[go: up one dir, main page]

WO2018109361A1 - Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrique - Google Patents

Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrique Download PDF

Info

Publication number
WO2018109361A1
WO2018109361A1 PCT/FR2017/053518 FR2017053518W WO2018109361A1 WO 2018109361 A1 WO2018109361 A1 WO 2018109361A1 FR 2017053518 W FR2017053518 W FR 2017053518W WO 2018109361 A1 WO2018109361 A1 WO 2018109361A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
electric machine
bsg
phase
during
Prior art date
Application number
PCT/FR2017/053518
Other languages
English (en)
Inventor
Damien Verdier
Yannis GUILLOT
Jérôme LACHAIZE
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to US16/468,024 priority Critical patent/US10954908B2/en
Priority to CN201780077727.1A priority patent/CN110062710B/zh
Publication of WO2018109361A1 publication Critical patent/WO2018109361A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits specially adapted for starting of engines
    • F02N11/0848Circuits specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/041Starter speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/042Starter torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/102Control of the starter motor speed; Control of the engine speed during cranking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to hybrid drive systems, thermal and electrical, especially for motor vehicles.
  • the present invention relates to a method of controlling a transient phase of starting a heat engine, taking over from an electric machine, in a hybrid vehicle engine system.
  • hybrid vehicles comprise a hybrid drive system having a combustion engine, and an electric machine.
  • a combustion engine a combustion engine
  • an electric machine a combustion engine
  • the control of the transient phase when the heat engine takes over from the electric machine to drive the motor shaft, when starting such a motorization system. hybrid, is delicate.
  • the starting of the heat engine is carried out conventionally according to two techniques.
  • the first known technique more widespread, implements a "traditional" starter; in this case, the drive shaft is driven by a gearwheel, via the crankshaft, so as to allow the start of the engine.
  • the second technique uses an alternator-starter.
  • the electric machine sets in motion a belt system cooperating with a set of pulleys to rotate the motor shaft and start the engine.
  • the operation of the electric machine as part of the electrical start of the engine of a hybrid engine system is supervised by an electronic control unit, or ECU, for Electronic Control Unit according to the acronym in English known to the man of the job.
  • the starting supervision by the ECU also includes a control dimension of the injection device of the engine.
  • the electric machine can be positioned in particular in different parts of the drive chain.
  • the electric machine is arranged so as to drive the motor without driving the wheels, that is to say positioned in PO, P1 or P2 in Figure 2.
  • the electric machine must be positioned relative to the clutch, so that the clutch can be configured so that said electric machine drives the motor shaft without driving the wheels.
  • the electric machine in the context of the present invention, is preferably placed upstream of the clutch and in parallel with the crankshaft.
  • the control of the transient phase when the heat engine takes over the electric machine to drive the motor shaft, is of some complexity.
  • the invention aims to remedy this drawback and to make it possible to determine with certainty that the heat engine is able to ensure only the driving of the motor shaft, the electric machine can therefore be stopped.
  • the subject of the invention is a method for managing the starting of a combustion engine of a hybrid engine system comprising a heat engine and an electric machine, as well as a motor shaft having a motor speed, the machine electrical generating torque to start the engine and drive the motor shaft at least during an initial phase of starting, said method having a transient phase of startup during which the engine drives the motor shaft and at the end of which electrical machine is stopped, the electric machine being regulated, during the initial phase and during the transient phase, with a first engine speed setpoint, said transient phase starting when the motor shaft reaches the first engine speed setpoint in a stabilized manner, and the heat engine being regulated, during the transient phase, with a second engine speed setpoint, lad said second setpoint being greater than a predetermined margin at the first setpoint, said method comprising, during the transient phase, the control of the torque produced by the electric machine during said transient start-up phase, said control comprising measuring the torque produced by the electrical machine and said control being configured so that the electric machine is stopped when said
  • the electronic control unit effectively determines that the heat engine is able to take over the electric machine by observing the decrease to zero torque provided by said electric machine.
  • the electronic control unit is calibrated in such a way that the heat engine is regulated, after the electric machine has made it possible to reach the first setpoint (typically equal to the idle speed), on a second engine speed set point. greater than a predetermined margin to said first setpoint. Said electronic control unit is then able to observe the decrease in the torque produced by the electric machine.
  • the electronic control unit stops said electrical machine and the engine drives the motor shaft being regulated, typically, on the idle speed.
  • said first engine speed setpoint is equal to the idle speed of said engine.
  • said idle speed is between 600 rpm and 1200 rpm.
  • the invention also relates to an electronic control unit for a vehicle, in particular for a motor vehicle, configured to implement the method as briefly described above.
  • the invention also relates to a motor vehicle, comprising a hybrid motorization system with a heat engine and an electric machine, said motor vehicle comprising a plurality of wheels, a clutch, a drive shaft and a crankshaft connected to the motor shaft, said electrical machine being connected to the motor shaft so as to drive said motor shaft without driving the wheels, and the motor vehicle further comprising an electronic control unit as briefly described above.
  • the electric machine is connected to the motor shaft upstream of the clutch and in parallel with the crankshaft.
  • FIG. 1 represents the diagram of a hybrid motorization system comprising an electric machine intended to start a heat engine, according to the present invention.
  • the invention is presented primarily for application in the context of a hybrid motor system, thermal and electrical, motor vehicle. However, other applications are also covered by the present invention, in particular any implementation in any hybrid drive system, thermal and electrical, of any type of land vehicle or not, since the electrical machine is connected to the motor shaft upstream of the clutch and preferably in parallel with the crankshaft.
  • the method according to the invention relates to the startup of such a hybrid drive system.
  • the electric machine BSG (the reference sign BSG corresponding to the acronym BSG, for Belt-driven Starter Generator means alternator-belt starter) of the hybrid drive system is connected to the motor shaft X upstream of the clutch C (and of course upstream of the differential TX) and in parallel with the crankshaft V.
  • FIG. 2 shows a simplified diagram of a hybrid motorization system on a skeleton of a motor vehicle.
  • the electric machine of such a hybrid drive system can theoretically be positioned at different points of the drive chain, in particular P3 (in the gearbox or on the differential) or P4 (on the rear hub) .
  • the injectors 11, 12, 13, 14 form an injection device that is authorized or not, depending on the starting phase in during the injection of fuel into the engine to allow the latter to drive in turn the motor shaft X.
  • the start control of the hybrid drive system is supervised by the ECU electronic control unit.
  • the starting of the engine of such a hybrid drive system is achieved after the electric machine BSG has first ensured the drive of the motor shaft X.
  • the ECU electronic control unit controls the electric machine BSG, said electric machine being regulated so that the engine speed, corresponding to the speed of rotation of the drive shaft X, reaches a first engine speed setpoint.
  • the heat engine is in turn regulated with a second engine speed set point, which is greater than a predetermined margin at the first engine speed setpoint, said regulation of the engine starting from the moment the engine injection is allowed to inject fuel into the engine to drive the motor shaft X, that is to say after said motor shaft had reached the first set of engine speed.
  • the first engine speed setpoint is equal to the idling speed of the engine, for example 600 revolutions per minute, while the margin is 100 revolutions per minute, the second engine speed setpoint then being equal to 700 revolutions per minute.
  • the present invention aims in particular the management of a transient phase of the start, when the heat engine becomes capable of driving alone the drive shaft X.
  • the method according to the invention consists in particular in observing the decrease towards zero of the torque provided by the electric machine BSG during said transient phase.
  • the second engine speed setpoint, used to regulate the engine is greater than a predetermined margin at the first engine speed setpoint, used to regulate the electric machine driving the drive shaft X at the start of startup.
  • the electric machine BSG drives the drive shaft X in rotation, during an initial start-up phase, until said motor shaft reaches the first engine speed set point.
  • the injection device 11, 12, 13, 14 is not allowed to inject fuel into the engine.
  • the injection device 11, 12, 13, 14 is allowed to inject fuel into the engine and said engine is regulated with the setpoint of the second engine speed setpoint, higher than a predetermined margin at the first speed setpoint engine.
  • the electronic control unit ECU is able to observe the decrease towards zero of the torque supplied by the electric machine BSG, while the heat engine takes the relay of the rotational drive of the motor shaft X.
  • the method according to the invention provides that said ECU electronic control unit stops the electric machine and regulates the engine with a motor speed setpoint preferably equal to the first engine speed setpoint, in particular the idle speed.
  • Said predetermined threshold is a few N / m, typically between 3 and 5 N / m.
  • the transient start phase starts and the engine is activated (THERM stage): the injection device is allowed to inject fuel and the engine is regulated. with a second engine speed set point equal to the first engine speed setpoint increased by a predetermined margin N SPJS + ⁇ .
  • Said predetermined margin is, according to one embodiment, equal to 100 revolutions per minute. Therefore, the electronic control unit observes the decrease towards zero of the torque produced by the electric machine (step DECR). As long as the electronic control unit does not determine that the torque produced by the electric machine tends to zero, the heat engine is not autonomous (NON AUTO step).
  • the heat engine is autonomous (AUTO step).
  • the heat engine is regulated with a motor speed setpoint equal to the first engine speed setpoint N SPJS, typically corresponding to the idle speed of said engine (step CTRL OK).
  • the start of the hybrid engine system is then completed (step FIN).
  • the present invention also relates to a motor vehicle comprising a hybrid drive system with a heat engine and an electric machine, as well as a clutch, a crankshaft and a motor shaft, the electric machine being connected to the motor shaft upstream of the engine. clutch and preferably in parallel with the crankshaft, and the vehicle comprising an electronic control unit implementing the method as described above.
  • the present invention also aims at such an electronic control unit for a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

La présente invention a pour objet un procédé de gestion du démarrage d'un moteur thermique d'un système de motorisation hybride comprenant un moteur thermique et une machine électrique (BSG), ainsi qu'un arbre moteur (X), la machine électrique (BSG) produisant un couple pour assurer le démarrage du moteur thermique et entraîner l'arbre moteur (X) au moins durant une phase initiale du démarrage, ledit procédé présentant une phase transitoire de démarrage durant laquelle le moteur thermique entraîne l'arbre moteur (X) et au terme de laquelle la machine électrique (BSG) est stoppée, la machine électrique (BSG) étant régulée, durant la phase initiale (ELEC) et durant la phase transitoire, avec une première consigne de régime moteur (N_SP_IS), ladite phase transitoire débutant lorsque l'arbre moteur (X) atteint la première consigne de régime moteur (N_SP_IS) de façon stabilisée, le contrôle du couple produit par la machine électrique (BSG) durant ladite phase transitoire de démarrage étant configuré pour que la machine électrique (BSG) soit stoppée dès lors ledit contrôle détermine que le couple produit par la machine électrique (BSG) tend vers un couple nul.

Description

Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrigue
L'invention concerne les systèmes de motorisation hybride, thermique et électrique, en particulier pour véhicule automobile.
Plus précisément, la présente invention concerne un procédé de contrôle d'une phase transitoire de démarrage d'un moteur thermique, prenant le relais d'une machine électrique, dans un système de motorisation hybride de véhicule.
De façon connue, des véhicules dits hybrides comprennent un système motorisation hybride présentant un moteur thermique, à combustion, et une machine électrique. Dans ce contexte, il est bien connu de l'homme du métier que le contrôle de la phase transitoire, lorsque le moteur thermique prend le relais de la machine électrique pour entraîner l'arbre moteur, lors du démarrage d'un tel système de motorisation hybride, est délicat.
Le démarrage du moteur thermique est réalisé classiquement suivant deux techniques. La première technique connue, plus répandue, met en œuvre un démarreur « traditionnel » ; dans ce cas, l'arbre moteur est entraîné par une roue dentée, via le vilebrequin, de façon à permettre le démarrage du moteur thermique. La deuxième technique met en œuvre un alterno-démarreur. Dans ce cas, la machine électrique met en mouvement un système de courroie coopérant avec un jeu de poulies pour mettre en rotation l'arbre moteur et démarrer le moteur thermique. Le fonctionnement de la machine électrique dans le cadre du démarrage électrique du moteur thermique d'un système de motorisation hybride est supervisé par une unité de contrôle électronique, ou ECU, pour Electronic Control Unit selon l'acronyme en anglais connu de l'homme du métier. La supervision du démarrage par l'ECU comporte également une dimension de contrôle du dispositif d'injection du moteur thermique.
En outre, comme cela est connu, il existe de nombreuses configurations de moteurs hybrides, la machine électrique pouvant notamment être positionnée en différents endroits de la chaîne de motorisation.
Pour la présente invention, il est envisagé uniquement que la machine électrique soit agencée de façon à pouvoir entraîner le moteur sans entraîner les roues, c'est-à-dire positionnée en PO, P1 ou P2 sur la figure 2. Autrement dit, la machine électrique doit être positionnée, par rapport à l'embrayage, de façon à ce que l'embrayage puisse être configuré pour que ladite machine électrique entraîne l'arbre moteur sans entraîner les roues. En pratique, la machine électrique, dans le cadre de la présente invention, est placée de préférence en amont de l'embrayage et en parallèle du vilebrequin. Dans ce contexte, comme cela a été indiqué précédemment, le contrôle de la phase transitoire, lorsque le moteur thermique prend le relais de la machine électrique pour entraîner l'arbre moteur, relève d'une certaine complexité.
En effet, pour améliorer l'efficacité du démarrage d'un système de motorisation hybride, il est primordial de déterminer le moment où le moteur thermique est en capacité d'assurer l'entraînement de l'arbre moteur. Or, selon l'état de la technique, lorsque le système de motorisation hybride est positionné en amont de l'embrayage, la montée en régime est assurée par la machine électrique et le dispositif d'injection est autorisé à injecter du carburant dans le moteur thermique dès lors que l'arbre moteur a atteint un certain régime moteur, par exemple le régime ralenti, alors qu'il existe une incertitude sur la capacité du moteur thermique à assurer seul l'entraînement de l'arbre moteur.
L'invention vise à remédier à cet inconvénient et à permettre de déterminer avec certitude que le moteur thermique est en capacité d'assurer seul l'entraînement de l'arbre moteur, la machine électrique pouvant dès lors être stoppée.
A cette fin, l'invention a pour objet un procédé de gestion du démarrage d'un moteur thermique d'un système de motorisation hybride comprenant un moteur thermique et une machine électrique, ainsi qu'un arbre moteur présentant un régime moteur, la machine électrique produisant un couple pour assurer le démarrage du moteur thermique et entraîner l'arbre moteur au moins durant une phase initiale du démarrage, ledit procédé présentant une phase transitoire de démarrage durant laquelle le moteur thermique entraîne l'arbre moteur et au terme de laquelle la machine électrique est stoppée, la machine électrique étant régulée, durant la phase initiale et durant la phase transitoire, avec une première consigne de régime moteur, ladite phase transitoire débutant lorsque l'arbre moteur atteint la première consigne de régime moteur de façon stabilisée, et le moteur thermique étant régulé, durant la phase transitoire, avec une deuxième consigne de régime moteur, ladite deuxième consigne étant supérieure d'une marge prédéterminée à la première consigne, ledit procédé comprenant, durant la phase transitoire, le contrôle du couple produit par la machine électrique durant ladite phase transitoire de démarrage, ledit contrôle comprenant la mesure du couple produit par la machine électrique et ledit contrôle étant configuré pour que la machine électrique soit stoppée dès lors que ledit couple devient inférieur à un seuil prédéterminé, de sorte que ledit contrôle détermine que le couple produit par la machine électrique tend vers un couple nul.
Grâce à l'invention, l'unité de contrôle électronique détermine efficacement que le moteur thermique est en mesure de prendre le relais de la machine électrique par l'observation de la décroissance vers zéro du couple fourni par ladite machine électrique. En effet, l'unité de contrôle électronique est calibrée de telle manière que le moteur thermique est régulé, après que la machine électrique a permis l'atteinte de la première consigne (typiquement égale au régime ralenti), sur une deuxième consigne de régime moteur supérieure d'une marge prédéterminée à ladite première consigne. Ladite unité de contrôle électronique est alors en capacité d'observer la décroissance du couple produit par la machine électrique.
Dès lors qu'il est déterminé que ledit couple produit par la machine électrique tend vers zéro, l'unité de contrôle électronique stoppe ladite machine électrique et le moteur thermique entraîne l'arbre moteur en étant régulé, typiquement, sur le régime ralenti.
Selon un mode de réalisation, dès lors que la machine électrique est stoppée, la régulation du moteur thermique est assurée avec la première consigne de régime moteur.
Selon un mode de réalisation, ladite première consigne de régime moteur est égale au régime ralenti dudit moteur thermique.
Selon un mode de réalisation, ledit régime ralenti est compris entre 600 tours par minute et 1200 tours par minute.
L'invention concerne aussi une unité de contrôle électronique pour véhicule, en particulier pour véhicule automobile, configurée pour mettre en œuvre le procédé tel que brièvement décrit précédemment.
L'invention concerne également un véhicule automobile, comprenant un système de motorisation hybride avec un moteur thermique et une machine électrique, ledit véhicule automobile comprenant une pluralité de roues, un embrayage, un arbre moteur et un vilebrequin relié à l'arbre moteur, ladite machine électrique étant connectée à l'arbre moteur de façon à pouvoir entraîner ledit arbre moteur sans entraîner les roues, et le véhicule automobile comprenant par ailleurs une unité de contrôle électronique telle que brièvement décrite ci-dessus.
Selon un mode de réalisation, dans un tel véhicule automobile, la machine électrique est connectée à l'arbre moteur en amont de l'embrayage et en parallèle du vilebrequin.
D'autres caractéristiques et avantages de l'invention apparaîtront lors de la description qui suit faite en regard des figures annexées données à titre d'exemples non limitatifs et dans lesquelles des références identiques sont données à des objets semblables.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et se référant aux dessins annexés. La figure 1 représente le schéma d'un système de motorisation hybride comprenant une machine électrique destinée à assurer le démarrage d'un moteur thermique, conformément à la présente invention.
La figure 2 montre le schéma d'un véhicule hybride avec les positions possibles de la machine électrique sur la chaîne de motorisation ;
La figure 3 montre un diagramme correspondant aux différentes étapes du contrôle d'une phase transitoire de démarrage électrique d'un moteur thermique dans un système de motorisation hybride, conformément à la présente invention.
L'invention est présentée principalement en vue d'une application dans le contexte d'un système de motorisation hybride, thermique et électrique, de véhicule automobile. Cependant, d'autres applications sont également visées par la présente invention, notamment toute mise en œuvre dans tout système de motorisation hybride, thermique et électrique, de tout type de véhicule terrestre ou non, dès lors que la machine électrique est connectée à l'arbre moteur en amont de l'embrayage et de préférence en parallèle du vilebrequin.
En référence à la figure 1 , qui représente schématiquement un système de motorisation hybride, le procédé selon l'invention concerne le démarrage d'un tel système de motorisation hybride. Comme indiqué précédemment, la machine électrique BSG (le signe de référence BSG correspondant à l'acronyme BSG, pour Belt-driven Starter Generator signifiant alterno-démarreur à courroie) du système de motorisation hybride est connectée à l'arbre moteur X en amont de l'embrayage C (et bien entendu en amont du différentiel TX) et en parallèle du vilebrequin V.
La figure 2 montre un schéma simplifié d'un système de motorisation hybride sur un squelette de véhicule automobile. Comme représenté, la machine électrique d'un tel système de motorisation hybride peut théoriquement être positionnée en différents points de la chaîne de motorisation, notamment en P3 (dans la boîte de vitesse ou sur le différentiel) ou en P4 (sur le moyeu arrière).
Dans le cadre de la présente invention, cependant, il est de préférence envisagé d'utiliser une machine électrique positionnée en PO, en parallèle du vilebrequin et en amont de l'embrayage. Alternativement, il est envisageable de mettre en œuvre la machine électrique, dans le cadre de la présente invention, en la positionnant en P1 , sur le vilebrequin, voire en P2, au niveau de l'embrayage CO, C1 . En pratique, la contrainte est que la machine électrique BSG doit pouvoir entraîner l'arbre moteur X sans entraîner les roues. Son positionnement dépend ainsi de l'embrayage qui doit être configuré de façon adaptée.
Enfin, en référence, de nouveau, à la figure 1 , les injecteurs 11 , 12, 13, 14 forment un dispositif d'injection autorisé ou non, en fonction de la phase de démarrage en cours, à injecter du carburant dans le moteur thermique pour permettre à ce dernier d'entraîner à son tour l'arbre moteur X.
Le contrôle du démarrage du système de motorisation hybride est supervisé par l'unité de contrôle électronique ECU. Le démarrage du moteur thermique d'un tel système de motorisation hybride est réalisé après que la machine électrique BSG a d'abord assuré l'entraînement de l'arbre moteur X.
En pratique, dès que la volonté de démarrer le moteur thermique est détectée, par quelque moyen que ce soit (action sur une clé de démarrage, un interrupteur de démarrage électronique, ou encore une action sur la pédale d'embrayage ou sur l'accélérateur), l'unité de contrôle électronique ECU commande la machine électrique BSG, ladite machine électrique étant régulée de manière à ce que le régime moteur, correspondant à la vitesse de rotation de l'arbre moteur X, atteigne une première consigne régime moteur.
Selon l'invention, le moteur thermique est quant à lui régulé avec une deuxième consigne de régime moteur, supérieure d'une marge prédéterminée à la première consigne de régime moteur, ladite régulation du moteur thermique commençant à partir du moment où le dispositif d'injection est autorisé à injecter du carburant dans le moteur thermique pour entraîner l'arbre moteur X, c'est-à-dire après que ledit arbre moteur eût atteint la première consigne de régime moteur.
Typiquement, la première consigne de régime moteur est égale au régime ralenti du moteur, soit par exemple 600 tours par minute, tandis que la marge vaut 100 tours par minute, la deuxième consigne de régime moteur étant alors égale à 700 tours par minute.
La présente invention vise en particulier la gestion d'une phase transitoire du démarrage, lorsque le moteur thermique devient apte à entraîner seul l'arbre moteur X.
Ainsi, le procédé selon l'invention consiste en particulier à observer la décroissance vers zéro du couple fourni par la machine électrique BSG durant ladite phase transitoire.
Pour cela, la deuxième consigne de régime moteur, utilisée pour réguler le moteur thermique, est supérieure d'une marge prédéterminée à la première consigne de régime moteur, utilisée pour réguler la machine électrique entraînant l'arbre moteur X au début du démarrage.
Plus précisément, la machine électrique BSG assure l'entraînement en rotation de l'arbre moteur X, durant une phase initiale du démarrage, jusqu'à ce que ledit arbre moteur atteigne la première consigne de régime moteur. Durant cette phase initiale du démarrage, le dispositif d'injection 11 , 12, 13, 14 n'est pas autorisé à injecter du carburant dans le moteur thermique. Dès lors que la première consigne de régime moteur est atteinte par l'arbre moteur X, une phase transitoire du démarrage commence ; le dispositif d'injection 11 , 12, 13, 14 est autorisé à injecter du carburant dans le moteur thermique et ledit moteur thermique est régulé avec pour consigne la deuxième consigne de régime moteur, supérieure d'une marge prédéterminée à la première consigne de régime moteur.
L'unité de contrôle électronique ECU est ainsi calibrée de façon spéciale, avec deux consignes de régime moteur de démarrage distinctes pour la machine électrique et le moteur thermique. Comme cela a été décrit précédemment, selon un mode de réalisation, la première consigne de régime moteur est égale au régime ralenti du moteur thermique et la deuxième consigne de régime moteur lui est supérieure, par exemple de 100 tours par minute.
De ce fait, lorsque l'arbre moteur X tend à atteindre la première consigne de régime moteur, l'unité de contrôle électronique ECU est apte à observer la décroissance vers zéro du couple fourni par la machine électrique BSG, tandis que le moteur thermique prend le relais de l'entraînement en rotation de l'arbre moteur X.
Dès lors que l'unité de contrôle électronique ECU détermine que le couple fourni par la machine électrique BSG tend vers zéro, par exemple parce que ledit couple fourni par la machine électrique devient inférieur à un seuil prédéterminé, le procédé selon l'invention prévoit que ladite unité de contrôle électronique ECU stoppe la machine électrique et régule le moteur thermique avec une consigne de régime moteur de préférence égale à la première consigne de régime moteur, soit en particulier le régime ralenti. Ledit seuil prédéterminé, selon un mode de réalisation, est de quelques N/m, typiquement compris entre 3 et 5 N/m.
C'est alors le moteur thermique, démarré et autonome, qui entraîne seul l'arbre moteur X en rotation.
Ainsi, en résumé, en référence à la figure 3, dès la détection d'une requête en démarrage du moteur thermique (étape DEM), durant la phase initiale de démarrage, la machine électrique entraîne en rotation l'arbre moteur tout en étant régulé (étape ELEC), en boucle fermée, avec une première consigne de régime moteur N SPJS, typiquement égale au régime ralenti du moteur thermique.
Dès lors que le régime moteur N atteint la consigne N SPJS de façon stabilisée, la phase transitoire de démarrage débute et le moteur thermique est activé (étape THERM) : le dispositif d'injection est autorisé à injecter du carburant et le moteur thermique est régulé avec une deuxième consigne de régime moteur égale à la première consigne de régime moteur augmentée d'une marge prédéterminée N SPJS + ΔΝ. Ladite marge prédéterminée est, selon un mode de réalisation, égale à 100 tours par minute. Dès lors, l'unité de contrôle électronique observe la décroissance vers zéro du couple produit par la machine électrique (étape DECR). Tant que l'unité de contrôle électronique ne détermine pas que le couple produit par la machine électrique tend vers zéro, le moteur thermique n'est pas autonome (étape NON AUTO).
Lorsque l'unité de contrôle électronique détermine que le couple produit par la machine électrique tend vers zéro, le moteur thermique est autonome (étape AUTO).
Dès lors, le moteur thermique est régulé avec une consigne de régime moteur égale à la première consigne de régime moteur N SPJS, correspondant typiquement au régime ralenti dudit moteur (étape CTRL OK). Le démarrage du système de motorisation hybride est alors terminé (étape FIN).
Il est à noter, en outre, que l'invention n'est pas limitée au mode de réalisation décrit à titre d'exemple et est susceptible de variantes à la portée de l'homme du métier.
La présente invention vise également un véhicule automobile comprenant un système de motorisation hybride avec un moteur thermique et une machine électrique, ainsi qu'un embrayage, un vilebrequin et un arbre moteur, la machine électrique étant connectée à l'arbre moteur en amont de l'embrayage et de préférence en parallèle du vilebrequin, et le véhicule comprenant une unité de contrôle électronique mettant en œuvre le procédé tel que décrit ci-dessus.
La présente invention vise aussi une telle unité de contrôle électronique pour véhicule.

Claims

REVENDICATIONS
1 . Procédé de gestion du démarrage d'un moteur thermique d'un système de motorisation hybride comprenant un moteur thermique et une machine électrique (BSG), ainsi qu'un arbre moteur (X) présentant un régime moteur, la machine électrique (BSG) produisant un couple pour assurer le démarrage du moteur thermique et entraîner l'arbre moteur (X) au moins durant une phase initiale du démarrage, ledit procédé présentant une phase transitoire de démarrage durant laquelle le moteur thermique entraîne l'arbre moteur (X) et au terme de laquelle la machine électrique (BSG) est stoppée, caractérisé en ce que la machine électrique (BSG) étant régulée, durant la phase initiale (ELEC) et durant la phase transitoire, avec une première consigne de régime moteur (N SPJS), ladite phase transitoire débutant lorsque l'arbre moteur (X) atteint la première consigne de régime moteur (N SPJS) de façon stabilisée, l'injection de carburant dans le moteur thermique pour entraîner l'arbre moteur (X) étant autorisé, après que ledit arbre moteur eût atteint ladite première consigne de régime moteur (N SPJS), et le moteur thermique étant régulé, durant la phase transitoire, avec une deuxième consigne de régime moteur, ladite deuxième consigne étant supérieure d'une marge prédéterminée (ΔΝ) à la première consigne, ledit procédé comprenant, durant la phase transitoire, le contrôle du couple produit par la machine électrique (BSG) durant ladite phase transitoire de démarrage, ledit contrôle comprenant la mesure du couple produit par la machine électrique (BSG) et ledit contrôle étant configuré pour que la machine électrique (BSG) soit stoppée dès lors que ledit couple devient inférieur à un seuil prédéterminé, de sorte que ledit contrôle détermine que le couple produit par la machine électrique (BSG) tend vers un couple nul.
2. Procédé selon la revendication 1 , comprenant, après que la machine électrique (BSG) est stoppée, la régulation du moteur thermique avec la première consigne de régime moteur (N SPJS).
3. Procédé selon l'une des revendications précédentes, dans lequel ladite première consigne de régime moteur (N SPJS) est égale au régime ralenti dudit moteur thermique.
4. Procédé selon la revendication précédente, ledit régime ralenti étant compris entre 600 tours par minute et 1200 tours par minute.
5 Unité de contrôle électronique (ECU) pour véhicule, en particulier pour véhicule automobile, configurée pour mettre en œuvre le procédé selon l'une des revendications précédentes.
6. Véhicule automobile, comprenant un système de motorisation hybride avec un moteur thermique et une machine électrique (BSG), ledit véhicule automobile comprenant une pluralité de roues, un embrayage (C ; C1 , C2), un arbre moteur (X) et un vilebrequin (V) relié à l'arbre moteur (X), ladite machine électrique (BSG) étant connectée à l'arbre moteur (X) de façon à pouvoir entraîner ledit arbre moteur (X) sans entraîner les roues, et le véhicule automobile comprenant par ailleurs une unité de contrôle électronique (ECU) selon la revendication précédente.
7. Véhicule automobile selon la revendication précédente, la machine électrique (BSG) étant connectée à l'arbre moteur (X) en amont de l'embrayage (C ; C1 , C2) et en parallèle du vilebrequin (V).
PCT/FR2017/053518 2016-12-16 2017-12-12 Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrique WO2018109361A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/468,024 US10954908B2 (en) 2016-12-16 2017-12-12 Method for managing a transient phase of the starting of a heat engine by an electric motor
CN201780077727.1A CN110062710B (zh) 2016-12-16 2017-12-12 用于通过电动马达管理热发动机的起动的瞬态阶段的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662636 2016-12-16
FR1662636A FR3060499B1 (fr) 2016-12-16 2016-12-16 Procede de gestion d'une phase transitoire du demarrage d'un moteur thermique par une machine electrique

Publications (1)

Publication Number Publication Date
WO2018109361A1 true WO2018109361A1 (fr) 2018-06-21

Family

ID=58501530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053518 WO2018109361A1 (fr) 2016-12-16 2017-12-12 Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrique

Country Status (4)

Country Link
US (1) US10954908B2 (fr)
CN (1) CN110062710B (fr)
FR (1) FR3060499B1 (fr)
WO (1) WO2018109361A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771832B (zh) * 2020-06-10 2024-05-24 广州汽车集团股份有限公司 混合动力车辆起动发动机控制方法
CN114056322B (zh) * 2020-07-30 2024-04-16 比亚迪股份有限公司 控制车辆起动的方法、存储介质和车辆
JP7491328B2 (ja) * 2022-02-10 2024-05-28 トヨタ自動車株式会社 車両の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274943B1 (en) * 1998-12-18 2001-08-14 Honda Giken Kogyo Kabushiki Kaisha Engine-starting discrimination system for hybrid vehicle
EP1750008A2 (fr) * 2005-08-05 2007-02-07 Nissan Motor Co., Ltd. Système et procédé pour démarrage d'un moteur à combustion interne
US20080216787A1 (en) * 2006-08-29 2008-09-11 Karsten Kroepke Method for starting an internal combustion engine
DE102010025183A1 (de) * 2010-06-26 2011-12-29 Daimler Ag Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952884B2 (ja) * 2002-07-19 2007-08-01 トヨタ自動車株式会社 自動車の制御装置
CN103047070B (zh) * 2004-04-16 2015-11-25 Avl里斯脱有限公司 控制机动车起动阶段的方法
DE102009027001A1 (de) * 2009-06-17 2010-12-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung des Beginns einer Startphase eines Verbrennungsmotors in einem Hybridfahrzeug
JP5899657B2 (ja) * 2011-05-19 2016-04-06 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP5889438B2 (ja) * 2012-12-21 2016-03-22 日産自動車株式会社 ハイブリッド車両の駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274943B1 (en) * 1998-12-18 2001-08-14 Honda Giken Kogyo Kabushiki Kaisha Engine-starting discrimination system for hybrid vehicle
EP1750008A2 (fr) * 2005-08-05 2007-02-07 Nissan Motor Co., Ltd. Système et procédé pour démarrage d'un moteur à combustion interne
US20080216787A1 (en) * 2006-08-29 2008-09-11 Karsten Kroepke Method for starting an internal combustion engine
DE102010025183A1 (de) * 2010-06-26 2011-12-29 Daimler Ag Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors

Also Published As

Publication number Publication date
US10954908B2 (en) 2021-03-23
US20200011281A1 (en) 2020-01-09
CN110062710A (zh) 2019-07-26
FR3060499A1 (fr) 2018-06-22
CN110062710B (zh) 2022-08-16
FR3060499B1 (fr) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2018109361A1 (fr) Procédé de gestion d'une phase transitoire du démarrage d'un moteur thermique par une machine électrique
FR2982316A1 (fr) Procede de regeneration d'un filtre a particules pour vehicule automobile hybrideprocede de regeneration d'un filtre a particules pour vehicule automobile hybride
WO2018162812A1 (fr) Procédé de pilotage d'un embrayage relie a une machine électrique lors d'un démarrage d'un moteur thermique
EP3074257B1 (fr) Procede et systeme de demarrage d'un moteur thermique
FR3006000A1 (fr) Procede d'arret d'un moteur thermique de vehicule automobile
FR2858666A1 (fr) Procede de demarrage d'un moteur a combustion interne a plusieurs cylindres
WO2013104867A2 (fr) Procede de gestion de la vitesse d'un vehicule hybride
FR3028292A1 (fr) Procede de commande de couple d’un groupe motopropulseur
FR3080153A1 (fr) Procede de demarrage d’un moteur thermique
EP2612019B1 (fr) Procédé de protection d'un démarreur à grande inertie de rotation
EP2802495B1 (fr) Procede de coupure d'un moteur electrique d'un vehicule hybride
FR3023589A1 (fr) Procede pour controler une envolee de regime d'un moteur a combustion interne d'un vehicule en deplacement, lors d'un changement de rapport de boite de vitesses
EP2496825B1 (fr) Appareil de commande et procede de demarrage d'un moteur a combustion interne
WO2013104866A2 (fr) Procede de demarrage d'un vehicule hybride comprenant un moteur electrique et un moteur thermique
EP2976517B1 (fr) Dispositif de commande de redemmarrage automatique de moteur thermique de vehicule automobile
EP4062048B1 (fr) Procédé de gestion du couple prélevé sur un moteur thermique par un alternateur
EP2863049A1 (fr) Dispositif d'arret et de redemarrage automatique d'un moteur thermique de vehicule automobile
FR2985705A1 (fr) Procede de commande d'un vehicule hybride
FR2985777A1 (fr) Procede d'arret d'un moteur thermique couple a une machine electrique
EP3318747A1 (fr) Procédé de démarrage d'un moteur thermique d'un groupe motopropulseur d'un véhicule, notamment automobile
FR3072423A1 (fr) Procede de commande d’un moteur thermique de vehicule
WO2021094260A1 (fr) Procédé d'optimisation du gradient temporel de montée en pression dans un système d'injection d'un véhicule automobile hybride
WO2025149612A1 (fr) Unité de contrôle électronique pour système de contrôle de l'accélération en fonction de la vitesse
WO2016038258A1 (fr) Procede de commande d'un tendeur de courroie de façade accessoires de vehicule automobile
WO2017182741A1 (fr) Systeme de commande pour demarrage cooperatif entre un alterno-demarreur et un demarreur de vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17825569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17825569

Country of ref document: EP

Kind code of ref document: A1