[go: up one dir, main page]

WO2018123662A1 - Film - Google Patents

Film Download PDF

Info

Publication number
WO2018123662A1
WO2018123662A1 PCT/JP2017/045149 JP2017045149W WO2018123662A1 WO 2018123662 A1 WO2018123662 A1 WO 2018123662A1 JP 2017045149 W JP2017045149 W JP 2017045149W WO 2018123662 A1 WO2018123662 A1 WO 2018123662A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
weight
polyurethane
less
group
Prior art date
Application number
PCT/JP2017/045149
Other languages
French (fr)
Japanese (ja)
Inventor
宏晃 周
浩成 摺出寺
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018559054A priority Critical patent/JPWO2018123662A1/en
Priority to KR1020197017512A priority patent/KR20190100916A/en
Priority to CN201780070629.5A priority patent/CN109963712A/en
Publication of WO2018123662A1 publication Critical patent/WO2018123662A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic

Definitions

  • the present invention relates to a film.
  • a display device such as a liquid crystal display device is provided with various optical elements such as a polarizing plate and a retardation plate. Some of these optical elements are made of a film (see, for example, Patent Documents 1 to 3).
  • JP 2000-169521 A (corresponding to other countries: US Pat. No. 6,433,102) JP 2001-48924 (corresponding to other countries: US Pat. No. 6,686,430) JP 2002-105151 A (corresponding to other countries: US Patent Application Publication No. 2003/207983)
  • a polarizing plate protective film is usually provided in a polarizing plate among optical elements.
  • This polarizing plate protective film is required to have a small in-plane retardation (also referred to as retardation) and excellent impact resistance.
  • retardation also referred to as retardation
  • a retardation is easily developed in the film production process, and it is difficult to realize a film that achieves the characteristics that the in-plane retardation is small and the impact resistance is excellent.
  • a polarizing plate protective film and a polarizing plate may be preserve
  • the present invention has been made in view of the above, and an object of the present invention is to provide a film having a small in-plane retardation, excellent impact resistance, and suppressing occurrence of blocking.
  • the present inventor has intensively studied, and as a result, has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit at a predetermined number of blocks or more.
  • a laminated film comprising a base material containing a block copolymer, a polyurethane, a crosslinking agent, a non-volatile base, and an easy-sliding layer made of a cured product of a composition containing fine particles.
  • the inventors have found that the phase difference is small, the impact resistance is excellent, and the occurrence of blocking is suppressed, and the present invention has been completed. That is, according to the present invention, the following [1] to [5] are provided.
  • a base film and an easy-slip layer provided on the base film includes a block copolymer,
  • the block copolymer has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit;
  • the sum of the number of blocks having the aromatic vinyl compound hydride unit and the number of blocks having the diene compound hydride is 3 or more per molecule of the block copolymer;
  • the easy-sliding layer is a film made of a cured product of a composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a non-volatile base, and fine particles.
  • the content of the block having the aromatic vinyl compound hydride unit is 80% by weight to 90% by weight, the content of the block having the diene compound hydride unit is 10% by weight to 20% by weight, [1]
  • the film according to [1], wherein at least one end of the polymer chain comprises a block having the aromatic vinyl compound hydride unit.
  • the tensile modulus of the polyurethane is 1000 N / mm 2 or more 5000N / mm 2 or less, according to any one of [1] to [4] film.
  • the film of the present invention has a small in-plane retardation, excellent impact resistance, and suppresses the occurrence of blocking.
  • the particle size distribution is measured by laser diffraction method, and the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50%. Adopt particle size.
  • the “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film.
  • the film of the present invention includes a base film and an easy-sliding layer provided on the base film.
  • the base film contains a block copolymer
  • the easy-sliding layer is a layer made of a cured product of a composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a nonvolatile base and fine particles. is there.
  • the composition containing the polyurethane, the crosslinking agent, the nonvolatile base and the fine particles may be referred to as a “urethane composition”.
  • the base film includes a block copolymer.
  • the block copolymer contained in the base film has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit.
  • the total number of blocks having aromatic vinyl compound hydride units and blocks having diene compound hydrides is 3 or more per molecule of block copolymer.
  • Aromatic vinyl compound hydride unit refers to a repeating unit having the same structure as the repeating unit of a polymer obtained by polymerizing an aromatic vinyl compound and then hydrogenating its unsaturated bond. It refers to the repeating unit represented by (1).
  • the aromatic vinyl compound hydride unit is not limited depending on the production method.
  • a block having an aromatic vinyl compound hydride unit (hereinafter also referred to as “aromatic vinyl compound hydride block”) is a block having such an aromatic vinyl compound hydride unit.
  • R c represents an alicyclic hydrocarbon group.
  • R c include cyclohexyl groups such as cyclohexyl group; decahydronaphthyl groups and the like.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group or an imide group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoints of heat resistance, low birefringence and mechanical strength.
  • the chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
  • the molecular weight of the aromatic vinyl compound hydride block is usually 1000 or more, preferably 2000 or more, more preferably 3000 or more, and usually 100,000 or less, preferably 90000 or less, more preferably 80000 or less.
  • the molecular weight of each block can be set to a value within the above range. In this case, the molecular weight of each block may be the same or different.
  • repeating units of aromatic vinyl compound hydride blocks include the following. Any of the following isomers having stereoisomers can be used. Moreover, the repeating unit of an aromatic vinyl compound hydride block may use only 1 type, and may use it combining 2 or more types by arbitrary ratios. Furthermore, only one type of aromatic vinyl compound hydride block may be used, or two or more types may be used in combination at any ratio.
  • the content of the aromatic vinyl compound hydride block contained in the block copolymer is preferably 80% by weight or more, more preferably 82% by weight or more, preferably 90% by weight or less, more preferably 88% by weight. It is as follows. By setting the content of the aromatic vinyl compound hydride block in the above range, the retardation Re in the surface direction of the base film can be set in a desired range.
  • one end of the polymer chain is composed of an aromatic vinyl compound hydride block.
  • impact resistance can be improved. It can be confirmed by NMR method that the terminal of the polymer chain is composed of an aromatic vinyl compound hydride block.
  • the diene compound hydride unit has the same structure as the repeating unit of the polymer obtained by polymerizing the diene compound and then hydrogenating the unsaturated bond if the polymer obtained has an unsaturated bond.
  • a diene compound hydride unit is a repeating unit which has the structure similar to the repeating unit of the polymer obtained by polymerizing a conjugated diene compound and hydrogenating the unsaturated bond.
  • the repeating unit represented, for example by the following structural formula (2) or structural formula (3) will be mentioned.
  • the diene compound hydride unit is not limited depending on the production method.
  • a block having a diene compound hydride unit (hereinafter also referred to as “diene compound hydride block”) is a block having such a diene compound hydride unit.
  • R 4 to R 9 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group. Or a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group).
  • R 4 to R 9 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoints of heat resistance, low birefringence, mechanical strength, and the like.
  • the chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
  • R 10 to R 15 each independently represent a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group. Or a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group).
  • R 10 to R 15 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoint of heat resistance, low birefringence, mechanical strength, and the like.
  • the chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
  • the molecular weight of the diene compound hydride block is usually 500 or more, preferably 1000 or more, more preferably 2000 or more, and usually 50000 or less, preferably 30000 or less, more preferably 20000 or less.
  • the molecular weight of the diene compound hydride block is not less than the lower limit of the above range, an advantage that the impact resistance is improved is obtained, and when it is not more than the upper limit, an advantage that the elastic modulus is improved is obtained.
  • the molecular weight of each block can be set to a value within the above range. In this case, the molecular weight of each block may be the same or different.
  • repeating unit of the diene compound hydride block examples include the following examples. Any of the following isomers having stereoisomers can be used. Moreover, only one type of repeating unit of the diene compound hydride block may be used, or two or more types may be used in combination at any ratio. Furthermore, only one type of diene compound hydride block may be used, or two or more types may be used in combination at any ratio.
  • the content of the diene compound hydride block contained in the block copolymer is preferably 10% by weight or more, more preferably 12% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less. is there.
  • the retardation Re in the surface direction can be set to a desired range in the base film.
  • the block copolymer has a total of three or more aromatic vinyl compound hydride blocks and diene compound hydride blocks per molecule.
  • a total of 3 (3 blocks) or more of aromatic vinyl compound hydride blocks and diene compound hydride blocks per molecule it is possible to improve impact resistance.
  • the heat resistance of a base film can also be improved normally.
  • the upper limit is arbitrary as long as the effects of the present invention are not significantly impaired, but it is preferably 5 blocks or less, more preferably 4 blocks or less. This is because if the number of blocks is too large, impact resistance tends to decrease.
  • the block copolymer preferably has three blocks per molecule (triblock structure).
  • the block copolymer may have other arbitrary blocks in addition to the aromatic vinyl compound hydride block and diene compound hydride block as long as the effects of the present invention are not significantly impaired. However, from the viewpoint of exhibiting the effects of the present invention more remarkably, it is preferable that the number of arbitrary blocks is small.
  • the specific content of the arbitrary block is not uniform depending on the use of the film and the like, but is usually 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, and it is particularly preferable not to contain it. .
  • Examples of the arbitrary block include a copolymer block having an aromatic vinyl compound hydride unit and a diene compound hydride unit.
  • Examples of the aromatic vinyl compound hydride unit in the copolymer block include those similar to the repeating unit of the aromatic vinyl compound hydride block, and the diene compound hydride unit includes the repeating unit of the diene compound hydride block. The same thing is mentioned.
  • the weight average molecular weight Mw of the block copolymer is usually 50,000 or more, preferably 55,000 or more, more preferably 60,000 or more, and usually 100,000 or less, preferably 90,000 or less, more preferably 80,000 or less.
  • the weight average molecular weight Mw is not less than the lower limit of the above range, the impact resistance of the film can be improved, and when it is not more than the upper limit, the viscosity of the polymer can be lowered and the moldability can be improved.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the block copolymer is usually 2 or less, preferably 1.5 or less, more preferably 1.2 or less. Thereby, a polymer viscosity can be lowered
  • the glass transition temperature Tg A of the block copolymer is usually 110 ° C. or higher, preferably 115 ° C. or higher, more preferably 120 ° C. or higher, and usually 150 ° C. or lower, preferably 148 ° C. or lower, more preferably 145 ° C. or lower. is there.
  • As the glass transition temperature Tg A of the block copolymer a higher numerical value can be adopted when a plurality of glass transition temperatures are observed.
  • the tensile modulus of the block copolymer is usually 1,500 N / mm 2 or more, preferably 1,600 N / mm 2 or more, usually 2,500 N / mm 2 or less, preferably 2,200 N / mm 2 or less. is there.
  • Examples of monomers corresponding to the aromatic vinyl compound hydride block include styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -propylstyrene, ⁇ -isopropylstyrene, ⁇ -t-butylstyrene, 2- Methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene Styrenes such as monofluorostyrene and 4-phenylstyrene; vinylcyclohexanes such as vinylcyclohexane and 3-methylisopropenylcyclohexane; 4-vinylcyclohexene, 4-isopropen
  • examples of monomers corresponding to diene compound hydride blocks include chains such as butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. And conjugated dienes.
  • the monomer corresponding to the diene compound hydride block one type may be used alone, or two or more types may be used in combination at any ratio.
  • anionic polymerization can be employed for the polymerization.
  • the polymerization may be performed by any of bulk polymerization and solution polymerization.
  • solution polymerization is preferable in order to continuously perform the polymerization reaction and the hydrogenation reaction.
  • reaction solvent for polymerization examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, decalin, etc. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene and toluene. Of these, the use of aliphatic hydrocarbons and alicyclic hydrocarbons is preferable because they can be used as they are as an inert solvent for the hydrogenation reaction.
  • a reaction solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The reaction solvent is usually used at a ratio of 200 to 10,000 parts by weight with respect to 100 parts by weight of the total monomers.
  • a polymerization initiator is usually used.
  • the polymerization initiator include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium and phenyllithium; dilithiomethane, 1,4-diobtan, 1,4-dilithio-2-ethyl And polyfunctional organolithium compounds such as cyclohexane.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a polymerization accelerator, a randomizer, or the like can be used in order to prevent an excessively long chain of one component in each block.
  • a Lewis base compound or the like can be used as a randomizer.
  • Specific examples of Lewis base compounds include dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether, and other ether compounds; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine, and the like.
  • Tertiary amine compounds such as potassium-t-amyl oxide and potassium-t-butyl oxide; and phosphine compounds such as triphenylphosphine.
  • alkali metal alkoxide compounds such as potassium-t-amyl oxide and potassium-t-butyl oxide
  • phosphine compounds such as triphenylphosphine.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the polymerization temperature is not limited as long as the polymerization proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 200 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the polymer After the polymerization, the polymer can be recovered by a known method such as a steam stripping method, a direct desolvation method, or an alcohol coagulation method. Further, when a solvent inert to the hydrogenation reaction is used as the reaction solvent during the polymerization, the polymer can be used as it is without recovering the polymer from the polymerization solution.
  • an appropriate hydrogenation catalyst may be used.
  • a hydrogenation catalyst containing at least one metal selected from the group consisting of nickel, cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium, and rhenium may be used in an organic solvent.
  • the hydrogenation catalyst either a heterogeneous catalyst or a homogeneous catalyst can be used.
  • a hydrogenation catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the heterogeneous catalyst may be used as it is as a metal or a metal compound, or may be used by being supported on an appropriate carrier.
  • the carrier include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide and the like.
  • the amount of the catalyst supported on the carrier is usually 0.01% by weight or more, preferably 0.05% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less.
  • the homogeneous catalyst is, for example, a catalyst in which a compound of nickel, cobalt, titanium or iron and an organometallic compound (for example, organoaluminum compound, organolithium compound) is combined; organometallic such as rhodium, palladium, platinum, ruthenium and rhenium Complex catalyst; and the like.
  • organometallic such as rhodium, palladium, platinum, ruthenium and rhenium Complex catalyst; and the like.
  • the nickel, cobalt, titanium, or iron compound include acetylacetone salts, naphthenic acid salts, cyclopentadienyl compounds, cyclopentadienyl dichloro compounds of various metals, and the like.
  • organic aluminum compound examples include alkylaluminums such as triethylaluminum and triisobutylaluminum; aluminum halides such as diethylaluminum chloride and ethylaluminum dichloride; alkylaluminum hydrides such as diisobutylaluminum hydride; and the like.
  • organometallic complex catalysts include metal complexes such as ⁇ -dichloro- ⁇ -benzene complexes, dichloro-tris (triphenylphosphine) complexes, hydrido-chloro-triphenylphosphine) complexes of the above metals. .
  • the amount of the hydrogenation catalyst used is usually 0.01 parts by weight or more, preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and usually 100 parts by weight with respect to 100 parts by weight of the polymer. Hereinafter, it is preferably 50 parts by weight or less, more preferably 30 parts by weight or less.
  • the reaction temperature during the hydrogenation reaction is usually 10 ° C. to 250 ° C., but is preferably 50 ° C. or more, more preferably, because the hydrogenation rate can be increased and the polymer chain scission reaction can be reduced. It is 80 degreeC or more, Preferably it is 200 degrees C or less, More preferably, it is 180 degrees C or less.
  • the pressure during the reaction is usually 0.1 MPa to 30 MPa, but in addition to the above reasons, from the viewpoint of operability, it is preferably 1 MPa or more, more preferably 2 MPa or more, preferably 20 MPa or less, more preferably 10 MPa or less.
  • the hydrogenation rate is usually 90% or more, preferably 95% or more, more preferably 97% or more. By increasing the hydrogenation rate, the low birefringence and thermal stability of the block copolymer can be enhanced.
  • the hydrogenation rate can be measured by 1 H-NMR.
  • the base film may be a single-layer film including only one layer, or may be a multilayer film having two or more layers.
  • the base film has a multilayer structure, at least one of the layers provided in the base film is a layer containing a block copolymer.
  • the base film may contain an optional component other than the block copolymer as long as the effects of the present invention are not significantly impaired.
  • optional components include: UV absorbers; inorganic fine particles; stabilizers such as antioxidants, heat stabilizers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments An antistatic agent or the like.
  • One type of optional component may be included, and two or more types may be included in any ratio and combination. However, the amount of the optional component is preferably small from the viewpoint of remarkably exhibiting the effects of the present invention.
  • the specific amount of the optional component depends on the use and thickness of the film of the present invention, but is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, for example, with respect to 100 parts by weight of the block copolymer. More preferred are parts by weight or less.
  • the thickness of the base film is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • a polarizing plate protective film by making the thickness of the substrate film above the lower limit of the above range, there is an advantage that handling properties such as prevention of damage to the polarizing plate are improved, and by making the thickness below the upper limit, the polarizing plate There is an advantage that it can be made thin.
  • the thickness variation of the base film is preferably within ⁇ 1 ⁇ m on the entire surface.
  • the variation in the thickness of the base film is within ⁇ 1 ⁇ m on the entire surface, the variation in the color tone of the film of the present invention is reduced.
  • the color tone change after long-term use is uniform, color tone unevenness after long-term use hardly occurs.
  • the base film is usually a transparent layer and transmits visible light well.
  • the specific light transmittance is not uniform depending on the application of the film of the present invention, but the light transmittance at a wavelength of 420 to 780 nm is usually 85% or more, preferably 88% or more. Since the base film has such a high light transmittance at a wavelength of 420 to 780 nm, when the film of the present invention is mounted on a display device such as a liquid crystal display device, it is possible to suppress a decrease in luminance particularly during long-term use. .
  • the easy-sliding layer is a layer made of a cured product of a urethane composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a non-volatile base and fine particles.
  • Tensile modulus of the polyurethane is preferably 1000 N / mm 2 or more, more preferably 1200 N / mm 2 or more, particularly preferably 1400 N / mm 2 or more, preferably 5000N / mm 2 or less, more preferably 4000 N / mm 2 Hereinafter, it is particularly preferably 3000 N / mm 2 or less.
  • the tensile modulus of elasticity of the polyurethane described above is a value measured before being mixed with a component such as a crosslinking agent and a non-volatile base.
  • a specific method for measuring the tensile modulus of polyurethane is as follows. First, an aqueous dispersion of polyurethane (a solution may be used if necessary) is prepared as a sample. This aqueous dispersion is poured into a glass container so that the film thickness after drying is 100 ⁇ m. After leaving at room temperature for 24 hours, it is dried at 50 ° C. for 3 hours and at 120 ° C. for 20 minutes to obtain a polyurethane sheet.
  • the obtained polyurethane sheet is punched into a dumbbell according to JIS K7162, and a test piece is obtained.
  • This test piece is subjected to a tensile test using a tensile tester at a tensile speed of 5 mm / min, and the tensile elastic modulus is measured from the slope of the obtained stress-strain curve (SS curve).
  • the tensile modulus of polyurethane can be controlled, for example, by adjusting the type and ratio of the polyurethane monomer.
  • Specific examples of the method for controlling the tensile modulus include: (2) polyether polyol, (3) polyester polyol, (4) polyether ester polyol, and (5) polycarbonate, which will be described later, among monomers used as raw materials for polyurethane.
  • the tensile elastic modulus of the polyurethane can be adjusted by adjusting the type and charging ratio of the macropolyol such as polyol.
  • polyurethane for example, polyurethane obtained by reacting (i) a component containing an average of 2 or more active hydrogens in one molecule and (ii) a polyisocyanate component can be used.
  • a polyisocyanate component for example, an isocyanate group-containing prepolymer obtained by urethanizing the component (i) and the component (ii) is chain-extended using a chain extender, and water is added to the dispersion.
  • the polyurethane produced by the above can be used.
  • the prepolymer can be obtained by subjecting the component (i) and the component (ii) to a urethanization reaction under an excess of isocyanate groups.
  • the urethanization reaction can be performed in an organic solvent that is inert to the reaction and has a high affinity for water.
  • the prepolymer may be neutralized before the chain extension of the prepolymer.
  • Examples of the chain extension method of the isocyanate group-containing prepolymer include a method in which the isocyanate group-containing prepolymer and the chain extender are reacted in the presence of a catalyst as necessary. In this case, water, water-soluble polyamine, glycols, etc. can be used as the chain extender.
  • component (i) those having hydroxyl group active hydrogen are preferable, and for example, compounds having an average of two or more hydroxyl groups in one molecule are preferable.
  • Specific examples of the component (i) include the following (1) polyol compound, (2) polyether polyol, (3) polyester polyol, (4) polyether ester polyol, and (5) polycarbonate polyol.
  • polyol compound examples include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 1,5 -Pentanediol, neopentyl glycol, 1,6-hexane glycol, 2,5-hexanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, tricyclodecane dimethanol, 1,4 -Cyclohexanedimethanol, 2,2-dimethylpropanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octamethylenediol, glycerin, trimethylolpropane and the like.
  • polyether polyols examples include alkylene oxide adducts of the above polyol compounds; ring-opening (co) polymers of alkylene oxides and cyclic ethers (eg, tetrahydrofuran); polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymers 1,4-butanediol copolymer; glycols such as glycol, polytetramethylene glycol, polyhexamethylene glycol, polyoctamethylene glycol; and the like.
  • Specific examples of the polyether polyol include poly (oxypropylene ether) polyol, poly (oxyethylene-propylene ether) polyol, and the like.
  • polyester polyol examples include those obtained by polycondensation of a polyvalent carboxylic acid or an anhydride thereof and the above (1) polyol compound under an excessive hydroxyl group condition.
  • polyvalent carboxylic acid examples include dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, and terephthalic acid; and tricarboxylic acids such as trimellitic acid. Is mentioned.
  • polyester polyols include ethylene glycol-adipic acid condensate, butanediol-adipine condensate, hexamethylene glycol-adipic acid condensate, ethylene glycol-propylene glycol-adipic acid condensate, or glycol as an initiator.
  • polylactone diol obtained by ring-opening polymerization of lactone.
  • Polyether ester polyol for example, an ether group-containing polyol or a mixture of this and another glycol is mixed with a polyvalent carboxylic acid or anhydride thereof as exemplified in the above (3) and reacted with an alkylene oxide. And the like.
  • the ether group-containing polyol include (2) polyether polyol and diethylene glycol.
  • Specific examples of the polyether ester polyol include polytetramethylene glycol-adipic acid condensate.
  • Polycarbonate polyol examples include a general formula HO—R— (O—C (O) —O—R) X —OH (wherein R represents a saturated fatty acid polyol residue having 1 to 12 carbon atoms). X represents the number of structural units of the molecule, and is usually an integer of 5 to 50).
  • transesterification method in which a saturated aliphatic polyol and a substituted carbonate (for example, diethyl carbonate, diphenyl carbonate, etc.) are reacted under conditions where the hydroxyl group becomes excessive; the saturated aliphatic polyol and phosgene are reacted, Or, if necessary, it can be obtained by a method of further reacting a saturated aliphatic polyol thereafter.
  • a saturated aliphatic polyol and a substituted carbonate for example, diethyl carbonate, diphenyl carbonate, etc.
  • Examples of the component (ii) to be reacted with the component (i) include compounds containing an average of 2 or more isocyanate groups in one molecule.
  • This compound may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
  • the aliphatic polyisocyanate compound is preferably an aliphatic diisocyanate having 1 to 12 carbon atoms, and examples thereof include hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, and hexane diisocyanate (HDI).
  • the alicyclic polyisocyanate compound is preferably an alicyclic diisocyanate having 4 to 18 carbon atoms, such as 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (HMDI), etc. Is mentioned.
  • aromatic polyisocyanate include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and the like.
  • component and (ii) component can be arbitrarily selected and used depending on the application of the film of the present invention.
  • the component (i) it is preferable to use a component having a bond that is difficult to hydrolyze.
  • (2) polyether polyol and (5) polycarbonate polyol are preferable, and (2) polyether polyol is particularly preferable.
  • Polyurethane using (2) polyether polyol as component (i) is called “polyether polyurethane”.
  • polyurethane using (5) polycarbonate polyol as component (i) is called “polycarbonate polyurethane”.
  • polyether-based polyurethane and polycarbonate-based polyurethane have an ether bond or a carbonate bond that is difficult to hydrolyze. Therefore, since polyurethane hardly deteriorates in a high-humidity environment, it is possible to suppress a temporal decrease in the tensile elastic modulus of the slippery layer. Therefore, it is possible to effectively suppress a decrease in adhesiveness in a high humidity environment.
  • polyurethanes may contain an acid structure in the molecular structure.
  • Polyurethane containing an acid structure can be dispersed in water without using a surfactant or even if the amount of the surfactant is small. .
  • This is called a self-emulsifying type, and means that polyurethane particles can be dispersed and stabilized in water with only molecular ionicity even without a surfactant.
  • the polyurethane containing an acid structure does not require or requires a small amount of a surfactant, it has excellent adhesion to a base film and can maintain high transparency.
  • the acid structure examples include acid groups such as a carboxyl group (—COOH) and a sulfo group (—SO 3 H).
  • the acid structure may be present in the side chain or at the terminal in the polyurethane.
  • One type of acid structure may be used, or two or more types may be used in combination at any ratio.
  • the amount of the acid structure is preferably 20 mgKOH / g or more, more preferably 25 mgKOH / g or more, preferably 250 mgKOH / g or less, more preferably 150 mgKOH / g or less as the acid value in the urethane composition.
  • the acid value is preferably 20 mgKOH / g or more, more preferably 25 mgKOH / g or more, preferably 250 mgKOH / g or less, more preferably 150 mgKOH / g or less as the acid value in the urethane composition.
  • a polyether polyol or a polyester may be used in advance.
  • transducing a carboxyl group into a polyol, polyetherester polyol, etc. is mentioned.
  • the dimethylol alkanoic acid used here include dimethylol acetic acid, dimethylol propionic acid, and dimethylol butyric acid.
  • a dimethylol alkanoic acid may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • part or all of the acid structure contained in the polyurethane is neutralized by a nonvolatile base. Because the acid structure is neutralized, the film maintains its properties as an optical material even when it has a thermal history exposed to high temperatures, and adheres to any member with a strong adhesive force. It is possible. Further, even if the acid structure is neutralized, the polyurethane particles can be dispersed in water without using a surfactant or even if the amount of the surfactant is small.
  • the proportion of the acid structure to be neutralized is preferably 20% or more, particularly preferably 50% or more.
  • the characteristics as an optical material can be maintained or the adhesive strength with any member can be maintained. It is possible to bond them.
  • Polyurethane preferably contains a polar group in order to enable reaction with a crosslinking agent.
  • the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfo group.
  • a hydroxyl group, a carboxyl group, and an amino group are preferable, a hydroxyl group and a carboxyl group are more preferable, and a carboxyl group is particularly preferable.
  • the amount of polar groups in the polyurethane is preferably 0.0001 equivalent / 1 kg or more, more preferably 0.001 equivalent / 1 kg or more, and preferably 1 equivalent / 1 kg or less.
  • the polyurethane As the polyurethane, a commercially available water-based urethane resin may be used.
  • the water-based urethane resin is a composition containing polyurethane and water, and is usually a composition in which polyurethane and optional components contained as necessary are dispersed in water.
  • water-based urethane resin for example, “ADEKA BONTITER” series manufactured by ADEKA, “Olestar (registered trademark)” series manufactured by Mitsui Chemicals, “Bondic” series manufactured by DIC, “Hydran (WLS201, WLS202) Etc.) series, Bayer's "Imprunil” series, Kao's "Poise” series, Sanyo Kasei's “Samprene” series, Daiichi Kogyo Seiyaku's “Superflex (registered trademark)” Series, “NEOREZ (Neoreds)” series manufactured by Enomoto Kasei Co., Ltd., “Sancure (registered trademark)” series manufactured by Lubrizol can be used.
  • one type of polyurethane may be used alone, or two or more types may be used in combination at any ratio.
  • the state of the polyurethane is arbitrary, and may be dispersed in the form of particles, or may be dissolved in other components such as a solvent. Among these states, polyurethane is often dispersed in the form of particles.
  • the average particle diameter of the polyurethane particles is preferably 0.01 ⁇ m to 0.4 ⁇ m from the viewpoint of the optical properties of the film of the present invention.
  • the crosslinking agent can crosslink the polyurethane by reacting with a reactive group of the polyurethane to form a bond. This cross-linking can improve the mechanical strength, adhesiveness, and heat and humidity resistance of the slippery layer.
  • the crosslinking agent is contained in the polyurethane such as the carboxyl group and its anhydride group contained as the acid structure, and the hydroxyl group remaining unreacted after the reaction between the component (i) and the component (ii). It can react with the polar group to form a crosslinked structure.
  • crosslinking agent for example, a compound having two or more functional groups that can form a bond by reacting with a reactive group of polyurethane can be used.
  • a crosslinking agent the compound which has a functional group which can react with the carboxyl group which a polyurethane has, or its anhydride group is preferable.
  • Specific examples of the crosslinking agent include epoxy compounds, carbodiimide compounds, oxazoline compounds, and isocyanate compounds.
  • a crosslinking agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the epoxy compound a polyfunctional epoxy compound having two or more epoxy groups in one molecule can be used.
  • the epoxy compound those that are soluble in water or can be emulsified by being dispersed in water are preferable. If the epoxy group has solubility in water or can be emulsified, when the urethane composition is a water-based resin, the coating property of the water-based resin is improved and the slippery layer is easily produced. It becomes possible.
  • the aqueous resin refers to a composition containing a solid content of a polymer or the like dissolved or dispersed in an aqueous solvent such as water.
  • Examples of the epoxy compound include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol, neopentyl glycol and the like glycols 1 Diepoxy compound obtained by etherification of 1 mol with 2 mol of epichlorohydrin; obtained by etherification of 1 mol of polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol and 2 mol or more of epichlorohydrin Polyepoxy compounds: die obtained by esterification of 1 mol of dicarboxylic acid such as phthalic acid, terephthalic acid, oxalic acid, adipic acid and 2 mol of epichlorohydrin Carboxymethyl compound; and the like.
  • dicarboxylic acid such as phthalic acid, tere
  • epoxy compound examples include 1,4-bis (2 ′, 3′-epoxypropyloxy) butane, 1,3,5-triglycidyl isocyanurate, 1,3-diglycidyl-5- ( ( ⁇ -acetoxy- ⁇ -oxypropyl) isosinurate, sorbitol polyglycidyl ethers, polyglycerol polyglycidyl ethers, pentaerythritol polyglycidyl ethers, diglycerol polyglycidyl ether, 1,3,5-triglycidyl (2-hydroxy) Ethyl) isocyanurate, glycerol polyglycerol ethers and trimethylolpropane polyglycidyl ethers.
  • epoxy compounds are commercially available products such as “Denacol (Denacol EX-521, EX-614B, etc.)” series manufactured by Nagase ChemteX Corporation.
  • An epoxy compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the epoxy compound is usually 2 parts by weight or more, preferably 5 parts by weight or more, more preferably 8 parts by weight or more, and usually 40 parts by weight or less, preferably 35 parts by weight or less, with respect to 100 parts by weight of polyurethane. More preferably, it is 30 parts by weight or less.
  • the amount of the epoxy compound is preferably 0.2 times or more, more preferably 0.4 times or more, particularly preferably 0.6 times, based on the weight, with respect to the amount of the epoxy compound equivalent to the polar group of polyurethane. It is more than double, preferably 5.0 times or less, more preferably 4.0 times or less, and particularly preferably 3.0 times or less.
  • the amount of the epoxy compound equivalent to the polar group of polyurethane means the theoretical amount of the epoxy compound that can react with the total amount of polar group of polyurethane without excess or deficiency.
  • the polar group of the polyurethane can react with the epoxy group of the epoxy compound. Therefore, by keeping the amount of the epoxy compound within the above range, the reaction between the polar group and the epoxy compound can be advanced to an appropriate level, and the mechanical strength of the slippery layer can be effectively improved.
  • the carbodiimide compound a compound having two or more carbodiimide groups in one molecule can be used.
  • This carbodiimide compound is produced using an organic isocyanate such as organic monoisocyanate, organic diisocyanate, or organic triisocyanate as a raw material.
  • organic isocyanates include aromatic isocyanates, aliphatic isocyanates, and mixtures thereof. Therefore, as the organic group possessed by the organic isocyanate, either aromatic or aliphatic may be used, or an aromatic organic group and an aliphatic organic group may be used in combination. Among these, from the viewpoint of reactivity, an organic isocyanate having an aliphatic organic group is particularly preferable.
  • a carbodiimide compound is synthesized by a condensation reaction of an organic diisocyanate.
  • organic isocyanate examples include 4,4′-diphenylmethane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexa Organic diisocyanates such as methylene diisocyanate, cyclohexane diisocyanate, xylylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,3-phenylene diisocyanate; isophorone isocyanate, phenyl isocyanate, cyclohexyl isocyanate, Examples thereof include organic monoisocyanates such as butyl isocyanate and naphthyl isocyanate.
  • carbodiimide compounds are commercially available products such as “Carbodilite (Carbodilite V-02, V-02-L2, SV-02, V-04, E-02, etc.)” manufactured by Nisshinbo Chemical Co., Ltd. Is possible.
  • a carbodiimide compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the carbodiimide compound is usually 1 part by weight or more, preferably 3 parts by weight or more, and usually 40 parts by weight or less, preferably 30 parts by weight or less based on 100 parts by weight of the polyurethane.
  • oxazoline compound a polymer having an oxazoline group represented by the following formula (I) can be used.
  • R 4 , R 5 , R 6 and R 7 are the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, a phenyl group and a substituted phenyl group.
  • This oxazoline compound can be produced, for example, by subjecting a monomer component containing an addition-polymerizable oxazoline and optionally containing an unsaturated monomer to solution polymerization in an aqueous medium by a known polymerization method.
  • a monomer component containing an addition-polymerizable oxazoline and optionally containing an unsaturated monomer to solution polymerization in an aqueous medium by a known polymerization method.
  • the addition-polymerizable oxazoline include compounds represented by the following formula (II).
  • R 4 , R 5 , R 6 and R 7 are the same as defined in formula (I).
  • R 8 represents an acyclic organic group having an addition polymerizable unsaturated bond.
  • addition polymerizable oxazoline are 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- Examples thereof include oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the amount of the addition-polymerizable oxazoline is preferably 3 parts by weight or more and preferably 100 parts by weight or less with respect to 100 parts by weight of all monomer components used for producing the oxazoline compound.
  • any monomer that can be copolymerized with an addition-polymerizable oxazoline and does not react with an oxazoline group can be used.
  • Such an arbitrary unsaturated monomer can be arbitrarily selected from the monomers described above.
  • oxazoline compounds commercially available products include Epocross WS-500 and WS-700 manufactured by Nippon Shokubai Co., Ltd. Further, for example, for the emulsion type, Epocros K-2010, K-2020 and K-2030 manufactured by Nippon Shokubai Co., Ltd. can be mentioned. Among these, a water-soluble type having high reactivity with polyurethane is preferable. Moreover, an oxazoline compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the oxazoline compound can be set so that the molar ratio of the polar group of the polyurethane and the oxazoline group of the oxazoline compound (number of moles of polar group / number of moles of oxazoline group) falls within a predetermined range.
  • the molar ratio can be set to 100/20 to 100/100.
  • the reaction between the polyurethane and the oxazoline compound makes it difficult for the oxazoline group and the carboxylate to react. Therefore, the reactivity can be controlled by adjusting the kind of nonvolatile base used for neutralization and the degree of nonvolatileity.
  • isocyanate compound a compound containing two or more isocyanate groups in one molecule can be used.
  • These isocyanate compounds may be aliphatic compounds, alicyclic compounds, or aromatic compounds.
  • Specific examples of the isocyanate compound include the same examples as the component (ii) described as the raw material for polyurethane.
  • epoxy compounds and carbodiimide compounds are preferable, and epoxy compounds are particularly preferable.
  • an epoxy compound is used as a crosslinking agent, the adhesiveness of the easy-sliding layer can be particularly greatly improved.
  • the pot life of a urethane composition can be improved when a carbodiimide compound is used as a crosslinking agent.
  • Nonvolatile base examples include a base that is substantially non-volatile under the treatment conditions when the urethane composition is applied to the base film and then dried.
  • being substantially non-volatile means that a decrease in non-volatile base is usually 80% or less.
  • coating a urethane composition to a base film, leaving to stand at 80 degreeC for 1 hour is mentioned, for example.
  • Such a non-volatile base can function as a neutralizing agent that neutralizes the acid structure of the polyurethane.
  • an inorganic base or an organic base may be used as the nonvolatile base.
  • an organic base having a boiling point of 100 ° C. or higher is preferable, an amine compound having a boiling point of 100 ° C. or higher is more preferable, and an amine compound having a boiling point of 200 ° C. or higher is particularly preferable.
  • the organic base may be a low molecular compound or a polymer.
  • examples of the non-volatile base examples include sodium hydroxide and potassium hydroxide.
  • examples of the organic base include 2-amino-2-methyl-1-propanol (AMP), triethanolamine, triisopropanolamine (TIPA), monoethanolamine, diethanolamine, and tri [(2-hydroxy) -1 -Propyl] amine, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-hydroxymethyl-1,3-propane potassium hydroxide, zinc ammonium complex, copper ammonium complex, silver Ammonium complex, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)
  • the amount of the non-volatile base is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more, and usually 30 parts by weight or less, preferably 20 parts by weight with respect to 100 parts by weight of polyurethane. Part or less, more preferably 10 parts by weight or less.
  • the urethane composition preferably includes fine particles.
  • the surface roughness of the easy-sliding layer formed by the cured product of the urethane composition can be increased. Thereby, since the slipperiness of the surface of an easily binding layer can be improved, prevention of blocking of a film and suppression of generation
  • inorganic particles either inorganic particles or organic particles may be used. However, it is preferable to use water-dispersible particles.
  • inorganic particles include inorganic oxides such as silica, titania, alumina, zirconia; calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate Etc.
  • a silicone resin, a fluororesin, an acrylic resin etc. will be mentioned, for example.
  • silica is preferable.
  • Silica particles are excellent in ability to suppress the generation of wrinkles and transparency, hardly cause haze, and have no coloration, so that the influence on the optical characteristics of the film of the present invention is small. Silica has good dispersibility and dispersion stability in the urethane composition. Among the silica particles, amorphous colloidal silica particles are particularly preferable. By using two kinds of fine particles, the increase in haze can be minimized and the generation of wrinkles can be more efficiently suppressed.
  • the average particle diameter of the fine particles is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less.
  • the amount of the fine particles is usually 1 part by weight or more, preferably 3 parts by weight or more, more preferably 5 parts by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably 100 parts by weight of polyurethane. Is 30 parts by weight or less.
  • the urethane composition may contain a wetting agent.
  • a wetting agent By using a wetting agent, the applicability when applying the urethane composition to the base film can be improved, which is preferable.
  • an acetylene surfactant for example, an acetylene surfactant, a fluorine surfactant, or the like can be used.
  • acetylene-based surfactant for example, Surfynol series, Dynol series manufactured by Air Products and Chemicals, Inc. can be used.
  • fluorine-type surfactant DIC Corporation mega-fac series, Neos company's tangent series, AGC company's Surflon series, etc.
  • the blending amount of the wetting agent is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more with respect to the solid content of the urethane composition (coating liquid). Usually, it is 5% by weight or less, preferably 4 parts by weight or less, more preferably 3% by weight or less. Sufficient applicability can be obtained by setting the amount of the wetting agent to be equal to or greater than the lower limit of the above range. Moreover, by making it into the upper limit value or less, bleeding out of the wetting agent can be suppressed, and further, the overcoatability can be improved.
  • the urethane composition usually contains a solvent.
  • a solvent water or a water-soluble solvent is used.
  • the water-soluble solvent include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether and the like.
  • water is preferably used as the solvent.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the solvent can be set so that the viscosity of the urethane composition can be in a range suitable for coating.
  • the amount of the solvent is set so that the solid content concentration of the urethane composition falls within a desired range.
  • the desired range is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the urethane composition may contain a curing accelerator in combination with the crosslinking agent.
  • a hardening accelerator the well-known hardening accelerator used for formation of a slippery layer can be used.
  • the curing accelerator may be a tertiary amine compound (excluding compounds having a 2,2,6,6-tetramethylpiperidyl group having a tertiary amine at the 4-position). ), Boron trifluoride complex compounds and the like are suitable.
  • a hardening accelerator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the curing accelerator is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, more preferably 0.03 part by weight or more, usually 30 parts by weight or less, relative to 100 parts by weight of polyurethane.
  • the amount is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the urethane composition may contain a curing aid in combination with the crosslinking agent.
  • a curing aid used for forming the easy-sliding layer can be used.
  • Specific examples of curing aids include oxime / nitroso curing aids such as quinonedioxime, benzoquinonedioxime and p-nitrosophenol; maleimide curing aids such as N, Nm-phenylenebismaleimide; diallyl Allyl curing aids such as phthalate, triallyl cyanurate, and triallyl isocyanurate; Methacrylate curing aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; Vinyl-types such as vinyltoluene, ethylvinylbenzene, and divinylbenzene Curing aids; and the like.
  • a hardening adjuvant may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the curing aid is usually 1 part by weight or more, preferably 10 parts by weight or more, and usually 100 parts by weight or less, preferably 50 parts by weight or less with respect to 100 parts by weight of the crosslinking agent.
  • urethane composition significantly impairs the effects of the present invention, for example, a heat stabilizer, a weather stabilizer, a leveling agent, a surfactant, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and an antifogging agent.
  • a heat stabilizer for example, a heat stabilizer, a weather stabilizer, a leveling agent, a surfactant, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and an antifogging agent.
  • Lubricants dyes, pigments, natural oils, synthetic oils, waxes and the like.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the urethane composition is usually a fluid composition.
  • the viscosity of the urethane composition is preferably 15 mPa ⁇ s or less, and particularly preferably 10 mPa ⁇ s or less.
  • the urethane composition can be uniformly applied to the surface of the base film.
  • the viscosity is a value measured under a condition of 25 ° C. with a tuning fork type vibration viscometer.
  • the viscosity of a urethane composition can be adjusted with the ratio of the solvent in a urethane composition, the particle size of particle
  • An easy slip layer is a layer which consists of hardened
  • This slippery layer is usually provided directly on the base film without any other layer such as an adhesive layer.
  • the slippery layer may be provided only on one side of the base film, or may be provided on both sides. However, it is preferable to provide an easy-sliding layer only on one side of the base film from the viewpoint that a film having an easy-sliding layer can be easily wound into a roll.
  • the easy slip layer can be produced by a production method including a step of forming a film of the urethane composition on the base film and a step of curing the film of the urethane composition.
  • a coating method When forming a film of a urethane composition on a base film, a coating method is usually used.
  • a coating method a known coating method can be adopted. Specific coating methods include, for example, a wire bar coating method, a dip method, a spray method, a spin coating method, a roll coating method, a gravure coating method, an air knife coating method, a curtain coating method, a slide coating method, and an extrusion coating method. Etc.
  • the urethane composition forming the film is cured to obtain an easy-sliding layer as a layer made of a cured product of the urethane composition.
  • a solvent is dried and removed.
  • the drying method is arbitrary, and for example, the drying may be performed by any method such as reduced pressure drying or heat drying.
  • the crosslinking reaction of polyurethane usually proceeds.
  • the heating temperature is appropriately set within a range in which the solvent can be dried to cure the polymer component in the urethane composition.
  • the heating temperature may be set to a temperature at which no orientation relaxation occurs in the base film.
  • the heating temperature is preferably (Tg ⁇ 30 ° C.) or higher, more preferably (Tg ⁇ 10 ° C.) or higher, where Tg is the glass transition temperature of the material forming the base film. Yes, preferably (Tg + 60 ° C.) or less, more preferably (Tg + 50 ° C.) or less.
  • the surface modification treatment for the base film include energy ray irradiation treatment and chemical treatment.
  • the energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, etc., and from the viewpoint of treatment efficiency, corona discharge treatment and plasma treatment are preferred, and corona discharge treatment is particularly preferred.
  • the chemical treatment include a saponification treatment, a method of immersing in an aqueous oxidizing agent solution such as potassium dichromate solution and concentrated sulfuric acid, and then washing with water.
  • the surface of the easy-slip layer may be subjected to a hydrophilic surface treatment. Since the surface of the slippery layer usually serves as a bonding surface when the film of the present invention is bonded to an arbitrary member, the surface of the slippery layer is further improved by improving the hydrophilicity of the surface of the slippery layer. It is possible to remarkably improve the adhesion with the member.
  • hydrophilic surface treatment for the easy-sliding layer examples include corona discharge treatment, plasma treatment, saponification treatment, and ultraviolet irradiation treatment. Among these, from the viewpoint of processing efficiency, corona discharge treatment and plasma treatment are preferable, and corona discharge treatment is more preferable. As the plasma treatment, atmospheric pressure plasma treatment is preferable.
  • the thickness of the easy-slip layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, particularly preferably 0.02 ⁇ m or more, more preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the thickness of the slippery layer is within the above range, sufficient adhesive strength between the base film and the slippery layer can be obtained, and defects such as warpage of the film of the present invention can be eliminated.
  • the ratio t 2 / t 1 with thickness t 2 of the thickness t 1 and the lubricity layer of the base film is preferably 0.0003 or more, more preferably more than 0.0010, particularly preferably 0.0025 or more, 0.0100 or less is preferable, 0.0080 or less is more preferable, and 0.0050 or less is particularly preferable.
  • the transparency of the film of the present invention can be improved.
  • the film of the present invention comprises only one base film, the thickness of the base film becomes the thickness t 1 , and when the film of the present invention comprises two or more base film, those base materials the total thickness of the film is the thickness t 1.
  • the film lubricity layer the lubricity layer thickness
  • the interface refractive index difference between the base film and the easy-slip layer is preferably 0.05 or less.
  • the interface refractive index difference can ideally be zero.
  • the film of this invention can be equipped with arbitrary layers on the surface on the opposite side to the slippery layer of a base film.
  • optional layers include an antireflection layer, a hard coat layer, an antistatic layer, an antiglare layer, an antifouling layer, and a separator film.
  • ”) of the film of the present invention is preferably 10 nm or less, more preferably 7 nm or less, still more preferably 5 nm or less, particularly preferably 2 nm or less, and most preferably. Is 1 nm or less, and the lower limit is ideally 0 nm. Since the in-plane retardation Re is so small, the film of the present invention can be suitably used as a protective film for optical elements such as polarizing plates.
  • the absolute value of the retardation in the thickness direction of the film (hereinafter also referred to as “
  • of the film of the present invention can be reduced in this way is not clear, but according to the study of the present inventors, it is presumed that the reason is as follows.
  • the aromatic vinyl compound hydride has a negative birefringence
  • the diene compound hydride has a positive birefringence. It is presumed that the positive and negative phase differences that appear are offset, and the development of the phase difference of the entire film is suppressed.
  • These phase differences Re and Rth can be measured using, for example, a commercially available automatic birefringence meter.
  • the phase differences Re and Rth are evaluated for light having a wavelength of 590 nm.
  • the film of the present invention preferably has a total light transmittance of 80% or more, more preferably 90% or more, from the viewpoint of stably exhibiting the function as an optical member.
  • the film of the present invention may have a width-direction dimension of, for example, 1000 mm to 3000 mm.
  • the film of this invention does not have a restriction
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, more specifically a roll shape. It has a length enough to be wound up and stored or transported.
  • the upper limit of the ratio of the length to the width is not particularly limited, and can be, for example, 100,000 times or less.
  • the film of the present invention is excellent in impact resistance.
  • the reason for such excellent impact resistance is not clear, but is presumed to be as follows. That is, in the block copolymer, the aromatic vinyl compound hydride block and the diene compound hydride block are phase-separated, and the phase domain of the diene compound hydride block is between the phase domains of the aromatic vinyl compound hydride block. It is presumed that the structure is connected, and in such a domain structure, the diene compound hydride block functions like a buffer material, so it is presumed that the impact resistance is improved.
  • the film of the present invention is usually excellent in heat resistance. This is because the block copolymer contained in the base film is excellent in heat resistance, so that the base film containing the block copolymer also has high heat resistance.
  • the specific degree of heat resistance can be set according to the composition ratio of the aromatic vinyl compound hydride block and diene compound hydride block of the block copolymer, the molecular weight, the thickness of the substrate film, etc. Appropriate adjustments may be made accordingly.
  • the film of this invention can be manufactured with the manufacturing method including the process of preparing a base film, and the process of manufacturing an easy-slip layer on the prepared base film.
  • the step of producing the easy-sliding layer on the base film includes the step of forming a film of the urethane composition on the base film and the step of curing the film of the urethane composition. Including.
  • the step of preparing the base film is not particularly limited, and either a melt molding method or a solution casting method can be used.
  • the melt molding method can be further classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method.
  • an extrusion molding method in order to obtain a film excellent in mechanical strength, surface accuracy, etc., an extrusion molding method, an inflation molding method or a press molding method is preferable. Among them, the efficiency is improved while suppressing the development of retardation more reliably.
  • the extrusion method is particularly preferred from the viewpoint that a film can be produced easily and easily.
  • a stretching process after the extrusion molding to obtain a stretched film.
  • the stretching process may be performed before the easy-sliding layer is manufactured, or may be performed after the easy-sliding layer is manufactured.
  • a stretched film may be obtained by laminating a film layer that has been previously stretched, or a multi-layered film obtained by coextrusion or the like. The film may be stretched to obtain a stretched film.
  • the stretching method is not particularly limited, and for example, either a uniaxial stretching method or a biaxial stretching method may be employed.
  • a uniaxial stretching method a method of uniaxial stretching in the longitudinal direction using a difference in peripheral speed of a roll for film conveyance; uniaxial stretching in the width direction using a tenter stretching machine And the like.
  • biaxial stretching method simultaneous biaxial stretching method that stretches in the width direction according to the spread angle of the guide rail at the same time as stretching in the longitudinal direction with an interval between the clips to be fixed; roll for film conveyance
  • Biaxial stretching method such as sequential biaxial stretching method that stretches in the longitudinal direction using the difference in peripheral speed between the two, then grips both ends with clips and stretches in the width direction using a tenter stretching machine, etc.
  • it is neither parallel nor perpendicular to the width direction of the film using, for example, a tenter stretching machine that can apply a feeding force, a pulling force, or a pulling force at different speeds in the width direction or the longitudinal direction.
  • An oblique stretching method in which oblique stretching is continuously performed in the direction may be used.
  • Examples of the apparatus used for stretching include a longitudinal uniaxial stretching machine, a tenter stretching machine, a bubble stretching machine, and a roller stretching machine.
  • the stretching temperature is preferably (Tg-30 ° C) or higher, more preferably (Tg-10 ° C) or higher, preferably (Tg + 60 ° C) or lower, where Tg is the glass transition temperature of the resin constituting the film to be stretched. More preferably, it is (Tg + 50 ° C.) or less.
  • the draw ratio can be appropriately selected according to the optical properties of the substrate film to be used.
  • the specific draw ratio is usually 1.05 times or more, preferably 1.1 times or more, and usually 10.0 times or less, preferably 2.0 times or less.
  • an optional layer is provided on the surface of the base film opposite to the easy-to-slip layer at an arbitrary point in the film production method. You may perform a process. Furthermore, you may perform the process of extending
  • the film of the present invention Since the film of the present invention has a small in-plane retardation Re and excellent impact resistance, it can be used as an optical element and a protective film for the optical element.
  • Examples thereof include members used in display devices such as liquid crystal display devices. Specific examples thereof include a polarizing plate protective film, a retardation film, a brightness enhancement film, a transparent conductive film, a touch panel substrate, a liquid crystal substrate, and light. Examples include a diffusion sheet and a prism sheet.
  • the film of the present invention is particularly suitable for use as a polarizing plate protective film.
  • a polarizing plate is provided with the film of this invention, and a polarizing film.
  • the film of the present invention is usually provided on both sides of the polarizing film.
  • the film of the present invention is laminated on one side or both sides of a polarizing film via an appropriate adhesive.
  • Any polarizing film can be used, for example, a polyvinyl alcohol film doped with iodine or the like and then stretched can be used.
  • the adhesive etc. which use polymers, such as an acrylic polymer, a silicone type polymer, polyester, a polyurethane, polyether, and a synthetic rubber, as a base polymer are mentioned, for example.
  • a mixture containing a polymer having a triblock molecular structure of styrene-isoprene-styrene was obtained.
  • the polymer had a weight average molecular weight (Mw) of about 64000 and a molecular weight distribution (Mw / Mn) of 1.1.
  • a block copolymer in which the copolymer was hydrogenated by a hydrogenation reaction was obtained.
  • the weight average molecular weight (Mw) of the block copolymer contained in the obtained reaction solution was about 66000, and the molecular weight distribution (Mw / Mn) was 1.11.
  • the reaction solution is filtered to remove the hydrogenation catalyst, and then a phenol-based antioxidant pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate] ("Songnox (registered trademark) 1010" manufactured by Matsubara Sangyo Co., Ltd.) 2.0 parts of xylene solution dissolved in 0.1 parts was added and dissolved.
  • the above solution is mixed with cyclohexane, xylene and other volatile components as solvents from a solution at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (“Contro” manufactured by Hitachi, Ltd.). Removed.
  • the molten polymer was extruded into a strand form from a die, and after cooling, 95 parts of block copolymer pellets were produced by a pelletizer.
  • the block copolymer contained in the obtained pellets had a weight average molecular weight (Mw) of 65,000, a molecular weight distribution (Mw / Mn) of 1.13, and a hydrogenation rate of almost 100%.
  • the weight average molecular weight and the number average molecular weight of the polymer (block copolymer and polymer as an intermediate in the production) produced in this production example and the following production examples are standard polystyrene by GPC using THF as an eluent. It measured in 38 degreeC as a conversion value. As a measuring apparatus, HLC8020GPC manufactured by Tosoh Corporation was used.
  • the weight average molecular weight (Mw) of the block copolymer contained in the pellet obtained after the fourth stage hydrogenation reaction is 65000, the molecular weight distribution (Mw / Mn) is 1.25, and the hydrogenation rate is It was almost 100%.
  • the weight average molecular weight (Mw) of the block copolymer contained in the pellet obtained after the hydrogenation reaction in the fourth stage is 65000, the molecular weight distribution (Mw / Mn) is 1.33, and the hydrogenation rate is It was almost 100%.
  • Preparation Example 1 Preparation of urethane composition 1 for easy slipping layer
  • An aqueous dispersion of polyether polyurethane (“Superflex (registered trademark) 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., tensile elastic modulus: 1600 N / mm 2 ) in an amount of polyurethane of 100 parts and an epoxy compound (Nagase Chem) as a crosslinking agent 15 parts of “Denacol EX313” manufactured by Tex Co., Ltd., 2 parts of adipic acid dihydrazide as a non-volatile base, and an aqueous dispersion of silica particles (“Snowtex MP1040” manufactured by Nissan Chemical Co., Ltd .; average particle diameter of 120 nm) as a lubricant 8 parts by volume of particles and an aqueous dispersion of silica particles (“Snowtex XL” manufactured by Nissan Chemical Co., Ltd .; average particle size 50
  • Preparation Example 2 Preparation of urethane composition 2 for easy slipping layer
  • An aqueous dispersion of polyether-based polyurethane (“Superflex (registered trademark) 870” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., tensile elastic modulus: 1500 N / mm 2 ) in an amount of polyurethane of 100 parts and an epoxy compound (Nagase Chem) as a crosslinking agent 20 parts of “Denacol EX521” manufactured by Tex Co., Ltd., 5 parts of adipic acid dihydrazide as a non-volatile base, and an aqueous dispersion of silica particles (“Snowtex MP2040” manufactured by Nissan Chemical Co., Ltd .; average particle size 200 nm) as silica 5 parts by weight of the particles and an aqueous dispersion of silica particles (“Snowtex ZL” manufactured by Nissan Chemical Co., Ltd .; average particle size 80 n
  • Preparation Example 3 Preparation of urethane composition 3 for easy slipping layer
  • An aqueous dispersion of polyether-based polyurethane (“Superflex (registered trademark) 870” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., tensile elastic modulus: 1500 N / mm 2 ) in an amount of 100 parts of polyurethane and a carbodiimide compound (Nisshinbo Co., Ltd.) as a crosslinking agent 3 parts of “Carbodilite V-02”, 3 parts of 2-methylimidazole as a non-volatile base, and an aqueous dispersion of silica particles as a lubricant (“Snowtex MP3040” manufactured by Nissan Chemical Co., Ltd .; average particle size 300 nm) 5 parts by weight of silica particles and an aqueous dispersion of silica particles (“Snowtex YL” manufactured by Nissan Chemical Co., Ltd .; average particle diameter 70
  • Example 1 (1-1: Production of laminated film) Using a corona treatment device (Kasuga Denki Co., Ltd.), discharge was performed on the surface of the base film 1 obtained in Production Example 1 under the conditions of an output of 300 W, an electrode length of 240 mm, a work electrode distance of 3.0 mm, and a conveyance speed of 4 m / min. Treated.
  • the urethane composition 1 obtained in Preparation Example 1 was applied to the surface of the base film 1 subjected to the discharge treatment using a roll coater so that the dry thickness was 0.1 ⁇ m. Thereafter, heating was performed at a temperature of 130 ° C. for 60 seconds to form an easy-sliding layer on the base film 1. This obtained the 80-micrometer-thick laminated film provided with a base film and a slippery layer.
  • the obtained laminated film was stretched in the film width direction at a stretching temperature of 180 ° C. and a stretching ratio of 2.0 times using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a film having a thickness of 40 ⁇ m as an optical film. It was. The obtained film was evaluated by the method described above.
  • Example 2 (1-1) In the same manner as in (1-1) of Example 1, except that the base film 1 was changed to the base film 2 and the urethane composition 1 was changed to the urethane composition 2, A laminated film having a thickness of 48 ⁇ m provided with a base film and an easy-slip layer was obtained. Using a biaxial stretching machine, this laminated film was stretched in the film width direction at a stretching temperature of 160 ° C. and a stretching ratio of 1.2 times to obtain a film having a thickness of 40 ⁇ m as an optical film. The obtained film was evaluated by the method described above.
  • Example 3 In the same manner as (1-1) of Example 1 except that the base film 1 was changed to the base film 3 and the urethane composition 1 was changed to the urethane composition 2, A laminated film having a thickness of 60 ⁇ m provided with a base film and an easy-slip layer was obtained. Using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.), this laminated film was stretched in the film width direction at a stretching temperature of 140 ° C. and a stretch ratio of 1.5 times to obtain a film having a thickness of 40 ⁇ m as an optical film. The obtained film was evaluated by the method described above.
  • Example 4 In the same manner as in Example 1, except that the base film 4 was used instead of the base film 1, the urethane composition 3 was used instead of the urethane composition 1, and no stretching was performed. A film having a thickness of 40 ⁇ m provided with a film and a slippery layer was obtained. The obtained film was evaluated by the method described above.
  • Example 5 In the same manner as (1-1) in Example 1 except that the base film 1 was changed to the base film 5 and the urethane composition 1 was changed to the urethane composition 3, A laminated film having a thickness of 52 ⁇ m and comprising a base film and an easy-slip layer was obtained. This laminated film was stretched in the film width direction at a stretching temperature of 180 ° C. and a stretching ratio of 1.3 times using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a film having a thickness of 40 ⁇ m as an optical film. The obtained film was evaluated by the method described above.
  • Comparative Example 2 Except having changed the base film 6 into the base film 7, it carried out similarly to the comparative example 1, and obtained the film of thickness 40 micrometers provided only with a base film. The obtained film was evaluated by the method described above.
  • the film of Comparative Example 2 contains fine particles.
  • Table 1 shows the results of Examples and Comparative Examples.
  • Table 1 shows the types of base film of the examples and comparative examples (base films 1 to 9) and the weight ratio of the polymer block in the block copolymer contained in the base film (St / Ip / St). And weight ratio (St / Ip ratio) of styrene hydride unit and isoprene hydride unit, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), type of urethane composition for easy slip layer (urethane composition) 1-3), stretching temperature (° C.), stretching ratio, film thickness before stretching ( ⁇ m), and film thickness after stretching ( ⁇ m) are also shown.
  • the weight ratio of hydride (St) units and isoprene hydride (Ip) units is shown.
  • the films obtained in Examples 1 to 5 have the characteristics that the impact strength is high, the internal haze is low, and
  • the films obtained in Examples 1 to 5 have a high effect of suppressing the occurrence of blocking, they are suitable for storage and transportation in the form of a long film roll, and are also suitable as protective films having such a shape. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A film which comprises a substrate film and a slippery layer that is provided on the substrate film, and wherein: the substrate film contains a block copolymer; the block copolymer comprises a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit; the sum of the number of the blocks having an aromatic vinyl compound hydride unit and the number of the blocks having a diene compound hydride unit is 3 or more per one molecule of the block copolymer; and the slippery layer is formed of a cured product a composition that contains a polyurethane, a crosslinking agent which is able to cause crosslinking of the polyurethane, a nonvolatile base and fine particles.

Description

フィルムthe film
 本発明はフィルムに関する。 The present invention relates to a film.
 液晶表示装置などの表示装置には、偏光板、位相差板等の様々な光学素子が設けられる。このような光学素子の中にはフィルムにより構成されているものがある(例えば特許文献1~3を参照)。 A display device such as a liquid crystal display device is provided with various optical elements such as a polarizing plate and a retardation plate. Some of these optical elements are made of a film (see, for example, Patent Documents 1 to 3).
特開2000-169521号公報(対応他国公報:米国特許第6433102号明細書)JP 2000-169521 A (corresponding to other countries: US Pat. No. 6,433,102) 特開2001-48924号公報(対応他国公報:米国特許第6686430号明細書)JP 2001-48924 (corresponding to other countries: US Pat. No. 6,686,430) 特開2002-105151号公報(対応他国公報:米国特許出願公開第2003/207983号明細書)JP 2002-105151 A (corresponding to other countries: US Patent Application Publication No. 2003/207983)
 ところで、光学素子の中でも偏光板には、通常、偏光板保護フィルムが設けられる。この偏光板保護フィルムには、その面内の位相差(レターデーションともいう。)が小さいこと、耐衝撃性に優れることが求められる。
 しかしながら、従来の技術では、フィルムの製造過程において位相差が容易に発現する傾向があり、その面内の位相差が小さく、耐衝撃性に優れるという特性を達成するフィルムの実現が困難であった。
 また、偏光板保護フィルム及び偏光板は、長尺のフィルムロールの形状で保存及び運搬されることがある。偏光板保護フィルム等をフィルムロールの形状とすると、保存の際に、フィルムロール内でフィルムの隣接する表面が高い圧力で接するため、これらが癒着する現象が発生する。このような現象はブロッキングと呼ばれ、ブロッキングが発生するとフィルムの巻取り性を不良なものとしうる。したがって、上記特性の達成に加え、ブロッキングの発生を抑制するフィルムの実現も求められている。
By the way, a polarizing plate protective film is usually provided in a polarizing plate among optical elements. This polarizing plate protective film is required to have a small in-plane retardation (also referred to as retardation) and excellent impact resistance.
However, in the prior art, there is a tendency that a retardation is easily developed in the film production process, and it is difficult to realize a film that achieves the characteristics that the in-plane retardation is small and the impact resistance is excellent. .
Moreover, a polarizing plate protective film and a polarizing plate may be preserve | saved and conveyed in the shape of a elongate film roll. When the polarizing plate protective film or the like is formed in the shape of a film roll, since the adjacent surfaces of the film come into contact with each other at a high pressure in the film roll during storage, a phenomenon occurs in which these adhere to each other. Such a phenomenon is called blocking, and when blocking occurs, the film can be wound poorly. Therefore, in addition to the achievement of the above characteristics, realization of a film that suppresses the occurrence of blocking is also required.
 本発明は、上記に鑑みてなされたものであって、その面内の位相差が小さく、耐衝撃性に優れ、かつブロッキングの発生を抑制したフィルムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a film having a small in-plane retardation, excellent impact resistance, and suppressing occurrence of blocking.
 上述した課題を解決し目的を達成するため、本発明者は鋭意検討した結果、芳香族ビニル化合物水素化物単位を有するブロックと、ジエン化合物水素化物単位を有するブロックとを、所定のブロック数以上有するブロック共重合体を含む基材と、ポリウレタンと、架橋剤と、不揮発性塩基と、微粒子と、を含む組成物の硬化物からなる易滑層とを備えた、積層フィルムでは、その面内の位相差が小さく、耐衝撃性に優れ、かつブロッキングの発生を抑制することを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下の〔1〕~〔5〕が提供される。
In order to solve the above-described problems and achieve the object, the present inventor has intensively studied, and as a result, has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit at a predetermined number of blocks or more. In a laminated film comprising a base material containing a block copolymer, a polyurethane, a crosslinking agent, a non-volatile base, and an easy-sliding layer made of a cured product of a composition containing fine particles, The inventors have found that the phase difference is small, the impact resistance is excellent, and the occurrence of blocking is suppressed, and the present invention has been completed.
That is, according to the present invention, the following [1] to [5] are provided.
 〔1〕 基材フィルムと、前記基材フィルム上に設けられた易滑層と、を備え、
 前記基材フィルムは、ブロック共重合体を含み、
 前記ブロック共重合体は、芳香族ビニル化合物水素化物単位を有するブロック及びジエン化合物水素化物単位を有するブロックを有し、
 前記芳香族ビニル化合物水素化物単位を有するブロックの数と、前記ジエン化合物水素化物を有するブロックの数との合計が、前記ブロック共重合体1分子当たり3つ以上であり、
 前記易滑層は、ポリウレタンと、前記ポリウレタンを架橋させうる架橋剤と、不揮発性塩基と、微粒子と、を含む組成物の硬化物からなる、フィルム。
 〔2〕 前記ブロック共重合体において、
 前記芳香族ビニル化合物水素化物単位を有するブロックの含有率が80重量%~90重量%、前記ジエン化合物水素化物単位を有するブロックの含有率が10重量%~20重量%であるとともに、
 重合体鎖の一端以上が、前記芳香族ビニル化合物水素化物単位を有するブロックからなる、〔1〕記載のフィルム。
 〔3〕 その面内の位相差の絶対値が1nm以下で、厚み方向の位相差の絶対値が1nm以下である、〔1〕または〔2〕に記載のフィルム。
 〔4〕 延伸フィルムである、〔1〕~〔3〕のいずれか一項に記載のフィルム。
 〔5〕 前記ポリウレタンの引っ張り弾性率が1000N/mm以上5000N/mm以下である、〔1〕~〔4〕のいずれか一項に記載のフィルム。
 〔6〕 前記ポリウレタンが、ポリエーテル系ポリウレタンである、〔1〕~〔5〕のいずれか一項に記載のフィルム。
[1] A base film and an easy-slip layer provided on the base film,
The base film includes a block copolymer,
The block copolymer has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit;
The sum of the number of blocks having the aromatic vinyl compound hydride unit and the number of blocks having the diene compound hydride is 3 or more per molecule of the block copolymer;
The easy-sliding layer is a film made of a cured product of a composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a non-volatile base, and fine particles.
[2] In the block copolymer,
The content of the block having the aromatic vinyl compound hydride unit is 80% by weight to 90% by weight, the content of the block having the diene compound hydride unit is 10% by weight to 20% by weight,
[1] The film according to [1], wherein at least one end of the polymer chain comprises a block having the aromatic vinyl compound hydride unit.
[3] The film according to [1] or [2], wherein the in-plane retardation has an absolute value of 1 nm or less and a thickness direction retardation has an absolute value of 1 nm or less.
[4] The film according to any one of [1] to [3], which is a stretched film.
[5] The tensile modulus of the polyurethane is 1000 N / mm 2 or more 5000N / mm 2 or less, according to any one of [1] to [4] film.
[6] The film according to any one of [1] to [5], wherein the polyurethane is a polyether-based polyurethane.
 本発明のフィルムは、その面内の位相差が小さく、耐衝撃性に優れ、かつブロッキングの発生を抑制する。 The film of the present invention has a small in-plane retardation, excellent impact resistance, and suppresses the occurrence of blocking.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and exemplifications, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 また、以下の説明において、粒子の平均粒子径とは、別に断らない限り、レーザー回折法によって粒子径分布を測定し、測定された粒子径分布において小径側から計算した累積体積が50%となる粒子径を採用する。 In the following description, unless otherwise indicated, the particle size distribution is measured by laser diffraction method, and the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50%. Adopt particle size.
 また、「偏光板」とは、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 The “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film.
 本発明のフィルムは、基材フィルムと、この基材フィルム上に設けられた易滑層とを備える。本発明において、基材フィルムはブロック共重合体を含み、易滑層は、ポリウレタンと、このポリウレタンを架橋させうる架橋剤と、不揮発性塩基と微粒子とを含む組成物の硬化物からなる層である。前記のポリウレタン、架橋剤、不揮発性塩基及び微粒子を含む組成物を、以下、「ウレタン組成物」と呼ぶことがある。 The film of the present invention includes a base film and an easy-sliding layer provided on the base film. In the present invention, the base film contains a block copolymer, and the easy-sliding layer is a layer made of a cured product of a composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a nonvolatile base and fine particles. is there. Hereinafter, the composition containing the polyurethane, the crosslinking agent, the nonvolatile base and the fine particles may be referred to as a “urethane composition”.
 [1.基材フィルム]
 基材フィルムは、ブロック共重合体を含む。基材フィルムに含まれるブロック共重合体は、芳香族ビニル化合物水素化物単位を有するブロック及びジエン化合物水素化物単位を有するブロックを有する。芳香族ビニル化合物水素化物単位を有するブロックの数と、ジエン化合物水素化物を有するブロックの数との合計は、ブロック共重合体1分子当たり3つ以上である。
[1. Base film]
The base film includes a block copolymer. The block copolymer contained in the base film has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit. The total number of blocks having aromatic vinyl compound hydride units and blocks having diene compound hydrides is 3 or more per molecule of block copolymer.
 [1.1.ブロック共重合体]
 芳香族ビニル化合物水素化物単位は、芳香族ビニル化合物を重合した後で、その不飽和結合を水素化して得られる重合物の繰り返し単位と同様の構造を有する繰り返し単位を指し、例えば以下の構造式(1)で表される繰り返し単位を指す。ただし、芳香族ビニル化合物水素化物単位は、その製造方法によっては限定されない。
 芳香族ビニル化合物水素化物単位を有するブロック(以下、「芳香族ビニル化合物水素化物ブロック」ともいう)は、かかる芳香族ビニル化合物水素化物単位を有するブロックである。
[1.1. Block copolymer]
Aromatic vinyl compound hydride unit refers to a repeating unit having the same structure as the repeating unit of a polymer obtained by polymerizing an aromatic vinyl compound and then hydrogenating its unsaturated bond. It refers to the repeating unit represented by (1). However, the aromatic vinyl compound hydride unit is not limited depending on the production method.
A block having an aromatic vinyl compound hydride unit (hereinafter also referred to as “aromatic vinyl compound hydride block”) is a block having such an aromatic vinyl compound hydride unit.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 構造式(1)において、Rは脂環式炭化水素基を表す。Rの例を挙げると、シクロヘキシル基等のシクロヘキシル基類;デカヒドロナフチル基類等が挙げられる。 In the structural formula (1), R c represents an alicyclic hydrocarbon group. Examples of R c include cyclohexyl groups such as cyclohexyl group; decahydronaphthyl groups and the like.
 構造式(1)において、R、R及びRは、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、シリル基、又は、極性基(ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基を表す。中でもR、R及びRとしては、耐熱性、低複屈折性及び機械強度等の観点から水素原子及び炭素原子数1~6個の鎖状炭化水素基であることが好ましい。鎖状炭化水素基としては飽和炭化水素基が好ましく、アルキル基がより好ましい。 In the structural formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group or an imide group. Represents a chain hydrocarbon group substituted with a silyl group or a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group). Among them, R 1 , R 2 and R 3 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoints of heat resistance, low birefringence and mechanical strength. The chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
 芳香族ビニル化合物水素化物ブロックの分子量は、通常1000以上、好ましくは2000以上、より好ましくは3000以上であり、通常100000以下、好ましくは90000以下、より好ましくは80000以下である。芳香族ビニル化合物水素化物ブロックの分子量が前記範囲の下限以上となることによりフィルムの弾性率が向上するという利点が得られ、また、上限以下となることによりフィルムの耐衝撃性が向上するという利点が得られる。また、芳香族ビニル化合物水素化物ブロックが複数ある場合には、各ブロックの分子量を上記範囲の値とすることができる。この場合において、各ブロックの分子量は同じでもよいし、異なっていてもよい。 The molecular weight of the aromatic vinyl compound hydride block is usually 1000 or more, preferably 2000 or more, more preferably 3000 or more, and usually 100,000 or less, preferably 90000 or less, more preferably 80000 or less. The advantage that the elastic modulus of the film is improved by the molecular weight of the aromatic vinyl compound hydride block being not less than the lower limit of the above range, and the impact resistance of the film is improved by being not more than the upper limit. Is obtained. Moreover, when there are a plurality of aromatic vinyl compound hydride blocks, the molecular weight of each block can be set to a value within the above range. In this case, the molecular weight of each block may be the same or different.
 芳香族ビニル化合物水素化物ブロックの繰り返し単位の例を挙げると、以下のような例が挙げられる。以下の例示物において立体異性体を有するものは、そのいずれの立体異性体も使用することができる。また、芳香族ビニル化合物水素化物ブロックの繰り返し単位は、1種類だけも用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、芳香族ビニル化合物水素化物ブロックは、1種類だけも用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of repeating units of aromatic vinyl compound hydride blocks include the following. Any of the following isomers having stereoisomers can be used. Moreover, the repeating unit of an aromatic vinyl compound hydride block may use only 1 type, and may use it combining 2 or more types by arbitrary ratios. Furthermore, only one type of aromatic vinyl compound hydride block may be used, or two or more types may be used in combination at any ratio.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ブロック共重合体中に含まれる芳香族ビニル化合物水素化物ブロックの含有率は、好ましくは80重量%以上、より好ましくは82重量%以上であり、好ましくは90重量%以下、より好ましくは88重量%以下である。芳香族ビニル化合物水素化物ブロックの含有率を上記範囲とすることにより、基材フィルムの面方向の位相差Reを所望の範囲にすることができる。 The content of the aromatic vinyl compound hydride block contained in the block copolymer is preferably 80% by weight or more, more preferably 82% by weight or more, preferably 90% by weight or less, more preferably 88% by weight. It is as follows. By setting the content of the aromatic vinyl compound hydride block in the above range, the retardation Re in the surface direction of the base film can be set in a desired range.
 ブロック共重合体において、好ましくは、重合体鎖の一つの末端、より好ましくは重合体鎖の複数の末端が、芳香族ビニル化合物水素化物ブロックからなる。これにより、耐衝撃性を向上させることができる。重合体鎖の末端が芳香族ビニル化合物水素化物ブロックからなることは、NMR法により確認できる。 In the block copolymer, preferably, one end of the polymer chain, more preferably a plurality of ends of the polymer chain, is composed of an aromatic vinyl compound hydride block. Thereby, impact resistance can be improved. It can be confirmed by NMR method that the terminal of the polymer chain is composed of an aromatic vinyl compound hydride block.
 ジエン化合物水素化物単位は、ジエン化合物を重合した後で、その得られた重合物が不飽和結合を有していればその不飽和結合を水素化して得られる重合物の繰り返し単位と同様の構造を有する繰り返し単位を指す。中でも、ジエン化合物水素化物単位は、共役ジエン化合物を重合した後で、その不飽和結合を水素化して得られる重合物の繰り返し単位と同様の構造を有する繰り返し単位であることが好ましい。その例を挙げると、例えば以下の構造式(2)又は構造式(3)で表される繰り返し単位が挙げられる。ただし、ジエン化合物水素化物単位は、その製造方法によっては限定されない。
 ジエン化合物水素化物単位を有するブロック(以下、「ジエン化合物水素化物ブロック」ともいう)は、かかるジエン化合物水素化物単位を有するブロックである。
The diene compound hydride unit has the same structure as the repeating unit of the polymer obtained by polymerizing the diene compound and then hydrogenating the unsaturated bond if the polymer obtained has an unsaturated bond. Refers to a repeating unit having Especially, it is preferable that a diene compound hydride unit is a repeating unit which has the structure similar to the repeating unit of the polymer obtained by polymerizing a conjugated diene compound and hydrogenating the unsaturated bond. When the example is given, the repeating unit represented, for example by the following structural formula (2) or structural formula (3) will be mentioned. However, the diene compound hydride unit is not limited depending on the production method.
A block having a diene compound hydride unit (hereinafter also referred to as “diene compound hydride block”) is a block having such a diene compound hydride unit.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 構造式(2)において、R~Rは、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、シリル基、又は、極性基(ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基を表す。中でもR~Rとしては、耐熱性、低複屈折性及び機械強度等の観点から水素原子及び炭素原子数1~6個の鎖状炭化水素基であることが好ましい。鎖状炭化水素基としては飽和炭化水素基が好ましく、アルキル基がより好ましい。 In the structural formula (2), R 4 to R 9 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group. Or a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group). Among these, R 4 to R 9 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoints of heat resistance, low birefringence, mechanical strength, and the like. The chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 構造式(3)において、R10~R15は、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、シリル基、又は、極性基(ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基を表す。中でもR10~R15としては、耐熱性、低複屈折性及び機械強度等の観点から水素原子及び炭素原子数1~6個の鎖状炭化水素基であることが好ましい。鎖状炭化水素基としては飽和炭化水素基が好ましく、アルキル基がより好ましい。 In the structural formula (3), R 10 to R 15 each independently represent a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group. Or a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group). Among them, R 10 to R 15 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoint of heat resistance, low birefringence, mechanical strength, and the like. The chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
 ジエン化合物水素化物ブロックの分子量は、通常500以上、好ましくは1000以上、より好ましくは2000以上であり、通常50000以下、好ましくは30000以下、より好ましくは20000以下である。ジエン化合物水素化物ブロックの分子量が前記範囲の下限以上となることにより耐衝撃性が向上するという利点が得られ、また、上限以下となることにより弾性率が向上するという利点が得られる。また、ジエン化合物水素化物ブロックが複数ある場合には、各ブロックの分子量を上記範囲の値とすることができる。この場合において、各ブロックの分子量は同じでもよいし、異なっていてもよい。 The molecular weight of the diene compound hydride block is usually 500 or more, preferably 1000 or more, more preferably 2000 or more, and usually 50000 or less, preferably 30000 or less, more preferably 20000 or less. When the molecular weight of the diene compound hydride block is not less than the lower limit of the above range, an advantage that the impact resistance is improved is obtained, and when it is not more than the upper limit, an advantage that the elastic modulus is improved is obtained. Moreover, when there are a plurality of diene compound hydride blocks, the molecular weight of each block can be set to a value within the above range. In this case, the molecular weight of each block may be the same or different.
 ジエン化合物水素化物ブロックの繰り返し単位の例を挙げると、以下のような例が挙げられる。以下の例示物において立体異性体を有するものは、そのいずれの立体異性体も使用することができる。また、ジエン化合物水素化物ブロックの繰り返し単位は、1種類だけも用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、ジエン化合物水素化物ブロックも、1種類だけも用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the repeating unit of the diene compound hydride block include the following examples. Any of the following isomers having stereoisomers can be used. Moreover, only one type of repeating unit of the diene compound hydride block may be used, or two or more types may be used in combination at any ratio. Furthermore, only one type of diene compound hydride block may be used, or two or more types may be used in combination at any ratio.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ブロック共重合体中に含まれるジエン化合物水素化物ブロックの含有率は、好ましくは10重量%以上、より好ましくは12重量%以上であり、好ましくは20重量%以下、より好ましくは18重量%以下である。ジエン化合物水素化物ブロックの含有率を上記範囲とすることにより、基材フィルムにおいて面方向の位相差Reを所望の範囲にすることができる。 The content of the diene compound hydride block contained in the block copolymer is preferably 10% by weight or more, more preferably 12% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less. is there. By setting the content of the diene compound hydride block in the above range, the retardation Re in the surface direction can be set to a desired range in the base film.
 ブロック共重合体は、芳香族ビニル化合物水素化物ブロックとジエン化合物水素化物ブロックとを、合計で1分子当たり3つ以上有する。芳香族ビニル化合物水素化物ブロックとジエン化合物水素化物ブロックとを、合計で1分子当たり3つ(3ブロック)以上有することにより、耐衝撃性を高めることが可能となる。また、通常は基材フィルムの耐熱性を高めることもできる。一方、上限は本発明の効果を著しく損なわない限り任意であるが、好ましくは5ブロック以下であり、より好ましくは4ブロック以下である。ブロック数が多すぎると耐衝撃性が低下する傾向があるためである。本発明において、ブロック共重合体が1分子当たり3つのブロックを有していること(トリブロック構造)が好ましい。 The block copolymer has a total of three or more aromatic vinyl compound hydride blocks and diene compound hydride blocks per molecule. By having a total of 3 (3 blocks) or more of aromatic vinyl compound hydride blocks and diene compound hydride blocks per molecule, it is possible to improve impact resistance. Moreover, the heat resistance of a base film can also be improved normally. On the other hand, the upper limit is arbitrary as long as the effects of the present invention are not significantly impaired, but it is preferably 5 blocks or less, more preferably 4 blocks or less. This is because if the number of blocks is too large, impact resistance tends to decrease. In the present invention, the block copolymer preferably has three blocks per molecule (triblock structure).
 ブロック共重合体は、本発明の効果を著しく損なわない限り、前記の芳香族ビニル化合物水素化物ブロックおよびジエン化合物水素化物ブロック以外にその他の任意のブロックを有していても良い。ただし、本発明の効果をより顕著に発揮させる観点からは、任意のブロックは少ないことが好ましい。任意のブロックの具体的な含有率はフィルムの用途等により一様ではないが、通常10重量%以下、好ましくは5重量%以下、より好ましくは3重量%以下であり、含まないことが特に好ましい。 The block copolymer may have other arbitrary blocks in addition to the aromatic vinyl compound hydride block and diene compound hydride block as long as the effects of the present invention are not significantly impaired. However, from the viewpoint of exhibiting the effects of the present invention more remarkably, it is preferable that the number of arbitrary blocks is small. The specific content of the arbitrary block is not uniform depending on the use of the film and the like, but is usually 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, and it is particularly preferable not to contain it. .
 任意のブロックとしては、例えば、芳香族ビニル化合物水素化物単位及びジエン化合物水素化物単位を有する共重合ブロック等が挙げられる。当該共重合ブロックにおける、芳香族ビニル化合物水素化物単位としては、芳香族ビニル化合物水素化物ブロックの繰り返し単位と同様のものが挙げられ、ジエン化合物水素化物単位としては、ジエン化合物水素化物ブロックの繰り返し単位と同様のものが挙げられる。 Examples of the arbitrary block include a copolymer block having an aromatic vinyl compound hydride unit and a diene compound hydride unit. Examples of the aromatic vinyl compound hydride unit in the copolymer block include those similar to the repeating unit of the aromatic vinyl compound hydride block, and the diene compound hydride unit includes the repeating unit of the diene compound hydride block. The same thing is mentioned.
 ブロック共重合体の重量平均分子量Mwは、通常50,000以上、好ましくは55,000以上、より好ましくは60,000以上であり、通常100,000以下、好ましくは90,000以下、より好ましくは80,000以下である。重量平均分子量Mwが前記範囲の下限以上となることによりフィルムの耐衝撃性を向上させることができ、上限以下となることにより重合体の粘度を低めて成形性を高めることができる。 The weight average molecular weight Mw of the block copolymer is usually 50,000 or more, preferably 55,000 or more, more preferably 60,000 or more, and usually 100,000 or less, preferably 90,000 or less, more preferably 80,000 or less. When the weight average molecular weight Mw is not less than the lower limit of the above range, the impact resistance of the film can be improved, and when it is not more than the upper limit, the viscosity of the polymer can be lowered and the moldability can be improved.
 ブロック共重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、通常2以下、好ましくは1.5以下、より好ましくは1.2以下である。これにより、重合体粘度を低めて成形性を高めることができる。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the block copolymer is usually 2 or less, preferably 1.5 or less, more preferably 1.2 or less. Thereby, a polymer viscosity can be lowered | hung and a moldability can be improved.
 ブロック共重合体のガラス転移温度Tgは、通常110℃以上、好ましくは115℃以上、より好ましくは120℃以上であり、通常150℃以下、好ましくは148℃以下、より好ましくは145℃以下である。ブロック共重合体のガラス転移温度が前記範囲の下限以上であることによりフィルムの耐熱性が向上するという利点が得られ、上限以下であることにより加工温度を下げて成形性を高めるという利点が得られる。ブロック共重合体のガラス転移温度Tgは、複数のガラス転移温度が見られる場合には、高いほうの数値を採用することができる。 The glass transition temperature Tg A of the block copolymer is usually 110 ° C. or higher, preferably 115 ° C. or higher, more preferably 120 ° C. or higher, and usually 150 ° C. or lower, preferably 148 ° C. or lower, more preferably 145 ° C. or lower. is there. The advantage that the heat resistance of the film is improved when the glass transition temperature of the block copolymer is at least the lower limit of the above range is obtained, and the advantage that the processing temperature is lowered and the moldability is improved by being below the upper limit. It is done. As the glass transition temperature Tg A of the block copolymer, a higher numerical value can be adopted when a plurality of glass transition temperatures are observed.
 ブロック共重合体の引張弾性率は、通常1,500N/mm以上、好ましくは1,600N/mm以上であり、通常2,500N/mm以下、好ましくは2,200N/mm以下である。ブロック共重合体の引張弾性率が前記範囲の下限以上であることによりフィルムにした際に腰が得られるという利点が得られ、上限以下であることによりフィルムの耐衝撃性が向上するという利点が得られる。 The tensile modulus of the block copolymer is usually 1,500 N / mm 2 or more, preferably 1,600 N / mm 2 or more, usually 2,500 N / mm 2 or less, preferably 2,200 N / mm 2 or less. is there. The advantage that the elasticity of the film is obtained when the tensile modulus of the block copolymer is not less than the lower limit of the above range is obtained, and the impact resistance of the film is improved by being not more than the upper limit. can get.
 [1.2.ブロック共重合体の製造方法]
 ブロック共重合体の製造方法に制限は無いが、例えば、芳香族ビニル化合物水素化物ブロックおよびジエン化合物水素化物ブロックそれぞれに対応する単量体を用意し、これをブロック重合させて重合体を得て、得られた重合体の水素化を行うようにすればよい。
[1.2. Method for producing block copolymer]
There is no limitation on the method for producing the block copolymer. For example, a monomer corresponding to each of the aromatic vinyl compound hydride block and the diene compound hydride block is prepared, and this is subjected to block polymerization to obtain a polymer. Then, the obtained polymer may be hydrogenated.
 芳香族ビニル化合物水素化物ブロックに対応する単量体の例を挙げると、スチレン、α-メチルスチレン、α-エチルスチレン、α-プロピルスチレン、α-イソプロピルスチレン、α-t-ブチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、4-フェニルスチレン等のスチレン類;ビニルシクロヘキサン、3-メチルイソプロペニルシクロヘキサン等のビニルシクロヘキサン類;4-ビニルシクロヘキセン、4-イソプロペニルシクロヘキセン、1-メチル-4-ビニルシクロヘキセン、1-メチル-4-イソプロペニルシクロヘキセン、2-メチル-4-ビニルシクロヘキセン、2-メチル-4-イソプロペニルシクロヘキセン等のビニルシクロヘキセン類;などが挙げられる。
 芳香族ビニル化合物水素化物ブロックに対応する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Examples of monomers corresponding to the aromatic vinyl compound hydride block include styrene, α-methylstyrene, α-ethylstyrene, α-propylstyrene, α-isopropylstyrene, α-t-butylstyrene, 2- Methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene Styrenes such as monofluorostyrene and 4-phenylstyrene; vinylcyclohexanes such as vinylcyclohexane and 3-methylisopropenylcyclohexane; 4-vinylcyclohexene, 4-isopropenylcyclohexene, 1-methyl-4-vinylcyclohexene, 1 -Methyl-4-isop And vinylcyclohexenes such as lopenylcyclohexene, 2-methyl-4-vinylcyclohexene and 2-methyl-4-isopropenylcyclohexene.
One type of monomer corresponding to the aromatic vinyl compound hydride block may be used alone, or two or more types may be used in combination at any ratio.
 一方、ジエン化合物水素化物ブロックに対応する単量体の例を挙げると、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、及び1,3-ヘキサジエン等の鎖状共役ジエン類などが挙げられる。
 ジエン化合物水素化物ブロックに対応する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
On the other hand, examples of monomers corresponding to diene compound hydride blocks include chains such as butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. And conjugated dienes.
As the monomer corresponding to the diene compound hydride block, one type may be used alone, or two or more types may be used in combination at any ratio.
 重合には、通常、アニオン重合を採用できる。
 また、重合は、塊状重合や、溶液重合等のいずれで行ってもよい。中でも、重合反応と水素化反応とを連続して行うためには、溶液重合が好ましい。
In general, anionic polymerization can be employed for the polymerization.
The polymerization may be performed by any of bulk polymerization and solution polymerization. Among these, solution polymerization is preferable in order to continuously perform the polymerization reaction and the hydrogenation reaction.
 重合の反応溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられる。中でも脂肪族炭化水素類及び脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒としてそのまま使用することができ、好ましい。
 反応溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 反応溶媒は、通常、全単量体100重量部に対して200~10,000重量部となるような割合で用いられる。
Examples of the reaction solvent for polymerization include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, decalin, etc. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene and toluene. Of these, the use of aliphatic hydrocarbons and alicyclic hydrocarbons is preferable because they can be used as they are as an inert solvent for the hydrogenation reaction.
A reaction solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
The reaction solvent is usually used at a ratio of 200 to 10,000 parts by weight with respect to 100 parts by weight of the total monomers.
 重合の際、通常は重合開始剤を使用する。重合開始剤としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム等のモノ有機リチウム;ジリチオメタン、1,4-ジオブタン、1,4-ジリチオー2-エチルシクロヘキサン等の多官能性有機リチウム化合物;などが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 During polymerization, a polymerization initiator is usually used. Examples of the polymerization initiator include monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium and phenyllithium; dilithiomethane, 1,4-diobtan, 1,4-dilithio-2-ethyl And polyfunctional organolithium compounds such as cyclohexane. A polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 それぞれの重合体ブロックを重合する際には、各ブロック内で、ある1成分の連鎖が過度に長くなることを防止するために、重合促進剤及びランダマイザーなどを使用することができる。例えば重合をアニオン重合により行う場合には、ルイス塩基化合物などをランダマイザーとして使用できる。ルイス塩基化合物の具体例としては、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム-t-アミルオキシド、カリウム-t-ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 When polymerizing each polymer block, a polymerization accelerator, a randomizer, or the like can be used in order to prevent an excessively long chain of one component in each block. For example, when the polymerization is performed by anionic polymerization, a Lewis base compound or the like can be used as a randomizer. Specific examples of Lewis base compounds include dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether, and other ether compounds; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine, and the like. Tertiary amine compounds; alkali metal alkoxide compounds such as potassium-t-amyl oxide and potassium-t-butyl oxide; and phosphine compounds such as triphenylphosphine. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 重合温度は重合が進行する限り制限は無いが、通常0℃以上、好ましくは20℃以上であり、通常200℃以下、好ましくは100℃以下、より好ましくは80℃以下である。 The polymerization temperature is not limited as long as the polymerization proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 200 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
 重合後は、例えばスチームストリッピング法、直接脱溶媒法、アルコール凝固法等の公知の方法で重合体を回収できる。また、重合時に水素化反応に不活性な溶媒を反応溶媒として用いた場合は、重合溶液から重合体を回収せず、そのまま水素化工程に供することができる。 After the polymerization, the polymer can be recovered by a known method such as a steam stripping method, a direct desolvation method, or an alcohol coagulation method. Further, when a solvent inert to the hydrogenation reaction is used as the reaction solvent during the polymerization, the polymer can be used as it is without recovering the polymer from the polymerization solution.
 重合体の水素化方法に制限は無く、例えば適切な水素化触媒を用いて行えばよい。例えば、有機溶媒中で、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム、及びレニウムからなる群より選ばれる少なくとも1つの金属を含む水素化触媒を用いて行えばよい。水素化触媒は、不均一系触媒、均一系触媒のいずれも使用可能である。また、水素化触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 There is no limitation on the method for hydrogenating the polymer, and for example, an appropriate hydrogenation catalyst may be used. For example, a hydrogenation catalyst containing at least one metal selected from the group consisting of nickel, cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium, and rhenium may be used in an organic solvent. As the hydrogenation catalyst, either a heterogeneous catalyst or a homogeneous catalyst can be used. Moreover, a hydrogenation catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 不均一系触媒は、金属または金属化合物のままで用いてもよく、適切な担体に担持させて用いてもよい。担体の例を挙げると、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素等が挙げられる。担体における触媒の担持量は、通常0.01重量%以上、好ましくは0.05重量%以上であり、通常80重量%以下、好ましくは60重量%以下である。
 均一系触媒は、例えば、ニッケル、コバルト、チタン又は鉄の化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒;ロジウム、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒;などが挙げられる。ニッケル、コバルト、チタン又は鉄の化合物としては、例えば、各種金属のアセチルアセトン塩、ナフテン酸塩、シクロペンタジエニル化合物、シクロペンタジエニルジクロロ化合物等が挙げられる。また、有機アルミニウム化合物としては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム;ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム;ジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウム;などが挙げられる。
 有機金属錯体触媒の例としては、例えば、上記各金属のγ-ジクロロ-π-ベンゼン錯体、ジクロロ-トリス(トリフェニルホスフィン)錯体、ヒドリド-クロロ-トリフェニルホスフィン)錯体等の金属錯体が挙げられる。
 水素化触媒の使用量は、重合体100重量部に対して、通常0.01重量部以上、好ましくは0.05重量部以上、より好ましくは0.1重量部以上であり、通常100重量部以下、好ましくは50重量部以下、より好ましくは30重量部以下である。
The heterogeneous catalyst may be used as it is as a metal or a metal compound, or may be used by being supported on an appropriate carrier. Examples of the carrier include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, silicon carbide and the like. The amount of the catalyst supported on the carrier is usually 0.01% by weight or more, preferably 0.05% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less.
The homogeneous catalyst is, for example, a catalyst in which a compound of nickel, cobalt, titanium or iron and an organometallic compound (for example, organoaluminum compound, organolithium compound) is combined; organometallic such as rhodium, palladium, platinum, ruthenium and rhenium Complex catalyst; and the like. Examples of the nickel, cobalt, titanium, or iron compound include acetylacetone salts, naphthenic acid salts, cyclopentadienyl compounds, cyclopentadienyl dichloro compounds of various metals, and the like. Examples of the organic aluminum compound include alkylaluminums such as triethylaluminum and triisobutylaluminum; aluminum halides such as diethylaluminum chloride and ethylaluminum dichloride; alkylaluminum hydrides such as diisobutylaluminum hydride; and the like.
Examples of organometallic complex catalysts include metal complexes such as γ-dichloro-π-benzene complexes, dichloro-tris (triphenylphosphine) complexes, hydrido-chloro-triphenylphosphine) complexes of the above metals. .
The amount of the hydrogenation catalyst used is usually 0.01 parts by weight or more, preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and usually 100 parts by weight with respect to 100 parts by weight of the polymer. Hereinafter, it is preferably 50 parts by weight or less, more preferably 30 parts by weight or less.
 水素化反応の際の反応温度は、通常10℃~250℃であるが、水素化率を高くでき、且つ、重合体鎖切断反応を小さくできるという理由から、好ましくは50℃以上、より好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは180℃以下である。また、反応時の圧力は、通常0.1MPa~30MPaであるが、上記理由に加え、操作性の観点から、好ましくは1MPa以上、より好ましくは2MPa以上であり、好ましくは20MPa以下、より好ましくは10MPa以下である。
 水素化率は、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率を高くすることにより、ブロック共重合体の低複屈折性及び熱安定性等を高めることができる。水素化率はH-NMRにより測定できる。
The reaction temperature during the hydrogenation reaction is usually 10 ° C. to 250 ° C., but is preferably 50 ° C. or more, more preferably, because the hydrogenation rate can be increased and the polymer chain scission reaction can be reduced. It is 80 degreeC or more, Preferably it is 200 degrees C or less, More preferably, it is 180 degrees C or less. The pressure during the reaction is usually 0.1 MPa to 30 MPa, but in addition to the above reasons, from the viewpoint of operability, it is preferably 1 MPa or more, more preferably 2 MPa or more, preferably 20 MPa or less, more preferably 10 MPa or less.
The hydrogenation rate is usually 90% or more, preferably 95% or more, more preferably 97% or more. By increasing the hydrogenation rate, the low birefringence and thermal stability of the block copolymer can be enhanced. The hydrogenation rate can be measured by 1 H-NMR.
 [1.3.基材フィルム]
 基材フィルムは、1層のみを含む単層構造のフィルムであってもよく、2層以上の層を備える複層構造のフィルムであってもよい。基材フィルムが複層構造を有する場合、基材フィルムが備える層のうち少なくとも1層はブロック共重合体を含む層である。
[1.3. Base film]
The base film may be a single-layer film including only one layer, or may be a multilayer film having two or more layers. When the base film has a multilayer structure, at least one of the layers provided in the base film is a layer containing a block copolymer.
 基材フィルムは、本発明の効果を著しく損なわない限り、ブロック共重合体以外の任意成分を含んでいてもよい。任意成分の例を挙げると、紫外線吸収剤;無機微粒子;酸化防止剤、熱安定剤、近赤外線吸収剤等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;帯電防止剤などが挙げられる。任意成分は、1種類が含まれていても良く、2種類以上が任意の比率及び組み合わせで含まれていてもよい。ただし、本発明の効果を顕著に発揮させる観点からは、任意成分の量は少ないことが好ましい。任意成分の具体的な量は本発明のフィルムの用途や厚み等にもよるが、例えばブロック共重合体100重量部に対して、10重量部以下が好ましく、5重量部以下がより好ましく、3重量部以下が更に好ましい。 The base film may contain an optional component other than the block copolymer as long as the effects of the present invention are not significantly impaired. Examples of optional components include: UV absorbers; inorganic fine particles; stabilizers such as antioxidants, heat stabilizers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments An antistatic agent or the like. One type of optional component may be included, and two or more types may be included in any ratio and combination. However, the amount of the optional component is preferably small from the viewpoint of remarkably exhibiting the effects of the present invention. The specific amount of the optional component depends on the use and thickness of the film of the present invention, but is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, for example, with respect to 100 parts by weight of the block copolymer. More preferred are parts by weight or less.
 基材フィルムの厚さは、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、通常200μm以下、好ましくは100μm以下、より好ましくは50μm以下である。基材フィルムの厚さを前記範囲の下限以上にすることで偏光板保護フィルムとして使用した際に偏光板の破損防止などハンドリング性が向上するという利点があり、上限以下にすることで偏光板を薄くすることができるという利点がある。 The thickness of the base film is usually 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and usually 200 μm or less, preferably 100 μm or less, more preferably 50 μm or less. When used as a polarizing plate protective film by making the thickness of the substrate film above the lower limit of the above range, there is an advantage that handling properties such as prevention of damage to the polarizing plate are improved, and by making the thickness below the upper limit, the polarizing plate There is an advantage that it can be made thin.
 基材フィルムの厚さのばらつきは全面で±1μm以内であることが好ましい。基材フィルムの厚さのばらつきが全面で±1μm以内であることにより、本発明のフィルムの色調のばらつきが小さくなる。また、長期使用後の色調変化も均一となるため、長期使用後の色調ムラも起こり難い。 The thickness variation of the base film is preferably within ± 1 μm on the entire surface. When the variation in the thickness of the base film is within ± 1 μm on the entire surface, the variation in the color tone of the film of the present invention is reduced. In addition, since the color tone change after long-term use is uniform, color tone unevenness after long-term use hardly occurs.
 基材フィルムは、通常、透明な層であり可視光線を良好に透過させる。具体的な光線透過率は本発明のフィルムの用途に応じて一様ではないが、波長420~780nmにおける光線透過率としては、通常85%以上、好ましくは88%以上である。基材フィルムが波長420~780nmにおいてこのように高い光線透過率を有することにより、本発明のフィルムを液晶表示装置などの表示装置に実装した場合に、特に長期間使用時の輝度低下を抑制できる。 The base film is usually a transparent layer and transmits visible light well. The specific light transmittance is not uniform depending on the application of the film of the present invention, but the light transmittance at a wavelength of 420 to 780 nm is usually 85% or more, preferably 88% or more. Since the base film has such a high light transmittance at a wavelength of 420 to 780 nm, when the film of the present invention is mounted on a display device such as a liquid crystal display device, it is possible to suppress a decrease in luminance particularly during long-term use. .
 [2.易滑層]
 易滑層は、ポリウレタンと、このポリウレタンを架橋させうる架橋剤と、不揮発性塩基と微粒子と、を含むウレタン組成物の硬化物からなる層である。このようなウレタン組成物の硬化物からなる易滑層を用いることにより、本発明のフィルムを長尺のフィルムロールの形状で保存及び運搬した場合であってもブロッキングの発生を抑制することができる。また、この易滑層は、優れた接着性を高湿度環境において長期間維持できる。
[2. Easy-slip layer]
The easy-sliding layer is a layer made of a cured product of a urethane composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a non-volatile base and fine particles. By using an easy-sliding layer made of a cured product of such a urethane composition, the occurrence of blocking can be suppressed even when the film of the present invention is stored and transported in the form of a long film roll. . Moreover, this easy-sliding layer can maintain the excellent adhesiveness for a long time in a high-humidity environment.
 [2.1.ポリウレタン]
 ポリウレタンの引っ張り弾性率は、好ましくは1000N/mm以上、より好ましくは1200N/mm以上、特に好ましくは1400N/mm以上であり、好ましくは5000N/mm以下、より好ましくは4000N/mm以下、特に好ましくは3000N/mm以下である。前記範囲の下限値以上の引張弾性率を有するポリウレタンを用いることにより、易接着層の接着性を高めることができる。また、上限値以下とすることにより、易滑層が過度に硬くなることを防止できるので、易滑層の破損を防止できる。
[2.1. Polyurethane]
Tensile modulus of the polyurethane is preferably 1000 N / mm 2 or more, more preferably 1200 N / mm 2 or more, particularly preferably 1400 N / mm 2 or more, preferably 5000N / mm 2 or less, more preferably 4000 N / mm 2 Hereinafter, it is particularly preferably 3000 N / mm 2 or less. By using polyurethane having a tensile elastic modulus equal to or higher than the lower limit of the above range, the adhesion of the easy-adhesion layer can be increased. Moreover, since it can prevent that a slippery layer becomes too hard by setting it as an upper limit or less, damage to a slippery layer can be prevented.
 上述したポリウレタンの引っ張り弾性率は、架橋剤及び不揮発性塩基等の成分と混合される前に測定される値である。ポリウレタンの引っ張り弾性率の具体的な測定方法は、次の通りである。
 まず、試料としてポリウレタンの水分散体(必要に応じて溶液を用いてもよい)を用意する。この水分散体を、乾燥後膜厚が100μmになるように、ガラス容器に流しいれる。室温で24時間放置した後、50℃で3時間、及び、120℃で20分間乾燥させて、ポリウレタンのシートを得る。
 得られたポリウレタンのシートを、JIS K7162に従い、ダンベル型に打ち抜いて、試験片を得る。
 この試験片について引張り試験器を用いて引張り速度5mm/分で引っ張り試験を行い、得られた応力-歪み曲線(SSカーブ)の傾きから引っ張り弾性率を測定する。
The tensile modulus of elasticity of the polyurethane described above is a value measured before being mixed with a component such as a crosslinking agent and a non-volatile base. A specific method for measuring the tensile modulus of polyurethane is as follows.
First, an aqueous dispersion of polyurethane (a solution may be used if necessary) is prepared as a sample. This aqueous dispersion is poured into a glass container so that the film thickness after drying is 100 μm. After leaving at room temperature for 24 hours, it is dried at 50 ° C. for 3 hours and at 120 ° C. for 20 minutes to obtain a polyurethane sheet.
The obtained polyurethane sheet is punched into a dumbbell according to JIS K7162, and a test piece is obtained.
This test piece is subjected to a tensile test using a tensile tester at a tensile speed of 5 mm / min, and the tensile elastic modulus is measured from the slope of the obtained stress-strain curve (SS curve).
 ポリウレタンの引っ張り弾性率は、例えば、当該ポリウレタンのモノマーの種類及び比率を調整することにより制御できる。引っ張り弾性率の制御方法の具体例を挙げると、ポリウレタンの原料となるモノマーのうち、後述する(2)ポリエーテルポリオール、(3)ポリエステルポリオール、(4)ポリエーテルエステルポリオール、及び(5)ポリカーボネートポリオールなどのマクロポリオールの種類及び仕込み比を調整することにより、ポリウレタンの引っ張り弾性率を調整しうる。 The tensile modulus of polyurethane can be controlled, for example, by adjusting the type and ratio of the polyurethane monomer. Specific examples of the method for controlling the tensile modulus include: (2) polyether polyol, (3) polyester polyol, (4) polyether ester polyol, and (5) polycarbonate, which will be described later, among monomers used as raw materials for polyurethane. The tensile elastic modulus of the polyurethane can be adjusted by adjusting the type and charging ratio of the macropolyol such as polyol.
 ポリウレタンとしては、例えば、(i)1分子中に平均2個以上の活性水素を含有する成分と、(ii)ポリイソシアネート成分とを反応させて得られるポリウレタンを用いうる。
 また、ポリウレタンとしては、例えば、前記(i)成分及び前記(ii)成分をウレタン化反応させて得たイソシアネート基含有プレポリマーを、鎖延長剤を用いて鎖延長し、水を加えて分散体とすることによって製造されるポリウレタンを用いうる。前記のプレポリマーは、前記(i)成分及び前記(ii)成分を、イソシアネート基過剰の条件下でウレタン化反応させることで得られうる。また、前記のウレタン化反応は、反応に不活性で水との親和性の大きい有機溶媒中で行いうる。さらに、前記プレポリマーの鎖延長の前には、該プレポリマーを中和させてもよい。また、イソシアネート基含有プレポリマーの鎖延長方法としては、イソシアネート基含有プレポリマーと鎖延長剤とを、必要に応じて触媒の存在下で反応させる方法が挙げられる。この際、鎖延長剤としては、水、水溶性ポリアミン、グリコール類などを用いうる。
As the polyurethane, for example, polyurethane obtained by reacting (i) a component containing an average of 2 or more active hydrogens in one molecule and (ii) a polyisocyanate component can be used.
In addition, as the polyurethane, for example, an isocyanate group-containing prepolymer obtained by urethanizing the component (i) and the component (ii) is chain-extended using a chain extender, and water is added to the dispersion. The polyurethane produced by the above can be used. The prepolymer can be obtained by subjecting the component (i) and the component (ii) to a urethanization reaction under an excess of isocyanate groups. The urethanization reaction can be performed in an organic solvent that is inert to the reaction and has a high affinity for water. Furthermore, the prepolymer may be neutralized before the chain extension of the prepolymer. Examples of the chain extension method of the isocyanate group-containing prepolymer include a method in which the isocyanate group-containing prepolymer and the chain extender are reacted in the presence of a catalyst as necessary. In this case, water, water-soluble polyamine, glycols, etc. can be used as the chain extender.
 前記(i)成分としては、ヒドロキシル基性の活性水素を有するものが好ましく、例えば1分子中に平均2個以上のヒドロキシル基を有する化合物が好ましい。(i)成分の具体例としては、下記の(1)ポリオール化合物、(2)ポリエーテルポリオール、(3)ポリエステルポリオール、(4)ポリエーテルエステルポリオール、及び(5)ポリカーボネートポリオールが挙げられる。 As the component (i), those having hydroxyl group active hydrogen are preferable, and for example, compounds having an average of two or more hydroxyl groups in one molecule are preferable. Specific examples of the component (i) include the following (1) polyol compound, (2) polyether polyol, (3) polyester polyol, (4) polyether ester polyol, and (5) polycarbonate polyol.
 (1)ポリオール化合物:
 ポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサングリコール、2,5-ヘキサンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、トリシクロデカンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ジメチルプロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタメチレンジオール、グリセリン、トリメチロールプロパンなどが挙げられる。
(1) Polyol compound:
Examples of the polyol compound include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 1,5 -Pentanediol, neopentyl glycol, 1,6-hexane glycol, 2,5-hexanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, tricyclodecane dimethanol, 1,4 -Cyclohexanedimethanol, 2,2-dimethylpropanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octamethylenediol, glycerin, trimethylolpropane and the like.
 (2)ポリエーテルポリオール:
 ポリエーテルポリオールとしては、前記のポリオール化合物のアルキレンオキシド付加物;アルキレンオキシドと環状エーテル(例えばテトラヒドロフランなど)との開環(共)重合体;ポリエチレングリコール、ポリプロピレングリコール、エチレングリコール-プロピレングリコール共重合体、1,4-ブタンジオール共重合体;グリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール、ポリオクタメチレングリコールなどのグリコール類;などが挙げられる。ポリエーテルポリオールの具体例としては、ポリ(オキシプロピレンエーテル)ポリオール、ポリ(オキシエチレン-プロピレンエーテル)ポリオール等が挙げられる。
(2) Polyether polyol:
Examples of polyether polyols include alkylene oxide adducts of the above polyol compounds; ring-opening (co) polymers of alkylene oxides and cyclic ethers (eg, tetrahydrofuran); polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymers 1,4-butanediol copolymer; glycols such as glycol, polytetramethylene glycol, polyhexamethylene glycol, polyoctamethylene glycol; and the like. Specific examples of the polyether polyol include poly (oxypropylene ether) polyol, poly (oxyethylene-propylene ether) polyol, and the like.
 (3)ポリエステルポリオール:
 ポリエステルポリオールとして、例えば、多価カルボン酸又はその無水物と前記(1)ポリオール化合物とを、ヒドロキシル基過剰の条件で重縮合させて得られたものなどが挙げられる。ここで、多価カルボン酸としては、例えば、アジピン酸、コハク酸、セバシン酸、グルタル酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸等のジカルボン酸;トリメリット酸等のトリカルボン酸が挙げられる。ポリエステルポリオールの具体例としては、エチレングリコール-アジピン酸縮合物、ブタンジオール-アジピン縮合物、ヘキサメチレングリコール-アジピン酸縮合物、エチレングリコール-プロピレングリコール-アジピン酸縮合物、或いは、グリコールを開始剤としてラクトンを開環重合させたポリラクトンジオール、などが挙げられる。
(3) Polyester polyol:
Examples of the polyester polyol include those obtained by polycondensation of a polyvalent carboxylic acid or an anhydride thereof and the above (1) polyol compound under an excessive hydroxyl group condition. Examples of the polyvalent carboxylic acid include dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, and terephthalic acid; and tricarboxylic acids such as trimellitic acid. Is mentioned. Specific examples of polyester polyols include ethylene glycol-adipic acid condensate, butanediol-adipine condensate, hexamethylene glycol-adipic acid condensate, ethylene glycol-propylene glycol-adipic acid condensate, or glycol as an initiator. And polylactone diol obtained by ring-opening polymerization of lactone.
 (4)ポリエーテルエステルポリオール:
 ポリエーテルエステルポリオールとして、例えば、エーテル基含有ポリオールまたは、これと他のグリコールとの混合物を上記(3)で例示したような多価カルボン酸又はその無水物と混合してアルキレンオキシドを反応させてなるものなどが挙げられる。前記エーテル基含有ポリオールとしては、例えば、前記(2)ポリエーテルポリオールやジエチレングリコール等が挙げられる。また、ポリエーテルエステルポリオールの具体例としては、ポリテトラメチレングリコール-アジピン酸縮合物などが挙げられる。
(4) Polyether ester polyol:
As the polyether ester polyol, for example, an ether group-containing polyol or a mixture of this and another glycol is mixed with a polyvalent carboxylic acid or anhydride thereof as exemplified in the above (3) and reacted with an alkylene oxide. And the like. Examples of the ether group-containing polyol include (2) polyether polyol and diethylene glycol. Specific examples of the polyether ester polyol include polytetramethylene glycol-adipic acid condensate.
 (5)ポリカーボネートポリオール:
 ポリカーボネートポリオールとしては、例えば、一般式HO-R-(O-C(O)-O-R)-OH(ただし、式中、Rは炭素原子数1~12の飽和脂肪酸ポリオール残基を示す。また、Xは分子の構造単位の数を示し、通常5~50の整数である。)で示される化合物などが挙げられる。これらは、飽和脂肪族ポリオールと置換カーボネート(例えば、炭酸ジエチル、ジフェニルカーボネートなど)とを、ヒドロキシル基が過剰となる条件で反応させるエステル交換法;前記飽和脂肪族ポリオールとホスゲンとを反応させるか、または必要に応じて、その後さらに飽和脂肪族ポリオールを反応させる方法;などにより得ることができる。
(5) Polycarbonate polyol:
Examples of the polycarbonate polyol include a general formula HO—R— (O—C (O) —O—R) X —OH (wherein R represents a saturated fatty acid polyol residue having 1 to 12 carbon atoms). X represents the number of structural units of the molecule, and is usually an integer of 5 to 50). These are a transesterification method in which a saturated aliphatic polyol and a substituted carbonate (for example, diethyl carbonate, diphenyl carbonate, etc.) are reacted under conditions where the hydroxyl group becomes excessive; the saturated aliphatic polyol and phosgene are reacted, Or, if necessary, it can be obtained by a method of further reacting a saturated aliphatic polyol thereafter.
 これらの(i)成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 These components (i) may be used alone or in combination of two or more at any ratio.
 前記(i)成分と反応させる(ii)成分(即ち、ポリイソシアネート成分)としては、例えば、1分子中に平均2個以上のイソシアネート基を含有する化合物が挙げられる。この化合物は、脂肪族化合物でもよく、脂環式化合物でもよく、芳香族化合物でもよい。
 脂肪族ポリイソシアネート化合物としては、炭素原子数1~12の脂肪族ジイソシアネートが好ましく、例えばヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、ヘキサンジイソシアネート(HDI)などが挙げられる。
 脂環式ポリイソシアネート化合物としては、炭素原子数4~18の脂環式ジイソシアネートが好ましく、例えば、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)などが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどが挙げられる。
Examples of the component (ii) to be reacted with the component (i) (that is, the polyisocyanate component) include compounds containing an average of 2 or more isocyanate groups in one molecule. This compound may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
The aliphatic polyisocyanate compound is preferably an aliphatic diisocyanate having 1 to 12 carbon atoms, and examples thereof include hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, and hexane diisocyanate (HDI).
The alicyclic polyisocyanate compound is preferably an alicyclic diisocyanate having 4 to 18 carbon atoms, such as 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (HMDI), etc. Is mentioned.
Examples of the aromatic polyisocyanate include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and the like.
 これらの(ii)成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 These (ii) components may be used alone or in combination of two or more at any ratio.
 前記の(i)成分及び(ii)成分は、本発明のフィルムの用途に応じて適切なものを任意に選択して用いうる。中でも、(i)成分としては、加水分解し難い結合を有するものを用いることが好ましく、具体的には(2)ポリエーテルポリオール及び(5)ポリカーボネートポリオールが好ましく、中でも(2)ポリエーテルポリオールが特に好ましい。(i)成分として(2)ポリエーテルポリオールを用いたポリウレタンは「ポリエーテル系ポリウレタン」と呼ばれる。また、(i)成分として(5)ポリカーボネートポリオールを用いたポリウレタンは「ポリカーボネート系ポリウレタン」と呼ばれる。これらのポリエーテル系ポリウレタン及びポリカーボネート系ポリウレタンは、加水分解し難いエーテル結合又はカーボネート結合を有する。そのため、高湿度環境においてポリウレタンが劣化し難いので、易滑層の引っ張り弾性率の経時的な低下を抑制できる。したがって、高湿度環境における接着性の低下を効果的に抑制できる。 The above (i) component and (ii) component can be arbitrarily selected and used depending on the application of the film of the present invention. Among them, as the component (i), it is preferable to use a component having a bond that is difficult to hydrolyze. Specifically, (2) polyether polyol and (5) polycarbonate polyol are preferable, and (2) polyether polyol is particularly preferable. Particularly preferred. Polyurethane using (2) polyether polyol as component (i) is called “polyether polyurethane”. In addition, polyurethane using (5) polycarbonate polyol as component (i) is called “polycarbonate polyurethane”. These polyether-based polyurethane and polycarbonate-based polyurethane have an ether bond or a carbonate bond that is difficult to hydrolyze. Therefore, since polyurethane hardly deteriorates in a high-humidity environment, it is possible to suppress a temporal decrease in the tensile elastic modulus of the slippery layer. Therefore, it is possible to effectively suppress a decrease in adhesiveness in a high humidity environment.
 また、これらのポリウレタンは、その分子構造に酸構造を含んでいてもよい。酸構造を含むポリウレタンは、界面活性剤を使用せずに、若しくは界面活性剤の量が少なくても、水中に分散させることが可能であるので、易滑層の耐水性の改善が期待される。これを自己乳化型といい、界面活性剤が無くても分子イオン性のみで水中にポリウレタンの粒子が分散安定化しうることを意味する。また、酸構造を含むポリウレタンは、界面活性剤が不要又は少量で済むので、基材フィルムとの接着性に優れ、かつ高い透明性を維持できる。 These polyurethanes may contain an acid structure in the molecular structure. Polyurethane containing an acid structure can be dispersed in water without using a surfactant or even if the amount of the surfactant is small. . This is called a self-emulsifying type, and means that polyurethane particles can be dispersed and stabilized in water with only molecular ionicity even without a surfactant. Moreover, since the polyurethane containing an acid structure does not require or requires a small amount of a surfactant, it has excellent adhesion to a base film and can maintain high transparency.
 酸構造としては、例えば、カルボキシル基(-COOH)、スルホ基(-SOH)等の酸基などを挙げることができる。また、酸構造は、ポリウレタンにおいて側鎖に存在していてもよく、末端に存在していてもよい。酸構造は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the acid structure include acid groups such as a carboxyl group (—COOH) and a sulfo group (—SO 3 H). In addition, the acid structure may be present in the side chain or at the terminal in the polyurethane. One type of acid structure may be used, or two or more types may be used in combination at any ratio.
 酸構造の量としては、ウレタン組成物における酸価として、好ましくは20mgKOH/g以上、より好ましくは25mgKOH/g以上であり、好ましくは250mgKOH/g以下、より好ましくは150mgKOH/g以下である。酸価を前記範囲の下限値以上にすることによりポリウレタンの水分散性を良好にできる。また、上限値以下にすることにより、易滑層の耐水性を良好にすることができる。 The amount of the acid structure is preferably 20 mgKOH / g or more, more preferably 25 mgKOH / g or more, preferably 250 mgKOH / g or less, more preferably 150 mgKOH / g or less as the acid value in the urethane composition. By setting the acid value to be equal to or higher than the lower limit of the above range, the water dispersibility of the polyurethane can be improved. Moreover, the water resistance of a slippery layer can be made favorable by setting it as an upper limit or less.
 ポリウレタンに酸構造を導入する方法としては、例えば、ジメチロールアルカン酸を、前記(2)から(4)に記載した(i)成分の一部もしくは全部と置き換えることによって、予めポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール等にカルボキシル基を導入する方法が挙げられる。ここで用いられるジメチロールアルカン酸としては、例えば、ジメチロール酢酸、ジメチロールプロピオン酸、ジメチロール酪酸などが挙げられる。ジメチロールアルカン酸は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As a method for introducing an acid structure into polyurethane, for example, by replacing dimethylol alkanoic acid with a part or all of the component (i) described in the above (2) to (4), a polyether polyol or a polyester may be used in advance. The method of introduce | transducing a carboxyl group into a polyol, polyetherester polyol, etc. is mentioned. Examples of the dimethylol alkanoic acid used here include dimethylol acetic acid, dimethylol propionic acid, and dimethylol butyric acid. A dimethylol alkanoic acid may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ウレタン組成物において、ポリウレタンが含む酸構造の一部又は全部は、不揮発性塩基によって中和されている。酸構造が中和されていることにより、フィルムは、高温下に曝された熱履歴を有しても、光学材料としての特性を維持したり、任意の部材と強い接着力で接着したりすることが可能である。また、酸構造を中和しても、界面活性剤を使用せずに、若しくは界面活性剤の量が少なくても、ポリウレタンの粒子を水中に分散させることは可能である。 In the urethane composition, part or all of the acid structure contained in the polyurethane is neutralized by a nonvolatile base. Because the acid structure is neutralized, the film maintains its properties as an optical material even when it has a thermal history exposed to high temperatures, and adheres to any member with a strong adhesive force. It is possible. Further, even if the acid structure is neutralized, the polyurethane particles can be dispersed in water without using a surfactant or even if the amount of the surfactant is small.
 ポリウレタンが含む酸構造のうち、中和される酸構造の割合は、20%以上が好ましく、50%以上が特に好ましい。酸構造のうちの20%以上が中和されることにより、フィルムが高温下に曝された熱履歴を有しても、光学材料としての特性を維持したり、任意の部材と強い接着力で接着したりすることが可能である。 Of the acid structure contained in the polyurethane, the proportion of the acid structure to be neutralized is preferably 20% or more, particularly preferably 50% or more. By neutralizing 20% or more of the acid structure, even if the film has a thermal history exposed to high temperatures, the characteristics as an optical material can be maintained or the adhesive strength with any member can be maintained. It is possible to bond them.
 ポリウレタンは、架橋剤との反応を可能にするため、極性基を含むことが好ましい。極性基としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホ基などが挙げられる。中でも、ヒドロキシル基、カルボキシル基及びアミノ基が好ましく、ヒドロキシル基及びカルボキシル基がより好ましく、カルボキシル基が特に好ましい。ポリウレタン中の極性基の量は、好ましくは0.0001当量/1kg以上、より好ましくは0.001当量/1kg以上であり、好ましくは1当量/1kg以下である。 Polyurethane preferably contains a polar group in order to enable reaction with a crosslinking agent. Examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfo group. Among these, a hydroxyl group, a carboxyl group, and an amino group are preferable, a hydroxyl group and a carboxyl group are more preferable, and a carboxyl group is particularly preferable. The amount of polar groups in the polyurethane is preferably 0.0001 equivalent / 1 kg or more, more preferably 0.001 equivalent / 1 kg or more, and preferably 1 equivalent / 1 kg or less.
 ポリウレタンとしては、水系ウレタン樹脂として市販されているものを用いてもよい。水系ウレタン樹脂は、ポリウレタン及び水とを含む組成物であり、通常、ポリウレタン及び必要に応じて含まれる任意の成分が水の中に分散している組成物である。水系ウレタン樹脂としては、例えば、ADEKA社製の「アデカボンタイター」シリーズ、三井化学社製の「オレスター(登録商標)」シリーズ、DIC社製の「ボンディック」シリーズ、「ハイドラン(WLS201,WLS202など)」シリーズ、バイエル社製の「インプラニール」シリーズ、花王社製の「ポイズ」シリーズ、三洋化成工業社製の「サンプレン」シリーズ、第一工業製薬社製の「スーパーフレックス(登録商標)」シリーズ、楠本化成社製の「NEOREZ(ネオレッズ)」シリーズ、ルーブリゾール社製の「Sancure(登録商標)」シリーズなどを用いることができる。また、ポリウレタンは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the polyurethane, a commercially available water-based urethane resin may be used. The water-based urethane resin is a composition containing polyurethane and water, and is usually a composition in which polyurethane and optional components contained as necessary are dispersed in water. As the water-based urethane resin, for example, “ADEKA BONTITER” series manufactured by ADEKA, “Olestar (registered trademark)” series manufactured by Mitsui Chemicals, “Bondic” series manufactured by DIC, “Hydran (WLS201, WLS202) Etc.) series, Bayer's "Imprunil" series, Kao's "Poise" series, Sanyo Kasei's "Samprene" series, Daiichi Kogyo Seiyaku's "Superflex (registered trademark)" Series, “NEOREZ (Neoreds)” series manufactured by Enomoto Kasei Co., Ltd., “Sancure (registered trademark)” series manufactured by Lubrizol can be used. In addition, one type of polyurethane may be used alone, or two or more types may be used in combination at any ratio.
 ウレタン組成物において、ポリウレタンの状態は任意であり、粒子状になって分散していてもよく、溶媒等の他の成分に溶解していてもよい。ポリウレタンは、これらの状態の中でも、粒子状となって分散していることが多い。この場合、ポリウレタンの粒子の平均粒子径は、本発明のフィルムの光学特性の観点から、0.01μm~0.4μmであることが好ましい。 In the urethane composition, the state of the polyurethane is arbitrary, and may be dispersed in the form of particles, or may be dissolved in other components such as a solvent. Among these states, polyurethane is often dispersed in the form of particles. In this case, the average particle diameter of the polyurethane particles is preferably 0.01 μm to 0.4 μm from the viewpoint of the optical properties of the film of the present invention.
 [2.2.架橋剤]
 架橋剤は、ポリウレタンが有する反応性の基と反応して結合を形成することにより、ポリウレタンを架橋させうる。この架橋により、易滑層の機械的強度、接着性及び耐湿熱性を向上させることができる。通常、架橋剤は、前記酸構造として含まれるカルボキシル基及びその無水物基、並びに、(i)成分と(ii)成分との反応後に未反応で残ったヒドロキシル基などのような、ポリウレタンに含まれる極性基と反応して架橋構造を形成しうる。
[2.2. Crosslinking agent]
The crosslinking agent can crosslink the polyurethane by reacting with a reactive group of the polyurethane to form a bond. This cross-linking can improve the mechanical strength, adhesiveness, and heat and humidity resistance of the slippery layer. Usually, the crosslinking agent is contained in the polyurethane such as the carboxyl group and its anhydride group contained as the acid structure, and the hydroxyl group remaining unreacted after the reaction between the component (i) and the component (ii). It can react with the polar group to form a crosslinked structure.
 架橋剤としては、例えば、ポリウレタンが有する反応性の基と反応して結合を形成できる官能基を1分子内に2個以上有する化合物を用いうる。中でも、架橋剤としては、ポリウレタンが有するカルボキシル基又はその無水物基と反応しうる官能基を有する化合物が好ましい。
 架橋剤の具体例を挙げると、エポキシ化合物、カルボジイミド化合物、オキサゾリン化合物、イソシアネート化合物等が挙げられる。また、架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
As the crosslinking agent, for example, a compound having two or more functional groups that can form a bond by reacting with a reactive group of polyurethane can be used. Especially, as a crosslinking agent, the compound which has a functional group which can react with the carboxyl group which a polyurethane has, or its anhydride group is preferable.
Specific examples of the crosslinking agent include epoxy compounds, carbodiimide compounds, oxazoline compounds, and isocyanate compounds. Moreover, a crosslinking agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 エポキシ化合物としては、1分子内に2個以上のエポキシ基を有する多官能のエポキシ化合物を用いうる。中でも、エポキシ化合物としては、水に溶解性があるか、または水に分散してエマルジョン化しうるものが好ましい。エポキシ基が水に溶解性を有するか又はエマルジョン化しうるものであれば、ウレタン組成物が水系樹脂である場合に、その水系樹脂の塗布性を良好にして、易滑層の製造を容易に行うことが可能となる。ここで、水系樹脂とは、重合体等の固形分を、水等の水系の溶媒に溶解又は分散した状態で含有する組成物のことをいう。 As the epoxy compound, a polyfunctional epoxy compound having two or more epoxy groups in one molecule can be used. Among them, as the epoxy compound, those that are soluble in water or can be emulsified by being dispersed in water are preferable. If the epoxy group has solubility in water or can be emulsified, when the urethane composition is a water-based resin, the coating property of the water-based resin is improved and the slippery layer is easily produced. It becomes possible. Here, the aqueous resin refers to a composition containing a solid content of a polymer or the like dissolved or dispersed in an aqueous solvent such as water.
 前記エポキシ化合物の例を挙げると、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサングリコール、ネオペンチルグリコール等のグリコール類1モルと、エピクロルヒドリン2モルとのエーテル化によって得られるジエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類1モルと、エピクロルヒドリン2モル以上とのエーテル化によって得られるポリエポキシ化合物;フタル酸、テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸1モルと、エピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物;などが挙げられる。 Examples of the epoxy compound include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol, neopentyl glycol and the like glycols 1 Diepoxy compound obtained by etherification of 1 mol with 2 mol of epichlorohydrin; obtained by etherification of 1 mol of polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol and 2 mol or more of epichlorohydrin Polyepoxy compounds: die obtained by esterification of 1 mol of dicarboxylic acid such as phthalic acid, terephthalic acid, oxalic acid, adipic acid and 2 mol of epichlorohydrin Carboxymethyl compound; and the like.
 より具体的にエポキシ化合物の例を挙げると、1,4-ビス(2’,3’-エポキシプロピルオキシ)ブタン、1,3,5-トリグリシジルイソシアヌレート、1,3-ジクリシジル-5-(γ-アセトキシ-β-オキシプロピル)イソシヌレート、ソルビトールポリグリシジルエーテル類、ポリグリセロールポリグリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、ジグリセロ-ルポリグルシジルエーテル、1,3,5-トリグリシジル(2-ヒドロキシエチル)イソシアヌレート、グリセロールポリグリセロールエーテル類およびトリメチロ-ルプロパンポリグリシジルエーテル類等が挙げられる。
 また、エポキシ化合物の例を市販品で挙げると、ナガセケムテックス社製の「デナコール(デナコールEX-521,EX-614Bなど)」シリーズ等を挙げることができる。
 エポキシ化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
More specific examples of the epoxy compound include 1,4-bis (2 ′, 3′-epoxypropyloxy) butane, 1,3,5-triglycidyl isocyanurate, 1,3-diglycidyl-5- ( (γ-acetoxy-β-oxypropyl) isosinurate, sorbitol polyglycidyl ethers, polyglycerol polyglycidyl ethers, pentaerythritol polyglycidyl ethers, diglycerol polyglycidyl ether, 1,3,5-triglycidyl (2-hydroxy) Ethyl) isocyanurate, glycerol polyglycerol ethers and trimethylolpropane polyglycidyl ethers.
Examples of epoxy compounds are commercially available products such as “Denacol (Denacol EX-521, EX-614B, etc.)” series manufactured by Nagase ChemteX Corporation.
An epoxy compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 エポキシ化合物の量は、ポリウレタンを100重量部に対し、通常2重量部以上、好ましくは5重量部以上、より好ましくは8重量部以上であり、通常40重量部以下、好ましくは35重量部以下、より好ましくは30重量部以下である。エポキシ化合物の量を前記範囲の下限値以上にすることにより、エポキシ化合物とポリウレタンとの反応が十分に進行するので、易滑層の機械的強度を適切に向上させることができる。また、上限値以下にすることにより、未反応のエポキシ化合物の残留を少なくでき、易滑層の機械的強度を適切に向上できる。 The amount of the epoxy compound is usually 2 parts by weight or more, preferably 5 parts by weight or more, more preferably 8 parts by weight or more, and usually 40 parts by weight or less, preferably 35 parts by weight or less, with respect to 100 parts by weight of polyurethane. More preferably, it is 30 parts by weight or less. By setting the amount of the epoxy compound to be equal to or more than the lower limit of the above range, the reaction between the epoxy compound and the polyurethane sufficiently proceeds, so that the mechanical strength of the slippery layer can be appropriately improved. Moreover, by making it below an upper limit, the residue of an unreacted epoxy compound can be decreased and the mechanical strength of an easy-slip layer can be improved appropriately.
 また、ポリウレタンの極性基と当量になるエポキシ化合物の量に対し、エポキシ化合物の量は、重量基準で、好ましくは0.2倍以上、より好ましくは0.4倍以上、特に好ましくは0.6倍以上であり、好ましくは5.0倍以下、より好ましくは4.0倍以下、特に好ましくは3.0倍以下である。ここで、ポリウレタンの極性基と当量になるエポキシ化合物の量とは、ポリウレタンの極性基の全量と過不足無く反応できるエポキシ化合物の理論量をいう。ポリウレタンの極性基は、エポキシ化合物のエポキシ基と反応しうる。よって、エポキシ化合物の量を前記範囲に収めることにより、極性基とエポキシ化合物との反応を適切な程度に進行させて、易滑層の機械的強度を効果的に向上させることができる。 The amount of the epoxy compound is preferably 0.2 times or more, more preferably 0.4 times or more, particularly preferably 0.6 times, based on the weight, with respect to the amount of the epoxy compound equivalent to the polar group of polyurethane. It is more than double, preferably 5.0 times or less, more preferably 4.0 times or less, and particularly preferably 3.0 times or less. Here, the amount of the epoxy compound equivalent to the polar group of polyurethane means the theoretical amount of the epoxy compound that can react with the total amount of polar group of polyurethane without excess or deficiency. The polar group of the polyurethane can react with the epoxy group of the epoxy compound. Therefore, by keeping the amount of the epoxy compound within the above range, the reaction between the polar group and the epoxy compound can be advanced to an appropriate level, and the mechanical strength of the slippery layer can be effectively improved.
 カルボジイミド化合物としては、1分子内にカルボジイミド基を2以上有する化合物を用いうる。このカルボジイミド化合物は、原料として有機モノイソシアネート、有機ジイソシアネート、有機トリイソシアネート等の有機イソシアネートを用いて製造される。これらの有機イソシアネートの例としては、芳香族イソシアネート、脂肪族イソシアネート、及び、それらの混合物が挙げられる。したがって、有機イソシアネートが有する有機基としては、芳香族及び脂肪族のいずれを用いてもよく、また、芳香族の有機基及び脂肪族の有機基を組み合わせて用いてもよい。中でも、反応性の観点から、脂肪族の有機基を有する有機イソシアネートが特に好ましい。通常、カルボジイミド化合物は、有機ジイソシアネートの縮合反応により合成される。 As the carbodiimide compound, a compound having two or more carbodiimide groups in one molecule can be used. This carbodiimide compound is produced using an organic isocyanate such as organic monoisocyanate, organic diisocyanate, or organic triisocyanate as a raw material. Examples of these organic isocyanates include aromatic isocyanates, aliphatic isocyanates, and mixtures thereof. Therefore, as the organic group possessed by the organic isocyanate, either aromatic or aliphatic may be used, or an aromatic organic group and an aliphatic organic group may be used in combination. Among these, from the viewpoint of reactivity, an organic isocyanate having an aliphatic organic group is particularly preferable. Usually, a carbodiimide compound is synthesized by a condensation reaction of an organic diisocyanate.
 有機イソシアネートの具体例を挙げると、4,4’-ジフェニルメタンジイソシアネート、4,4-ジフェニルジメチルメタンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、キシリレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,3-フェニレンジイソシアネート等の有機ジイソシアネート;イソホロンイソシアネート、フェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等の有機モノイソシアネートが挙げられる。 Specific examples of the organic isocyanate include 4,4′-diphenylmethane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexa Organic diisocyanates such as methylene diisocyanate, cyclohexane diisocyanate, xylylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,3-phenylene diisocyanate; isophorone isocyanate, phenyl isocyanate, cyclohexyl isocyanate, Examples thereof include organic monoisocyanates such as butyl isocyanate and naphthyl isocyanate.
 カルボジイミド化合物の例を市販品で挙げると、日清紡ケミカル社製の「カルボジライト(カルボジライトV-02、V-02-L2、SV-02、V-04、E-02など)」シリーズを市販品として入手可能である。
 カルボジイミド化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Examples of carbodiimide compounds are commercially available products such as “Carbodilite (Carbodilite V-02, V-02-L2, SV-02, V-04, E-02, etc.)” manufactured by Nisshinbo Chemical Co., Ltd. Is possible.
A carbodiimide compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 カルボジイミド化合物の量は、ポリウレタン100重量部に対して、通常1重量部以上、好ましくは3重量部以上であり、通常40重量部以下、好ましくは30重量部以下である。カルボジイミド化合物の量を前記範囲の下限値以上にすることにより、カルボジイミド化合物とポリウレタンとの反応が十分に進行するので、易滑層の機械的強度を適切に向上させることができる。また、上限値以下にすることにより、未反応のカルボジイミド化合物の残留を少なくでき、易滑層の機械的強度を適切に向上できる。 The amount of the carbodiimide compound is usually 1 part by weight or more, preferably 3 parts by weight or more, and usually 40 parts by weight or less, preferably 30 parts by weight or less based on 100 parts by weight of the polyurethane. By setting the amount of the carbodiimide compound to be equal to or more than the lower limit of the above range, the reaction between the carbodiimide compound and the polyurethane sufficiently proceeds, so that the mechanical strength of the slippery layer can be appropriately improved. Moreover, by making it below an upper limit, the residue of an unreacted carbodiimide compound can be decreased and the mechanical strength of a slippery layer can be improved appropriately.
 オキサゾリン化合物としては、下記式(I)で示されるオキサゾリン基を有する重合体を用いうる。下記式(I)において、R、R、R及びRは、同一若しくは異なって、水素原子、ハロゲン原子、アルキル基、アラルキル基、フェニル基及び置換フェニル基からなる群より選ばれるいずれかを表す。 As the oxazoline compound, a polymer having an oxazoline group represented by the following formula (I) can be used. In the following formula (I), R 4 , R 5 , R 6 and R 7 are the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, a phenyl group and a substituted phenyl group. Represents
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 このオキサゾリン化合物は、例えば、付加重合性オキサゾリンを含み、必要に応じて任意の不飽和単量体を含む単量体成分を、公知の重合法により水性媒体中で溶液重合することにより製造しうる。付加重合性オキサゾリンとしては、例えば、下記式(II)で示される化合物が挙げられる。下記式(II)において、R、R、R及びRは、式(I)における定義と同様である。また、Rは、付加重合性の不飽和結合を有する、非環状の有機基を表す。 This oxazoline compound can be produced, for example, by subjecting a monomer component containing an addition-polymerizable oxazoline and optionally containing an unsaturated monomer to solution polymerization in an aqueous medium by a known polymerization method. . Examples of the addition-polymerizable oxazoline include compounds represented by the following formula (II). In the following formula (II), R 4 , R 5 , R 6 and R 7 are the same as defined in formula (I). R 8 represents an acyclic organic group having an addition polymerizable unsaturated bond.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 付加重合性オキサゾリンの具体例を挙げると、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等が挙げられる。また、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも、2-イソプロペニル-2-オキサゾリンが、工業的にも入手し易く好適である。 Specific examples of the addition polymerizable oxazoline are 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- Examples thereof include oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
 前記付加重合性オキサゾリンの量は、オキサゾリン化合物の製造に用いる全単量体成分100重量部に対して、好ましくは3重量部以上であり、また、好ましくは100重量部以下である。これにより、オキサゾリン化合物を含むウレタン組成物を硬化させた場合に硬化を十分に進めることができ、耐久性及び耐水性に優れた易滑層を得ることができる。 The amount of the addition-polymerizable oxazoline is preferably 3 parts by weight or more and preferably 100 parts by weight or less with respect to 100 parts by weight of all monomer components used for producing the oxazoline compound. Thereby, when the urethane composition containing an oxazoline compound is cured, curing can be sufficiently advanced, and an easy-sliding layer excellent in durability and water resistance can be obtained.
 オキサゾリン化合物の製造に用いうる任意の不飽和単量体としては、付加重合性オキサゾリンと共重合可能であり、かつ、オキサゾリン基と反応しない任意の単量体を用いうる。このような任意の不飽和単量体は、上述した単量体から任意に選択して用いうる。 As an arbitrary unsaturated monomer that can be used in the production of an oxazoline compound, any monomer that can be copolymerized with an addition-polymerizable oxazoline and does not react with an oxazoline group can be used. Such an arbitrary unsaturated monomer can be arbitrarily selected from the monomers described above.
 オキサゾリン化合物の例を市販品で挙げると、水溶性タイプでは、日本触媒社製のエポクロスWS-500及びWS-700が挙げられる。また、例えばエマルションタイプでは、日本触媒社製のエポクロスK-2010、K-2020及びK-2030が挙げられる。これらの中でも、ポリウレタンとの反応性の高い水溶性タイプが好ましい。
 また、オキサゾリン化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
As examples of oxazoline compounds, commercially available products include Epocross WS-500 and WS-700 manufactured by Nippon Shokubai Co., Ltd. Further, for example, for the emulsion type, Epocros K-2010, K-2020 and K-2030 manufactured by Nippon Shokubai Co., Ltd. can be mentioned. Among these, a water-soluble type having high reactivity with polyurethane is preferable.
Moreover, an oxazoline compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 オキサゾリン化合物の量としては、ポリウレタンが有する極性基とオキサゾリン化合物が有するオキサゾリン基とのモル比(極性基のモル数/オキサゾリン基のモル数)が、所定の範囲に収まるように設定しうる。具体的には、前記のモル比が、100/20~100/100となるように設定しうる。前記のモル比を前記範囲の上限値以下にすることにより、未反応の極性基が残ることを防止できる。また、下限値以上にすることにより、余剰のオキサゾリン基の発生を防止して、親水基が過剰となることを防止できる。 The amount of the oxazoline compound can be set so that the molar ratio of the polar group of the polyurethane and the oxazoline group of the oxazoline compound (number of moles of polar group / number of moles of oxazoline group) falls within a predetermined range. Specifically, the molar ratio can be set to 100/20 to 100/100. By making the said molar ratio below the upper limit of the said range, it can prevent that an unreacted polar group remains. Moreover, by making it more than a lower limit, generation | occurrence | production of an excess oxazoline group can be prevented and it can prevent that a hydrophilic group becomes excess.
 さらに、ポリウレタンがカルボキシル基を有し、且つ、そのカルボキシル基が中和されている場合には、ポリウレタンとオキサゾリン化合物との反応において、オキサゾリン基とカルボン酸塩とが反応しにくい。そこで、中和に用いる不揮発性塩基の種類及び不揮発性の程度を調整することで、その反応性をコントロールすることができる。 Furthermore, when the polyurethane has a carboxyl group and the carboxyl group is neutralized, the reaction between the polyurethane and the oxazoline compound makes it difficult for the oxazoline group and the carboxylate to react. Therefore, the reactivity can be controlled by adjusting the kind of nonvolatile base used for neutralization and the degree of nonvolatileity.
 イソシアネート化合物としては、1分子中に2個以上のイソシアネート基を含有する化合物を用いうる。これらのイソシアネート化合物は、脂肪族化合物でもよく、脂環式化合物でもよく、芳香族化合物でもよい。イソシアネート化合物の具体例としては、ポリウレタンの原料として説明した(ii)成分と同様の例が挙げられる。 As the isocyanate compound, a compound containing two or more isocyanate groups in one molecule can be used. These isocyanate compounds may be aliphatic compounds, alicyclic compounds, or aromatic compounds. Specific examples of the isocyanate compound include the same examples as the component (ii) described as the raw material for polyurethane.
 前記の架橋剤の中でも、エポキシ化合物及びカルボジイミド化合物が好ましく、エポキシ化合物が特に好ましい。エポキシ化合物を架橋剤として用いると、易滑層の接着性を特に大きく向上させることができる。また、カルボジイミド化合物を架橋剤として用いると、ウレタン組成物のポットライフを改善することができる。 Among the above crosslinking agents, epoxy compounds and carbodiimide compounds are preferable, and epoxy compounds are particularly preferable. When an epoxy compound is used as a crosslinking agent, the adhesiveness of the easy-sliding layer can be particularly greatly improved. Moreover, the pot life of a urethane composition can be improved when a carbodiimide compound is used as a crosslinking agent.
 [2.3.不揮発性塩基]
 不揮発性塩基としては、ウレタン組成物を基材フィルムに塗布した後に乾燥させる際の処理条件下において、実質的に不揮発性である塩基が挙げられる。ここで実質的に不揮発性であるとは、通常、不揮発性塩基の減少分が80%以下であることをいう。また、ウレタン組成物を基材フィルムに塗布した後に乾燥させる際の処理条件としては、例えば、80℃で1時間放置することが挙げられる。このような不揮発性塩基は、ポリウレタンの酸構造を中和する中和剤として機能しうる。
[2.3. Nonvolatile base]
Examples of the non-volatile base include a base that is substantially non-volatile under the treatment conditions when the urethane composition is applied to the base film and then dried. Here, being substantially non-volatile means that a decrease in non-volatile base is usually 80% or less. Moreover, as processing conditions at the time of making it dry after apply | coating a urethane composition to a base film, leaving to stand at 80 degreeC for 1 hour is mentioned, for example. Such a non-volatile base can function as a neutralizing agent that neutralizes the acid structure of the polyurethane.
 不揮発性塩基としては、無機塩基を用いてもよく、有機塩基を用いてよい。中でも、沸点100℃以上の有機塩基が好ましく、沸点100℃以上のアミン化合物がより好ましく、沸点200℃以上のアミン化合物が特に好ましい。また、有機塩基は低分子化合物でもよく、重合体でもよい。 As the nonvolatile base, an inorganic base or an organic base may be used. Among them, an organic base having a boiling point of 100 ° C. or higher is preferable, an amine compound having a boiling point of 100 ° C. or higher is more preferable, and an amine compound having a boiling point of 200 ° C. or higher is particularly preferable. The organic base may be a low molecular compound or a polymer.
 不揮発性塩基の例を挙げると、無機塩基としては、例えば、水酸化ナトリウム及び水酸化カリウムが挙げられる。また、有機塩基としては、例えば、2-アミノ-2-メチル-1-プロパノール(AMP)、トリエタノールアミン、トリイソプロパノールアミン(TIPA)、モノエタノールアミン、ジエタノールアミン、トリ[(2-ヒドロキシ)-1-プロピル]アミン、2-アミノ-2-メチル-1,3-プロパンジオール(AMPD)、2-アミノ-2-ヒドロキシメチル-1,3-プロパン水酸化カリウム、亜鉛アンモニウム錯体、銅アンモニウム錯体、銀アンモニウム錯体、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)ウレア、3-ウレイドプロピルトリメトシキシシラン、3-アミノプロピル-トリス(2-メトキシ-エトキシ-エトキシ)シラン、N-メチル-3-アミノプロピルトリメトキシカルボン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタール酸ジヒドラジド、テレフタル酸ジヒドラジド、キノリン、ピコリン、ピリジン、モルホリン、ピペラジン、シクロヘキシルアミン、ヘキサメチレンジアミン、N,N-ジメチルホルムアミド、エチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、イロプロパノールアミン、N,N-ジエチルメタノールアミン、N,N-ジメチルエタノールアミン、アミノエチルエタノールアミン、N-メチル-N-N-ジエタノールアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-ジシクロヘキシルメタンジアミン、1,2-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、アミノエチルエタノールアミン、アミノプロピルエタノールアミン、アミノヘキシルエタノールアミン、アミノエチルプロパノールアミン、アミノプロピルプロパノールアミン、アミノヘキシルプロパノールアミン、ジエチレントリアミン、ジプロピレントリアイミダゾール、2-メチルイミダゾール、1-(2-アミノエチル)-2-メチルイミダゾール、1-(2-アミノエチル)-2-エチルイミダゾール、2-アミノイミダゾールサルフェート、2-(2-アミノエチル)-ベンゾイミダゾール、ピラゾール、5-アミノピラゾール、1-メチル-5-アミノピラゾール、1-イソプロピル-5-アミノピラゾール、1-ベンジル-5-アミノピラゾール、1,3-ジメチル-5-アミノピラゾール、1-イソプロピル-3-メチル-5-アミノピラゾール、1-ベンジル-3-メチル-5-アミノピラゾール、1-メチル-4-クロロ-5-アミノピラゾール、1-メチル-4-アシノ-5-アミノピラゾール、1-イソプロピル-4-クロロ-5-アミノピラゾール、3-メチル-4-クロロ-5-アミノピラゾール、1-ベンジル-4-クロロ-5-アミノピラゾール、アミノ樹脂(例えば、1,3-ジメチル-4-クロロ-メラミン樹脂、ユリア樹脂、グアナミン樹脂等)などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As examples of the non-volatile base, examples of the inorganic base include sodium hydroxide and potassium hydroxide. Examples of the organic base include 2-amino-2-methyl-1-propanol (AMP), triethanolamine, triisopropanolamine (TIPA), monoethanolamine, diethanolamine, and tri [(2-hydroxy) -1 -Propyl] amine, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-hydroxymethyl-1,3-propane potassium hydroxide, zinc ammonium complex, copper ammonium complex, silver Ammonium complex, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxydimethoxysilane N-phenyl-γ-aminopropyltri Toxisilane, N, N-bis (trimethylsilyl) urea, 3-ureidopropyltrimethoxysilane, 3-aminopropyl-tris (2-methoxy-ethoxy-ethoxy) silane, N-methyl-3-aminopropyltrimethoxycarboxylic acid Dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, quinoline, picoline, pyridine, morpholine, pylene Diamine, N, N-dimethylformamide, ethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenepentamine, monoethanolamine , Diethanolamine, ilopropanolamine, N, N-diethylmethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine, N-methyl-NN-diethanolamine, 1,2-propanediamine, 1,6- Hexamethylenediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-dicyclohexylmethanediamine, 1,2-cyclohexanediamine, 1, 4-cyclohexanediamine, aminoethylethanolamine, aminopropylethanolamine, aminohexylethanolamine, aminoethylpropanolamine, aminopropylpropanolamine, aminohexylpropano Ruamine, diethylenetriamine, dipropylenetriimidazole, 2-methylimidazole, 1- (2-aminoethyl) -2-methylimidazole, 1- (2-aminoethyl) -2-ethylimidazole, 2-aminoimidazole sulfate, 2- (2-aminoethyl) -benzimidazole, pyrazole, 5-aminopyrazole, 1-methyl-5-aminopyrazole, 1-isopropyl-5-aminopyrazole, 1-benzyl-5-aminopyrazole, 1,3-dimethyl- 5-aminopyrazole, 1-isopropyl-3-methyl-5-aminopyrazole, 1-benzyl-3-methyl-5-aminopyrazole, 1-methyl-4-chloro-5-aminopyrazole, 1-methyl-4- Asino-5-aminopyrazole, 1-isopropyl- -Chloro-5-aminopyrazole, 3-methyl-4-chloro-5-aminopyrazole, 1-benzyl-4-chloro-5-aminopyrazole, amino resin (eg 1,3-dimethyl-4-chloro-melamine) Resin, urea resin, guanamine resin, etc.). Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 不揮発性塩基の量は、ポリウレタン100重量部に対して、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常30重量部以下、好ましくは20重量部以下、より好ましくは10重量部以下である。不揮発性塩基の量を前記範囲の下限値以上にすることにより、十分な接着力を得ることができる。また、上限値以下にすることにより、ポリビニルアルコール製の偏光子の色抜けの防止ができる。 The amount of the non-volatile base is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more, and usually 30 parts by weight or less, preferably 20 parts by weight with respect to 100 parts by weight of polyurethane. Part or less, more preferably 10 parts by weight or less. By setting the amount of the non-volatile base to be equal to or higher than the lower limit of the above range, sufficient adhesive strength can be obtained. Moreover, the color loss of the polarizer made from polyvinyl alcohol can be prevented by making it below an upper limit.
 [2.4.微粒子]
 ウレタン組成物は、微粒子を含むことが好ましい。ウレタン組成物が微粒子を含むことにより、そのウレタン組成物の硬化物によって形成される易滑層の表面粗さを大きくすることができる。これにより、易結着層の表面の滑り性を向上させることができるので、フィルムのブロッキングの防止、及び、フィルムを巻回する際のシワの発生の抑制が可能となる。
[2.4. Fine particles]
The urethane composition preferably includes fine particles. When the urethane composition contains fine particles, the surface roughness of the easy-sliding layer formed by the cured product of the urethane composition can be increased. Thereby, since the slipperiness of the surface of an easily binding layer can be improved, prevention of blocking of a film and suppression of generation | occurrence | production of a wrinkle at the time of winding a film are attained.
 微粒子としては、無機粒子、有機粒子のいずれを用いてもよい。ただし、水分散性の粒子を用いることが好ましい。無機粒子の材料を挙げると、例えば、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物;炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等が挙げられる。また、有機粒子の材料を挙げると、例えば、シリコーン樹脂、フッ素樹脂、アクリル樹脂等が挙げられる。これらの中でも、シリカが好ましい。シリカの粒子は、シワの発生を抑制する能力及び透明性に優れ、ヘイズを生じ難く、着色が無いため、本発明のフィルムの光学特性に与える影響が小さい。また、シリカはウレタン組成物での分散性および分散安定性が良好である。シリカの粒子の中でも、非晶質コロイダルシリカ粒子が特に好ましい。二種類の微粒子を使用することにより、ヘイズの上昇を最小限に抑え、より効率的にシワの発生を抑制することができる。 As the fine particles, either inorganic particles or organic particles may be used. However, it is preferable to use water-dispersible particles. Examples of inorganic particles include inorganic oxides such as silica, titania, alumina, zirconia; calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate Etc. Moreover, when the material of an organic particle is mentioned, a silicone resin, a fluororesin, an acrylic resin etc. will be mentioned, for example. Among these, silica is preferable. Silica particles are excellent in ability to suppress the generation of wrinkles and transparency, hardly cause haze, and have no coloration, so that the influence on the optical characteristics of the film of the present invention is small. Silica has good dispersibility and dispersion stability in the urethane composition. Among the silica particles, amorphous colloidal silica particles are particularly preferable. By using two kinds of fine particles, the increase in haze can be minimized and the generation of wrinkles can be more efficiently suppressed.
 微粒子の平均粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上であり、通常500nm以下、好ましくは300nm以下、より好ましくは200nm以下である。粒子の平均粒子径を前記範囲の下限値以上にすることにより、易滑層の滑り性を効果的に高めることができる。また、前記範囲の上限値以下にすることにより、易滑層のヘイズを低く抑えることができる。 The average particle diameter of the fine particles is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less. By making the average particle diameter of the particles equal to or more than the lower limit of the above range, the slipperiness of the slippery layer can be effectively enhanced. Moreover, the haze of a slippery layer can be restrained low by making it below the upper limit of the said range.
 微粒子の量は、ポリウレタン100重量部に対し、通常1重量部以上、好ましくは3重量部以上、より好ましくは5重量部以上であり、通常50重量部以下、好ましくは40重量部以下、より好ましくは30重量部以下である。粒子の量を前記の範囲の下限値以上にすることにより、フィルムを巻回した場合にシワの発生を抑制できる。また、上限値以下にすることにより、フィルムの白濁の無い外観を維持できる。 The amount of the fine particles is usually 1 part by weight or more, preferably 3 parts by weight or more, more preferably 5 parts by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably 100 parts by weight of polyurethane. Is 30 parts by weight or less. By setting the amount of particles to be equal to or higher than the lower limit of the above range, the generation of wrinkles can be suppressed when the film is wound. Moreover, the external appearance without the cloudiness of a film can be maintained by setting it as below an upper limit.
 [2.5.濡れ剤]
 ウレタン組成物は、濡れ剤を含んでいてもよい。濡れ剤を用いることにより、ウレタン組成物を基材フィルムに塗布する際の塗布性を良好にでき、好ましい。
[2.5. Wetting agent]
The urethane composition may contain a wetting agent. By using a wetting agent, the applicability when applying the urethane composition to the base film can be improved, which is preferable.
 濡れ剤としては、例えば、アセチレン系界面活性剤や、フッ素系界面活性剤等を用いることができる。アセチレン系界面活性剤としては、例えば、エアープロダクツアンドケミカルズ社製サーフィノールシリーズ、ダイノールシリーズ等を用いることができる。また、フッ素系界面活性剤としては、例えば、DIC社製メガファックシリーズ、ネオス社製フタージェントシリーズ、AGC社製サーフロンシリーズ等を用いることができる。濡れ剤としては、重ね塗り性の観点から、アセチレン系界面活性剤を用いることが好ましい。
 また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
As the wetting agent, for example, an acetylene surfactant, a fluorine surfactant, or the like can be used. As the acetylene-based surfactant, for example, Surfynol series, Dynol series manufactured by Air Products and Chemicals, Inc. can be used. Moreover, as a fluorine-type surfactant, DIC Corporation mega-fac series, Neos company's tangent series, AGC company's Surflon series, etc. can be used, for example. As the wetting agent, it is preferable to use an acetylene surfactant from the viewpoint of overcoatability.
Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 濡れ剤の配合量は、ウレタン組成物(塗布液)の固形分量に対して、通常0.01重量%以上、好ましくは0.05重量%以上、より好ましくは0.1重量%以上であり、通常5重量%以下、好ましくは4重量部以下、より好ましくは3重量%以下である。濡れ剤の量を前記範囲の下限値以上にすることにより十分な塗布性を得ることができる。また、上限値以下にすることにより、濡れ剤のブリードアウトを抑制でき、更には重ね塗り性を良好にできる。 The blending amount of the wetting agent is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more with respect to the solid content of the urethane composition (coating liquid). Usually, it is 5% by weight or less, preferably 4 parts by weight or less, more preferably 3% by weight or less. Sufficient applicability can be obtained by setting the amount of the wetting agent to be equal to or greater than the lower limit of the above range. Moreover, by making it into the upper limit value or less, bleeding out of the wetting agent can be suppressed, and further, the overcoatability can be improved.
 [2.6.溶媒]
 ウレタン組成物は、通常、溶媒を含む。溶媒としては、水又は水溶性の溶媒を用いる。水溶性の溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、テトラヒドロフラン、N-メチルピロリドン、ジメチルスルホキシド、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルなどが挙げられる。中でも、溶媒としては、水を用いることが好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[2.6. solvent]
The urethane composition usually contains a solvent. As the solvent, water or a water-soluble solvent is used. Examples of the water-soluble solvent include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether and the like. Among these, water is preferably used as the solvent. Moreover, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 溶媒の量は、ウレタン組成物の粘度を塗布に適した範囲にできるように設定しうる。通常は、溶媒の量は、ウレタン組成物の固形分濃度を所望の範囲に収められるように設定する。前記の所望の範囲は、好ましくは0.5重量%以上、より好ましくは1重量%以上であり、好ましくは15重量%以下、より好ましくは10重量%以下である。これにより、ウレタン組成物の取り扱い性及び塗布性を良好にできる。 The amount of the solvent can be set so that the viscosity of the urethane composition can be in a range suitable for coating. Usually, the amount of the solvent is set so that the solid content concentration of the urethane composition falls within a desired range. The desired range is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less. Thereby, the handleability and applicability | paintability of a urethane composition can be made favorable.
 [2.7.任意の成分]
 ウレタン組成物は、前記の架橋剤に組み合わせて、硬化促進剤を含んでいてもよい。硬化促進剤としては、易滑層の形成に用いられる公知の硬化促進剤を用いうる。例えば、架橋剤としてエポキシ化合物を用いる場合、硬化促進剤としては、第3級アミン系化合物(4-位に3級アミンを有する2,2,6,6-テトラメチルピペリジル基を有する化合物を除く)、三弗化ホウ素錯化合物などが好適である。また、硬化促進剤は、1種類を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 硬化促進剤の量は、ポリウレタン100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上、より好ましくは0.03重量部以上であり、通常30重量部以下、好ましくは10重量部以下、より好ましくは5重量部以下である。
[2.7. Arbitrary ingredients]
The urethane composition may contain a curing accelerator in combination with the crosslinking agent. As a hardening accelerator, the well-known hardening accelerator used for formation of a slippery layer can be used. For example, when an epoxy compound is used as a crosslinking agent, the curing accelerator may be a tertiary amine compound (excluding compounds having a 2,2,6,6-tetramethylpiperidyl group having a tertiary amine at the 4-position). ), Boron trifluoride complex compounds and the like are suitable. Moreover, a hardening accelerator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
The amount of the curing accelerator is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, more preferably 0.03 part by weight or more, usually 30 parts by weight or less, relative to 100 parts by weight of polyurethane. The amount is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
 ウレタン組成物は、前記の架橋剤に組み合わせて、硬化助剤を含んでいてもよい。硬化助剤としては、易滑層の形成に用いられる公知の硬化助剤を用いうる。硬化助剤の具体例を挙げると、キノンジオキシム、ベンゾキノンジオキシム、p-ニトロソフェノール等のオキシム・ニトロソ系硬化助剤;N,N-m-フェニレンビスマレイミド等のマレイミド系硬化助剤;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル系硬化助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート系硬化助剤;ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン等のビニル系硬化助剤;等が挙げられる。また、硬化助剤は、1種類を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 硬化助剤の量は、架橋剤100重量部に対して、通常1重量部以上、好ましくは10重量部以上であり、通常100重量部以下、好ましくは50重量部以下である。
The urethane composition may contain a curing aid in combination with the crosslinking agent. As the curing aid, a known curing aid used for forming the easy-sliding layer can be used. Specific examples of curing aids include oxime / nitroso curing aids such as quinonedioxime, benzoquinonedioxime and p-nitrosophenol; maleimide curing aids such as N, Nm-phenylenebismaleimide; diallyl Allyl curing aids such as phthalate, triallyl cyanurate, and triallyl isocyanurate; Methacrylate curing aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; Vinyl-types such as vinyltoluene, ethylvinylbenzene, and divinylbenzene Curing aids; and the like. Moreover, a hardening adjuvant may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
The amount of the curing aid is usually 1 part by weight or more, preferably 10 parts by weight or more, and usually 100 parts by weight or less, preferably 50 parts by weight or less with respect to 100 parts by weight of the crosslinking agent.
 ウレタン組成物は、本発明の効果を著しく損なわない限り、例えば、耐熱安定剤、耐候安定剤、レベリング剤、界面活性剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックスなどを含んでいてもよい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Unless the urethane composition significantly impairs the effects of the present invention, for example, a heat stabilizer, a weather stabilizer, a leveling agent, a surfactant, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and an antifogging agent. , Lubricants, dyes, pigments, natural oils, synthetic oils, waxes and the like. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 [2.8.ウレタン組成物の性状]
 ウレタン組成物は、通常、流体状の組成物となっている。このウレタン組成物の粘度は、15mPa・s以下であることが好ましく、10mPa・s以下であるのが特に好ましい。ウレタン組成物の粘度が前記範囲内にあると、基材フィルムの表面にウレタン組成物を均一に塗布することができる。ウレタン組成物の粘度の下限に特段の制限は無いが、好ましくは0.25mPa・s以上である。ここで、前記の粘度は、音叉型振動式粘度計により25℃の条件下で測定した値である。
 ウレタン組成物の粘度は、例えば、ウレタン組成物における溶媒の割合及び粒子の粒径などによって調整できる。
[2.8. Properties of urethane composition]
The urethane composition is usually a fluid composition. The viscosity of the urethane composition is preferably 15 mPa · s or less, and particularly preferably 10 mPa · s or less. When the viscosity of the urethane composition is within the above range, the urethane composition can be uniformly applied to the surface of the base film. Although there is no special restriction | limiting in the minimum of the viscosity of a urethane composition, Preferably it is 0.25 mPa * s or more. Here, the viscosity is a value measured under a condition of 25 ° C. with a tuning fork type vibration viscometer.
The viscosity of a urethane composition can be adjusted with the ratio of the solvent in a urethane composition, the particle size of particle | grains, etc., for example.
 [2.9.易滑層の製造方法]
 易滑層は、前記のウレタン組成物の硬化物からなる層である。この易滑層は、通常、基材フィルム上に、接着剤の層等の他の層を介することなく、直接に設けられる。易滑層は、基材フィルムの片面にのみ設けてもよいし、両面に設けてもよい。ただし、易滑層を有するフィルムをロール状に巻回しやすいとの観点から、基材フィルムの片面にのみ易滑層を設けることが好ましい。易滑層は、基材フィルム上にウレタン組成物の膜を形成する工程と、このウレタン組成物の膜を硬化させる工程とを含む製造方法により、製造できる。
[2.9. Manufacturing method of easy-slip layer]
An easy slip layer is a layer which consists of hardened | cured material of the said urethane composition. This slippery layer is usually provided directly on the base film without any other layer such as an adhesive layer. The slippery layer may be provided only on one side of the base film, or may be provided on both sides. However, it is preferable to provide an easy-sliding layer only on one side of the base film from the viewpoint that a film having an easy-sliding layer can be easily wound into a roll. The easy slip layer can be produced by a production method including a step of forming a film of the urethane composition on the base film and a step of curing the film of the urethane composition.
 基材フィルム上にウレタン組成物の膜を形成する場合には、通常、塗布法を用いる。塗布法としては、公知の塗布法を採用しうる。具体的な塗布法としては、例えば、ワイヤーバーコート法、ディップ法、スプレー法、スピンコート法、ロールコート法、グラビアコート法、エアーナイフコート法、カーテンコート法、スライドコート法、エクストルージョンコート法などが挙げられる。 When forming a film of a urethane composition on a base film, a coating method is usually used. As a coating method, a known coating method can be adopted. Specific coating methods include, for example, a wire bar coating method, a dip method, a spray method, a spin coating method, a roll coating method, a gravure coating method, an air knife coating method, a curtain coating method, a slide coating method, and an extrusion coating method. Etc.
 ウレタン組成物の膜を基材フィルム上に形成した後で、当該膜を形成するウレタン組成物を硬化させることにより、ウレタン組成物の硬化物からなる層として易滑層を得る。通常、ウレタン組成物は、溶媒を含むため、硬化させる際には溶媒を乾燥させて除去する。乾燥方法は任意であり、例えば、減圧乾燥、加熱乾燥など任意の方法で行ってもよい。中でも、ウレタン組成物中において架橋反応等の反応を速やかに進行させる観点から、加熱乾燥によってウレタン組成物を硬化させることが好ましい。加熱乾燥を行なう場合、通常は、ポリウレタンの架橋反応が進行する。 After forming the urethane composition film on the base film, the urethane composition forming the film is cured to obtain an easy-sliding layer as a layer made of a cured product of the urethane composition. Usually, since a urethane composition contains a solvent, when making it harden | cure, a solvent is dried and removed. The drying method is arbitrary, and for example, the drying may be performed by any method such as reduced pressure drying or heat drying. Especially, it is preferable to harden a urethane composition by heat drying from a viewpoint of making reaction, such as a crosslinking reaction, advance rapidly in a urethane composition. When performing heat drying, the crosslinking reaction of polyurethane usually proceeds.
 加熱により樹脂を硬化させる場合、加熱温度は、溶媒を乾燥させてウレタン組成物中のポリマー成分を硬化させることができる範囲で適切に設定する。ただし、基材フィルムとして延伸フィルムを用い、且つ、当該基材フィルムに発現したレターデーションを変化させたくない場合には、加熱温度は、基材フィルムにおいて配向緩和が生じない温度に設定することが好ましい。具体的には、前記の加熱温度は、基材フィルムを形成する材料のガラス転移温度をTgとしたときに、好ましくは(Tg-30℃)以上、より好ましくは(Tg-10℃)以上であり、好ましくは(Tg+60℃)以下、より好ましくは(Tg+50℃)以下である。 When the resin is cured by heating, the heating temperature is appropriately set within a range in which the solvent can be dried to cure the polymer component in the urethane composition. However, when a stretched film is used as the base film and it is not desired to change the retardation developed in the base film, the heating temperature may be set to a temperature at which no orientation relaxation occurs in the base film. preferable. Specifically, the heating temperature is preferably (Tg−30 ° C.) or higher, more preferably (Tg−10 ° C.) or higher, where Tg is the glass transition temperature of the material forming the base film. Yes, preferably (Tg + 60 ° C.) or less, more preferably (Tg + 50 ° C.) or less.
 また、ウレタン組成物の膜を基材フィルム上に形成する前に、基材フィルムの表面に改質処理を施し、基材フィルムと易滑層との密着性を向上させることが好ましい。基材フィルムに対する表面改質処理としては、例えば、エネルギー線照射処理及び薬品処理等が挙げられる。エネルギー線照射処理としては、例えば、コロナ放電処理、プラズマ処理、電子線照射処理、紫外線照射処理等が挙げられ、処理効率の点等から、コロナ放電処理及びプラズマ処理が好ましく、コロナ放電処理が特に好ましい。また、薬品処理としては、例えば、ケン化処理、重クロム酸カリウム溶液、濃硫酸等の酸化剤水溶液中に浸漬し、その後、水で洗浄する方法が挙げられる。 In addition, it is preferable to improve the adhesion between the base film and the easy-sliding layer by modifying the surface of the base film before forming the urethane composition film on the base film. Examples of the surface modification treatment for the base film include energy ray irradiation treatment and chemical treatment. Examples of the energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, etc., and from the viewpoint of treatment efficiency, corona discharge treatment and plasma treatment are preferred, and corona discharge treatment is particularly preferred. preferable. Examples of the chemical treatment include a saponification treatment, a method of immersing in an aqueous oxidizing agent solution such as potassium dichromate solution and concentrated sulfuric acid, and then washing with water.
 さらに、易滑層の表面には、親水化表面処理を施してもよい。易滑層の表面は、通常、本発明のフィルムを任意の部材と貼り合わせる際の貼り合せ面となるため、易滑層の表面の親水性を更に向上させることにより、本発明のフィルムと任意の部材との接着性を顕著に向上させることが可能である。 Furthermore, the surface of the easy-slip layer may be subjected to a hydrophilic surface treatment. Since the surface of the slippery layer usually serves as a bonding surface when the film of the present invention is bonded to an arbitrary member, the surface of the slippery layer is further improved by improving the hydrophilicity of the surface of the slippery layer. It is possible to remarkably improve the adhesion with the member.
 易滑層に対する親水化表面処理としては、例えば、コロナ放電処理、プラズマ処理、ケン化処理、紫外線照射処理などが挙げられる。中でも、処理効率の点などからコロナ放電処理及びプラズマ処理が好ましく、コロナ放電処理がより好ましい。また、プラズマ処理としては、大気圧プラズマ処理が好ましい。 Examples of the hydrophilic surface treatment for the easy-sliding layer include corona discharge treatment, plasma treatment, saponification treatment, and ultraviolet irradiation treatment. Among these, from the viewpoint of processing efficiency, corona discharge treatment and plasma treatment are preferable, and corona discharge treatment is more preferable. As the plasma treatment, atmospheric pressure plasma treatment is preferable.
 [2.10.易滑層の厚み及び屈折率]
 易滑層の厚みは、0.005μm以上が好ましく、0.01μm以上がより好ましく、0.02μm以上が特に好ましく、また、5μm以下が好ましく、2μm以下がより好ましく、1μm以下が特に好ましい。易滑層の厚みが前記範囲内にあると、基材フィルムと易滑層との十分な接着強度が得られ、かつ、本発明のフィルムの反りなどの欠陥を無くすことができる。
[2.10. Easy-to-slip layer thickness and refractive index]
The thickness of the easy-slip layer is preferably 0.005 μm or more, more preferably 0.01 μm or more, particularly preferably 0.02 μm or more, more preferably 5 μm or less, more preferably 2 μm or less, and particularly preferably 1 μm or less. When the thickness of the slippery layer is within the above range, sufficient adhesive strength between the base film and the slippery layer can be obtained, and defects such as warpage of the film of the present invention can be eliminated.
 基材フィルムの厚みtと易滑層の厚みtとの比t/tは、0.0003以上が好ましく、0.0010以上がより好ましく、0.0025以上が特に好ましく、また、0.0100以下が好ましく、0.0080以下がより好ましく、0.0050以下が特に好ましい。これにより、本発明のフィルムの透明性を向上させることができる。ここで、本発明のフィルムが基材フィルムを一層だけ備える場合には当該基材フィルムの厚みが厚みtとなり、本発明のフィルムが基材フィルムを二層以上備える場合にはそれらの基材フィルムの厚みの合計が厚みtとなる。また、本発明のフィルムが易滑層を一層だけ備える場合には当該易滑層の厚みが厚みtとなり、本発明のフィルムが易滑層を二層以上備える場合にはそれらの易滑層の厚みの合計が厚みtとなる。 The ratio t 2 / t 1 with thickness t 2 of the thickness t 1 and the lubricity layer of the base film is preferably 0.0003 or more, more preferably more than 0.0010, particularly preferably 0.0025 or more, 0.0100 or less is preferable, 0.0080 or less is more preferable, and 0.0050 or less is particularly preferable. Thereby, the transparency of the film of the present invention can be improved. Here, when the film of the present invention comprises only one base film, the thickness of the base film becomes the thickness t 1 , and when the film of the present invention comprises two or more base film, those base materials the total thickness of the film is the thickness t 1. Further, the film lubricity layer the lubricity layer thickness The thickness t 2 next to the case of providing only one layer, lubricating layer thereof if the film is provided with a lubricating layer of two or more layers of the present invention of the present invention the sum of the thickness of a thickness t 2 of.
 基材フィルムと易滑層との界面屈折率差は、0.05以下であることが好ましい。界面屈折率差が前記範囲内にあると、本発明のフィルムを光が透過する際の光の損失を抑えることができる。界面屈折率差は、理想的には0としうる。 The interface refractive index difference between the base film and the easy-slip layer is preferably 0.05 or less. When the interface refractive index difference is within the above range, it is possible to suppress light loss when light is transmitted through the film of the present invention. The interface refractive index difference can ideally be zero.
 [3.その他の層]
 本発明のフィルムは、基材フィルムの易滑層とは反対側の表面に、任意の層を備えうる。任意の層の例を挙げると、反射防止層、ハードコート層、帯電防止層、防眩層、防汚層、セパレーターフィルム等が挙げられる。
[3. Other layers]
The film of this invention can be equipped with arbitrary layers on the surface on the opposite side to the slippery layer of a base film. Examples of optional layers include an antireflection layer, a hard coat layer, an antistatic layer, an antiglare layer, an antifouling layer, and a separator film.
 [4.フィルムの物性など]
 本発明のフィルムの面内の位相差の絶対値(以下、「|Re|」という)は、好ましくは10nm以下、より好ましくは7nm以下、さらに好ましくは5nm以下、特に好ましくは2nm以下、最も好ましくは1nm以下であり、下限は理想的には0nmである。本発明のフィルムはその面内の位相差Reがこのように小さいため、偏光板等の光学素子の保護フィルムとして好適に用いることができる。
 また、フィルムの厚み方向の位相差の絶対値(以下、「|Rth|」ともいう)は、好ましくは25nm以下、より好ましくは15nm以下、さらに好ましくは5nm以下であり、特に好ましくは2nm以下、最も好ましくは1nm以下であり、下限は理想的には0nmである。
 本発明のフィルムの|Re|及び|Rth|をこのように小さくできる理由は定かではないが、本発明者の検討によれば、以下のような理由によるものと推察される。すなわち、ブロック共重合体においては、芳香族ビニル化合物水素化物が負の複屈折性を有し、ジエン化合物水素化物が正の複屈折性を有することから、基材フィルムの製造時に各々のユニットで発現する正・負の位相差が相殺され、フィルム全体の位相差の発現が抑制されているものと推察される。
 本発明のフィルムの面内の位相差(Re)は、フィルムの面内の主屈折率をnx及びnyとし、層Aの厚さをd(nm)として、Re=|nx-ny|×dで求められる。厚み方向の位相差(Rth)は、フィルム全体の面内の主屈折率をnx及びnyとし、厚み方向の屈折率をnzとし、フィルムの厚さをd(nm)とすると、Rth=[{(nx+ny)/2}-nz]×dで求めることができる。これらの位相差Re及びRthは、例えば市販の自動複屈折計を用いて測定することができる。前記の位相差Re及びRthは、波長590nmの光に対する評価とする。
[4. Physical properties of film]
The absolute value of the in-plane retardation (hereinafter referred to as “| Re |”) of the film of the present invention is preferably 10 nm or less, more preferably 7 nm or less, still more preferably 5 nm or less, particularly preferably 2 nm or less, and most preferably. Is 1 nm or less, and the lower limit is ideally 0 nm. Since the in-plane retardation Re is so small, the film of the present invention can be suitably used as a protective film for optical elements such as polarizing plates.
The absolute value of the retardation in the thickness direction of the film (hereinafter also referred to as “| Rth |”) is preferably 25 nm or less, more preferably 15 nm or less, still more preferably 5 nm or less, and particularly preferably 2 nm or less. Most preferably, it is 1 nm or less, and the lower limit is ideally 0 nm.
The reason why | Re | and | Rth | of the film of the present invention can be reduced in this way is not clear, but according to the study of the present inventors, it is presumed that the reason is as follows. That is, in the block copolymer, the aromatic vinyl compound hydride has a negative birefringence, and the diene compound hydride has a positive birefringence. It is presumed that the positive and negative phase differences that appear are offset, and the development of the phase difference of the entire film is suppressed.
The in-plane retardation (Re) of the film of the present invention is such that Re = | nx−ny | × d, where the main refractive index in the plane of the film is nx and ny, and the thickness of the layer A is d (nm). Is required. The retardation in the thickness direction (Rth) is defined as follows: Rth = [{, where the in-plane main refractive index of the entire film is nx and ny, the refractive index in the thickness direction is nz, and the thickness of the film is d (nm). (Nx + ny) / 2} −nz] × d. These phase differences Re and Rth can be measured using, for example, a commercially available automatic birefringence meter. The phase differences Re and Rth are evaluated for light having a wavelength of 590 nm.
 本発明のフィルムは、光学部材としての機能を安定して発揮させる観点から、全光線透過率が、80%以上であることが好ましく、90%以上であることがより好ましい。 The film of the present invention preferably has a total light transmittance of 80% or more, more preferably 90% or more, from the viewpoint of stably exhibiting the function as an optical member.
 本発明のフィルムは、その幅方向の寸法を、例えば1000mm~3000mmとしてもよい。また、本発明のフィルムは、その長手方向の寸法に制限は無いが、ブロッキング性を抑制することができることから、長尺のフィルムであることが好ましい。ここで「長尺」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。幅に対する長さの比の上限は、特に限定されず、例えば100,000倍以下としうる。 The film of the present invention may have a width-direction dimension of, for example, 1000 mm to 3000 mm. Moreover, although the film of this invention does not have a restriction | limiting in the dimension of the longitudinal direction, since it can suppress blocking property, it is preferable that it is a long film. Here, the “long” film means a film having a length of 5 times or more, preferably 10 times or more, more specifically a roll shape. It has a length enough to be wound up and stored or transported. The upper limit of the ratio of the length to the width is not particularly limited, and can be, for example, 100,000 times or less.
 本発明のフィルムは、耐衝撃性に優れる。このように優れた耐衝撃性を有する理由は定かではないが、以下のような理由によるものと推察される。すなわち、ブロック共重合体においては、芳香族ビニル化合物水素化物ブロックとジエン化合物水素化物ブロックとが相分離し、芳香族ビニル化合物水素化物ブロックの相ドメインの間をジエン化合物水素化物ブロックの相ドメインが繋ぐような構造になっていると推察され、このようなドメイン構造においてはジエン化合物水素化物ブロックがいわば緩衝材のように機能するため、耐衝撃性が向上しているものと推察される。 The film of the present invention is excellent in impact resistance. The reason for such excellent impact resistance is not clear, but is presumed to be as follows. That is, in the block copolymer, the aromatic vinyl compound hydride block and the diene compound hydride block are phase-separated, and the phase domain of the diene compound hydride block is between the phase domains of the aromatic vinyl compound hydride block. It is presumed that the structure is connected, and in such a domain structure, the diene compound hydride block functions like a buffer material, so it is presumed that the impact resistance is improved.
 本発明のフィルムは、通常は耐熱性に優れる。基材フィルムに含まれるブロック共重合体が耐熱性に優れるため、それを含む基材フィルムも耐熱性が高いものとなるからである。具体的な耐熱性の程度はブロック共重合体の芳香族ビニル化合物水素化物ブロックとジエン化合物水素化物ブロックの組成比、分子量及び基材フィルムの厚さ等に応じて設定できるため、フィルムの用途に応じて適切に調整すればよい。 The film of the present invention is usually excellent in heat resistance. This is because the block copolymer contained in the base film is excellent in heat resistance, so that the base film containing the block copolymer also has high heat resistance. The specific degree of heat resistance can be set according to the composition ratio of the aromatic vinyl compound hydride block and diene compound hydride block of the block copolymer, the molecular weight, the thickness of the substrate film, etc. Appropriate adjustments may be made accordingly.
 [5.フィルムの製造方法]
 本発明のフィルムは、基材フィルムを用意する工程と、用意した基材フィルム上に易滑層を製造する工程とを含む製造方法により、製造できる。ここで、基材フィルム上に易滑層を製造する工程は、上述したように、基材フィルム上にウレタン組成物の膜を形成する工程と、このウレタン組成物の膜を硬化させる工程とを含む。
[5. Film production method]
The film of this invention can be manufactured with the manufacturing method including the process of preparing a base film, and the process of manufacturing an easy-slip layer on the prepared base film. Here, as described above, the step of producing the easy-sliding layer on the base film includes the step of forming a film of the urethane composition on the base film and the step of curing the film of the urethane composition. Including.
 基材フィルムを用意する工程には特に制限は無く、溶融成形法、溶液流延法のいずれを用いることもできる。溶融成形法は、さらに詳細に、押出成形法、プレス成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの方法の中でも、機械強度、表面精度等に優れたフィルムを得るために、押出成形法、インフレーション成形法又はプレス成形法が好ましく、中でも位相差の発現をより確実に抑制しながらも、効率よく簡単にフィルムを製造できる観点から、押出成形法が特に好ましい。 The step of preparing the base film is not particularly limited, and either a melt molding method or a solution casting method can be used. The melt molding method can be further classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method. Among these methods, in order to obtain a film excellent in mechanical strength, surface accuracy, etc., an extrusion molding method, an inflation molding method or a press molding method is preferable. Among them, the efficiency is improved while suppressing the development of retardation more reliably. The extrusion method is particularly preferred from the viewpoint that a film can be produced easily and easily.
 押出成形法により基材フィルムを用意する場合、押出成形後に延伸処理を行って延伸フィルムとされるのが好ましい。延伸処理は、易滑層を製造する前に行ってもよいし、易滑層を製造した後に延伸処理を行ってもよい。また、基材フィルムが2層以上の層を備える場合、予め延伸処理を施されたフィルム層を貼り合せて延伸フィルムを得てもよく、共押出等により得られた複層構造の延伸前フィルムに延伸処理を施して延伸フィルムを得てもよい。 When preparing a base film by an extrusion molding method, it is preferable to perform a stretching process after the extrusion molding to obtain a stretched film. The stretching process may be performed before the easy-sliding layer is manufactured, or may be performed after the easy-sliding layer is manufactured. Moreover, when a base film is provided with two or more layers, a stretched film may be obtained by laminating a film layer that has been previously stretched, or a multi-layered film obtained by coextrusion or the like. The film may be stretched to obtain a stretched film.
 延伸方法は特に制限されず、例えば、一軸延伸法、二軸延伸法のいずれを採用してもよい。延伸方法の例を挙げると、一軸延伸法の例としては、フィルム搬送用のロールの周速の差を利用して長尺方向に一軸延伸する方法;テンター延伸機を用いて幅方向に一軸延伸する方法等が挙げられる。また、二軸延伸法の例としては、固定するクリップの間隔を開いての長尺方向の延伸と同時に、ガイドレールの広がり角度により幅方向に延伸する同時二軸延伸法;フィルム搬送用のロール間の周速の差を利用して長尺方向に延伸した後、その両端部をクリップで把持してテンター延伸機を用いて幅方向に延伸する逐次二軸延伸法などの二軸延伸法等が挙げられる。さらに、例えば、幅方向又は長尺方向に左右異なる速度の送り力若しくは引張り力又は引取り力を付加できるようにしたテンター延伸機を用いて、フィルムの幅方向に対して平行でもなく垂直でもない方向に連続的に斜め延伸する斜め延伸法を用いてもよい。 The stretching method is not particularly limited, and for example, either a uniaxial stretching method or a biaxial stretching method may be employed. As an example of the stretching method, as an example of the uniaxial stretching method, a method of uniaxial stretching in the longitudinal direction using a difference in peripheral speed of a roll for film conveyance; uniaxial stretching in the width direction using a tenter stretching machine And the like. In addition, as an example of the biaxial stretching method, simultaneous biaxial stretching method that stretches in the width direction according to the spread angle of the guide rail at the same time as stretching in the longitudinal direction with an interval between the clips to be fixed; roll for film conveyance Biaxial stretching method such as sequential biaxial stretching method that stretches in the longitudinal direction using the difference in peripheral speed between the two, then grips both ends with clips and stretches in the width direction using a tenter stretching machine, etc. Is mentioned. Furthermore, it is neither parallel nor perpendicular to the width direction of the film using, for example, a tenter stretching machine that can apply a feeding force, a pulling force, or a pulling force at different speeds in the width direction or the longitudinal direction. An oblique stretching method in which oblique stretching is continuously performed in the direction may be used.
 延伸に用いる装置として、例えば、縦一軸延伸機、テンター延伸機、バブル延伸機、ローラー延伸機等が挙げられる。延伸温度は、延伸されるフィルムを構成する樹脂のガラス転移温度をTgとして、好ましくは(Tg-30℃)以上、より好ましくは(Tg-10℃)以上であり、好ましくは(Tg+60℃)以下、より好ましくは(Tg+50℃)以下である。延伸倍率は、使用する基材フィルムの光学特性に応じて適宜選択しうる。具体的な延伸倍率は、通常1.05倍以上、好ましくは1.1倍以上であり、通常10.0倍以下、好ましくは2.0倍以下である。 Examples of the apparatus used for stretching include a longitudinal uniaxial stretching machine, a tenter stretching machine, a bubble stretching machine, and a roller stretching machine. The stretching temperature is preferably (Tg-30 ° C) or higher, more preferably (Tg-10 ° C) or higher, preferably (Tg + 60 ° C) or lower, where Tg is the glass transition temperature of the resin constituting the film to be stretched. More preferably, it is (Tg + 50 ° C.) or less. The draw ratio can be appropriately selected according to the optical properties of the substrate film to be used. The specific draw ratio is usually 1.05 times or more, preferably 1.1 times or more, and usually 10.0 times or less, preferably 2.0 times or less.
 本発明のフィルムが基材フィルム及び易滑層以外の任意の層を備える場合、フィルムの製造方法における任意の時点において、基材フィルムの易滑層とは反対側の面に任意の層を設ける工程を行なってもよい。
 さらに、フィルムの製造方法における任意の時点において、基材フィルム、易滑層及びフィルムを延伸する工程を行なってもよい。
When the film of the present invention includes an optional layer other than the base film and the easy-to-slip layer, an optional layer is provided on the surface of the base film opposite to the easy-to-slip layer at an arbitrary point in the film production method. You may perform a process.
Furthermore, you may perform the process of extending | stretching a base film, a slippery layer, and a film in the arbitrary time points in the manufacturing method of a film.
 [6.フィルムの用途]
 本発明のフィルムは面内の位相差Reが小さく且つ耐衝撃性に優れるため、光学素子およびその光学素子の保護フィルムとして用いることができる。その例を挙げると液晶表示装置などの表示装置に用いられる部材が挙げられ、その具体例としては偏光板保護フィルム、位相差フィルム、輝度向上フィルム、透明導電フィルム、タッチパネル用基板、液晶基板、光拡散シート、プリズムシートなどが挙げられる。本発明のフィルムは、中でも偏光板保護フィルムとして用いて好適である。
[6. Application of film]
Since the film of the present invention has a small in-plane retardation Re and excellent impact resistance, it can be used as an optical element and a protective film for the optical element. Examples thereof include members used in display devices such as liquid crystal display devices. Specific examples thereof include a polarizing plate protective film, a retardation film, a brightness enhancement film, a transparent conductive film, a touch panel substrate, a liquid crystal substrate, and light. Examples include a diffusion sheet and a prism sheet. The film of the present invention is particularly suitable for use as a polarizing plate protective film.
 本発明のフィルムを偏光板保護フィルムとして用いる場合、偏光板は、本発明のフィルムと、偏光フィルムとを備えて構成される。この際、通常は偏光フィルムの両面に本発明のフィルムを設けるようにする。例えば、偏光フィルムの片面又は両面に、適切な接着剤を介して本発明のフィルムを積層する。
 偏光フィルムは任意のものを用いることができ、例えば、ポリビニルアルコール系フィルムに、ヨウ素などをドープした後、延伸加工したものを用いることができる。また、接着層としては、例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテルや合成ゴムなどのポリマーをベースポリマーとする粘着剤などが挙げられる。
When using the film of this invention as a polarizing plate protective film, a polarizing plate is provided with the film of this invention, and a polarizing film. At this time, the film of the present invention is usually provided on both sides of the polarizing film. For example, the film of the present invention is laminated on one side or both sides of a polarizing film via an appropriate adhesive.
Any polarizing film can be used, for example, a polyvinyl alcohol film doped with iodine or the like and then stretched can be used. Moreover, as an adhesive layer, the adhesive etc. which use polymers, such as an acrylic polymer, a silicone type polymer, polyester, a polyurethane, polyether, and a synthetic rubber, as a base polymer are mentioned, for example.
 前記の偏光板には、さらに他の任意の層を設けるようにしてもよい。任意の層としては、例えば、反射防止層、ハードコート層、プライマー層;アンカー層;SiOx(x=1.5~2.0)超微粒子の三次元骨格からなる高均質透明多孔体層(屈折率1.25~1.46);粘着剤層;防汚層;などが挙げられる。 Further, another arbitrary layer may be provided on the polarizing plate. As an arbitrary layer, for example, an antireflection layer, a hard coat layer, a primer layer; an anchor layer; a highly homogenous transparent porous layer (refractive layer) composed of a three-dimensional skeleton of SiOx (x = 1.5 to 2.0) ultrafine particles Rate 1.25 to 1.46); pressure-sensitive adhesive layer; antifouling layer; and the like.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. Further, the operations described below were performed in a normal temperature and pressure atmosphere unless otherwise specified.
 〔評価方法〕
 (衝撃強度)
 実施例および比較例で得られたフィルムを、水平となるように支持できる冶具に水平に固定した。治具に固定されたフィルムの中央に、鋼球(パチンコ玉、重さ5g、直径11mm)を様々な高さhから落下させて、フィルムが破れなかった場合及びフィルムが破れた場合の境界の高さhにおける、鋼球の位置エネルギー(mJ)を衝撃強度とした。
〔Evaluation methods〕
(Impact strength)
The films obtained in Examples and Comparative Examples were fixed horizontally on a jig that can be supported so as to be horizontal. When a steel ball (pachinko ball, weight 5g, diameter 11mm) is dropped from various heights h to the center of the film fixed to the jig, the boundary of the case where the film is not torn and when the film is torn The potential energy (mJ) of the steel ball at height h was defined as impact strength.
 (内部ヘイズ)
 実施例及び比較例で得られたフィルムの両面に粘着剤(日東電工社製「CS9621T」)を用いて、ガラス(コーニング(株)製「EagleXG」、厚み0.7mm)を貼り合せて測定用サンプルを作成した。得られた測定用サンプルの内部ヘイズを、濁度計(日本電色社製「NDH-2000」)を用いて測定した。
(Internal haze)
Using adhesive (“CS9621T” manufactured by Nitto Denko Corporation) on both surfaces of the films obtained in Examples and Comparative Examples, glass (“EagleXG” manufactured by Corning Co., Ltd., thickness 0.7 mm) is bonded to measure. A sample was created. The internal haze of the obtained measurement sample was measured using a turbidimeter (“NDH-2000” manufactured by Nippon Denshoku).
 (Re及びRth)
 実施例及び比較例で得られたフィルムを、位相差計(製品名:Axoscan、AXOMETRICS社製)を用いて測定することにより、波長590nmにおける面内の位相差Re及び、厚み方向の位相差Rthを求めた。
(Re and Rth)
By measuring the films obtained in Examples and Comparative Examples using a phase difference meter (product name: Axoscan, manufactured by AXOMETRICS), an in-plane retardation Re at a wavelength of 590 nm and a thickness direction retardation Rth. Asked.
 (ブロッキング性)
 実施例及び比較例で得られたフィルムを100mm角にカットしたものを10枚重ねた。10枚重ねにしたフィルムの表面に1kgのおもりを乗せた状態で40℃のオーブンに24時間静置した。24時間静置後に、オーブンから取出したフィルムにおける密着の有無を、目視により観察して、以下の基準により評価を行った。
 A:密着している箇所が全体の10%未満
 B:密着している箇所が全体の10%以上
(Blocking property)
Ten films obtained by cutting the 100 mm square films obtained in Examples and Comparative Examples were stacked. The film was allowed to stand in an oven at 40 ° C. for 24 hours with a 1 kg weight placed on the surface of the 10 stacked films. After standing for 24 hours, the presence or absence of adhesion in the film taken out from the oven was visually observed and evaluated according to the following criteria.
A: Less than 10% of the whole part is in close contact B: More than 10% of the whole part is in close contact
 〔製造例1:実施例1で用いる基材フィルムの製造〕
 (P1-1.第1段階の重合反応:芳香族ビニル化合物水素化物ブロックA1の伸長)
 十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製反応器に、脱水シクロヘキサン320部、スチレン60部、及びジブチルエーテル0.38部を仕込み、60℃で攪拌しながらn-ブチルリチウム溶液(15重量%含有ヘキサン溶液)0.41部を添加して重合反応を開始させ、1時間第1段階の重合反応を行った。反応開始後1時間の時点で、反応混合物から、試料をサンプリングし、ガスクロマトグラフィー(GC)により分析した結果、重合転化率は99.5%であった。
[Production Example 1: Production of base film used in Example 1]
(P1-1. First Stage Polymerization Reaction: Elongation of Aromatic Vinyl Compound Hydride Block A1)
A stainless steel reactor equipped with a stirrer and thoroughly dried and purged with nitrogen was charged with 320 parts of dehydrated cyclohexane, 60 parts of styrene, and 0.38 part of dibutyl ether, and stirred at 60 ° C. to give an n-butyllithium solution. (15 wt% hexane solution) 0.41 part was added to initiate the polymerization reaction, and the first stage polymerization reaction was carried out for 1 hour. At 1 hour after the start of the reaction, a sample was sampled from the reaction mixture and analyzed by gas chromatography (GC). As a result, the polymerization conversion was 99.5%.
 (P1-2.第2段階の反応:ジエン化合物水素化物ブロックの伸長)
 前記工程(P1-1)で得られた反応混合物に、イソプレン10部を添加し、引き続き第2段階の重合反応を開始し、1時間重合反応を行った。第2段階の重合反応開始後1時間の時点で、反応混合物から、試料をサンプリングし、GCにより分析した結果、重合転化率は99.5%であった。
(P1-2. Second stage reaction: elongation of diene compound hydride block)
10 parts of isoprene was added to the reaction mixture obtained in the above step (P1-1), and then the second stage polymerization reaction was started to carry out the polymerization reaction for 1 hour. At 1 hour after the start of the second stage polymerization reaction, a sample was sampled from the reaction mixture and analyzed by GC. As a result, the polymerization conversion was 99.5%.
 (P1-3.第3段階の反応:芳香族ビニル化合物水素化物ブロックA2の伸長)
 前記工程(P1-2)で得られた反応混合物に、スチレン30部を添加し、引き続き第3段階の重合反応を開始した。第3段階の重合反応開始後1時間の時点で、反応混合物から、試料をサンプリングし、重合体の重量平均分子量Mw及び数平均分子量Mnを測定した。またこの時点でサンプリングした試料をGCにより分析した結果、重合転化率はほぼ100%であった。その後直ちに、反応混合物にイソプロピルアルコール0.2部を添加して反応を停止させた。これにより、スチレン-イソプレン-スチレンのトリブロック分子構造を有する重合体を含む混合物を得た。
 得られた重合体は、スチレン/イソプレン/スチレン=60/10/30の重量比のトリブロック分子構造を有する重合体であった。この重合体の重量平均分子量(Mw)は約64000、分子量分布(Mw/Mn)は1.1であった。
(P1-3. Third stage reaction: elongation of aromatic vinyl compound hydride block A2)
30 parts of styrene was added to the reaction mixture obtained in the step (P1-2), and then the third stage polymerization reaction was started. At 1 hour after the start of the third stage polymerization reaction, a sample was sampled from the reaction mixture, and the weight average molecular weight Mw and number average molecular weight Mn of the polymer were measured. Moreover, as a result of analyzing the sample sampled at this time by GC, the polymerization conversion was almost 100%. Immediately thereafter, 0.2 part of isopropyl alcohol was added to the reaction mixture to stop the reaction. As a result, a mixture containing a polymer having a triblock molecular structure of styrene-isoprene-styrene was obtained.
The obtained polymer was a polymer having a triblock molecular structure with a weight ratio of styrene / isoprene / styrene = 60/10/30. The polymer had a weight average molecular weight (Mw) of about 64000 and a molecular weight distribution (Mw / Mn) of 1.1.
 (P1-4.第4段階の反応:水素化)
 次に、上記工程(P1-3)で得られたブロック共重合体を含む混合物を攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製「E22U」、ニッケル担持量60%)8.0部及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応により共重合体が水素化された、ブロック共重合体を得た。得られた反応溶液に含まれるブロック共重合体の重量平均分子量(Mw)は約66000、分子量分布(Mw/Mn)は1.11であった。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、フェノール系酸化防止剤であるペンタエリスリトール・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](松原産業社製「Songnox(登録商標)1010」)0.1部を溶解したキシレン溶液2.0部を添加して溶解させた。
 次いで、上記溶液を、円筒型濃縮乾燥器(日立製作所社製「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。溶融ポリマーをダイからストランド状に押出し、冷却後、ペレタイザーによりブロック共重合体のペレット95部を作製した。
 得られたペレットに含まれるブロック共重合体の重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は1.13、水素化率はほぼ100%であった。
 本製造例及び以下の製造例で製造した重合体(ブロック共重合体、及びその製造の中間体としての重合体)の重量平均分子量及び数平均分子量は、THFを溶離液とするGPCによる標準ポリスチレン換算値として38℃において測定した。測定装置としては、東ソー社製HLC8020GPCを用いた。
(P1-4. Fourth stage reaction: hydrogenation)
Next, the mixture containing the block copolymer obtained in the above step (P1-3) is transferred to a pressure-resistant reactor equipped with a stirrer, and a diatomaceous earth-supported nickel catalyst (manufactured by JGC Catalysts & Chemicals, Inc.) as a hydrogenation catalyst. E22U ", nickel loading 60%) 8.0 parts and dehydrated cyclohexane 100 parts were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 190 ° C. and a pressure of 4.5 MPa for 6 hours. A block copolymer in which the copolymer was hydrogenated by a hydrogenation reaction was obtained. The weight average molecular weight (Mw) of the block copolymer contained in the obtained reaction solution was about 66000, and the molecular weight distribution (Mw / Mn) was 1.11.
After completion of the hydrogenation reaction, the reaction solution is filtered to remove the hydrogenation catalyst, and then a phenol-based antioxidant pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate] ("Songnox (registered trademark) 1010" manufactured by Matsubara Sangyo Co., Ltd.) 2.0 parts of xylene solution dissolved in 0.1 parts was added and dissolved.
Next, the above solution is mixed with cyclohexane, xylene and other volatile components as solvents from a solution at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (“Contro” manufactured by Hitachi, Ltd.). Removed. The molten polymer was extruded into a strand form from a die, and after cooling, 95 parts of block copolymer pellets were produced by a pelletizer.
The block copolymer contained in the obtained pellets had a weight average molecular weight (Mw) of 65,000, a molecular weight distribution (Mw / Mn) of 1.13, and a hydrogenation rate of almost 100%.
The weight average molecular weight and the number average molecular weight of the polymer (block copolymer and polymer as an intermediate in the production) produced in this production example and the following production examples are standard polystyrene by GPC using THF as an eluent. It measured in 38 degreeC as a conversion value. As a measuring apparatus, HLC8020GPC manufactured by Tosoh Corporation was used.
 (P1-5.基材フィルムの製造)
 前記のペレットを、押出成形機(住友重機械モダン社製)を用いて、押出温度220℃で溶融押出成形することにより、厚み80μmの長尺の基材フィルム1を得た。
(P1-5. Production of base film)
The above-described pellets were melt-extruded at an extrusion temperature of 220 ° C. using an extruder (manufactured by Sumitomo Heavy Industries Modern) to obtain a long base film 1 having a thickness of 80 μm.
 〔製造例2:実施例2で用いる基材フィルムの製造〕
 (P1-1)の第1段階の重合反応において、スチレンの使用量を60部から75部に変更し、(P1-2)の第2段階の重合反応において、イソプレンの使用量を10部から15部に変更し、(P1-3)の第3段階の重合反応において、スチレンの使用量を30部から10部に変更し、フィルムの厚みを変更したこと以外は製造例1と同様にして、厚み48μmの基材フィルム2を得た。
 製造例2において、第4段階の水素化反応後に得られたペレットに含まれるブロック共重合体の重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は1.25、水素化率はほぼ100%であった。
[Production Example 2: Production of base film used in Example 2]
In the first stage polymerization reaction of (P1-1), the amount of styrene used was changed from 60 parts to 75 parts, and in the second stage polymerization reaction of (P1-2), the amount of isoprene used was changed from 10 parts. In the third stage polymerization reaction of (P1-3), the amount of styrene used was changed from 30 parts to 10 parts, and the film thickness was changed in the same manner as in Production Example 1 A base film 2 having a thickness of 48 μm was obtained.
In Production Example 2, the weight average molecular weight (Mw) of the block copolymer contained in the pellet obtained after the fourth stage hydrogenation reaction is 65000, the molecular weight distribution (Mw / Mn) is 1.25, and the hydrogenation rate is It was almost 100%.
 〔製造例3:実施例3で用いる基材フィルムの製造〕
 フィルムの厚みを変更したこと以外は製造例2と同様にして、厚み60μmの基材フィルム3を得た。
[Production Example 3: Production of base film used in Example 3]
A base film 3 having a thickness of 60 μm was obtained in the same manner as in Production Example 2 except that the thickness of the film was changed.
 〔製造例4:実施例4で用いる基材フィルムの製造〕
 (P1-2)の第2段階の重合反応において、イソプレンの使用量を10部から20部に変更し、(P1-3)の第3段階の重合反応において、スチレンの使用量を30部から20部に変更し、フィルムの厚みを変更したこと以外は製造例1と同様にして、厚み40μmの基材フィルム4を得た。
 製造例4において、第4段階の水素化反応後に得られたペレットに含まれるブロック共重合体の重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は1.24、水素化率はほぼ100%であった。
[Production Example 4: Production of base film used in Example 4]
In the second stage polymerization reaction of (P1-2), the amount of isoprene used was changed from 10 parts to 20 parts, and in the third stage polymerization reaction of (P1-3), the amount of styrene used was changed from 30 parts. The substrate film 4 having a thickness of 40 μm was obtained in the same manner as in Production Example 1 except that the thickness was changed to 20 parts and the thickness of the film was changed.
In Production Example 4, the weight average molecular weight (Mw) of the block copolymer contained in the pellet obtained after the fourth stage hydrogenation reaction is 65000, the molecular weight distribution (Mw / Mn) is 1.24, and the hydrogenation rate is It was almost 100%.
 〔製造例5:実施例5で用いる基材フィルムの製造〕
 フィルムの厚みを変更としたこと以外は製造例4と同様にして、厚み52μmの基材フィルム5を得た。
[Production Example 5: Production of base film used in Example 5]
A base film 5 having a thickness of 52 μm was obtained in the same manner as in Production Example 4 except that the thickness of the film was changed.
 〔製造例6:比較例1の基材フィルムの製造〕
 フィルムの厚みを変更したとしたこと以外は製造例4と同様にして、厚み60μmの基材フィルム6を得た。
[Production Example 6: Production of base film of Comparative Example 1]
A base film 6 having a thickness of 60 μm was obtained in the same manner as in Production Example 4 except that the thickness of the film was changed.
 〔製造例7:比較例2で用いる基材フィルムの製造〕
 製造例4の第4段階の水素化反応後に得られたペレットと微粒子[(株)アドマテックス製、シリカビーズアドマファインSO-C2(粒径0.5μm)]とを、ブロック共重合体99.5重量%と、微粒子0.5重量%の割合で混合して、二軸押出機(東洋精機製作所社製)で溶融混練して重合体組成物を得た。該重合体組成物を、製造例1の(P1-5)と同様に、溶融押出成形により、厚み60μmの長尺の基材フィルム7を得た。
[Production Example 7: Production of base film used in Comparative Example 2]
The pellet obtained after the hydrogenation reaction in the fourth stage of Production Example 4 and fine particles [manufactured by Admatechs, silica beads Admafine SO-C2 (particle size 0.5 μm)] are mixed with the block copolymer 99. 5% by weight and 0.5% by weight of fine particles were mixed and melt-kneaded with a twin screw extruder (manufactured by Toyo Seiki Seisakusho) to obtain a polymer composition. The polymer composition was subjected to melt extrusion molding in the same manner as in (P1-5) of Production Example 1 to obtain a long base film 7 having a thickness of 60 μm.
 〔製造例8:比較例3で用いる基材フィルムの製造〕
 (P1-1)の第1段階の重合反応において、スチレンの使用量を60部から67部に変更し、(P1-2)の第2段階の重合反応において、イソプレンの使用量を10部から3部に変更し、フィルムの厚みを変更したこと以外は製造例1と同様にして、厚み60μmの基材フィルム8を得た。
 製造例8において、第4段階の水素化反応後に得られたペレットに含まれるブロック共重合体の重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は1.38、水素化率はほぼ100%であった。
[Production Example 8: Production of base film used in Comparative Example 3]
In the first stage polymerization reaction of (P1-1), the amount of styrene used was changed from 60 parts to 67 parts, and in the second stage polymerization reaction of (P1-2), the amount of isoprene used was changed from 10 parts. The base film 8 having a thickness of 60 μm was obtained in the same manner as in Production Example 1 except that the thickness was changed to 3 parts and the thickness of the film was changed.
In Production Example 8, the weight average molecular weight (Mw) of the block copolymer contained in the pellet obtained after the fourth stage hydrogenation reaction is 65000, the molecular weight distribution (Mw / Mn) is 1.38, and the hydrogenation rate is It was almost 100%.
 〔製造例9:比較例4で用いる基材フィルムの製造〕
 (P1-1)の第1段階の重合反応において、スチレンの使用量を60部から50部に変更し、(P1-2)の第2段階の重合反応において、イソプレンの使用量を10部から30部に変更し、(P1-3)の第3段階の重合反応において、スチレンの使用量を30部から20部に変更し、フィルムの厚みを変更したこと以外は製造例1と同様にして、厚み60μmの基材フィルム9を得た。
 製造例9において、第4段階の水素化反応後に得られたペレットに含まれるブロック共重合体の重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は1.33、水素化率はほぼ100%であった。
[Production Example 9: Production of base film used in Comparative Example 4]
In the first stage polymerization reaction of (P1-1), the amount of styrene used was changed from 60 parts to 50 parts, and in the second stage polymerization reaction of (P1-2), the amount of isoprene used was changed from 10 parts. In the third stage polymerization reaction of (P1-3), the amount of styrene was changed from 30 parts to 20 parts, and the thickness of the film was changed. A base film 9 having a thickness of 60 μm was obtained.
In Production Example 9, the weight average molecular weight (Mw) of the block copolymer contained in the pellet obtained after the hydrogenation reaction in the fourth stage is 65000, the molecular weight distribution (Mw / Mn) is 1.33, and the hydrogenation rate is It was almost 100%.
 〔調製例1:易滑層用のウレタン組成物1の調製〕
 ポリエーテル系ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス(登録商標)130」 引張弾性率:1600N/mm)をポリウレタンの量で100部と、架橋剤としてエポキシ化合物(ナガセケムテックス社製「デナコールEX313」)15部と、不揮発性塩基としてアジピン酸ジヒドラジド2部と、滑材としてシリカ粒子の水分散液(日産化学社製「スノーテックスMP1040」;平均粒子径120nm)をシリカ粒子の量で8部及びシリカ粒子の水分散液(日産化学社製「スノーテックスXL」;平均粒子径50nm)をシリカ粒子の量で8部と、濡れ剤としてアセチレン系界面活性剤(エアープロダクツアンドケミカルズ社製「サーフィノール440」)を固形分合計量に対して0.5重量%と、水とを配合して、固形分濃度2%の液状のウレタン組成物1を得た。
[Preparation Example 1: Preparation of urethane composition 1 for easy slipping layer]
An aqueous dispersion of polyether polyurethane ("Superflex (registered trademark) 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., tensile elastic modulus: 1600 N / mm 2 ) in an amount of polyurethane of 100 parts and an epoxy compound (Nagase Chem) as a crosslinking agent 15 parts of “Denacol EX313” manufactured by Tex Co., Ltd., 2 parts of adipic acid dihydrazide as a non-volatile base, and an aqueous dispersion of silica particles (“Snowtex MP1040” manufactured by Nissan Chemical Co., Ltd .; average particle diameter of 120 nm) as a lubricant 8 parts by volume of particles and an aqueous dispersion of silica particles (“Snowtex XL” manufactured by Nissan Chemical Co., Ltd .; average particle size 50 nm) and 8 parts by volume of silica particles, and acetylene surfactant (air products) as a wetting agent “Surfinol 440” manufactured by And Chemicals Co., Ltd. To obtain a urethane composition 1 having a solid concentration of 2% liquid.
 〔調製例2:易滑層用のウレタン組成物2の調製〕
 ポリエーテル系ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス(登録商標)870」 引張弾性率:1500N/mm)をポリウレタンの量で100部と、架橋剤としてエポキシ化合物(ナガセケムテックス社製「デナコールEX521」)20部と、不揮発性塩基としてアジピン酸ジヒドラジド5部と、滑材としてシリカ粒子の水分散液(日産化学社製「スノーテックスMP2040」;平均粒子径200nm)をシリカ粒子の量で5部及びシリカ粒子の水分散液(日産化学社製「スノーテックスZL」;平均粒子径80nm)をシリカ粒子の量で8部と、濡れ剤としてアセチレン系界面活性剤(エアープロダクツアンドケミカルズ社製「ダイノール604」)を固形分合計量に対して1.0重量%と、水とを配合して、固形分濃度2%の液状のウレタン組成物2を得た。
[Preparation Example 2: Preparation of urethane composition 2 for easy slipping layer]
An aqueous dispersion of polyether-based polyurethane (“Superflex (registered trademark) 870” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., tensile elastic modulus: 1500 N / mm 2 ) in an amount of polyurethane of 100 parts and an epoxy compound (Nagase Chem) as a crosslinking agent 20 parts of “Denacol EX521” manufactured by Tex Co., Ltd., 5 parts of adipic acid dihydrazide as a non-volatile base, and an aqueous dispersion of silica particles (“Snowtex MP2040” manufactured by Nissan Chemical Co., Ltd .; average particle size 200 nm) as silica 5 parts by weight of the particles and an aqueous dispersion of silica particles (“Snowtex ZL” manufactured by Nissan Chemical Co., Ltd .; average particle size 80 nm) and 8 parts by weight of the silica particles, and acetylene surfactant (air products) as a wetting agent "Dynol 604" manufactured by And Chemicals Co., Ltd. was blended with 1.0% by weight of the total solid content and water. To obtain a urethane composition 2 having a solid concentration of 2% of the liquid.
 〔調製例3:易滑層用のウレタン組成物3の調製〕
 ポリエーテル系ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス(登録商標)870」 引張弾性率:1500N/mm)をポリウレタンの量で100部と、架橋剤としてカルボジイミド化合物(日清紡社製「カルボジライトV―02」)3部と、不揮発性塩基として2-メチルイミダゾール3部と、滑材としてシリカ粒子の水分散液(日産化学社製「スノーテックスMP3040」;平均粒子径300nm)をシリカ粒子の量で5部及びシリカ粒子の水分散液(日産化学社製「スノーテックスYL」;平均粒子径70nm)をシリカ粒子の量で5部と、濡れ剤としてアセチレン系界面活性剤(エアープロダクツアンドケミカルズ社製「サーフィノール465」)を固形分合計量に対して0.7重量%と、水とを配合して、固形分濃度2%の液状のウレタン組成物3を得た。
[Preparation Example 3: Preparation of urethane composition 3 for easy slipping layer]
An aqueous dispersion of polyether-based polyurethane (“Superflex (registered trademark) 870” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., tensile elastic modulus: 1500 N / mm 2 ) in an amount of 100 parts of polyurethane and a carbodiimide compound (Nisshinbo Co., Ltd.) as a crosslinking agent 3 parts of “Carbodilite V-02”, 3 parts of 2-methylimidazole as a non-volatile base, and an aqueous dispersion of silica particles as a lubricant (“Snowtex MP3040” manufactured by Nissan Chemical Co., Ltd .; average particle size 300 nm) 5 parts by weight of silica particles and an aqueous dispersion of silica particles (“Snowtex YL” manufactured by Nissan Chemical Co., Ltd .; average particle diameter 70 nm) and 5 parts by weight of silica particles, and an acetylenic surfactant (air) as a wetting agent "Surfinol 465" manufactured by Products and Chemicals Co., Ltd.) is blended with 0.7% by weight of the total solid content and water. A liquid urethane composition 3 having a solid content concentration of 2% was obtained.
 〔実施例1〕
 (1-1:積層フィルムの製造)
 コロナ処理装置(春日電機社製)を用いて、出力300W、電極長240mm、ワーク電極間3.0mm、搬送速度4m/minの条件で、製造例1で得た基材フィルム1の表面に放電処理を施した。
 基材フィルム1の放電処理を施した表面に、調製例1で得られたウレタン組成物1を、乾燥厚みが0.1μmになるようにロールコーターを用いて塗布した。その後、温度130℃で60秒間加熱して、基材フィルム1上に易滑層を形成した。これにより、基材フィルム及び易滑層を備える、厚み80μmの積層フィルムを得た。
[Example 1]
(1-1: Production of laminated film)
Using a corona treatment device (Kasuga Denki Co., Ltd.), discharge was performed on the surface of the base film 1 obtained in Production Example 1 under the conditions of an output of 300 W, an electrode length of 240 mm, a work electrode distance of 3.0 mm, and a conveyance speed of 4 m / min. Treated.
The urethane composition 1 obtained in Preparation Example 1 was applied to the surface of the base film 1 subjected to the discharge treatment using a roll coater so that the dry thickness was 0.1 μm. Thereafter, heating was performed at a temperature of 130 ° C. for 60 seconds to form an easy-sliding layer on the base film 1. This obtained the 80-micrometer-thick laminated film provided with a base film and a slippery layer.
 (1-2:延伸フィルムの製造)
 得られた積層フィルムを、二軸延伸機(東洋精機社製)を用いて、延伸温度180℃、延伸倍率2.0倍でフィルム幅方向に延伸して、光学フィルムとして厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。
(1-2: Production of stretched film)
The obtained laminated film was stretched in the film width direction at a stretching temperature of 180 ° C. and a stretching ratio of 2.0 times using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a film having a thickness of 40 μm as an optical film. It was. The obtained film was evaluated by the method described above.
 〔実施例2〕
 (1-1)において、基材フィルム1を基材フィルム2に変更したこと、ウレタン組成物1をウレタン組成物2に変更したこと以外は実施例1の(1-1)と同様にして、基材フィルム及び易滑層を備える、厚み48μmの積層フィルムを得た。
 この積層フィルムを二軸延伸機を用いて、延伸温度160℃、延伸倍率1.2倍でフィルム幅方向に延伸して、光学フィルムとして厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。
[Example 2]
(1-1) In the same manner as in (1-1) of Example 1, except that the base film 1 was changed to the base film 2 and the urethane composition 1 was changed to the urethane composition 2, A laminated film having a thickness of 48 μm provided with a base film and an easy-slip layer was obtained.
Using a biaxial stretching machine, this laminated film was stretched in the film width direction at a stretching temperature of 160 ° C. and a stretching ratio of 1.2 times to obtain a film having a thickness of 40 μm as an optical film. The obtained film was evaluated by the method described above.
 〔実施例3〕
 (1-1)において、基材フィルム1を基材フィルム3に変更したこと、ウレタン組成物1をウレタン組成物2に変更したこと以外は実施例1の(1-1)と同様にして、基材フィルム及び易滑層を備える、厚み60μmの積層フィルムを得た。
 この積層フィルムを二軸延伸機(東洋精機社製)を用いて、延伸温度140℃、延伸倍率1.5倍でフィルム幅方向に延伸して、光学フィルムとして厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。
Example 3
(1-1) In the same manner as (1-1) of Example 1 except that the base film 1 was changed to the base film 3 and the urethane composition 1 was changed to the urethane composition 2, A laminated film having a thickness of 60 μm provided with a base film and an easy-slip layer was obtained.
Using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.), this laminated film was stretched in the film width direction at a stretching temperature of 140 ° C. and a stretch ratio of 1.5 times to obtain a film having a thickness of 40 μm as an optical film. The obtained film was evaluated by the method described above.
 〔実施例4〕
 基材フィルム1に代えて基材フィルム4を用いたこと、ウレタン組成物1に代えてウレタン組成物3を用いたこと、延伸を行わなかったこと以外は実施例1と同様にして、基材フィルム及び易滑層を備える、厚み40μmのフィルムを得た。得られたフィルムを上述した方法で評価した。
Example 4
In the same manner as in Example 1, except that the base film 4 was used instead of the base film 1, the urethane composition 3 was used instead of the urethane composition 1, and no stretching was performed. A film having a thickness of 40 μm provided with a film and a slippery layer was obtained. The obtained film was evaluated by the method described above.
 〔実施例5〕
 (1-1)において、基材フィルム1を基材フィルム5に変更したこと、ウレタン組成物1をウレタン組成物3に変更したこと以外は実施例1の(1-1)と同様にして、基材フィルム及び易滑層を備える、厚み52μmの積層フィルムを得た。
 この積層フィルムを二軸延伸機(東洋精機社製)を用いて、延伸温度180℃、延伸倍率1.3倍でフィルム幅方向に延伸して、光学フィルムとして厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。
Example 5
(1-1) In the same manner as (1-1) in Example 1 except that the base film 1 was changed to the base film 5 and the urethane composition 1 was changed to the urethane composition 3, A laminated film having a thickness of 52 μm and comprising a base film and an easy-slip layer was obtained.
This laminated film was stretched in the film width direction at a stretching temperature of 180 ° C. and a stretching ratio of 1.3 times using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a film having a thickness of 40 μm as an optical film. The obtained film was evaluated by the method described above.
 [比較例1]
 基材フィルム6を二軸延伸機(東洋精機社製)を用いて、延伸温度150℃、延伸倍率1.5倍でフィルム幅方向に延伸して、厚み40μmのフィルムを得た。このフィルムは基材フィルムのみを備える。得られたフィルムを、上述した方法で評価した。
[Comparative Example 1]
Using a biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.), the base film 6 was stretched in the film width direction at a stretching temperature of 150 ° C. and a stretching ratio of 1.5 times to obtain a film having a thickness of 40 μm. This film comprises only a base film. The obtained film was evaluated by the method described above.
 [比較例2]
 基材フィルム6を基材フィルム7に変更したこと以外は比較例1と同様にして、基材フィルムのみを備える厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。比較例2のフィルムには微粒子が含まれる。
[Comparative Example 2]
Except having changed the base film 6 into the base film 7, it carried out similarly to the comparative example 1, and obtained the film of thickness 40 micrometers provided only with a base film. The obtained film was evaluated by the method described above. The film of Comparative Example 2 contains fine particles.
 [比較例3]
 基材フィルム6を基材フィルム8に変更したこと以外は比較例1と同様にして、基材フィルムのみを備える厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。
[Comparative Example 3]
Except having changed the base film 6 into the base film 8, it carried out similarly to the comparative example 1, and obtained the film of thickness 40 micrometers provided only with a base film. The obtained film was evaluated by the method described above.
 [比較例4]
 基材フィルム6を基材フィルム9に変更したこと以外は比較例1と同様にして、基材フィルムのみを備える厚み40μmのフィルムを得た。得られたフィルムを、上述した方法で評価した。
[Comparative Example 4]
Except having changed the base film 6 into the base film 9, it carried out similarly to the comparative example 1, and obtained the film of thickness 40micrometer provided only with a base film. The obtained film was evaluated by the method described above.
 実施例及び比較例の結果を表1に示す。表1には、実施例及び比較例の基材フィルムの種類(基材フィルム1~9)、基材フィルムに含まれるブロック共重合体中の重合体ブロックの重量比(St/Ip/St)と、スチレン水素化物単位とイソプレン水素化物単位の重量比(St/Ip比)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、易滑層用のウレタン組成物の種類(ウレタン組成物1~3)、延伸温度(℃)、延伸倍率、延伸前のフィルムの厚み(μm)及び延伸後のフィルムの厚み(μm)を併せて示した。例えば、実施例及び比較例において、St/Ip/St=60/10/30といった表記は、芳香族ビニル化合物水素化物ブロックA1、ジエン化合物水素化物ブロック及び芳香族ビニル化合物水素化物ブロックA2における、スチレン水素化物(St)単位及びイソプレン水素化物(Ip)単位の重量比を示す。 Table 1 shows the results of Examples and Comparative Examples. Table 1 shows the types of base film of the examples and comparative examples (base films 1 to 9) and the weight ratio of the polymer block in the block copolymer contained in the base film (St / Ip / St). And weight ratio (St / Ip ratio) of styrene hydride unit and isoprene hydride unit, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), type of urethane composition for easy slip layer (urethane composition) 1-3), stretching temperature (° C.), stretching ratio, film thickness before stretching (μm), and film thickness after stretching (μm) are also shown. For example, in the examples and comparative examples, the notation St / Ip / St = 60/10/30 represents styrene in the aromatic vinyl compound hydride block A1, the diene compound hydride block, and the aromatic vinyl compound hydride block A2. The weight ratio of hydride (St) units and isoprene hydride (Ip) units is shown.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~5で得られたフィルムは、衝撃強度が高く、内部ヘイズが低く、|Re|及び|Rth|がともに低いという特性を有することより、偏光板において偏光子を保護する保護フィルムとして有用に用いうる。また、実施例1~5で得られたフィルムはブロッキングの発生を抑制する効果が高いので、長尺のフィルムロールの形状での保存及び運搬に適しており、当該形状の保護フィルム等としても好適に用いることができる。 The films obtained in Examples 1 to 5 have the characteristics that the impact strength is high, the internal haze is low, and | Re | and | Rth | are both low. Can be usefully used. In addition, since the films obtained in Examples 1 to 5 have a high effect of suppressing the occurrence of blocking, they are suitable for storage and transportation in the form of a long film roll, and are also suitable as protective films having such a shape. Can be used.

Claims (6)

  1.  基材フィルムと、前記基材フィルム上に設けられた易滑層と、を備え、
     前記基材フィルムは、ブロック共重合体を含み、
     前記ブロック共重合体は、芳香族ビニル化合物水素化物単位を有するブロック及びジエン化合物水素化物単位を有するブロックを有し、
     前記芳香族ビニル化合物水素化物単位を有するブロックの数と、前記ジエン化合物水素化物を有するブロックの数との合計が、前記ブロック共重合体1分子当たり3つ以上であり、
     前記易滑層は、ポリウレタンと、前記ポリウレタンを架橋させうる架橋剤と、不揮発性塩基と、微粒子と、を含む組成物の硬化物からなる、フィルム。
    A base film, and an easy-slip layer provided on the base film,
    The base film includes a block copolymer,
    The block copolymer has a block having an aromatic vinyl compound hydride unit and a block having a diene compound hydride unit;
    The sum of the number of blocks having the aromatic vinyl compound hydride unit and the number of blocks having the diene compound hydride is 3 or more per molecule of the block copolymer;
    The easy-sliding layer is a film made of a cured product of a composition containing polyurethane, a crosslinking agent capable of crosslinking the polyurethane, a non-volatile base, and fine particles.
  2.  前記ブロック共重合体において、
     前記芳香族ビニル化合物水素化物単位を有するブロックの含有率が80重量%~90重量%、前記ジエン化合物水素化物単位を有するブロックの含有率が10重量%~20重量%であるとともに、
     重合体鎖の一端以上が、前記芳香族ビニル化合物水素化物単位を有するブロックからなる、請求項1に記載のフィルム。
    In the block copolymer,
    The content of the block having the aromatic vinyl compound hydride unit is 80% by weight to 90% by weight, the content of the block having the diene compound hydride unit is 10% by weight to 20% by weight,
    The film according to claim 1, wherein at least one end of the polymer chain is composed of a block having the aromatic vinyl compound hydride unit.
  3.  その面内の位相差の絶対値が1nm以下で、厚み方向の位相差の絶対値が1nm以下である、請求項1または2に記載のフィルム。 The film according to claim 1 or 2, wherein the absolute value of the in-plane retardation is 1 nm or less and the absolute value of the retardation in the thickness direction is 1 nm or less.
  4.  延伸フィルムである、請求項1~3のいずれか一項に記載のフィルム。 The film according to any one of claims 1 to 3, which is a stretched film.
  5.  前記ポリウレタンの引っ張り弾性率が1000N/mm以上5000N/mm以下である、請求項1~4のいずれか一項に記載のフィルム。 Tensile elastic modulus of the polyurethane is 1000 N / mm 2 or more 5000N / mm 2 or less, the film according to any one of claims 1 to 4.
  6.  前記ポリウレタンが、ポリエーテル系ポリウレタンである、請求項1~5のいずれか一項に記載のフィルム。 The film according to any one of claims 1 to 5, wherein the polyurethane is a polyether-based polyurethane.
PCT/JP2017/045149 2016-12-28 2017-12-15 Film WO2018123662A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559054A JPWO2018123662A1 (en) 2016-12-28 2017-12-15 the film
KR1020197017512A KR20190100916A (en) 2016-12-28 2017-12-15 film
CN201780070629.5A CN109963712A (en) 2016-12-28 2017-12-15 membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256103 2016-12-28
JP2016256103 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123662A1 true WO2018123662A1 (en) 2018-07-05

Family

ID=62707370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045149 WO2018123662A1 (en) 2016-12-28 2017-12-15 Film

Country Status (5)

Country Link
JP (1) JPWO2018123662A1 (en)
KR (1) KR20190100916A (en)
CN (1) CN109963712A (en)
TW (1) TW201834855A (en)
WO (1) WO2018123662A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081957A1 (en) * 2000-04-25 2001-11-01 Teijin Limited Optical film
JP2005105140A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Transparent polymer film, and polarizing plate and liquid crystal display device obtained by using the same
JP2006283010A (en) * 2005-03-07 2006-10-19 Asahi Kasei Chemicals Corp Optical film
JP2011013378A (en) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd Film
WO2012043295A1 (en) * 2010-09-29 2012-04-05 日本ゼオン株式会社 Laminated film, polarizing plate protective film, polarizing plate, and method for producing laminated film
WO2012157280A1 (en) * 2011-05-18 2012-11-22 コニカミノルタアドバンストレイヤー株式会社 Polarizing plate protective film, polarizing plate, and liquid crystal display device
JP2013010853A (en) * 2011-06-29 2013-01-17 Nippon Zeon Co Ltd Double layer film, method for producing the same, polarizing plate protective film and polarizing plate
WO2015098750A1 (en) * 2013-12-26 2015-07-02 日本ゼオン株式会社 Multilayered film and method for manufacturing same
WO2017086265A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336910B2 (en) 1998-12-04 2009-09-30 日本ゼオン株式会社 Hydrogenated polymer, resin composition, and molding material for information recording medium substrate
JP4224655B2 (en) 1999-08-12 2009-02-18 日本ゼオン株式会社 Alicyclic hydrocarbon copolymer
JP2002105151A (en) 2000-09-29 2002-04-10 Nippon Zeon Co Ltd Films and sheets
JP5354733B2 (en) * 2008-07-29 2013-11-27 日東電工株式会社 Polarizer protective film and polarizing plate and image display device using polarizer protective film
EP2365031B1 (en) * 2008-12-10 2017-02-08 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition
WO2014024855A1 (en) * 2012-08-07 2014-02-13 東洋紡株式会社 Polyester film for polarizer protection, polarizing plate and liquid crystal display device
CN105359011A (en) * 2013-07-01 2016-02-24 日本瑞翁株式会社 Optical film and production method for same
WO2015147013A1 (en) * 2014-03-26 2015-10-01 日本ゼオン株式会社 Multilayered film and method for manufacturing same
WO2016140256A1 (en) * 2015-03-03 2016-09-09 凸版印刷株式会社 Outer packaging material for electricity storage device and electricity storage device using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081957A1 (en) * 2000-04-25 2001-11-01 Teijin Limited Optical film
JP2005105140A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Transparent polymer film, and polarizing plate and liquid crystal display device obtained by using the same
JP2006283010A (en) * 2005-03-07 2006-10-19 Asahi Kasei Chemicals Corp Optical film
JP2011013378A (en) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd Film
WO2012043295A1 (en) * 2010-09-29 2012-04-05 日本ゼオン株式会社 Laminated film, polarizing plate protective film, polarizing plate, and method for producing laminated film
WO2012157280A1 (en) * 2011-05-18 2012-11-22 コニカミノルタアドバンストレイヤー株式会社 Polarizing plate protective film, polarizing plate, and liquid crystal display device
JP2013010853A (en) * 2011-06-29 2013-01-17 Nippon Zeon Co Ltd Double layer film, method for producing the same, polarizing plate protective film and polarizing plate
WO2015098750A1 (en) * 2013-12-26 2015-07-02 日本ゼオン株式会社 Multilayered film and method for manufacturing same
WO2017086265A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate

Also Published As

Publication number Publication date
JPWO2018123662A1 (en) 2019-11-21
TW201834855A (en) 2018-10-01
KR20190100916A (en) 2019-08-29
CN109963712A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
TWI635155B (en) Multilayer film and manufacturing method thereof
JP5467752B2 (en) Biaxially stretched polyester film
JP7003915B2 (en) Release film
JP5434568B2 (en) Hard coat film for molding
TW201000317A (en) Readily bondable polyester film
JP6119910B1 (en) Polyimide film laminate
TW201733787A (en) Long film
KR20140118788A (en) Urethane resin composition, primer, laminate and image display device
JP5402607B2 (en) Hard coat film for molding and molded body
CN109564321A (en) Optical film having excellent adhesive strength and durability and polarizing film including the same
JP6565901B2 (en) Multi-layer film and method for producing the same
WO2017164045A1 (en) Method for manufacturing and device for manufacturing multilayer film
WO2018123662A1 (en) Film
JP5560693B2 (en) Hard coat film for molding and molded body
JP2020179890A (en) Film roll
WO2023054256A1 (en) Multilayer film, optical multilayer film, and manufacturing method
WO2024095968A1 (en) Optical film
KR101612082B1 (en) Stacked and biaxially stretched polyester film for optical use
TW202413106A (en) Multilayer film and method for manufacturing same, polarizing plate, and organic electroluminescent image display device
WO2024024467A1 (en) Liquid composition and optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559054

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197017512

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888996

Country of ref document: EP

Kind code of ref document: A1