WO2018123895A1 - Reducer, joint device, and robot arm structure - Google Patents
Reducer, joint device, and robot arm structure Download PDFInfo
- Publication number
- WO2018123895A1 WO2018123895A1 PCT/JP2017/046202 JP2017046202W WO2018123895A1 WO 2018123895 A1 WO2018123895 A1 WO 2018123895A1 JP 2017046202 W JP2017046202 W JP 2017046202W WO 2018123895 A1 WO2018123895 A1 WO 2018123895A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- shaft
- roller bearing
- gear
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/063—Fixing them on the shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/07—Fixing them on the shaft or housing with interposition of an element
- F16C35/077—Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/06—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/14—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
Definitions
- the present invention decelerates rotation input from a driving device including a motor, converts the rotation into a rotation in a direction orthogonal to the rotation of the motor, and outputs the rotation, and an arm is rotatably mounted using the reduction device.
- the present invention relates to a joint device for a robot and a robot arm structure in which an arm is attached to the joint device.
- a motor shaft (4) is mounted in front of a motor shaft (4) of a motor (3) directly connected to a box-shaped housing (2) by a ball bearing (5, 5).
- a hypoid gear (7) is formed at the tip of the motor shaft (4).
- the hypoid gear (7) is integrally coupled to the second shaft (6).
- a pinion (9) is formed on the second shaft (6).
- a hollow output shaft (11) is supported in parallel with the second shaft (6) by ball bearings (10, 10), and is integrated with the output shaft (11).
- a gear (12) coupled to the pinion (9) meshes with the pinion (9) of the second shaft (6).
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reduction device that enables more accurate rotation output, a joint device for a robot including the reduction device, and a robot arm structure. There is.
- a speed reduction device is coupled to a drive device having a drive shaft that is driven to rotate about a first axis by a motor and a drive pinion provided at the tip of the drive shaft.
- a reduction device that decelerates input rotation, converts the rotation to rotation having a rotation axis orthogonal to the first axis, and outputs the rotation.
- a gear portion that is disposed in the hollow shaft portion of the housing so as to be rotatable about a third shaft extending in parallel with the second shaft and that can be directly or indirectly engaged with the pinion shaft is disposed on the outer periphery.
- a rotary drive body having a support portion for supporting the drive target at the end portion in the third axial direction
- a cross roller bearing having an inner ring and an outer ring is provided between the inner peripheral surface of the casing and the outer peripheral surface of the rotary drive body, and the inner ring of the cross roller bearing is fixed to the outer peripheral surface of the rotary drive body.
- the outer ring of the cross roller bearing is fixed to the housing.
- the casing has a bottom surface facing the third axis direction, and an outer ring of the cross roller bearing is placed on the bottom surface of the casing,
- a pressing member may be fixed to the housing so as to sandwich the outer ring of the cross roller bearing together with the bottom surface.
- the pressing member has a C shape in which a part in the circumferential direction is notched, and a part of the ring gear is disposed in the notch of the pressing member. It may be characterized by being.
- the speed reducer according to a further embodiment of the present invention may be characterized in that the cross roller bearing is disposed in the vicinity of an end portion in the third axial direction of the rotary drive body.
- a ball bearing is disposed in the vicinity of an end portion in the third axial direction of the rotary drive body, and the gear portion and the ring gear are interposed between the ball bearing and the cross roller bearing. May be arranged.
- the support portion is a plurality of screw holes formed on an end surface in the third axial direction of the rotary drive body, and the end face of the rotary drive body is aligned with the end face.
- a pin hole may be formed.
- a robot joint device is a robot joint device for mounting an arm rotatably.
- a drive unit having a motor, a drive shaft that is driven to rotate about a first axis by the motor, and a drive pinion provided at the tip of the drive shaft;
- the rotation according to any one of claims 1 to 6, wherein the rotation input to the drive device is decelerated, the rotation is converted into a rotation having a rotation axis orthogonal to the first axis, and output.
- a reduction gear, The support portion is configured to be capable of mounting an arm.
- the robot arm structure according to an embodiment of the present invention may include an arm and the above-described characteristic joint device to which the arm is connected.
- the cross roller bearing having the inner ring and the outer ring is provided between the inner peripheral surface of the casing and the outer peripheral surface of the rotary drive body.
- the inner ring of the cross roller bearing is fixed to the outer peripheral surface of the rotary drive body, and the outer ring of the cross roller bearing is fixed to the housing. Since the rolling surface of the cross roller bearing is in line contact, the elastic displacement with respect to the load is negligible, and as a result, shaft runout during rotation of the rotary drive is effectively suppressed. That is, in the speed reducer of the present invention, the rotational accuracy and backlash accuracy in output are improved.
- the upper and lower surfaces of the outer ring of the cross roller bearing are sandwiched between the pressing member and the bottom surface of the housing, so that the rattling of the cross roller bearing itself is suppressed and rotational driving is performed.
- the rotation accuracy of the body has been further improved.
- the holding member has a C-shape and a part of the ring gear is arranged in the notch, the entire apparatus can be made compact while stably holding the cross roller bearing. .
- the positioning target pin hole is formed together with the support portion (screw hole) on the tip surface of the rotary drive body, so that the drive target can be easily attached to the support portion.
- the pin since the pin receives a rotational load, higher load resistance can be obtained.
- FIG. 4 is a cross-sectional view of the joint device of FIG. 3 along AA.
- the expanded sectional view of the joint apparatus of FIG. FIG. 5 is a BB cross-sectional view of the joint device of FIG. 4.
- 1 is a schematic perspective view of a robot arm structure according to an embodiment of the present invention.
- the joint device 100 of this embodiment is mainly configured as a robot joint. As shown in FIGS. 1 to 4, the joint device 100 of the present embodiment is configured by combining a drive device 101 and a reduction gear 110 coupled to the drive device 101.
- the speed reduction device 110 is described as a part of the robot joint device 100.
- the speed reduction device of the present invention is not limited to the use of the robot joint device, and can be used by those skilled in the art. If it exists, it is applicable to all uses.
- the drive device 101 includes a motor 108, a drive shaft 102 that is driven to rotate about the first axis X1 by the motor 108, a drive pinion 103 provided at the tip of the drive shaft 102, and And a housing 104 containing a power mechanism together with the base end of the drive shaft 102.
- the driving device 101 can output a rotational driving force with the first axis X1 as the rotational axis via the driving shaft 102 and the drive pinion 103.
- the motor 108 is connected to a power source and configured to be supplied with power (not shown).
- the output shaft (not shown) of the motor 108 is connected to the base end of the drive shaft 102 via the coupling 107, so that the drive shaft 102 is rotationally driven coaxially with the output shaft by the motor 108. That is, the assembly of the drive shaft 102, the drive pinion 103, the housing 104 and the ball bearing 125 functions to connect the motor 108 and the reduction gear 110.
- the driving device may be configured integrally with the motor.
- the drive shaft 102 is rotatably supported by the housing 104 via a ball bearing 106 for rotating the first axis X1.
- the housing 104 has four overhangs formed vertically on the tip side on the left side surface, and a through hole 105 is formed in the overhang.
- the through-hole 105 is formed so as to fix the driving device 101 to the speed reduction device 110 with a screw.
- the through hole 105 of the drive device 101 and the fixing portion (screw hole) 111a of the speed reducer 110 are matched, the screw penetrates them, thereby driving the joint device 100.
- the device 101 is fixed to the speed reducer 110.
- the electric motor of a general mechanism can be employ
- the speed reducer 110 decelerates the rotation (rotational driving force) input from the drive device 101 and has a rotation axis (third axis X3) orthogonal to the first axis X1. It is configured so as to be converted into an output. That is, the torque of the drive device 101 (motor 108) is amplified by the output of the reduction gear 110.
- the reduction gear 110 includes a housing 111 having a fixing portion (screw hole) 111a for connecting the driving device 101.
- the casing 111 includes an input unit 112 to which the rotational driving force of the driving device 101 is input, a gear housing unit 113 for converting and transmitting rotation input through the input unit 112, and rotation after conversion. It is comprised from three parts (area
- An input portion 112 for the rotational driving force of the driving device 101 is formed at the end of the housing 111 on the driving device 101 side (the right end in FIG. 3).
- the input unit 112 is open at the end and can receive the drive shaft 102 of the drive device 101.
- the drive shaft 102 of the drive device 101 is inserted into the housing 111 through the opening while the housing 104 is fixed to the housing 111.
- a ball bearing 125 for rotating the first axis X1 is disposed in the input unit 112 of the casing 111, and the ball bearing 125 is interposed between the inner peripheral surface of the opening of the casing 111 and the outer peripheral surface of the drive shaft 102. Yes.
- the drive shaft 102 is rotatably supported on the housing 111 by the ball bearing 125.
- the drive pinion 103 at the tip of the drive shaft 102 is disposed in the gear accommodating portion 113 inside the housing 111.
- the gear housing portion 113 is located adjacent to the input portion 112 of the housing 111. As shown in FIG. 6, the gear housing 113 inside the housing 111 is integrally coupled to the ring gear 115 and the ring gear 115 that rotates about the second axis X2 orthogonal to the first axis X1, A spur gear-like pinion shaft 116 that rotates about two axes X2 is arranged.
- the meshing surface of the drive pinion 103 and the meshing surface of the ring gear 115 are arranged so as to be able to mesh directly, and the drive pinion 103 and the ring gear 115 constitute a hypoid gear.
- the hypoid gear converts the rotation of the drive shaft 102 about the first axis X1 into 90 ° rotation about the second axis X2 (perpendicular to the first axis X1).
- the ring gear 115 and the pinion shaft 116 are rotatably supported by the housing 111 via ball bearings 126 for rotation of the second axis X2 disposed at both ends of the rotation shaft. Then, in synchronization with the ring gear 115, the pinion shaft 116 rotates about the second axis X2 as the rotation axis, and the rotational driving force is transmitted to the rotational driving body 118 of the adjacent hollow shaft portion 114.
- the hollow shaft portion 114 of the casing 111 has a substantially cylindrical shape, and is formed so as to accommodate the rotary drive body 118 therein.
- the rotary drive body 118 has a hollow cylindrical shape. Further, the rotary drive body 118 is disposed in the hollow shaft portion 114 of the casing 111 so as to be rotatable about a third axis X3 extending in parallel with the second axis X2.
- a spur gear portion 118a is formed so as to project radially outward (radially) substantially at the center in the axial direction. And the gear part 118a of the rotation drive body 118 is arrange
- the reduction gear 110 of the present embodiment the reduction ratio is set to 1 / 48.75, but the present invention is not limited to this.
- the rotary drive body 118 is rotatably supported by the casing 111 via a cross roller bearing 121 and a ball bearing 127.
- the cross roller bearing 121 is disposed near one end (lower end) of the rotational drive body 118 in the third axis X3 direction
- the ball bearing 127 is disposed near the other end (upper end) of the rotational drive body 118 in the third axis X3 direction. Yes.
- a part of the gear portion 118 a and the ring gear 115 is disposed between the cross roller bearing 121 and the ball bearing 127.
- the ball bearing 127 is installed so that the inner peripheral surface of the inner ring is fitted to the outer peripheral surface of the rotary drive body 118 and the outer peripheral surface of the outer ring is fitted to the inner peripheral surface of the hollow shaft portion 114. Further, the lower surface of the inner ring of the ball bearing 127 is engaged with a step on the outer periphery of the rotary drive body 118.
- the cross roller bearing 121 is a bearing having an inner ring 121a and an outer ring 121b, and cylindrical rollers arranged orthogonally between the inner ring 121a and the outer ring 121b. Since the rolling surface of the cross roller bearing 121 is in line contact, the elastic displacement due to the bearing load is very small.
- the inner ring 121 a of the cross roller bearing 121 is fixed to the outer peripheral surface of the rotary driving body 118, and the outer ring 121 b is fixed to the casing 111.
- a stepped portion 118 b is formed on the outer periphery of the rotary drive body 118.
- the inner ring 121a of the cross roller bearing 121 is fitted on the outer periphery of the rotary drive body 118, and the upper surface of the inner ring 121a is engaged with the step portion 118b, whereby the inner ring 121a is coupled to the rotary drive body 118.
- the outer peripheral surface of the outer ring 121b is in contact with the inner peripheral surface 114a of the cylindrical wall of the hollow shaft portion 114 of the casing 111, and the lower surface of the outer ring 121b is on the bottom surface 114b of the casing 111 facing the third axis X3 direction. It is in contact.
- the outer ring 121b of the cross roller bearing 121 is placed on the stepped bottom surface 114b.
- the pressing member 122 is fixed to the casing 111 so as to sandwich the outer ring 121b of the cross roller bearing 121 together with the bottom surface 114b of the casing 111 from the axial direction.
- the pressing member 122 is fixed to the outer wall of the casing 111 from above by a screw extending parallel to the third axis X3 direction.
- the pressing member 122, the outer ring 121b, and the housing 111 may be attached to each other with an adhesive.
- the inner ring 121a and the rotary drive body 118 may be supplementarily bonded to each other with an adhesive. Thereby, fixing strength improves.
- the pressing member 122 has a C-shape in front view with a part of the circumferential direction cut away.
- the pressing member 122 has a notch 122a having a predetermined width. That is, the outer ring 121b of the cross roller bearing 121 is pressed by the meat portion excluding the notch 122a of the pressing member 122. That is, most of the circumferential direction of the outer ring 121b of the cross roller bearing 121 is supported from three sides of the outer peripheral surface, the upper surface, and the lower surface.
- a part of the ring gear 115 is disposed in the notch 122a. In other words, since the notch 122a is formed in the pressing member 122, interference between the pressing member 122 and the ring gear 115 can be prevented, and the distance between the ring gear 115 and the rotary drive body 118 can be reduced.
- a plurality of screw holes 118d are formed on the end face of the rotary drive body 118 in the direction of the third axis X3 as a support portion for supporting the drive target (arm 11).
- a plurality of pin holes 118e for alignment are formed in the end face of the rotary drive body 118 in the direction of the third axis X3 along with the screw holes 118d (see FIG. 3).
- the pin hole 118e makes it easy to fix the arm 11 to the support portion 118c by inserting a pin (not shown) protruding from the arm 11. Further, since the pin receives a rotational load, higher load resistance can be obtained.
- FIG. 8 shows a robot arm structure 10 to which the joint device 100 and the speed reduction device 110 of the present embodiment are applied.
- the robot arm structure 10 includes an arm 11 and a joint device 100 to which the arm 11 is connected.
- the arm 11 is rotationally attached to the joint device 100 by fixing the base end of the arm 11 to the support portion 118d of the joint device 100 with a screw.
- a cross roller bearing having an inner ring 121a and an outer ring 121b between the inner peripheral surface 114a of the hollow shaft 114 of the housing 111 and the outer peripheral surface of the rotary drive body 118. 121 is provided. Since the rolling surface of the cross roller bearing 121 is a line contact, the elastic displacement with respect to the load is negligible, and as a result, the shaft shake during rotation of the rotary drive body 118 is effectively suppressed.
- the upper and lower surfaces of the outer ring 121b of the cross roller bearing 121 are sandwiched between the pressing member 122 and the bottom surface 114b of the casing 111, so that rattling of the cross roller bearing 121 itself is suppressed as much as possible.
- the cross roller bearing 121 is disposed at one end of the rotational drive body 118 in the third axis X3 direction, and the ball bearing 127 is disposed at the other end of the rotational drive body 118 in the third axis X3 direction.
- the body 118 can be stably supported by the housing 111. Therefore, in the reduction gear 110 and the joint device 100 of the present invention, the rotational accuracy and backlash accuracy in output are greatly improved.
- the pressing member 122 has a C shape, and a part of the ring gear 115 is disposed in the notch 122a. Further, a gear portion 118 a and a ring gear 115 are disposed between the cross roller bearing 121 and the ball bearing 127. Thereby, each component can be arranged close to each other in the direction of the first axis X1. That is, the speed reduction device 110 and the joint device 100 of the present embodiment can be configured compactly while greatly improving the rotation accuracy and the backlash accuracy.
- the cross roller bearing 121 and the ball bearing 127 cooperate to support the rotation drive body 118 on the housing 111, but the present invention is not limited to this.
- the ball bearing 127 instead of the ball bearing 127, an additional cross roller bearing may be employed.
- the ball bearing 127 may be omitted.
- the speed reduction mechanism of the speed reduction device 100 of the above-described embodiment includes a ring gear 115, a pinion shaft 116, and a gear portion 118 that are arranged so as to directly mesh with each other.
- the present invention is not limited to the above-described structure, and one or a plurality of gears may be added between the respective gears so that the respective constituent elements mesh with each other indirectly.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Robotics (AREA)
- Rolling Contact Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Gear Transmission (AREA)
- Mounting Of Bearings Or Others (AREA)
- Manipulator (AREA)
- Retarders (AREA)
Abstract
Description
本発明は、モータを含む駆動装置から入力された回転を減速し、モータの回転と直交する方向の回転に変換して出力する減速装置、該減速装置を用いてアームを回転駆動自在に装着するためのロボットの関節装置、及び、該関節装置にアームを装着したロボットアーム構造に関する。 The present invention decelerates rotation input from a driving device including a motor, converts the rotation into a rotation in a direction orthogonal to the rotation of the motor, and outputs the rotation, and an arm is rotatably mounted using the reduction device. The present invention relates to a joint device for a robot and a robot arm structure in which an arm is attached to the joint device.
従来、モータ軸の回転を減速機構を介してモータ軸と直交方向に軸支される出力軸に伝達可能とした減速機が、例えば、ロボットアーム構造の関節装置などの種々の用途に用いられている。 2. Description of the Related Art Conventionally, a reduction gear that can transmit rotation of a motor shaft to an output shaft that is supported in a direction orthogonal to the motor shaft via a speed reduction mechanism has been used in various applications such as a joint device having a robot arm structure. Yes.
例えば、特許文献1の減速機(1)において、箱状のハウジング(2)に直結されるモータ(3)のモータ軸(4)の前方には、ボールベアリング(5,5)によってモータ軸(4)の軸線(L1)と直交方向に第二軸(6)が軸支され、この第二軸(6)と一体に結合されるハイポイドギヤ(7)が、モータ軸(4)の先端に形成されたハイポイドピニオン(8)と噛合している。また、第二軸(6)にはピニオン(9)が形成されている。一方、第二軸(6)の前方には、ボールベアリング(10,10)によって中空の出力軸(11)が第二軸(6)と平行に軸支され、この出力軸(11)と一体に結合されるギヤ(12)が、第二軸(6)のピニオン(9)に噛合している。そして、モータ軸(4)の軸線(L1)上に出力軸(11)の軸線(L2)が位置し、両軸線(L1,L2)が直角に交わる配置となっている。なお、()内に特許文献1の符号を示した。
For example, in the reduction gear (1) of
昨今、減速機(減速装置)はロボットアーム構造などに応用されることから、高精度な回転動作が求められている。これに対して、特許文献1の減速機では、ボールベアリングを介して出力軸がハウジングに回転可能に支持されている。そのため、ボールベアリングの構造上、外輪と内輪とが高さ(厚み)方向にがたつくことから、出力軸がその延伸方向から傾いて軸ぶれが起こり易い。すなわち、従来の減速機において、このような出力軸の軸ぶれに伴って、出力軸の回転精度や減速機のバックラッシ精度が低下することが課題として挙げられる。
Recently, since a reduction gear (deceleration device) is applied to a robot arm structure or the like, a highly accurate rotation operation is required. On the other hand, in the reduction gear of
本発明は、上記課題を解決するためになされたものであり、その目的は、より高精度の回転出力を可能とする減速装置、該減速装置を備えるロボットの関節装置及びロボットアーム構造を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reduction device that enables more accurate rotation output, a joint device for a robot including the reduction device, and a robot arm structure. There is.
本発明の一実施形態に記載の減速装置は、モータによって第1軸を中心に回転駆動される駆動軸及び前記駆動軸先端に設けられたドライブピニオンを有する駆動装置に結合され、前記駆動装置から入力された回転を減速し、前記第1軸と直交する回転軸を有する回転に変換して出力する減速装置であって、
前記駆動装置を連結するための固定部、及び、中空軸部を有する筐体と、
前記筐体内部に配置され、前記第1軸と直交する第2軸を中心に回転し、前記駆動装置のドライブピニオンとともにハイポイドギヤを構成するリングギヤと、
前記筐体内部で前記リングギヤに結合され、前記第2軸を中心に回転するピニオン軸と、
前記第2軸と平行に延伸する第3軸を中心に回転可能に前記筐体の前記中空軸部に配置され、前記ピニオン軸と直接的又は間接的に噛み合い可能に配置されたギヤ部を外周に有し、且つ、第3軸方向の端部に駆動対象を支持するための支持部を有する回転駆動体とを、備え、
前記筐体の内周面と前記回転駆動体の外周面との間には、内輪及び外輪を有するクロスローラベアリングが設けられ、前記クロスローラベアリングの内輪が前記回転駆動体の外周面に固定され、前記クロスローラベアリングの外輪が前記筐体に固定されていることを特徴とする。
A speed reduction device according to an embodiment of the present invention is coupled to a drive device having a drive shaft that is driven to rotate about a first axis by a motor and a drive pinion provided at the tip of the drive shaft. A reduction device that decelerates input rotation, converts the rotation to rotation having a rotation axis orthogonal to the first axis, and outputs the rotation.
A fixed portion for connecting the driving device, and a housing having a hollow shaft portion;
A ring gear that is disposed inside the housing, rotates around a second axis orthogonal to the first axis, and forms a hypoid gear together with a drive pinion of the driving device;
A pinion shaft that is coupled to the ring gear within the housing and rotates about the second axis;
A gear portion that is disposed in the hollow shaft portion of the housing so as to be rotatable about a third shaft extending in parallel with the second shaft and that can be directly or indirectly engaged with the pinion shaft is disposed on the outer periphery. And a rotary drive body having a support portion for supporting the drive target at the end portion in the third axial direction,
A cross roller bearing having an inner ring and an outer ring is provided between the inner peripheral surface of the casing and the outer peripheral surface of the rotary drive body, and the inner ring of the cross roller bearing is fixed to the outer peripheral surface of the rotary drive body. The outer ring of the cross roller bearing is fixed to the housing.
本発明のさらなる一実施形態の減速装置は、前記筐体は、第3軸方向を向いた底面を有し、前記筐体の底面に前記クロスローラベアリングの外輪が載置され、前記筐体の底面とともに前記クロスローラベアリングの外輪を挟持するように押さえ部材が前記筐体に固定されていることを特徴としてもよい。 In a speed reducer according to a further embodiment of the present invention, the casing has a bottom surface facing the third axis direction, and an outer ring of the cross roller bearing is placed on the bottom surface of the casing, A pressing member may be fixed to the housing so as to sandwich the outer ring of the cross roller bearing together with the bottom surface.
本発明のさらなる一実施形態の減速装置は、前記押さえ部材は、周方向の一部が切り欠かれたC字形状を有し、前記押さえ部材の切り欠きに前記リングギヤの一部が配置されていることを特徴としてもよい。 In a speed reducer according to a further embodiment of the present invention, the pressing member has a C shape in which a part in the circumferential direction is notched, and a part of the ring gear is disposed in the notch of the pressing member. It may be characterized by being.
本発明のさらなる一実施形態の減速装置は、前記クロスローラベアリングは、前記回転駆動体の第3軸方向の端部近傍に配置されていることを特徴としてもよい。 The speed reducer according to a further embodiment of the present invention may be characterized in that the cross roller bearing is disposed in the vicinity of an end portion in the third axial direction of the rotary drive body.
本発明のさらなる一実施形態の減速装置は、ボールベアリングが前記回転駆動体の第3軸方向の端部近傍に配置され、前記ボールベアリングと前記クロスローラベアリングとの間に前記ギヤ部及び前記リングギヤが配置されていることを特徴としてもよい。 In a speed reducing device according to a further embodiment of the present invention, a ball bearing is disposed in the vicinity of an end portion in the third axial direction of the rotary drive body, and the gear portion and the ring gear are interposed between the ball bearing and the cross roller bearing. May be arranged.
本発明のさらなる一実施形態の減速装置は、前記支持部は、前記回転駆動体の第3軸方向の端面に形成された複数のネジ孔であり、前記回転駆動体の端面には、位置合わせ用のピン孔が形成されていることを特徴としてもよい。 In a speed reducing device according to a further embodiment of the present invention, the support portion is a plurality of screw holes formed on an end surface in the third axial direction of the rotary drive body, and the end face of the rotary drive body is aligned with the end face. A pin hole may be formed.
本発明の一実施形態のロボットの関節装置は、アームを回転駆動自在に装着するためのロボットの関節装置であって、
モータ、前記モータによって第1軸を中心に回転駆動される駆動軸及び前記駆動軸先端に設けられたドライブピニオンを有する駆動装置と、
前記駆動装置に結合され、前記駆動装置から入力された回転を減速し、前記第1軸と直交する回転軸を有する回転に変換して出力する請求項1から6のいずれか一項に記載の減速装置と、を備え、
前記支持部は、アームを装着可能に構成されていることを特徴とする。
A robot joint device according to an embodiment of the present invention is a robot joint device for mounting an arm rotatably.
A drive unit having a motor, a drive shaft that is driven to rotate about a first axis by the motor, and a drive pinion provided at the tip of the drive shaft;
The rotation according to any one of
The support portion is configured to be capable of mounting an arm.
本発明の一実施形態のロボットアーム構造は、アームと、前記アームが連結された、上記特徴的な関節装置と、を備えることを特徴としてもよい。 The robot arm structure according to an embodiment of the present invention may include an arm and the above-described characteristic joint device to which the arm is connected.
本発明の一形態の減速装置によれば、筐体の内周面と回転駆動体の外周面との間に内輪及び外輪を有するクロスローラベアリングが設けられている。そして、クロスローラベアリングの内輪が回転駆動体の外周面に固定され、クロスローラベアリングの外輪が筐体に固定されている。クロスローラベアリングの転がり面は、線接触であるため、荷重に対する弾性変位がごく僅かであり、結果として、回転駆動体の回転時の軸ぶれが効果的に抑えられる。すなわち、本発明の減速装置では、出力における回転精度及びバックラッシ精度が改善された。 According to the speed reducer of one aspect of the present invention, the cross roller bearing having the inner ring and the outer ring is provided between the inner peripheral surface of the casing and the outer peripheral surface of the rotary drive body. The inner ring of the cross roller bearing is fixed to the outer peripheral surface of the rotary drive body, and the outer ring of the cross roller bearing is fixed to the housing. Since the rolling surface of the cross roller bearing is in line contact, the elastic displacement with respect to the load is negligible, and as a result, shaft runout during rotation of the rotary drive is effectively suppressed. That is, in the speed reducer of the present invention, the rotational accuracy and backlash accuracy in output are improved.
本発明のさらなる形態の減速装置によれば、押さえ部材と筐体の底面との間にクロスローラベアリングの外輪の上下面を挟み込むことによって、クロスローラベアリング自体のがたつきが抑えられ、回転駆動体の回転精度がより一層改善した。また、押さえ部材がC字形状を有し、その切り欠きにリングギヤの一部が配置されることにより、クロスローラベアリングを安定して保持しつつ、装置全体をコンパクトにすることが可能となった。 According to the speed reducer of a further aspect of the present invention, the upper and lower surfaces of the outer ring of the cross roller bearing are sandwiched between the pressing member and the bottom surface of the housing, so that the rattling of the cross roller bearing itself is suppressed and rotational driving is performed. The rotation accuracy of the body has been further improved. In addition, since the holding member has a C-shape and a part of the ring gear is arranged in the notch, the entire apparatus can be made compact while stably holding the cross roller bearing. .
本発明のさらなる形態の減速装置によれば、回転駆動体の先端面に、支持部(ネジ孔)とともに位置合わせ用のピン孔を形成したことにより、駆動対象を容易に支持部に取り付け可能であり、且つ、ピンが回転荷重を受けることになるので、より高い耐荷重性が得られる。 According to the speed reducer of a further aspect of the present invention, the positioning target pin hole is formed together with the support portion (screw hole) on the tip surface of the rotary drive body, so that the drive target can be easily attached to the support portion. In addition, since the pin receives a rotational load, higher load resistance can be obtained.
以下、本発明の一実施形態について図面を参照しつつ説明する。なお、以下の説明において参照する各図の形状は、好適な形状を説明する上での概念図又は概略図であり、寸法比率等は実際の寸法比率とは必ずしも一致しない。つまり、本発明は、図面における寸法比率に限定されるものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the shape of each figure referred in the following description is a conceptual diagram or a schematic diagram for explaining a preferable shape, and a dimensional ratio or the like does not necessarily match an actual dimensional ratio. That is, the present invention is not limited to the dimensional ratio in the drawings.
図1乃至図7を参照して、本発明の一実施形態の減速装置110及び関節装置100について説明する。なお、図3乃至図7では、説明の便宜上、モータ108の記述を省略した。本実施形態の関節装置100は、主にロボットの関節として構成されている。図1乃至図4に示すとおり、本実施形態の関節装置100は、駆動装置101と、該駆動装置101に結合された減速装置110とが組み合わさって構成されている。なお、本明細書では、減速装置110は、ロボットの関節装置100の一部として説明されるが、本発明の減速装置は、ロボットの関節装置の用途に限定されることはなく、当業者であれば、あらゆる用途に応用可能である。
With reference to FIG. 1 thru | or FIG. 7, the
駆動装置101は、図1及び図5に示すとおり、モータ108、該モータ108によって第1軸X1を中心に回転駆動される駆動軸102、該駆動軸102先端に設けられたドライブピニオン103、及び、該駆動軸102の基端とともに動力機構を内蔵するハウジング104を備える。すなわち、駆動装置101は、駆動軸102及びドライブピニオン103を介して第1軸X1を回転軸とする回転駆動力を出力可能である。該モータ108は、電力源に接続されて電力が供給されるように構成されている(図示略)。モータ108の出力軸(図示略)が、駆動軸102の基端にカップリング107を介して接続されることによって、モータ108によって駆動軸102が出力軸と同軸で回転駆動される。つまり、駆動軸102、ドライブピニオン103、ハウジング104及びボールベアリング125のアセンブリがモータ108と減速装置110を連結するように機能する。なお、駆動装置は、モータと一体的に構成されてもよい。
As shown in FIGS. 1 and 5, the
駆動軸102は、第1軸X1回転用のボールベアリング106を介してハウジング104に回転式に支持されている。また、ハウジング104は、図2に示すように、左側面において先端側で上下に4つの張り出しを形成し、該張り出しに貫通孔105が形成されている。該貫通孔105は、減速装置110に駆動装置101をネジで固定するように穿設されている。具体的には、本実施形態の関節装置100では、駆動装置101の貫通孔105と減速装置110の固定部(ネジ孔)111aとが合致した状態で、これらにネジが貫通することにより、駆動装置101が減速装置110に固定されている。なお、モータ108には、一般的な機構の電動モータが採用され得ることから、その内部構造の図示及び説明を省略した。
The
減速装置110は、図5乃至図7に示すように、駆動装置101から入力された回転(回転駆動力)を減速し、第1軸X1と直交する回転軸(第3軸X3)を有する回転に変換して出力するように構成されている。つまり、減速装置110の出力では、駆動装置101(モータ108)のトルクが増幅される。減速装置110は、駆動装置101を連結するための固定部(ネジ孔)111aを有する筐体111を備える。筐体111は、駆動装置101の回転駆動力が入力される入力部112、該入力部112を介して入力された回転を変換及び伝達するためのギヤ収容部113、及び、変換後の回転を出力するための中空筒状の中空軸部114の3つの部分(領域)から構成されている。
As shown in FIGS. 5 to 7, the
該筐体111の駆動装置101側の端部(図3の右側端部)には、駆動装置101の回転駆動力の入力部112が形成されている。入力部112は、端部が開口して、駆動装置101の駆動軸102を受け入れ可能である。そして、図5に示すように、ハウジング104が筐体111に固定された状態で、該開口を介して駆動装置101の駆動軸102を筐体111内部に挿入している。筐体111の入力部112には、第1軸X1回転用のボールベアリング125が配置され、筐体111の開口の内周面と駆動軸102の外周面の間にボールベアリング125が介在している。つまり、入力部112において、駆動軸102がボールベアリング125によって筐体111に回転式に支持されている。その結果、駆動軸102先端のドライブピニオン103が筐体111内部のギヤ収容部113に配置されている。
An
また、筐体111の入力部112に隣接してギヤ収容部113が位置している。図6に示すように、筐体111内部のギヤ収容部113には、第1軸X1と直交する第2軸X2を中心に回転するリングギヤ115と、該リングギヤ115に一体的に結合され、第2軸X2を中心に回転する平歯車状のピニオン軸116とが配置されている。ドライブピニオン103の噛合面とリングギヤ115の噛合面とが直に噛み合い可能に配置され、ドライブピニオン103及びリングギヤ115がハイポイドギヤを構成している。つまり、ハイポイドギヤによって、第1軸X1を中心とする駆動軸102の回転が、(第1軸X1と直交する)第2軸X2を中心とする回転に90度変換される。リングギヤ115及びピニオン軸116は、その回転軸の両端に配置された第2軸X2回転用のボールベアリング126を介して、筐体111に回転式に支持されている。そして、リングギヤ115と同期してピニオン軸116が第2軸X2を回転軸として回転し、隣接する中空軸部114の回転駆動体118に回転駆動力が伝達される。
Further, the
該筐体111の中空軸部114は、略円筒形状を有し、内部に回転駆動体118を収容可能に形成されている。回転駆動体118は、中空の円筒形状を有している。また、回転駆動体118は、第2軸X2と平行に延伸する第3軸X3を中心に回転可能に筐体111の中空軸部114に配置されている。回転駆動体118の外周には、その軸方向の略中央において、平歯車状のギヤ部118aが径方向外方(放射状)に突出形成されている。そして、回転駆動体118のギヤ部118aは、ピニオン軸116と噛み合い可能に配置されている。つまり、ギヤ部118aの外面(噛合面)の一部は、ギヤ収容部113と中空軸部114の境界近傍に位置する。ギヤ部118aの外径がピニオン軸116の外径よりも大きいことから、ピニオン軸116の回転が減速されて、回転駆動体118に伝達される。なお、本実施形態の減速装置110では、減速比が1/48.75に設定されているが、本発明はこれに限定されない。
The
回転駆動体118は、クロスローラベアリング121及びボールベアリング127を介して筐体111に回転式に支持されている。クロスローラベアリング121が回転駆動体118の第3軸X3方向の一端(下端)近傍に配置され、ボールベアリング127が回転駆動体118の第3軸X3方向の他端(上端)近傍に配置されている。そして、クロスローラベアリング121とボールベアリング127との間に、ギヤ部118a及びリングギヤ115の一部が配置されている。なお、ボールベアリング127は、内輪の内周面が回転駆動体118外周面に嵌着され、外輪の外周面が中空軸部114の内周面に嵌着するように設置されている。また、ボールベアリング127の内輪の下面が回転駆動体118外周の段差に係合している。
The
クロスローラベアリング121は、内輪121a及び外輪121bを有し、内輪121aと外輪121bとの間に円筒状のころを直交させて配列した軸受けである。このクロスローラベアリング121の転がり面は、線接触であるため、軸受荷重による弾性変位がごく僅かである。そして、筐体111内部の中空軸部114において、クロスローラベアリング121の内輪121aが回転駆動体118の外周面に固定され、外輪121bが筐体111に固定されている。
The
より具体的には、回転駆動体118の外周には、段差部118bが形成されている。そして、クロスローラベアリング121の内輪121aが回転駆動体118の外周に嵌着するとともに、内輪121a上面が段差部118bに係合することによって、内輪121aが回転駆動体118に結合している。他方、筐体111の中空軸部114の筒壁の内周面114aに外輪121bの外周面が当接し、且つ、筐体111の第3軸X3方向を向いた底面114bに外輪121bの下面が当接している。つまり、クロスローラベアリング121の外輪121bが段状の底面114b上に載置されている。そして、筐体111の底面114bとともにクロスローラベアリング121の外輪121bを軸方向から挟持するように押さえ部材122が筐体111に固定されている。該押さえ部材122は、第3軸X3方向に平行に延伸するネジによって筐体111外壁に上方から固定されている。好ましくは、押さえ部材122、外輪121b及び筐体111が接着剤によって補助的に互いに接着されてもよい。あるいは、内輪121a及び回転駆動体118が接着剤によって補助的に互いに接着されてもよい。これにより、固定強度が向上する。
More specifically, a stepped
図7に示すように、押さえ部材122は、周方向の一部が切り欠かれた正面視C字形状を有している。該押さえ部材122は所定幅の切り欠き122aを有する。すなわち、押さえ部材122の切り欠き122aを除いた肉部で、クロスローラベアリング121の外輪121bを押さえている。つまり、クロスローラベアリング121の外輪121bの周方向の大部分が、外周面、上面及び下面の三方から支持されている。そして、該切り欠き122aには、リングギヤ115の一部が配置されている。換言すると、押さえ部材122に切り欠き122aが形成されたことにより、押さえ部材122とリングギヤ115との干渉を防いで、リングギヤ115と回転駆動体118との距離を縮めることが可能である。
As shown in FIG. 7, the pressing
また、回転駆動体118の第3軸X3方向の端面には、駆動対象(アーム11)を支持するための支持部として、複数のネジ孔118dが形成されている。さらに、回転駆動体118の第3軸X3方向の端面には、ネジ孔118dとともに、位置合わせ用の複数のピン孔118eが穿設されている(図3参照)。該ピン孔118eは、アーム11から突出するピン(図示せず)を内挿することにより、アーム11の支持部118cへの固定を容易とする。また、ピンが回転荷重を受けることになるので、より高い耐荷重性が得られる。
Also, a plurality of
図8は、本実施形態の関節装置100及び減速装置110を応用したロボットアーム構造10を示している。ロボットアーム構造10は、アーム11と、該アーム11が連結された関節装置100とを備える。図示しないが、アーム11の基端が関節装置100の支持部118dにネジで固定されることによって、アーム11が回転式に関節装置100に取り付けられる。
FIG. 8 shows a
以下、本発明の一実施形態の減速装置110、関節装置100及びロボットアーム構造10の作用効果について説明する。
Hereinafter, the operational effects of the
本実施形態の減速装置110及び関節装置100によれば、筐体111の中空軸部114の内周面114aと回転駆動体118の外周面との間に内輪121a及び外輪121bを有するクロスローラベアリング121が設けられている。クロスローラベアリング121の転がり面は、線接触であるため、荷重に対する弾性変位がごく僅かであり、結果として、回転駆動体118の回転時の軸ぶれが効果的に抑えられる。また、押さえ部材122と筐体111の底面114bとの間にクロスローラベアリング121の外輪121bの上下面を挟み込むことによって、クロスローラベアリング121自体のがたつきが極力抑えられる。さらに、クロスローラベアリング121が回転駆動体118の第3軸X3方向の一端に配置され、ボールベアリング127が回転駆動体118の第3軸X3方向の他端に配置されていることにより、回転駆動体118を筐体111に安定的に支持することができる。したがって、本発明の減速装置110及び関節装置100では、出力における回転精度及びバックラッシ精度が大幅に改善された。
According to the
さらに、本実施形態の減速装置110及び関節装置100によれば、押さえ部材122がC字形状を有し、その切り欠き122aにリングギヤ115の一部が配置されている。さらに、クロスローラベアリング121とボールベアリング127との間に、ギヤ部118a及びリングギヤ115が配置されている。これにより、各部品が第1軸X1の方向において互いに近接して配置され得る。すなわち、本実施形態の減速装置110及び関節装置100は、回転精度及びバックラッシ精度を大幅に改善しつつ、装置構造全体をコンパクトに構成可能である。
Furthermore, according to the
[変形例]
本発明は、上記実施形態に限定されず、種々の実施形態や変形例を取り得る。
[Modification]
The present invention is not limited to the above embodiment, and various embodiments and modifications can be taken.
上記実施形態の関節装置100(又は減速装置110)では、クロスローラベアリング121及びボールベアリング127が協働して回転駆動体118を筐体111に支持しているが、本発明はこれに限定されない。例えば、ボールベアリング127の代わりに追加のクロスローラベアリングが採用されてもよい。あるいは、ボールベアリング127が省略されてもよい。
In the joint device 100 (or the speed reducer 110) of the above embodiment, the
上記実施形態の減速装置100の減速機構は、互いに直接的に噛み合うように配置されたリングギヤ115、ピニオン軸116、及びギヤ部118によって構成されている。しかしながら、本発明は、上記構造に限定されず、各ギヤの間に1又は複数のギヤが追加されて、各構成要素が間接的に噛み合うように構成されてもよい。
The speed reduction mechanism of the
本発明は上述した実施形態や変形例に限定されるものではなく、本発明の技術的範囲に属する限りにおいて種々の態様で実施しうるものである。 The present invention is not limited to the above-described embodiments and modifications, and can be implemented in various modes as long as they belong to the technical scope of the present invention.
10 ロボットアーム構造
11 アーム
100 関節装置
101 駆動装置
102 駆動軸
103 ドライブピニオン
104 ハウジング
105 貫通孔
106 ボールベアリング(第1軸回転用)
107 カップリング
108 モータ
110 減速装置
111 筐体
111a 固定部(ネジ孔)
112 入力部
113 ギヤ収容部
114 中空軸部
114a 内周面
114b 底面
115 リングギヤ
116 ピニオン軸
118 回転駆動体
118a ギヤ部
118b 段差部
118d 支持部(ネジ孔)
118e ピン孔
121 クロスローラベアリング
121a 内輪
121b 外輪
122 押さえ部材
122a 切り欠き
125 ボールベアリング(第1軸回転用)
126 ボールベアリング(第2軸回転用)
127 ボールベアリング(第3軸回転用)
X1 第1軸
X2 第2軸
X3 第3軸
DESCRIPTION OF
107
112
126 Ball bearing (for second shaft rotation)
127 Ball bearing (for third axis rotation)
X1 1st axis X2 2nd axis X3 3rd axis
Claims (8)
前記駆動装置を連結するための固定部、及び、中空軸部を有する筐体と、
前記筐体内部に配置され、前記第1軸と直交する第2軸を中心に回転し、前記駆動装置のドライブピニオンとともにハイポイドギヤを構成するリングギヤと、
前記筐体内部で前記リングギヤに結合され、前記第2軸を中心に回転するピニオン軸と、
前記第2軸と平行に延伸する第3軸を中心に回転可能に前記筐体の前記中空軸部に配置され、前記ピニオン軸と直接的又は間接的に噛み合い可能に配置されたギヤ部を外周に有し、且つ、第3軸方向の端部に駆動対象を支持するための支持部を有する回転駆動体とを、備え、
前記筐体の内周面と前記回転駆動体の外周面との間には、内輪及び外輪を有するクロスローラベアリングが設けられ、前記クロスローラベアリングの内輪が前記回転駆動体の外周面に固定され、前記クロスローラベアリングの外輪が前記筐体に固定されていることを特徴とする減速装置。 A drive shaft that is driven to rotate about a first shaft by a motor and a drive device having a drive pinion provided at the tip of the drive shaft, and that reduces the rotation input from the drive device, A speed reduction device that converts and outputs rotation with an orthogonal rotation axis,
A fixed portion for connecting the driving device, and a housing having a hollow shaft portion;
A ring gear that is disposed inside the housing, rotates around a second axis orthogonal to the first axis, and forms a hypoid gear together with a drive pinion of the driving device;
A pinion shaft that is coupled to the ring gear within the housing and rotates about the second axis;
A gear portion that is disposed in the hollow shaft portion of the housing so as to be rotatable about a third shaft extending in parallel with the second shaft and that can be directly or indirectly engaged with the pinion shaft is disposed on the outer periphery. And a rotary drive body having a support portion for supporting the drive target at the end portion in the third axial direction,
A cross roller bearing having an inner ring and an outer ring is provided between the inner peripheral surface of the casing and the outer peripheral surface of the rotary drive body, and the inner ring of the cross roller bearing is fixed to the outer peripheral surface of the rotary drive body. A reduction gear, wherein an outer ring of the cross roller bearing is fixed to the casing.
モータ、該モータによって第1軸を中心に回転駆動される駆動軸及び前記駆動軸先端に設けられたドライブピニオンを有する駆動装置と、
前記駆動装置に結合され、前記駆動装置から入力された回転を減速し、前記第1軸と直交する回転軸を有する回転に変換して出力する請求項1から6のいずれか一項に記載の減速装置と、を備え、
前記支持部は、アームを装着可能に構成されていることを特徴とする関節装置。 A robot joint device for mounting an arm rotatably.
A drive unit having a motor, a drive shaft that is driven to rotate about the first axis by the motor, and a drive pinion provided at the tip of the drive shaft;
The rotation according to any one of claims 1 to 6, wherein the rotation input to the drive device is decelerated, the rotation is converted into a rotation having a rotation axis orthogonal to the first axis, and output. A reduction gear,
The joint device is configured so that an arm can be attached to the support portion.
前記アームが連結された、請求項7に記載の関節装置と、
を備えることを特徴とするロボットアーム構造。 Arm,
The joint device according to claim 7, wherein the arms are connected to each other.
A robot arm structure comprising:
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016-250615 | 2016-12-26 | ||
| JP2016250615A JP6757244B2 (en) | 2016-12-26 | 2016-12-26 | Deceleration device, joint device and robot arm structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018123895A1 true WO2018123895A1 (en) | 2018-07-05 |
Family
ID=62707306
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/046202 Ceased WO2018123895A1 (en) | 2016-12-26 | 2017-12-22 | Reducer, joint device, and robot arm structure |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6757244B2 (en) |
| WO (1) | WO2018123895A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111673715A (en) * | 2019-03-11 | 2020-09-18 | 发那科株式会社 | robot |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110307297A (en) * | 2019-08-06 | 2019-10-08 | 三一海洋重工有限公司 | Drive structure and rotator |
| JP7685825B2 (en) * | 2020-11-16 | 2025-05-30 | 住友重機械工業株式会社 | Gear motor |
| CN112692865A (en) * | 2021-01-18 | 2021-04-23 | 之江实验室 | Integrated joint |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007057054A (en) * | 2005-08-26 | 2007-03-08 | Hitachi Industrial Equipment Systems Co Ltd | Geared motor |
| JP2009174663A (en) * | 2008-01-25 | 2009-08-06 | Sumitomo Heavy Ind Ltd | Power transmission device with bevel gear |
| JP2013071200A (en) * | 2011-09-27 | 2013-04-22 | Yaskawa Electric Corp | Gear unit, and robot |
-
2016
- 2016-12-26 JP JP2016250615A patent/JP6757244B2/en active Active
-
2017
- 2017-12-22 WO PCT/JP2017/046202 patent/WO2018123895A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007057054A (en) * | 2005-08-26 | 2007-03-08 | Hitachi Industrial Equipment Systems Co Ltd | Geared motor |
| JP2009174663A (en) * | 2008-01-25 | 2009-08-06 | Sumitomo Heavy Ind Ltd | Power transmission device with bevel gear |
| JP2013071200A (en) * | 2011-09-27 | 2013-04-22 | Yaskawa Electric Corp | Gear unit, and robot |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111673715A (en) * | 2019-03-11 | 2020-09-18 | 发那科株式会社 | robot |
| US11230002B2 (en) | 2019-03-11 | 2022-01-25 | Fanuc Corporation | Robot |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018105373A (en) | 2018-07-05 |
| JP6757244B2 (en) | 2020-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101208406B1 (en) | Driving modules with hollowness | |
| WO2018123895A1 (en) | Reducer, joint device, and robot arm structure | |
| CN111120583B (en) | Speed reducer and electromechanical device | |
| KR200450505Y1 (en) | reducer | |
| CN103358316A (en) | Hollow driving module | |
| US10066721B2 (en) | Final drive device | |
| KR101194316B1 (en) | Driving modules with hollowness | |
| JP2012223081A (en) | Electric actuator and joint apparatus | |
| JP6421155B2 (en) | Geared motor | |
| TWI695939B (en) | Gear transmission | |
| EP2479456B1 (en) | Eccentric oscillation gear device and method for producing eccentric oscillation gear device | |
| JP3186812U (en) | Variable speed transmission bearing | |
| JP2010151269A (en) | Rotating and driving device, articulation structure of robot and robot arm | |
| TWI814784B (en) | Reducer | |
| US9322464B2 (en) | Hollow drive gear reduction mechanism | |
| JP2010084842A (en) | Rotary drive device, robot joint structure and robot arm | |
| CN113357315A (en) | Body driver, driving joint and robot | |
| CN107299964B (en) | Gear device | |
| JP2008005576A (en) | Geared motor and geared motor for robot | |
| CN215093695U (en) | Body driver, driving joint and robot | |
| JP2009079657A (en) | Electric linear actuator and its assembling method | |
| CN211599411U (en) | Gear meshing reducer with small tooth difference | |
| CN210397602U (en) | Planetary harmonic combination reducer | |
| JP2009168193A (en) | Epicycle reduction gear | |
| JP2012052589A (en) | Bearing structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887495 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17887495 Country of ref document: EP Kind code of ref document: A1 |