-sectional view illustrating a configuration of the photocoupler according to the third embodiment. In FIG. 8, the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.

 図8のフォトカプラ3は、反射面13,15と基板30の主面との成す角度が45度よりも小さい点に特徴がある。図8の場合には、天板部11の上面17と基板30の主面301とが略平行であるので、天板部11の上面17と反射面13との成す角度θ1および天板部11の上面17と反射面15との成す角度θ2は、45度よりも小さくなる。ただし、以下に示すように角度θ1および角度θ2は、反射面において入射光が全反射する角度である臨界角よりも大きい。 The photocoupler 3 in FIG. 8 is characterized in that the angle formed by the reflecting surfaces 13 and 15 and the main surface of the substrate 30 is smaller than 45 degrees. In the case of FIG. 8, since the top surface 17 of the top plate portion 11 and the main surface 301 of the substrate 30 are substantially parallel, the angle θ 1 formed by the top surface 17 of the top plate portion 11 and the reflecting surface 13 and the top plate portion The angle θ 2 formed by the upper surface 17 of 11 and the reflecting surface 15 is smaller than 45 degrees. However, as will be described below, the angles θ 1 and θ 2 are larger than the critical angle that is the angle at which the incident light is totally reflected on the reflecting surface.

 上記の構成の場合、反射面13へのレーザ光の入射角θiおよび反射面13からのレーザ光の反射角θrは、45度よりも小さくなるが臨界角よりも大きい。これによって、図8の場合には、反射面13において全反射されたレーザ光は、天板部11の下面18でさらに全反射された後に、反射面15に到達するようにできる。そして、反射面15によって全反射されたレーザ光は、レンズ面24を通過した後に受光素子32の受光面に到達する。図8のその他の点は図4の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。 In the case of the above configuration, the incident angle θi of the laser beam to the reflecting surface 13 and the reflecting angle θr of the laser beam from the reflecting surface 13 are smaller than 45 degrees but larger than the critical angle. Accordingly, in the case of FIG. 8, the laser light totally reflected on the reflecting surface 13 can be further totally reflected on the lower surface 18 of the top plate portion 11 and then reach the reflecting surface 15. The laser light totally reflected by the reflection surface 15 reaches the light receiving surface of the light receiving element 32 after passing through the lens surface 24. Since the other points in FIG. 8 are the same as those in FIG. 4, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

 このように、レーザ光の反射面は3つ以上であってもよく、この場合に各反射面の反射角は臨界角よりも大きければ45度よりも小さくても構わない。複数の反射面は、各々が入射光を全反射することによって発光素子31から放射されたレーザ光を受光素子32に導くように配置される。このようなフォトカプラ3の構成であっても、実施の形態1の場合と同様の効果を奏する。 As described above, there may be three or more reflecting surfaces of the laser beam. In this case, the reflecting angle of each reflecting surface may be smaller than 45 degrees as long as it is larger than the critical angle. The plurality of reflecting surfaces are arranged so that each of them reflects the incident light to guide the laser light emitted from the light emitting element 31 to the light receiving element 32. Even with such a configuration of the photocoupler 3, the same effects as in the first embodiment can be obtained.

 <実施の形態4>
 図9は、実施の形態4のフォトカプラの構成を示す断面図である。図9では、発光素子から受光素子に至るレーザビームの光路が破線で示されている。図9のフォトカプラ4において、樹脂部材60は、内部空間61を有しておらず、したがって、レンズ面23,24を有していない点で図4の樹脂部材60と異なる。
<Embodiment 4>
FIG. 9 is a cross-sectional view showing the configuration of the photocoupler according to the fourth embodiment. In FIG. 9, the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line. In the photocoupler 4 of FIG. 9, the resin member 60 does not have the internal space 61, and therefore differs from the resin member 60 of FIG. 4 in that it does not have the lens surfaces 23 and 24.

 より具体的には、フォトカプラ4は、レーザ光を透過する透光性の樹脂材料によって形成される封止部20を備える。封止部20は、基板30の主面301を覆うように形成され、発光素子31、受光素子32、集積回路チップ33,34を封止する。封止部20は、基板30の反対側の上面25から基板30に向かう方向に窪む溝部26,28を有する。溝部26を規定する平面は、レーザ光を正反射する平坦な反射面27を有する。同様に、溝部26を規定する平面は、レーザ光を正反射する平坦な反射面29を有する。 More specifically, the photocoupler 4 includes a sealing portion 20 formed of a translucent resin material that transmits laser light. The sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30, and seals the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34. The sealing unit 20 has grooves 26 and 28 that are recessed in a direction from the upper surface 25 on the opposite side of the substrate 30 toward the substrate 30. The plane that defines the groove 26 has a flat reflecting surface 27 that regularly reflects the laser beam. Similarly, the plane that defines the groove 26 has a flat reflecting surface 29 that regularly reflects the laser beam.

 反射面27は、基板30の主面301に対して45度の角度を成している。反射面29は、基板30の主面301に対して45度の角度を成すとともに、反射面27に対して90度の角度を成している。図3の場合には、封止部20の上面25と基板30の主面301とが略平行であるので、封止部20の上面25と反射面27との成す角度θ1が45度であり、封止部20の上面25と反射面29との成す角度θ2が45度である。さらに、反射面27から基板30の主面301までの距離は、反射面29から基板30の主面301までの距離に略等しい。また、基板30の主面301に垂直な方向から見て、反射面27と発光素子31とは重なっており、反射面29と受光素子32とは重なっている。図9のその他の構成は図4の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。 The reflection surface 27 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30. The reflection surface 29 forms an angle of 45 degrees with respect to the main surface 301 of the substrate 30 and forms an angle of 90 degrees with respect to the reflection surface 27. In the case of FIG. 3, since the upper surface 25 of the sealing part 20 and the main surface 301 of the substrate 30 are substantially parallel, the angle θ 1 formed by the upper surface 25 of the sealing part 20 and the reflecting surface 27 is 45 degrees. The angle θ 2 formed by the upper surface 25 of the sealing portion 20 and the reflecting surface 29 is 45 degrees. Further, the distance from the reflecting surface 27 to the main surface 301 of the substrate 30 is substantially equal to the distance from the reflecting surface 29 to the main surface 301 of the substrate 30. Further, when viewed from the direction perpendicular to the main surface 301 of the substrate 30, the reflective surface 27 and the light emitting element 31 overlap, and the reflective surface 29 and the light receiving element 32 overlap. 9 is the same as that of FIG. 4, and the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

 上記の構成によれば、基板30に垂直方向に向けて発光素子31はレーザ光を放射する。レーザ光は反射面27で全反射した後に、反射面29に到達する。反射面29によって全反射されたレーザ光は、受光素子32の受光面に到達する。これによって、基本的には、実施の形態1と同様の効果を奏する。しかしながら、発光素子31から放射されたレーザ光は必ずしも平行光線ではなく広がりを有しているために、レーザ光は徐々にビーム径を増す。この場合、反射面27、29および受光素子32の受光面からレーザ光がはみ出さないようにすれば、光のパワーロスを抑えることができる。 According to the above configuration, the light emitting element 31 emits laser light in a direction perpendicular to the substrate 30. The laser light reaches the reflection surface 29 after being totally reflected by the reflection surface 27. The laser light totally reflected by the reflecting surface 29 reaches the light receiving surface of the light receiving element 32. As a result, basically the same effects as those of the first embodiment are obtained. However, since the laser light emitted from the light emitting element 31 is not necessarily a parallel light beam but has a spread, the laser light gradually increases in beam diameter. In this case, power loss of light can be suppressed by preventing the laser light from protruding from the reflecting surfaces 27 and 29 and the light receiving surface of the light receiving element 32.

 なお、反射面27,29を曲面状に形成することによって凹面鏡として機能させることによって、レーザ光のビームの広がりを抑えることができる。 It should be noted that the spread of the laser beam can be suppressed by forming the reflecting surfaces 27 and 29 into a curved surface so as to function as a concave mirror.

 <実施の形態5>
 図10は、実施の形態5のフォトカプラの構成を示す断面図である。図10では、発光素子から受光素子に至るレーザビームの光路が破線で示されている。図10のフォトカプラ5は、樹脂部材60の上面に設けられた反射面13,15に代えて、内部空間61の上面62に反射板43が設けられている点で図3のフォトカプラ1と異なる。以下、具体的に説明する。
<Embodiment 5>
FIG. 10 is a cross-sectional view illustrating a configuration of the photocoupler according to the fifth embodiment. In FIG. 10, the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line. The photocoupler 5 in FIG. 10 differs from the photocoupler 1 in FIG. 3 in that a reflecting plate 43 is provided on the upper surface 62 of the internal space 61 instead of the reflecting surfaces 13 and 15 provided on the upper surface of the resin member 60. Different. This will be specifically described below.

 図10を参照して、樹脂部材60は、レーザ光を透過する透光性の樹脂材料によって形成され、外形が略直方体形状である。樹脂部材60は、封止部20と天板部40とを備える。封止部20は、基板30の主面301を覆うように形成されるとともに、穴部21による規定された内部空間61を有する。 Referring to FIG. 10, the resin member 60 is formed of a translucent resin material that transmits laser light, and the outer shape thereof is a substantially rectangular parallelepiped shape. The resin member 60 includes a sealing portion 20 and a top plate portion 40. The sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30 and has an internal space 61 defined by the hole 21.

 封止部20の具体的構成は実施の形態1の図4の場合とほぼ同じであるが、レンズ面23の配置が図4の場合と異なる。具体的には、図10に示すように、基板30の主面301に垂直な方向から見て、レンズ面23の光軸は発光素子31の出射面の中心からずれている。 The specific configuration of the sealing portion 20 is almost the same as that in FIG. 4 of the first embodiment, but the arrangement of the lens surface 23 is different from that in FIG. Specifically, as shown in FIG. 10, the optical axis of the lens surface 23 is shifted from the center of the emission surface of the light emitting element 31 when viewed from the direction perpendicular to the main surface 301 of the substrate 30.

 天板部40は、穴部21を覆うように設けられる。天板部40の下面42(すなわち、内部空間61の上面62)上に反射板43が設けられる。反射板43の反射面(すなわち、基板30側の表面)は入射光を全反射する。反射板43の内部には光はほとんど侵入できない。 The top plate part 40 is provided so as to cover the hole part 21. The reflection plate 43 is provided on the lower surface 42 of the top plate portion 40 (that is, the upper surface 62 of the internal space 61). The reflecting surface of the reflecting plate 43 (that is, the surface on the substrate 30 side) totally reflects incident light. Light hardly penetrates into the reflection plate 43.

 ここで、レンズ面23の光軸が発光素子31の出射面の中心軸からずれていることによって、発光素子31から放射されたレーザ光は、レンズ面23で屈折して反射板43に導かれる。反射板43の反射面によって正反射されたレーザ光は、レンズ面24によって屈折され、受光素子32の受光面に集光される。 Here, since the optical axis of the lens surface 23 is shifted from the central axis of the emission surface of the light emitting element 31, the laser light emitted from the light emitting element 31 is refracted by the lens surface 23 and guided to the reflecting plate 43. . The laser light regularly reflected by the reflecting surface of the reflecting plate 43 is refracted by the lens surface 24 and collected on the light receiving surface of the light receiving element 32.

 図10のその他の点は図4の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。上記の図11のフォトカプラ5の構成によれば、実施の形態1の場合と同様に、光のパワーロスを低減させることができ、これにより、Gbpsオーダーの信号伝送が可能になる。 Since other points in FIG. 10 are the same as those in FIG. 4, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. According to the configuration of the photocoupler 5 in FIG. 11 described above, similarly to the case of the first embodiment, it is possible to reduce the power loss of light, thereby enabling signal transmission in the Gbps order.

 <実施の形態6>
 図11は、実施の形態6のフォトカプラの構成を示す断面図である。図11では、発光素子から受光素子に至るレーザビームの光路が破線で示されている。
<Embodiment 6>
FIG. 11 is a cross-sectional view illustrating a configuration of the photocoupler according to the sixth embodiment. In FIG. 11, the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.

 図11のフォトカプラ6は、送信側のレンズ面23のみが設けられており、時受信側のレンズ面24が設けられていない点で図4のフォトカプラ1と異なる。さらに、図11のフォトカプラ6は、樹脂部材60に設けられた反射面13,15に代えて、反射板54が設けられている点で図4のフォトカプラ1と異なる。レーザ光は、反射板54と樹脂部材60との界面において反射される。以下、具体的に説明する。 11 differs from the photocoupler 1 of FIG. 4 in that only the transmission-side lens surface 23 is provided and the hour-reception-side lens surface 24 is not provided. Furthermore, the photocoupler 6 in FIG. 11 differs from the photocoupler 1 in FIG. 4 in that a reflecting plate 54 is provided instead of the reflecting surfaces 13 and 15 provided in the resin member 60. The laser light is reflected at the interface between the reflecting plate 54 and the resin member 60. This will be specifically described below.

 図11を参照して、樹脂部材60は、レーザ光を透過する透光性の樹脂材料によって形成され、封止部20と天板部50とを備える。封止部20は、基板30の主面301を覆うように形成され、発光素子31、受光素子32、集積回路チップ33,34を封止する。封止部20の上面25には、穴部21が形成される。穴部21の底面22は、上方に突出するレンズ面23を含む。 Referring to FIG. 11, resin member 60 is formed of a translucent resin material that transmits laser light, and includes sealing portion 20 and top plate portion 50. The sealing unit 20 is formed so as to cover the main surface 301 of the substrate 30, and seals the light emitting element 31, the light receiving element 32, and the integrated circuit chips 33 and 34. A hole 21 is formed in the upper surface 25 of the sealing portion 20. The bottom surface 22 of the hole 21 includes a lens surface 23 protruding upward.

 天板部11は、穴部21を覆うように封止部20の上面25に取り付けられる。天板部11の基板30と反対側の表面51には、曲面53が形成される。曲面53を覆うように反射板54が設けられる。基板30の主面301に垂直な方向から見て、反射板54とレンズ面23と発光素子31とは重なる位置にある。レンズ面23の光軸が発光素子31の出射面の中心を通るのが望ましい。 The top plate part 11 is attached to the upper surface 25 of the sealing part 20 so as to cover the hole part 21. A curved surface 53 is formed on the surface 51 of the top plate 11 opposite to the substrate 30. A reflection plate 54 is provided so as to cover the curved surface 53. When viewed from a direction perpendicular to the main surface 301 of the substrate 30, the reflecting plate 54, the lens surface 23, and the light emitting element 31 are in a position overlapping each other. It is desirable that the optical axis of the lens surface 23 passes through the center of the emission surface of the light emitting element 31.

 反射板54と樹脂部材60との界面においてレーザ光が反射される。反射板54が曲面53に沿うように形成されることによって反射板54は凹面鏡として機能する。これによって、反射板54によって正反射されたレーザ光は受光素子32の受光面に集光する。 The laser beam is reflected at the interface between the reflecting plate 54 and the resin member 60. By forming the reflection plate 54 along the curved surface 53, the reflection plate 54 functions as a concave mirror. As a result, the laser light regularly reflected by the reflecting plate 54 is condensed on the light receiving surface of the light receiving element 32.

 図11のその他の点は図4の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。上記の図11のフォトカプラ6の構成によれば、実施の形態1の場合と同様に、光のパワーロスを低減させることができ、これにより、Gbpsオーダーの信号伝送が可能になる。 Since other points in FIG. 11 are the same as those in FIG. 4, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. According to the configuration of the photocoupler 6 in FIG. 11 described above, similarly to the case of the first embodiment, it is possible to reduce the power loss of light, thereby enabling signal transmission in the Gbps order.

 <実施の形態7>
 図12は、実施の形態7のフォトカプラの構成を示す断面図である。図12では、発光素子から受光素子に至るレーザビームの光路が破線で示されている。
<Embodiment 7>
FIG. 12 is a cross-sectional view illustrating a configuration of the photocoupler according to the seventh embodiment. In FIG. 12, the optical path of the laser beam from the light emitting element to the light receiving element is indicated by a broken line.

 図12のフォトカプラ7は、基板30が第1の基板30Aと第2の基板30Bとに分離されている点で図4のフォトカプラ1と異なる。図12の構成では、第1の基板30Aの主面301A上に発光素子31と集積回路チップ33とが配置され、第2の基板30Bの主面301B上に受光素子32と集積回路チップ34とが配置される。第1の基板30Aと第2の基板30Bは同一平面上に沿って配置されている。 12 is different from the photocoupler 1 in FIG. 4 in that the substrate 30 is separated into a first substrate 30A and a second substrate 30B. In the configuration of FIG. 12, the light emitting element 31 and the integrated circuit chip 33 are disposed on the main surface 301A of the first substrate 30A, and the light receiving element 32, the integrated circuit chip 34, and the main surface 301B of the second substrate 30B. Is placed. The first substrate 30A and the second substrate 30B are arranged along the same plane.

 樹脂部材60は、レーザ光を透過する透光性の樹脂材料によって形成され、第1の封止部20Aと、第2の封止部20Bと、天板部11とを含む。第1の封止部20Aは、第1の基板30Aの主面301Aを覆うことによって発光素子31および集積回路チップ33を封止する。第2の封止部20Bは、第2の基板30Bの主面301Bを覆うことによって受光素子32および集積回路チップ34を封止する。天板部11は、第1の封止部20Aの上面25Aと第2の封止部20Bの上面25Bとを連結する。 The resin member 60 is formed of a translucent resin material that transmits laser light, and includes a first sealing portion 20A, a second sealing portion 20B, and the top plate portion 11. The first sealing unit 20A seals the light emitting element 31 and the integrated circuit chip 33 by covering the main surface 301A of the first substrate 30A. The second sealing unit 20B seals the light receiving element 32 and the integrated circuit chip 34 by covering the main surface 301B of the second substrate 30B. The top plate portion 11 connects the upper surface 25A of the first sealing portion 20A and the upper surface 25B of the second sealing portion 20B.

 天板部11は、第1の基板30Aと反対側の上面17から第1の基板30Aに向かう方向に窪んだ溝部12と、第2の基板30Bと反対側の上面17から第2の基板30Bに向かう方向に窪んだ溝部14とを有する。溝部12を規定する平面は、レーザ光を正反射する平坦な反射面13を有する。同様に、溝部14を規定する平面は、レーザ光を正反射する平坦な反射面15を有する。反射面13は、第1の基板30Aの主面301Aに対して45度の角度を成している。反射面15は、第2の基板30Bの主面301Bに対して45度の角度を成すとともに、反射面13に対して90度の角度を成している。反射面13から第1の基板30Aの主面301Aまでの距離は、反射面15から第2の基板30Bの主面301Bまでの距離に略等しい。 The top plate 11 includes a groove 12 that is recessed in the direction from the upper surface 17 opposite to the first substrate 30A toward the first substrate 30A, and the second substrate 30B from the upper surface 17 opposite to the second substrate 30B. And a groove 14 that is recessed in the direction toward the. The plane that defines the groove 12 has a flat reflecting surface 13 that regularly reflects the laser beam. Similarly, the plane that defines the groove 14 has a flat reflecting surface 15 that regularly reflects the laser beam. The reflective surface 13 forms an angle of 45 degrees with respect to the main surface 301A of the first substrate 30A. The reflection surface 15 forms an angle of 45 degrees with respect to the main surface 301B of the second substrate 30B and forms an angle of 90 degrees with respect to the reflection surface 13. The distance from the reflective surface 13 to the main surface 301A of the first substrate 30A is substantially equal to the distance from the reflective surface 15 to the main surface 301B of the second substrate 30B.

 第1の封止部20Aは、穴部21Aによって規定された第1の内部空間61Aを有する。穴部21Aの底面22Aは、第1の内部空間61Aに突出する第1のレンズ面23を含む。第2の封止部20Bは、穴部21Bによって規定された第2の内部空間61Bを有する。穴部21Bの底面22Bは、第2の内部空間61Bに突出する第2のレンズ面24を含む。 The first sealing portion 20A has a first internal space 61A defined by the hole portion 21A. The bottom surface 22A of the hole 21A includes a first lens surface 23 protruding into the first internal space 61A. The second sealing portion 20B has a second internal space 61B defined by the hole portion 21B. The bottom surface 22B of the hole portion 21B includes a second lens surface 24 protruding into the second internal space 61B.

 第1の基板30Aの主面301Aに垂直な方向から見て、反射面13、レンズ面23、発光素子31は重なっており、レンズ面23は反射面13と発光素子31との間に位置している。レンズ面23の光軸が発光素子31の出射面の中心を通るのが望ましい。同様に、第2の基板30Bの主面301Bに垂直な方向から見て、反射面15、レンズ面24、受光素子32は重なっており、レンズ面24は反射面15と受光素子32との間に位置している。レンズ面24の光軸が受光素子32の受光面の中心を通るのが望ましい。 When viewed from the direction perpendicular to the main surface 301A of the first substrate 30A, the reflecting surface 13, the lens surface 23, and the light emitting element 31 overlap, and the lens surface 23 is located between the reflecting surface 13 and the light emitting element 31. ing. It is desirable that the optical axis of the lens surface 23 passes through the center of the emission surface of the light emitting element 31. Similarly, when viewed from the direction perpendicular to the main surface 301B of the second substrate 30B, the reflecting surface 15, the lens surface 24, and the light receiving element 32 overlap, and the lens surface 24 is located between the reflecting surface 15 and the light receiving element 32. Is located. It is desirable that the optical axis of the lens surface 24 passes through the center of the light receiving surface of the light receiving element 32.

 上記の構成のフォトカプラ7によれば、実施の形態1のフォトカプラ1と同様の効果を奏する。さらに、上記の構成のフォトカプラ7は、医療機器などのように、規格上、絶縁耐力を向上させるためにフォトカプラ7の送信側の端子と受信側の端子との距離を離す必要がある場合に好適に用いられる。 According to the photocoupler 7 having the above configuration, the same effects as those of the photocoupler 1 of the first embodiment are obtained. Further, the photocoupler 7 having the above-described configuration is required to increase the distance between the transmission-side terminal and the reception-side terminal of the photocoupler 7 in order to improve the dielectric strength according to the standard, such as a medical device. Is preferably used.

 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

 1,1A,2~7 フォトカプラ、11,40,50 天板部、12,14,26,28 溝部、13,15,27,29 反射面、20 封止部、20A 第1の封止部、20B 第2の封止部、21,21A,21B 穴部、23,24 レンズ面、30,30A,30B 基板、31 発光素子、32 受光素子、33,34 集積回路チップ、35,37 接地端子、36,38 端子、43,54 反射板、60 樹脂部材、61,61A,61B 内部空間、70 光路、301,301A,301B 主面、302 裏面。 1, 1A, 2-7 photocoupler, 11, 40, 50 top plate part, 12, 14, 26, 28 groove part, 13, 15, 27, 29 reflective surface, 20 sealing part, 20A first sealing part , 20B second sealing part, 21, 21A, 21B hole part, 23, 24 lens surface, 30, 30A, 30B substrate, 31 light emitting element, 32 light receiving element, 33, 34 integrated circuit chip, 35, 37 ground terminal 36, 38 terminal, 43, 54 reflector, 60 resin member, 61, 61A, 61B internal space, 70 optical path, 301, 301A, 301B main surface, 302 back surface.

Claims (18)

 基板と、
 前記基板の主面上に配置され、レーザ光を放射する発光素子と、
 前記基板の前記主面上に配置された受光素子と、
 前記基板の前記主面を覆うことによって、前記発光素子および前記受光素子を封止する透光性の樹脂部材と、
 前記樹脂部材の表面上に配置された1つまたは複数のミラーとを備え、
 前記1つまたは複数のミラーは、前記1つのミラーまたは前記複数のミラーの各々が入射光を正反射することによって、前記発光素子から放射されたレーザ光を前記受光素子の受光面に導くように配置されている、フォトカプラ。
A substrate,
A light emitting element disposed on the main surface of the substrate and emitting laser light;
A light receiving element disposed on the main surface of the substrate;
A translucent resin member that seals the light emitting element and the light receiving element by covering the main surface of the substrate;
One or more mirrors disposed on the surface of the resin member,
The one or more mirrors guide the laser light emitted from the light emitting element to the light receiving surface of the light receiving element by each of the one mirror or the plurality of mirrors regularly reflecting incident light. Arranged photocoupler.
 前記樹脂部材の表面は、前記1つまたは複数のミラーとして機能する1つまたは複数の反射面を含み、
 各前記反射面へのレーザ光の入射角は、入射光が全反射する角度である臨界角よりも大きい、請求項1に記載のフォトカプラ。
The surface of the resin member includes one or more reflecting surfaces that function as the one or more mirrors,
2. The photocoupler according to claim 1, wherein an incident angle of the laser light to each of the reflection surfaces is larger than a critical angle that is an angle at which the incident light is totally reflected.
 前記1つまたは複数の反射面は、第1の反射面および第2の反射面を含み、
 前記第1の反射面は、前記基板の前記主面と45度の角度を成し、
 前記第2の反射面は、前記第1の反射面と90度の角度を成し、
 前記発光素子は、前記第1の反射面に向かってレーザ光を放射し、
 前記第1の反射面によって正反射されたレーザ光は、前記第2の反射面に到達し、
 前記第2の反射面によって正反射されたレーザ光は、前記受光素子の前記受光面に到達する、請求項2に記載のフォトカプラ。
The one or more reflective surfaces include a first reflective surface and a second reflective surface;
The first reflective surface forms an angle of 45 degrees with the main surface of the substrate;
The second reflective surface forms an angle of 90 degrees with the first reflective surface;
The light emitting element emits laser light toward the first reflecting surface,
The laser light regularly reflected by the first reflecting surface reaches the second reflecting surface,
The photocoupler according to claim 2, wherein the laser light regularly reflected by the second reflecting surface reaches the light receiving surface of the light receiving element.
 前記樹脂部材は、前記基板と反対側の表面から前記基板に向かって窪んだ第1の溝部および第2の溝部を有し、
 前記第1の溝部を規定する表面は、前記第1の反射面を含み、
 前記第2の溝部を規定する表面は、前記第2の反射面を含む、請求項3に記載のフォトカプラ。
The resin member has a first groove and a second groove that are recessed from the surface opposite to the substrate toward the substrate,
The surface defining the first groove includes the first reflective surface,
The photocoupler according to claim 3, wherein a surface defining the second groove includes the second reflecting surface.
 前記1つまたは複数のミラーは、前記樹脂部材の表面上に配置された反射板を含み、レーザ光は、前記樹脂部材と前記反射板との界面において正反射される、請求項1に記載のフォトカプラ。 The said 1 or several mirror contains the reflecting plate arrange | positioned on the surface of the said resin member, and a laser beam is regularly reflected in the interface of the said resin member and the said reflecting plate. Photo coupler.  前記樹脂部材は、第1の内部空間を有し、
 前記第1の内部空間を規定する表面は、前記第1の内部空間に突出する第1のレンズ面を含み、
 前記発光素子から放射されたレーザ光は、前記第1のレンズ面を通過した後に前記1つのミラーまたは前記複数のミラーのいずれかに到達する、請求項1~5のいずれか1項に記載のフォトカプラ。
The resin member has a first internal space,
The surface defining the first internal space includes a first lens surface protruding into the first internal space,
The laser light emitted from the light emitting element reaches one of the one mirror or the plurality of mirrors after passing through the first lens surface. Photo coupler.
 前記第1の内部空間を規定する表面は、前記第1の内部空間に突出する第2のレンズ面を含み、
 前記1つのミラーまたは前記複数のミラーのいずれかによって正反射されたレーザ光は、前記第2のレンズ面を通過した後に前記受光素子の受光面に到達する、請求項6に記載のフォトカプラ。
A surface defining the first internal space includes a second lens surface protruding into the first internal space;
The photocoupler according to claim 6, wherein the laser light regularly reflected by either the one mirror or the plurality of mirrors reaches the light receiving surface of the light receiving element after passing through the second lens surface.
 前記基板は、前記第1のレンズ面および前記第2のレンズ面を間に挟んで、前記第1の内部空間と反対側に位置している、請求項7に記載のフォトカプラ。 The photocoupler according to claim 7, wherein the substrate is located on the opposite side of the first internal space with the first lens surface and the second lens surface interposed therebetween.  前記樹脂部材は、前記第1の内部空間と異なる第2の内部空間をさらに有し、
 前記第2の内部空間を規定する表面は、前記第2の内部空間に突出する第2のレンズ面を含み、
 前記1つのミラーまたは前記複数のミラーのいずれかによって正反射されたレーザ光は、前記第2のレンズ面を通過した後に前記受光素子の受光面に到達する、請求項6に記載のフォトカプラ。
The resin member further has a second internal space different from the first internal space,
A surface defining the second internal space includes a second lens surface protruding into the second internal space;
The photocoupler according to claim 6, wherein the laser light regularly reflected by either the one mirror or the plurality of mirrors reaches the light receiving surface of the light receiving element after passing through the second lens surface.
 前記樹脂部材は、内部空間を有し、
 前記内部空間を規定する表面は、前記内部空間を間に挟んで互いに対向する底面および上面を含み、
 前記基板は、前記底面を間に挟んで前記内部空間と反対側に位置し、
 前記1つまたは複数のミラーは、前記上面上に配置された反射板を含み、
 前記底面は、
 前記発光素子から放射されたレーザ光を前記反射板に導く第1のレンズ面と、
 前記反射板によって正反射されたレーザ光を前記受光素子の前記受光面に導く第2のレンズ面とを含む、請求項1に記載のフォトカプラ。
The resin member has an internal space,
The surface defining the internal space includes a bottom surface and an upper surface facing each other with the internal space in between,
The substrate is located on the opposite side of the internal space with the bottom surface in between,
The one or more mirrors include a reflector disposed on the top surface;
The bottom surface is
A first lens surface for guiding laser light emitted from the light emitting element to the reflector;
The photocoupler according to claim 1, further comprising: a second lens surface that guides the laser light regularly reflected by the reflecting plate to the light receiving surface of the light receiving element.
 前記発光素子は、垂直共振器面発光レーザ素子を含む、請求項1~10のいずれか1項に記載のフォトカプラ。 11. The photocoupler according to claim 1, wherein the light emitting element includes a vertical cavity surface emitting laser element.  前記基板の前記主面上に配置され、前記発光素子に駆動信号を供給する第1の集積回路チップをさらに備える、請求項1~11のいずれか1項に記載のフォトカプラ。 The photocoupler according to any one of claims 1 to 11, further comprising a first integrated circuit chip disposed on the main surface of the substrate and supplying a drive signal to the light emitting element.  前記基板の前記主面上に配置され、前記受光素子の出力信号を処理する第2の集積回路チップをさらに備える、請求項1~12のいずれか1項に記載のフォトカプラ。 The photocoupler according to any one of claims 1 to 12, further comprising a second integrated circuit chip disposed on the main surface of the substrate and processing an output signal of the light receiving element.  前記基板の前記主面と反対の裏面上に配置された前記発光素子用の第1の接地端子と、
 前記基板の前記裏面上に配置され、前記第1の接地端子と電気的に分離された前記受光素子用の第2の接地端子とをさらに備える、請求項1~13のいずれか1項に記載のフォトカプラ。
A first ground terminal for the light emitting element disposed on a back surface opposite to the main surface of the substrate;
The second ground terminal for the light receiving element that is disposed on the back surface of the substrate and is electrically separated from the first ground terminal. Photocoupler.
 前記基板は、第1の基板と第2の基板とに分離され、
 前記発光素子は、前記第1の基板の主面上に配置され、
 前記受光素子は、前記第2の基板の主面上に配置され、
 前記樹脂部材は、
 前記第1の基板の前記主面を覆うことによって前記発光素子を封止する第1の封止部と、
 前記第2の基板の前記主面を覆うことによって前記受光素子を封止する第2の封止部と、
 前記第1の封止部の前記第1の基板と反対側の表面と前記第2の封止部の前記第2の基板と反対側の表面とを連結する天板部とを備え、
 前記天板部の表面は、前記1つまたは複数のミラーとして機能する1つまたは複数の反射面を含み、
 各前記反射面へのレーザ光の入射角は、入射光が全反射する角度である臨界角よりも大きい、請求項1に記載のフォトカプラ。
The substrate is separated into a first substrate and a second substrate;
The light emitting element is disposed on a main surface of the first substrate;
The light receiving element is disposed on a main surface of the second substrate;
The resin member is
A first sealing portion that seals the light emitting element by covering the main surface of the first substrate;
A second sealing portion for sealing the light receiving element by covering the main surface of the second substrate;
A top plate portion that connects the surface of the first sealing portion opposite to the first substrate and the surface of the second sealing portion opposite to the second substrate;
The surface of the top plate includes one or more reflecting surfaces that function as the one or more mirrors,
2. The photocoupler according to claim 1, wherein an incident angle of the laser light to each of the reflection surfaces is larger than a critical angle that is an angle at which the incident light is totally reflected.
 前記第1の封止部は、第1の内部空間を有し、
 前記第1の内部空間を規定する表面は、前記第1の内部空間に突出する第1のレンズ面を含み、
 前記発光素子から放射されたレーザ光は、前記第1のレンズ面を通過した後に、前記1つの反射面または前記複数の反射面のいずれかに到達し、
 前記第2の封止部は、第2の内部空間を有し、
 前記第2の内部空間を規定する表面は、前記第2の内部空間に突出する第2のレンズ面を含み、
 前記1つの反射面または前記複数の反射面のいずれかによって正反射されたレーザ光は、前記第2のレンズ面を通過した後に前記受光素子の受光面に到達する、請求項15に記載のフォトカプラ。
The first sealing portion has a first internal space,
The surface defining the first internal space includes a first lens surface protruding into the first internal space,
After the laser light emitted from the light emitting element passes through the first lens surface, it reaches one of the one reflecting surface or the plurality of reflecting surfaces,
The second sealing portion has a second internal space,
A surface defining the second internal space includes a second lens surface protruding into the second internal space;
The photo beam according to claim 15, wherein the laser light regularly reflected by either the one reflecting surface or the plurality of reflecting surfaces reaches the light receiving surface of the light receiving element after passing through the second lens surface. Coupler.
 基板と、
 前記基板の主面上に配置され、レーザ光を前記基板と垂直方向に向けて放射する発光素子と、
 前記基板の前記主面上に位置する受光素子と、
 前記基板の前記主面を覆うことによって、前記発光素子および前記受光素子を封止する透光性の樹脂部材を備え、
 前記樹脂部材の屈折率は√2よりも大きく、
 前記樹脂部材の表面は、入射光を正反射する第1の反射面および第2の反射面を含み、
 前記第1の反射面は、前記基板の前記主面と45度の角度を成し、かつ前記基板に垂直な方向から見て前記発光素子と重なる位置に配置され、
 前記第2の反射面は、前記第1の反射面と90度の角度を成し、かつ前記樹脂部材の一部を間に挟んで前記第1の反射面と対向し、かつ前記基板に垂直方向から見て前記受光素子の受光面と重なる位置に配置される、フォトカプラ。
A substrate,
A light emitting element disposed on the main surface of the substrate and emitting laser light in a direction perpendicular to the substrate;
A light receiving element located on the main surface of the substrate;
A translucent resin member for sealing the light emitting element and the light receiving element by covering the main surface of the substrate;
The resin member has a refractive index greater than √2,
The surface of the resin member includes a first reflecting surface and a second reflecting surface that regularly reflect incident light,
The first reflecting surface forms an angle of 45 degrees with the main surface of the substrate and is disposed at a position overlapping the light emitting element when viewed from a direction perpendicular to the substrate,
The second reflecting surface forms an angle of 90 degrees with the first reflecting surface, faces the first reflecting surface with a part of the resin member interposed therebetween, and is perpendicular to the substrate. A photocoupler disposed at a position overlapping the light receiving surface of the light receiving element when viewed from the direction.
 前記樹脂部材は、内部空間を有し、
 前記内部空間を規定する表面は、前記内部空間を間に挟んで互いに対向する底面および上面を含み、
 前記基板は、前記底面を間に挟んで前記内部空間と反対側に位置し、
 前記底面は、
 前記発光素子と前記第1の反射面との間に位置し、前記内部空間に突出する第1のレンズ面と、
 前記発光素子と前記第2の反射面との間に位置し、前記内部空間に突出する第2のレンズ面とを含む、請求項17に記載のフォトカプラ。
The resin member has an internal space,
The surface defining the internal space includes a bottom surface and an upper surface facing each other with the internal space in between,
The substrate is located on the opposite side of the internal space with the bottom surface in between,
The bottom surface is
A first lens surface located between the light emitting element and the first reflecting surface and protruding into the internal space;
The photocoupler according to claim 17, further comprising: a second lens surface that is located between the light emitting element and the second reflecting surface and protrudes into the internal space.
PCT/JP2017/041431 2016-12-09 2017-11-17 Photocoupler WO2018105358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239117 2016-12-09
JP2016-239117 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105358A1 true WO2018105358A1 (en) 2018-06-14

Family

ID=62491192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041431 WO2018105358A1 (en) 2016-12-09 2017-11-17 Photocoupler

Country Status (1)

Country Link
WO (1) WO2018105358A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828439A (en) * 2018-08-08 2020-02-21 光宝光电(常州)有限公司 Light source device and portable communication equipment
WO2023046374A1 (en) * 2021-09-23 2023-03-30 Osram Opto Semiconductors Gmbh Optoelectronic device
JP7711994B1 (en) * 2024-07-09 2025-07-23 株式会社エルムテクノロジー Light receiving device and laser marking system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109159U (en) * 1984-12-20 1986-07-10
JPH11307808A (en) * 1998-04-17 1999-11-05 Sanyo Electric Co Ltd Photocoupler device
JP2000235127A (en) * 1999-02-15 2000-08-29 Nippon Telegr & Teleph Corp <Ntt> Optoelectronic integrated circuit and method of manufacturing the same
JP2001358361A (en) * 2000-06-13 2001-12-26 Rohm Co Ltd Surface mounting photocoupler
WO2002099897A1 (en) * 2001-06-01 2002-12-12 Motorola, Inc., A Corporation Of The State Of Delaware Optically-communicating integrated circuits
JP2005038905A (en) * 2003-07-15 2005-02-10 Agilent Technologies Japan Ltd Photocoupler device with improved linearity
JP2009302210A (en) * 2008-06-11 2009-12-24 Toshiba Discrete Technology Kk Optical coupling device circuit and optical coupling device
JP2012243928A (en) * 2011-05-19 2012-12-10 Sharp Corp Optical coupling device, electronic apparatus and manufacturing method of optical coupling device
JP2017068998A (en) * 2015-09-29 2017-04-06 シャープ株式会社 Proximity sensor and electronic apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109159U (en) * 1984-12-20 1986-07-10
JPH11307808A (en) * 1998-04-17 1999-11-05 Sanyo Electric Co Ltd Photocoupler device
JP2000235127A (en) * 1999-02-15 2000-08-29 Nippon Telegr & Teleph Corp <Ntt> Optoelectronic integrated circuit and method of manufacturing the same
JP2001358361A (en) * 2000-06-13 2001-12-26 Rohm Co Ltd Surface mounting photocoupler
WO2002099897A1 (en) * 2001-06-01 2002-12-12 Motorola, Inc., A Corporation Of The State Of Delaware Optically-communicating integrated circuits
JP2005038905A (en) * 2003-07-15 2005-02-10 Agilent Technologies Japan Ltd Photocoupler device with improved linearity
JP2009302210A (en) * 2008-06-11 2009-12-24 Toshiba Discrete Technology Kk Optical coupling device circuit and optical coupling device
JP2012243928A (en) * 2011-05-19 2012-12-10 Sharp Corp Optical coupling device, electronic apparatus and manufacturing method of optical coupling device
JP2017068998A (en) * 2015-09-29 2017-04-06 シャープ株式会社 Proximity sensor and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828439A (en) * 2018-08-08 2020-02-21 光宝光电(常州)有限公司 Light source device and portable communication equipment
WO2023046374A1 (en) * 2021-09-23 2023-03-30 Osram Opto Semiconductors Gmbh Optoelectronic device
JP7711994B1 (en) * 2024-07-09 2025-07-23 株式会社エルムテクノロジー Light receiving device and laser marking system

Similar Documents

Publication Publication Date Title
US7281860B2 (en) Optical transmitter
JP5777355B2 (en) System and method
JP4053106B2 (en) Integrated laser-based light source
US9581772B2 (en) Optical electrical module used for optical communication
US8774578B2 (en) Optical module and manufacturing method thereof
TWI611230B (en) Optical receptacle and optical module
US20120241600A1 (en) Optical electrical module
KR100355980B1 (en) Optical transmission and receiving module
US20160349470A1 (en) Hybrid integrated optical sub-assembly
US10048458B2 (en) Optical module
US7429725B2 (en) Optical assembly with optical transmitting and receiving functions
WO2020155965A1 (en) Optical assembly
WO2018105358A1 (en) Photocoupler
US20210234335A1 (en) Surface emitting laser package and light emitting device comprising same
US11137558B2 (en) Optical receptacle and optical module
KR102761471B1 (en) A surface-emitting laser packgae and optical module including the same
KR102486332B1 (en) A surface-emitting laser package, optical module including the same
KR101246137B1 (en) Light emitting device and optical coupling module
WO2021109776A1 (en) Optical module
US11705691B2 (en) Light source device
US10547391B2 (en) Optical module
JP4477151B2 (en) Integrated laser-based light source
KR102534590B1 (en) A vertical-cavity surface-emitting laser package
US20220187551A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
CN111694111B (en) Optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP